TecHNIcAL RESEARCH REPORT

The Placement of File Sub-system Data Streams
by S. Gupta, J.S. Baras, N. Roussopoulos

CSHCN T.R. 96-14
(ISR T.R. 96-76)

. CENTER FOR SATELLITE AND HYBRID
COMMUNICATION NETWORKS

4

The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the
University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/



The Placement of File Sub-system Data Streams *

Sandeep Gupta John S. Baras'

Nick Roussopoulos?
Center for Satellite and Hybrid Communication Networks
Institute of Systems Research
University of Maryland, College Park MD

October 29, 1996

Abstract

An abstraction called Cues was implemented [1] for providing data
streams over the file sub-system in the Unix kernel. The data stream of
a Cue can be used for transfer of data as well as for control of the data
stream by composing such structures. The algorithm for scheduling
the compound Cue sequences read and write operations for data and
control Cues in the kernel and retains other properties of user process
driven read-write. This is possible for the data stream as this abstrac-
tion is over the file sub-system and the data stream is run in the context
of the user process that created the Cue. This report reconsiders the
architectural placement of the Cues, based on the experience with de-
sign and test of implementations. The underlying theme is to try to
keep the control and flexibility as it is with user processes and keep
from tying it in the kernel or user space unless specifically required, in
effect re-evaluating the placement of the implementation in the kernel.

*This material is based upon work supported in part by the National Science Foun-
dation under Grant No. NSF EEC 94-02384, and by the Center for Satellite and Hybrid
Communication Networks under NASA contract NAGW-2777 and the State of Maryland.

fAlso with Department of Electrical Engineering.

tAlso with Department of Computer Science, and Institute of Advanced Computer
Studies.



1 Introduction

File sub-system data streams using Cues [1] are a data transfer service in
the Unix kernel using the system abstractions provided to the user process.
These are file descriptors, resource access permissions, and the user process
context. They are all important to the design of these data streams, and in
the scheduling of transfers for a Cue or with a pair of data and control Cues.
In [1] measurements were reported on the improvement in performance of a
disk to network transfer and in the saving of processor resources by eliminat-
ing data copy in and out of the kernel. Subsequently, for providing this as a
service for moving large volumes of data such as Databases on a network, ad-
ditional requirements for maintaining the access permissions were developed
in [2]. All this is possible, because the design places the streams over the
file sub-system and by limiting the scheduling of data transfers only during
the time the process would normally run. The schedules were determined
empirically for the machine used for tests cited [1], however the schedules
require a very simple calculation based on the number of Cues and the time
taken for the transfers. Keeping the user context allows the extension of this
design for scheduling of these transfers with regard to the per-user resource
utilization. The use of these abstractions makes porting Cue based streams
to user space almost trivial. Two more extensions were considered desirable
in the current design and this report reconsiders the architectural placement
of Cues at the file sub-system in view of these extensions, the performance
of existing systems, and empirical observations.

The idea behind the theme of trying to keep the abstraction free of user
or kernel space restriction is to use the benefit of the experience gained with
Cues to re-examine why and how this feature should be added to the kernel.

2 Background

In the rest of the report, the following familiarity with Cues, the system call
cue() [1], and the terminology defined in [2] will be assumed: The system
call takes two file descriptors as parameters and creates a data structure
called Cue, one of which is the source, and the other the destination for
data transfer. Such a Cue is identified by a new file descriptor returned by
the system call and the descriptor is used to write control messages to direct
the data transfer. In the basic case, the descriptors point to files or sockets,
and the control messages are written to it by the process that owns the Cue.
The control of a Cue created by a process may be granted to a peer process



connected to it via a socket, for a specified number and type of requests.
This is done by providing the socket descriptor and a Cue descriptor to a
second invocation of cue(). Such a Cue is called a Control Cue, and the
former, a Data Cue. A Cue is said to be active if the process that owns it
is in the kernel mode and it will perform a data transfer before returning
to user mode. It is said to be running if it is performing a data transfer
at such time. The data transfer path is called the horizontal path, and the
control message path is called the vertical path. The control message may
or may not have a parameter, and may be a Configuration or an Auxiliary
message. Configuration messages are those that attempt to change the Cue
configuration such as buffer size or transfer size in excess of what has been
set by the process that owns them. The two design extensions desired are the
presentation format for control parameters and ensuring robust operation
of remote Cues in a general environment.

3 Presentation of Control Parameters

For using Cues on a distributed heterogeneous system, a presentation in-
terface is required for mapping the control messages and their parameters
from one architecture’s native format to that of the other. The placement
of service in the kernel entails that either these parameters be translated
in the kernel, or the messages always be routed through the user process,
where a presentation module or shared library be used. It is possible to do
either or both, from the perspective of the feasibility and their use, with
this design. The parameters with the Cue messages are integers and a large
class of machines already include standard primitives for serializing and de-
serializing integers with the networking protocol implementations. Also, the
parameters are an integer or a pair, so routing them through the user pro-
cess will not be expensive. The protocol to control Cues is not complex and
has a small number of messages. Should there be a need for an elaborate
inter-Cue protocol such as that in case of two peer applications pacing con-
trol messages to each other, a mix of the two alternatives can be used easily.
This is possible as the control Cue can forward the uninterpreted messages
vertically to the user process. Even if the format conversion is coded in the
kernel, this avoids hard coded design. Thus a protocol extension may be
built over the existing set of messages without being limited by where the
code for presentation of parameters is placed, without changing the design.
From the perspective so far, this is modular, and the placement of Cues is
compatible and interchangeable with user space placement.



4 Use of Control Streams for Remote Cues

The two basic messages required for a remote Cue are SET-OFFSET and
TRANSFER-BYTES [1]. In the current implementation the two messages have
integer codes, and these two have an integer parameter. Since the messages
are this small, they can be, and must be encoded for serialization without
much computation overhead. In the current tests of the implementation,
fail-safe transport and identical presentation are guaranteed by the use of a
reliable transport protocol on machines with similar architecture. It would
be required to limit use of control Cues to the family of reliable transport
sockets. On a connection-less control path there still is room for error due
to lost messages. Connection-less sockets with certain protocols may also
have to deal with interference from multiple sources. While these are fa-
miliar and solved problems, they begin to introduce underlying architecture
specific limitations or modifications required of the system call. Though het-
erogeneity of data formats on different architecture is simple to solve, the
robust operation of a Cue with remote control requires recovery from par-
tially dropped messages, or those sent in error from the source. Since the
two interacting processes communicating about the Cue are autonomous,
the latter has to be taken into account. At the socket layer, there can be er-
rors in messages received using datagram service, due to dropped messages,
or due to out of order deliveries if a datagram protocol is used. At the sender
there can be errors in framing the messages. A proper solution would re-
quire re-implementation of a reliable transport protocol, which amounts to
duplication of function in the kernel. The protocol extension required will
be small, as the number and time of interactions are limited, and it can be
made independent of the placement in the user or the kernel space. Even so,
adding support for connection-less streams begins to show the dependence
on the lower layer protocol on the design. It does not add any new abil-
ity to the service, and disabling the use of connection-less sockets does not
seem to take away anything. Error detection and handling is much simpler
on a reliable transport, particularly because of in-order deliveries. Should
the support for connection-less interface to remote Cues be required, a user
space implementation will be able to handle the concomitant complexity due
to the reasons outlined above.

From the design point of view, a reason Cues are implemented in kernel
space is their performance due to elimination of copies and because of the
use of scheduling in the kernel. The next two sections deal with the im-
provements in performance and the placement of Cue in the kernel, in view
of the experience with the implementation and tests.



5 Sustaining versus Containing the Throughput

The objective of the initial implementation was to improve performance of
the system by eliminating the extra copies from and back to the kernel.
It also turned out that scheduling transfers in the kernel scaled better. In
the tests reported in [1], transfers with multiple processes active at the
same time tend to lose up to half of the system’s bandwidth that would be
achieved normally, were only one transfer active at that time. While this
may be useful for the system configuration similar to the one in those tests,
sometimes it may be useful to contain the throughput instead of sustaining
it. One of the configurations of the system on which the call was ported, was
capable of inundating the net to 60 % of its capacity on a single connection,
with naive read-write sequences. As network interfaces and systems cannot
always be guaranteed to be upgraded proportionately, there is use for both
containing as well as sustaining the rate at which data is sent out of the
system. The scheduling method for Cues is simple, and can be adapted
to different rates, per connection. The kernel is the place where any such
policy can be strictly enforced for naive applications, and the use for such
a provision is not only limited to Cue streams, but can be used for other
data transfers. This is not to say that user processes cannot pace the rate
at which data is sent, and there is a flexibility trade-off if such enforcement
is done in the kernel, leaving user processes without any option to use the
entire bandwidth should they choose to use it at the configuration the system
has been put together.

6 Elimination of Copies

During a transfer of data from one peripheral to another, the network and
disk taken as examples in this work, there is a copy of data from the source
device to the kernel, into user space, and back to the kernel and the des-
tination device. Data that is not modified during such transfers uses more
copies than are needed. The system call was one way of eliminating the
copies. There can be other ways by either implementing the data stream
using different abstractions [1], or by enhancing the calls that provide the
standard data path to eliminate these copies. Bulk data movement is likely
to remain an important activity on a lot of workstations. Some systems
already provide support for minimizing copies during data transfer in hard-
ware or by providing one such option on the file descriptors. Using either of
these mechanisms if the data can be mapped into user space without copies



and vice versa then with respect to this feature it would be much easier to
place Cues in user space. Use of kernel space and implementation is at the
cost of adding additional complexity some of which may require handling
of kernel specific nuances even though the test code for this call is fairly
generic. User space implementations on the other hand can be relatively
freely tested with the same abstraction, and in terms of robustness of the
overall architecture, will be better in terms of this feature.

7 Summary

This report re-considered the placement of Cues. The current implementa-
tion was provided as a system call, and the data streams were placed over
the file sub-system in the kernel thus providing the required user level ab-
stractions. The experience with the implementation, the observations on
the design extensions required, and the configuration of the newer machines
prompted an evaluation of the advantages achieved using this placement.
Most of the design seems to weigh out neutrally except when viewed from
the perspective of newer host configurations. The dependence on the config-
uration of a host works against providing this service as a system call. Some
newer features also make the option of implementing these streams as a user
space application more attractive, while retaining the same abstraction.

References

[1] Sandeep Gupta, John S. Baras, Stephen Kelley, and Nick Roussopoulos.
Cues: File subsystem data streams. Technical Report 96-53, Institute of
Systems Research, Univesity of Maryland at College Park, 1996.

[2] Sandeep Gupta, John S. Baras, Stephen Kelley, and Nick Roussopoulos.
Managing file subsystem data streams for databases on networked sys-
tems. Technical Report 96-60, Institute of Systems Research, Univesity
of Maryland at College Park, 1996.



