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We are currently finalizing the design of De@onew shared-object system intended for use witl-repl
cated mobile and wide-area data. The broad aim of our research is to devekpewbrk forhighly-
available, decentralized shared-object protocols. The key idea is thatrotacols will support high
availability through a distributed voting schenfpecifically, we will investigate (a) peer-to-pegr u
dates, which will allow incremental progress to be made in the abseffigk @fnnectivity between o®
ponent servers, (b) voting rather than centralized schemes for camgnuiidates, ensuring that nansi
gle point of failure can prevent updates from being committed, and (c) appiisatecific consistency
control, allowing applications to relax coherency constraints in ways that dbreak the applicatiors
notion of consency.

Distribution and multiple connectivity modes are becoming the norm rdtharthe exception in current
computing environments. Thus, we expect the impact of our researctielb ineareas as disparate as
mobile computing and collaborative data warehousing on the Internet.

1. Introduction

We are currently finalizing the design of Dersonew shared-object system intended for use with egpticmobile or
wide-area data. The broad aim of this project is to dpvalframework for decentralized protocols that supporicegptl
shared-object systems. Such systems are used to malataigoherency for applications used in mobile and dtiggrly
dynamic environments. The distinguishing feature of sunhr@enments is that timely connectivity to specifiosts is
rarely a given. Internet connections can be eithter sk non-existent for a variety of reasons, includilogvsonnections

(via a modem, for example), unexpected network partitionspariddic problems such as the data storms that occur daily
at noon and 5 p.m. when office workers surf the web.bil®ystems have even more problematic connectivaptops
andPDAs are often disconnected the majority of the tiralging on brief periodic connections to synchrorapglication

data on the mobile device with respect to copies oflttta residing on corporaitgranets.

The problem with this type of connectivity is that shexisting consistency protocols usgramary commit[1]
scheme. In order for any update to be considered permaneriiecome visible at other sites, it must first depted by
the server that maintains the primary copy. Regular pssgtan only be made if the primary cepserver is continuously
accestble.

This ubiquitous connectivity is not available in thevisonments discussed above. The result is that if thegoy
copy of a collaborative report resides on a wdsk&@ptop, changes to the report can only be committée tie laptop is
connected. Contrarily, if the primary copy residespaate server, no changes can be committed by disceuhlaptops
even if the laptops of all active participants in wagfithe report are connected to each other through awmadireless
network in a conference room.

Our approach to this problem includes the following keysdea

1) peer-to-peer synchronizatioh Updates to not need to be retrieved from the primepys server. Instead,pu
dates propagate through the system through peer-to-per aopyesgssion$2].

2) voting via a currency abstraction rather than primary commithe protocols will be highly available because
existing replicas vote on whether to commit an updatkerahan relying on a possibly unavailable primary copy
to order all updates. Votes are conducted through a curadstyaction, which is allocated to replicas at coeati
time.

3) fine-grained application controt The use of the currency abstraction to control gptwvill enable the use of
proxies, decentralized replica creation, and fine-grainetra@oover commit policies. These capabilities wdl b
exported to the applications to allow the use of applicagfmecific notions of colnency.
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2. Background

We assume a system that consists of a series ofiparszd-object servers, each capable of caching repfieery object in
the system. Replicas are useful for many reasonsydimg efficiency, availability, and fault tolerance. Rep$ increase
efficiency by allowing a local copy to be accessetieathan a remote copy elsewhere on the network, mmutte same
way that accessing a processamemory cache is much faster than accessing memerytee computés /O bus. Repl
cas improve availability by making it possible for apations to benake progress even when one or more replicas become
temporarily unavailable. Fault tolerance is achieveérsuring that object data is kept consistent. Losaybae replica
does not result in committed updates being lost if ottygicas have copies of the same updates.

The problem with replicas is that they must be keptisters. Consistency is problematic in distributed systée-
cause updates of multiple sites are generally non-atomiatapes. Different sites usually take differing amouritsroe to
accessmeaning that competingntativeupdates may be seen in different orders at different updid¢ss However, ¢o
sistency requires that any competing updates tedh®e shared object semmittedn the same serial order at everp-re
lica.

The most straightforward solution to this problem igesignate one replica as fhrmary copy The order in which
updates arrive at the primary copy is designated as theamkct order, and updatage required to be applied in this o
der at every replica. This approach has two drawbackst, Bie primary copy can become a performance bettkefor
updates to the object. More importantly in the contés distributed environment, no updates can be comméited,no
application progress made, without contacting the primapy.dUnavailability of the primary copy brings the eats\s-
tem to a halt.

Administrators often try to minimize the possibildf/this occurrence by ensuring that the primary copgesson a
trusted server, protected by a firewall and safeguardethbgrate battery-backup systems. Any other copy corshégate
the corporatentranet can communicate with the primary copy. Unioately, progress often needs to be made outside of
the corporate boundaries. For example, IBM sstigf have traditionally been expected to be on thé soamuch that they
did not even have offices. If salespeople Frank, JoeNamdy collectively cover the state of Texas, theghmiexpect to
be able to consolidate their sales data when theyiméeaistin. Off-the-shelf hardware lik&/aveLAN would allow them
to open their laptops in a conference room and ingtasthblish a local network between their machitkedortunately,
even though all interested parties are present, no ugdatbsred data can be committed if the primary copgdessn a
mainframe in New York. Consider the other alternatieeating the primary copy on one of their machiregh as
Nancys. Problems arise if Nancy then heads to Califoioria regional sales meeting. Even if Frank and Joeeidnsely
proceed back to New York to update the corporate dataleesecan not commit any new data until Nancy returasfr
California.

3. Deno design

Deno is a library that can be linked directly with apgiion instances, such as bibliographic databasessehadrs, or
collaborative groupware applications. Objects can bengfsize, although our current mechanisms will work kgt
relatively small numbers of objects. Any process ikdinked to a copy of the Deno library is considerede a Deno
server. However, servers do not replicate all ohjéabgect replication is only on demand, and entire desaddo not need
to be repicated as a unit.

The overriding goal of the Deno project is to invesggagplica consistency protocols. We are thereforenrait-
vated to build large and complicated interfaces to thecollystem. By the same token, we feel that lightweigkrfaces
are the appropriate choice for many applications, andntisae complex services can be efficiently built op td Deno
services if needed.

The basic Deno API consists of the calls listedable1l. These calls allow new servers, objects, and repticde
created, and replicas to be updated and destroyed. Proxgamallse used by servers to delegate voting rights fonethn
disconnections. The sparse interface avoids burdeningaftis with unwanted or unneeded abstractions and fadctio
ity. For example, we provide no means of backing up objectsable storage. Some applications will have nal fiee
stable storage, while others can provide their ownti®ols by accessing the objects directly through thecolgointers.
Deno does provide support for transparent fault toleraiacehg repication mechanism.

Likewise, our interface does not include any sort of quetgrface, even over the namespace of local objatts
other words, there is no way for an application to gaesgrver to list local replicas that are replicateglly. Such inte
faces are not needed for applications that have ofdwastatically-defined objects. More dynamic or complex aplic
tions could build directory services on top of Denmechanisms through a well-known directory object.

Our initial system will support two types of objectsndaiy objects andcl [3] strings. Binary objects are arbitrary
byte-streams. Thebj structure used by several of the API calls is a unian ¢bntains a pointer and length for binary
objects. Calls taleno_replica_update () are made on either side of the actual updates in oradilitoit the update



I nterface Call Semantics
Deno_server_create([server name]) Creates server with optional name.

Creates new object. Optional third argument gives g e

deno_object_create(<name> <init@bj> [exp. #]) pected number of eventual replicas.

Creates local replica of named object. The optionalese

i i < > [< int> . " .
Objdeno_replica_create(<name> [<server hint>]) hint tells Deno where to look for an existing replica.

deno_object_resiz@pj, int sz) New size for binary Deno object.

Update an object replica. Update and optional merge |pr

deno_replica _update(<name> <update> [<mprge>]) cedures are specified @l scripts.

deno_replica_proxy(<object name> <server name>) Delegate authority while disconnected.
deno_replica_unproxy(<object name>) Retrieve delegated authority.
deno_replica_delete(<name>) Delete local replica.

Table 1: Basic Deno API

interval to the underlying system. The actual updatesstasfssimple writes and/or calls theno_object_resize ().
Modifications to the object are detected through simpie tomparisons between before and after versiotiseeafbject.

Tcl objects are simple strings, and are not modifiecctiréy the application. Instead,Tal code fragment is passed
to the deno_replica_update () call. This fragment is atomically applied to the objdny Deno. The
deno_object_resize () callis not used fofcl objects.

Note that the system can easily maintain enoughrivdtion to back out of either type of update. Deno coulcethe
fore provide any type of session guararnte8y default, however, only committed values are vsibl

We currently expect applications to provide the name mofehine that is running a Deno server with an existing
replica. With name in hand, the new replica can talk veell-known port and obtain object replicas. As an gtantm-
sider a chat application based on Deno mechanismgdathbase will consist of a single object, the chait The firstchat
process that starts will create a new log object. &pEnt chat processes can start up and obtain replitizs lofy object
by connecting with any existing server. There are stirdjuished servers, any server is capable of creagngobjects,
creating new servers, and providing object replicasheraervers. As discussed below, there is also nomofia pi-
mary server for any object. Servers are all peefferidig only in the amount of per-object currency threythold.

3.1 Pairwise Information Dissemination

Deno will use anti-entropy sessions to propagate updatesgaraplicas. This approach has been investigated inothe c
text of aprimary commitscheme in the Bayojb] system. Our protocols will differ significantly in théney will rely on
fewer assumptions on the completeness of availableagpformation. For example, our protocols will neegtopagate
updates to shared objects in the absence of knowledhe abmplete set of replicas, or even of a primary tbpy has
pointers to all extent replicas.

The above problem, and many others, is greatly contptiday the fact that we assume peer-to-peer data exchanges,
rather than more centralized update schemes. Bothitentand committed updates propagate between servers thdirec
through periodi@nti-entropysessions. An anti-entropy session consists of twespgstating each other on all objegt u
dates not seen by the other. Hence, data moves thtloeglystem slowly, one step at a time.

The advantage of such a scheme is that all copiesweifitually be updated, without any requirement theite ever
be a direct connection between every pair of replitag disadvantage is that data moves slowly through yitens,
making global consensus more difficult to achieve.

3.2 Merge procedures

Deno supports the use oferge procedurgsvhich are used to determine whether a given updateeappied without
breaking application constraints. The restriction timtwo entities can reserve the same meeting rodhreagame time in
a meeting room scheduler is an example of one such adojestraint. Merge procedures are specified¢h and accm-
pany tentative updates as they are propagated from ongargphnother.

4. Committing Updates
Intuitively, progress should be possible in both of th@asions enumerated in SectidBnAssume that there are four copies
of the shared data: olwepy each on the laptops of Frank, Joe, and Nancy, andomy on the corporate mainframe. Three

copies are in contact in both of the above scenaResall that consistency is maintained if updateseeatually applied
in the same order on every machine. One way to &elies in the above scenarios is to say that lareetcopies can agree
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Figure 1: Four replicas each of objectsandy. Currency is divided evenly for both repl
cas.(a) shows the progress of an update fl@mThe update is committed because a majo
ity of the objects currency sees it before any competing updai(®) shows two competing
toy. At timets, each update has been seen byicaplwith a combined currency of 0.50.

to commit an update. This rule allows progress to be rimafleth situations, and prevents any conflicting updats f
being generated on the remaining disconnected machiigerdlé is an example of a voting or consensus approais-to
tributed agreement. Viog policies can be used in many situations to ensurerenhbe.

The main drawback of traditional voting policies in atrilisited, possibly disconnected environment is thae-it r
quires consensus on group membership. A positieéeg’ requires that more than half of the replicas voteairoff of an
update before it can be committed. However, the sysganmot establish this fact without having some sioenumeration
of group membership. Understating the number of replicgitaillow multiple disconnected groups of replicas to commit
conflicting updates. Overstating the number of replicaghtrprevent any update from ever acow.

4.1 Voting via currency

We eliminate the need for knowledge of group membershimbing our votes on a logical currency. Briefly, anyese
that creates an object also creates a currency ispiecthat object. We say that tleerrency isheld by the replica, even
though it is actually the repliteiserver that holds the currency. This currency is bgaeplicas to participate in voting.
The creator initially has a total currency of INew replicas are created by sending requests to sehatrhdve existing
replicas. The response to such requests contains l@thbjdct's data and some amount of currency. This an®gdi-
tracted from the currency held by the existing replieande, the total amount of currency in the system iresrenstant at
all times during failure-free operation.

Going back to the example discussed in Sec®oassume that each replica has an equal amount of curfeme
three replicas control 75% of the currency, and can sdadhat no other set of replicas is concurrently cdtimgiup-
dates to the same object. Hence, they can commit wpalatieapplication progress can be achieved.

Progress is achieved in the above examples becausetookreplicas had more than half of the currency. Wha
happens if two disjoint sets of replicas each have lgxhatf of the currency? More generally, consider thse where
multiple tentative updates each gain currency support ofHass50%, but all currency is consumed.

We handle conflicts by generalizing the quorum-voting sehenmtommit updates that fail to achieve a majority. A
update is considerembmmitable if no other update can garner more curremzythe update is chosen by the tie-breaking
procedure. Deno breaks ties through a lexicographic compdretaeen the server 1®of the servers that created the u
dates. This procedure does not require the participatiait fplicas, but it does require that the amountnaiceounted-
for currency not be enough to change the update chosndommitted. Conflicting updates can therefore slowptioe
ess of committing updates because more complete igfionmis needed.

It is also worth noting that the primary copy and votipgroaches to update commitment are not necessarily mut
ally exclusive. Currencies can be allocated in waysghefer quorums containing specific replicas, or mora tief of the
currency can be retained by a given replica. The laitigation reduces to a primary copy scheme.



4.2 Committing updates

Updates are eithaéentativeor committed Newly created updates are tentative and may be raliekl without ever being
committed. Tentative updates may or may not be visible application, depending on the type of session gumsmant
needed by the application. Updates@mmittedvhen a quorum agrees that they are acceptable. Howpdsates are not
committed through two-phase or similar protocols, becalisaformation propagates slowly through the systempeie-
wise synchronization. Instead, replicas become awanew updates at distinct times, and they become awateothers
are aware in similar fashion.

ConsiderFigure1 (a). Objectsx andy are replicated at sitd®; throughR,. Each site has currency of 0.25 for both
objects.R; creates an update xat timet,. At this point the update is tentative. At timeR; synchronizes withR,, and at
time t;, R, synchronizes withR;. At this point, three of the four replicas know of teatative update and have ordered it
before any other tentative updatesxtarhese replicas can be said to have voted to compuiate because they control
75% of the objecy’'s currency. However, onlg, andR; know this. In factR, does not even yet know of the updatex-
istence. This makes it possible 8 to naively create a new updatgdate at timets. This update will be aborted &
whenR, learns that a quorum has already voted that the next ittedmapdate ta will be update.

Figurel (b) shows an example of two competing updates being stdrtieded,. Each synchronizes with one other
replica atts, leading to a stalemate in which each competing updat&0s of the currency. While currency allocation
schemes could be rigged to prevent this from occurringarcase of two competing updates, three or more compgting
dates could still lead to the same problem. The lexicogeaighbreaker will favoupdatg overudpatgq.

4.3 Currency allocation

Timely update commitment depends on being able to assentjlerum to vote on updates. The cost of assembling-a qu
rum is highly dependent on the availability and currensiridution of the object replicas. There are a nurobeifferent
strategies that could be pursued in currency allocatior. bEst choice can depend on application semantics, exkpecte
availability of individual servers, and network topologypeer-to-peer application might work best with currencynbve
distributed among the replicas, while a client-server egitin might work better if any one client and theveetogether
constitute a quorum. Note that a uniform distribution wfency is not necessarily easy to achieve unlessuheer of
replicas is known. Even if the number of replicas iswma priori, poor distributions can result when repliaes created
by other than the first replica. The problem is thatency is split between any new replica and the i@ephiat created it.
Unless the existing replica has twice the eventuallyetbsverage currency, both will have only half therédsvalues.

Deno applications can direct currency allocation by idiog a hint at object creation as to how many repliase
expected to be created. This hint allows Deno to dbocarrency to replica requests in a way that providesifarm level
of currency for the expected number of replicas. Fortthigork, new replicas must be created from the origielca.

Note also that servers can transparently gift oteeress with currency, allowing the system to stabiiiz a state
with uniform currency distribution regardless of theialitonfiguration.

4.4 Naming

Object names have two parts, a name that is uniquegaaibobjects created by the same server, and thersename.
This scheme is sufficient to guarantee unique system-vajldetcames, provided that servers also have unique names

Server names are constructed from the IP address wfabiegine on which the server process is running anduhe
rent time. Where this is ambiguous (multi-processor mashiar not desirable (the user wants friendlier names$ as
“Petes chat and“Jeff s chat), applications can provide their own names.

45 Proxies

A server that expects to disconnect soon can designathes replica as itproxy. A proxy has voting rights on itsri-
mary s currency until the primary explicitly requests the curyepack. This mechanism makes the voting mechanism less
unwieldy and less dependent on fortuitous currency allotiRyoxies permanently inherent currency from failed prim
ries.

4.6 Failure detection

Servers can individually detect (via timeouts) failures r@mdove failed servers from their tables. Howeverrenuy is lost
when servers fail without designating proxies. Loss ©f turrency can either slow or completely prevent updates
being committed. Lost currency can be compensated foevatuatingthe currency. Revaluation does not change bhe a
solute amount of currency held by any server. Insteathaihges the thresholds at which an update can be dmahnift
currency in the amount of 0.45 lost, a revaluation would allow updates to commit &lae of .375 in the absence of
contention.



Like any other change to objects, a currency revaluasi@a special type of update operation on an olRetala-
tions must be committed before they can take effege iDplication is that revaluation can only occurtifeast 50% of
the current currency is available to vote. This isegsary to prevent parallel curremeyaluations after network partitions.

5. Related Work

The Deno project uses ideas from many areas. The gsoéreare architecture is modeled after the Bayowesygi]. Our

ideas on lottery scheduling have been influenced byrttieedield of quorum consensus, but were most influengethd

use of currency abstractions in proportional-share schesj6] and the market-oriented approaches of wide-area databases
like Mariposa[7].

6. Conclusions and current status

In summary, there is an ever-increasing range of apglicathat require coherent access to replicated dateviroements
with variable connectivity, including special-purpose disttéd databases and Internet information sources. Tedficell
advances in network hardware and software, togethertigtisociological trends that have made the Intermetuaehold
presence, have made such applications possible. Throughlpisipectured consistency protocols, we hope to maka the
efficient.

The designs of Dens interface and underlying protocols are essentiallypéete Work is currently going forward
in two directions. We are building a simulator to evaduatormation propagation and commit rates in our expesmsd
ronments. We are also starting to code the initialdgrototype in a C core. Deno will includeTal interpreter to aid in
evaluating merge procedures and updatdstobjects.
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