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Massive amounts of observations are assimilated every day into modern Nu-

merical Weather Prediction (NWP) systems, and more are being deployed. The

large volume of data prevents thorough monitoring and screening (QC) the im-

pact of each assimilated observation using standard observing system experiments

(OSEs). The presence of so many observations also makes very difficult to estimate

the impact of a new observing system using OSEs.

Forecast Sensitivity to Observation using adjoint formulation (AFSO, Lang-

land and Baker, 2004) provides an efficient impact evaluation of each observation

on forecasts. We propose 3 applications using the simpler ensemble formulation of

FSO (EFSO, Kalnay et al., 2012) to improve NWP, namely (1) online monitoring

tool, (2) data selection, and (3) proactive quality control (PQC).

We first demonstrate PQC on a simple Lorenz (1996) model, showing that

EFSO is able to identify artificially ’‘flawed” observations. We then show that PQC

improves the quality of analysis and forecast of the system, even if the observations



are flawless, and the improvement is robust against common sub-optimal of DA

configurations in operation. A PQC update method reusing the original Kalman

gain is found to be both accurate and computationally efficient.

EFSO and PQC are then explored with realistic GFS systems. A close-to-

operation GFS-GSI Hybrid En-Var system is used to examine the data monitoring

and selection applications. The benefit of the online observation monitoring and

data rejection based on EFSO is very apparent. Identifying and deleting detrimen-

tal radiance channels results in a forecast improvement. Results obtained on a lower

resolution GFS system show that PQC significantly improves the quality of anal-

ysis and 5-day forecasts for all variables over the globe. Most of the improvement

comes from ”cycling” PQC, which accumulates improvements brought by deleting

detrimental observations over many cycles, rather than from deleting detrimental

observations in the current cycle. Thus we avoid using ”future data” in PQC and

its implementation is shown to be computationally feasible in NCEP operations.
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Chapter 1

Introduction

1.1 Background: Observing the Atmosphere

Since the start of the studying of the atmosphere, the observations have been

the backbone of the field. Breakthroughs in the understanding of the atmosphere

can be attributed (at least partially) to the advancement of the observing technology

and data availability.

The first thermometer was generally credited to Galileo in around the year

1600 but did not become practical until 1700 when Fahrenheit invented the accu-

rate mercury-based thermometer. Around the 1640s, pressure measurements were

enabled by the barometers invented by Torricelli and Pascal. Wind observations

were also recorded in support of sailing. Early observations were only available on

the surface and limited to local regions until the development of the telegraph by

Morse in around 1838. By the advancement of the communication technology, we

can construct synoptic weather analysis for the first time. So a telegraphic network

of observing stations was organized to ”predict” storms for the downwind regions. In

around 1900, we began to use balloons on measuring upper atmosphere conditions.

The beginning of aviation brought an increasing need of upper air measurements,

and the aircraft was started to be used as a platform for weather observations. The

high-tension of military competition from World War II to the Cold War era boosted
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the development of remote sensing technology including radar and satellite. These

technological advancements extended our limited in situ observations beyond the

horizon, and the number of observations underwent unprecedented bloom.

Allowed by these rapidly increasing number and abundance of observations,

our knowledge of the atmosphere expands at a rate that it never did before. Together

with the development of one of the first computers and the mathematical descrip-

tions of the governing laws of the atmosphere, Charney et al. (1950) introduced the

dawn of the numerical weather prediction (NWP). Under the international collabo-

rative effort, nations assembled a global observing network sharing valuable routine

in situ and remote sensing weather observations enabling NWP on the global scale.

The initial conditions for the models were manually analyzed from the observations

in the early days. As the advancement of the model and the overwhelming growth

rate of the number of observations, this laborious task was eventually replaced and

automated by a technique called data assimilation (DA), in which the model ”assim-

ilates” observations when the observations are combined with the previous model

forecast to obtain the ”best-estimate” state of the atmosphere.

The advancement of numerical weather prediction has generally been attributed

to the improvement of the model, the advancement of data assimilation, and the in-

creasing number and quality of the observations (e.g. Magnusson and Källén, 2013).

The increase of the observations, especially from satellites, provides significant con-

tributions to the increase of forecast skill. This contribution can be quantified by

examining the forecast quality improvement of a reanalysis product such as ERA-

interim dataset (Dee et al., 2011), which uses a frozen data assimilation and model
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system. By eliminating the two also constantly improving factors, the advancement

over time in forecast quality initiated from the reanalysis is purely from the changes

of observations regarding quality and number (Magnusson and Källén, 2013). Sup-

portive evidence is also shown with the rapid growing forecast skill over the Southern

Hemisphere that almost caught up with that over the Northern Hemisphere (Figure

1 in Bauer et al., 2015). As of today, millions or even close to ten millions of obser-

vations are assimilated every 6 hours in NWP operational centers around the world

(see NCEP observation counts at http://www.nco.ncep.noaa.gov/sib/counts/ )

Due to the advancement in the observing technology, we are experiencing an

unprecedented increase in the number of observations, mainly from hyperspectral

satellite radiance instruments and satellite-derived atmospheric motion vectors. As

we launch more new instruments with higher spatial, temporal, and spectral resolu-

tions and run more accurate models with higher resolution and better representation

of the atmospheric processes, we are entering the ”Big Data Assimilation” era de-

scribed in Miyoshi et al. (2016). It poses great technical and scientific challenges on

”how to effectively make use of the massive amount of observations?”.

1.2 Forecast Sensitivity to Observations

The effectiveness of data selection and quality control before DA is one of the

key components towards better harvesting observation information in NWP (de-

scribed in Chapter 3). To better perform the data selection process, observational

impact evaluation is inevitable, and forecast sensitivity to observation (FSO) diag-
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nostic can be instrumentally informative.

1.2.1 Overview

Addressing the need for impact evaluation of the massive amount of obser-

vations, generic forecast sensitivity to observations (generic FSO) is a computa-

tionally efficient diagnostic tool that maps the future forecast error changes to the

assimilated individual observations. The mapping is constructed according to the

gain matrix of analysis equation (the influence of each observation on the analysis,

xa = xb +KKKδyo) and the forecast sensitivity to analysis (error growth). The ap-

proaches for the computation of these two components can be differentiated into

adjoint-based, ensemble-based, and hybrid-based methods as in standard DA clas-

sification. We will describe the different approaches in detail in Chapter 2. In this

study, we adopted the ensemble-based method (EFSO) for its simplicity in imple-

mentations. This mapping enables an efficient and detail estimation of the impact

of each observation on the future forecast. The efficiency and the granularity of the

FSO diagnostic allow several immediate applications that could improve the NWP

from the observation side.

1.2.2 Applications

In this study, we propose three FSO applications for improving NWP from

the observation side. First, the computationally efficient FSO could be computed at

least near real-time as an observation monitoring tool alongside with other existing
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QC tools. This monitoring tool alerts the front-line forecaster to be aware of the

up-coming degraded forecasts from currently assimilated detrimental observations,

and it also allows the operation centers and the observation developer to improve the

quality and the DA treatment of the observations. Second, FSO statistics should be

included in data selection decisions since it provides efficient and detail information

on the impact that was not available in the past. Taking FSO impact into ac-

count could greatly shorten the required time and improve the accuracy of the data

selection process. Finally, Proactive Quality Control (PQC), a powerful fully flow-

dependent QC scheme based on immediate FSO impact in each cycle, was proposed

to improve the quality of NWP, but only non-cycling PQC was tested. We further

explore the strategies of the cycling PQC and its feasibility in NCEP operational

system.

1.3 Objectives

We propose to use FSO impact evaluation technique for coping with the mas-

sive amount of observations and improving the performance of NWP. More specif-

ically, we would like to demonstrate the benefit in NWP of the three FSO-based

applications, namely the (1) Data monitoring and selection, and (2) Proactive QC.

Throughout the dissertation, we aim at exploring the issues to-be-addressed listed

below and by the end showing evidence that the three applications improve the

quality of NWP indeed.

• EFSO (Observation monitoring tool and data selection)
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– Why are there 50% of detrimental observations?

– What are reasonable choices of the forecast verifying truth?

– Is 6-hour verifying lead-time appropriate for the applications?

– Does EFSO-based data selection improve the forecast?

• Proactive QC

– What is the benefit of cycling PQC versus non-cycling PQC?

– How to PQC the detrimental observations and update the correction?

– Should we perform PQC with longer verifying lead-time?

– How to make PQC feasible in operation?

Here we list out the questions to-be-answered as a guideline. Detailed dis-

cussions on the questions above and the experimental design will be provided in

Chapter 3.

1.4 Outline

The dissertation is structured as the following. A review of FSO background,

including the formulations of different approaches and all the related topics, is pro-

vided in Chapter 2. Chapter 3 introduces the proposed three FSO applications for

improving NWP that includes the background of the applications and the questions

we need to address. We first examine the applications in the simple Lorenz (1996)

system as a proof of concept in Chapter 4. Chapter 5 and 6 present the results from
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the realistic GFS model as evidence that the proposed applications could indeed

improve NWP in the operational environment. The data monitoring and selection

applications are shown in Chapter 5 using a close-to-operation system. Chapter

6 shows the results of PQC in realistic GFS model and validates the feasibility in

operation. The summary and future directions are offered in Chapter 7.

7



Chapter 2

Generic Forecast Sensitivity to Observations: Review

The generic Forecast Sensitivity to Observations (FSO) technique and the

Ensemble-based FSO (EFSO) in particular is the foundation of this study. This

chapter is dedicated to briefly review the historical development of different ap-

proaches in the generic FSO family, followed by the formulation of each approach.

The different choices for the verifying ”truth” will also be reviewed. The relation

between EFSO and degrees of freedom of signal (DFS) in ensemble formulation, a

widely used method for radiance channel selection, is discussed. This relation will

serve as the foundation of the data selection we perform in the results of Chapter 5.

2.1 Introduction

The main objective of the generic FSO is to provide efficient and detailed

observational impact evaluation. Currently, observing system experiments (OSEs)

is the prevailing approach for directly estimating the impact of a certain set of

observations by examining the 5-day forecast skill score differences of the lengthy

experiments spanning for months with and without such observation set (e.g. Bauer,

2009; Dumelow, 2002; Riishojgaard and Redder, 2008; Bi et al., 2011). The major

drawback of the method is the high computational demand which in turn limits

both its discernibility and efficiency. Evaluating the bulk impact of one specific
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observation type requires at least one experiment in addition to the control, leading

to low efficiency and high computational costs. Additionally, the length of the ex-

periments depends on the magnitude of the impact to reach statistically significant

conclusions. Observation sets with smaller impact require longer than average ex-

perimental periods. Geer (2016) demonstrated that 60 forecast samples are required

to reach the significance of 95% confidence level for a 1% improvement in the 5-day

forecast. This low discernibility is especially severe in the case where large volumes

of observations are already present in the system. Hence, the high-cost of OSEs lim-

its the applications to distinguish the detailed impact attribution within the massive

amount of observations. This problem will become worse given the increasing trend

of the observation counts.

To address these issues, Langland and Baker (2004) devised the Adjoint-based

Forecast Sensitivity to Observations (AFSO) method that estimates the impact

of every single observation onto the forecast at once by attributing forecast error

changes back to each observation with the adjoint model, using a future analysis as

the verifying truth. AFSO provides an efficient estimation of the impact of each ob-

servation on the quality of the forecast. However, one major drawback of the AFSO

approach is the use of the adjoint model which is notoriously tricky both to develop

and to maintain for keeping up with the updates in the nonlinear model, which also

requires a considerable amount of resources. Comprehensive descriptions of physical

processes are of critical importance in the accuracy of the propagation of sensitiv-

ity. It has been found that the diabatic component of AFSO impacts associated

with moisture cannot be appropriately estimated without a complete representa-
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tion of moist physical processes in the adjoint of the linearized model (Janisko and

Cardinali, 2016). However, those are not accounted in the adjoint model used in

most AFSO studies (e.g. Langland and Baker, 2004; Zhu and Gelaro, 2008) since

the treatment of nonlinearities and discontinuities of the moist physical processes is

very complicated.

An alternative approach, Ensemble-based FSO (EFSO; Liu and Kalnay, 2008;

Li et al., 2010), for the Local Ensemble Transform Kalman Filter (LETKF; Hunt

et al., 2007) was developed using the ensemble forecasts and analyses instead of the

adjoint model. Later a simpler and more general EFSO formulation was introduced

in Kalnay et al. (2012), that can be applied to any form of Ensemble Kalman Filter

(EnKF). The adjoint-free approach then naturally does not suffer from the issues

related to the adjoint model, but localization in computing EFSO is needed to

address sampling errors associated with insufficient ensemble size that is typical in

general meteorological ensemble applications.

Recently, a hybrid approach was formulated (HFSO; Buehner et al., 2018)

that is more consistent with ensemble-variational (EnVar) DA system. HFSO uses

the ensemble forecasts to propagate the forecast error changes in time, as in EFSO.

However, the minimization of the cost function is used in the attribution of forecast

error changes to each observation, like in AFSO, instead of using the Kalman gain

matrix as in EFSO. A benefit of using HFSO over EFSO in an operational EnVar

DA system is that HFSO has a better representation of observational impact since

the observation set assimilated in the variational component and the ensemble com-

ponent are usually different both in assimilated types and number of observations.
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Alongside with the observations, there are other sources of differences between the

two components including the background error, variational bias correction, etc.

It should be noted that all three approaches have their advantages and draw-

backs. The choice of the method should be in accordance with the DA system and

the applications. Moreover, it is worth mentioning that the proposed applications

in this study are not limited to EFSO and can be generalized to the other two

approaches.

Note that the generic FSO technique is not a complete replacement of OSEs.

The two techniques provide complementary information. The generic FSO computes

the estimation using the original analysis gain matrix (as if all observations are

present) and thus, can be viewed as a linear and non-cycling approximation of OSEs.

In contrast, OSEs changes the gain by altering the assimilated set of observations

and the background trajectory due to cycling DA. While OSEs provides the actual

forecast response of denying a certain subset of observations with high computational

costs, the generic FSO offers efficient and economical detailed estimation of each

observational impact, before the forecasts mix the impact of all the observations.

2.2 Formulation of generic Forecast Sensitivity to Observations (FSO)

In this section, the general formulation for generic FSO will be derived, fol-

lowed by the specific procedure in computing for AFSO, EFSO, and HFSO impacts.

The notation below loosely follows Kalnay et al. (2012).
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2.2.1 Generic FSO formulation

The concept behind generic FSO technique is to construct a mapping between

the observations and the future forecast error changes due to the assimilation of

those observations. It is natural to begin the derivation with the definition of the

forecast errors changes.

The forecast errors for the same verification time t from 0 and from −6 hour

analyses are respectively denoted as :

et|0 = xf
t|0 − xv

t , (2.1)

et|−6 = xf
t|−6 − xv

t (2.2)

where the xf
t|0 and xf

t|−6 represent the forecasts valid at time t initiated from time

0 and −6, respectively, and xv
t is the verifying truth for the forecast valid at time

t. In practice, the best option available for xv
t in real-time is the analysis at time t,

namely xa
t . Other choices of verifying truth will be discussed later in this Chapter.

The only difference between the two forecast errors is introduced by the data

assimilation at time 0 and the forecast error changes can be measured with:

∆e2 = eTt|0CCCet|0 − eTt|−6CCCet|−6

= (et|0 − et|−6)TCCC(et|0 + et|−6)

= (xf
t|0 − xf

t|−6)TCCC(et|0 + et|−6) (2.3)

= (M(xa
0)−M(xb

0|−6))TCCC(et|0 + et|−6) (2.4)

≈ [MMM(xa
0 − xb

0|−6)]TCCC(et|0 + et|−6) (2.5)

(linearization of model forecast)
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where CCC is the chosen error norm matrix, M(x) denotes integration of the non-

linear forecast model, and MMM and MMMT are the tangent linear approximation and

corresponding adjoint of the nonlinear forecast model M(x).

By rewriting the general form of the analysis equation, we can see that taking

the derivative with respect to the observational innovation δyo
0 on both sides of the

general form of the analysis equation yields the sensitivity of analysis increment to

observation innovation:

xa
0 − xb

0|−6 = δxa
0 =

∂xa
0

∂yT
δyo

0

= KKKδyo
0 (2.6)

where δxa
0 denotes the analysis increment and the gain matrixKKK =

∂xa
0

∂yT is the analy-

sis sensitivity to observation that determines in general the weighting of observation

information going into the final analysis. Note that each DA approach associates

δxa
o and δyo

0 differently.

Applying chain rules to decompose the forecast error changes and substituting
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in equation 2.6 gives:

∆e2 ≈ δ(MMMxa
0)T

∂(∆e2)

∂(MMMxa
0)

(2.7)

(linearization of forecast sensitivity)

= δxaT
0 MMMT ∂(∆e2)

∂(MMMxa
0)

(2.8)

≈ (δyo
0)T

∂xaT
0

∂y
MMMT ∂(∆e2)

∂(MMMxa
0)

(2.9)

(linearization of analysis sensitivity)

= (δyo
0)TKKKTMMMT ∂(∆e2)

∂(MMMxa
0)

(2.10)

= (δyo
0)T

∂(∆e2)

∂y
(2.11)

where the ∂(∆e2)
∂(MMMxa

0)
= CCC(et|0 + et|−6) is the sensitivity of the forecast error changes to

the forecast differencesMMMδxa
0 at time t, and ∂(∆e2)

∂y
= KKKTMMMTCCC(et|0+et|−6) , obtained

by comparing equations 2.5 and 2.10, denotes the sensitivity of forecast error changes

to the observation innovation. Equation 2.10 is the generic form of FSO showing

that the forecast error changes can be decomposed into four factors: observation

innovation, sensitivity of analysis increment to observation innovation (gain matrix),

adjoint model, and forecast errors valid at time t. And the major differences between

AFSO, EFSO, and HFSO are the different approaches in evaluating the last three

factors, which will be further explained in the following subsections. Finally, the

product of the last three factors can be viewed as the sensitivity of forecast error

changes to the observation innovation in equation 2.11.
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2.2.2 Adjoint FSO

The AFSO (Langland and Baker, 2004) was developed under the context of a

variational DA system. Following the formulation in Lorenc and Marriott (2014),

the sensitivity of forecast error changes to the observation innovation ∂(∆e2)
∂y

=

KKKTMMMTCCC(et|0 + et|−6) is evaluated as a whole. The forecast sensitivity is projected

backward to observation time using the adjoint model. Consistent to the structure

of variational DA system, KKKT is never explicitly evaluated but the entire term ∂(∆e2)
∂y

is evaluated through the minimization of a modified cost function. The solver used

to solve for the minimization problem in the variational system can be utilized, but

the cost function is modified so that it solves for the gradient of forecast error change

to observational innovation. (see Lorenc and Marriott (2014) for additional details).

2.2.3 Ensemble FSO

In EFSO formulation (Kalnay et al., 2012), the evaluation of ∂(∆e2)
∂y

=KKKTMMMTCCC

(et|0 +et|−6) is much simpler in practice compared to that in AFSO since the adjoint

model MMMT is replaced by ensemble forecasts and the adjoint of gain matrix KT

can also be estimated from the ensemble analysis perturbations. The gain matrix

KKK in EnKF that accounts for the relative accuracies of the background and the

observation is defined by the background error covariance matrix BBB, observation

error covarianceRRR, analysis error covarianceAAA, and linearized observational operator
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HHH with

KKK = (BBB−1 +HHHTRRR−1HHH)−1HHHTRRR−1

= AAAHHHTRRR−1 (2.12)

given thatAAA = (BBB−1 +HHHTRRR−1HHH)−1. The analysis error covarianceAAA can be approx-

imated by the sampled covariance of analysis perturbationXXXa
0 provided by EnKF as

AAA ≈ 1
K−1

XXXa
0XXX

aT
0 where K is the ensemble size. Then equation 2.12 can be rewritten

as

KKK ≈ 1

K − 1
XXXa

0XXX
aT
0 HHHTRRR−1 (2.13)

With equations 2.6 and 2.13, the approximation of analysis perturbation in

observation space YYY a
0 ≈HXHXHXa

0, and forecast perturbation XXXf
t|0 = MXMXMXa

0, equation 2.5

can be rewritten as

∆e2 ≈ [MKMKMKδy0]TCCC(et|0 + et|−6)

≈ 1

K − 1
δyoT

0 RRR−1YYY a
0XXX

aT
0 MMMTCCC(et|0 + et|−6) (2.14)

≈ 1

K − 1
δyoT

0 RRR−1YYY a
0XXX

fT
t|0CCC(et|0 + et|−6) (2.15)

where XXXf
t|0 represents the background perturbation initiated from time 0 and valid

at time t.

The impact of each observation can then be obtained by decomposing the

sum of the inner product of the innovation vector δyo
0 and the sensitivity vector

1
K−1

RRR−1YYY a
0XXX

fT
t|0CCC(et|0 + et|−6) into elements that correspond to each observation, so

that 1
K−1

δyT0,l[RRR
−1YYY a

0XXX
fT
t|0CCC(et|0 + et|−6)]l represents the estimated impact of the l-th

observation on the forecast error changes.
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Due to the limited number of ensemble members, localization of error covari-

ance is needed in EFSO formulation to reduce sampling noise. The localized form

of the EFSO formulation becomes

∆e2 ≈ 1

K − 1
δyoT

0 [ρ ◦R−1Ya
0X

fT
t|0 ]CCC(et|0 + et|−6) (2.16)

where ρ is the localization matrix that is multiplied to the error covariance element-

wise. The localization function initially applied in DA will propagate with the evolv-

ing flow as model forecast advances. Several methods were introduced in accounting

for such propagation. As mentioned in Hotta (2014), the ideal solution should be to

evolve the localization at the initial time by Kolmogorov (Fokker-Plank) equation

associated with the model, which is computationally impractical. Estimation of non-

linear evolution of the initial localization function and a simple advection with group

velocity methods were proposed in the original Kalnay et al. (2012) for the simple

Lorenz ’96 model, but both methods are practically impossible for realistic systems.

Ota et al. (2013) explored in NCEP GFS model a simple method which moves the

center of the localization function with the horizontal wind with success in better

capturing the diurnal cycle in total observational impact comparing to the fixed

localization; i.e., the total forecast error changes is better explained by the ensemble

member with localization advection. With a simple two-layer model, Gasperoni and

Wang (2015) employed a more sophisticated but computationally expensive Monte

Carlo ”group filter” technique in the improvement of tracking the evolution of the

initial localization. However, Hotta et al. (2017a) showed that the simple advec-

tion with horizontal wind is accurate enough for forecast lead-times shorter than 24
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hours (e.g. 6 hours) in the context of identifying detrimental observations.

2.2.4 Hybrid FSO

In the hybrid approach to FSO (Buehner et al., 2018), every step is identical

to that in AFSO except for the propagation of forecast errors. Instead of projecting

the forecast sensitivity backwards using the adjoint model, the ensemble forecasts

are used to project the analysis increment forward to verification time t. More

specifically, the variational system usually doesn’t directly work in model state space

but a transformed variable v where BBB
1/2
0 v = δxa

0 and BBB = BBB
1/2
0 BBB

T/2
0 to improve

conditioning of the minimization. Substituting this relation into equation 2.5 yields

∆e2 ≈ [MMM(BBB
1/2
0 v)]TC(et|0 + et|−6) (2.17)

≈ vT [MMMBBB
1/2
0 ]TC(et|0 + et|−6) (2.18)

HereMMMBBB
1/2
0 can be approximated byBBB

1/2
t whereBBBt = 1

K−1
XXXf

t|0XXX
fT
t|0 that is based on

the ensemble perturbation propagated to the verification time t with the nonlinear

model. By this approximation, the need of adjoint model is then circumvented.

Same as in EFSO, covariance localization is also needed in HFSO to suppress the

noise arising from insufficient ensemble size.

2.2.5 Quantifying uncertainty in EFSO and HFSO impact

The major advantage of having an ensemble system is to have nonlinear real-

izations that provide uncertainty quantification in forecast and analysis. EFSO and

HFSO both inherit the same advantage from the ensemble system that allows us to
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estimate the uncertainty in the impact. In the analysis process, the impact of the

same observation on each ensemble member is different since the background, the

final analysis, and the subsequent forecasts are all different for each member. We

can then utilize this information to quantify the uncertainty of the impact estima-

tion from EFSO and HFSO. Using EFSO as an example, the deterministic mean

impact can be computed using ensemble forecast mean to evaluate observational

innovation δyo
0 = y0 −HHHxf

0 (observation minus background) and the forecast er-

rors et|t′ = xf
t|t′ − xv

t in equation 2.16. On the other hand, the forecast terms can

be replaced by individual forecasts from each ensemble member. In this sense, we

are computing the observational impact for each ensemble member to achieve the

uncertainty quantification. For HFSO, this replacement of ensemble mean with in-

dividual ensemble members changes the cost function for the minimization step, so

we need to repeat this step for each ensemble member. Thus, even though this quan-

tification is possible for HFSO, it may be computationally unfeasible. In contrast,

the uncertainty quantification of impact is merely simple matrix multiplications for

EFSO.

2.2.6 Comparison of the three generic FSO approaches

Here we briefly summarize the advantages and disadvantages of the three dif-

ferent approaches for generic FSO, which is generally similar to their corresponding

DA methods.

The two main differences in the approaches are the sensitivity propagation
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in time and the analysis sensitivity calculation. AFSO utilizes the adjoint model

for the sensitivity propagation step and the variational DA system solver for the

minimization of the cost function. The adjoint model requires massive efforts for

both development and maintenance, and the representativeness of the error growth

for different atmospheric processes is the key to accurate impact estimation. Besides,

the implementation of minimizing the modified cost function for AFSO is non-trivial.

By contrast, the calculation of EFSO involves only simple matrix multiplication,

and almost all the information is readily computed on the fly with EnKF (some

adjustments of the DA system needed for computing EFSO online will be discussed

in next chapter). However, the localization of the covariance matrix is inevitable

for the EFSO approach due to insufficient ensemble size. Several methods were

proposed to account for the flow following localization in EFSO, but none of them

is perfect. Fortunately, in a timescale as short as 6 hours, the localization advection

by wind is accurate enough. HFSO requires a DA solver as do AFSO, but the

ensemble replaces the adjoint model. Hence, the advantages and disadvantages are

also inherited from both EFSO and AFSO. In EnVar system, HFSO may provide

better representation compared to two other methods.

We emphasize here that all methods have their advantages and disadvantages,

but the applications proposed in this study have no dependency on the choice of

AFSO, EFSO, or HFSO. One can easily switch from one approach to another in

those applications. The choice of the approach should be naturally based on the DA

system configurations, the desired applications, and the implementation difficulties.

The selection of EFSO in this study is based on its simplicity and elegance in
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computation and implementation aspect.

For a better understanding of the generic FSO techniques, Dr. Auligné (JCSDA)

and Dr. Gelaro (GMAO) leads an intercomparison project comparing the impact

data from major operation centers, including NCEP, JMA, GMAO, NRL, and UK

Met office. Each center uses different DA methods, models, quality control, and FSO

approaches. Hence, the intercomparison project could provide insight into how the

observational impacts subject to all those differences.

2.2.7 Definition of the detrimental/beneficial observations

The generic FSO technique assigns an error impact value to each observation.

This value represents the estimated forecast error change due to the assimilation of

the corresponding observation. The positive (negative) impact values indicate that

the forecast error increases (reduces) by assimilating such observations, and hence,

we call them detrimental (beneficial) observations. This terminology was introduced

in Hotta et al. (2017) to avoid the confusion between “positive EFSO impact value”,

which indicates a detrimental impact, with positive (beneficial) impact.

2.3 Verification of forecast error in generic FSO

In standard formulations for generic FSO, the analysis is used as the verifying

truth for the forecast errors. Recently, some studies proposed using alternative

sources for verification truth, including observations and independent analyses. In

this section, we discuss the use of different verifying truth in generic FSO. Also, a
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numerical comparison of different verifying truths will be provided in Chapter 4.

2.3.1 Observations as verifying truth

Recent studies (Sommer and Weissmann, 2016; Verlaan and Sumihar, 2016;

Cardinali, 2018) proposed using observations as verifying truth. Here the derivation

follows the same notation as before. Starting with the definition of forecast error

changes again as before:

∆eo2 = (eot|0 − eot|−6)T (eot|0 + eot|−6)

= [HHHveri(x
f
t|0 − xf

t|−6)]T (eot|0 + eot|−6) (2.19)

≈ (δy0)TKKKTMMMTHHHT
veri(e

o
t|0 + eot|−6) (2.20)

where the superscript of o denotes the forecast error eot|0 = Hveri(x
f
t|0)−yt verified by

observation, Hveri and HHHveri represents the nonlinear observation operator and the

corresponding linearized operator for the verifying observations, and yt stands for

the observations available as verifying truth at time t. We set the original weighting

matrix CCC = III for each observation since the impact unit naturally depends on the

type of observation and it is sometimes difficult and misleading to unify the units of

different types of observation. By comparing equations 2.10 and 2.20, it is clear that

the two formulation is almost identical except for the addition operator of HHHT
veri.

Applying to EFSO formulation and verifying with all available observations, we get

∆e2 ≈ 1

K − 1
δyoT

0 [ρ ◦R−1Ya
0X

fT
t|0HHH

T ](eot|0 + eot|−6) (2.21)

≈ 1

K − 1
δyoT

0 [ρ ◦R−1Ya
0Y

fT
t|0 ](eot|0 + eot|−6) (2.22)
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Although it appears to be slight modifications in the formulation. There are several

differences between verifying with analysis and with observations: (1) verified area

of the forecast, (2) resulting impact units, and (3) the accuracy of the truth.

When we choose to verify the forecasts with observations, only the forecasts

in the observed area are taken into account. A drawback could be the forecasts

originated from the data-rich area are not accounted for because the downstream

area has less or no observations. The resulting impact estimation does not include

the impact of those observations located at the immediate upstream of a data-scarce

area. A typical example is the observation impact from the east coast, which is up-

stream of the oceans (no dense in situ observing network available) of the continents

in the mid-latitudes will not be fully taken into account. Another drawback is the

unit of the resulting impact estimation that depends on the observation used for

verification, and it can be difficult to interpret and aggregate the results. Lastly,

the accuracy of the impact estimation of generic FSO depends on the accuracy of

the verifying truth. So by nature, the analysis should be more accurate than the

observations if the DA system works properly unless the quality of the analysis is

severely degraded by large model bias.

2.3.2 Independent source of analysis as verifying truth

Recently, it is being proposed that replacing the self-analysis with an indepen-

dent analysis from another source could benefit the generic FSO impact estimation

since the independent analysis is uncorrelated with the forecasts or is simply more
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accurate by nature as truth (Kotsuki et al., 2018, Baker, 2017, personal communi-

cation). Kotsuki et al. (2018) have shown that switching the verifying analysis from

native analysis to ERA-Interim can result in substantial changes both in individual

observational impact and the aggregated impact, especially for moisture compo-

nent. However, there are not much of in-depth studies that evaluate the impact of

the correlations of the verifying truth and the forecasts in generic FSO computa-

tion. A comparison of using dependent and independent analysis will be examined

in Chapter 4 with the Lorenz (1996) model.

2.3.3 Dependency of generic FSO on Error Metric

As hinted by different choices of the verifying truths, the generic FSO tech-

nique is error metric-dependent. For realistic systems, the natural selection of error

metric is the moist total energy norm (Ehrendorfer et al., 1999) that includes the

variables of interest in most meteorological applications. Sometimes, the dry en-

ergy norm (excluding specific humidity) is used when the moist processes are not

well-represented in the forecast sensitivity using the adjoint model. However, dif-

ferent error metric should be considered when applying this technique to a specific

purpose. For example, one might be more interested in the errors in the hurricane

track and intensity prediction when evaluating the observing system that is designed

specifically for the improvement of hurricane prediction. Hence, the choice of error

metric depends on the application.
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2.4 Degrees of Freedom of Signal (DFS) and Its Relation to generic

FSO

The purpose of this section is to relate generic FSO with DFS so that it

can serve as a generalized framework, which allows a better understanding of both

generic FSO and DFS.

2.4.1 Introduction to DFS

The Degrees of Freedom of Signal (DFS; also called analysis sensitivity, self-

sensitivity, or information content) originated from a diagnostic tool for statistical

multiple-regression analyses that provides an influence estimate of individual data

on the analysis. Cardinali et al. (2004) proposed an approximate method to cal-

culate DFS under the context of 4D-Var DA system. Liu and Kalnay (2009) then

formulated the DFS in EnKF framework. For the DFS discussion, we loosely follow

the formulation introduced in Liu and Kalnay (2009).

The analysis equation 2.6 (xa
0 − xb

0|−6 = KKKδyo
0) can be rewritten into the

following form:

xa
0 = KKKyo

0 + (III −KHKHKH)xb
0 (2.23)

Applying the linearized observation operator HHH on both sides gives the same equa-

tion in observation space:

ya
0 = HHHxa

0 = HKHKHKyo
0 +HHH(III −KHKHKH)xb

0 (2.24)
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The influence matrix Sa, which determines the sensitivity of the analysis to indi-

vidual data, then can be defined as

SSSa =
∂ya

0

∂yo
0

= [HKHKHK]T ≈ 1

K − 1
RRR−1YYY a

0YYY
aT
0 (2.25)

The diagonal elements of the influence matrix are the analysis self-sensitivities and

the off-diagonal elements are the cross-covariance sensitivities. The information

content of observations is usually computed as the trace of the diagonal elements

of the target observations tr(SSSa). From equation 2.25, it is quite straightforward to

see that DFS is simply the transformed gain KKK which is determined by the ratio of

background and observation uncertainties as in equation 2.12 since this is the way

DA system determines how much a single observation influences the final analysis

with equation 2.6.

Many researchers perform data selection for satellite radiance instruments such

as IASI and AIRS based on DFS as a quantified measure (e.g. Rabier et al., 2002;

Rodgers, 1996). More details on the selection procedure will be reviewed in the next

Chapter when we introduce existing data selection methods for radiance.

It is worth noting that DFS has been found to be useful as an ordering method

for serial ensemble square root filter (EnSRF). Several studies confirmed that using

reduction of the error variance HAHHAHHAHT

HBHHBHHBHT as an ordering method improves the analysis

accuracy significantly (Kotsuki et al., 2017; Nerger, 2015; Whitaker et al., 2008).

Moreover, recently it has been recognized that the reduction of error variance is

directly related to DFS: HAHHAHHAHT

HBHHBHHBHT = 1−DFS (Hotta 2016, personal communication).
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2.4.2 Relating EFSO to DFS

The generic FSO in special form can be directly related to DFS. For simplicity,

we show the relation using the ensemble formulation for both FSO and DFS (Liu

et al., 2009). With equation 2.14 and 2.25, setting CCC = HHHTHHH, and verifying at the

initial time t = 0, (so that MMM = III,e0|0 = 0, e0|−6 = −δxa
0) yields :

∆e2 ≈ 1

K − 1
δyoT

0 RRR−1YYY a
0XXX

aT
0 MMMTCCC(et|0 + et|−6) (2.26)

≈ 1

K − 1
δyoT

0 RRR−1YYY a
0XXX

aT
0 HHHTHHH(−δxa

0) (2.27)

≈ −1

K − 1
δyoT

0 RRR−1YYY a
0XXX

aT
0 HHHTHKHKHKδyo

0 (2.28)

≈ −δyoT
0 SSSaSSSaT δyo

0 (2.29)

≈ −δyaT
0 δya

0 (2.30)

where δya
0 = HHHδxa

0 = HKHKHKyo
0 = SSSaT δyo

0 is the analysis increment in observation

space. This shows the DFS is indeed included in EFSO when the impact is projected

onto observational space at verification time t = 0. The physical meaning is quite

clear that DFS is simply the analysis sensitivity to observation in observational

space which is part of EFSO impact estimation for t = 0 (analysis sensitivity to

observations or analysis influenced by observations).

To extend this derivation further, we set the verification time from 0 back to

t again and substitute in et|−6 ≈ (MMMδxa
0 + et|0) = (MKMKMKδyo

0 + et|0) :

∆e2 ≈ 1

K − 1
δyoT

0 RRR−1YYY a
0XXX

aT
0 MMMTHHHTHHH(et|0 + et|−6) (2.31)

≈ δyoT
0 (KKKTMMMTHHHT )HHH(−MKMKMKδyo

0 + 2et|0) (2.32)

≈ −δyoT
0 SSSfSSSfT δyo

0 + δyoT
0 SSSfHHH(2et|0) (2.33)
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where SSSf =
∂yf

0

∂yo
0
≈ KKKTMMMTHHHT (∵ δyf

0 = HHHMMMδxa
0 = HMKHMKHMKyo

0) denotes the influence

matrix for the forecasts, or forecast sensitivity to observation in observational space.

DFS has been shown to be an effective way to perform data selection. Further,

it will be shown in Chapter 5 that generic FSO can also be used to perform data

selection. Moreover, the information not only includes DFS sensitivity measure

but the actual impact. This difference is an additional advantage over DFS that

generic FSO takes into account the actual response of assimilation of observation and

whether the future evolution of such response agrees with the verifying truth instead

of just the sensitivity. It is possible that the initial response at assimilation time

will decay within short forecasts and it might also be possible that the response will

increase the forecast error in the future. Additionally, the probability distribution

of innovation δyo
0 should ideally be consistent with the prescribed observation error

covariance RRR and the background error covariance, but the true RRR is never known,

and it is very likely to have certain types of observations with inconsistently large

(or small) magnitudes of innovation δyo
0 resulting in under- (or over-) estimation of

the observational influence. By computing δyoT
0 SSSf instead of just SSSa, we ensure the

actual influence of the observations (not the expected influence) are estimated.

2.5 Summary

In this chapter, we offered a brief historical review on the development of the

generic FSO family with different approaches along with the derivation of formula-

tion, followed by a discussion of the advantages and limitations in all approaches.
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The choice of verifying truth for generic FSO is discussed. And additionally, we

demonstrated that DFS is indeed included in FSO in ensemble formulation. This

connection between generic FSO and DFS serves as a foundation of the data selec-

tion application in Chapter 5.

In the next chapter, we will introduce the two main applications of the generic

FSO in NWP and discuss the methodologies used in the study.
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Chapter 3

Generic Forecast Sensitivity to Observations: New Applications

In this Chapter, we will extend the discussion of generic FSO to the appli-

cations in NWP. In this study, two applications for improving NWP is proposed:

(1) Efficient Data monitoring and selection and (2) Fully flow-dependent Proactive

Quality Control (PQC) to avoid the flow-dependent detrimental observations. The

first two sections will be dedicated to the introduction of the applications, followed

by a section describing the questions that need to be addressed in this dissertation.

3.1 Online Observation Monitoring Tool and Data Selection Based

on EFSO

We propose to routinely compute the EFSO impact to monitor the obser-

vations online. The forecast errors originated from the detrimental observations

are likely to continue growing beyond EFSO verification time. Hence the online

monitoring of EFSO impacts may alert the forecasters of a forthcoming forecast

degradation event such as the notorious forecast skill dropouts that occasionally

reduce the forecast skill to a low level. These dropout events are also the motivation

for the development of PQC (e.g. Ota et al., 2013; Hotta et al., 2017a).

In fact, there are already many data quality monitoring routines in opera-

tion trying to screen out some of these potentially detrimental observations, either
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through online decisions based on some thresholds or a quasi-steady predefined QC

decisions. The latter is also called data selection which is of critical importance for

the success of NWP systems. Merely assimilating all available observations into the

system without any quality control is not only computationally expensive but also

very likely to degrade the quality of the DA and the associated forecast products.

Also, maintaining and renewing the instruments is very costly in terms of human

and financial resources. Thus, the evaluation and controlling of the observational

impact on the quality of NWP are becoming more critical. We will describe in the

following the various types of quality check deployed as part of the data assimila-

tion procedure in operational routines. Then the use of EFSO to improve this data

monitoring and selection process will be discussed.

3.1.1 Present Observational QC and Screening Techniques

In this subsection, we briefly review existing QC and screening methods that

ensure the quality of observations going into the DA system. The implementations

are slightly different in each operational center and here we follow the documenta-

tion from European Centre for Medium-Range Weather Forecast (ECMWF; 2016).

The ”fixed” observation screening in ECMWF consists of two parts: (1) the generic

independent screening and (2) the dependent screening. In addition, we will also in-

troduce a technique called variational QC that was developed to deal with erroneous

observations within variational DA system.
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3.1.1.1 Generic independent screening

In this part, the decisions are made independently for each observation without

involving other observations or previous screening decisions.

1. Completeness check: the observational reports with incomplete entries are

rejected.

2. Blacklist: the observations are rejected based on a blacklist library. The library

is constructed with two parts. Firstly, complicated data selections such as

radiance channel selections are implemented via the blacklist check. Secondly,

the library is updated with monthly monitoring of the stations that provide

excessively noisy or biased data.

3. Background quality control: the observations are discarded if the background

departure (or observation innovation) δyo
0 = yo

0 −H(xb
0) exceeds a predefined

threshold determined by the error variance of both the background and the

observation.

3.1.1.2 Dependent screening

The dependent screening integrates the information from the previous inde-

pendent screening and other observations.

1. Vertical consistency check: for multi-level reports, the observation is rejected

if the adjacent four layers were discarded in the previous checks.
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2. Duplication check: this checks for duplication of reports and discards one of

them.

3. Redundancy check: for some report types, only the report closest to the anal-

ysis time with most trusted data from the same station are retained, and the

others are discarded as redundant reports.

4. Thinning: horizontal thinning is performed for observation types that pro-

vides spatially dense observations, such as aircraft, radiance, and scatterome-

ter data.

The online monitoring tool and data selection based on EFSO proposed in this

study can significantly improve the efficiency and the accuracy of the construction of

the blacklist library mentioned above. Owing to its computational efficiency, EFSO

can be used as an online monitoring tool. So the detrimental subset of observations

can be identified and avoided through frequent updates of the blacklist library based

on EFSO impact. On the other hand, complex data selection decisions for existing

or new instruments can also be achieved through aggregation of EFSO impact for

an extended period (e.g., one month). This long record of EFSO impact allows

identifying specific subsets of observations that keeps degrading the forecasts. Both

the EFSO-based monitoring and the data selection can provide an efficient and

accurate improvement to current procedures.
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3.1.1.3 Existing data selection (blacklist) methods

Present data selection approach can be differentiated into physics-based, OSEs-

based, and statistics-based methods. The physics-based data selection typically does

not have standard procedures. It is usually based on the physical characteristics of

the observation or the environmental condition of the observed quantity. A per-

fect example is the NOAA/NESDIS method for channel selection (Gambacorta and

Barnet, 2013), which is mainly based on our knowledge of spectral properties of the

data. This approach requires a comprehensive understanding of the spectral prop-

erties in both the reality and the model. OSEs impact evaluation is another widely

used data selection method. It is, however, limited by its high computational costs

as mentioned in Chapter 2.

We now focus on the statistics-based method used mainly in satellite radiance

channel selection. The main reason for the need for the statistical methods are the

multi-channel and hyperspectral radiance instruments. Nowadays, around 80% of

the total data comes from these space-borne instruments in the form of radiance

and derived products, such as feature-tracking winds. These instruments include

(but are not limited to) the High Resolution Infrared Radiation Sounder (HIRS)

with 20 channels, the Advanced Infrared Sounder (AIRS) measuring 2378 channels,

the Infrared Atmospheric Sounding Interferometer (IASI) measuring 8461 channels,

the Advanced Technology Microwave Sounder (ATMS) with 22 channels, the Visible

Infrared Imaging Radiometer Suite (VIIRS) with 22 channels, and the Cross-track

Infrared Sounder (CrIS) with 1305 channels. These unprecedentedly large volume
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of data poses challenges in both data transmission and effective assimilation, mainly

due to the operational constraint on releasing forecast product on time. The data

needs to be downsized while preserving most of the information contained.

The goals of data selection are to (1) ensure data quality, (2) guarantee the

representativeness of the model and data, (3) avoid redundant information, and

(4) prioritize observations with most information content. The most obvious goal

is to prevent bad data that contains large gross error or is associated with faulty

instruments from going into DA system. Additionally, we need to account for the

imperfections in the model. There are many satellite channels with spectral prop-

erties that are not well represented in the model, such as surface conditions, the

effect of hydrometeors in the atmosphere. Also, there is a considerable portion of

redundant information among the channels. These redundant observations could

result in long processing time wasting computational resources with no gain and

the assimilation of correlated observations, which can degrade analysis quality if

not appropriately addressed. The last is to identify high impact data and prioritize

them so that the most information content is assimilated under the time constraint.

Hence the problem is the choice of optimal selection of an acceptable number

of channels for assimilation. Here we briefly introduce the existing statistical data

selection methods.

One commonly used data compression method is principal component analysis

(PCA) via eigenvector decomposition. The data, while retaining most of the vari-

ability and information contained, is compressed to a smaller volume (e.g. Goldberg

et al., 2003).
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Rabier et al. (2002) compared several techniques for channel selection for hy-

perspectral instruments and concluded that the iterative DFS (information content)-

based method proposed by Rodgers (1996) is the most optimal way for channel se-

lection. The process goes through many iterations of selections of channels with the

highest DFS. By the definition of DFS, the selected channels are the ones that the

analysis is most sensitive to. However, data selection using DFS guarantees only

the assimilation of the most influential data on analysis, not the resulting accuracy

of analysis nor the impact of the data on the subsequent forecast. It is possible

that the seemingly large initial impact on the analysis lies in the decaying modes

and dies off in a short period. Moreover, the initially substantial impact could turn

out to be detrimental to subsequent forecasts in the worse case scenario. Hence, we

propose to utilize EFSO to improve the data selection results by actually evaluating

the impact of the data on future forecasts.

3.1.1.4 Variational QC

An alternative approach to deal with observations having a large departure

from the corresponding model forecast was proposed in variational context. Under

the assumption of Gaussian distributed observational error, very large departure is

rare and contributes to unrealistically large analysis increment that degrades the

analysis. The variational QC (Anderson and Järvinen, 1999; Ingleby and Lorenc,

1993) assumes that the observational error is constituted by random error (Gaus-

sian distribution) and gross error (constant distribution with bounded interval).
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A drawback of this approach is that the error distribution goes back to Gaussian

again for very large error. A Huber norm approach (Tavolato and Isaksen, 2009,

2015) was first developed for 4D-Var that adjusts the observational error covariances

based on the departure from current analysis solution so that low-quality observa-

tions are not completely discarded but weighted down. The ensemble version of this

approach was then invented by Roh et al. (2013), but the method uses departure

from background instead of using the departure from the analysis. The Huber-type

methods then developed into a mathematical framework of so-called ”Robust” data

assimilation with respect to outlier data (Rao et al., 2017).

3.1.2 Using EFSO for Data Monitoring and Selection

We proposed to establish online monitoring of EFSO impact and design data

selection based on long-term EFSO statistics from the monitoring tool in comple-

ment to minimum OSEs. To avoid degrading the quality of NWP from blindly as-

similating all observations, operational centers have implemented similar approaches

for data selection (blacklist in the previous section). The design of these approaches

relies heavily on OSEs and DFS. A significant number of OSEs are performed for

each observing systems in selecting of the subset of the observations that should

be assimilated. Radiance channel selection is a typical example of such kind of ap-

proach, and it is of critical importance to decide whether specific radiance channels

should be assimilated. The task becomes even more challenging with hyperspectral

instruments, such as Infrared Atmospheric Sounding Interferometer (IASI) and At-
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mospheric Infrared Sounder (AIRS), which measure thousands of channels at once.

Because of the limited discernibility of OSEs, it is challenging to identify a subset

of detrimental channels that may be concealed in a generally beneficial observation

set. Additionally, the design of the QC for the specific observing system could take

up to a year due to the high computational cost of OSEs and prolong the assimila-

tion of new systems. Using the instrument-integrated precipitation map data from

Tropical Rainfall Measuring Mission (TRMM) as an example, Lien et al. (2018)

demonstrated that using EFSO complemented with a minimum number of OSEs

can significantly accelerate the data selection development of new observing sys-

tems. We propose to use the similar paradigm to identify detrimental subsets of

data using EFSO and perform a minimal number of OSEs just for verification of

the EFSO-based selection. We will show examples in Chapter 5 of radiance channel

selection that detrimental channels can be identified even within a massive amount

of generally beneficial channels, and that this approach can not only accelerate the

implementation of the new observing system but also find detrimental channels in

the existing operational data selection.

3.1.3 Extra requirements for online EFSO calculations

Using NCEP as an example, there are few necessary adjustments to the op-

erational system for computing EFSO online in addition to the actual computation

of EFSO. For EFSO verified at 6 hours, the deterministic forecast needs to be ex-

tended from the original 9 to 12 hours. Additionally, observation diagnostic files
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containing the innovation and background perturbation in observation space needs

to be stored for EFSO computation (to prevent redundant processing). If a longer

verifying lead-time is required, both the integration length of the deterministic and

ensemble forecasts need to be adjusted accordingly. For example, 24-hour EFSO

requires a 30-hour length of deterministic forecast and the 24-hour length of ensem-

ble forecasts (from the original 9-hr length). In this regard, the 6-hour verifying

lead-time may be the preferable choice.

3.2 Proactive Quality Control

Taking advantage of immediate EFSO impact in each DA cycle, PQC is an

EFSO-based fully flow dependent QC. It was pioneered by Ota et al. (2013) and

Hotta et al. (2017a) targeting the alleviation of the forecast skill dropout problem (or

forecast busts called by ECMWF). Some of the Global Forecasting System (GFS)

forecast skill dropout events result from assimilating faulty observations found by

the Global Forecast Dropout Prediction Tool (GFDPT; Kumar et al., 2017) team

at National Center of Environmental Prediction (NCEP). They found the GFS

forecasts regain skill by ingesting pseudo-observations generated from the European

Centre for Medium-Range Weather Forecasts (ECMWF) analyses showing some

evidence that the culprit may not the model but the assimilation. It was also

found in some dropout events that it can be alleviated by (subjectively) removing

suspicious radiance channels. While the role of imperfections in the model cannot

be completely eliminated, they show some evidence that faulty observations may be
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the culprit for some dropout cases. Further investigation is needed to conclude with

statistical significance. Trying to alleviate the skill dropout problem, Hotta et al.

(2017a) rejected observations having a detrimental EFSO impact on pre-identified

forecast skill dropout regions and thus improved the 5-day forecasts. We introduce

in the following subsections the algorithm, data denial strategies, and PQC update

methods used in both Hotta et al. (2017a) and this study. Also, possible shortcuts

to reduce the computational costs in operational context will also be discussed. We

will also compare the differences between PQC and another similar technique called

key analysis error (Klinker et al., 1998; Isaksen et al., 2005).

3.2.1 PQC Algorithm

The essential concept of PQC is to utilize the immediate EFSO impact as

observational QC for each DA cycle for the identification of detrimental observations.

The analysis is then modified to avoid the impact of those identified detrimental

observations. It should be noted that EFSO cannot be computed until the next

analysis becomes available for forecast error verification. The PQC algorithm can

be summarized with figure 3.1. It inserts additional steps (verifying analysis for

EFSO, EFSO computation, PQC analysis update, and the forecast from the updated

analysis) into a standard DA cycle.

Suppose the desired PQC time is t = 0 in a DA system with 6-hour assimilation

window, the PQC steps are:

1. Run standard DA cycle from t = −6 to t = 6 to get the analysis at t = 6 for
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verification.

2. Obtain 12-hour and 6-hour forecasts from t = −6 and t = 0 respectively.

3. Perform 6-hour EFSO with the above information to determine which obser-

vations should be rejected at t = 0 using the selected data denial method.

4. Update the analysis to avoid the rejected observations (described later in this

section).

5. Repeat the forecast from the PQC corrected analysis to carry on the improve-

ment.

PQC PQC

ANAL ANALANAL

FCST FCST

ANAL

FCST

FCST

EFSO

FCST

ANAL

FCST

FCST

EFSO

PQC DA Cycle
t = 0 t = 6t = -6 t = 12

Figure 3.1: Flowchart of cycling Proactive QC algorithm (adapted from Hotta et al.

(2017a)).
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3.2.2 Data denial strategy

One of the main focus of Hotta et al. (2017a) is the comparison of several

data denial strategies. The strategy determines the observations to be rejected in

Step 3 of the algorithm. Here we introduce two strategies, namely PQC-Hotta and

Threshold (PQC-THR).

• PQC-Hotta:

EFSO verified after 6 hours is performed for a pre-identified forecast skill

dropout regions in Hotta et al. (2017a). The regions are defined as sliding

latitude-longitude rectangular cells of the size of 30o × 60o, where either the

ratio of 6-hour forecast errors to the mean 6-hour forecast error in that region

or the ratio of 6-hour forecast errors to the 12-hour forecast errors is larger than

twice of their standard deviations (Ota et al., 2013). In Hotta et al. (2017a),

several data denial strategies were tested, and it is concluded that rejecting

all detrimental observations from observing systems having a net detrimental

impact on the skill dropout regions performs the best.

The advantage is that only a limited number of observations and model space

are involved in the calculation which saves computational time. However,

a major drawback of this strategy is that the EFSO impact only takes into

account the forecast error changes inside the rectangular cells that suffered

from skill dropout. It is very likely for the observations to have impact range

exceeding the rectangular cells (for variational DA and also for ensemble DA

if the localization cutoff length is large). Besides, the PQC corrections are
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limited only to the regions showing mature sign of forecast skill dropout. This

regionally confined correction may be fine if the goal is to just alleviate the

identified skill dropout event, but the potential corrections not directly related

to this identified skill dropout event are left out, and the seemingly detrimental

observations could be largely beneficial outside of target cell. Also, multiple

EFSO calculations are needed if there are more than one skill dropout regions.

• Threshold(PQC-THR):

To avoid the drawback of regional EFSO in PQC-Hotta, we perform 6-hour

EFSO for the entire globe and reject any observation that is more detrimental

than a chosen threshold for EFSO detrimental impact. This strategy is the

one we used throughout the dissertation. We will explore the dependency of

PQC improvement on tuning the thresholds in Chapter 4 with the Lorenz

(1996) system and Chapter 6 with the GFS.

3.2.3 PQC update methods

A major focus of this study is to compare the performance of five possible

PQC analysis update methods defined as follows (also summarized in Table 3.1):

• PQC H: This method avoids the influence of detrimental observations by delet-

ing their corresponding columns from the observational operator HHH, which is

equivalent to ignoring the observation. This is the method adopted in Ota

et al. (2013) and Hotta et al. (2017a) for PQC. Since it is easy to implement,

this method is also one of the commonly used methods for data denial. A ma-
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jor disadvantage of this method is that it is necessary to repeat the analysis

step to obtain the PQC update.

• PQC R: This method removes the influence of detrimental observations by in-

creasing the corresponding observational error covariance RRR. It can be viewed

as a soft version of PQC H with the flexibility of tuning the magnitude of the

detrimental influence. It is also commonly used for data denial and easy to

implement. It has the same drawback as does PQC H, requiring the repetition

of the analysis step.

• PQC K: This method was proposed in Ota et al. (2013) and Hotta et al.

(2017a) as an approximation to PQC H by computing the PQC correction to

analysis using the same gain matrix KKK but ignoring the columns associated

with the detrimental observation.

Mathematically,

xPQC K
0 = xb

0 +KKK[δyo
0 −

 000

δyo,deny
0

] = xa
0 −KKK

 000

δyo,deny
0



= xa
0 −

1

K − 1
[XXXa

0YYY
aT
0 ]RRR−1

 000

δyo,deny
0

 (3.1)

where the superscript ”deny” denotes the vector of rejected observation. How-

ever, this method is, in fact, more consistent with EFSO since it also assumes

the gain matrix to be the same for impact estimation. In Section 4.4.2, we

will show that this method performs much better than PQC H and PQC R,

and does not require repeating the process of computing the gain matrix KKK
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(analysis step) so that it significantly reduces the computational burden.

• PQC BmO: Another approach, following the thought of not repeating the

analysis step and the idea of serial EnKF, is to treat the original analysis as

background and assimilate the innovation (Observation minus Background,

OmB) associated with detrimental observations again but with the opposite

sign (BmO), thus canceling the influence of those observations.

This is equivalent to

xPQC BmO
0 = xb

0 +KKKδyo
0 + [000 −KKKPQC ]

δyo,keep
0

δyo,deny
0



= xb
0 + [KKK − [000 KKKPQC ]]

δyo,keep
0

δyo,deny
0

 ,
KKKPQC = (AAA−1 +HHHT

PQCRRR
−1
PQCHHHPQC)−1HHHT

PQCRRR
−1
PQC

The HHHPQC and RRRPQC represents the corresponding observation operator and

observational error covariance for the rejected observations, and the innovation

vector δyo
0 is sorted from the observations we keep δyo,keep

0 to the ones we reject

δyo,deny
0 . The KKKPQC is the Kalman gain using original analysis as background.

The effective gain matrix is the same for the block associated with beneficial

observations, and a correction term is added for that associated with detri-

mental observations. We can express PQC-modified block (associated with

detrimental observations) in the hybrid gain formulation of Penny (2014):

K̂KK = β1KKK
′ + β2KKKPQC + β3KKKPQCHHHPQCKKK

′ (3.2)
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, where β1 = 1, β2 = −1, β3 = 0, and KKK ′ is the columns of KKK associated

with detrimental observations. Note that PQC BmO becomes PQC K if the

original background is used to construct KKKPQC .

• PQC AmO: This method is a variant of the PQC BmO. The only difference

between the two is the definition of the innovation. Innovation in PQC BmO

is defined as the observation minus the original background whereas that in

PQC AmO as observation minus the original analysis.

Mathematically,

xPQC AmO
0 = xa

0 −KKKPQC [yo,deny
0 −HHHPQCx

a
0]

xa
0 = xb

0 +KKK[yo
0 −HHHxb

0]

⇒ xPQC AmO
0 = xb

0 + [KKK + [000 αKKKPQC(III −HHHPQCKKK)]]

δyo,keep
0

δyo,deny
0

 , α = −1

The yo,deny
0 represents the rejected observations. It is clear in this form that the

analysis increments associated with beneficial observations are still the same

as original, but the ones associated with detrimental observations are changed.

The modified block of the gain for detrimental observations of PQC AmO also

has the exact same form as the hybrid-gain formulation of Penny (2014) with

the scaling parameter α = −1. The corresponding parameters in the form of

equation 3.2 are β1 = 1, β2 = −1, and β3 = 1.

The choice of PQC method differs mostly in the computational requirement

and the changes in KKK. The PQC H and the PQC R require the most computational

resources, while PQC K poses the lowest computational burden. Regarding the
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change in the gain matrix KKK, it is modified the most in PQC H, PQC R, and

moderately in PQC BmO and PQC AmO. PQC K does not alter the gain matrix

KKK at all. We will discuss more on the importance of the change in KKK in Section 4.4

when comparing the performance of the methods.
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3.2.4 A unique form of PQC

It is worth noting here that another interesting application of EFSO is the

ordering of observations in serial EnSRF found by Kotsuki et al. (2017). Recall

that in Chapter 2, we mentioned that a DFS-based ordering method proposed by

Whitaker et al. (2008) is shown to improve the performance significantly. In Kotsuki

et al. (2017), several ordering methods were compared including the DFS-based and

the EFSO-based method, and the results show that the EFSO-based ordering from

most beneficial to most detrimental observation outperforms all other methods.

It should be pointed out that the EFSO-based ordering method implemented by

Kotsuki et al. (2017) is, in fact, a special and weak form of PQC for serial EnSRF.

In serial assimilation methods, the analysis is updated as each observation being

assimilated. Naturally, the background spread gets smaller as more observation

added. The effect is that the observations assimilated later in the order are not

trusted as much even if the error RRR is the same. Hence the EFSO-based ordering

method gradually weighs down the influence of the detrimental observations.

3.2.5 Possible shortcuts to reduce computational burden for PQC in

NCEP operational framework

Here we talk about implementing PQC into current NCEP operational frame-

work (see Chapter 5 for the description of the system) and possible shortcuts to

minimize the resources needed for PQC.

As mentioned earlier in the algorithm, the full PQC procedure requires EFSO
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impact which requires the next available analysis for verification. After determining

which observations should be rejected, the analysis is corrected with any of the

PQC update methods to avoid the rejected observations, and then better analysis

is obtained. To carry on the improvement to the next cycle, the deterministic and

the ensemble forecasts from the PQC improved analysis are also required. For the

operational implementation of PQC, two shortcuts were proposed by Hotta et al.

(2017a) but were never tested. One of the shortcuts PQC-K, as mentioned earlier,

turns out to be more accurate compared to the straightforward approach PQC-H.

One additional shortcut is proposed in this study. We will verify the validity of the

two possible shortcuts at the end of Chapter 6.

3.2.5.1 Using GFS analysis as verifying truth

The most time-consuming part of PQC is the wait for next available analysis

for verification. Utilizing NCEP GDAS/GFS dual analysis configuration, Hotta

et al. (2017a) proposed that we can save around 2.5 hours by verifying with GFS

early analysis instead of GDAS final analysis. A summary schematic of the dual

track configuration together with PQC using GFS early analysis as verifying truth

is shown in Figure 3.2.

A possible drawback of the replacement is that the accuracy of EFSO depends

on the accuracy of verifying analysis and switching to GFS analysis might lead

to less accurate EFSO impact. However, this should be only minor changes since

GFS early analysis ingests more than 70-80% of the observations available to GDAS
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GFS
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08:55-09:16
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Schematic of PQC in 
NCEP Dual Track 
Analysis Framework

2.5 hr 
window

Figure 3.2: Schematics of job flow of PQC using GFS analysis as verifying truth in

NCEP GDAS/GFS dual analysis framework

nowadays and lead to small differences between the two. Also, PQC mostly targets

the large outliers which should not be very sensitive to the switch of the verifying

analysis. (As we will show in Chapter 4 and 6, most of the PQC improvement

is from rejecting about 10% of the most detrimental observations and hence not

affected by the slight differences.)
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3.2.5.2 Reuse the original ensemble forecasts

Repeating the ensemble forecasts from the PQC analysis is very expensive and

time-consuming. We argue that this is not necessary since the ensemble forecasts

provide only the background error covariance to the deterministic hybrid En-Var

system. The changes in ensemble background error covariance should be small

enough, and it is not worth extra computational resource to repeat the ensemble

forecasts.

3.2.5.3 Reuse the original Kalman gain (PQC-K update method)

Repeating the analysis process is computationally expensive, and the entire

process is to obtain implicitly or explicitly the gain matrix KKK. Hence, the reuse of

the original Kalman gain, the PQC-K update method we introduced earlier, was

proposed in Ota et al. (2013) and Hotta et al. (2017a) as a degraded approximation

of the standard PQC-H update method. As we will show in Chapter 4 and 6, PQC-

K is, in fact, superior to PQC-H update concerning both the forecast improvement

and the computational cost.

In summary, the shortcuts proposed in Hotta et al. (2017a) and this paper

includes replacing GDAS analysis with GFS analysis for EFSO verification and not

repeating ensemble forecasts after PQC. They will be verified at the end of Chapter

6.
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3.2.6 Relation of PQC-K to key analysis error

PQC K rejects the detrimental part of analysis increments (AIs) in unstable

modes via observation space. In this regard, PQC can be viewed as close relative

to “key analysis errors” method that perturbs the initial condition based on the

adjoint linear sensitivity to future forecast error (Klinker et al., 1998; Isaksen et al.,

2005). However, there are fundamental differences between the two. EFSO, and

hence PQC, maps forecast error changes, the results of nonlinear model propagation

of AIs, back to individual observations and the associated AIs, whereas the “key

analysis error” identifies perturbations in the initial condition that could potentially

reduce the future forecast error. Additionally, since the norm of PQC corrections is

bounded by the magnitude of total analysis increments (the difference between the

background and the analysis), they are free from the additional constraints on the

size of the correction required in “key analysis errors”.

3.2.7 A smoother aspect of PQC

We would like to mention the smoother aspect of PQC as it has been brought

up several times in personal communications (e.g., Jeff Whitaker, 2017). In PQC,

the main improvement comes from bringing in future information, the verifying

analysis, and change the assimilated observation set in accordance to their corre-

sponding ”forecast increment”. In the smoothers, the analysis is also created by

including observations from the future. Hence, there could be a connection between

PQC and a smoother since they both bring in future information that should be
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further explored.

3.3 Scientific Problems to be Resolved

In this section, we further discuss the questions that should be answered for

the (1) data monitoring and selection and (2) PQC applications introduced.

3.3.1 EFSO (Observation monitoring tool and data selection)

3.3.1.1 Why are there 50% of detrimental observations?

It is a well-known feature that nearly 50% of the observations are identified as

detrimental in any variant of FSO from every operation center using different models

and DA schemes. This high detrimental percentage is indeed counterintuitive and

surprising to the community not familiar with FSO since every valid observation

is generally considered informative to the system. Many explanations have been

provided. A detail literature review alongside with our alternative explanation using

Lorenz (1996) system is offered in Chapter4.

3.3.1.2 What are reasonable choices of the forecast verifying truth?

In Chapter 2, we reviewed various choices of the verifying truth for EFSO

computation, including the native analysis from the DA system, observations, and

the analysis from independent sources. Each option has its advantages and dis-

advantages. The standard EFSO uses the native analysis which is convenient and

presumably more accurate than the observation. On the other hand, using the ob-
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servation for verification could save the time waiting for the next analysis and avoid

the influence of model error. Moreover, the potential issue caused by the correlation

between the forecast and the native analysis can be avoided by using an indepen-

dent source of analysis. To address this question, we will explore choices with Lorenz

(1996) system in Chapter 4.

3.3.1.3 Is 6-hour verifying lead-time fair for the applications?

Under the context of data monitoring and selection, there are various choices

of the lead-time for forecast verification. It has become customary to use 24 hours

as the verifying lead-time. The reason behind this choice is to avoid the influence

of diurnal cycle and capture the long-term dynamical evolution. As explained ear-

lier, at least t+6 hours of deterministic forecast and t hours of ensemble forecast

are required for computing EFSO verified with t hours lead-time analysis. Hence,

the forecast lengths must be extended for computing EFSO with longer lead-time

under current operational setup in NCEP. Additionally, the validity of the advect-

ing localization for the ensemble approach and the linearized models for the adjoint

approach deteriorates with longer lead-times, compensating the benefits of having

longer lead-times. Hence, it worth exploring the agreement of data selection using

different verifying lead-time.
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3.3.1.4 Does EFSO-based data selection improve the forecast?

The most important question to answer for the data selection application is

that if the EFSO-based selection improves the forecast. The current selection of the

radiance channels, for example, was based on a combination of the comprehending

knowledge on the spectral properties, degrees of freedom of signal (DFS), OSEs, and

OSSEs, and it is being verified routinely with daily forecasts. On the other hand,

we can only afford to perform channel-subtraction from the default selection since

the addition of channels are prohibited by our limited computational resources.

3.3.2 Proactive QC

3.3.2.1 What is the benefit of cycling PQC versus non-cycling PQC?

It has already been shown the significant improvement from non-cycling PQC

in Ota et al. (2013) and Hotta et al. (2017a). We hypothesize the benefit of cy-

cling PQC in addition to the immediate improvement as in non-cycling PQC is the

improved background from the accumulation of past PQC corrections. The accu-

mulation of corrections requires that the improvement of PQC last for several the

subsequent DA cycles. This accumulation of improvement is critical since the im-

mediate correction is not affordable in operation. Cycling PQC is more desirable

for operational implementation if the improvements do accumulate.
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3.3.2.2 How to PQC the detrimental observations and update the

correction?

In Ota et al. (2013) and Hotta et al. (2017a) , a tremendously large effort was

spent on designing the data-denial strategies, which complicates the system. We

propose a simple alternative using a globally fixed threshold of the EFSO impact for

rejecting observations. Besides, there are on average 50% of detrimental observations

in each cycle as described earlier and we need to explore the sensitivity of the cutoff

threshold. Lastly, several PQC update methods are devised with their advantages

and disadvantages. Using the Lorenz (1996) system in Chapter 4, we will conclude

the superior method regarding the improvement in the forecasts.

3.3.2.3 Should we perform PQC with longer verifying lead-time?

Same as the question discussed in section 3.3.1.3, but with additional com-

plexity. In addition to the previous discussion, PQC requires computation of EFSO

in real-time. However, we need to wait for the verifying analysis valid at the chosen

lead-time, so PQC becomes more infeasible as the EFSO verifying lead-time in-

creases. By design, the 6-hour PQC is the most feasible configuration. On the other

hand, 6-hour PQC may suffer from the influence of diurnal cycle and degrade the

longer-term forecast for the short-lived improvement that dies off within 24 hours.
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3.3.2.4 How to make PQC feasible in operation?

In section 3.2.5, several shortcuts are proposed to lower the computational

burden and shorten the delay from performing PQC in NCEP operational setup.

These shortcuts include replacing GDAS with GFS analysis for the verifying truth,

reusing the original ensemble forecast in EnVar system, and reusing the original

Kalman gain to perform the PQC update (PQC-K method). In Chapter 6, we will

explore the validity of all these shortcuts.

3.4 Summary

In this chapter, we continue from the FSO discussion in Chapter 2 and intro-

duce the proposed applications in more detail. A background review of the data

selection and quality control method is provided for the data monitoring and se-

lection applications. We also introduce the PQC algorithm together with several

shortcuts to lower the computational burden in NCEP operation configuration.

In the next chapter, the applications will be explored in a simple Lorenz (1996)

system coupled with ensemble transform Kalman filter for showing a proof of concept

and investigate the sensitivity of the applications on configurations that would not

be affordable in a realistic system.
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Chapter 4

Simple-model Experiments with Lorenz 1996 Model

4.1 Introduction

Proactive Quality Control (PQC; Ota et al., 2013; Hotta et al., 2017a) based on

EFSO was proposed aiming to resolve the forecast skill dropout issues (Kumar et al.,

2017) through identification and rejection of detrimental observations that may be

harmful to the forecast. Ota et al. (2013) showed using the Global Forecasting

System (GFS) from the National Centers for Environmental Prediction (NCEP),

that denying the detrimental observations identified by EFSO with 24-hr verification

lead-time reduced forecast errors in several forecast skill dropout cases. Hotta et al.

(2017a) successfully showed with 20 forecast skill dropout cases that the forecast

errors are also reduced by rejecting detrimental observation from EFSO verified

with only 6 hours. Hence, it was further proposed that PQC would be affordable

in operational cycling to reduce or avoid skill dropouts in an online fashion. A

major potential benefit in cycling-PQC is that the improved forecast may serve as a

better background and subsequently lead to improvement in the following analyses

and forecasts. However, cycling-PQC has not been thoroughly tested yet. Idealized

simulation experiments in a controlled environment can provide insights on how to

optimally set up cycling PQC for realistic models.

In this Chapter, the primary goals are to examine the EFSO characteristics,
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compare the PQC update methods, and perform PQC sensitivity tests. We im-

plement EFSO and PQC on the simple Lorenz (1996) model (hereafter, L96) with

40 variables coupled with ensemble transform Kalman filter (ETKF; Bishop et al.,

2001) for DA. This ideally controlled environment allows the separation of factors

contributing to the errors in DA, EFSO, and PQC that are entangled together in

realistic systems. The experimental setup, including the Lorenz (1996) model and

the DA method, will be described in Section 4.2. In Section 4.3, we explore some of

the characteristics of EFSO in this system. Section 4.4 shows the results of the PQC

performance using various configurations as well as its sensitivity to a suboptimal

DA system. We summarize the findings of the study in Section 4.5.

4.2 Experimental Setup

4.2.1 Lorenz 1996 system

The main purpose of this study is to test cycling-PQC in a simple idealized sys-

tem, which allows to separate the impact of each factor clearly and perform sensitiv-

ity tests more efficiently compared to a realistic system such as the GFS. To achieve

this goal while remaining relevant to the realistic application in the atmosphere, we

choose the one-dimensional simplified atmospheric model from Lorenz (1996) which

resembles some of the large-scale atmospheric behavior and error growth character-

istics. It is a model of N variables x1, ..., xN governed by N equations:

dxn
dt

= xn−1(xn+1 − xn−2)− xn + F
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where the quadratic terms on the right-hand-side simulate advection while conserv-

ing total energy
∑N

n=1 x
2
n/2, whereas −xn and F represents dissipation and external

forcing that drives the chaotic dynamic. We follow the commonly used configuration

as in Lorenz and Emanuel (1998). The constant forcing term F is set to 8, so that

the error doubling rate corresponding to the leading Lyapunov exponent λ1 is about

0.42 model time units or 2.1 days, assuming that 0.05 model time unit is equivalent

to 6 hours in physical space based on the error growth rate. This time scale for

error doubling is approximately consistent with that of the large-scale atmosphere

in the mid-latitudes. The time integration uses the 4th order Runge-Kutta scheme

with a time step of ∆t = 0.05 model time units. We will be using this ∆t = 1 step

as basic time unit throughout the paper instead of the commonly adopted conver-

sion to physical 6 hours since this can be misleading especially when the dynamical

timescale is not necessarily relevant to the error doubling timescale. The model

dimension of N = 40 is chosen as in common practice.

Each experiment is initialized from a randomly chosen state and spun up for

500 time-steps, allowing the ensemble members to converge to the model attractor.

For the control and PQC experiments, an additional 500-step spin-up for DA is

performed. Each experimental period is 5000-step long after spin-up. A “truth”

run without DA and PQC is performed to generate the observations and verify

the performance of the experiments. Following Lorenz and Emanuel (1998), the

observations are generated at ∆t = 0.05 intervals by adding to the truth random

observational noise drawn from N (µ, R). Unless otherwise stated, observations

errors are generated with µ = 0 and R = 0.01.
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For “flawed” (imperfect) observing system experiments, we modify the values

of µ and R to make them inconsistent with the prescribed observational error covari-

ance matrix RRR. The sensitivity to the spatial coverage of the observing network is

also tested. If the number of observing locations is not equal to 40, their distribution

is randomly chosen from a uniform distribution for each DA cycle.

We chose to perform ensemble transform Kalman filter (ETKF; Bishop et al.,

2001) with a perfect model and ensemble size of 40 members because we are inter-

ested in assessing the EFSO and PQC performance without the need for localization

and inflation, which are designed to deal with insufficient ensemble sizes and model

error in EnKF (Liu and Kalnay, 2008).

4.2.2 Ensemble Transform Kalman Filter

The Ensemble Kalman Filter (EnKF) is one of the prevailing methods for

data assimilation, combining a model forecast with observations to construct a lin-

ear least-square error estimation of the true state or analysis. An ensemble of

Monte Carlo simulations initiated from K perturbed states form the flow depen-

dent error covariance of the forecast (also known as background error covariance

BBB = 1
K−1

XXXfXXXfT , where XXXf is the background perturbation matrix, whose columns

are the forecast ensemble perturbations with respect to the mean xf ), thus account-

ing for model uncertainty and cross-variable correlations. It is then used together

with the observational error covariance RRR to combine the background state xf and

the observations y into the analysis state xa. The analysis equation can be written
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as

xa = xf +KKK(y −HHHxf ) (4.1)

KKK = (BBB−1 +HHHTRRR−1HHH)−1HHHTRRR−1

= AAAHHHTRRR−1 (4.2)

where AAA = 1
K−1

XXXaXXXaT , XXXa, and HHH represent the analysis error covariance, analysis

perturbations and observation operator, respectively.

The actual implementation of the analysis equation has many variations. In

this paper we adopt the ETKF formulated by Bishop et al. (2001). The analysis

equation then becomes

XXXa = XXXfTTT (4.3)

TTT = CCCΓΓΓ−1/2CCCT (4.4)

where TTT represents the ensemble transform matrix. CCC and ΓΓΓ are computed through

eigenvalue decomposition:

CCCΓΓΓCCCT = III +
1

K − 1
(HXHXHXf )TRRR−1HXHXHXf (4.5)

where III is the K×K identity matrix. Note that Hunt et al. (2007) showed that the

transform matrix TTT can be interpreted as the weighting for each ensemble members

according to the observations. The members closer to the observations receive higher

weights. In addition, a localization version of ETKF was proposed in Hunt et al.

(LETKF; 2007). In high-dimensional applications, LETKF instead of ETKF is

generally adopted to suppress the under-sampling noise arising from insufficient

ensemble size. We use LETKF as the DA system for GFS model in Chapter 6.
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4.3 Results: Characteristics of EFSO Impacts

In the first part, we examine the EFSO sensitivity to the verifying lead-time.

The dependence on the choice of lead-time is of interest since it may be determined

by an intrinsic dynamical timescale, which is relevant to the optimal design of PQC.

In the second part, we explore the choice of EFSO verifying truth. Finally, we

discuss the causes for the observed low percentage of beneficial EFSO impacts. We

offer an explanation supported by the results in the idealized system in the third

part.

4.3.1 EFSO sensitivity to verifying lead-time

We begin by comparing EFSO impacts with various forecast evaluation lead-

times. In Hotta et al. (2017a), a considerable effort was devoted to validating the

use of a lead-time of only 6 hours, needed for PQC given that this is the usual data

assimilation interval. By contrast, operational FSO reports commonly use 24 hours

lead-time to avoid the errors introduced by diurnal cycle. Also, having to track

the flow-following localization function in a high dimensional system, complicates

the applicability of EFSO, requiring large computational resources for computing

forecast impacts at longer lead-times (Kalnay et al., 2012; Ota et al., 2013; Gasperoni

and Wang, 2015). By contrast, the L96 system is governed by dynamics with a single

timescale and hence is free of multiple timescale issues. We purposely select to use

ETKF with full ensemble size, which requires no localization, to focus on the pure

EFSO characteristics in an ideal environment. With this configuration, we can
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examine just the dependence of EFSO on the evaluation lead-time.

Figure 4.1 shows a typical snapshot of the 4.1a EFSO impact and 4.1b the

normalized (with l2 norm) impact of observations at cycle 2200, with lead-times

ranging from 1 to 40 time steps. The normalized impact êijk = ẽijk/
√∑

j ẽ
2
ijk,

where ẽijkdenotes the EFSO impact of j-th observation with lead-time of k in i-th

cycle. The impact is normalized for each lead-time since it is typically an order

of magnitude larger with longer lead-time due to nonlinear error growth. We are

more interested in the agreement of the sign and the relative magnitude of the

impacts between observations at each lead-time rather than the difference in absolute

magnitude across lead-times, which is dominated by nonlinear error growth. Note

that the signs of the impact are mostly consistent throughout the lead-times for large

impacts (e.g., the 9th and 19th observation) and some rather large ones. However,

there are several observations (e.g., the 2nd and 3rd observation) with small to

medium impacts that decreased in magnitude at the beginning and then changed

signs after 5 steps of lead-time.

We take the mean of the normalized impacts of all lead-times (< êij >=∑
k êijk) and use it as the consensus among all lead-times to quantify the agree-

ment between EFSO impact from each lead-time. Figure 4.2 shows the correlation

between the mean normalized impacts of each observation and the actual impacts

with each lead-time. It is clear that the impact of short lead-time does not correlate

well with the mean impact and neither does the impact of the very long lead-time.

The correlation peaks at around lead-time of 21 steps, suggesting that EFSO is

not able to fully capture the longer-term dynamical evolution with short lead-times,
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(a) EFSO Impact
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(b) Normalized EFSO Impact
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Figure 4.1: Snapshots of EFSO impact as a function of lead-time for each observation

at 2200 cycle. Both (a) the impact and (b) the impact normalized with respect to

each lead-time are shown.

whereas the growth of nonlinearity limits the accuracy of EFSO for lead-times that

are too long. As a result of the balance between the two factors, the ideal lead-time

to be used settles at around 21 steps. It is arguably true that the result depends

heavily on the model dynamics and may not be generalizable to other models. For

this model, 21-step lead-times seems to represent well of the consensus among all

lead-times and, as we will see later, this is consistent with the PQC results.

4.3.2 Choice of verifying truth

In this system, we have the luxury of a controlled environment where the

truth and error are known, providing the opportunity to investigate the choice of

verifying truth. The options are the native analysis, observations, and the indepen-

dent analysis. As discussed in Chapter 3, there are advantages for verifying with
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Figure 4.2: Correlation between the normalized mean EFSO impact and the actual

impact with each lead-time

the ”alternative truths” other than the native analysis. Using observations as the

”truth”, EFSO is free of any dependencies on models and data assimilations. The

advantages are that the EFSO impact evaluation is not contaminated with model

error and that it is free of the delay from waiting for DA to complete. Another

choice is using an independent analysis, having the advantage of being uncorrelated

with the forecasts. An obvious drawback is a dependence on the source (most likely

another operation center) producing the analysis. In this demonstration, the inde-

pendent analysis is generated by adding random perturbations to the analysis with

the magnitude of ensemble spread at each grid point to represent a possible analysis

having uncorrelated errors.

Figure 4.3 compares the choices by computing the correlations of EFSO verified

with the choice and that with the actual truth. The comparison allows a direct
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evaluation of the choices with the corresponding accuracy of EFSO impact. We

can see that the differences between the choice are the most significant for shorter

lead-times, where the observation is less accurate compared to the native analysis.

This result is not surprising since the analysis should be more accurate than the

observation by nature. The independent analysis follows closely with the native

analysis. As we increase the verifying lead-time, the differences decrease when all

correlation coefficients converge to one. This behavior indicates that as we increase

the lead-time, the verifying truths become more accurate relative to the forecast,

and essentially any choice is almost as good as the actual truth as the forecast error

is sufficiently large.
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Figure 4.3: Comparisons of the choices of verifying truth by computing the corre-

lations of the EFSO verified with the alternative truth with that verified with the

actual truth for various verifying lead-times.
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One main proposed advantage of using observations as verifying truth is that it

is free of model dependency and hence could become a superior choice if model error

is present. In Figure 4.4, the EFSO verified with observations is only superior to the

analysis when the forecast model forcing deviates significantly from the truth (large

model error). We should note here that the system experienced filter divergence

using that particular forcing for the forecast. The lesson we learned by this exercise

is that the analysis is always a better choice if the DA system works properly, and

the choice of verifying with observations is only superior when the filter diverges,

which is very unlikely in the operational system. Also, the EFSO impact verified

with analysis seems to be insensitive to the model error until the filter diverges.

8.00000 8.00025 8.00050 8.00075 8.00100 8.00125 8.00150 8.00175 8.00200
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Figure 4.4: Same as in Figure 4.4, but with various model forcing for the forecast

model that deviates from the truth. Here we show the 6-step EFSO.
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4.3.3 Low beneficial percentage of FSO impact

One puzzling property of FSOs is the low percentage of beneficial observations.

From every reporting operational center, the beneficial percentage is only slightly

more than 50% no matter which type of FSO was used to make the calculation.

Many discussions appear in several studies about the reason why so few of the

observations are beneficial. It has been attributed to inaccurate verifying analysis

(Daescu and Todling, 2010), incorrect assignment of background and observation

error covariance matrix, and the distribution of analysis increment in dynamical

modes with different growth rate (Lorenc and Marriott, 2014). These factors all

contribute to the determination of the beneficial percentage, but as we will show

later, the beneficial percentage is still low even without those proposed suboptimal

configurations in our ideal system, suggesting that they are not the dominant factors.

Gelaro et al. (2010) mentioned the beneficial percentage could be increased to 60%-

65% with a scalar DA system when the background and the observation accuracy

are comparable.

Here we offer an alternative hypothesis that the relative difference between the

quality of background and that of the observation is a critical factor contributing

to the low beneficial percentage of observations. Figure 4.5, is a schematic of a

group of unbiased observations centered around the truth and a background forecast

initiated 6 hours before lies somewhere on this one-dimensional model space with a

distance to the truth. It is clear that the forecast error determines the distribution of

innovation on each sign and mainly, the number ratio of the majority to the minority
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separated by the background. It is the nature of DA that the majority group contains

observations closer to the truth and the associated AIs reduce the analysis error and

the subsequent forecast error. By definition, in FSO, beneficial impacts are assigned

to the observations in the majority group. From this point of view, we can reach

two conclusions about FSO assuming that the quality of observations is fixed and

the DA system is working correctly: (1) the beneficial percentage depends on the

average quality of the background, and (2) the beneficial percentage cannot be lower

than 50% and it can be asymptotically approaching 100% if the background quality

is deficient compared to the observational error, where no observation error is more

significant than background error.

To test this hypothesis, we leverage the simple L96 system by computing

the beneficial percentage with various background quality generated by varying the

length of DA window. With figure 4.6a, the averaged beneficial percentage of 5000

DA cycles are plotted against DA windows from once every forecast step to every 100

forecast steps. Beneficial percentage increases with DA window monotonically from

55% and saturates at around 92% when the interval is larger than 60. In figure 4.6b,

we tested the impact of observation error standard deviation from 10−5 to 100 and

the beneficial percentage drops from 67% to 55%. It is not possible to change the

observational quality while keeping background quality constant in our system and,

hence, the beneficial percentage saturates at 67%, a rather low value compared to

92%, which is a clear demonstration that the relative difference between the quality

of backgrounds and observations is the dominant mechanism for the low beneficial

percentage in this simple system. Besides, we can also view beneficial percentage
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from the information contribution perspective. The low beneficial percentage in-

dicates that the DA system relies heavily on the background while high beneficial

percentage suggests more information coming from the observations. Thus, the low

beneficial rate of observations in operational NWP system is very likely the conse-

quence of the high quality of the backgrounds such that only slightly over 50% of

observations are beneficial in FSO.

4.4 Results: Proactive QC

In this section, we examine the performance of non-cycling PQC in which

the improved forecast is not used as background for the next analysis, following

Hotta 2017. The first experiment of cycling PQC is performed, and we compare the

different PQC update methods introduced in Chapter 3 where each uses different

mechanisms to avoid the impact of the detrimental observations. The sensitivity of

PQC performance to the choice of EFSO lead-time and the amount of rejected obser-

vations are investigated. Lastly, the robustness of PQC is tested with the different

sources of imperfections in the DA system, relevant to operational applications.

4.4.1 Non-Cycling PQC

Non-cycling PQC means the PQC-improved forecast is not used as background

in the following DA cycle. We begin with using PQC H, which is usually how data

denial (QC) are performed in operations and then examine its performance for

different configurations of PQC. In Hotta et al. (2017a), one of the key highlights
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is the design of the data denial strategy. The EFSO impact was used as a guide

on the denying priority, but not every detrimental observation was rejected. It was

intuitively believed that rejecting nearly 50% of the observations will lead to forecast

degradation. Additionally, every observation, by the nature of DA, provides an extra

piece of information that should be useful in estimating the true state. Given the

advantages of this simple low dimensional system, here we can test the sensitivity in

a great granularity of PQC H performance to the number of rejected observations.

In figure 4.7, we show how the non-cycling PQC H improves or degrades the forecasts

by varying the number of rejected observations ordered from the most detrimental

to the most beneficial ones. In this case, all the observations are perfectly consistent

with prescribed error covariance RRR, meaning none of them are flawed. We observe a

forecast error reduction mainly resulting from the rejection of the 4 most detrimental

observations. Then the error is insensitive to the additional rejection of observations.

And not until we reject the last few very beneficial observation we observe that a

rapid error growth takes place. This is in agreement with the EFSO impact for the

observations that the impact of the most beneficial and detrimental observations

are orders of magnitudes larger than that of the insignificant observations. It is

also consistent with the improvement increased in Hotta et al. (2017a) that the

error reduction by PQC is well preserved and even amplifies in magnitude as the

forecasts advance (Note the vertical axis is in log scale.). It should be noted here

that in a non-cycling PQC, the impact of using different EFSO lead-times is not

significant (not shown) which is consistent with our intuition that different lead-

times perturb the rejecting order slightly in most cases and only make significant
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changes in rare situations, thereby the effect can only be observable after cycles of

accumulation. This result is a demonstration of the ability of EFSO to identify the

very detrimental observation from a pool of observations. Also, the result confirms

the speculation that only a few very detrimental observations should be rejected for

optimal performance of PQC H.

4.4.2 Cycling PQC: Update Methods

Figure 4.8 compares the performance of all proposed PQC methods using

6-steps and with varying percentages of rejected observations. Note that the mag-

nitude of observational impacts are different and the percentages of beneficial ob-

servations could vary from 30% to 70% from cycle to cycle. There could be fewer

observations with large detrimental impact for some of the cycles and more on oth-

ers. Hence it is not desirable to reject the same amount of observations for each

cycle. Here we construct a range of thresholds corresponding to the 0th to 100th

percentiles of EFSO impacts obtained from a control experiment of 5000 cycles

(Table 4.1). Then PQC rejects observations with an impact above the threshold,

where the 10th percentile threshold rejects the top 10% of the most detrimental

observations and the 90th percentile threshold keeps only the top 10% of the most

beneficial observations. The lead-time here is chosen to be 6 steps rather arbitrar-

ily, and the sensitivity to the lead-time will be examined later. Since the Kalman

gain KKK of PQC R approaches that of PQC H asymptotically with increasing ob-

servational error, it is not surprising to see that the PQC H and PQC R methods
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perform more or less the same regarding both analysis and 30-step forecast error

reduction. The errors are reduced the most when rejecting 10% of the observations

for the two methods. This result is consistent with the one from the non-cycling ex-

periment where 10th percentile threshold rejects around 4 observations on average.

It is somewhat surprising that PQC K, PQC BmO, and PQC AmO all outperform

PQC H and PQC R, which are the two most commonly used data denial methods.

For the analysis quality improvement, the obvious choice of the threshold shifts to-

wards 20%. PQC K does not show any degradation of analysis until rejecting more

than 60 % of the observations, whereas PQC BmO and PQC AmO stop showing

improvement after 50% and even suffer from filter divergence beyond 60%. For the

forecast quality improvement, the dependence of PQC BmO and PQC AmO on the

thresholds are qualitatively similar to that in analysis performance. It is very sur-

prising to find that PQC K has nearly no dependence on the thresholds between

the 10th and 60th percentile, especially when compared to the 10% optimal choice

for PQC H and PQC R.
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Figure 4.5: Schematic of EFSO computation in a 1-D model. The black dash curve

represents the previous forecast trajectory initiated from T = −6 and the black

dash-dot curve represents the current forecast initiated from T = 0. The two both

start close to the truth (black solid) and deviate further in time. The assimilated

observations are distributed within the green oval that centers at the true state with

the probability proportionate to the width representing a Gaussian distribution of

error. In EFSO calculation, the observation in the red (blue) shaded area will be

quantified as detrimental (beneficial).
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Figure 4.6: Beneficial percentage of EFSO impact as a function of (a) background

quality represented by length of assimilation window and (b) observational error.
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Figure 4.7: Forecast RMSE from single cycle PQC H as a function of number of

rejected observations. The colored lines represent the forecast error evolution from

PQC analysis corresponding to increasing number of rejected observations from red

to blue. Different colors simply distinguish individual experiments with different

numbers of rejected observations. The black lines mark the forecast error at 1, 10,

20, and 30 steps.
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(a) Analysis RMSE (b) 30-step Forecast RMSE

FIG. 3: Performance of 6-step PQC with all 5 methods in terms of (a) analysis RMSE and (b)
30-step forecast RMSE as a function of rejection percentage.

33

Figure 4.8: Performance of 6-step PQC with all 5 methods in terms of (a) analysis

RMSE and (b) 30-step forecast RMSE as a function of rejection percentage.
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Intuitively, the “flat bottom” of PQC K (rather than the “check mark” shape

of PQC H and PQC R) is more consistent with the estimated impact of the obser-

vations since the magnitude of the impacts between 10th to 60th percentile is small

compared to that of those below the 10th percentile. Hence, it should be insensi-

tive (“flat bottom”) to rejecting those observations between 10th to 60th percentile,

explaining why the results are better for PQC K than for PQC H since PQC K is

more consistent with the nature of the computation of EFSO and the estimated im-

pact. Note that EFSO is simply an ensemble-based linear mapping between forecast

error changes and the observational innovation, which is associated with analysis in-

crements (AIs) through the gain matrix KKK. It provides the estimated impacts of

each observation in the presence of all other assimilated observations, and hence

the impacts remain valid as long as KKK does not change much. However, PQC H

and PQC R significantly change KKK when rejecting some observations, thereby the

accuracy of the estimated EFSO impacts becomes lower, and the PQC based on

those impacts does not work as desired. The total AIs obtained at the end of the

update consists of the AIs contributed by each observation, and it is the AIs that

determines the forecast error change rather than the observation innovation. Hence,

PQC should target the AIs corresponding to the detrimental observations rather

than the observations themselves. So simple data denial by manipulating HHH and

RRR does not necessarily reject the AIs that lead to forecast degradation especially

when rejecting an excessive number of observations. PQC K, by contrast, uses the

same KKK to reject the exact detrimental AIs identified by EFSO and ends up with

even larger improvements. Interestingly, PQC K was originally proposed as an ”ap-
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proximation” of PQC H to avoid the large computational cost of recomputing the

analysis in realistic system applications (Hotta et al., 2017a; Ota et al., 2013). In

reality, as discussed above, PQC K is, in fact, much more accurate in the context of

PQC based on EFSO. Besides, the observations with the largest impacts contribute

to AIs among the most unstable modes, while the less impactful observations are

associated with the neutral and stable modes which have little or no error growth.

Hence, after rejecting the few very detrimental AIs, it does not matter much whether

those less impactful AIs are rejected since the difference is very unlikely to grow in

the future, thereby showing the “flat bottom” feature in the center of Fig. 4.8.

For PQC BmO and PQC AmO, they change KKK in a less radical fashion by

“assimilating” new observations into the original analysis and yield improvements

similar to PQC K with a small number of rejected observations. However, they suffer

from filter divergence easily with a large number of rejected observations since the

ensemble becomes overly confident due to the “additional” assimilation of opposite

innovations. It is worth noting that the commonly observed difference in the impact

estimated by EFSO and observing system experiments/ data denial experiments

corresponds to the difference in PQC K and PQC H.

4.4.3 Cycling PQC: Sensitivity to Lead-times

In this section, we explore the sensitivity of cycling PQC H, PQC K, and

PQC AmO to the rejecting threshold and more importantly, to the EFSO lead-

time. We refer to PQC based on a t-step EFSO as t-step PQC hereafter. Beginning
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with PQC H shown in Figure 4.9, it seems to be quite difficult to conclude the re-

lation between the PQC H performance and the length of lead-time directly from

the analysis error reduction. It is also counter-intuitive to find that 21-step PQC H

performs worse than that with only 6 steps. However, the dependence of the perfor-

mance on forecast error reduction can be easily summarized as follows. The forecast

quality increases with the lead-times up to 16 steps and distributes then remains

the same with 21 steps. The result suggests the optimal choice of EFSO lead-time

settles between 16 to 21 steps, best describing the impact corresponding to the un-

derlying dynamical evolution. Short lead-time PQC seemingly reduces the analysis

or even short-term forecast error but may be irrelevant to long-term error growth.

This speculation can be confirmed by the comparison between the performances of

6-step and 21-step PQC H. It is clear that a considerable portion of error reduction

by 6-step PQC H is distributed within the stable subspace and decays over time.

Additionally, the corrections of 21-step PQC for rejecting 10% of the observations

does not reduce much of the total analysis error compared to other lead-times, but

it turns out those are the most relevant to error growth in long-term, and rejecting

them leads to huge forecast improvement.

Now we show in Figure 4.10 the sensitivity of the performance of PQC K to the

lead-time and the rejecting threshold. It is qualitatively consistent with the result

of PQC H, where the maximum forecast error rather than analysis error reduction

increases with lead-time and saturates at 16 to 21 steps. There is a general feature in

forecast error reduction shared among all lead-times. The error drops dramatically

when rejecting with 10th percentile followed by the ”flat bottom” feature when
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(a) Analysis RMSE (b) 30-step Forecast RMSE

FIG. 4: Comparison of cycling PQC H performance using various EFSO leadtime as a function
of rejection percentage in terms of (a) analysis and (b) 30-step forecast analysis RMSE.
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Figure 4.9: Comparison of cycling PQC H performance using various EFSO leadtime

as a function of rejection percentage in terms of (a) analysis and (b) 30-step forecast

analysis RMSE.

increasing the rejecting percentile. Then the filter diverges when rejecting beyond

a critical percentile. The only differences are the percentile where PQC K leads

to filter divergence and the magnitudes of error reduction. The critical threshold

gradually approaches from the 80th percentile for 6 steps to 50th percentile for 21

steps.

This dependence of PQC K on the rejecting percentile can be explained with

Figure 4.5, which is a schematic of EFSO computation in one-dimensional model

space with a group of unbiased observations centering around the truth and fore-

casts initiated from T = −6 and T = 0 lying somewhere with a distance to the

truth. We can think of the 1-dimensional model space in the figure being aligned

with the fastest error growing subspace (1st Lyapunov vector). So the error growth

depends on the balance between the detrimental AIs and the beneficial AIs. The

outermost observations and the corresponding AIs in detrimental direction are the
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(a) Analysis RMSE (b) 30-step Forecast RMSE

FIG. 5: Same as Fig. 4, but for PQC K

35

Figure 4.10: Same as Fig. 4.9, but for PQC K.

primary drivers that deviate the forecast from the truth trajectory, whereas the

beneficial observations draw the forecast towards the truth. Ideally, we should re-

ject the detrimental AIs because we could end up with only the unstable growing

“beneficial” AIs when more are rejected. The error drop with rejecting with 10th

percentile results from getting rid of the largest detrimental AIs and the “flat bot-

tom” is associated with those non-growing AIs. Once rejecting more than 50%, the

average beneficial percentage, the unstable growing “beneficial” AIs take over and

lead to error growth in the “beneficial” direction. Note that EFSO with shorter

lead-time cannot differentiate between observations with small to medium impact.

So the direct consequences of using shorter lead-time is a smaller error reduction

caused by rejecting some of the beneficial AIs while keeping some of the detrimental

ones unintentionally. It also means that when rejecting more than 50% of the ob-

servations, the remaining AIs are not entirely pointing to the “beneficial” direction

and delay the occurrence of the divergence.

With Figure 4.11, we show the PQC AmO performance sensitivity to the
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(a) Analysis RMSE (b) 30-step Forecast RMSE

FIG. 6: Same as Fig. 4, but for PQC AmO
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Figure 4.11: Same as Fig. 4.9, but for PQC AmO.

choice of lead-time and rejecting percentile. It is clear that it performs compara-

bly well or even better than PQC K in some configurations. However, suffering

from further contraction on the ensemble spread by assimilation of the detrimental

innovation with the opposite sign, the method can easily lead to filter divergence

associated with overly confident ensemble members.

4.4.4 PQC sensitivity to the change in Kalman gain

In Chapter 3, we mention the changes in Kalman gain matrix KKK introduced

by each PQC update methods. Here we examine the impact of the changes in KKK

on the improvement in the resulting analysis and forecast. To separate the PQC

corrections on the mean trajectory and the Kalman gain (essentially the analysis

covariance matrix; KKK = 1
K−1

AHAHAHTRRR−1), the PQC corrections are applied only to the

mean of the ensemble, and the perturbations remain the same as the original.

Figure 4.12 shows the improvements of the PQC corrections only on the mean

state. Interestingly, we found the PQC improvement mainly comes from the mean
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correction rather than the covariances, suggested by the fact that all update meth-

ods converge towards PQC K, and the changes in the covariances by PQC lead

to suboptimal performance. From the figure, it is clear that when the covariance

is unchanged, the maximum improvement was provided by PQC AmO, and that

PQC H contributes the least improvements (but still improve a lot from the original

PQC H). However, it should be noted that PQC K is much computationally efficient

than the others and does not require the extra step to keep the original covariance

matrix.

4.4.5 PQC with suboptimal DA Systems

To remain relevant to applications in an operational environment, we would

like to explore PQC in suboptimal conditions including imperfect model, flawed ob-

serving system, DA window, and various sizes of ensemble and observing network.

For the rest of the paper, we will be using 6-step PQC, which also improves the qual-

ity of the forecast (though not as much as 21-step PQC), but is less computationally

expensive.

In high dimensional complex chaotic systems, we do not have the luxury of us-

ing a sufficiently large ensemble size because of the limited computational resources.

It is important to examine the performance of PQC with different numbers of en-

semble members. We tested a wide range of ensemble sizes (from 5 to 640), shown

in figure 4.13 . The experiments with ensemble size less than 40 suffered, as ex-

pected, from filter divergence, since no localization was applied. Surprisingly, PQC
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Figure 4.12: PQC H (top), PQC K (middle), and PQC AmO (bottom) performance

in terms of (left) analysis RMSE and (right) 30-step forecast RMSE when only the

mean is updated.
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can reduce the analysis error significantly even though the filter still diverges. With

around 40 ensemble members, ETKF works well, and PQC improves the quality of

analysis as expected, whereas the analysis error shows a slight increase as the en-

semble size doubles monotonically beyond 40, which is a characteristic unique to the

family of ensemble square root type of filter and has been documented in literature

(e.g. Lawson and Hansen, 2005; Ng et al., 2011). The prevailing explanation is the

high probability of having ensemble outliers leading to ensemble clustering, which

can be ameliorated by applying additional random rotation to the transform matrix,

but this is not of our interest in this study. The PQC analysis error also increases

with ensemble size, but still smaller than the control error except for PQC H with

a size larger than 320.
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Figure 4.13: PQC performance in terms of analysis RMSE as a function of ensemble

size.

In a “realistic” application, the state is only partially observed, and hence it

is important to show whether PQC also benefits the system even when the size of
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the observing network does not match the size of the model. For the extreme case

where only 5 observations are available (12.5% observed), PQC H seems to degrade

both the analyses and the forecasts while PQC K and PQC AmO still improve the

forecasts. This result again shows that PQC operates on the AIs rather than the

observation itself since PQC H degrades the system by changing the gain matrix KKK

significantly. For the observing network with a size larger than 5, the improvements

with PQC K and PQC AmO are somewhat similar, showing that PQC performs well

with a wide range of observing network size. In Figure 4.14 (c) and (d), we show

the PQC performance sensitivity to the length of the DA window, which determines

the nonlinearity of the model increments. Both the analysis and the 30-step forecast

RMSE are reduced by PQC although showing the same increase as the control with

increasing DA window.

So far, we have been using observations with errors consistent withRRR, meaning

the observing system is flawless. However, in the real world, the observational error

covariances are never truly known but are just estimations which deviate from the

truth, no matter how sophisticated the techniques applied. It is worth noting here

that an ensemble forecast sensitivity method was proposed recently that provides a

way for fine-tuning of RRR (EFSR; Hotta et al., 2017b). In addition to the inaccuracy

in error covariances, observational bias may pose an even greater danger of degrading

the filter performance. To examine PQC under the influences of flawed observing

systems, random errors are added to every observation of the 10th grid observation

and biases to observation of 30th grid separately in two sets of experiments similar to

those in Liu and Kalnay (2008). The average EFSO impact for each grid is shown in
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(a) Analysis RMSE (b) 30-step Forecast RMSE

(c) Analysis RMSE (d) 30-step Forecast RMSE

FIG. 9: Performance of PQC H, PQC K, and PQC AmO in terms of (left) analysis RMSE and
(right) 30-step forecast RMSE as a function of: (top) size of observing network and (bottom) DA
window.

39

Figure 4.14: Performance of PQC H, PQC K, and PQC AmO in terms of (left)

analysis RMSE and (right) 30-step forecast RMSE as a function of: (top) size of

observing network and (bottom) DA window.
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(a) Random Observation Error (b) Biased Observation

FIG. 10: Mean EFSO impact for each observation through out 5000 cycles of experiment that
assimilates flawed observations: (a) observation at 10th grid point with various random error larger
than specified in observational error covariance matrix RRR and (b) observation at 30th grid point with
various systematic bias

40

Figure 4.15: Mean EFSO impact for each observation through out 5000 cycles of

experiment that assimilates flawed observations: (a) observation at 10th grid point

with various random error larger than specified in observational error covariance

matrix RRR and (b) observation at 30th grid point with various systematic bias.

Fig 4.15 for a range of the flaw magnitudes. The flawed observations are successfully

identified, indicating that EFSO can also be used as data selection or QC method

as described in Lien et al. (2017). Both the detrimental impact of the flawed grid

and the beneficial impact of the neighboring grids increase with the magnitude of

the flaw. Fig 4.16 (a)-(d) summarizes the responses of PQC to both types of the

observational deficiency, and it is clear that analysis and forecast error reduction by

PQC increases with the magnitude of the flaws. For biases more significant than

0.5 the filter suffer from divergence, but PQC becomes stable for this bias, which is

similar to what we observe in some other border cases (not shown).

Besides flawed observations, model error is another source of error that de-

serves particular attention. We examine the response of the control and PQC by

setting the forcing term F to be slightly different from the nature run, which is both
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the verifying truth and where the observations were drawn from. Fig 4.16 (e) and

(f) visualize both the control and PQC error in analysis and forecast increases with

the model error that will eventually lead to filter divergence. It is shown that PQC

improvements are almost invariant with the model error.

In this section, we have shown that PQC improves the quality of analysis

and the forecast even in suboptimal DA system. The improvement is even more

significant when the imperfections are originated from flawed observations. In the

biased observation case, it is shown that PQC provides the extra stability that avoids

filter divergence. Additionally, we found that PQC is not sensitive to the quality

of verifying analysis for EFSO computation since the forecast error is much larger

than the analysis error due to the sub-optimalities in the system.

4.5 Summary and Discussion

In this study, we explore the characteristics of EFSO and PQC with different

update methods and the sensitivities to the configuration using the simple Lorenz

(1996) model with ETKF as the data assimilation system.

For the characteristics of EFSO, we explored the sensitivity of EFSO impact on

the length of verifying lead-time and the choice of verifying truth. More importantly,

we found an alternative explanation for the low beneficial percentage of FSO impact

that is determined by the relative accuracy between the forecast and the observation.

We examine the performance of PQC H, PQC R, PQC K, PQC BmO, and

PQC AmO using various configurations of the EFSO lead-time and rejecting per-
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(a) Analysis RMSE (b) 30-step Forecast RMSE

(c) Analysis RMSE (d) 30-step Forecast RMSE

(e) Analysis RMSE (f) 30-step Forecast RMSE

FIG. 11: PQC H, PQC K, and PQC AmO performance in terms of (left) analysis RMSE and
(right) 30-step forecast RMSE in suboptimal DA system as a function of: (top) random error larger
than specified in observational error covariance matrix RRR at 10th grid point, (middle) systematic
observational bias at 30th grid point, and (bottom) model forcing F error.
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Figure 4.16: PQC H, PQC K, and PQC AmO performance in terms of (left) analysis

RMSE and (right) 30-step forecast RMSE in suboptimal DA system as a function

of: (top) random error larger than specified in observational error covariance matrix

RRR at 10th grid point, (middle) systematic observational bias at 30th grid point, and

(bottom) model forcing F error.
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centile. We show that PQC H and PQC R are suboptimal and computationally

more expensive than other methods for repeating the analysis process. While

the PQC AmO and PQC BmO can easily lead to filter divergence due to over-

confidence, we found that PQC K has the best performance because it rejects the

analysis increments (AIs) contributed by detrimental observations without changing

the gain matrix, hence it is consistent with EFSO. We find that in the Lorenz (1996)

system, even in the absence of flawed observations, the PQC rejection of the 10%

most detrimental observations significantly improves the forecasts. Between 10 %

and 50 %, however, the denial of more observations have little effect, and beyond

50 % rejection, the forecasts deteriorate significantly. The improvement of PQC

increases with the forecast length, but it saturates around 16-20 time steps.

We also examine PQC performance for suboptimal DA setup with varying

ensemble and observing network size, DA window, biased observation, random error

inconsistent with RRR, and model error. The results show that all the sub-optimality

leads to degradation of the control analysis and forecast quality, but PQC still

improves the quality even in the extreme cases of filter divergence. The improvement

grows with the magnitude of the flaw in the observations.

We would like to point out that we deliberately avoided the issues associated

with localization accounting for insufficient ensemble sizes, and dynamical systems

with multiple timescales (all of which will be encountered in the GFS model used in

Chapter 6.). For multiple time scale systems, it is clear that the optimal lead-time

should be long enough to capture the error growth in the timescale we are interested

in, but a shorter-than-optimal EFSO lead-time could still improve the system.
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Also, to implement PQC with a serial type ensemble filter, the PQC K method

may not be optimal since the real contribution of each observation to the AI is

determined by the intermediate gain matrix KKK and cannot be well represented by

just the final KKK. On the other hand, in a variational DA system where the gain

matrix is not available, the PQC AmO or its variant may be more appealing than

in ensemble system due to its simplicity and lower computational cost.

In summary, we have demonstrated the beneficial impact of applying PQC in

Lorenz (1996) system. PQC improves the system in the presence of flawed obser-

vations, showing its potential of being a care-free and automated QC scheme on

the fly with the DA system. More importantly, even in a flawless system, PQC

still improves the quality of analysis and forecast by eliminating “harmful” growing

components of analysis increment. We will continue to explore PQC in Chapter 6.

In the next chapter, we will examine and demonstrate the usefulness of FSO

applications in data monitoring and selection.

95



Chapter 5

Realistic-model Experiments with NCEP GFS Model I: Online

Monitoring Tool and Data Selection

5.1 Introduction

In Chapter 4, we demonstrate using the Lorenz (1996) system that EFSO is

capable of identifying the artificial errors added to the observations. There are more

complexities in realistic DA systems, including the spatiotemporal inhomogeneity

of the observation distribution and various types of observations using different

measuring techniques. Going from the simple system to quasi-operational system

in this application is a major step forward.

On the average, there are about 50% detrimental observations, which is also

true even for a very beneficial subset of observations. It is almost impossible to find

a subset of meaningful size containing pure beneficial or detrimental observations.

By aggregating data into subsets, we are mostly looking at the statistical properties

of the subsets and their expected contribution to the forecast, where a net beneficial

subset still contains observations that tend to reduce more than increase the forecast

error. The generic FSO technique provides an efficient way to identify the beneficial

as well as the detrimental subset of observations. As explained in Chapter 3, we

proposed to include the aggregation of EFSO into data selection process. However,
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we will demonstrate only the subtraction of identified detrimental subset from the

assimilated observations due to the limited computational resource.

5.2 Experimental setup

A brief description of the experimental setup in this chapter is provided below,

including the two DA systems used to generate EFSO datasets for the two periods

of study and the EFSO setup.

Two sets of the DA system were adopted in this chapter for EFSO impact

evaluation for the two experimental periods, 00Z Jan 01, 2012 - 18Z Feb 09, 2012

and 00Z Jun 1, 2017 - 00Z Jun 27, 2017, respectively. We deliberately selected

winter season and summer season for the two periods. To stay as close as possible

to the configuration in NCEP operation, the Gridpoint Statistical Interpolation

(GSI) 3D-Var based ensemble-variational (En-Var) hybrid DA system (Wang et al.,

2013; Kleist, 2012; Kleist and Ide, 2015a,b) is used with 80 ensemble members. The

En-Var system linearly combines the static and the ensemble background covariance

in the cost function with a prescribed weight. In this study, the static part is set to

contribute only 0.25 and 0.125 (beta1 inv) to the hybrid background covariance for

the 2012 and 2017 dataset respectively. Usually, the variational component is in a

higher horizontal resolution while the resolution is only half of that in the ensemble

component to lower the computational cost. The main difference between the two

experiments is the update of the GSI (from v2012 to v2016) so that data from the

more recent observing systems can be assimilated, and the data selection, as well as
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routine QC, are also updated. Another major difference is the ensemble component

of the hybrid system. For the 2012 period, we adopted Local Ensemble Transform

Kalman Filter (LETKF; Hunt et al., 2007) as in the system used in Hotta et al.

(2017a). It is the same as the ETKF used in Chapter 4, but with localization to

suppress sampling noise due to the rank deficiency in background error covariances.

The operational serial ensemble square root filter (EnSRF Whitaker et al., 2008)

is used in the 2017 period to compare the difference. The covariance localization

was based on the fifth-order polynomial localization function (Gaspari and Cohn,

1999) with 2,000 km of horizontal cutoff length and two scale height in the vertical.

The inflation was the same as in Wang et al. (2013) applying both relaxation-to-

prior-spread (RTPS; Whitaker and Hamill (2012)) multiplicative inflation with a

relaxation parameter of 0.85 and an NMC-type, additive inflation with a scaling

parameter of 0.32. For bias correction, the corrections for mass, scan angle, and

emissivity are turned on for the 2017 dataset, but correction of emissivity was not

available for the v2012 system. Also, following the configuration of Hotta (2014),

the scan angle correction is also turned off in generating the 2012 dataset. Despite

all the differences, the identified detrimental channels for the two datasets turn out

to be quite similar as we will see in the result section.

For the forecast model component, we used the GFS from NCEP with hori-

zontal resolutions of T254 for deterministic and T126 for ensemble forecasts for the

2012 period. In the 2017 period, a higher horizontal resolution of T670 and T254

is used for deterministic and ensemble forecasts. The GFS model has 64 vertical

levels. The observations assimilated in this study is the same as those assimilated
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Table 5.1: Experimental setup for the two datasets

EXP. 2012 EXP. 2017

Period

00Z Jan 10, 2012 -

18Z Feb 09, 2012

(Winter)

00Z Jun 1, 2017 -

00Z Jun 27, 2017

(Summer)

Model GFS T254/T126 L64 GFS T670/T254 L64

DA
LETKF/3D-Var

Hybrid GSI v2012

EnSRF/3D-Var

Hybrid GSI v2016

into the operating system at that time. The differences between the two datasets

are summarized in Table 5.1.

For the EFSO computation, the Moist Total Energy error norm (MTE; Ehren-

dorfer et al., 1999) was chosen to measure the observational impact. A simple scheme

for advection of localization function with the horizontal wind vector is used (Ota

et al., 2013). The forecasts were verified with the high-resolution final GDAS anal-

ysis.

5.3 Results: Online Monitoring Tool

It is very common in the literature to aggregate the (E)FSO impacts over a

long period with respect to observing systems (e.g., Lorenc and Marriott, 2014;

Ota et al., 2013; Hotta et al., 2017a). This is owing to the desire in comparisons of
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the average forecast impact between observing systems and it also reflects the cus-

tomary way of viewing the observational impact on forecast improvement in OSEs.

We are used to the aspect that each observing instruments have a constant impact

evaluation over time unless there are changes in the instrument or algorithm level.

We found that simple aggregation of 6-hour EFSO impact for each observing system

as a function of time as shown in Figure 5.1 is very informative and serves as a first

order online monitoring tool on the quality of assimilating the observations in com-

plement to current QC monitoring tool. Several operational centers reported that

most of the routinely ingested observing systems are beneficial for short-term fore-

casts (24 hours) by aggregating (E)FSO impact over a long period of time (Lorenc

and Marriott, 2014; Ota et al., 2013; Cardinali, 2009). We also concluded the same

in this study that most routinely ingested observing systems are overall beneficial

(figure 5.1). It is clear that the top-3 beneficial non-radiance systems are commer-

cial aircraft reports, GPS radio occultation (GPSRO) data, and radiosondes. With

EFSO, the fluctuation of the impact of radiosondes is due to the fact that there are

much fewer launches at 06Z and 18Z than at 00Z and 12 Z UTC. In addition, we

found that EFSO without aggregation in time identified several observing systems

became detrimental at different occasions, in what we called detrimental episodes.

These systems include Atlas buoys, dropsondes, MODIS polar winds, NEXRAD

radar winds, pilot balloons, and profiler winds in alphabetical order. For the satel-

lite radiance instruments, it does not show as many detrimental episodes as the

non-radiance systems. However, if we display the same monitoring for the individ-

ual channels, it does reveal even more detrimental episodes in specific channels (not
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shown). With this figure, we show that EFSO can reveal such detrimental episodes

from observing systems that are beneficial in general. We argue that these detrimen-

tal episodes are highly flow-dependent (supported later in this section) and difficult

to identify without EFSO. This is an example of how (E)FSO could be used as an

online monitoring tool for tracking the quality of assimilating each observation. And

EFSO provides innovative aspects in evaluating the impact of an instrument that

is not constant over time but depends on the flow condition and background qual-

ity. This monitoring also provides alarms for the forecasters about the upcoming

degraded model forecast due to the detrimental observations. Besides, long-period

accumulations the EFSO data can assist the model and observation developers to

improve their products.

Among those observing systems associated with detrimental episodes, MODIS

polar winds contributed not only a considerable number of the events but also the

largest ones. In figure 5.2, the geographic distribution of the 6-hour impact of

non-radiance observations is shown for 18Z Feb 6, 2012, one of the more massive

detrimental episodes. It can be quickly noticed that there is a considerable portion

of detrimental observations, which is consistent with other studies that the average

detrimental percentage of observations is nearly 50%, though the exact percentage

may vary from cycle to cycle. Although given the fact that close to 50% of the

observations were identified to have a detrimental impact, most of the regional

net impacts of all the nearby observations have a beneficial effect, especially for

those regions that are densely observed such as North America and Europe (Figure

5.3). The discussion on the reason why so few of the observations are beneficial

101



(a) Non-Radiance observing systems

(b) Satellite Radiance instruments

Figure 5.1: The time evolution of 06-hr total impact of each non-radiance observing

system (top) and Satellite Radiance instrument (bottom) for 1-month period. Posi-

tive (negative) values represents the detrimental (beneficial) impact. The annotation

with arrow indicates the systems associated with detrimental episodes.
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Figure 5.2: Geographic distribution of the EFSO impact of each non-radiance obser-

vation on the 6h forecast at 18Z Feb/06/2012. Each dot represents one observation.

Blue indicates a beneficial and red a Detrimental observation. The size is logarith-

mically proportional to the magnitude of the impact. Black boxes in the South

Atlantic and Eurasia enclosed the clustered detrimental MODIS polar winds.

is offered in Chapter 4. In this particular case shown in figure 5.2, there are two

major regions, located north of Eurasia continent and the southern Atlantic Ocean

that are clustered with detrimental observations. These observations are mostly

from MODIS winds, which contributed to the detrimental episodes. We emphasize

again here that the MODIS winds are beneficial on average and these transient flow

dependent detrimental observations are difficult to identify without (E)FSO.

Finding that the MODIS winds are one of the significant contributors of detri-
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Figure 5.3: Geographic distribution of total 6-hour EFSO impact [Jkg−1] of all

observations within 1o × 1o grid box at 18Z Feb/06/2012. Blue (red) represent

beneficial (detrimental) impact.

mental observations was quite surprising, given the fact that they are highly valu-

able in providing critical wind profiles over near-polar regions, where other non-

radiance observations are rare. Most major NWP operational centers, including

NCEP, NASA, ECMWF, JMA, and UK Met Office, have reported an increase in

average forecast skill scores after assimilation of MODIS winds (Sarrazin and Zait-

seva, 2004; Le Marshall et al., 2008; Bormann and Thépaut, 2004; Kazumori and

Nakamura, 2004; Riishojgaard and Zhu, 2004). The usual approach in measuring

forecast impact from assimilating specific observation subset is through OSEs as

mentioned earlier. The reports of the beneficial impact of MODIS winds estimated
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in OSEs are consistent with aggregating EFSO impact in time. However, we have

shown that there is a subset of MODIS winds with detrimental impact hidden among

the beneficial ones, demonstrating the usefulness of EFSO in monitoring the quality

of assimilation of observations, and the same goal would be practically impossible

to achieve with OSEs.

5.4 Results: Data Selection

Here we demonstrate how a generic FSO can identify a detrimental subset of

the observations.

5.4.1 Detrimental subset of MODIS winds

Here we demonstrate how long-period EFSO statistics can be used to assist

data selection. We begin with the MODIS winds by aggregating EFSO impact with

multiple variables. It is possible to obtain the flow-dependent conditions for those

detrimental observations appeared in figure 5.1 and 5.2. We show in figure 5.4 that

this can be done by aggregating EFSO impacts against desired variables, namely

innovation and the observed wind direction in this case. The observations are sepa-

rated into subgroups according to the type and the hemisphere it was located. The

wind components (U and V) were also separated, and a huge difference between

the two was found. The dominant pattern is what we called innovation bias, which

means that the sign of impacts (either beneficial or detrimental) depends strongly

on the signs of innovation. Also, the innovation bias also depends on the observed
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wind directions. One interesting feature is that the pattern of cloud tracking winds

was very similar to that of water vapor tracking winds in clear sky, while the wa-

ter vapor tracking winds in the cloudy sky do not share the similarity. It is worth

noting that the same analysis was applied to geostationary satellite winds including

GOES, JMA, and European satellites, which all shared the same feature tracking

algorithm, but none of these biases appeared (Figure 5.5). MODIS winds are one of

the examples of this innovation bias. There are other observing systems including

some satellite radiance observations that demonstrated similar kind of innovation

bias (e.g. Groff et al., 2017). While the cause of these biases needs further investi-

gation and beyond the scope of this paper, we demonstrated that EFSO can find

the flow-dependent conditions for detrimental observations.

5.4.2 Evaluation of the contribution of the radiance channels

The EFSO statistics also provide efficient guidance on radiance channel selec-

tion, which is especially true and useful for the advanced instruments that provide

high spectral resolution, where channel-wise OSEs are practically impossible.

5.4.2.1 Channel evaluation for 2012 dataset

We first show the channel evaluation for several instruments of interest assimi-

lated in the 2012 dataset. To demonstrate the usefulness of the generic FSO impact

in data selection process, we are interested in the hyperspectral instruments as well

as other multi-channel instruments that cover roughly the same spectrum such as
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AIRS, IASI, HIRS, and GOES sounders.

In Figure 5.6a and 5.6b, the EFSO impact evaluation for each assimilated chan-

nel of the hyperspectral AIRS and IASI is shown together with its peak pressure

level of the weighting function. As expected, most of the assimilated channels are

primarily beneficial. However, there are plenty of channels that contribute a detri-

mental impact to the forecast. For IASI, those detrimental channels distributed

within the wavelength range of 8 − 11µm. Most AIRS channels in the same wave-

length range are not assimilated, but many of the AIRS channels shorter than 8µm

are (Not for IASI). Only two channels around 4.58µm show detrimental impact for

AIRS. All these detrimental channels have strong weightings on the conditions at

the low-level or surface, where the brightness temperature of clouds is very close to

that of the surface, which indicates that low clouds may contaminate these channels.

We then show the geographical source of these detrimental channel observa-

tions in Figure 5.6c and 5.6d. Interestingly, it reveals specific regions where these

detrimental measurements were taken. For AIRS, it is clear that the detrimen-

tal impact mainly comes from the northern tropical Pacific and Atlantic. Besides,

these ”detrimental” channels provide neutral to positive impact at higher latitudes,

demonstrating again the detailed evaluation FSO provides. For IASI, the Australia

continent and the oceans at low latitudes constitutes the source of detrimental chan-

nels. The surface radiation representation of the Australia continent is notoriously

difficult due to its special silica surface condition.

We moved on to the multi-channel instruments covering the similar range in

spectral space. Figure 5.7 is the same as 5.6, but for GOES sounders and HIRS.
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Although the number of channels provided by these instruments is far less than

that by AIRS or IASI, FSO impact can still provide useful information for data

selection process. It shows there is a common detrimental channel #13 (4.57µm)

across all three of the instruments. Channel #8 (11.03µm) for GOES13 sounder is

also detrimental. We noticed that the wavelength of the detrimental channel #13

is very close to the one shown up in AIRS. Also, it is clear that the source is also

from the northern tropical oceans, offering the opportunity to cross-validate the

detrimental impact of the similar waveband from multiple instruments.

The coherent spatial structure of the source of detrimental channels and the

cross-validation between instruments indicate that there is a common problem con-

tributing detrimental impacts. This cause of the detrimental impact is unlikely to

be instrument dependent but may be related to the model representation or the

data processing procedure that is improper for the waveband.
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Figure 5.4: EFSO impact of MODIS polar wind against innovation and observed

wind direction. Blue (red) represents beneficial (detrimental) impact. The left and

right column display the impact of the zonal and meridional component of the wind

respectively. The top, middle, and bottom groups of two rows are for the three types

of MODIS wind observations: cloud tracking, cloudy water vapor tracking and clear

water vapor tracking winds. The winds are also separated into two hemispheres

where the Northern (Southern) Hemisphere displays in the top (bottom) row in

each group.
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Figure 5.5: Same as figure 5.4, but for geostationary satellite winds. The top,

middle, and bottom group represents data from EUMETSAT, GOES, and JMA.
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Figure 5.6: (Top) Channel wise 6hr-EFSO impact evaluation of 2012 dataset for

hyperspectral instruments: AIRS and IASI. Each black line represents an assimilated

channel and shows the EFSO impact [Jkg−1]. The blue dots indicate the weighting

function peak pressure level [hPa] of the channels. Net detrimental channels are

listed on the upper-right corner. (Bottom) Geographic distribution of the impact

[Jkg−1] of the net detrimental channels.
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5.4.2.2 Sensitivity to EFSO verifying lead-time

It has become customary to compute the impacts with 24-hr lead-time to avoid

the influence of diurnal cycle. However, there are several drawbacks to compute FSO

with longer lead-time owing to the validity of linear approximations made in both

the ensemble and variational approach and the additional computational costs.

We now show the same aggregation in spectral space but with 24-hr lead-

time in Figure 5.8 and compare the differences between the aggregation results

from the 6-hr (Fig. 5.6 and 5.7) and that from the 24-hr lead-time. Almost every

detrimental channels identified with 6-hr EFSO shows up in 24-hr EFSO except for

channel #81 from IASI (The detrimental impact of that channel is minimal). Hence,

the detrimental channels with 6-hr EFSO are quite robust. There are additional

detrimental channels identified in IASI and the GOES sounders. They are channel

# 1027 for IASI and channel #1, #2, #9, and #15 for the GOES sounders. Most of

them are also surface sensitive channels except for #1 and #2 for GOES sounders,

which surprisingly are high-level channels.

This exercise shows that 6-hr EFSO provides robust identification of the detri-

mental channels that are not dependent on the verifying lead-time. Also, the 24-hour

EFSO reveals a few more detrimental channels.
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5.4.2.3 Channel evaluation for 2017 dataset

The channel evaluation for similar instruments in 2017 is presented here in

Figure 5.9. CrIS, a counterpart of IASI, is a new instrument of particular inter-

ests in addition to the ones already assimilated in 2012. For AIRS, GOES sounder

(not shown), HIRS, and IASI, the detrimental channels from the dataset of 2017

are almost the same as from that of 2012. This similarity shows again how EFSO

statistics can provide occurring conditions for detrimental observations, which is

unavailable otherwise, and minimize the number of OSEs required in the determi-

nation of assimilating observation set. A major noticeable difference is that there

are few tens of the channels added to the assimilation list between 9 − 10µm and

the majority of them are beneficial except for channel # 1579 and # 1671. There

is one additional detrimental channel (# 1865) from AIRS whose wavelength is also

around 4.58µm, confirming again the existence of a common issue that affects all

instruments. For CrIS measurements, we observe that all channels with wavelength

longer than 12.5µm show strong beneficial impact as in IASI and AIRS. However,

it is quite surprising to see channels with a wavelength shorter than 12.5µm are all

detrimental.

It is clear that the EFSO identified detrimental channels are robust and con-

sistent across different years with all the changes in the DA and QC system.
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Figure 5.9: Same as 5.8, but for 6hr-EFSO impact of AIRS, CrIS, IASI, and HIRS

in the 2017 dataset
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5.4.3 Forecast verification

To verify the EFSO-identified detrimental channels, we perform a data-denial

experiment that rejects the identified channels to see if the forecast is improved.

The rejected channels and the corresponding wavelength of each instrument are

listed in Table 5.2. Recall the main detrimental impact is mostly from the Tropics,

the relative forecast error reduction is visualized in Figure 5.10. The forecasts for

winds are generally improved throughout 6-7 day forecasts at different levels with

maximum improvement centering around 700 hPa on day-2. The relative humidity

shows similar improvements as the winds. The temperature improvement lasts for

3 days, shorter compared to other variables. Overall, the forecasts improve on the

order of 1% for each variable.

We show that the forecasts can be improved as much as 1% by merely rejecting

16 EFSO-identified detrimental channels out of hundreds. The significance of these

denial experiments is a simple demonstration of the usefulness and accuracy of the

EFSO impact evaluation. For data selection process, EFSO can be of greater use

not by rejecting channels, but by adding channels back. Since EFSO depends on the

quality of the analysis, we should not dump all the channels back into the system at

once. Instead, the channels can be assimilated and evaluated with EFSO one small

group at a time, and, in each iteration, we keep the channels with most substantial

beneficial impact and compile a list of detrimental channels as in Rodgers (1996)

but using FSO instead of DFS. This way, we might be able to come up with a better

channel selection than just using the DFS introduced in Chapter 2. Limited by the
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Table 5.2: A list of rejected channels in the forecast verification experiment

Instrument Rejected Channels Wavelength [µm]

AIRS 1866, 1868 4.58, 4.58

GOES15 SNDR 13 4.57

GOES13 SNDR 8, 13 11.03, 4.57

HIRS 13 4.57

IASI
81, 1133, 1191, 1194, 1271,

1805, 1884, 1991, 2094, 2239

15.04, 10.78, 10.61, 10.60, 10.39,

9.12, 8.96, 8.75, 8.56, 8.30

resource required to include the task in this study, we demonstrate in Figure 5.10

the subtraction of data can already provide a considerable amount of improvement.

5.4.4 Efficient EFSO Browsing Tool

By now, we have shown that FSO impact offers great flexibility to identify po-

tential detrimental subset from the entire dataset by aggregating the impacts from

any perspectives. It is, however, quite troublesome having to code-up every visual-

ization scripts when needed or to output tens of thousands of figures for thorough

analysis. To expedite the process of analyzing our EFSO dataset, we developed (and

continue to improve) an efficient browsing tool built with Python and its free and

open source libraries. The tool is designed with the following principles:

• Free of any dependencies on commercial software.
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Figure 5.10: Relative 7-day forecast error reduction in the tropics by rejecting detri-

mental channels identified by EFSO. Variables including u- and v-component wind,

relative humidity, vector wind, temperature, and geopotential height for various

pressure levels.

• It should be easy to port to any machine that has access to Python and the

open source libraries.

• The input format should be flexible to switch from one to another.

• The visualization should be done fast enough to allow exploring EFSO inter-

actively.

It should be noted that the raw EFSO dataset for a month is about 75 Giga-
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bytes, which does not fit into the memory. After some processing, we can shrink the

size down to 9 Gigabytes by trimming off redundant information. The data of this

size may be more feasible to read into the memory, but it can still take considerable

time to load. Besides, it requires searching through the entire dataset to complete

the aggregation process. There are two options:

1. Uncompressed data with Dask, a scalable parallel analytic library, to perform

all data aggregation in real-time.

2. Pre-aggregate data into a limited choice of dimensions to avoid I/O overhead.

The two options are in fact choosing between the aggregation efficiency and the

granularity of the data. In this implementation, we prefer the second option since

the response time should be as short as possible in interactive mode and not all

the subtle features are worth preserving. Now that the compressed data fits into

machine memory, we utilized the data frame feature in Pandas, an open-source data

analytics library in Python, for its advanced and simple-to-use data slicing and

grouping functionality.

The interactive control panel makes use of the Jupyter interactive computing

framework to query, aggregate, and visualize the EFSO data. We demonstrate a

snapshot of the interface and visualization area of the tool in Figure 5.11.

5.5 Summary

In this chapter, we explored the data monitoring and selection applications.

EFSO has shown to be a valuable online observation monitoring tool that provides
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Figure 5.11: Screen shot of the python-based EFSO browsing tool. The control panel

includes drop-down menus to select x and y axis of the plot, observing system, EFSO

verifying lead-time, time of the day, channel numbers for EFSO impact aggregation.

The sliders control the spatial region for display.

real-time or near real-time information of the impact of observations on forecasts

and identify detrimental episodes potentially degrading future forecasts. Using the

satellite winds and the radiance channels as examples, we demonstrate the data

selection based on EFSO efficiently identifies detrimental subsets and the forecasts

quality can be improved just merely by rejecting a tiny fraction of the assimilated

channels identified by the aggregation of EFSO data. However, It is noteworthy that

the full potential of the generic FSO data selection is not yet revealed by iteratively

adding beneficial but rejected channels back. Also, to expedite the exploration of

EFSO data, we developed a Python-based prototype of the efficient EFSO browsing

tool.

In the next chapter, we will continue the study of PQC from Chapter 4, but
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using the realistic GFS model.
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Chapter 6

Realistic-model Experiments with NCEP GFS Model II: Proactive

Quality Control

6.1 Introduction

The idea of PQC based on immediate EFSO impact was pioneered by Ota

et al. (2013); Hotta et al. (2017a) using the same NCEP GFS-GSI 3D-Var based

En-Var hybrid DA system introduced in Chapter 5, but both studies focused only

on many selected cases of non-cycling PQC, meaning that the improved analyses

were not utilized in the following DA system. In Chapter 4, we have explored

cycling PQC using Lorenz (1996) system, and we use a close-to-operation system

for demonstrating the usefulness of EFSO in data monitoring and selection. In this

chapter, we will explore cycling PQC using realistic high-dimensional GFS model to

see if we can obtain similar results as in Chapter 4. To reduce the complexity of the

DA system and speed up the experiment, we switch to a system of low-resolution

GFS model coupling with a pure (not hybrid) LETKF scheme. Also, in preparation

for the implementation of PQC into operations, the shortcuts proposed in Chapter

3 for lowering the resource requirements of PQC in NCEP operation will also be

tested.

The chapter is structured as follows: We first introduce the GFS-LETKF sys-
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tem and the experimental setup in Section 6.2, followed by a description of results

in Section 6.3 and the justification of PQC shortcuts for operational implementa-

tion under NCEP framework in Section 6.4. Lastly, a summary and discussion are

provided.

6.2 Experimental setup

In this chapter, we utilize the GFS-LETKF system developed by Lien (2014)

rather than the NCEP operational hybrid system to reduce the complexity and

expedite the experiments. A brief review of the GFS-LETKF system is provided in

this section.

The underlying philosophy behind the design of the system is to have a sim-

ple configuration of DA system coupled with the realistic GFS model to allow fast

experiments to explore innovative data assimilation techniques. The DA system

is the generic and simple LETKF core code developed and maintained by Take-

masa Miyoshi (public Google Code platform: http://code.google.com/p/miyoshi/).

It preserves the flexibility of switching GFS resolutions from T62 to T1534 (cur-

rent resolution in operation) and the choice of observation operators using built-in

conventional data operator (simple spatial interpolation) or the GSI from NCEP to

ingest sophisticated data such as satellite radiances. For computational efficiency, we

choose to perform the experiment with T62 resolution and use the built-in simple ob-

servation operator. Only 32 ensemble members are required with this low-resolution

configuration.
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The flow chart of the GFS-LETKF system is shown in Figure 6.1 (from Lien,

2014). The GFS forecast integration is carried using the native sigma/surface file

formats. The 4D-LETKF analysis is performed in gridded file format. We only

assimilate the conventional observations from the PREPBUFR dataset provided by

NCEP. The error statistics used in the LETKF analysis is extracted directly from the

PREPBUFR data. Adjusting to the low-resolution of our system, the observations

are superobed/thinned to at most only one observation per model grid point for each

data type and variable in one assimilation window which reduces the data density

to one-third of the original. Some prognostic variables not available from the DA

system, such as ozone concentration and surface temperature are obtained from

the NCEP Climate Forecast System Reanalysis (CFSR; Saha et al., 2010). The

CFSR dataset, which has a much higher resolution (T382) and assimilates many

more observations (including satellite radiances) also serves as the verification truth

for measuring the improvement obtained from PQC correction. The ensemble is

initialized with the operational GDAS analysis ensemble of the same date from a

different year. A mixture of adaptive multiplicative inflation (Miyoshi, 2011) and

the relaxation to prior perturbation (RTPP; Zhang et al., 2004) is added to account

for model error. A fixed horizontal length scale of 500km and vertical length scale

of 0.4 scale height is chosen for the localization (R localization in Greybush et al.,

2011) accounting for insufficient ensemble size. The experimental period spans the

period 00Z Jan 01, 2008 to 00Z Feb 06, 2008 with the first five days used as DA

spin-up period. This period is chosen simply based on the availability of an existing

database from our group on the cluster.
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EFSO computation is also implemented in the GFS-LETKF system. The same

simple localization advection method and the moist total energy norm in Ota et al.

(2013); Hotta et al. (2017a) is used. The PQC algorithm is the same as described

in Chapter 3. With PQC using 6 hours as verifying lead-time (or 6-hr PQC) as

an example, we first conduct standard DA cycles to obtain the verifying analysis 6

hours after the desired (current) PQC cycle. The EFSO impact of observations at

the current cycle is evaluated using the verifying analysis valid 6 hours later. We

then obtain the PQC correction by rejecting the observations based on the EFSO

impact. Here in this chapter, we show only the results from cycling PQC-H analysis

update method and the non-cycling case results of PQC-K update method. For the

data-denial strategy, we follow the same threshold method used in Chapter 4 for

the Lorenz (1996) system where a month of EFSO impact data is obtained from a

control experiment, and a range of thresholds are determined by the top 10%-40%

detrimental percentile of EFSO impact. A list of all the experiments performed and

their rejecting threshold and other configurations are provided in Table 6.1.
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Figure 6.1: The flow chart of GFS-LETKF system (Lien, 2014).
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6.3 Results

6.3.1 PQC improvement in the analysis

We first examine the monthly-averaged cycling PQC corrections on the anal-

ysis from exp05 as an example with a map view. In Figure 6.2, we show the u-

component wind, temperature, and humidity analysis corrections at 500 and 850

hPa. It is clear that the analysis error for u-component wind and temperature are

reduced all over the globe for the two pressure level while the error reduction for

specific humidity mainly distributed in lower latitudes over the ocean. A noticeable

feature is that the u-component wind and temperature corrections are largest over

the Southern Ocean.

6.3.2 PQC improvement in the forecast

We continue to examine the PQC corrections on the forecasts. Figure 6.3

shows the same as in Figure 6.2, but for improvement in forecast valid at 24-hour

lead-time. We can see that the general distribution in the forecast corrections is

the same as in the analysis corrections with a slight decrease in magnitude, which

indicates the improvement starts decaying gradually after 24 hours, but as we will

show later, the improvement persists even after 5 days.
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Figure 6.2: Monthly mean analysis error (RMSE) reduction for u-component wind

[u; ms−1], temperature [t; K], and specific humidity [q; kgkg−1] at 500 and 850 hPa

from exp05 in Table 6.1.
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Figure 6.3: Same as 6.2, but for 24-hr forecast error reduction.

6.3.2.1 Sensitivity to the number of rejecting observations

In Hotta et al. (2017a), a significant focus was on designing the data-denial

strategy, due to the speculation that rejecting all detrimental observations could

lead to forecast degradation. However, as shown in Chapter 4 with Lorenz (1996)

system, rejecting 10% of the most detrimental observations contributes to the major-

ity of the improvement and the forecast even improves further when rejecting more

observations with smaller detrimental impact, but the additional improvement be-

comes smaller as we reject more observations up to around 50% of the total number

of the observations. Here we like to check if this observation is still valid for the

high-dimensional and realistic GFS model.

In Figure 6.4, we show the relative forecast error reduction valid from 0 −
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120 hours and compare the improvements from rejecting 10% to 40% of the most

detrimental observations. It shows consistent results with Figure 6.2 and 6.3 that

the relative improvement is the largest within 24 hours ranging from 10% to 20%

(for all regions and all listed variables) and decays afterwards, but even after 5 days

the improvement tends to saturate at about 5 − 10% (not 0%!). In addition, we

can observe that the majority of improvement comes from rejecting the top 10%

most detrimental observations, and the improvement saturates around rejecting 40

% of the most detrimental observations which is consistent with the previous results

that the forecast is improved rather than degraded by rejecting almost all of the

detrimental observations even in GFS model.

In Figure 6.5 and 6.6, the correction for u-component wind, temperature and

specific humidity at each pressure level is shown for the analysis and the 24-hr

forecast. It is clear that u-component wind and temperature corrections make larger

contributions to mid-levels in higher latitudes but upper-levels in the tropics. The

correction for specific humidity is largest at lower level around 700 hPa in all regions.

6.3.2.2 Immediate and Accumulated impact of PQC

The cycling PQC improvement is further broken down into the immediate cor-

rection (non-cycling PQC) and the accumulated correction (improved background

from cycling PQC). The immediate impact comes from the PQC update from the

original analysis at current cycle, which is the same as the non-cycling PQC. The

main benefit of cycling PQC is the accumulation of the improvements throughout the
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Figure 6.4: Monthly mean relative forecast error (RMSE) reduction percentage in

u-component wind at 500 hPa, temperature at 500 hPa, and specific humidity at 700

hPa for the Northern Hemisphere (20N-90N), the tropics(20N-20S), and the South-

ern Hemisphere(20S-90S) throughout 5 days. The curves represent the improvement

by rejecting overall 10%, 20%, 30%, and 40% of observations with cycling PQC with

6-hour lead-time. The shading shows the standard deviation of the forecast improve-

ments.
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Figure 6.5: Monthly mean analysis error (RMSE) reduction by rejecting overall 10%,

20%, 30%, and 40% of observations with cycling PQC in u-component wind, tem-

perature, and specific humidity at each pressure level for the Northern Hemisphere

(20N-90N), the tropics(20N-20S), and the Southern Hemisphere(20S-90S).
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Figure 6.6: Same as Figure 6.5, but for 24 hours forecasts.

past cycles that the improved forecast initiated from the previously PQC-corrected

analysis serves as a much more accurate background and further boosts the accu-

racy of the subsequent analysis. We separate the accumulated correction from the

full impact by verifying the forecasts initiated not from the PQC corrected analysis

but from the original analysis before PQC (which is still improved by previous PQC

corrections). As we can see, the primary advantage of cycling PQC comes from the

accumulation of past improvements whereas the independent immediate improve-

ment is at most only 2%. It is also noticeable that the benefit from the accumulated

impact has a more significant contribution to the full impact in the tropics and the

Southern Hemisphere comparing to that in the Northern Hemisphere, indicating

that the PQC improvement in the Northern Hemisphere has a shorter memory on
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average.

The fact that the accumulation of past impacts contributes to a major portion

of the full impact of cycling PQC has two important implications. One is that the

PQC improvement has a long-term impact, and remains in the system even after

several cycles of DA. Secondly, this supports the feasibility of implementing PQC in

operational NWP. The operational centers need to initiate the forecast as soon as

the analysis is completed to deliver the forecast products on time, so we can only

afford to perform PQC after the current forecast is out, meaning the direct impact

from PQC is not available in operations. Therefore, the huge portion corresponding

to accumulated indirect impact gives a very encouraging message that even without

the direct impact of the current observations we can still get a forecast improvement

close to the full impact of PQC.

6.3.2.3 Verifying lead-time

After seeing such promising results, we would like to test the sensitivity of the

PQC improvement to the EFSO verifying lead-time. Although we could not afford

more than 6 hours in operation, it could still be useful in retrospective analysis

systems. The FSO impacts are usually computed with lead-time of 24 hours to

avoid potential influence from the diurnal cycle. If such influence exists, then PQC

could suffer more than any other EFSO applications since it relies on immediate

EFSO impact in each cycle. In other words, we would like to see if PQC using

longer lead-time provide even further improvements as in Lorenz (1996) system.
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Figure 6.7: Monthly mean relative forecast error (RMSE) reduction percentage ini-

tiated from cycling PQC analysis (full correction), original analysis in cycling PQC

experiment (accumulated correction), and non-cycling PQC (immediate correction)

in u-component wind at 500 hPa, temperature at 500 hPa, and specific humidity

at 700 hPa for the Northern Hemisphere (20N-90N), the tropics(20N-20S), and the

Southern Hemisphere(20S-90S) throughout 5 days.

137



Intuitively, PQC with longer lead-time may better capture the long-term evolution

of the flow and lead to longer and better improvement. Longer lead-time also poses

technical challenges, including the evolution of localization and the nonlinearity of

flow evolution. In Figure 6.8, we compare the PQC relative improvements to the

forecast using 6 and 24 hours for verifying lead-time. As expected, it is clear that

24-hr PQC reaches its maximum improvement around 24 hours later compared to 6-

hr PQC across all variables and regions. Surprisingly, the maximum improvement of

24-hr PQC is only as good as that of 6-hr PQC at best. In the tropics, the 24-hr PQC

performs even worse than the 6-hr PQC. We observe the same for specific humidity

for all regions, which can be related to the intrinsic time scale of the dominant

process and the nonlinear regime for error growth of the region and the variable.

The tropics and the humidity field are generally considered to be short-memory in

weather time scale. Also, the analysis of 24-hr PQC is always less accurate compared

to that of 6-hr PQC as we seen in Lorenz (1996) system that the analysis is not

necessarily improved as much with the forecast improvement. Moreover, there are

no clear advantages in the forecast improvement of using 24 hours as verifying lead-

time over 6-hr PQC. A probable explanation is that the accuracy of the localization

advection method to address the actual nonlinear evolution of the initial LETKF

localization function with the background flow. The inaccuracy of the advection

method increases with the verifying lead-time. This source of error for 24-hr PQC

may compensate the benefit of EFSO impact evaluation for longer lead-time.
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Figure 6.8: Same as Figure 6.4, but for 6-hr and 24-hr PQC rejecting 10% of the

observations.
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6.4 Towards operational implementation

To accommodate PQC into NCEP operational framework, several shortcuts

were proposed in Chapter 3. In this section, we will validate all those shortcuts:

(1) Use GFS (instead of GDAS) analysis as the verifying truth, (2) Reuse the orig-

inal ensemble forecasts, and (3) Reuse the original Kalman gain (PQC-K update

method).

6.4.1 Using GFS analysis as verifying truth

One of the significant time-delaying sources of PQC is having to wait for next

available verifying analysis. In standard PQC, the verifying analysis is the GDAS

final analysis from the following DA cycle. It is, however, proposed (Hotta et al.,

2017a) that we can shorten the wait time by 2.5 hours by taking advantage of the

GFS early analysis. In figure 3.2, the NCEP dual track framework and how PQC

take advantage of GFS early analysis is illustrated. The main reason for the dual

track design is for mitigating the forecast delay from observation transition time.

However, there are already 70-80% of the data ingested into GDAS final analysis

available to GFS early analysis in our experimental period (in 2012). This ratio has

been increasing due to upgraded data transmission efficiency. Hence, the difference

between GFS and GDAS analysis is even smaller nowadays.

To justify the replacement of GDAS with GFS analysis for EFSO verifying

truth, here we compare the EFSO impact verified with GDAS final analysis and

with GFS early analysis. In figure 6.9, the scatter plot comparing the EFSO impact
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with GDAS analysis and that with GFS analysis of the same set of observations.

The correlation between the two is high, 0.95 and all the observations fall closely

to the diagonal line. The high correlation demonstrates the statistical similarity

between the two choices of the verifying truth and clearly shows that it is legitimate

to replace GDAS analysis with GFS analysis with only slight differences in the

impact evaluation.

6.4.2 Reuse the original ensemble forecasts

In NCEP operational Hybrid EnVar system, the ensemble component provides

only the error covariances for the construction of cost function in the variational

component. We argue that the primary benefit of PQC is the corrections on the

mean trajectory rather than the error covariances, so it is not necessary to repeat

the computationally expensive ensemble forecasts.

Due to the difficulties in visualizing the error covariances of a high dimensional

model, we show here in Figure 6.10 the comparison of the original analysis error

covariance and the covariance difference for PQC in Lorenz (1996) system. All

detrimental observations were rejected with 6-step PQC-K update method to obtain

the maximum possible corrections. It is clear that the corrections on AAA is negligible

due to its small magnitude. To show that this is not just a particular case, we

demonstrate the time evolution of the maximum value of the PQC correction on

AAA in Figure 6.11. Throughout the entire 5000-step experimental period, the most

significant difference comes to around 2 ∗ 10−17. We confirmed the hypothesis that
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Figure 6.9: Scatter plot for samples of EFSO impact of typical DA cycle (18Z Feb

06, 2012) verified by GDAS final analysis and GFS early analysis. The correlation

between the two choices is 0.95.
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Figure 6.10: Analysis error covariance (AAA; left) and the PQC correction on AAA (right)

of the cycle #2002.

PQC corrects mainly the mean trajectory and leaves the error covariance almost

the same as before.

To summarize, we found evidence showing the PQC corrections on the covari-

ances is negligible in our experiments, suggesting that we may not need to re-run the

ensemble forecasts in EnVar system, but a careful investigation should be carried

out using a close-to-operation configuration to provide a definite conclusion.

6.4.3 Reuse the original Kalman gain (PQC-K update method)

As we have discussed earlier in Chapter 3 and 4, PQC-K computes the PQC

correction with the original gain matrix estimated by original analysis perturbation.

PQC-K not only avoids repeating the analysis again but also provides better im-
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Figure 6.11: Time evolution of the maximum magnitude of PQC corrections on A.
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provement compared to standard data-denial methods (PQC-H or PQC-R) since it

is more consistent with the EFSO configuration and preserves the original ensemble

spread that avoids unintentional inflation of the error covariance.

Here we compare the results of the standard rejection (PQC-H) and that of

reusing the original Kalman gain (PQC-K) with GFS model in one of the data denial

case (18Z Feb 06, 2012) in Hotta et al. (2017a). In figure 6.12-6.14, we compare the

differences between the regional PQC-H and PQC-K corrections in analysis with

map view respectively for u-component wind, temperature, specific humidity, and

geopotential height. The first thing to notice is that the PQC-K corrections are

generally larger than those from PQC-H, but the overall patterns of the corrections

are very similar. From the map view, we can see this is true especially for the

u-component wind, temperature, and geopotential height at both 500 and 850 hPa

pressure levels. For specific humidity, the general pattern of PQC-H and PQC-K

corrections are not as similar as in other variables.

The differences between the two PQC update choices in magnitude and the

similarities in the pattern can be summarized in scatter plots in Figure 6.15-6.16.

Consistent with what we observed before, all variables except specific humidity and

relative humidity show high correlations (with coefficient around 0.9) between the

two PQC corrections across pressure levels from 700 to 300 hPa. Also, we found the

magnitudes of PQC-K corrections is generally 1-2 times larger than that of PQC-H

by comparing with the two reference line with slope=1 and 2.

The difference in magnitude can be explained by the relative weightings to the

observations in the two update methods. Consistent with EFSO, PQC-K computes
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Figure 6.12: Comparisons of PQC-H (upper panels) and PQC-K (lower panels)

corrections for U-component wind field at 500 (left column) and 850 (right column)

hPa for the 18Z Feb 06, 2012 case in Hotta et al. (2017a).
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Figure 6.13: Same as Figure 6.12, but for temperature field [K].
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Figure 6.14: Same as Figure 6.12, but for geopotential height field [m].
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Figure 6.15: Scatter plots and correlation coefficients of PQC-H and PQC-K correc-

tions for U-component wind, V-component wind, Temperature, Specific Humidity,

Relative Humidity, and Geopotential height at 500 hPa. For reference, a dashed

line with slope=1 and a dotted line with slope=2 is added.
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Figure 6.16: Same as figure 6.15, but for 700 hPa.

the correction as if all observations are assimilated. By contrast, the PQC-H cor-

rection is obtained by the actual rejection of the data, which naturally increases the

weighting of other observations in the vicinity and result in decreasing the apparent

weighting of the rejected observations. As we discussed in Chapter 4, the PQC-H

method slightly changes the analysis increments associated with EFSO identified

detrimental observations while PQC-K method rejects precisely the desired analy-

sis increment. Here we merely offer a verification that the PQC-K update method

also works in realistic GFS model and the correction is only slightly different from

PQC-H correction. This slight difference could lead to considerable performance

changes after several accumulations as seen in the Lorenz (1996) system where the

performance of PQC-K was superior.
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6.5 Summary and discussion

In this chapter, we have explored the cycling PQC using low-resolution GFS

model coupling to a simple LETKF DA system. We showed that rejecting most of

the detrimental observations gives the largest forecast improvement. PQC improves

the forecast all over the globe for most of the variables. Furthermore, we demon-

strated that the PQC based on EFSO with verifying lead-time longer than 6 hours

does not gain any clear advantages. More importantly, the accumulation of past

PQC corrections was shown to be the major contributor to the cycling PQC correc-

tion, indicating that we do not need PQC in real-time before the long GFS forecast

initiation and still get most of the benefit of cycling PQC. Even if we perform PQC

just for GDAS final analysis, the accumulation of benefits will still improve the

subsequent forecasts.

The shortcuts proposed in Chapter 3 for operational implementation to NCEP

were also validated. We showed that EFSO verified with GFS early analysis is

statistically similar to that verified with GDAS final analysis. Thus, it is acceptable

to replace GDAS with GFS analysis and gain extra 2.5 hours to perform EFSO

and PQC. Also, we show evidence supporting that PQC corrections on the error

covariance are negligible, suggesting that it may not be necessary to repeat the

ensemble forecasts, but a careful investigation should be carried out to provide a

definite conclusion. We further demonstrated that repeating of analysis step in

PQC-H method can be avoided with the PQC-K update method by reusing the

original gain matrix for computing the corrections on the analysis.
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These promising results suggest that PQC is not only beneficial but is also

affordable for the operational system. We would like to point out that there still

exist possible challenges when applying cycling PQC to real NCEP operational sys-

tem. The first is the observation density. PQC relies on the luxury of having a large

number of observations in the atmosphere. With the low-resolution GFS model,

the observation density is still high even after data thinning. It is possible that

the observation density is lower in the operational resolution. Besides, a model

with higher resolution resolves more small-scale features with higher nonlinearity

that may reduce the PQC improvement. Further, the high quality of analysis in

operational system assimilates much more observations with careful quality control

and leaves smaller room for improvement. Lastly, we would like to point out that

it can be more desirable to compute the FSO impact with the approach consistent

with the DA system. Hence, the HFSO using En-Var approach may be more suit-

able for PQC in NCEP operational system, mainly because that only a fraction of

the assimilated observations in high-resolution variational component goes into the

low-resolution ensemble component. This problem may be overcome by estimating

the EFSO impact of the observations as if they are assimilated into the ensemble

component (David Groff 2017, personal communication).
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Chapter 7

Summary and Future Directions

7.1 Summary

In this section, a summary of the dissertation is provided. We proposed two

applications of FSO impact, namely the data monitoring and selection based on

FSO and proactive quality control (PQC).

FSO allows online monitoring of any subset of the observations. We demon-

strated that grouping the EFSO impacts based on observation types indeed reveals

occasional detrimental-episodes from the overall beneficial impact of all observations.

Implementing this tool informs the forecasters ahead of time about forth-coming de-

graded forecast by specific detrimental observation subset. Besides, the accumulated

impact data can form the basis of frequent update of the blacklist QC. In the data

selection application, we first show as a proof of concept that EFSO is capable

of identifying observations with artificially added biases and random errors from a

group of ordinary observations in Lorenz (1996) system. It is then shown in a GFS

LETKF(and EnSRF)/3DVAR Hybrid GSI system with a close-to-operation config-

uration that FSO identifies detrimental radiance channels that are robust across

different lead-times from specific satellite instruments, including the hyperspectral

AIRS, CrIS, and IASI, as well as the multi-channel GOES sounders and HIRS. Ad-

ditionally, we found a particular detrimental spectral-band that shows up in almost
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every instrument covering the same spectrum. This detrimental band in common

is a supportive evidence that some of the identified channels are genuinely suffering

from the same cause. A channel-denial experiment demonstrates the forecast can

be improved merely by rejecting just 16 out of hundreds of the assimilated channels,

indicating that FSO is a reliable tool permitting data selection based on the actual

observational impact on the forecasts instead of indirect metric such as DFS.

PQC, a fully flow-dependent QC scheme utilizing immediate EFSO impact in

each cycle, was first tested in cycling fashion in this study. For the Lorenz (1996)-

ETKF system, we demonstrate that the optimal data-denial strategy is, in fact,

rejecting most of the detrimental observations with PQC-K update method that

reuses the original Kalman gain. A surprising result we found is that even in a per-

fectly idealized system (no bad observations), PQC still improves the system. It is

also found that the improvement is most significant when rejecting the most detri-

mental 10% observations and becomes insensitive to rejecting more observations.

This change in sensitivity is entirely consistent with EFSO impact evaluation that

only small amount of observations associated with growing mode have substantial

impacts while the rest provide impacts orders of magnitude smaller. Also, we found

that PQC robustly improves the performance of the system even with suboptimal

configuration. In some border cases, PQC even helps stabilize the filter from diver-

gence. A significant finding is that PQC improvement is insensitive to the error in

model forcing, indicating that PQC is not correcting the model errors which is a

common question encountered.

We further examine PQC in a high-dimensional GFS-LETKF system using
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real PREPBUFR observations. It is confirmed that even in a realistic and complex

model as such, PQC still improves the analysis by 10-20% relatively and the forecast

up to 5 days by 5%. Surprisingly, the same dependence on the number of rejecting

observations in the Lorenz (1996) system is also found in this GFS system. The

primary improvement comes from denying the most detrimental 10% of observations.

More improvement is provided by rejecting more detrimental observations, but the

additional improvement saturates around rejecting 40% of the data. It is also shown

that PQC using longer EFSO verifying lead-time does not have clear advantages

over that using just 6 hours, which is more feasible in operation. Additionally, the

accumulated correction of cycling PQC is shown to be the major contributor of the

total correction. The accumulation of corrections is a critical finding supportive to

operational implementation since the immediate PQC correction of each cycle is not

affordable in operation for releasing forecast products on time.

Finally, we verified several shortcuts proposed to lower the computational

burden of PQC in NCEP operation setup. We show that EFSO verified with GFS

analysis is statistically similar to that verified with GDAS analysis but saves 2.5

hours from waiting for the next analysis for verification. Additionally, we show

that PQC does not correct the error covariance but mainly on the mean trajectory.

Hence, it is not necessary to repeat the ensemble forecasts (only used to produce

the error covariance for En-Var analysis) after PQC correction. Lastly, as also

shown with the Lorenz (1996) system, PQC-K provides more accurate corrections

with lower computational cost compared to the standard data-denial update method

(PQC-H).
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7.2 Future directions

First, we would like to increase the GFS-LETKF resolution and examine how

sensitive is PQC to the resolution. As mentioned in Chapter 6, the observation

density may be an important factor determining PQC improvement. As the model

resolution increases, the relative observation density decreases. Also, more small-

scale features are resolved with the increase of the resolution that could lead to an

increase of nonlinearity of the system.

Second, it should be explored the impact of the vast amount of satellite ra-

diance data on PQC improvement. A possible scenario may be that the increased

accuracy of the analysis may reduce the room for improvement. However, the qual-

ity of the radiance data is generally considered not as good as the conventional

observations in PREPBUFR data which could be leveraged by PQC.

Furthermore, we should extend the experimentation of cycling PQC with the

En-Var system as in operation. A potential challenge may be that the observations

assimilated in the variational component are not the same as in the ensemble com-

ponent as discussed in Chapter 2. However, non-cycling PQC experiments by Ota

et al. (2013); Hotta et al. (2017a) have shown encouraging results with the same

GFS LETKF/3DVAR GSI Hybrid system (close to operational setup) we used in

Chapter 5. It is noteworthy here that we are collaborating with Global Forecast

Dropout Prediction Tool (GFDPT) team to alleviate the skill dropout problem in

NCEP using PQC.

For the theoretical understanding of PQC, the smoother aspect of PQC men-
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tioned in Chapter 3 should be explored. This understanding could provide a way to

fit PQC into the fundamental framework of data assimilation.

For the longer-term goals, we would like to extend the data selection appli-

cation further to the actual processing of channel selection from scratch. By the

proposed iterative method in Chapter 5, we can scan through the channels with a

small number at a time to come up with an optimal selection that is EFSO-based.

In fact, we have begun a collaborative effort with Quantitative Observing System

Assessment Program (QOSAP) team to complement OSSE with EFSO diagnostic

to provide better impact evaluation for data selection.

Lastly, earth system modeling has become mature enough recently for coupling

data assimilation, where the observations from one component could be assimilated

into and benefit other components in the earth system. Currently one of the pri-

mary efforts is to determine the localization of the observation influence across the

boundaries of different components. EFSO could play an essential role in the iden-

tification of the observations in one component (e.g., atmosphere) with a beneficial

impact on the forecast of another (e.g., ocean).
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