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Abstract

Run-to Run (RtR) control plays an important role in semiconductor manufacturing.
In this paper, RtR control methods are generalized. The set-valued RtR controllers
with ellipsoid approximation are compared with other RtR controllers by simulation
according to the following criteria: A good RtR. controller should be able to compen-
sate for various disturbances, such as process drifts, process shifts (step disturbance)
and model errors; moreover, it should be able to deal with limitations, bounds, cost
requirement, multiple targets and time delays that are often encountered in real pro-
cesses. Preliminary results show the good performance of the set-valued RtR. controller.
Furthermore, this paper shows that it is insufficient to use linear models to approx-
imate nonlinear processes and it is necessary to develop nonlinear model based RtR
controllers.

1 Introduction

Run-to Run (RtR) control plays an important role in semiconductor manufacturing. The
RtR controller is a model-based process control system that combines the advantage of both
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Figure 1: Structure of a RtR Controller.

the statistical process control and the feedback control. In general, the goal of the controller
is to reduce the variability of the process outputs, as measured by the mean square errors
between the process outputs and the targets. It can be achieved by adjusting process inputs
(recipes) at the beginning of each run. A good RtR controller should be able to compensate
for various disturbances, such as process drifts, process shifts (step disturbances) due to
maintenance or other factors, model or sensor errors, etc. Moreover, it should be able to
deal with limitations, bounds, cost requirement, multiple targets and time delays that are
often encountered in real processes.

A typical block diagram of a RtR controller is shown in Figure 1. The controller provides
recipes (inputs) based on post-process measurements at the beginning of each run; then it
updates the process model according to the measurements at the end of the run; finally, it
provides new recipes for the next run of the process. The RtR controller does not modify
recipes during a run because of the following reasons: 1) Cost. It is usually very expensive
to obtain real-time information in a semiconductor process; 2) Stability. Frequent changes
of inputs to the process may increase the variability of the process’s outputs and even make
the process unstable. The initial process model is derived from former experiments such as
the response surface model (RSM) methods. When the controller is online, the model within
the controller is updated according to the new measurements from run to run. Different
model updating methods leads to different kinds of controllers.

This paper is organized as follows: Classification of RtR control methods is given in
section 2; comparisons of the set-valued RtR controllers with the EWMA controller, the
ANN-EWMA controller and the OAQC controller are introduced in section 3.1-3.3; in section
3.4, two different set-valued RtR controllers are compared; finally, conclusions and summary
are given in the last section.



2 Classification of RtR Control Methods

In general, RtR control methods fall into the following six categories (Because some RtR
controllers are commercial products, they may not be listed here).

1. The Exponentially Weighted Moving Average (EWMA) method. It is one of the most
popular RtR control methods. It uses history data to linearly update process models by
giving less weights to the old data [19],[2]. The EWMA method is applicable to processes
that can be approximated by linear models. Sometimes, multiple linear models are used and
a supervisory module is used to switch the models. For a detailed theoretical analysis of the
EWMA method, please refer to [13]. There are lots of modifications to the EWMA method.
For example, the double exponential forecasting filter method [3] uses a Predictor Corrector
Controller (PCC) to eliminate the impact of machine and process drift. The Artificial Neural
Network (ANN) EWMA [20] method makes the EWMA method applicable to some higher
order linear-in-parameter processes. J. A. Mullins uses a discrete process model for a linear
process that has the ability of model-predictive control [16].

2. The machine learning algorithm. A typical example is the Knowledge Based Interactive
Controller (KIRC) [18]. It is a machine learning algorithm for RtR control that uses leaves in
a classification decision tree to suggest control actions. The algorithm generates a decision
tree by using an information space with attribute tests. The starting operating point is
chosen from the largest leaf in the decision tree, where all outputs are inside the target
range. A comparative simulation [18] shows that the KIRC is only applicable to linear
processes.

3. Least Square Recursive (LSR) method. It recursively approximates the process model
by minimizing the least square error between the model outputs and targets. Typical ex-
amples are the Optimized Adaptive Quality Control (OAQC) [4] method and the Kalman
filter approach [15]. In its optimizing mode, the OAQC method updates the model at every
run; in the controller mode, it uses a quadratic cost function to maintain the response of
the process at the desired target with regards to the variation of the tunable parameters. It
integrates the multivariate control chart as a dead-band to the controller in order to erase
outliers. The Kalman filter approach is used to recursively adjust the coefficients of a sim-
ple static process model. The effectiveness of the scheme is demonstrated by experiments.
Currently, the LSR method is limited to polynomial processes that can be approximated by
a second-order equation.

4. The probabilistic approach [10]. It uses the probability theory to analyze the process.
Analytic formulas for the probability of stability are given in the particular case of an EWMA
controller. However, there is a key question of reliability of this methodology. Furthermore,
it assumes that the noises are Gaussian to derive the formulas, which limits the practical
meaning of this method. At present, it is limited to first order processes, though it has the
potential to be used in higher order processes.



5. The Artificial Neural Network (ANN) method. It was shown that the ANN has great
potential in modeling severe nonlinear semiconductor processes [11], [17], [12]. However, a
drawback of the ANN method is that it does not supply an explicit model for the process.
Thus, it causes difficulties when one tries to apply optimal control to adjust recipes. Wang[21]
uses a Taylor expansion to find a linear model to describe the ANN model. But it finally
becomes a linear RtR control method. Its performance is only comparable to that of an
ordinary EWMA controller. T. H. Smith [20] uses the ANN EWMA method to control
a second order process. It is successful for small disturbances or parameter variations in
a limited number of runs (only 40). For a large model error, the process controlled by it
becomes unstable. The reason is that the controller uses an EWMA module to feed into
the ANN model, which limits the ability of the ANN to approximate a nonlinear process.
D. Dong and Zafiriou use an ANN approach to control batch-to-batch processes in chemical
engineering that can be modeled by a first principle model [8]. The processes are different
from semiconductor processes, which are usually much more complex. Therefore, to the
best of the authors’ knowledge, there has not been a successful scheme to apply the ANN
approach to the RtR control of severe nonlinear semiconductor processes.

6. The set-valued approach. The set-valued RtR controller is much more robust than
other regular RtR controllers. It seeks a safe estimate of the process model in the feasible
parameter set in each run. The identified model is insensitive to various noises [23]. It was
first proposed by Baras [1] to be applied in RtR control. The main difficulty of the set-valued
based RtR controller is the excessive computational time required to calculate the feasible
sets and solving the optimization problem within this set. The problem can be simplified by
using ellipsoids to approximate the feasible sets. There are mainly two ellipsoid algorithms
available at present: the Modified Optimal Volume Ellipsoid (MOVE) algorithm and the
Dasgupta Huang Optimal Bounding Ellipsoid (DHOBE) algorithm. For details of these two
algorithms, please refer to [22] and [23]. The corresponding controllers will be called the
SVR-MOVE controller and the SVR-DHOBE controller respectively.

Next, we are going to compare the set-valued RtR controllers with several typical RtR
controllers.

3 Comparison of RtR Control Methods by Simulation

3.1 Comparison of the SVR-MOVE Controller with the EWMA
Controller

In this section, we are going to compare the SVR-MOVE controller with the EWMA con-
troller. The model (Equation (1) and (2)) comes from a Low Pressure Chemical Vapor
Deposition (LPCVD) furnace process. In this process, two objects R; and Ry are controlled.

They are the deposition rates in ,(4)1 /min on the first and last wafer respectively. The targets



are fixed at 169.75 fé)l /min and 141.7 ;1 /min respectively. We want to maintain the outputs
of the process as close to the targets as possible.

Ry = exp(cy + clnP + csT ' 4 c,Q71) (1)
1— 8'Cy Q!

R,=R g 2

2T N+ 8C, R QY 2)

where T stands for the temperature in K, P the pressure in mtorr and Q) the silane flow rate in
sccm. They are the inputs (recipes) to the process. We adjust them to maintain the process
outputs on targets. The process parameters are ¢; = 20.65, co = 0.29, ¢c3 = —15189.21,
¢y = —47.97, 8" = 4777.8 and C,s = 1.85x 10~°. Here the units are omitted for convenience.

The SVR-MOVE controller is compared with the EWMA controller in two cases: 1) The
noises are white noises and drifts; The drifts in process R; and R, are equal to -0.3 in each
run. 2) the noises are white noises and shifts. The shifts in the process occur at run 4.
The simulation results are shown in Figure 2 and Figure 3 respectively. The target, the
30 upper bound and lower bound are shown in these figures by three horizontal straight
lines. The weight parameter for the EWMA controller is 0.35. It is obtained by selecting the
weight that has the optimal performance among multiple weight parameters. Though the
EWMA method can control multiple objects, it is used to control only the single process R;.
Therefore, the performance of the EWMA controller can not be better if it is used to control
two processes. The SVR-MOVE controller is applied to control two targets R; and Rs. From
Figure 2, it can be seen that both controllers control R; well. The controlled process stays
in the 30 region satisfactorily. Figure 3 shows that the SVR-MOVE controller returns the
output to the target immediately after detecting the step disturbance; The EWMA controller
needs more steps to return the output within the 30 bound.

The comparison shows that under a drift disturbance, The performance of the SVR-
MOVE controller is comparable to that of the EWMA controller. Under a shift disturbance,
its performance is better than that of the EWMA controller.

3.2 Comparison of the SVR-MOVE Controller with the ANN
EWMA Controller and the EWMA Controller

Many semiconductor processes can be subjected to small shifts or drift changes. These
perturbations can be compensated by using the EWMA method or some other linear model
based methods. Unfortunately, this is not always the case. For example, many plasma
processes have been shown to exhibit small to large nonlinearities in behavior. Furthermore,
the photoresist process and the Chemical Mechanical Planarization (CMP) process require
dynamic process models too. Therefore, it is necessary to develop nonlinear algorithms to
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solve this type of problems. In this comparison, we will see that the EWMA controller and
the ANN-EWMA controller can not work well for nonlinear processes.

The comparison is based on the model in [20]. The ANN EWMA approach was proposed
by T. H. Smith to monitor nonlinear processes. As in the EWMA method, it assumes that
the underlying process model is relatively static, and to adapt model offsets is enough to
control the process. In comparison, the process output y,[k| is of the form:

yplkl = by + fp(2lk]) +v[k] +0 -k (3)

where b, is the actual process offset, z[k] is the inputs, v[k] is normally distributed white
noise with zero mean and covariance matrix A, ¢ is a drift term, k is the run number, and
fp(x[k]) is a full second-order polynomial function of the form:

Fo(a k) (i) = z B, (i, f)a(@)2(G)yi = 1, o p ()

where (,(i, ) are the perturbed versions of the nominal coefficients 3(, 7). They have the
relation:

where ¢;; is uniformly distributed zero-mean random variables with variance o. For a small

model error, ¢ = 0.1; for a large model error, 0 = 0.3. For more information about the
variances, please refer to [20].

It is found that the EWMA controller is often unstable in both cases for even the most
conservative weights; the ANN-EWMA controller is stable under a small model error (o =
0.1); it becomes unstable when there is a large model error (0=0.3) [20]. The simulation
results for the SVR-MOVE controller under small and large model errors are shown in Figure
4 and 5 respectively. It can be seen that the SVR-MOVE controller controlled processes are
stable in both cases. This comparison shows that the set-valued RtR controller has stronger
ability to deal with model errors and noises than the EWMA controller and the ANN-EWMA
controller. The SVR-MOVE controller is much more robust than them.

3.3 Comparison of the SVR-DHOBE Controllers with the OAQC
Method

According to the method of choosing the estimate in the ellipsoid, there are two DHOBE
algorithm based RtR controllers available: If the center of the ellipsoid is chosen as the
estimate, then we call the controller DHOBE-MR controller; if the point in the ellipsoid
which minimizes the worst-case cost is chosen as the estimate, then we call it the DHOBE-
SV controller. Detailed introductions about the OAQC method can be found in [4]. Detailed
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Scenario Method 51 gg Syl Sy2 MSDI MSD2
1 OAQC 1719.7 168.4 70.4 40.1 288.9 79.2
DHOBE-MR | 1754.7 157.3 84.5 35.0 259.7 67.5
DHOBE-SV | 1787.7 168.1 82.8 34.7 228.2 76.9
OAQC 1718.2 165.7 72.1 42.0 291.0 78.2
DHOBE-MR | 1781.9 165.0 84.5 36.1 234.2 74.8
DHOBE-SV | 1807.4 177.5 859 36.1 211.9 86.1
0OAQC 1661.2 189.2 89.2 43.5 350.2 99.2
DHOBE-MR | 1741.4 189.1 108.7 35.6 280.8 96.0
DHOBE-SV | 1747.0 190.8 109.2 37.5 275.9 98.3

W W W N DN DO | —

Table 1: Comparison of the SVR-DHOBE controllers with the OAQC method for CMP 4x2
models

comparison can be found in [7]. The SVR-DHOBE controllers are simulated under exactly
the same circumstances as the OAQC method. Two responses y; and ys are controlled. For
response 1, a large value is preferred; for response 2, a small value is desired. The final
results with regards to the statistical variance analysis are listed in Table 1 and Table 2.

In the tables, the symbols have the meaning;:

e y; stands for the sampling values from the real process’s ith output.
e S, is the standard deviation of the process’s 7th output.

e MSD,; is the square root of mean square deviation of the process’s ¢th output from its
target value.

Table 1 shows the result for a CMP 4x2 model. For response 1, the means of the DHOBE
algorithm based RtR controllers are better than the OAQC controller and their standard
deviations are comparable to the OAQC controller. For the second response, the means of
the DHOBE algorithm based RtR controllers are comparable to the OAQC controller and
the standard deviations are better than the OAQC controller.

Table 2 shows the simulation result for a CMP 3x2 model. In scenario 1, we use a
second order model to approximate the process model; In scenario 2, we use a linear model
to approximate the process model. It can be seen from the table that the mean square
errors for scenario 2 are about two times larger than those for scenario 1. It shows that it is
insufficient to use linear models to approximate nonlinear processes.



Scenario Method 51 gg Syl Sy2 MSDI MSD2
1 0OAQC 2069.9 478.8 143.8 53.5 193.5 95.0
DHOBE-MR | 2005.5 490.5 139.7 41.2 235.9 98.6
DHOBE-SV | 2002.8 490.4 141.4 42.7 238.9 98.9
0OAQC 1950.4 595.0 430.7 99.6 543.9 2204
DHOBE-MR | 1921.5 663.9 457.0 99.9 568.4 2719
DHOBE-SV | 1921.8 659.6 381.6 71.6 499.0 256.8

DN DN DN | —

Table 2: Comparison of the SVR-DHOBE controllers with the OAQC method for CMP 3x2
models

3.4 Comparison of the SVR-MOVE Controller with the SVR-
DHOBE Controller

Both the SVR-MOVE controller and the SVR-DHOBE controller use ellipsoids to approxi-
mate the feasible parameter sets and they both update the process models only when it is
necessary. The difference between them lies in: The derivation of the MOVE algorithm is
based on a geometric point of view; the DHOBE algorithm uses a Recursive Least Square
(RLS) type scheme to update the ellipsoid.

The comparison was made by simulation for two photoresist processes.

3.4.1 An Almost Linear Photoresist Process 1

The following is the model used in the photoresist process I [14].

2.54 - 106 1.95- 107

T= — 13814+ +
vVSPS BTEVSPS
. 3.78BTI - 0285pPT — 01610 (6)
‘ ‘ SPS

where T is the resist thickness in Angstroms and the target is fixed at 12373.621 Angstroms.
We want the output T to be as close to the target as possible. SPS is the spin speed in
RPM, SPT the spin time in seconds, BTI the baking time in seconds and BTE the baking
temperature in degrees Celsius. They are the inputs (recipes) to the process, which are
confined to:

4500 < SPS < 4700

10



15 < SPT <90
105 < BTE < 135
20 < BTI < 100

After changing process variables, it can be simplified to an almost linear process. The
simplified model is shown in the following equation:

T= — 13814+ 2.54-10% + 1.95 - 107 uqus
—  3.78uz — 0.28uy — 6.16 - 107y, (7)
where:
1
uy =
VvV SPS
1
Y2 = BrE
us = BTI
Ug = SPT

The output of the process in each run is:
yk:T+d1-k+Ul (8)

where d; = —0.3 and v; is Gaussian with zero mean and variance 9.

The simulation results for the SVR-MOVE controller and the SVR-DHOBE controller
are shown in Figure 6 and Figure 7 respectively. We can see that both controllers can control
the almost linear process well under the disturbance of drift. However, the SVR-DHOBE
controller controlled process has some overshoots, which affect the control quality. In the
following, white noise in the process is removed, and only the drift exists as the disturbance.
From Figure 8 and 9, it can be seen clearly that the SVR-MOVE controller works well, but
the process controlled by the SVR-DHOBE controller has obvious over-shoots at run 64 and
65.

3.4.2 A Full Second-order Nonlinear Photoresist Process I1

The model used here is a full second-order nonlinear process II [14].

R = 134.4 — 0.046SPS + 0.32SPT — 0.17BTE

11
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Figure 9: Photoresist process I controlled by the SVR-DHOBE controller.

white noise is removed and only the drift exists.
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0.023BTI — 4.34-107°- SPS - SPT

5.19-107°-SPS-BTE —1.07-1073

SPT-BTE +5.15-107°. (SPS)?

— 4.11-107*-SPT-BTI (9)

X 4+ +

Where R is the reflectance in % and the other variables are defined as in previous section.
The target is fixed at 39.4967%.

After variable substitution, equation (9) is changed into:

R = 134.4 — 0.046u; + 0.32uy — 0.17us + 0.023uy
— 4.34- 10 uqus
+ 5.19-105ujug — 1.07 - 10 3uqug

+ 5.15-107%F — 4.11 - 10 *upuy (10)
where
Uy = SPS
Uy = SPT
us = BTE
uy = BTI

The output of the process in each run is:
yp=R+di-k+uv (11)
where d; = —0.3 and v; is Gaussian with zero mean and variance 9.

From Figure 10 and Figure 11, it can be seen that in the second-order case, the SVR-
MOVE controller performs better than the SVR-DHOBE controller. The process controlled
by the SVR-DHOBE controller has some overshoots at run 52, 90 and 95.

4 Summary

RtR control methods are generalized and compared in this paper. Based on previous dis-
cussions and results, the application scope and complexity of the RtR control methods can
be generalized in Table 3, where “Y” denotes “Applied”, “N” denotes “Not applied”, “L”
denotes “Low”, “H” denotes “High”, and “M” means “Medium”.

14
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Figure 10: Photoresist process II controlled by the SVR-MOVE controller under drift.
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Figure 11: Photoresist process II controlled by the SVR-DHOBE controller under drift.
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RtR Control Methods Linear Process | Light =~ Non- | Severe Non- | Complexity
linear Process | linear Process

EWMA Method

Machine Learning Method

LSR Method

Probability Method

Neural Network Method

| ] | | ]
|z < 2| <
=< 2| 2| =< 2| 2
2T E e

Set-valued Method

Table 3: Generalization of RtR control methods

Preliminary simulation results show that the set-valued RtR controller with ellipsoid

approximation has better or comparable performance over some other control methods. In
some cases, the SVR-MOVE controller performs better than the SVR-DHOBE controller. It
also shows that it is insufficient to use linear models to approximate severe nonlinear processes
and it is necessary to develop nonlinear RtR controllers for semiconductor processes. More

sim

ulations will be conducted and we expect to apply the set-valued RtR controller with

ellipsoid approximation to some real semiconductor processes in the near future.
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