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1 IntroductionOne of the major challenges in designing a BISDN/ATM network is to guarantee the quality-of-service (QoS) requirements for all transported streams without underutilizing the available band-width capacity. The QoS requirements can be easily satis�ed by allocating bandwidth based onthe peak rates of the individual sources. However, due to the burstiness of many sources (i.e., largepeak rate to mean rate ratio), source-peak-rate allocation results in low utilization. To increasethe utilization, statistical multiplexing can be used, which allows the available bandwidth to beshared among various streams on a need basis. By means of statistical multiplexing, it is possibleto allocate an aggregate amount of bandwidth that is less than the sum of peak rates of the indi-vidual streams. This conventional use of statistical multiplexing results in possible cell queueingand bu�er over
ow. The amounts of cell delay and cell loss depend on the tra�c model. Becauseof the statistical nature of commonly used tra�c models, the use of statistical multiplexing is oftenlimited to sources with statistical QoS requirements. Typically, a stream with deterministic QoSrequirements (e.g., no cell losses) is not statistically multiplexed with other streams. Dependingon its delay requirement, such a stream is either allocated its peak rate, or (if the some bu�eringdelay can be tolerated) its peak rate over a �nite interval [6].In this paper, we investigate the bandwidth requirements of video streams that are generated byMPEG encoders. We only consider the video compression part of the MPEG standard. Althoughour numerical examples are based on traces produced by MPEG-I encoders, the proposed allocationscheme and the associated analysis are applicable for both MPEG-I and II. We show that, contraryto the general belief, statistical multiplexing can be used to an advantage with MPEG video tra�cwhile providing stringent and deterministic QoS guarantees. By exploiting the deterministic andperiodic manner in which frame types are generated, we show that MPEG streams can be statis-tically multiplexed (with an e�ective bandwidth per source that is less than the source peak rate)with no cell losses and very minor queueing delay. The e�ective bandwidth depends on the rela-tive degree of synchronization among the multiplexed streams. We provide a simple algorithm forcomputing the e�ective bandwidth for an arbitrary synchronization structure. This algorithm canbe used as part of call admission control at a switching/multiplexing network node. In situationswhere it is possible to have some control on the starting times of MPEG streams (e.g., in a videoserver), we give the form of the best synchronization structure for the multiplexed MPEG streamsthat has the optimal (minimum) e�ective bandwidth.The rest of the paper is structured as follows. Section 2 describes the tra�c model that is usedto characterize an MPEG stream. Based on this model, the e�ective bandwidth for multiplexedMPEG streams is de�ned in Section 3. E�cient procedures for computing the e�ective bandwidthare given in Section 4. These procedures are suitable for implementation at intermediate ATMswitches. In Section 5, we investigate the design of the call admission control (CAC) algorithm1



when resources are allocated based on the e�ective bandwidth. The tail distribution of the e�ec-tive bandwidth for randomly `arranged' MPEG streams is derived and used to obtain the blockingprobabilities for the CAC algorithm. The `optimal' e�ective bandwidth that results from the `best'arrangement of multiplexed MPEG streams is investigated in Section 6. The derived expressionsfor the best synchronization arrangement and the associated optimal e�ective bandwidth are par-ticularly signi�cant at a video server where there is more 
exibility to control the starting instantsof video sources (compared to an intermediate node). Numerical results based on actual videostreams are given in Section 7. The paper is concluded in Section 8.2 The MPEG Source ModelA standard MPEG encoder employs several modes of compression resulting in the generation ofthree types of compressed frames: Intra-coded (I ), Predictive (P), and Bidirectional (B) frames. Ingeneral, I frames are larger than P frames which, in turn, are larger than B frames (the frame sizerefers to the number of bits used to encode the frame). When compressing a video sequence, typicalMPEG encoders use a pre-de�ned GOP pattern to determine the types of the compressed frames.Although the MPEG standards do not restrict the manner in which frame types are determined,specifying a single pattern before the start of the encoding process reduces the complexity of theencoder (in contrast to adaptively changing the GOP pattern). In addition, the use of a pre-de�nedGOP pattern results in more deterministic (and periodic) tra�c behavior which, as we show in thispaper, can be exploited to reduce the bandwidth requirements of MPEG streams. Hence, we assumethroughout this paper that each MPEG stream is compressed using one GOP pattern. Di�erentstreams are allowed to have di�erent GOP patterns. The GOP pattern de�nes the number andtemporal order of P and B frames to be generated between two successive I frames. It is usedrepeatedly to compress the whole video sequence. An example of a video sequence that uses theGOP pattern `IBBPBB' is shown in Figure 1. The sizes of compressed frames depend on theframe types (as well as the scene dynamics). Therefore, one should expect signi�cant impact of theperiodicity of the GOP pattern on the characteristics of the tra�c and, consequently, the bandwidthallocation strategies. To maintain constant-quality video, compressed frames are generated at a�xed frame rate (e.g., 30 frames/sec), resulting in VBR tra�c.
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Since B frames are coded using future I/P frames, the order in which frames are sent overthe network (i.e., the transmission order) is slightly di�erent from their encoding order. However,starting from the second I frame, the transmission and encoding orders look similar with respect toframe types. Therefore, we will ignore the �rst few frames in a stream, and assume, for simplicity,that frame types in an MPEG stream are represented by exact replications of the GOP pattern.In the following development, we will be primarily concerned with a special class of GOPpatterns that satis�es the following `regularity' requirement: the number of successive B frames ina given MPEG stream is constant. This restriction is needed to obtain tractable analytical results,and is not required for the validity of the e�ective bandwidth algorithms (so long as a single GOPpattern is used repeatedly in a given stream). In fact, `regular' GOP patterns that satis�es theabove requirement are often used in practice to simplify the codec design. Regular GOP patternscan be speci�ed by two parameters:L : number of frames between two consecutive I frames in an MPEG stream.Q : number of frames between an I frame and the subsequent I/P frame (whichever comes�rst) in an MPEG stream.The regularity of the GOP pattern implies that L is a multiple of Q. Notice that it is possible tohave L = Q = 1, in which case only I frames are generated (i.e., JPEG-like stream).To provide deterministic QoS guarantees for video tra�c, the analytical framework used todimension the network resources must be based on deterministic characterization of the tra�c. Forour purposes, we use a deterministic tra�c model which is similar, to some extent1, to the D-BINDmodel that was suggested in [6]. In our model, an MPEG stream si is represented by a tra�cenvelop, bi(t), that provides a time-varying upper bound on the actual bit rate of si. This envelopis completely speci�ed by �ve parameters: I(i)max, P (i)max, B(i)max, L(i), and Q(i), where the �rst threeparameters denote, respectively, the maximum sizes of I , P , and B frames in si. The parametersL(i) and Q(i) specify the GOP pattern of si. The tra�c envelop is a piecewise constant functionwhich alternates between the levels I(i)max, P (i)max, and B(i)max according to the GOP pattern that isspeci�ed by L(i) and Q(i). Frame sizes are given in ATM cells. Cells are evenly distributed over aframe period (e.g., after pre-bu�ering at the source side).3 E�ective Bandwidth for Multiplexed MPEG StreamsConsider N MPEG streams, s1; : : : ; sN , with very stringent and deterministic QoS requirements(say, no losses and small queueing delays), to be transported over an ATM network. Typically,such requirements are met by allocating bandwidth based on the peak bit rate of each source.1The D-BIND model provides a time-invariant bound on the cumulative arrivals. We use a more restrictive modelthat provides a time-varying bound on the rate of arrivals.3



Under source-peak-rate allocation, bandwidth resources are not shared among di�erent streams.Common belief is that statistical multiplexing should only be used for streams that content withstatistical QoS guarantees. However, it is the nature of the tra�c model that determines whetherthe o�ered guarantees are deterministic or statistical. Using the tra�c envelop that was describedin Section 2, we show that statistical multiplexing can be used advantageously with MPEG sourceswhile supporting stringent, deterministic QoS requirements.Let bi(t) be the tra�c envelop for si. For now, assume that L(i) = L for all i. Denote the arrivaltime of the �rst frame of si at the multiplexing node by ti. We let t1 4= 0, so that the �rst streamcan be used as a reference point. The lag in frame durations between a GOP period of s1 andthe following closest GOP period of si is given by ui = ti mod L. The vector u = (u2; u3; : : : ; uN),which we refer to as an arrangement , completely speci�es the synchronization structure for the Nstreams with regard to their GOP periods (note that u1 4= 0). Clearly, bi(t) is periodic in timewith period L, so is the tra�c envelop for the aggregate tra�c resulting from the superposition ofthe N streams, btot(t) = Pi bi(t � ui). We de�ne the e�ective bandwidth for N streams with anarrangement u as: C(u;N) 4= 1N maxt�0 btot(t) = 1N maxt�0  NXi=1 bi(t� ui)! (1)Because of the periodicity of btot(t), it is su�cient to take the maximum over an interval of lengthL. Equation (1) can also be written as:C(u;N) = Pj2�I I(j)max +Pj2�P P (j)max +Pj2�B B(j)maxN (2)where �I ;�P ;�B are pairwise mutually disjoint sets with �I S�P S�B = fs1; : : : ; sNg.When L(i) varies with i, (1) and (2) are still applicable, except that btot(t) is now periodic withperiod eL, where eL = least common multiple offL(1); L(2); : : : ; L(N)g (3)and the maximization in (1) must be taken over a time interval of length eL (also in the de�nitionof ui, L should be replaced by eL).The concept of e�ective bandwidth (also known as equivalent capacity) was investigated in severalprevious studies within a stochastic framework (for example, see [4] and [1]). In this paper, thee�ective bandwidth is de�ned within a deterministic framework to guarantee zero cell loss rate andnegligible queueing delays. The following simple example demonstrates the bandwidth gains thatcan be achieved by multiplexing MPEG streams while simultaneously supporting deterministic QoSguarantees. Let N = 2, L = 6, Q = 3, and u2 = 1. Assume that both streams are characterized by4



the same tra�c envelop, b(t), with Imax > Pmax > Bmax (see Figure 2). Then,C(u; 2) 4= 1N maxt�0 btot(t) = 1N maxt�0 �b(t) + b(t � 1)� = Imax +Bmax2 < Imax (4)
multiplexersource 1source 2 BB IBBI BB P BIBPBFigure 2: Example of the e�ective bandwidth for two multiplexed streams.By superposing the two streams and allocating bandwidth for the aggregate tra�c, the requiredamount of bandwidth per source decreased from Imax (source-peak-rate allocation) to (Imax +Bmax)=2. A very small bu�er of N cells is needed at the input to the multiplexer in case cells fromseveral sources arrive simultaneously. Notice that bandwidth gains from statistical multiplexingare obtained via spatial averaging, and not temporal averaging.It is clear that the e�ective bandwidth depends on the degree of synchronization among themultiplexed MPEG streams. If the two streams in the above example send I frames simultaneously(i.e., u2 = 0), then C(u; 2) = Imax, and statistical multiplexing introduces no advantages oversource-peak-rate allocation. Fortunately, the chance that both streams are in the same phase (i.e.,sending I frames simultaneously) is small.4 Computing the E�ective BandwidthIn this section, we give e�cient procedures for the computation of C(u;N) or, in some cases, anupper bound on it. In practice, such computation must be done on-line so that the allocatedbandwidth for a group of ongoing video connections at a node can be updated dynamically uponthe admittance of a new connection or the termination of an ongoing one. The procedures to bedescribed are valid for heterogeneous MPEG sources (i.e., sources with di�erent tra�c envelops).Two separate cases are considered in the computation of C(u;N) (or its upper bound), dependingon the range of values that can be assumed by the elements of u.5



4.1 Aligned Boundaries CaseSuppose that the elements of u can take only integer values in f0; 1; : : : ; eL�1g. Consequently, frameboundaries of various sources are exactly aligned in time, and btot(t) is a �xed-interval piecewise-constant periodic function with period eL. For any integer k, btot(t) is constant for all t 2 (k; k+1).Figure 2 depicts an example of an aligned boundaries case. In practice, frame boundaries are notnecessarily aligned, but can be made so: if multiplexing takes place at a video server, alignmentof frame boundaries can be imposed by delaying the starting time of a stream by no more than aframe period (which will not be noticed by video clients). If multiplexing takes place at the outputport of a switch, then the alignment is done by introducing some delay in the path of each streambefore entering the multiplexer.The advantage of having frame boundaries aligned is that btot(t) in this case is equivalent to adiscrete-time function for which C(u;N) can be exactly computed on-line. The time axis is slottedwhere a slot is one frame period. Because of the periodicity of btot(t), computation of C(u;N)requires only maintaining the values of the tra�c envelops for the �rst eL slots (from 0 to eL � 1).Such slots are referred to as phases . We denote the value of bi(t�ui) during phase j by bi;j . Thus,bi;j 4= bi(� � ui) for any � 2 (j; j + 1) (5)(to accommodate negative t, bi(t) is extended in the negative time axis). To compute C(u;N), themultiplexing node maintains a matrixM = [mij ] of size N � eL. Each multiplexed MPEG stream isassociated with one row in the table. For i = 1; : : : ; N , and j = 1; : : : ; eL, mij = bi;j�1. In addition,the node maintains a row vector V = hv1; : : : ; veLi, wherevj = NXi=1mij 8 j (6)which gives the peak bit rate for the aggregate tra�c during phase j � 1. Now, C(u;N) is simplygiven by: C(u;N) = 1N max0�j�eL�1 vj (7)When the (N + 1)th stream arrives at the node, a row is added to M based on bN+1(t) anduN+1. To prevent updating the number of columns in M , it is best to choose eL in advance toaccommodate anticipated values of L(i) (which are quite few in practice). The e�ective bandwidthis re-computed by updating V (using vj := vj+mN+1;j), and then applying (7) with N+1 replacingN . Similar procedure is required when an ongoing connection is dropped. Clearly, very few stepsare needed to re-compute the e�ective bandwidth upon the adding/dropping of a stream.6



4.2 Non-Aligned Boundaries CaseThe elements of u in the non-aligned boundaries case can take any real value in [0; eL). Unlesssome extra work is done to enforce their alignment, frame boundaries in real systems are generallynon-aligned. Exact computation of C(u;N) for the non-aligned boundaries case is computationallyexpensive. Instead, we provide an upper bound on C(u;N) which can be computed on-line.Consider N heterogeneous streams with ui 2 [0; eL) for all i. Since ui does not necessarily takeinteger values, using a table of size N � eL, as in the previous case, is not su�cient for computingC(u;N). The reason is that the constant-valued segments of btot(t) can be of variable lengths.Thus, btot(t) could vary at most N eL times within a period of eL (compared to eL times in the alignedboundaries case). Since N changes dynamically, the size of the table and the cost of updating itcan be computationally prohibitive, if C(u;N) is to be obtained on-line. Our solution is to providean upper bound on C(u;N). As before, we use a slotted time system where each slot is a frameperiod. Slots are synchronized locally at the node using a counter (from 0 to eL� 1) and a timer.Since btot(t) is periodic in eL, we only record the peak bit rates in the �rst eL slots (i.e., phases 0to eL � 1). A matrix cM = [ bmij] of dimensions 2N � eL is maintained. Each ongoing stream, si,is associated with two rows of cM , where the eL sampled values of of bi(t) are recorded in one rowassuming that si is exactly aligned with phase buic, and in the second row assuming that si isexactly aligned with phase duie mod eL. By de�nition, the two rows representing si are adjacent,so that the ith stream is associated with the (2i� 1)th and the (2i)th rows of cM . Hence,bmij = 8<: b(i+1)=2;j�1 if i is oddbi=2;j�2 if i is even (8)where bi;j is now de�ned as: bi;j 4= bi (� � buic) for any � 2 (j; j + 1) (9)In addition to cM , the node maintains a row vector eV = hev1; : : : ; eveLi, whereevj = NXi=1max fm2i�1;j ; m2i;jg 8 j (10)which gives the peak bit rate for the aggregate tra�c during phase j � 1. An upper bound onC(u;N) is given by: C(u;N) = 1N max1�j�eL evj (11)7



To see why (11) is an upper bound, substitute (8) in (10) to obtainevj = NXi=1maxnbi;j�1; bi;j�2o (12)= NXi=1 maxj�2���j nbi (� � buic)o = NXi=1 maxj�2�buic���j�buicnbi (�)o (13)But j � 2� buic � j � 1� ui < j � ui � j � 2� buic. Thus,evj � NXi=1 maxj�1�ui���j�ui nbi (�)o = NXi=1 maxj�1���j nbi (� � ui)o (14)From (11) and (14), we haveC(u;N) � 1N max1�j�eL( NXi=1 maxj�1���j nbi (� � ui)o)� 1N max1�j�eL( maxj�1���j ( NXi=1 bi (� � ui)))= 1N max0���eL( NXi=1 bi (� � ui)) = C(u;N) (15)(in the above equations, the maximization over j is taken on integer values while the maximizationover � is taken on real values).Upon the arrival of the (N + 1)th connection to a node with N ongoing connections, two rowsare added to cM based on bN+1(t) and uN+1, and evj is updated using:evj := evj +maxnm2(N+1)�1;j; m2(N+1);jo 8 j (16)Then, the new bound on the e�ective bandwidth is obtained using (11) (with N + 1 replacing N).When the ith ongoing connection terminates, evj is updated using:evj := evj �min fm2i�1;j; m2i;jg 8 j (17)It is obvious that C(u;N)-based reservation has a better chance to achieve bandwidth gains thanC(u;N). For example, in the homogeneous case, if u has a multivariate uniform distributionwith state space f0; 1; : : : ; L � 1g in the aligned boundaries case, and [0; L) in the non-alignedboundaries case, then PrfC(u;N) = Imaxg = 1=LN�1 and 2=LN�1 for the aligned and non-alignedcases, respectively. 8



5 CAC and Blocking Probability under C(u;N ) ReservationFrom the previous section, it is clear that there is a small non-zero probability that C(u;N) isequal or very close to the source peak rate. In this section, we investigate the impact of C(u;N)reservation on CAC and the call blocking probability. To obtain tractable results, our treatment islimited to the homogeneous tra�c case, in which all MPEG sources have a common tra�c envelop,b(t), that is characterized by the 5-tuple (Imax; Pmax; Bmax; L; Q) with Imax > Pmax > Bmax.For heterogeneous streams with relatively close, but di�erent, maximum frame sizes, and similar Land Q, a common tra�c envelop can be obtained by taking Imax as the largest I frame in all thestreams (similarly, for Pmax and Bmax). We only consider the case of aligned boundaries, althoughextension to the case of non-aligned boundaries (using C(u;N) reservation) is straightforward.Let W be the total bandwidth capacity (in cells/frame period) of the multiplexing node. Sup-pose thatN streams are already admitted and are being allocated their e�ective bandwidth. Hence,the available free capacity is W �NC(u;N), where u is the arrangement of the N streams. Ourgoal is to compute the blocking probability for a a new connection request that arrives at the node.Clearly, the the blocking probability depends on W , N , b(t), and C(u;N). We �x the �rst threefactors, and assume a multivariate discrete uniform distribution for u. Since the node cannot antic-ipate in advance the arrival instant of the �rst frame of the (N + 1)th stream, the CAC algorithmmust be designed assuming a worst-case scenario. Hence, the blocking probability can be generallyde�ned as: Blocking Probability 4= PrfI(N+1)max > W �NC(u;N)g (18)where C(u;N) is the only random quantity. For homogeneous tra�c, (18) can be written as:Blocking Probability = Pr�C(u;N)> W � ImaxN � 4= GN �W � ImaxN � (19)where GN(x) 4= the complementary distribution function for C(u;N). Thus, to obtain the blockingprobability, we need to compute GN (x).5.1 Asymptotic Tail Distribution of C(u;N)For the present case of aligned boundaries and homogeneous streams, C(u;N) can be written as:C(u;N) = 1N max0�j�L�1 NXi=1 bi;j! (20)where bi;j was de�ned in (5). It is also possible to write C(u;N) as:C(u;N) = nIImax + nPPmax + (N � nI � nP )BmaxN (21)9



where nI and nP are random variables with probability space f0; 1; : : : ; Ng. Therefore, GN(x) canbe obtained from the joint distribution of (nI ; nP ). Unfortunately, complete speci�cation of thisdistribution depends on the relative values of Imax, Pmax, and Bmax. It is, however, possible toobtain the asymptotics for the tail of this distribution under the assumption that Imax > Pmax >Bmax. First, we need to introduce some elementary results. Notice that obtaining C(u;N) in thealigned boundaries case requires only computing btot(t) in the �rst L slots (i.e., phases 0 to L� 1).To simplify the notation, we use btot(i) to mean btot(�) for any � 2 (i; i+ 1). A stream si is said tobe in phase k if ui = k, i.e., si sends an I frame during phase k. For all i 2 f0; : : : ; L� 1g, letri 4= number of streams in phase izi 4= number of streams in phases that are multiples of Q from phase iThus, ri and zi give the numbers of streams sending I and P frames, respectively, during phase i.The following proposition follows directly from the periodicity of the GOP patterns.Proposition 1 Consider any two streams i and j with ui = k1 and uj = k2, k1 6= k2. If duringphase k1 stream j sends a B frame, then during phase k2 stream i sends a B frame. Similarly, ifduring phase k1 stream j sends a P frame, then during phase k2 stream i sends a P frame. 2From Proposition 1, it is easy to see that for any two phases, i and j, with j i� j j= a multiple ofQ, we have ri + zi = rj + zj . Based on this result, we introduce the following proposition.Proposition 2 Let phase k be such that rk = maxi ri. If rk > N=2, then nI = rk. Moreover,phase k is the only phase for which C(u;N) = btot(k)=N .Proof: First, suppose that j is a phase such that jk� jj = a multiple of Q, then rk + zk = rj + zj .In addition, both phases will have the same number of sources that send B frames. Since rk > rj(strictly since only one phase can exist with rk > N=2), btot(k) > btot(j), and the assertion is true.Next, suppose that jk � jj 6= a multiple of Q, then all rk streams that are in phase k will sendB frames during phase j (by Proposition 1). Thus, N � rj � zj � rk, which leads to rj + zj �N � rk < N=2 < rk. Consequently, btot(j) < btot(k) and the assertion is true. 2The implication of Proposition 2 is that when rk > N=2, the peak bit rate for the superposedstreams during phase k \majorizes" the peak bit rate during all other phases, regardless of theexact values of Imax, Pmax, and Bmax. Therefore, we can compute the joint probability for (nI ; nP )10



by simply computing the joint probability for (rk; zk), where rk = maxi ri. Based on the above, fori > N=2 we have:pij 4= Pr fnI = i; nP = jg = L�1Xl=0 Pr frl = i; zl = jg ; for any j 2 f0; : : : ; N � ig (22)Note that when i > N=2, the events [rl = i] and [rm = i], l 6= m, are mutually exclusive. Since wede�ned u1 = 0, the �rst term in the above sum is given by:Pr fr0 = i; z0 = jg = 0@ N � 1i� 1 1A� 1L�i�10@ N � ij 1A�L=Q� 1L �j �L� L=QL �N�i�j (23)Observe that there are ( N � 1i� 1 ) possibilities for the N � 1 streams (excluding the �rst stream) tosend i�1 I frames, each possibility with probability (1=L)i�1. Among the remaining N�i streams,there are ( N � ij ) possibilities to send j P frames, each possibility with probability ((L=Q�1)=L)j(since the number of P frames in a GOP period is L=Q � 1). Similar argument justi�es the lastterm in (23), which is related to the probability of sending B frames.In a similar manner, it is easy to show that for l 2 fQ; 2Q; 3Q; : : :; (L=Q� 1)Qg, we have:Pr frl = i; zl = jg = 0@ N � 1i 1A� 1L�i0@ N � 1� ij � 1 1A�L=Q� 1L �j�1 �L� L=QL �N�i�j (24)Finally, for l 2 f0; 1; 2; : : : ; Q� 1; Q+ 1; Q+ 2; : : : ; 2Q� 1; 2Q+ 1; : : : ; L� 1g, we have:Pr frl = i; zl = jg = 0@ N � 1i 1A� 1L�i0@ N � 1� ij 1A�L=Q� 1L �j �L� L=QL �N�1�i�j (25)From (23), (24), and (25), and after some manipulations, (22) can be written as:pij = 0@ Ni 1A0@ N � ij 1A (L=Q� 1)j (L� L=Q)N�i�jLN�1 (26)Since (26) is valid only for i > N=2, we must choose x su�ciently large such that the event[C(u;N) > x] necessarily implies [nI > N=2]. Let x� 4= inffx : [C(u;N) > x] ) [nI > N=2]g.11



Then, for x > x� GN(x) = Xi; j such thatfij > x pij (27)where fij 4= iImax + jPmax + (N � i� j)BmaxN (28)It is easy to see that x� = (N=2)Imax+ (N=2)PmaxN = Imax + Pmax2 (29)since any value of C(u;N) that is greater than the RHS of (29) implies necessarily that nI > N=2.For x > x�, GN(x) is obtained from (26), (27), and (28).5.2 Blocking Probability Performance MeasuresIn this section, we compute several performance measures for the blocking probability of MPEG con-nection requests. Our results are related to the homogeneous aligned-boundaries case. Throughoutthis section, N denotes the number of ongoing connections. To provide a comparison betweensource-peak-rate allocation and e�ective bandwidth allocation, we let the total node capacity,W = (N �K)Imax, where K is a �xed known integer.5.2.1 Zero-Order Blocking ProbabilityThe �rst case of interest is when K = 0, i.e., W is equal to the sum of the ongoing sources' peakrates. Under source-peak-rate allocation, no more connections can be admitted. If allocation ismade based on C(u;N), and j new connection requests arrive simultaneously at the node, then theprobability that these requests are rejected is given by:P (N;j)0 4= Prfj new requests are rejected when W = NImaxg= PrfjImax > W �NC(u;N)g= PrfC(u;N)> N � jN Imaxg = GN �N � jN Imax� (30)Since GN(x) is known only for x > x�, we must choose N su�ciently large so that the above resultsare valid. Let Pmax = �Imax for some 0 < � < 1. Let N� 4= minfn : (n�j)Imax=n > x�g. It is easyto show that N� = l 2j1��m. Thus, for N � N� and a �xed j, the zero-order blocking probability isgiven by (30). Of particular interest is the case when j = 1 since connection requests seldom arrivein batches. 12



5.2.2 Higher-Order Blocking ProbabilitySuppose that K > 0. This means that C(u;N)-based allocation has already succeeded in admittinga number of connections that could not be admitted according to source-peak-rate allocation.To compute the blocking probability for additional j connection requests, we de�ne the K-orderblocking probability (where K � 1) as:P (N;j)K 4= Pr fj new requests are rejected when W = (N �K)Imaxg= Pr fjImax > W �NC(u;N) = W � NC(u;N)g= PrnC(u;N) > N�K�jN Imax; C(u;N)� N�KN ImaxoPrnC(u;N)� N�KN Imaxo= GN �N�K�jN Imax�� GN �N�KN Imax�1� GN �N�KN Imax� (31)which can be obtained for N � N� = l2(K+j)1�� m.5.2.3 End-to-End Blocking ProbabilityThe blocking probabilities given in the previous two sections are related to a single node. Networkarchitects are often interested in the end-to-end blocking probability for a connection. Using theblocking probabilities at individual nodes, it is easy to derive the end-to-end blocking probabilityfor MPEG connections that are allocated their e�ective bandwidth. Denote the K-order blockingprobability for j simultaneous requests at the rth node by P (Nr ;j)K (r), where Nr is the number ofongoing connections at the rth node. We assume that the blocking probabilities at di�erent nodesare independent. Let Pblock(n) be end-to-end blocking probability for a connection that traversesn nodes. Then, Pblock(n) = 1� nYi=1�1� P (Ni ;j)K (i)� (32)If maxifP (Ni;j)K (i)g � 1=n, then Pblock(n) can be approximated by:Pblock(n) � nXi=1 P (Ni ;j)K (i) (33)6 \Optimal" E�ective BandwidthSince C(u;N) varies with u, it is natural to seek the `best' arrangement that produces the \opti-mal" e�ective bandwidth, Copt(N), for N multiplexed MPEG streams. In this section, we obtainexpressions for a `best' arrangement and its associated Copt(N). Our treatment is limited to thehomogeneous case (extension to the heterogeneous case is possible, but will be deferred to a future13



paper). Without loss of generality, we assume that frame boundaries are aligned. If frame bound-aries are generally non-aligned, Copt(N) is the same as in the aligned boundaries case. The reasonis that when frames boundaries are not aligned, the e�ective bandwidth is greater than or equalthe e�ective bandwidth of some arrangement with aligned boundaries. Since aligned-boundaries isa special case of the non-aligned boundaries, a `best' arrangement in the special case is also a `best'arrangement in the general case.The optimal e�ective bandwidth is de�ned as:Copt(N) 4= minu2U C(u;N) (34)where U is the set of all possible distinct arrangements of N streams. The size of U is given by:jUj = mXi=10@ Li 1A0@ N � 2i� 1 1A where m = min fN � 1; Lg (35)The size of U increases rapidly with N . Therefore, obtaining Copt(N) on-line using (34) is compu-tationally prohibitive for moderate and large N . Instead, we give the form of a `best' arrangement,u�, and the expression for the associated Copt(N). It turned out that the form of u� is quite intu-itive, although proving its optimality is not trivial. Note that it is possible to have several distinct`best' arrangements that results in Copt(N). Table 1 depicts the form of u� and the expression forCopt(N). The mathematical proof for these results is outlined in the appendix.A best arrangement of N streams for N = 1; 2; : : :, is given by:u� = (0; 1; 2; : : : ; L� 1; 0; 1; 2; : : : ; L� 1; : : : ;| {z }w times 0; 1; 2; : : : ; N � wL� 1) (36)Optimal e�ective bandwidth is:Copt(N) = (w + 1)Imax + (m� w)Pmax + (N � 1�m)BmaxN (37)where w 4= largest nonnegative integer k that satis�es N > kLm 4= largest nonnegative integer k that satis�es N > kQTable 1: A best arrangement of N streams and the associated optimal e�ective bandwidth.Suppose that N ongoing streams are arranged as in (36). A newly admitted stream can beadded to the existing ones, resulting in a best arrangement of (N + 1) streams without disruptingthe original structure of the N streams. In other words, u� of (N + 1) streams can be obtained by14



simply concatenating a single number to u� of N streams. When N streams are arranged accordingto u� and N � L, the removal of any stream will still result in a best arrangement. When N > L,only the removal of certain streams preserves the optimality of the arrangement.7 Numerical ResultsIn this section, we use real MPEG traces to provide numerical examples of the analytical resultspresented in previous sections. The traces were captured by several research groups [3, 6, 7, 10] forvarious types of video (action movies, advertisements, and a lecture). All the traces were generatedusing MPEG-I encoders (see the references for details on how these traces were obtained). Thetraces are listed in Table 2 along with the parameters of their tra�c envelops. Frame sizes areconverted to ATM cells.Figure 3 gives the percentage of C(u;N)=Imax as a function of u in the aligned boundaries case.Here, we use the Wizard of Oz parameters with N = 3. For simplicity, u = (u1; u2; u3) is variedby varying u3 in f0; : : : ; L � 1g with u2 = 0; 1; and 2 (u1 4= 0). Using the same parameters, thepercentage of C(u;N)=Imax in the non-aligned boundaries case is shown in Figure 4 as a functionof u3 (which is varied continuously in [0; L)). It is clear that except for one possible arrangement,u = (0; 0; 0), statistical multiplexing can reduce the bandwidth requirements without sacri�cing anyperformance guarantees. In fact, even when the number of sources is as small as 3, the bandwidthrequirement for a stream can be reduced in some cases to less than 50% of the source peak rate.Using the Wizard of Oz parameters, GN(x) (the tail distribution of C(u;N)) is plotted inFigure 5 with N = 15. In this case, the critical value of x above which GN(x) is de�ned is givenby x� = 818 cells. For x = (N � 1)Imax=N , the zero-order blocking probability for a new streamis given by P (N;1)0 = GN((N � 1)Imax=N) � 1:866 � 10�10. Zero-order blocking probabilities ofone new request, P (N;1)0 , are plotted in Figure 6 as a function of N , for three traces. Each plot inthe �gure is given for N � N�. The zero, �rst, and second-order blocking probabilities of one newrequest are plotted against N , based on Lecture parameters. In Figure 8, the variation of Copt(N)(given as a percentage of the source peak rate, Imax) is shown as a function of N , using di�erentL and Q values. Maximum frame sizes (Imax, Pmax, and Bmax) are taken from the Wizard of Oztrace which was compressed using L = 15 and Q = 3. For simplicity, the same maximum sizes areused in to obtain Copt(N) under other L and Q values. Although one might expect that for a givenmovie, the maximum sizes of compressed frames vary with L and Q, our experiments (discussedbelow) suggest that compressing a video segment using di�erent (L;Q) pairs has little impact onImax, Pmax, and Bmax.Several noteworthy observations can be inferred from Figure 8. First, as N increases, Copt(N)decreases, but not monotonically, and converges slowly to some positive value. The limiting value15
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of Copt(N) can be determined from (37). For large N , w! N=L and m! N=Q. Thus,C�opt 4= limN!1Copt(N) = (1=L)Imax + (1=Q� 1=L)Pmax + (1� 1=Q)Bmax (38)The limiting value of Copt(N) is, in fact, achievable when N = kL for k = 1; 2; 3; : : :, implying thatthe highest possible multiplexing gains are obtained whenever the number of multiplexed streamsis a multiple of L. For moderate and large N , Copt(N) is almost insensitive to N (compare theplots for (L;Q) = (15; 3) and (L;Q) = (9; 3). This is expected since Pmax is close to (but smallerthan) Imax. When Pmax � Imax, C�opt in (38) reduces to (1=Q)Pmax + (1� 1=Q)Bmax which doesnot depend on L. On the other hand, the optimal e�ective bandwidth seems to depend heavilyon Q. In the above example, when L = 15 and Q is varied from Q = 1 (only I and P frames) toQ = 3, C�opt decreased from C�opt = 84% Imax to C�opt = 40:5% Imax. Clearly, the relative impact ofL and Q depends on the relative values of Imax, Pmax, and Bmax. In most cases, Pmax is closer toImax than to Bmax. We veri�ed that by examining the traces of several MPEG-compressed movies.The traces are listed in Table 2. The last column in the table gives the limit on the statisticalmultiplexing gain (given as a percentage of the source peak rate).Trace Length (in frames) Imax Pmax Bmax L Q (C�opt=Imax)� 100%Star Wars [3] 174136 483 454 169 12 3 55%Wizard of Oz [7] 41760 894 742 157 15 3 41%Advertisements [6] 16316 215 214 162 6 3 84%Lecture [6] 16316 131 92 32 6 3 45%Silence of the Lambs [10] 40000 350 231 144 12 3 53%Table 2: Empirical MPEG traces for di�erent video movies with various GOP patterns (frame sizesin cells). The last column shows C�opt as a percentage of source peak rate.To study the impact of L and Q on the maximum sizes of I , P , and B frames, we chose asegment from Wizard of Oz movie, and compressed it several times using di�erent L and Q values.The segment corresponds to 12600 frames (from frame No. 29191 to frame No. 41790 in the movie).Table 3 depicts the GOP patterns that were used and the measured Imax, Pmax, and Bmax. Inaddition, the table gives the limiting value for Copt(N), which is computed from (38). It is clearthat the GOP pattern has a very insigni�cant impact on the maximum frames sizes (note, however,that the overall average of frames sizes can considerably vary from one GOP pattern to another).This can be intuitively justi�ed by the fact that a movie consists of several `scenes'. A scene canbe loosely de�ned as a segment of the movie with relatively consistent level of activity. Sizes of Iframes (similarly, P and B frames) within a scene are close is value. Since on the average a scenelasts for several seconds [2], changing the compression pattern (whose time scale is smaller thanone second) will have little e�ect on the maximum sizes of I , P , and B frames within a scene.From the last column of Table 3, it is obvious that L has a very negligible e�ect on C�opt, whereas17



Compression Pattern L Q Imax Pmax Bmax (C�opt=Imax)� 100%I 1 1 908 | | 100%IP 2 1 898 756 | 92.1%IPP 3 1 898 756 | 89.5%IPPP 4 1 896 756 | 88.3%IPPPP 5 1 896 740 | 86.1%IBPB 4 2 896 733 161 54.4%IBPBPB 6 2 898 742 161 53.2%IBPBPBPB 8 2 889 742 161 52.9%IBPBPBPBPB 10 2 894 742 161 52.2%IBBPBB 6 3 898 719 157 41.7%IBBPBBPBB 9 3 896 742 157 41.2%IBBPBBPBBPBB 12 3 896 742 157 40.7%IBBPBBPBBPBBPBB 15 3 893 742 157 40.5%Table 3: Encoding of a video segment using di�erent GOP patterns.increasing Q results in a signi�cant reduction in C�opt. However, a large Q means more B framesbetween successive I/P frames, which is undesirable from the perspective of the decoder. Hence,Q should be chosen such that it provides a good compromise between the decoder complexity (andthe associated decoding delay) and the multiplexing gain.8 SummaryMPEG encoders often use a pre-speci�ed GOP pattern to determine the types of compressed frames.The periodic and deterministic nature of this pattern can be used advantageously to reduce thebandwidth requirements of MPEG streams. By means of statistical multiplexing, we showed thatthe amount of bandwidth that must be allocated to a source while guaranteeing very stringentQoS requirements (i.e., no cell losses and negligible queueing delay) can be less than the sourcepeak rate. Bandwidth gains are obtained by exploiting the structure of the GOP pattern of themultiplexed streams. The amount of bandwidth gain that can be achieved depends largely ofthe synchronization structure (i.e., the arrangement) of the multiplexed streams. We measurethe bandwidth gain using the notion of e�ective bandwidth. We analyzed the impact of e�ectivebandwidth reservation on call admission control, and derived several performance measures for theblocking probability of one of more new connection requests. Among all possible arrangements , wegave the form of a `best' arrangement that has the optimal (i.e., minimum) e�ective bandwidth.An expression for the optimal e�ective bandwidth was also derived. Examples of actual MPEGstreams from various compressed movies were presented and used to show the possible bandwidthgains that can be obtained from statistical multiplexing of MPEG streams. One aspect that wasnot addressed (mainly, due to space limitation) is the policing/shaping of streams that is requiredto achieve the bandwidth gains using our approach. This issue will be addressed in a future paper.18



AppendixBest Arrangement and the Optimal E�ective BandwidthIn this appendix, we prove that u� in (36) is a best arrangement of N sources, and that C(u�; N) =Copt(N) is given by (37). We �rst establish that for all N , C(u�; N) is given by the RHS of (37).Then, we show that Copt(N) is also given by the RHS of (37). The following result will be requiredin the proofs. Let u be an arbitrary arrangement of N streams. It is easy to show that in (21),nI � 1 for any u and N . This fact follows from the de�nition of C(u;N), Proposition 1, and thatImax > Pmax > Bmax.An inspection of the structure of u� reveals that there are exactly m+ 1 streams whose phasesdi�er, pairwise, by a nonnegative integer multiple of Q. Among those, there are a maximum ofw + 1 streams that are in the same phase (m and w were de�ned in Table 1). Thus,C(u�; N) = (w + 1)Imax + (m� w)Pmax + (N � 1�m)BmaxN (39)Consider an arbitrary arrangement u = (u1; : : : ; uN). We will show that C(u;N) satis�es:C(u;N) � sImax + lPmax + (N � s � l)BmaxN (40)with s � w + 1 and s+ l � m+ 1. If C(u;N) satis�es (40), then C(u;N) is greater than or equalthe RHS of (39), which implies that u� is a best arrangement and Copt(N) is given by (39).First, suppose that the elements of u are distinct (i.e., ui 6= uj for all i 6= j). This is possiblewhen N � L (thus, w = 0). There must be at least m + 1 streams whose phases di�er pairwiseby a nonnegative multiple of Q (in general, a set of distinct kX + 1 integers, where k and X arenonnegative integers and X 6= 0, must have at least k + 1 elements which di�er, pairwise, by amultiple of X). Hence, btot(j) � Imax +mPmax + (N � 1�m)Bmax for some phase j. Therefore,C(u;N) must satisfy (40) with s = w + 1 and l = m� w (w = 0 in this case), and the assertion istrue.Next, suppose that the elements of u are not distinct. Let� 4= max0�j�L�1 rj (41)Clearly, � � maxf2; w + 1g. We use the term chain to refer to a subset of the N streams whosephases di�er pairwise by a multiple of Q (including those that have the same phase). It is easyto see that there can be no more than Q chains in a given arrangement. Let q be the numberof chains (q � Q). Denote the chains by W1; W2; : : : ;Wq, with corresponding sizes �1; �2; : : : ; �q(Pj �j = N). For each chain Wj , let Cj(u;N) be the maximum aggregate peak rate divided by19



N , where the maximization is taken only over the phases of the streams in Wj . For j = 1; : : : ; q,Cj(u;N) can be given by: Cj(u;N) = n(j)I Imax + n(j)P Pmax + n(j)B BmaxN (42)where n(j)I + n(j)P +n(j)B = N . The total number of streams sending I or P frames during the phaseof any stream in Wj is given by �j . At least one of the chains, say W1, contains � streams that arein the same phase, say phase i. Hence, it must be true that C1(u;N) results from the aggregatebit rate during phase i (recall that ri + zi = rj + zj for phases i and j with j i� j j= a multiple ofQ). Therefore, n(1)I = �. By de�nition, C(u;N) = maxj Cj(u;N), which impliesC(u;N) � Pqj=1 Cj(u;N)q= 1q ImaxPqj=1 n(j)I + PmaxPqj=1 n(j)P + BmaxPqj=1(N � n(j)I � n(j)P )N (43)Replacing n(j)P by �j � n(j)I , and with some rearrangements, (43) becomes:C(u;N) � 1q (Imax � Pmax)Pqj=1 n(j)I + PmaxPqj=1 �j +BmaxPqj=1(N � �j)N (44)Observe that n(j)I � 1 for j = 2; : : : ; q. Moreover, n(1)I = �. Thus, Pqj=1 n(j)I � � + q � 1 SincePqj=1 �j = N and Imax > Pmax, (44) reduces toC(u;N) � 1q (�+ q � 1)(Imax � Pmax) +NPmax + (qN �N)BmaxN= �sImax + �lPmax + (N � �s� �l)BmaxN (45)where �s 4= � + q � 1q � max�1 + qq ; w + qq � (46)�l 4= N � � � q + 1q (47)Therefore, �s+ �l = Nq � NQ � mQ+ 1Q = m+ 1Q (48)However, the expression for C(u;N) must consist of integer numbers of Imax and Pmax. Thus,C(u;N) must satisfy (40) with s+ l � m+ 1 and s � maxfd1+qq e; dw+qq eg = w + 1. 220
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