
 
 

ABSTRACT 
 
 
 

 
Title of Dissertation: DATA CENTRIC CACHE 

MEASUREMENT USING HARDWARE 
AND SOFTWARE INSTRUMENTATION 

  
 Bryan R. Buck, Ph.D., 2004 
  
Dissertation Directed By: Professor Jeffrey K. Hollingsworth, 

Department of Computer Science 
 
 

The speed at which microprocessors can perform computations is increasing 

faster than the speed of access to main memory, making efficient use of memory 

caches ever more important.  Because of this, information about the cache behavior of 

applications is valuable for performance tuning.  To be most useful to a programmer, 

this information should be presented in a way that relates it to data structures at the 

source code level; we will refer to this as data centric cache information.  This disser-

tation examines the problem of how to collect such information.  We describe tech-

niques for accomplishing this using hardware performance monitors and software in-

strumentation.  We discuss both performance monitoring features that are present in 

existing processors and a proposed feature for future designs. 

The first technique we describe uses sampling of cache miss addresses, relat-

ing them to data structures.  We present the results of experiments using an imple-

mentation of this technique inside a simulator, which show that it can collect the de-

sired information accurately and with low overhead.  We then discuss a tool called 

Cache Scope that implements this on actual hardware, the Intel Itanium 2 processor.  

  



Experiments with this tool validate that perturbation and overhead can be kept low in 

a real-world setting.  We present examples of tuning the performance of two applica-

tions based on data from this tool.  By changing only the layout of data structures, we 

achieved approximately 24% and 19% reductions in running time. 

We also describe a technique that uses a proposed hardware feature that pro-

vides information about cache evictions to sample eviction addresses.  We present 

results from an implementation of this technique inside a simulator, showing that 

even though this requires storing considerably more data than sampling cache misses, 

we are still able to collect information accurate enough to be useful while keeping 

overhead low.  We discuss an example of performance tuning in which we were able 

to reduce the running time of an application by 8% using information gained from 

this tool. 
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Chapter 1: Introduction 

Increases in processor speed continue to outpace increases in the speed of ac-

cess to main memory.  Because of this, it is becoming ever more important that appli-

cations make effective use of memory caches.  Information about an application’s 

interaction with the cache is therefore crucial to tuning its performance.  This infor-

mation can be gathered using a variety of instrumentation techniques that may in-

volve simulation, adding instrumentation code to the application, or the use of hard-

ware performance monitoring features. 

One difference between these techniques is the point in time at which they are 

added to the system or application.  Hardware features must be added when the sys-

tem is designed, whereas software can add instrumentation at any time from when the 

application is in source code form (by modifying the source code) to after the applica-

tion has begun execution (using dynamic instrumentation [14]).  Because of this, all-

software approaches are more flexible.  For instance, a simulator can be made to pro-

vide almost any kind of information desired, depending only on the level of detail and 

fidelity of the simulation.  However, simulation can be slow, sometimes prohibitively 

so.  Hardware performance monitors allow data to be gathered with much lower 

overhead, with the tradeoff that the types of data that can be collected are limited to 

those the system’s designers decided to support. 

To be most useful to a programmer in manually tuning an application, infor-

mation about cache behavior should be presented in a way that relates it to program 

data structures at the source code level.  We refer to this as data centric cache infor-

mation. 
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Relating cache information to data structures requires not only counting 

cache-related events, but also determining the areas of memory that are associated 

with these events.  In the past, this has been difficult to accomplish using hardware 

monitors, due to limited support for gathering such data.  As an example, processors 

that include support for counting cache misses have often not provided any way to 

determine the addresses that were being accessed to cause them. 

The situation is now changing.  Several recent processor designs include in-

creased support for performance monitoring.  Many processors have for some time 

included a way to count cache misses, and a way to trigger an interrupt when a given 

number of events (such as cache misses) occur.  Some recent processors also provide 

the ability to determine the address that was accessed to cause a particular cache miss; 

by triggering an interrupt periodically on a cache miss and reading this information, a 

tool can sample cache miss addresses.  The Intel Itanium 2 [3] supports this feature, 

and reportedly so does the IBM POWER4 [83].  There is still more progress to be 

made however; as an example, the POWER4 performance monitoring features are 

largely undocumented, and are not considered supported features of the processor. 

This dissertation will consider the problem of how to provide useful feedback 

to a programmer about the cache behavior of the source code-level data structures in 

an application.  It will present techniques for measuring cache events and relating 

them to program data structures, using both simulation and hardware performance 

monitors.  The discussion of simulation will mainly be in the context of its use in 

validating the techniques for use with hardware monitors, and to evaluate future 

hardware counter designs. 
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We will begin in Chapter 2 with a discussion of related work and how our 

work differs from it.  In Chapter 3 we will discuss gathering data centric cache infor-

mation by sampling cache miss addresses.  We will present an evaluation of this 

technique using a simulator, and show that it can be used to collect accurate informa-

tion with low overhead. 

Next, in Chapter 4, we will describe a tool called Cache Scope, which uses a 

modified version of this technique on real hardware, the Intel Itanium 2.  This tool 

was used to validate the sampling technique in real-world conditions.  It was also 

used to tune the performance of two applications, in order to demonstrate the useful-

ness of the collected data.  The optimized versions of these applications showed re-

ductions in running time of approximately 24% and 19%. 

In Chapter 5, we propose a novel hardware feature that would provide infor-

mation about the addresses of data evicted when a cache misses occurs.  We discuss a 

technique for sampling this eviction information to provide feedback to the user about 

the interactions of data structures in the cache.  We will then describe an implementa-

tion of this technique inside a simulator, which we used to show that this technique is 

feasible in terms of accuracy and overhead.  We will also show an example of opti-

mizing an application based the results from this tool, which resulted in an approxi-

mately 8% reduction in running time, in order to show the value of the information it 

provides. 

Finally, Chapter 6 will present conclusions and future work. 
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Chapter 2: Related Work 

Many types of instrumentation have been used to measure the performance of 

the memory hierarchy.  These can be thought of as lying along a continuum from 

hardware techniques that are designed into the system to software techniques that can 

instrument a program after has begin execution.  This chapter first describes some of 

these instrumentation systems, and then discusses optimizations that have been pro-

posed for improving the use of the memory hierarchy. 

2.1 Hardware Instrumentation 

An example of hardware support for software instrumentation is the HY-

PERMON performance monitoring system for the Intel iPSC/2 Hypercube [56].  This 

system provides hardware support for the collection of software events while keeping 

perturbation down, by providing an I/O port that software instrumentation can use to 

record event codes.  These codes are then timestamped and read by a node or nodes 

dedicated to saving or processing the data.  Mink et al. [64] describe a similar hybrid 

software-hardware instrumentation system that includes hardware support for includ-

ing measurements of resource usage in event records.  They also discuss an all-

hardware method, using pattern matching on virtual addresses to trigger the storage of 

events.  A monitoring system developed for the INCAS project [86] also uses a hy-

brid approach, with events generated by software sent to a Test and Measurement 

Processor that is part of each node.  This processor filters or summarizes the data and 

sends it to a dedicated central test station that presents the information to the user.  

The IBM RP3 performance monitoring hardware [13] contains support for collecting 

hardware, rather than software events.  Each Processor-Memory Element (PME) in-
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cludes a Performance Monitor Chip (PMC), which receives event signals from the 

other PME elements (with an emphasis on memory events).  The data collected can 

be read by the PME itself or by the I/O subsystem.  For both multi- and single-

processor systems, the MultiKron board [63, 64] provides a way to add performance 

monitoring hardware to a system with either an SBus or VME bus.  It provides on-

board memory to hold events, which are triggered by software.  It also provides pins 

that can be connected to host hardware in order to measure external signals, with the 

measurements written into memory as part of an event record (sample). 

Other systems have used flexibility provided by a hardware system to add in-

strumentation effectively at the hardware level.  ATUM [5] uses the ability to change 

the microcode in some processors to add instrumentation at the microcode level to 

store information about memory references.  The FlashPoint [59] system uses the fact 

that the Stanford FLASH multiprocessor [44] implements its memory coherence pro-

tocols in software that is executed by a Protocol Processor.  The designers observe 

that the support needed for measuring memory system performance is very similar to 

the support needed to implement a coherence protocol.  Therefore, in a system such 

as FLASH it is relatively easy to add performance measurement to the code that is 

normally executed by the Protocol Processor.  One thing that distinguishes FlashPoint 

from other systems discussed here is that it returns data centric information, similar to 

that returned by MemSpy [58], which will be described below.  This allows a user to 

determine what program objects are causing performance problems. 

Most modern processors include some kind of performance monitoring count-

ers on-chip.  These typically provide low-level information about resource utilization 

 5 
 



 

such as cache hit and miss information, stalls, and integer and floating point instruc-

tions executed.  Examples include the MIPS R10000 [87], the Compaq Alpha family 

[25], the UltraSPARC family [49], and the Intel Pentium [2] and Itanium [3, 36, 80] 

families.  All of these can provide cache miss information. 

Compaq’s DCPI [6] runs on Alpha processors and uses hardware counters and 

the ability to determine the instruction that caused a counted event to provide per-

instruction event counts.  On Alpha processors that use out-of-order execution, this 

requires extra hardware support called ProfileMe.  This provides the ability to sample 

instructions.  The processor periodically tags an instruction to be sampled, which 

causes it to save detailed information about its execution.  Afterward, it generates an 

interrupt, at which time an interrupt handler can read the saved information. 

Libraries are often used to simplify the use of hardware monitors, and in some 

cases to provide an API that is as similar as possible across processors.  These include 

PAPI [66] and PCL [8], both of which run on multiple platforms.  Perfmon [4] pro-

vides access to the Itanium family performance counters on Linux.  PMAPI [1] is a 

library for using the POWER family performance counters on AIX. 

2.2 Software Instrumentation 

The tools described in this dissertation use software instrumentation to control 

hardware performance monitors and gather results.  Software instrumentation can be 

inserted any time from when the source code is written (manually by the programmer) 

to after the program has begun executing.  Pablo [68, 73] uses modified Fortran and C 

compilers to produce a parse tree from source code, and then produces instrumented 

source code based on the parse tree and information supplied by the user.  Sage++ [11] 
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is a general-purpose system that facilitates the creation of tools that analyze and mod-

ify source code.  It is a library that can parse Fortran, C, or C++ into an internal repre-

sentation that can be navigated and altered using library calls.  A modified program 

can then be written out as new source code.  Sage++ has been used to implement 

pC++ [12], an object-parallel extension to C++.  ROSE [72] is a tool for building 

source-to-source preprocessors, which currently reads and produces C++ code (other 

languages may be supported in the future).  It allows a user to read in code as an ab-

stract syntax tree, transform the tree, and write it back out as code.  MPTrace [29] is a 

tool that inserts instrumentation for tracing parallel programs after compilation, by 

adding new code to the assembly language version of a program that is produced by a 

compiler. 

Many tools have been written to transform programs after compilation and 

linking.  Johnson [40] describes processing a program after linking in order to opti-

mize it, perform profiling, generate performance statistics, and for other uses.  FDPR 

[67] is a tool used to improve the code locality of programs.  First, it reads an execu-

table file and places jumps to instrumentation routines at the end of each basic block, 

in order collect information about how often each block is executed.  The instru-

mented program is then run, and based on the results the original executable file is 

rewritten again, this time reordering basic blocks in order to improve code locality 

and reduce branch penalties. 

Larus and Ball describe techniques used to rewrite executables [47] in the qp 

and qpt programs.  These programs provide basic block profiling, and qpt additionally 

uses abstract execution [46] to trace a program’s data and instruction references.  EEL 
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[48] is a general-purpose library that provides the ability to rewrite executables using 

a machine- and system-independent interface.  It has been implemented on the 

SPARC architecture.  Another general-purpose library that provides the ability to re-

write an executable file is ATOM [81, 84], which is implemented on the Compaq Al-

pha.  One difference between these two systems is that EEL is able to insert instru-

mentation code inline in an application, whereas in ATOM instrumentation is written 

as a set of functions in a high-level language (usually C) and calls to the instrumenta-

tion code are inserted.  Also, ATOM is mostly oriented toward adding instrumenta-

tion code only, whereas EEL provides more general functions for altering executables, 

such as replacing code.  Etch [78] is a tool similar to these for machines running Mi-

crosoft Windows on the x86 architecture.  Because of the environment in which it 

runs, it must deal with many challenges that similar tools running on RISC architec-

tures do not.  For instance, the instruction set is more complex, with instructions of 

varying lengths, and code and data are not easily distinguished in executable files.  

Etch allows not only adding instrumentation code to an application, but also rewriting 

the application in order to optimize it.  An example would be reordering instructions 

in order to improve code locality.  BIT [51] is a tool for instrumenting Java bytecodes.  

It is itself written in Java, and provides functionality similar to ATOM.  Because it 

instruments at the bytecode level, it can be used on any platform with an implementa-

tion of the Java Virtual Machine. 

Some systems have moved the insertion of instrumentation into a program 

even later, to when the program is loaded or after it has begun execution.  For in-

stance, Bishop [10] describes profiling programs under UNIX by dynamically patch-
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ing breakpoint instructions into their images in memory.  This allows a controlling 

application to become aware of when a particular point in the code has been reached.  

The Paragon Performance Monitoring Environment [75] includes the ability to patch 

calls to a performance monitoring library into applications that are to be run.  These 

can produce trace information that can then be analyzed.  Taking this further, Paradyn 

[62] uses dynamic instrumentation, which allows instrumentation to be generated, 

inserted, and removed during the execution of an application.  It writes instrumenta-

tion code into the address space of the application and patches the application’s code 

to call it at the desired locations, using the debugging interface of the operating sys-

tem.  The code for performing this dynamic instrumentation has been incorporated 

into the general-purpose Dyninst API library [14].  HP’s Caliper [37] uses dynamic 

instrumentation to profile programs, and also provides an interface for using hardware 

performance counters.  Its dynamic instrumentation is slightly different from Para-

dyn/Dyninst; instead of patching the target application’s code to call the instrumenta-

tion, it rewrites whole functions and inserts the instrumentation inline into the new 

function. 

Another option that allows instrumentation to be altered easily at runtime is 

simulation.  Shade [23] performs simulation with instrumentation, mainly oriented 

toward tracing.  It translates code for a target machine into code for the simulation 

host, with tracing code inline (except specialized code written by the user, which is 

executed as function calls).  The translation is done dynamically, so Shade is able to 

insert and remove instrumentation while the program executes.  The dynamic nature 

of the translation also allows it to handle even self-modifying code. 
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2.3 Memory Performance Measurement and Visualization Tools 

This section will describe some systems that have been designed with the pri-

mary goal of measuring memory hierarchy effects.  One such system is Mtool [33], a 

performance debugging tool that, among other measurements, provides information 

about the amount of performance lost due to the memory hierarchy.  To do this, it 

first computes an ideal execution time for each basic block in an application, assum-

ing that all memory references will be satisfied by the cache.  It then runs an instru-

mented version of the application that gathers information about the actual execution 

time of each basic block.  The difference between the ideal time and the actual time is 

then reported as the approximate loss in a given basic block due to the memory sys-

tem.  In contrast to the techniques presented in this dissertation, Mtool does not use 

any information about the addresses associated with memory stalls, and therefore re-

turns no data centric information. 

MemSpy [58] is a tool for identifying memory system bottlenecks.  It pro-

vides both data- and code-oriented information, and allows a user to view statistics 

related to particular code and data object combinations.  MemSpy uses simulation to 

collect its data, allowing it to track detailed information about the reasons for which 

cache misses take place.  For instance, a cache miss may be a cold miss or due to an 

earlier replacement. 

For purposes of keeping the code- and data-oriented statistics mentioned 

above, MemSpy separates code and data into bins.  A code bin is a single procedure, 

whereas a data bin is either a single data object or a collection of objects that were all 

allocated at the same point in the program with the same call path.  The authors argue 
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that such objects generally behave similarly.  Using these types of bins, they then de-

fine statistical bins, which represent combinations of code and data bins.  At each 

cache miss, the appropriate statistical bin is located and its information is updated.  

One way this differs from the techniques described in this dissertation is in the use of 

simulation for the tool itself, whereas in our work simulation is only used when prov-

ing techniques that will be used with hardware monitors.  In addition, the techniques 

we will present do not require instrumentation code to take an action at each and 

every cache miss.  MemSpy has also been used with a sampling technique, as de-

scribed in [57].  The authors modified MemSpy to simulate only a set of evenly 

spaced strings of runs from the full trace of memory references, and found that this 

technique provided accuracy to within 0.3% of the actual cache miss rate for the 

cache size and applications they tested.  This differs from the sampling performed by 

our tools, which sample individual misses out of the complete stream. 

CPROF [50] is a cache profiling system somewhat similar to MemSpy.  It 

uses simulation to collect detailed information about cache misses.  It is able to pre-

cisely classify misses as compulsory, capacity, or conflict misses, and to identify the 

data structure and source code line associated with each miss. 

StormWatch [19] is another system that allows a user to study memory system 

interaction.  It is used for visualizing memory system protocols under Tempest [74], a 

library that provides software shared memory and message passing.  Tempest allows 

for selectable user-defined protocols, which can be application-specific.  StormWatch 

runs using a trace of protocol activity, which is easy to generate since the protocols 

are implemented in software.  The goal of StormWatch is to allow a user to select and 
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tune a memory system protocol to match the communication patterns of an applica-

tion. 

SIGMA [27] is a system that uses software instrumentation to gather a trace of 

the memory references in an application, which it losslessly compresses.  The trace is 

then used as input to a simulator, along with a description of the memory system pa-

rameters to be used (cache size, associativity, etc.).  The user can also try different 

layouts of objects in memory by providing instructions on how to transform the ad-

dresses in the trace to reflect the new layout.  The results of the simulation can then 

be examined using a set of analysis tools. 

Itzkowitz et al. [38] describe a set of extensions to the Sun ONE Studio com-

pilers and performance tools that use hardware counters to gather information about 

the behavior of the memory system.  These extensions can show event counts on a 

per-instruction basis, and can also present them in a data centric way by showing ag-

gregated counts for structure types and elements.  Unlike the simulators and hardware 

counters used in the work described in this dissertation, the UltraSPARC-III proces-

sors used by this tool do not provide information about the instruction and data ad-

dresses associated with an event, so the reported values are inferred and may be im-

precise. 

Fursin et al. [30] describe a technique for estimating a lower bound on the 

execution time of scientific applications, and a toolset that implements it.  This tech-

nique involves modifying code so that it performs the same amount of computation 

but accesses few memory locations, eliminating most cache misses.  The modified 

code is then profiled to estimate the lower bound. 
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2.4 Adapting System Behavior Automatically 

Other studies have suggested ways for systems to react automatically to in-

formation gained by the measurement of memory hierarchy effects.  For instance, 

Glass and Cao [32] describe a virtual memory page replacement algorithm based on 

the observed pattern of page faults.  Their algorithm, SEQ, normally behaves like 

LRU, but when it detects a series of page faults to contiguous addresses, it switches to 

MRU-like behavior for that sequence.  Cox and Fowler [26] describe an algorithm for 

detecting data with a migratory access pattern and adapting the coherence protocol to 

accommodate it.  Migratory data is detected by noting cache lines for which, at the 

time of a write, there are exactly two copies of the cached block in the system, and 

the processor performing the write is not the same processor that most recently per-

formed a write to that block.  For these cache lines, they switch to a strategy in which 

a read miss migrates the data, by copying it to the local cache and invalidating it on 

the other processor holding a copy in one transaction. 

Bershad et al. [9] describe a method of dynamically reducing conflict misses 

in a large direct-mapped cache using information provided by an inexpensive piece of 

hardware called a Cache Miss Lookaside Buffer.  Their technique is based on the fact 

that cache lines on certain sets of pages will map to the same position in the cache.  

The Cache Miss Lookaside buffer keeps a list of pages on which cache misses occur, 

associated with the number of misses on each.  This can be used to detect when a set 

of pages that map to the same locations in the cache are causing a large number of 

misses.  All but one of the pages can then be relocated elsewhere in physical memory, 

eliminating their competition for the same area of the cache. 
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Another hardware feature that has been proposed as a means of both measur-

ing memory behavior and adapting to it is informing memory operations [35].  An 

informing memory operation allows an application to detect whether a particular ac-

cess hit in the cache.  The paper proposes two forms of this, one in which operations 

set a cache condition code that can then be tested, and one in which a cache miss 

causes a low-overhead trap.  The authors propose several uses for this facility, includ-

ing performance monitoring, adapting the application’s execution to tolerate latency, 

and enforcing cache coherence in software. 

2.5 Optimization 

Many studies have analyzed ways to improve an application’s use of the cache.  

Their results may be useful in tuning an application after identifying the sources of 

memory hierarchy performance problems using tools such as those described in this 

dissertation. 

One well-known technique is blocking, or tiling, which has been shown to 

improve locality in accessing matrices [45, 85].  This is achieved by altering nested 

loops to work on sub-matrices, rather than a row at a time.  Other techniques, includ-

ing loop interchange, skewing, reversal, fusion, and distribution have also been 

shown to be useful in improving locality [60, 85].  Lam et al. [45] and Coleman et al. 

[24] study how reuse in tiled loops is affected by the tile size, and how to choose tile 

sizes that will lead to good performance.  Rivera and Tseng [77] present techniques 

for the use of tiling in 3D scientific computations. 

One problem with tiling is that the full amount of reuse may not be obtained 

due to conflict misses, which is discussed by Lam et al. [45] and studied in detail by 
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Temam et al. [82].  Chame et al. [17] examine the factors causing conflict misses, 

self-interference (interference between items accessed by the same reference) and 

cross-interference (between items accessed in separate references).  They discuss how 

these are affected by tile size, and present an algorithm for choosing a tile size that 

will minimize them. 

Pingali et al. [70] describe Computation Regrouping, which is a source code 

level technique for transforming programs to promote temporal locality in memory 

references, by moving computations involving the same data closer together. 

Other studies have suggested changing data layout in addition to or instead of 

transforming control flow.  Methods that have been shown to be useful in eliminating 

the conflict misses discussed above include padding and alignment [50, 69, 76].  

Kandemir et al. present a linear programming approach for optimizing the combina-

tion of loop and data transformations [41].  It has also been suggested that array lay-

out should be controllable by the programmer [18].  Shackling [42, 43] is a technique 

that is similar to tiling, but which uses a data centric approach.  Shackling fixes an 

order in which data structures will be visited, and, based on this, schedules the com-

putations that should be performed when a data item is accessed. 

Ghosh et al. describe Cache Miss Equations (CME) [31], which allow them to 

express cache behavior in terms of equations that can be solved to find optimum val-

ues for transformations like blocking and padding.  Qiao et al. [71] present practical 

results from applying optimization techniques including blocking and padding to sci-

entific applications, with results consistent with predicted performance gains. 
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Another approach, which requires some hardware support, is to tolerate cache 

misses through the use of software-controlled prefetching [16, 65].  Most of the stud-

ies described above have operated on data structures such as matrices, in which the 

data layout is determined at compile time.  One advantage of prefetching is that it can 

more easily be used in the presence of pointers and pointer-based data structures [52, 

54].  For instance, Lipasti et al. [52] present a simple heuristic, that the items pointed 

to by function parameters should be prefetched at the call site for the function.  This 

is based on the assumption that pointers passed into a function are likely to be 

dereferenced.  Luk et al. [54] consider the problem of recursive data structures, and 

present several schemes for prefetching items in these structures that are likely to be 

visited in the future.  Chilimbi and Hirzel [22] describe dynamic hot data stream pre-

fetching.  As an application runs, their system profiles memory accesses to find fre-

quently occurring sequences, and inserts code into the application to detect prefixes 

of these sequences and prefetch the rest of the stream when they are detected.  

ADORE [53] is another system that inserts prefetching code at runtime, based on in-

formation about cache misses that is gathered using hardware performance counters. 

The reordering of data and computation at runtime has also been suggested for 

reducing cache misses in applications with dynamic memory access patterns [28, 61].  

Ding and Kennedy [28] describe locality grouping, which moves interactions involv-

ing the same data item together, and dynamic data packing, which relocates data at 

runtime to place items that are used together into the same cache lines.  The authors 

show that a compiler can perform these transformations automatically, with accept-

able overhead.  Methods that have been proposed for placing objects when reordering 
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data at runtime include first-touch ordering, in which items are placed in the order in 

which they will be first accessed, and the use of space filling curves (for problems in 

which data items have associated spatial locations, and interact with nearby items) 

[61]. 

Chilimbi, Hill, and Larus [21] describe cache-conscious reorganization and 

cache-conscious data layout, which attempt to place related dynamically allocated 

structures into the same cache block.  They present a system that provides two simple 

calls that a programmer can use to give a program these capabilities.  In another paper, 

Chilimbi, Davidson, and Larus [20] consider the distinct problem of how to arrange 

fields within a structure for the best cache reuse.  They describe automatic techniques 

for structure splitting and field reordering. 

A different way to reduce cache misses is to eliminate some memory refer-

ences entirely, by making better use of processor registers, as in [15].  The authors 

describe a source-to-source translator that replaces array references to the same sub-

script with references to an automatic variable.  This allows a typical compiler’s reg-

ister allocation algorithm to place the value in a register. 
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Chapter 3: Measuring Cache Misses in Simulation 

This chapter will discuss a study of data centric cache measurement using a 

cache simulator.  While the simulator can be used as a tool in its own right, this work 

will concentrate on using it to evaluate how hardware counters can be used by soft-

ware instrumentation.  This will be done by providing simulated hardware counters, 

and by running software instrumentation that uses them under the simulator so that 

we can evaluate the accuracy of the data it gathers and estimate the overhead associ-

ated with it. 

3.1 Cache Miss Address Sampling 

In order for a tool running on real hardware to relate cache misses to data 

structures, it must be able to determine the addresses that were accessed to cause 

those misses.  However, running instrumentation code to read and process these ad-

dresses every time a cache miss occurs is likely to lead to an unacceptable slowdown 

in the application being measured. 

One solution to this problem is to sample the cache misses.  This can be ac-

complished with the hardware counters on some processors.  For instance, many 

processors provide a way to count cache misses, and a way to cause an interrupt when 

a hardware counter overflows.  By setting an initial value in the counter for cache 

misses, we can receive an interrupt after a chosen number of misses have occurred. 

We also need for the processor to identify the address that was being accessed 

to cause the miss.  Simply examining the state of the processor when an interrupt oc-

curs due to a cache miss counter overflow is generally not sufficient to accurately de-

termine the addresses associated with the event that caused the interrupt.  Due to fea-
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tures of modern processors such as pipelining, multiple instruction issue, and out of 

order execution, the point at which the execution is interrupted could be a consider-

able distance from the instruction that actually caused the miss.  As an example, on 

the Itanium 2 the program counter could be up to 48 dynamic instructions away in the 

instruction stream from where the event occurred [3].  Other processor state, such as 

registers, may also have changed, making it difficult or impossible to reconstruct the 

effective address accessed by an instruction, even if the correct instruction could be 

located.  For this reason, in order to sample the addresses associated with events, the 

processor must provide explicit support. 

A further argument for sampling is that on some processors that provide the 

features described above, it may not be possible to obtain the address of every cache 

miss.  For instance, on the Intel Itanium 2 [3] and IBM POWER4 [83], a subset of 

instructions are selected to be followed through the execution pipeline.  Detailed in-

formation such as cache miss addresses is saved only for these instructions.  This is 

necessary in order to reduce the complexity of the hardware counters. 

Given the hardware support described above, we can collect sampled statistics 

about the cache misses taking place in an application’s data structures.  We will pre-

sent an example of such statistics below in Table 1, which is found in Section 3.3.1.  

These statistics were gathered by instrumentation code running under the simulator 

mentioned above.  The simulator allows us to keep exact statistics in addition to the 

sampled statistics, so that the two can be compared in order to evaluate the accuracy 

of sampling. 
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In order to measure per-data structure statistics, we associate a count with 

each object in memory, meaning each variable or dynamically allocated block of 

memory (or group of related blocks).  We then set the hardware counters (which will 

be simulated in the experiments described in this chapter) to generate an interrupt af-

ter some chosen number of cache misses.  This number is varied through the run, in 

order to prevent the sampling frequency from being inadvertently synchronized to the 

access patterns of the application.  When the interrupt occurs, we read the address of 

the cache miss from the hardware, match it to the object in memory that contains it, 

and increment its count.  After processing the current sample, the entire process is 

repeated.  The mapping of addresses to objects is performed for program variables by 

using the debug information in an executable.  For dynamically allocated memory, we 

instrument the memory allocation routines to maintain the information needed to per-

form the mapping. 

After the execution has completed, or after a representative portion of the exe-

cution, we can examine the counts and rank program objects by the number of cache 

misses caused when accessing each.  If the number of misses sampled for each object 

is proportional to the total number, this will provide the programmer with an accurate 

idea of which program objects are experiencing the worst cache behavior. 

The individual object miss counts described here are similar to the informa-

tion returned by the tool MemSpy [58].  A major difference between MemSpy and 

the present work is that MemSpy used a simulator as the primary means to gather in-

formation, whereas the simulator described in this chapter is used to demonstrate a 

low overhead technique for finding memory hierarchy problems using hardware per-
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formance counters and software instrumentation.  Also, MemSpy used simulation to 

examine all cache misses; the tool described here attempts to estimate the total cache 

misses for each object by sampling a subset.  As noted in section 2.3, a version of 

MemSpy using sampling was developed, but the samples used were runs of memory 

accesses from a full trace.  These runs were then provided as input to the cache simu-

lator.  This introduces a different kind of error from the technique discussed here, due 

to lack of knowledge about the state of the cache at the beginning of each run of ac-

cesses.  The technique described in this dissertation relies on hardware (real or simu-

lated) to provide samples of the cache misses taking place. 

3.2 The Simulator 

For the study described in this chapter, we implemented the algorithm de-

scribed above inside a simulator.  The simulator runs on the Compaq Alpha processor, 

and consists of a set of instrumentation code that is inserted into an application to be 

measured using the ATOM [81, 84] binary rewriting tool.  Code is inserted at each 

load and store instruction in the application, to track memory references and calculate 

their effects on the simulated cache.  Additionally, each basic block is instrumented 

with code that maintains a virtual cycle count for the execution by adding in a number 

of cycles for executing that block.  The cycle counts do not represent any specific 

processor, but are meant to model RISC processors in general.  The simulator does 

not model details such as pipelining and multiple instruction issue.  Since the virtual 

cycle count is the only timing data used, slowdown due to the instrumentation for 

simulation does not affect the results.  The cache simulated is a single-level, two-way 
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set associative data cache.  A cache size of 2MB was used for the experiments that 

will be described below. 

The simulator provides a cache miss counter, an interrupt that can be triggered 

when the counter reaches a chosen value, and the ability to determine the address that 

was accessed to cause a miss.  Additional instrumentation code that runs under the 

simulator uses these features to perform cache miss address sampling, and uses the 

sampled addresses to produce information about the number of cache misses caused 

by each data structure in an application.  Since this instrumentation runs under the 

simulator, it can be timed using the virtual cycle counter, and it affects the simulated 

cache, making it possible to study overhead and perturbation of the results. 

3.3 Experiments 

To investigate the accuracy and overhead of gathering data centric cache in-

formation by sampling, we ran the cache miss sampling instrumentation we described 

above under the simulator on a number of applications from the SPEC95 benchmark 

suite.  The applications tested were tomcatv, su2cor, applu, swim, mgrid, compress, 

and ijpeg.  For experiments in which we did not vary the sampling frequency, we 

used a default value of sampling one in 50,000 cache misses.  The following sections 

show the results of these experiments. 

3.3.1 Accuracy of Results 

We will first examine the accuracy of the results returned by sampling.  Table 

1 shows the objects in each application causing the most cache misses, both according 

to the sampling instrumentation and as determined using exact numbers collected by 

the simulator.  Up to five objects are shown, with objects causing less than 0.1% of 
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the total misses deleted.  Object names that consist of a hexadecimal number repre-

sent dynamically allocated blocks of memory (the number is the address). 

Actual Sampled Application Variable / 
Memory Block Rank % Rank % 

a 1 22.8 1 23.8
b 2 22.7 3 21.8
c 3 22.4 2 22.3
d 4 17.3 4 17.3

applu 

rsd 5 7.1 5 7.0
   

orig_text_buffer 1 63.4 1 62.3
comp_text_buffer 2 35.8 2 35.8compress 
htab 3 0.7 3 1.9

   
0x14102e000 1 86.0 1 89.9
jpeg_compressed_data 2 11.4 2 10.1ijpeg 
0x14102c000 3 0.4 42 0.0

   
U 1 40.7 2 41.3
R 2 40.5 1 41.4mgrid 
V 3 18.8 3 17.2

   
U 1 58.9 1 58.0
R 2 6.4 3 5.4
S 3 6.0 2 6.4
W2 – sweep 4 3.9 5 3.6

su2cor 

W1 – intact 5 3.6 4 3.8
   

VOLD 1 7.7 2 8.1
CU 2 7.7 10 7.4
POLD 3 7.7 1 8.5
UOLD 4 7.7 13 6.9
P 5 7.7 9 7.4
CV 7 7.7 5 8.0
Z 9 7.7 4 8.0

swim 

VNEW 12 7.7 3 8.1
   

RY 1 22.5 2 22.1
RX 2 22.5 1 22.9
AA 3 15.0 3 15.0
Y 4 10.0 5 10.0

tomcatv 

X 5 10.0 4 10.4
Table 1: Results for Sampling Under Simulator 
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The “rank” columns show the order of the objects when ranked by number of 

cache misses.  The percent columns show the percentage of all cache misses that were 

due to the named variable or block of memory.  The “actual” pair of columns shows 

exact values collected at a low level in the simulator, and the “sampled” columns 

show the values as measured by the sampling algorithm. 

Generally, the results were indicative of the actual number of cache misses 

occurring due to references to each object.  For almost all applications, sampling 

ranked the objects in order by the number of actual cache misses, except when the 

difference in total cache misses caused by two or more objects was small (less than 

one percent). 

The largest error in the percent of cache misses estimated by sampling was 

seen in ijpeg, where the memory block with the base address 0x14102e000 caused 

3.9% fewer cache misses than estimated.  Since this object caused 86% of all cache 

misses, this difference did not affect the ranking of the objects.  The next largest error 

was the estimate for the array V in mgrid, which differed from the actual value by 

1.5%; all other errors for the objects shown were smaller than this.  We can conclude 

that for these applications, sampling at the rate used, one in 50,000 cache misses, pro-

vided information that was accurate enough to be useful. 

3.3.2 Perturbation of Results 

Another aspect of accuracy is how the instrumentation code itself affects the 

values being measured.  In the case of sampling cache misses, we are interested in 

how many cache misses are being caused by the instrumentation code rather than the 

original application.  Figure 1 shows the percent increase in cache misses for each 
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application when run with sampling at the frequencies given in the legend.  Note that 

the scale of the y axis, showing the percentage, is logarithmic. 
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Figure 1: Increase in Cache Misses Due to Instrumentation (Simulator) 

The results shown were gathered by running the sampling code under the 

simulator along with the application, and comparing the results with runs of the appli-

cation alone under the simulator, with no sampling.  For all runs with and without in-

strumentation, the applications were allowed to execute for the same number of ap-

plication instructions (this was made possible by the simulator).  Operating system 

code is not included in the simulator, so the cache effects of kernel code for context 

switches and the delivery of signals for sampling was not modeled. 

The increase in cache misses was very low for all applications.  The largest 

increase, when sampling one in every 1,000 cache misses while running ijpeg, was 

approximately 0.15%.  The larger increase in ijpeg relative to the other applications is 

due to the fact that ijpeg normally has a lower cache miss rate, only 144 misses per 

million cycles, and therefore a smaller absolute number of additional cache misses are 
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required to cause a larger percent increase.  For comparison, the application with the 

next lowest miss rate is compress, with 361 misses per million cycles, followed by 

mgrid, with 6,827.  

Interestingly, for mgrid, applu, and compress, the number of additional cache 

misses goes up as the sampling frequency goes down, until we reach a sampling fre-

quency of one miss per million.  This effect is likely due to the frequency with which 

the instrumentation code runs; when it is run often, the data it uses is kept in the cache, 

whereas when it is run less frequently, the data is more likely to be evicted from the 

cache before the next time the instrumentation code is run to sample a miss.  At ex-

tremely low sampling frequencies, this effect becomes unimportant.  Factors that af-

fect whether or not this phenomenon will occur with a given application include the 

cache miss rate, the size of the memory object map used by the instrumentation, and 

frequency with which cache misses land in the same set of objects. 

3.3.3 Instrumentation Overhead 

Figure 2 shows the increase in running time due to instrumentation code when 

sampling with each of the frequencies shown in the legend, for each application tested.  

The increase is shown as the percent increase over an uninstrumented run of the same 

application.  These times are in terms of the virtual cycle count maintained by the 

simulator.  Again, the scale of the y axis is logarithmic. 

The values shown include the time spent executing instrumentation for sam-

pling (in virtual cycles), plus a cost for receiving each interrupt signal that triggers the 

instrumentation to take a sample.  For this value, we used results obtained experimen-

tally on an SGI Octane workstation with 175Mhz processors.  We used the perform-
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ance counter support in the Irix operating system to cause an interrupt after a chosen 

number of cache misses, which we varied.  The cost measured was approximately 50 

microseconds per interrupt, or 8,800 cycles.  While the clock speed of the processors 

used for this test was relatively slow, the number of cycles it takes to handle an inter-

rupt likely has not significantly changed on newer processors. 
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Figure 2: Instrumentation Overhead (Simulator) 

The chart shows that the overhead is low unless sampling is performed too of-

ten.  At a sampling rate of one in 10,000 misses, which was shown to be sufficient in 

Section 3.3.1, the highest slowdown was 1.6%, for tomcatv.  The overhead increases 

almost linearly as we increase the sampling frequency.  At a sampling frequency of 

one in 1,000 misses, the overhead becomes significant, with the highest overhead be-

ing approximately 16%, again for tomcatv.  However, even this slowdown may be 

acceptable, depending on the application. 
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3.3.4 Simulation Overhead 

This section discusses the overhead in actual wall clock time that is incurred 

by running an application under the cache simulator.  This is distinct from the over-

head discussed in Section 3.3.3, which is the overhead of the instrumentation code 

that performs sampling, as measured in virtual cycles by the simulator.  Figure 3 

shows the slowdown of each application when running under the simulator, in units 

of normalized execution time of the application running natively outside the simulator.  

This means that a value of ten on the y axis (“slowdown”) indicates ten times the exe-

cution time of the program running outside the simulator. 
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Figure 3: Slowdown Due to Simulation 

The execution time for each application is split up into three categories.  The 

“cycle count” portion represents the slowdown due to the code that maintains the vir-

tual cycle count.  “Load/store” represents the slowdown due to having instrumenta-

tion at all load and store instructions.  This is measured as the time taken to jump to 

and return from an empty function at each load and store.  The “cache simulation” 
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time represents the time added by performing the cache simulation inside the function 

called at each load and store. 

For all applications, the slowdown due to running under the simulator is large, 

ranging from approximately a 37 times slowdown for tomcatv to approximately 109 

times for ijpeg.  The largest part of this overhead is cache simulation time, which ac-

counts for from a 30 times slowdown for tomcatv to a 90 times slowdown for mgrid.  

This is followed by the load/store time (a 5 to 25 times slowdown), and then time 

maintaining the virtual cycle count (a 2 to 20 times slowdown).  The cache simulation 

time could possibly be reduced by optimizing the simulation code, but the load/store 

and virtual cycle count times are mostly due to the overhead of jumping to instrumen-

tation code, and cannot be reduced without using a different method of instrumenta-

tion.  This is a strong argument for why hardware support for data centric cache in-

formation is needed.  With hardware support, a tool incurs only the overheads talked 

about in Section 3.3.3, and not the much higher overhead of simulation. 

3.4 Conclusions 

In this chapter, we have discussed how to use hardware support for sampling 

cache miss addresses to collect information about the behavior of data structures at 

the source code level.  We then described an implementation of this technique that 

runs under a cache simulator.  Our experiments using this simulator showed that sam-

pling can provide accurate information with low overhead. 

We also discussed the overhead of the cache simulator.  The applications we 

tested showed slowdowns of up to 109 times when run under the simulator.  From 
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this, we conclude that using hardware support is highly desirable for gathering data 

centric cache information, in order to avoid the high overhead of simulation. 
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Chapter 4: Measuring Cache Misses Using Hardware Monitors 

This chapter describes a tool named Cache Scope that uses the hardware per-

formance monitors on the Intel Itanium 2 processor to gather data centric cache in-

formation.  The instrumentation code used by Cache Scope is a modified and ex-

panded version of the cache miss sampling code described in Chapter 3.  One major 

addition is that it also gathers code centric information, which can be combined with 

the information about data structures.  For instance, it is possible to examine where in 

the code the cache misses for a particular memory object took place.  The following 

sections describe the Itanium 2 and its performance monitoring features, the imple-

mentation of cache miss address sampling in Cache Scope, the results of a set of ex-

periments using Cache Scope, and examples of tuning applications based on informa-

tion from the tool. 

4.1 Intel Itanium 2 Performance Monitoring 

The experiments described in this chapter were performed on a two-processor 

system with Intel Itanium 2 processors.  The Itanium 2 is a VLIW processor with 

many features for speculation and for making use of instruction level parallelism [36, 

80].  It is an implementation of the IA-64 architecture, which was developed jointly 

by Intel and Hewlett-Packard. 

The IA-64 architecture specifies basic performance monitoring support, and 

provides for extending it with features specific to each implementation.  The Itanium 

2 provides substantial performance monitoring abilities beyond those mandated by 

the IA-64 architecture, including features that allow the sampling of cache miss ad-

dresses [3]. 
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4.1.1 PMC and PMD Registers 

Every IA-64 implementation must provide at least four performance monitor 

register pairs.  Each pair consists of a Performance Monitor Control register (PMC) 

and a Performance Monitor Data Register (PMD).  These are labeled PMC/PMD4 

through PMC/PMD7 .  The PMC register in a pair specifies what event will be 

counted, under what conditions it will be counted (for instance, in what privilege lev-

els), and whether or not interrupts will be generated when the value being counted 

overflows.  These registers are only accessible in privilege level zero (the highest).  

The PMD registers contain the actual values; they are writable only at privilege level 

zero, but are readable by code running at other levels.  Optionally, setting a bit in an-

other special register, the Processor Status Register (PSR), causes the PMDs to return 

zero when read from a non-zero privilege level, effectively making reading the PMDs 

a privileged operation.  This can also be done on a per counter pair basis.  In the ex-

periments described in this dissertation, all reading and writing of performance moni-

tor registers is performed in the kernel at privilege level zero. 

On the Itanium 2, the PMD registers are 48 bits wide.  When a PMD register 

is read, the top 16 bits are copied from the high bit of the 48 bit value, so that it ap-

pears sign extended. 

All IA-64 implementations also include four additional PMC registers that 

contain overflow status bits.  These are labeled PMC0 through PMC3.  When a 

counter overflows, a corresponding bit in one of these four registers is set to one.  

PMC0 also contains a “freeze” bit (labeled PMC0.fr), which freezes all counting when 

set.  This will be discussed below in connection with counter overflow interrupts. 
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The IA-64 architecture specifies only two events, which are: instructions re-

tired, which counts all instructions that execute fully; and processor clock cycles.  

The Itanium 2 adds over 100 events beyond these.  The events used by the instrumen-

tation described in this dissertation are: L1 data cache read misses, L1 data cache 

reads, L2 data cache misses, and a special event that counts L1 data cache read misses 

and allows the measurement code to determine instruction and data addresses associ-

ated with the miss. 

4.1.2 Performance Monitor Overflow Interrupt 

In order to sample information about cache miss events, it is necessary for in-

strumentation code to be notified periodically that an event has occurred.  The IA-64 

architecture specifies a performance monitor overflow interrupt that can be used for 

this purpose.  Since the PMD registers are writable, by setting an initial value in a 

PMD, it can be made to overflow after a chosen number of events have occurred. 

Interrupts can be enabled or disabled independently for each PMD by setting a 

bit in the corresponding PMC (the overflow interrupt bit, PMCn.oi).  As mentioned 

earlier, when a PMD overflows, a corresponding bit in one of PMC0 through PMC3 is 

set to indicate the overflow.  If the overflow interrupt (PMCn.oi) bit is set, the proces-

sor then sets the freeze bit, PMC0.fr, and raises a performance monitor interrupt.  Set-

ting the freeze bit stops the counters, so that the values read by the interrupt handler 

do not reflect an event caused by the interrupt handler itself. 

4.1.3 Event Addresses 

The Itanium 2 processor features a set of registers named the Event Address 

Registers (EARs) that provide addresses and other information related to events tak-
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ing place in the cache and TLB.  They can record instruction and data addresses for 

data cache load misses and data TLB misses, and instruction addresses for instruction 

cache and instruction TLB misses.  For cache misses, they can also record the number 

of cycles the fetch was in flight (the latency of the miss).  They are configured 

through the Instruction Event Address Configuration register, PMC10, and the Data 

Event Address Configuration Register, PMC11.  The options that can be set using 

these registers include what events to monitor, such as cache vs. TLB events; what 

privilege modes to monitor in; whether to allow user mode code to read the register; 

and a minimum latency value for the counted events (for example, if monitoring L1 

data cache load misses, only misses with a latency equal to or higher than the mini-

mum latency value will be monitored).  The data values are read from a set of PMDs, 

PMD0 and PMD1 for instruction events and PMD2, PMD3, and PMD17 for data events.  

These can only be read when PMC0.fr is set, freezing the performance counters. 

In the case of data cache load misses, the processor must track load instruc-

tions as they pass through the pipeline in order to determine the information recorded 

by the Data EAR.  The processor can track only one instruction at a time, so not all 

miss events can be recorded by the Data EAR; while it is tracking one load, all others 

are ignored.  The processor randomizes which load to track, in order not to skew 

sampling results.  There is a special event that the performance monitor can count 

called DATA_EAR_EVENTS, which counts the number of events tracked by the 

Data EAR.  By counting this event and enabling an interrupt on overflow, an interrupt 

handler can be certain that the Data EAR values it reads are associated with the last 

event tracked by the Data EAR.  If the Data EAR is set to track data cache load 
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misses, then the DATA_EAR_EVENTS event is a random subset of all data cache 

load misses, allowing sampling of the addresses associated with the misses. 

One other important fact to note is that the Data EAR mode that tracks L1 

data cache load misses also tracks floating point loads.  On the Itanium 2, the L1 data 

cache handles only integer data, so all floating point loads go to the L2 cache and 

may be sampled by the Data EAR. 

4.2 Linux IA-64 Performance Monitoring Interface 

Access to the performance monitors under Linux is through the “perfmon” 

kernel interface [4], which is part of the standard Linux kernel for IA-64.  Such a ker-

nel interface is necessary in order to use the performance monitors from user-level 

code, since the performance monitor control registers are accessible only from privi-

lege level zero.  Perfmon’s interface is a single kernel call named perfmonctl. 

In order to make the perfmon interface portable to different IA-64 implemen-

tations, it provides only a thin layer over the hardware registers, with its main purpose 

being to allow user-level code to read and write them.  The idea is to provide an im-

plementation-independent way to access the implementation-dependent performance 

monitoring features.  This is possible because the IA-64 architecture specifies the ba-

sic framework for the performance counters.  For instance, putting a certain value in 

PMC4 will allow a user to count a certain event on the Itanium 2, but may count some 

other event on another IA-64 processor.  Perfmon would provide only a way to write 

a value into PMC4, and does not have any knowledge of the meaning of the value. 

Another function of perfmon is to virtualize the counters on a per-process ba-

sis.  A program can choose between monitoring events system-wide or for a single 
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process.  In order to accomplish this, perfmon must be called from the context-switch 

code, and for this reason it was made a part of the kernel, not an installable device 

driver. 

Perfmon also provides support for randomizing the interval between counter 

overflows.  The user specifies a mask that will be anded with a random number, with 

the result being added to the number of events that will pass before an overflow (this 

is actually accomplished by subtracting it from the initial value set in the counter). 

In order to make the perfmonctl call easier to use, the perfmon project has also 

produced a library named libpfm, which simplifies the task of programming the 

counters.  Given a set of events to count, libpfm determines which registers can be 

used to count them, and returns the values that should be written into the hardware 

registers to do so.  It does not set the registers itself; that is done by calling perfmonctl.  

The events are specified by names passed to the library as strings. 

Libpfm is made up of two layers, a processor-independent layer that handles 

the basic functionality specified in the IA-64 architecture, and a processor-dependent 

layer that handles the functionality specific to a particular processor.  There are proc-

essor-dependent layers for the Itanium and Itanium 2 processors.  The Itanium 2 sup-

port includes features for setting up the Instruction and Data EARs, which are used in 

the work described below to capture cache miss addresses. 

4.3 Cache Scope 

We implemented a tool named Cache Scope that gathers data centric cache in-

formation using the Itanium 2 performance counters.  The tool consists of a set of in-

strumentation code that is added to an application to be measured, and an analysis 

 36 
 



 

program that allows a user to examine the data that was gathered.  These are de-

scribed below. 

4.3.1 Instrumentation for Sampling Cache Misses 

The part of Cache Scope that collects data centric cache information about an 

application is implemented in a library named libdcache_tool.  To measure an appli-

cation, the user links it with this library, and inserts into the application a call to an 

initialization function, dctl_initialize.  Optionally, the user can also insert calls to the 

functions dctl_start_measurement and dctl_stop_measurement, to control what part of 

the execution will be monitored. 

In order to track dynamic memory allocations, calls to functions such as mal-

loc must be replaced with equivalent calls supplied by Cache Scope (for instance, 

dctl_malloc in the case of malloc).  This is normally done by adding preprocessor 

flags when compiling the program, for instance “-Dmalloc=dctl_malloc.” 

There is also a partially completed version of the instrumentation code that 

uses the Dyninst API [14] dynamic instrumentation library to insert all necessary calls 

into the application at runtime.  This version was not used in the work described in 

this chapter because Dyninst did not yet support the IA-64 architecture when the 

work was done.  A completed version of Cache Scope that uses Dyninst would elimi-

nate the requirement to link with the tool library and to manually insert library calls. 

The instrumentation code uses libpfm and perfmon to set the Itanium 2 hard-

ware performance monitors to count L1 data cache read misses, L1 data cache reads, 

L2 cache misses, and Data EAR events.  The Data EAR is set to record information 

about L1 data cache load misses and floating point loads. 
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The interrupt on overflow bit is set for the counter counting Data EAR events 

(cache misses).  The number of Data EAR events between interrupts is controllable 

by the user, by setting an environment variable before executing the program to be 

measured.  When the interrupt occurs, the instrumentation code reads the address of 

the instruction that caused the cache miss, the address that was being accessed, and 

the latency of the instruction.  It then updates the data structures for the appropriate 

memory object (as described below) and restarts the counters.  When restarting the 

counters, it uses the randomization feature of perfmon to control the number of Data 

EAR events between samples, to ensure a representative sampling of events. 

For purposes of keeping statistics, memory objects are grouped into equiva-

lence classes, which we refer to as stat buckets.  Each global or static variable in the 

program is assigned its own stat bucket.  When a block of memory is dynamically 

allocated, a bucket name is either automatically generated or is supplied by the user, 

as described below; this name identifies the bucket to which the block is assigned.  

Different blocks may have the same bucket name, so that multiple blocks are assigned 

to a single bucket.  This is useful when a group of blocks are part of the same data 

structure, as in a tree or linked list.  Automatically assigned names are generated 

based on the names of the top three functions on the call stack above the memory al-

location function that allocated the object.  Explicit bucket names are assigned by the 

user, by replacing the call to an allocation function with a call to a routine in Cache 

Scope’s libdcache_tool library that takes an extra parameter, which is the bucket 

name to assign to the block.  Typically, a user would run the tool first without explic-

itly naming blocks, and then based on what functions were shown to be allocating 
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blocks with performance problems, he or she would add explicit names to memory 

allocation calls in those functions, to differentiate them from each other.  The map of 

memory locations to stat buckets is maintained in an interval tree that is implemented 

using a red-black tree, in order to provide range queries and efficient insertions, dele-

tions, and lookups.  The locations of variables are derived from the debug information 

in the executable to be measured.  The locations of dynamically allocated memory are 

obtained by the Cache Scope memory allocation functions mentioned above. 

The information stored in a bucket is illustrated in Figure 4.  A bucket keeps a 

count of cache events (L1 data cache misses or floating point loads) that have taken 

place when accessing the objects associated with the bucket, and the sum of the laten-

cies of these events.  This information is split up by the functions in which the cache 

events occurred, adding code centric information to supplement the data centric in-

formation we are primarily concerned with.  This data is kept in a vector, with an en-

try for each function in which cache misses have occurred for this bucket.  The vector 

data structure was chosen to conserve memory, since the entries do not require point-

ers to parents or children, as they would in a tree structure.  This is necessary because 

there are potentially a very large number of combinations of memory object and func-

tion that may occur in a run.  The vector is sorted by a unique number that identifies 

the function associated with each entry, so the entry for a function can be found using 

a binary search.  While faster schemes are certainly possible, the overhead of using 

this data structure has not been a problem.  In addition to the cache information, each 

bucket also contains various statistics such as the number of objects assigned to the 

bucket and their sizes. 
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Stat Bucket for array1 
Cache Misses 

func1() func2() func3() 
   

events: 1,863 events: 53 events: 672 
latency: 260,820 latency: 7,420 latency: 94,080 

Total bytes allocated: 128,000 
Number of objects: 2,000 
Max object size: 64 

 
Figure 4: Stat Bucket Data Structure 

When an interrupt occurs, first the data address of the associated cache miss or 

floating point load is mapped to a bucket using the interval tree.  The interval tree 

contains a number that identifies the bucket.  This number is used as an index into an 

array of bucket structures, and within the desired bucket structure is a field that is the 

vector of function information.  In this vector, functions are identified by a unique 

numeric identifier.  To find the unique identifier to look for in the vector, the instruc-

tion address associated with the cache miss is looked up in a map of addresses to 

functions.  This map is implemented as a sorted list of functions with their associated 

address ranges, which can be queried using a binary search.  The information for this 

map comes from the debug information in the executable being measured.  The map 

contains the unique identifier for the function, which is then used in the binary search 

through the vector of function information found earlier.  This returns the structure 

that represents the data for cache events that take place in the given bucket and func-
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tion.  Finally, the counts in this structure are updated with the information for the 

event. 

4.3.2 Data Analysis Tool 

When measurement is finished, Cache Scope writes all the data it collected 

out to a file in a compact format.  This file can be read in by an analysis program 

called DView.  DView is written in Java, and so is portable to any system for which 

Java is available. 

DView provides a simple set of commands for examining the data.  Figure 5 

shows a sample session in which the tool is used to examine the cache events in the 

application mgrid.  There are commands that produce tables of the objects or func-

tions causing the most latency, as well as commands that can combine the data centric 

and code centric data.  For instance, a user can produce a table of the functions caus-

ing the most latency when accessing a certain data structure, or the data structures 

experiencing the most latency in a given function.  Note that the tool presents infor-

mation in terms of the latency associated with sampled events, rather than simply 

counts of cache misses. 

DView is also able to provide information about the non-cache-related statis-

tics that are kept by the instrumentation code, such as the number of allocated mem-

ory objects that belong to a given bucket, and the size of those objects.  This can be 

useful in tuning cache performance, as will be seen in the examples in Sections 4.5.1 

and 4.5.2. 
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DView 1.0 
                   Application: mgrid_base.ia64_linux 
                 Total latency:            2,751,228 
               Total L1 misses:            2,412,080 
               Total L2 misses:        2,402,079,498 
                Sampling scale:               32,768.50 
             Estimated latency:       90,153,614,718 
               Average latency:                    6.50 
 
Command? objects 
Objects by latency: 
 
Object                    Latency  %Latency   %Events      LPer 
All                        90,154    100.0%    100.0%       6.5 
cmn_x_u__                  56,661     62.8%     64.8%       6.3 
cmn_x_r__                  30,487     33.8%     33.4%       6.6 
cmn_x_v__                   2,640      2.9%      1.5%      12.9 
<UNKNOWN>                     162      0.2%      0.1%       8.2 
cmn_x_a__                     118      0.1%      0.1%       8.0 
 
Latency values in millions. 
 
Command? quit 

Figure 5: DView Sample Session 

4.4 Experiments 

We ran a series of experiments in which we used Cache Scope to measure the 

cache misses in a set of applications from the SPEC CPU2000 benchmark suite.  One 

goal of this study is to validate the conclusions we made from the simulation results 

in the previous chapter by running the sampling technique on hardware.  For instance, 

running on hardware will allow us to measure the overhead of the instrumentation 

code and how the code affects cache misses in a real-world setting.  Another goal is 

to examine how varying the sampling rate affects these values.  This information is 

likely to differ from what was observed under the simulator, due to the fact that we 

will be sampling not only L1 data cache misses but also all floating point loads. 

The applications used in the experiments were wupwise, swim, mgrid, applu, 

gcc, mesa, art, mcf, equake, crafty, ammp, parser, gap, and twolf.  They were com-
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piled using gcc 3.3.3.  We ran each application a number of times while sampling 

cache misses at different rates, in order to examine the effect of varying this parame-

ter.  The rates given are averages; the actual number of events between samples was 

randomly varied throughout the run.  For tests in which we did not vary the sampling 

frequency, we chose one in 32K as our default rate. 

We also ran tests in which we did not sample cache misses, but did use the 

hardware counters to gather various overall statistics to be compared with the runs in 

which sampling was performed.  The only statistics gathered in these runs were those 

that could be measured with almost no overhead, by starting the counters at the be-

ginning of execution and reading their values at the end, without any requiring any 

interrupts while the applications were running. 

The results presented are averages over three runs of each application.  The 

following sections describe the data obtained from these experiments. 

4.4.1 Perturbation of Results 

Figure 6 shows the increase in L2 cache misses seen in each application we 

tested when sampling at the rates shown in the legend, over the number of cache 

misses observed when no sampling was performed.  Striped bars represent negative 

values with the absolute value shown.  Note that the scale of the y axis is logarithmic.  

Table 2 shows the absolute number of cache misses (in billions) with no sampling and 

when sampling at the rates shown.  We are concerned primarily with the L2 cache for 

several reasons.  First, the L1 cache on the Itanium 2 handles only integer loads.  

Second, the penalty for going to the L2 cache is small, as low as five cycles for an 

integer load and seven cycles for a floating point load [55].  Third, the L1 cache is 
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only 16KB while the L2 is 256KB.  For these reasons, most optimization on the Ita-

nium 2 will likely target the L2 cache. 
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Figure 6: Increase in L2 Cache Misses on Itanium 2 

L2 Cache Misses (Billions) at Sampling Rate Application None 512K 32K 2K 128 
ammp 3.76 3.77 3.80 4.03 4.18 
applu 2.11 2.11 2.12 2.14 2.12 
art 2.97 2.97 2.97 2.98 2.98 
crafty 0.11 0.11 0.12 0.17 0.29 
equake 2.01 1.90 1.97 1.92 1.99 
gap 0.55 0.55 0.55 0.56 0.59 
gcc 0.52 0.55 0.56 0.58 0.70 
mcf 6.01 6.03 6.03 6.07 6.27 
mesa 0.14 0.14 0.15 0.19 0.20 
mgrid 2.39 2.39 2.40 2.43 2.43 
parser 1.71 1.70 1.71 1.82 2.08 
swim 6.88 6.88 6.89 6.93 6.92 
twolf 4.79 4.69 4.71 4.85 5.48 
wupwise 0.68 0.68 0.70 0.70 0.71 

Table 2: L2 Cache Misses on Itanium 2 in Billions 
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The increase in L2 cache misses for most applications was relatively small ex-

cept at the two highest sampling frequencies, and as will be discussed below, some 

applications actually showed a decrease in cache misses in the sampled runs.  It is 

important to note that the sampling frequencies used here cannot be directly com-

pared to those used in the simulations discussed in Chapter 3.  The major reason for 

this is that the event used is different.  Whereas in the simulator the interrupt was 

triggered by a specified number of cache misses, on the Itanium 2, L1 data cache 

misses and floating point loads both contribute to the count that triggers the interrupt.  

In addition, under the simulator we were only able to collect statistics for a limited 

portion of each run, due to the high overhead in running time of the simulator.  We 

therefore needed to use a high sampling frequency in order to extract as much infor-

mation as possible in this limited period. 

When sampling one in 512K events, the highest increase in misses was seen in 

gcc, which had an approximately 5.3% increase.  One feature of this application that 

differentiates it from most of the others is that it frequently allocates and deallocates 

memory in the heap.  Therefore, we might suspect that the instrumentation code that 

maintains the map of dynamically allocated memory may be the cause of the cache 

disruption.  In order to test this possibility, we reran gcc with the code that maintains 

the dynamic memory map, but without doing any sampling.  These runs produced an 

average increase in L2 cache misses of 6.9%, which was very close to and actually 

slightly higher than the 5.3% we saw when sampling.  Therefore, we conclude that 

the increase in cache misses is primarily due to the code for maintaining the map of 
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dynamically allocated memory.  After gcc, the next highest increases in L2 misses 

were seen with crafty, with a 2.3% increase. 

At a sampling frequency of one in 32K events, the highest increases in cache 

misses are seen in gcc, with a 6.1% increase, crafty with 6.3%, and mesa, with 6.5%.  

As we further increase the sampling frequency, we see increases in cache misses as 

high as 168%, seen when running crafty while sampling one in 128 cache misses.  

This shows that increasing the sampling rate does not necessarily lead to increased 

accuracy, due to the instrumentation code significantly affecting cache behavior. 

As noted above, some applications showed a small decrease in cache misses 

when running with sampling as compared to runs without.  The largest of these was 

seen in equake, which showed a decrease in L2 cache misses of 5.3% when sampling 

one in 512K events.  This is likely due to the fact that the instrumentation code allo-

cates memory, which can affect the position of memory blocks allocated by the appli-

cation.  It was observed by Jalby and Lemuet [39] that for a set of applications they 

examined running on the Itanium 2, factors such as the starting addresses of arrays 

had a significant effect on cache behavior.  In Section 4.5.1, we present data from 

equake and how the data was used to perform optimizations; while we were doing 

this work, we found equake to be particularly sensitive to this phenomenon.  This 

may also account for some of the increase in cache misses seen when running gcc 

with the memory allocation tracking instrumentation. 

4.4.2 Instrumentation Overhead 

Figure 7 shows the percent increase in running time for each application when 

sampling at the frequencies shown in the legend.  This increase is over the running 
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time of the application with no sampling instrumentation.  The scale of the y axis is 

logarithmic, with striped bars representing negative values with the absolute value 

shown.  The overhead measured includes all instrumentation, both for sampling cache 

miss addresses and for tracking dynamic memory allocations. 
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Figure 7: Instrumentation Overhead (Itanium 2) 

For the two lowest sampling frequencies tested, the overhead was acceptable 

for all applications.  Looking at the higher of these frequencies, sampling one in 32K 

events, the overhead was less than 1% for ten out of the fourteen applications tested.  

The remaining applications were ammp and swim with overheads between 1 and 2%, 

gcc with an overhead of approximately 2.3%, and equake with an overhead of ap-

proximately 7.7%. 

One reason for the higher overhead in equake appears to be the number of 

memory objects it allocates.  More memory objects lead to a larger data structure that 

the instrumentation code must search through in order to map an address to a stat 
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bucket.  Including both variables and dynamically allocated blocks of memory, 

Equake declares or allocates 1,335,667 objects during its run, while the application 

with the next highest number of allocations, twolf, declares or allocates 575,418.  

Eight of the thirteen applications declare or allocate approximately 1,000 or fewer 

objects. 

4.5 Tuning Using Data Centric Cache Information 

Previous sections have discussed how data centric cache information can be 

measured using sampling, the hardware features that enable this, and statistics about 

the overhead and accuracy of our implementation of sampling in simulation and on 

the Itanium 2.  We will next examine the question of the value of the information 

provided by the tool. 

This section will examine two example applications from the SPEC CPU2000 

benchmarks, equake and twolf.  We used Cache Scope to analyze these applications 

and to tune their performance by improving their utilization of the cache.  We will 

follow this analysis and optimization step by step, to demonstrate how the tool al-

lowed us to quickly locate where the applications were losing performance due to 

poor cache utilization, and to determine how data structures could be changed to en-

able better cache use. 

As we will describe, we were able to achieve significant gains in performance 

for both applications, showing the usefulness of the information provided by the tool.  

This was accomplished in a short time; one day for equake, and a few days for twolf.  

The programmer optimizing the applications (the author of this dissertation) had no 

prior familiarity with the source code of either application, and relied entirely on the 
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cache tool to determine what data structures and code to focus on for tuning.  Fur-

thermore, the optimizations we will describe consisted almost entirely of changes to 

the data structures in the applications, with few changes to the code. 

4.5.1 Equake 

We will first examine equake.  This is an application that simulates seismic 

wave propagation in large valleys, and was written by David R. O'Hallaron and Lou-

kas F. Kallivokas [7, 34].  It takes as input a description of a valley and seismic event, 

and computes a history of the ground motion.  It performs the computations on an un-

structured mesh using a finite element method. 

We ran this application with Cache Scope to measure its cache behavior.  The 

first interesting piece of information this provided was that the hit ratio of reads in the 

L1 data cache is only about 64% (this is the ratio of L1 data cache hits to loads that 

are eligible to be cached in the L1 data cache).  This low hit ratio suggests that cache 

behavior could be a performance problem in this application, although it is important 

to remember that on Itanium 2 the L1 cache is not used for floating point loads. 

Another piece of information that the tool can provide is the average latency 

of a cache event.  For equake, this is 21.3 cycles.  This is high relative to most of the 

other applications tested.  This value ranged from 6.5 cycles for mgrid to 73.2 cycles 

for mcf; however, only three of the applications tested had average latencies greater 

than equake’s.  This may also indicate that cache performance is being lost due to 

poor cache utilization. 

Next we will look at which data structures in the application are causing the 

most latency.  As noted in Section 4.3.2, Cache Scope returns information in terms of 
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latency rather than the number of cache misses.  It is important to note that latency 

does not indicate the number of cycles the processor is stalled waiting for a load.  The 

Itanium 2 performance monitor defines the latency of a load instruction as the number 

of cycles the instruction is in flight.  Multiple loads may be outstanding at any given 

time, and instruction level parallelism may allow the processor to continue executing 

other instructions while waiting for data.  Nevertheless, using latency as the main 

metric allows the tool to return more useful information than a simple count of L1 

data cache misses would, since it takes into account the effects of all three levels of 

cache.  Another point to note is that the latency values returned by Cache Scope are 

based only on the subset of events that are tracked by the Data EAR, and as such may 

be an underestimate.  Not all events are tracked by the Data EAR because it can track 

only one load instruction at a time (see Section 4.1.3).  

Table 3 shows the stat buckets in the application that cause the most latency, 

sorted by latency.  As described in Section 4.3.1, a stat bucket represents a data struc-

ture in memory.  It can be a global or static variable, a block of dynamically allocated 

memory, or a number of related blocks of dynamically allocated memory.  For this 

run, we allowed the tool to automatically group dynamically allocated memory into 

stat buckets.  In this example, there are two automatically named buckets, mem_init-

main and readpackafile-main. 

Stat Bucket Latency 
(millions) % Latency % Events Latency/ 

Event 
mem_init-main 97,184 95.6% 84.8% 24.0 
Exc 2,098 2.1% 8.1% 5.4 
<STACK> 1,115 1.1% 4.6% 5.0 
readpackfile-main 679 0.7% 0.1% 102.1 
<UNKNOWN> 548 0.5% 2.3% 5.0 

Table 3: Data Structure Statistics in Equake 
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The “Latency” column shows an estimate of the absolute number of cycles of 

latency caused by objects assigned to the given stat bucket, in millions.  The “% La-

tency” column shows the percentage of all latency in the application that was caused 

by the stat bucket.  “% Events” shows the percent of all sampled events that were 

caused by the bucket.  Finally, “Latency/Event” shows the average latency for the 

cache misses caused by the bucket. 

The <STACK> bucket represents the stack.  The tool is able to create a sepa-

rate bucket for the stack frame of each function, but this creates additional overhead 

and was not used in this run.  <UNKNOWN> represents all memory that is not asso-

ciated with a known object.  This includes such objects as memory used by runtime 

libraries that do not have debug information, and any memory that was dynamically 

allocated by a library that was not processed by the tool.  As mentioned above, the 

remaining two buckets are automatically named, indicating that they were allocated 

from the functions mem_init and readpackfile, both of which were called from main. 

The most important bucket is obviously mem_init-main, which causes 95.6% 

of the latency in the application.  Looking at the function mem_init, we see that it 

uses malloc to allocate a large number of arrays.  It would be useful to break this 

down further, by the individual arrays or groups of related arrays.  As described in 

Section 4.3.1, dynamically allocated memory can be explicitly assigned to a stat 

bucket named by the user.  This is done by using a special call provided by Cache 

Scope to allocate the memory.  For instance, the user may replace calls to malloc(size) 
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with calls to dctl_mallocn(size, name).  We did this for the memory allocation calls in 

mem_init. 

Table 4 shows the results of re-running the tool with explicitly named buckets.  

The buckets with names beginning with “heap_” represent arrays or groups of arrays 

that were dynamically allocated with explicit bucket names.  Those shown are all al-

located by the function mem_init.  Most of them are parts of a set of three-

dimensional matrices, where each matrix is made up of a group of independently al-

located blocks of memory.  The reason they are split up in this way is to allow their 

sizes to be determined at runtime, while still making them easy to use in C.  An ex-

ample of this is the array “disp,” which is declared as “double ***disp.” The ele-

ments of disp are allocated as in the abbreviated code from equake shown in Figure 8. 

Stat Bucket Latency 
(millions) % Latency % Events Latency/ 

Event 
heap_K_2 23,673 35.4% 4.2% 118.5 
heap_disp_3 18,407 27.5% 36.1% 10.7 
heap_K_3 7,487 11.2% 28.9% 5.4 
heap_disp_2 3,473 5.2% 3.2% 22.8 
Exc 2,134 3.2% 8.1% 5.5 
heap_M_2 1,533 2.3% 2.1% 15.2 
heap_C_2 1,489 2.2% 2.1% 14.7 
<STACK> 1,124 1.7% 4.7% 5.0 
heap_M_1 952 1.4% 0.8% 23.9 
heap_K_1 929 1.4% 0.2% 80.0 

Table 4: Data Structure Statistics in Equake with Named Buckets 

 

/* Displacement array disp[3][ARCHnodes][3] */ 
disp = (double ***) malloc(3 * sizeof(double **)); 
 
for (i = 0; i < 3; i++) { 
    disp[i] = (double **) malloc(ARCHnodes * sizeof(double *)); 
    for (j = 0; j < ARCHnodes; j++) { 
        disp[i][j] = (double *) malloc(3 * sizeof(double)); 
    } 
} 

Figure 8: Memory Allocation in Equake 
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The advantage of this is that the matrix can be accessed using the syntax 

disp[i][j][k].  The only way to use this syntax without the multiple indirections is to 

declare the size statically. 

The numbers at the end of the names in Table 4 show the matrix dimension 

with which each stat bucket is associated.  For the first two dimensions, these are ar-

rays of pointers to the arrays that make up the next dimension.  For the third dimen-

sion, the arrays contain the actual data.  The second dimension of K, heap_K_2, 

causes 35.4% of the total latency.  The third dimension of the arrays disp and K, 

heap_disp_3 and heap_K_3, together cause approximately 38.7% of the total latency.  

Using the code features of our tool shows that the vast majority of these misses take 

place in the function smvp.  Almost 100% of the latency in heap_K_2, 69.6% percent 

of the latency when accessing heap_disp_3, and 99.8% of the latency when accessing 

heap_K_3 take place in this function.  Smvp computes a matrix vector product, and 

contains a loop that iterates over the matrices. 

One potential problem here is that the size of the individual arrays that make 

up these buckets is very small.  Heap_K_2 contains arrays of three pointers, while 

heap_K_3 and heap_disp_3 contain arrays of three doubles.  Therefore, each of these 

arrays is only 24 bytes long.  This can easily be seen using the DView tool, which can 

show statistics about the sizes of the blocks of memory that make up each stat bucket.  

When malloc creates a block of memory, it reserves some memory before and after 

the block for its own internal data structures.  Since the L2/L3 data cache line size on 

the Itanium 2 is 128 bytes, we could pack 5 of the arrays that make up heap_K_2, 

heap_K_3, and heap_disp_3 into a single cache line, but this does not happen due to 
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the overhead of malloc.  A way to improve the situation would be to allocate one 

large, contiguous array to hold all the pointers or data for each dimension matrix, and 

then set the pointer arrays to point into them.  This is shown in the code in Figure 9. 

 

m

th

p

 
 

double *disp_3; 
double **disp_2; 
double ***disp_1; 
     
disp_3 = malloc(3 * ARCHnodes * 3 * sizeof(double));

     
disp_2 = malloc(ARCHnodes * 3 * sizeof(double *)); 

 
disp_1 = dctl_mallocn(3 * sizeof(double **)); 

 
disp = disp_1; 

 
for (i = 0; i < 3; i++) { 
    disp[i] = &disp_2[i*ARCHnodes]; 
 
    for (j = 0; j < ARCHnodes; j++) { 
        disp[i][j] = &disp_3[i*ARCHnodes*3 + j*3]; 
    } 
 } 

Figure 9: Modified Memory Allocation in Equake 

This change decreases L1 cache misses in the application by 57%, L2 cache 

isses by 30%, and running time by 10%.  The results of re-running Cache Scope on 

e new version of the application are shown in Table 5. 

Stat Bucket Latency % Latency % Events Latency/ 
Event 

heap_K_3 14,886 49.4% 31.6% 22.5 
heap_disp_3 7,433 24.7% 38.7% 9.1 
heap_K_2 1,316 4.4% 1.2% 52.4 
mem_init-main 1,174 3.9% 3.5% 15.8 
heap_disp_2 1,111 3.7% 1.5% 35.8 
Exc 1,013 3.4% 8.8% 5.5 
heap_C_2 639 2.1% 2.3% 13.4 
<STACK> 531 1.8% 5.0% 5.0 

Table 5: Data Structure Statistics in Optimized Equake 

The absolute amount of estimated latency for heap_K_2 is reduced by ap-

roximately 94%, and for heap_disp_3 it is reduced by 40%.  The latency for 
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heap_K_3 has almost doubled, but this is more than made up for by the gains in the 

other two buckets.  Note that this optimization not only improves latency, but lowers 

the required bandwidth to memory as well, since more of each cache line fetched is 

useful data, rather than overhead bytes used by malloc for its internal data structures. 

The arrangement of K and disp each into two pointer arrays (for example, 

heap_K_1 and heap_K_2) and a data array (heap_K_3) continues to be a source of 

latency.  The heap_K_2 bucket is causing 4.4% of the latency in the application, and 

heap_disp_2 is two places below it with 3.7%.  These misses could easily be avoided 

by eliminating the need for those arrays entirely.  If we are willing to accept statically 

sized matrices, we could simply declare disp and K as three-dimensional arrays. 

Table 6 shows the results of making this change.  Note that the latency for K 

is significantly less than the latency for heap_K_3, where the actual data for the array 

was previously stored.  This is probably because eliminating the pointers in 

heap_K_1 and heap_K_2 freed a large amount of space in the L2 cache that could 

then be used for the actual data.  In addition, the compiler is more likely to be able to 

prefetch data, since the location of the data is computed rather than read from pointers.  

All of this is also true for the other main array, disp. 

Overall, this version of the application shows an 80% reduction in L1 cache 

misses, a 46% reduction in L2 cache misses, and a 24% reduction in running time 

over the original, unoptimized application.  This required changing only the layout of 

data structures and basically no change to the code of the application other than in the 

initialization code. 
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Stat Bucket Latency 
(millions) % Latency % Events Latency/ 

Event 
K 6,840 53.4% 32.7% 21.8 
disp 3,503 27.3% 40.9% 8.9 
Exc 370 2.9% 7.0% 5.5 
heap_M_2 307 2.4% 2.3% 13.7 
heap_C_2 295 2.3% 2.3% 13.3 
<STACK> 270 2.1% 5.5% 5.1 
heap_C23_2 196 1.5% 1.4% 14.7 
heap_V23_2 151 1.2% 1.2% 13.6 
<UNKNOWN> 137 1.1% 2.7% 5.2 
heap_M23_2 127 1.0% 1.0% 13.5 

Table 6:  Data Structure Statistics in Second Optimized Equake 

4.5.2 Twolf 

The second example program we will look at is twolf.  This is a placement 

and routing package for creating the lithography artwork for microchip manufacturing 

[34, 79], which uses simulated annealing to arrive at a result. 

Using Cache Scope, we find that the L1 data cache hit ratio of this application 

is about 74%, which is fairly low, although not as low as our previous example.  The 

average latency is 21.9 cycles, slightly larger than equake.  These may be an indica-

tion that poor cache utilization is a performance problem for this application. 

Table 7 shows the stat buckets causing the most cache misses and latency in 

the application.  All of the stat buckets shown are automatically named.    The 

safe_malloc function that appears in the bucket names is used wherever twolf allo-

cates memory.  It simply calls malloc and checks that the return value is not NULL; 

therefore the functions we are interested in are those that call safe_malloc.  The ma-

jority of cache misses were caused by memory allocated by a small set of functions: 

readcell, initialize_rows, findcostf, and parser.  To get more useful information about 

specific data structures in this application, we must manually name the blocks of 
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memory that are allocated by these functions.  Most of these blocks are allocated as 

space to hold a particular C struct; the easiest and most useful way to name them is 

after the name of the structure. 

Stat Bucket Latency % Latency % Events Latency/
Event 

safe_malloc-readcell-main 193,333 62.0% 45.0% 30.1
safe_malloc-initialize_rows-main 35,749 11.5% 16.8% 14.9
safe_malloc-parser-readcell 33,247 10.7% 9.9% 23.4
safe_malloc-findcostf-controlf 27,651 8.9% 9.2% 21.0
<UNKNOWN> 7,397 2.4% 7.6% 6.9

Table 7: Cache Misses in Twolf 

Table 8 shows the results of re-running the tool, after altering memory alloca-

tion calls to provide a name for the stat bucket with which the memory should be as-

sociated.  We have again used the convention that the named buckets begin with 

“heap_” to show that they are dynamically allocated memory. 

Stat Bucket Latency % Latency % Events Latency/ 
Event 

heap_NBOX 137,553 42.9% 25.7% 28.1 
heap_rows_element 44,420 13.8% 27.8% 8.4 
heap_DBOX 23,808 7.4% 5.7% 22.0 
heap_TEBOX 19,578 6.1% 3.8% 26.7 
heap_CBOX 16,644 5.2% 3.2% 27.5 
heap_TIBOX 14,300 4.5% 1.6% 45.6 
heap_BINBOX 13,709 4.3% 4.6% 15.5 
<UNKNOWN> 7,464 2.3% 5.6% 7.0 
heap_cell 6,322 2.0% 1.1% 30.4 
heap_netarray 3,334 1.0% 2.0% 8.8 

Table 8: Cache Misses in Twolf with Named Buckets 

At the top of the list is a cluster of blocks allocated to hold C structs named 

NBOX, DBOX, TEBOX, CBOX, TIBOX, and BINBOX.  These are all small struc-

tures.  The DView program can provide statistics about the size of the objects in a stat 
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bucket and how many of them were allocated by the application.  Table 9 shows this 

information for the structures causing the most latency. 

Structure Size Number Allocated
BINBOX 24 224,352
CBOX 48 2,724
DBOX 96 1,920
NBOX 48 16,255
TEBOX 40 17,893
TIBOX 16 2,724

Table 9: Structures in Twolf 

One thing to note is that some of these are smaller than the Itanium L1 data 

cache line size of 64 bytes, and all are smaller than the L2/L3 cache line size of 128 

bytes.  Therefore, more than one structure could be packed into an L1 or L2/L3 cache 

line, but this is probably not happening due to the memory that malloc reserves for its 

own data structures before and after an allocated block. 

This problem cannot be solved as easily as it could with equake, since these 

structures are not all allocated all at one time during program initialization.  Instead, 

they are allocated and freed individually at various times.  Also, they are not always 

traversed in a single order.  One feature we can make use of, however, is that many of 

the structures contain pointers to other structures.  It is likely that if structure A points 

to structure B, then B will be accessed soon after A (because the program followed 

the pointer). 

The method we chose to optimize the placement of the structures is similar to 

the cache-conscious memory allocation described by Chilimbi et al. [21].  We wrote a 

specialized memory allocator for the small structures used by twolf.  It has two main 

features intended to reduce the cache problems revealed by Cache Scope.  First, it can 

place small structures directly next to each other in memory.  Unlike most malloc im-
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plementations, it does not reserve memory before or after each block for its own use; 

all overhead memory is located elsewhere.  Second, it uses information about which 

structures point to others.  When memory is allocated, the caller can specify a “hint,” 

which is the address of a structure that either will point to the one being allocated, or 

be pointed to by it.  The memory allocator tries to allocate the new structure in the 

same L1 data cache line as the “hint” address.  If this is not possible, it tries to allo-

cate it in the same L2 cache line.  If this also cannot be done, it simply tries to find a 

location in memory that will not conflict in the cache with the cache line containing 

the hint address.  Note that if this strategy is successful in placing structures that are 

used together in the same cache block, it will not only improve latency but also, as 

was the case with the optimizations for equake, lower the required bandwidth to 

memory by not fetching memory used internally by malloc. 

Running the application with this memory allocator results in a 57% decrease 

in L1 data cache misses, a 26% decrease in L2 misses, and an 11% reduction in run-

ning time.  Table 10 shows the results of running the tool on this version of the pro-

gram.  The total latency and latency per event for most stat buckets is down signifi-

cantly from the unoptimized version.  For example, for heap_NBOX, the estimated 

latency is down approximately 50%, and the latency per event is down from 28.1 cy-

cles to only 13.8 cycles.  The latency for heap_CBOX is up almost 30%, but this is 

more than made up for by the decreases in other data structures. 

The stat bucket that causes the next highest latency below the ones we have 

been discussing is heap_tmp_rows_element.  The objects associated with this stat 

bucket are allocated and used in the same way as those in heap_rows_element, so we 
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will look at them both.  These data structures are similar to the ones we saw in equake, 

in that they implement a variably sized two-dimensional array as an array of pointers 

to single-dimensional arrays (the arrays of pointers are named “tmp_rows” and 

“rows”).  The arrays containing the actual data hold a small number of elements of 

type char; the statistics kept by Cache Scope show that these arrays are 18 bytes long 

when running on the problem size used for our experiments (this can also easily be 

seen by examining the source code and input).  Since several of these would fit in a 

cache line, we could gain some spatial locality by allocating them as one large array, 

like we did for the matrices in equake.  We would then set the pointers in tmp_rows 

and rows to point into this array. 

Stat Bucket Latency % Latency % Events Latency/
Event 

heap_NBOX 67,925 38.0% 38.5% 13.8
heap_CBOX 21,592 12.1% 2.8% 60.3
heap_TEBOX 15,266 8.5% 5.0% 23.8
heap_DBOX 11,927 6.7% 7.7% 12.1
heap_tmp_rows_element 8,068 4.5% 3.1% 20.6
<UNKNOWN> 7,615 4.3% 8.3% 7.1
heap_rows_element 6,028 3.4% 2.3% 20.3
heap_BINBOX 5,131 2.9% 4.1% 9.9
heap_cell 4,918 2.8% 1.6% 23.7

Table 10: Cache Misses in Twolf with Specialized Memory Allocator 

Making this change reduces L1 data cache misses by 33%, L2 cache misses 

by 29%, and running time by 16% versus the original version of the application.  If 

we are willing to accept a compiled-in limit for the largest problem size we can run 

the application on, we could also simply make tmp_rows and rows into statically 

sized two-dimensional arrays, eliminating the need for indirection.  This change gives 

us further slight improvements.  L1 data cache misses are reduced by 36%, L2 cache 
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misses are reduced by 35%, and running time is reduced by 19% over the unopti-

mized version of the application. 

4.6 Conclusions 

In this chapter, we have described Cache Scope, an implementation of data 

centric cache measurement on the Intel Itanium 2 processor.  One goal of this tool 

was to verify that cache miss address sampling is practical on a real system, as pre-

dicted by the simulation results we showed earlier.  An important difference between 

the simulated system and the Itanium 2 is that on the Itanium 2, we collect informa-

tion about the latency of each cache miss. 

We found that perturbation and overhead were acceptable for the lower sam-

pling frequencies we tested, one in 512K and one in 32K cache events, but that they 

can become significant when the sampling frequency is increased.  The increased per-

turbation at higher sampling frequencies shows that sampling more frequently is not 

always more accurate, due to the instrumentation code’s own effect on the cache. 

We used Cache Scope to analyze two example applications, equake and twolf, 

and we then optimized them based on the results.  We found the latency information 

to be useful in this analysis.  Especially in the case of twolf, we were able to reduce 

the observed latency per event (L1 data cache miss or floating point load), due to op-

timizing for multiple levels of cache.  We were able to achieve a 24% reduction in 

running time for equake, and an almost 19% reduction in running time for twolf.  

This was done in a short time, a few days, by a programmer who was not previously 

familiar with the code of either application.  In both cases, the improvements were 

gained by changing data structures rather than code.  This demonstrates how Cache 
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Scope allows a programmer to quickly identify the source of lost performance due to 

poor cache utilization.  In addition, the optimizations used could not easily have been 

performed by a compiler, proving the value of a tool that provides this kind of feed-

back to a programmer. 
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Chapter 5: Cache Eviction Monitoring 

In addition to knowing what data structures are being accessed to cause cache 

misses, another piece of information that would be valuable in tuning applications is 

an indication of the reason the misses are occurring.  Cache misses are usually cate-

gorized into cold misses, conflict misses, and capacity misses.  However, it would be 

difficult for hardware to determine to which of these categories a particular miss be-

longs.  For example, to distinguish a cold miss from the others, the hardware would 

need to keep a record of whether each cache line-sized block of main memory had 

ever been loaded into the cache. 

An alternative way to obtain information about why cache misses are occur-

ring would be to look at data that is already in the cache, and record the circum-

stances under which it is evicted.  This would require significantly less hardware sup-

port than attempting to classify misses as described above.  This chapter will describe 

a novel hardware monitoring feature that would provide the address of the data that is 

evicted from the cache when a miss occurs.  Using this feature, a tool could provide 

feedback to a user about how the source code level data structures in an application 

are interacting in the cache.  This chapter will discuss an example of such a tool, im-

plemented in simulation.  This tool samples both cache miss and eviction information, 

providing a superset of the information gathered by the Cache Scope tool described in 

Section 4.3.1. 

5.1 Proposed Hardware Feature 

In order to provide data centric information about cache eviction behavior, we 

propose a new hardware monitoring feature.  When a cache miss occurs, in addition 
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to storing the address of the data that missed in the cache, the new feature would store 

the address of the data that was evicted as a result.  The hardware should also provide 

the cache miss counter and interrupt on counter overflow features that we previously 

discussed for sampling cache misses, so that the eviction information can be gathered 

by sampling cache misses.  The proposed hardware features are depicted in Figure 10. 
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Figure 10: Performance Monitor for Cache Evictions 

It should be relatively simple for hardware to provide the eviction address.  

The cache maintains a tag for each line in the cache, which identifies the area of 

memory the line is caching.  When a cache miss occurs, before replacing a cache line, 

the hardware could store the tag of the line that is about to be replaced.  The saved tag 

or its associated address could then be made available to software through a special 

purpose register. 
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address being accessed is available at the time the cache miss occurs, and the proces-

sor can simply save it.  For cache evictions, it is more difficult to provide a virtual 

address, since the cache line tags are usually based on the physical address.  In order 

to simplify the hardware requirements, we propose that the cache eviction hardware 

monitor provide only the physical address, and leave it to software to map this to a 

virtual address within an application’s address space.  This requires the inverse of the 

mapping that must normally be performed, which is to map virtual addresses to 

physical.  Operating system features such as paging to disk and the ability to map the 

same physical page into multiple virtual locations complicate this mapping.  For the 

experiments described in this dissertation, we have assumed that perfect information 

is available about the virtual addresses of cache misses and evictions.  Since most 

HPC users size their application data and/or systems so that the working set fits into 

memory, paging is usually infrequent, so this is not a serious limitation. 

5.2 Instrumentation for Sampling Cache Evictions 

Since the addresses of evicted data are not provided by any existing processor, 

we implemented eviction sampling in code that runs under a cache simulator.  The 

cache simulator used is a modified version of the one described in Section 3.2, which 

was previously used to study sampling cache misses.  It consists of a set of instrumen-

tation code that is inserted into an application using the ATOM [81, 84] binary rewrit-

ing tool.  In addition to providing an emulated register containing the address associ-

ated with the most recent cache miss, the modified simulator also provides a register 

that contains the address of the data evicted as a result of the miss. 
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The instrumentation code for sampling cache evictions is also inserted into the 

application using ATOM.  As was the case for our experiments in sampling cache 

misses, this instrumentation runs under the simulator, so that we can measure its 

overhead and effects on the cache.  The cache eviction sampling instrumentation is 

based on the same code as that described in Section 4.3.1 for sampling cache misses.  

We use the interrupt on overflow feature of the emulated cache miss counter to set up 

an interrupt that will occur after some number of cache misses.  When a miss occurs, 

we retrieve the address that was accessed to cause the miss, and also the address of 

the data that was evicted from the cache as a result of the miss. 

Cache miss and eviction statistics are kept in an extended version of the stat 

bucket structure described in Section 4.3.1.  The extended stat bucket structure is 

shown Figure 11.  As before, the stat buckets contain a vector that is used to store in-

formation about cache misses and where in the code they take place.  In addition, they 

contain a vector of information about cache evictions.  There is an entry in this vector 

for each stat bucket with an object that has caused an eviction of an object in the 

bucket in question.  Each entry in the eviction information vector contains another 

vector that holds the actual eviction counts, broken down by the area of code in which 

they took place.  For instance, in Figure 11, array3 has caused 89 evictions of array1 

at line 4 in the function func2.  Note that the code areas used are lines of code, not 

whole functions as was the case with Cache Scope.  This is made possible by using 

functionality of ATOM that can return more detailed information from the line num-

ber table in the executable.  One other difference between the cache eviction tool and 

Cache Scope is that the eviction tool names dynamically allocated blocks of memory 
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differently.  Dynamically allocated memory is assigned to a named bucket based on 

the execution path leading to the allocation function that created it.  This includes not 

only the names of the functions but also the address from which each function was 

called, so that two blocks of memory allocated from two different places in the same 

function will be given different names.  This did not result in a significant difference 

in the applications we tested. 

Bucket for array1 
Cache Misses 

func1() line 2 func2() line 17 func2() line 55 
misses: 608 misses: 284 misses: 325 

Cache Evictions 

 
func2() line 7 func3() line 37 func3() line 45 By array2 
evictions: 94 evictions: 987 evictions: 27 

 
func1() line 12 func2() line 4 func3() line 43 By array3 

evictions: 8 evictions: 89 evictions: 12 

 
Figure 11: Bucket Data Structure for Cache Evictions 

Since misses and evictions occur together, i.e. every miss triggers an eviction, 

it is not strictly necessary to maintain information about both.  Cache misses could be 

derived from eviction information by adding the number of times an object was the 

cause of an eviction.  A possible disadvantage of this doing this is that the miss in-

formation would not be easily available in real-time as the application executes.  Our 
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current implementation does maintain miss information separately from eviction in-

formation. 

The data gathered by the tool is written out in a compressed format, and can 

be examined using a separate tool named read_data.  The read_data program can dis-

play the data about both cache misses and evictions in a number of ways.  It can show 

the stat buckets or functions causing the most cache misses, and the stat buckets caus-

ing the most evictions of a particular bucket.  It can combine code centric and data 

centric information, for instance to show the stat buckets causing the most cache 

misses in a particular function, or the stat buckets causing the most evictions of a 

given bucket in a given function. 

5.3 Experiments 

In order to evaluate the accuracy and overhead of sampling cache miss and 

eviction information, we performed a series of experiments in which we ran the cache 

miss and eviction sampling instrumentation on a set of applications from the SPEC 

CPU95 [50] and SPEC CPU2000 [34] benchmark suites.  From SPEC CPU95, we 

used the application su2cor.  From SPEC CPU 2000, we used applu, gzip, mgrid, 

swim, and wupwise.  The applications were compiled with the Compaq C compiler 

V6.3-028 and Compaq Fortran compiler V5.4A-1472. 

For these experiments, we simulated a 64KB four-way set associative cache 

with a line size of 32 bytes.  These values were chosen as realistic ones for a RISC 

processor.  Cache misses are assigned an average penalty of 20 cycles.  This is based 

on the assumption that L1 cache misses that are satisfied by the L2 cache incur a pen-

alty of 12 cycles, and that accesses that must go to main memory require 60 cycles; 
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these values were again chosen to model current processors.  Unless otherwise noted, 

the sampling interval was set to sample an average of one in every 25,000 cache 

misses, with the actual value pseudo-randomly varied throughout the run in order to 

obtain a more representative sample. 

5.3.1 Accuracy of Results 

We will first examine the accuracy of sampling cache miss and eviction in-

formation.  Our tool records information at a number of levels of granularity.  At the 

coarsest level of data centric information, it records the number of cache misses that 

took place when accessing the objects in each stat bucket.  This can be broken down 

into the misses for each stat bucket that occurred in each line of code in the applica-

tion.  At this level, the tool collects information similar to that gathered by Cache 

Scope, described in 4.3.1. 

Cache eviction information represents another level of granularity.  The tool 

records the number of times memory associated with each stat bucket is evicted by 

loads of memory associated with each other stat bucket.  This can also be broken 

down by the line of code at which the evictions took place. 

In order to allow a comparison of actual statistics versus those estimated by 

the instrumentation code, the simulator collects the same types of information gath-

ered by the instrumentation.  This is done at a low level in the simulator, and counts 

every cache miss and eviction.  This provides us with exact values to compare the re-

sults from the instrumentation code against. 
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5.3.1.1 Cache Misses 

We will first examine the results of sampling cache misses.  Although this in-

formation is similar to the data collected by the tools already described in this disser-

tation, it is necessary to revisit it to determine whether its accuracy is affected by the 

additional overhead and perturbation of collecting detailed cache eviction information, 

which involves more instrumentation code and larger instrumentation data structures. 

Table 11 shows the results of sampling cache misses in the set of applications 

we tested.  It lists the five objects causing the most cache misses in each application, 

excluding any objects causing less than 1% of the total number for the application.  

The “stat bucket” column lists the names of the stat buckets, which may represent 

variables or data structures in dynamically allocated memory.  As explained in sec-

tion 5.2, buckets representing dynamically allocated memory are named by the code 

path through which they were allocated.  This is shown as a series of function names 

with line numbers.  For example, gzip contains a block of memory that was allocated 

by spec_init at line 88, which was called from main at line 276. 

The “rank” columns show the order of the objects when ranked by number of 

cache misses, and the percent columns show the percentage of all cache misses that 

were due to the named stat bucket.  The actual values were collected at a low level in 

the simulator, and are therefore precise, whereas the sampled value are as estimated 

by the instrumentation code.  This information was gathered from separate instru-

mented and uninstrumented runs during the same portion of the applications’ execu-

tions (this is made possible by the simulator). 
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Actual Sampled Application Stat Bucket Rank % Rank % 
C 1 19.2 3 18.6
B 2 19.2 2 19.3
A 3 19.1 1 19.7
D 4 14.4 5 13.9

applu 

rsd 5 13.9 4 14.1
   
gzip spec_init(88)-main(276) 1 99.5 1 100.0
   

U 1 50.5 1 51.3
R 2 39.0 2 39.0mgrid 
V 3 10.2 3 9.6

   
U 1 16.8 1 16.7
W1-intact 2 9.2 2 9.0
W2-intact 3 8.1 3 8.2
W2-sweep 4 6.9 4 7.0

su2cor 

W1-sweep 5 5.8 5 5.8
   

UNEW 1 13.3 2 13.4
PNEW 2 13.3 3 13.2
VNEW 3 13.3 1 13.6
CU 4 6.7 9 6.6
CV 5 6.7 5 6.7

swim 

U 10 6.7 4 6.7
   

U 1 30.3 1 29.0
UD 2 15.1 2 15.5
T 3 13.4 3 13.6
S 4 12.5 4 13.0

wupwise 

P 5 11.3 5 11.3
Table 11: Cache Misses Sampled With Eviction Information 

In general, the sampling technique ranked the variables correctly except when 

the actual difference between the number of cache misses being caused by two ob-

jects was small.  The value reported for the percent of cache misses due to each vari-

able was also accurate to within a small range of error.  The largest error seen with 

sampling was for wupwise, in which the percentage for the array U reported by the 

sampling algorithm was off by 1.3 percentage points.  Therefore, we can conclude 
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that the cache miss information gathered by the tool is sufficiently accurate, even with 

the extra overhead and perturbation caused by adding the sampling of cache eviction 

data. 

5.3.1.2 Cache Evictions 

Table 12 shows information about the evictions taking place in one of our test 

applications, mgrid.  It lists the three objects that caused the most cache misses in the 

application in the “stat bucket” column.  In the “evicted by” column, it lists the ob-

jects that caused more than 1% of the total evictions of each variable.  The “rank” 

columns show the order of the objects when ranked by number of evictions of the 

variable they caused.  The “%” columns show the percentage of all of evictions of the 

object in the “variable” column that were caused by the object in the “evicted by” 

column.  Again, the “actual” columns show precise information as gathered by the 

simulator in a run with no instrumentation, while the “sampled” columns show the 

values collected by the instrumentation code. 

Actual Sampled Stat Bucket Evicted By Rank % Rank % 
U 1 60.3 1 60.8 
R 2 20.2 2 20.1 U 
V 3 19.5 3 19.1 

   
U 1 97.0 2 96.8 V V 2 2.9 3 3.2 

   
R 1 73.8 1 74.1 R U 2 25.9 2 25.7 

Table 12: Cache Evictions in Mgrid 

Sampling one in 25,000 cache misses returned accurate information for the 

applications we tested.  The largest difference between the actual and sampled values 
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in Table 12 is for the evictions of U by itself, for which the value estimated by sam-

pling is approximately 0.5 percentage points higher than the actual one. 

To quantify the accuracy of sampling across all the applications we tested, we 

measured the difference between actual and sampled values for the buckets that were 

identified as the top ten in terms of cache misses for each application.  It is important 

to note that when measuring the error in the sampled data, we are only concerned 

with variables that are causing a large number of cache misses (which implies that 

they are experiencing a large number of cache evictions as well).  Any variable iden-

tified as causing few cache misses can be disregarded as unimportant to performance 

tuning.  Reflecting this, we discarded any buckets in the top ten that did not cause at 

least 10% of the total cache misses in an application.  Out of the remaining buckets, 

the largest difference in the estimated percentage of evictions caused by a bucket to 

the actual value was seen in wupwise, with a difference of 5.1%. 

Table 13 through Table 18 show eviction results from all applications tested.  

The objects shown are the top five in terms of cache misses, in order, excluding ob-

jects causing less than 1% of all cache misses.  The row labels identify the objects 

causing evictions, and the column labels show the objects being evicted.  The num-

bers in each box are the percentage of the total evictions of the column object that are 

caused by the row object.  The variable names in su2cor that include the suffixes –i 

and –s indicate variables of the given names that are defined in the subroutines “in-

tact” and “sweep,” respectively, and the variable “spec_init” in gzip represents a 

block of memory dynamically allocated by the function “spec_init.” We can see from 

the percentages shown that all applications show significant patterns in evictions of 
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some of the objects listed in the tables.  For all six applications, there is at least one 

object listed that causes 35% or more of the cache evictions of another. 

applu 
  evicted 
  c a b d rsd 

c 41.5 4.0 21.1 27.9 8.4 
a 11.3 44.5 22.7 17.8 11.3 
b 23.7 21.9 43.7 1.9 7.8 
d 11.9 21.4 2.4 44.4 7.8 
rsd 5.5 4.1 6.7 4.6 52.2 

evicted by 

other 6.1 4.1 3.4 3.4 12.5 
Table 13: Cache Eviction Matrix for Applu 

gzip 
  evicted 
  prev window spec_init 

prev 61.2 82.5 44.5 
window 36.0 15.2 39.9 
spec_init 1.0 0.1 5.2 evicted by 

other 1.8 2.2 10.4 
Table 14: Cache Eviction Matrix for Gzip 

mgrid 
  evicted 
  U R V 

U 60.8 25.7 96.8
R 20.1 74.1 0.0
V 19.1 0.2 3.2evicted by

other 0.0 0.0 0.0
Table 15: Cache Eviction Matrix for Mgrid 

su2cor 
  evicted 
  U W1-i W2-i W2-s W1-s 

U 20.0 57.9 32.6 25.1 27.0 
W1-i 27.8 0.2 45.2 2.3 4.2 
W2-i 26.7 0.5 2.7 29.2 12.8 
W2-s 7.6 17.9 13.5 3.0 0.4 
W1-s 2.5 22.1 3.1 30.0 4.1 

evicted by 

other 15.4 1.4 2.9 10.4 51.5 
Table 16: Cache Eviction Matrix for Su2cor 
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swim 
  evicted 
  UNEW PNEW VNEW CU CV 

UNEW 6.7 51.3 23.5 0.0 32.7 
PNEW 28.8 7.0 30.5 0.0 0.0 
VNEW 31.5 25.1 11.7 0.1 0.0 
CU 0.0 0.0 0.0 35.1 34.9 
CV 0.0 0.0 16.0 0.0 0.0 

evicted by 

other 33.0 16.6 18.3 64.8 32.4 
Table 17: Cache Eviction Matrix for Swim 

wupwise 
  evicted 
  U UD T S P 

U 41.4 35.7 40.8 25.2 27.3 
UD 16.0 50.3 0.0 0.0 8.8 
T 13.2 0.0 47.7 7.4 0.0 
S 11.2 0.0 6.5 67.4 0.8 
P 8.2 7.1 0.0 0.0 63.1 

evicted by 

other 10.0 6.9 5.0 0.0 0.0 
Table 18: Cache Eviction Matrix for Wupwise 

5.3.1.3 Evictions by Code Area 

At the finest level of granularity supported by the eviction sampling instru-

mentation code, we keep counts for how many times each variable was evicted by 

each other variable at each line of code in the application.  Table 19 shows an exam-

ple, again from mgrid.  For each variable named in the left column, it lists the five 

lines of code at which the most evictions of U caused by the named variable occur 

(excluding lines at which less than 1% of the total evictions of U occur).  The lines 

are ranked by the number of evictions, and the percentages shown are the percent of 

all evictions of U caused by the given variable and line, both actually and as esti-

mated by sampling.  Even at this level of granularity, the results returned are close to 

the actual values, with the largest difference being the number of evictions of U 
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caused by accessing V at line 204 in the function resid; the estimated value is 1.1 per-

centage points lower than the actual one. 

Actual Sampled Stat Bucket Function Line Rank % Rank % 
resid 218 1 20.6 1 21.0 
psinv 162 2 10.8 2 9.9 
resid 216 3 4.6 3 4.2 
interp 287 4 3.1 6 3.1 
interp 308 5 2.9 4 3.5 

U 

interp 296 7 2.8 5 3.1 
     
V resid 204 1 16.4 1 16.7 
     

resid 204 1 19.6 1 20.1 R Psinv 176 2 0.2 2 0.2 
Table 19: Percent of Total Evictions of U by Stat Bucket and Code Line 

The accuracy seen with mgrid was typical of the applications we tested.  To 

verify this, we again looked at the 10 buckets causing the most cache misses in each 

application, excluding any buckets causing less than 10% of the total cache misses.  

The largest error in the reported percentage of cache evictions of a given bucket 

caused by a particular combination of another bucket and a line of code was approxi-

mately 3.9 percentage points, seen in wupwise, for evictions of the variable T caused 

by cache misses in U.  The error in the estimation accounts for only 0.7% of the total 

evictions of the variable.  Table 20 shows the evictions of T by U caused by each line 

of code, excluding information about lines that cause less than 1% of the evictions of 

T.  Although the error causes the two lines of code shown to be ranked incorrectly, 

the estimates made by sampling are sufficiently close to be useful. 
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Actual Sampled Function Line Rank % Rank % 
zgemm 263 1 16.8 2 12.8
zgemm 250 2 15.8 1 14.1

Table 20: Evictions of T by U in Wupwise 

5.3.2 Perturbation of Results 

As we did for sampling cache misses in Section 3.3.2, we will now look at 

how sampling cache evictions affects the cache behavior of an application.  Figure 12 

shows the percentage increase in cache misses due to instrumentation code when run-

ning each of the applications and sampling at several sampling frequencies.  This in-

formation was obtained by comparing the number of cache misses in a run without 

instrumentation (cache misses are still measured by the simulator) with the number of 

misses in a set of runs in which we sampled one in 250, one in 2,500, one in 25,000, 

and one in 250,000 cache misses.  Note that the scale of the y axis is logarithmic. 
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Figure 12: Percent Increase in Cache Misses When Sampling Evictions 

At our default sampling frequency, one in 25,000 misses, the increase in cache 

misses was extremely low for all applications.  We see the largest increase with gzip, 

which experienced approximately 0.3% more cache misses with instrumentation than 
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without.  At higher sampling frequencies, the instrumentation code begins to signifi-

cantly perturb the results; for gzip, sampling one in 250 misses results in a 15% in-

crease in cache misses.  The average increase across all applications at this sampling 

frequency was approximately 5%.  As we saw when sampling only cache misses, this 

shows that sampling more frequently does not always lead to higher accuracy, due to 

the instrumentation code’s effect on the cache. 

5.3.3 Instrumentation Overhead 

Figure 13 shows the overhead that is added to the execution time of each ap-

plication by the instrumentation code when sampling cache evictions at several fre-

quencies.  This includes the virtual cycle count of the instructions executed in the in-

strumentation code, as well as a per-interrupt cost for handling an interrupt and deliv-

ering it to instrumentation code. 
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Figure 13: Instrumentation Overhead When Sampling Cache Evictions 
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At the default sampling frequency of one in 25,000 misses, the highest over-

head was seen in swim, which had an increase in execution time of slightly less than 

1%.  The overhead becomes more significant at higher samples frequencies, with the 

overhead for swim rising to 66% when sampling one in 250 cache misses.  The aver-

age overhead over all applications when sampling one in 250 cache misses was ap-

proximately 36%. 

5.4 Performance Tuning Using Data Centric Eviction Information 

This section will present an example of using the data provided by the cache 

eviction tool to optimize an application.  We will examine mgrid from the SPEC 

CPU2000 benchmark suite.  For this application, our tool indicates that two arrays, U 

and R, cause approximately 90% of all cache misses.  Looking at the eviction infor-

mation for mgrid in Table 12, we find that each of these is most often being evicted 

by accesses to itself. 

To better understand this problem, we looked at the next finer level of granu-

larity in the data to determine what parts of the code are causing this to happen.  

Table 21 shows the lines of code at which the most evictions of U by U and R by R 

are occurring. 

Bucket/Evicted By Function Line % Evictions 
resid 218 21.0 
psinv 162 9.9 U evicted by U 
resid 216 4.2 

   
psinv 168 14.9 
psinv 174 14.6 R evicted by R 
psinv 176 13.8 

Table 21: Evictions by Code Region in Mgrid 
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  Three lines together cause almost 32% of all evictions of U by itself, one in 

the function resid and the others in the function psinv.  For evictions of R by itself, 

the table shows that a small set of lines from psinv cause approximately 43% of all 

such evictions. 

Looking at the function “resid,” we find the loop shown in Figure 14.  The ar-

ray U that is used in this loop is declared elsewhere as a large single-dimensional ar-

ray, parts of which are passed into resid and other functions in such a way that they 

are interpreted as one- or three-dimensional arrays of various sizes; in the case of 

resid, part of U is passed in as an N by N by N array.  The array R is used similarly.  

The fact that these arrays are declared and used in this way may prevent the compiler 

from performing optimizations that would involve changing their layout in memory, 

since the layout depends on values computed at runtime. 

 

 

 

w

 
 

     DO 600 I3=2,N-1 
     DO 600 I2=2,N-1 
     DO 600 I1=2,N-1 
600  R(I1,I2,I3)=V(I1,I2,I3) 
    >      -A(0)*( U(I1,  I2,  I3  ) ) 
    >      -A(1)*( U(I1-1,I2,  I3  ) + U(I1+1,I2,  I3  ) 
    >                 +  U(I1,  I2-1,I3  ) + U(I1,  I2+1,I3  ) 
    >                 +  U(I1,  I2,  I3-1) + U(I1,  I2,  I3+1) )
    >      -A(2)*( U(I1-1,I2-1,I3  ) + U(I1+1,I2-1,I3  ) 
    >                 +  U(I1-1,I2+1,I3  ) + U(I1+1,I2+1,I3  ) 
    >                 +  U(I1,  I2-1,I3-1) + U(I1,  I2+1,I3-1) 
    >                 +  U(I1,  I2-1,I3+1) + U(I1,  I2+1,I3+1) 
    >                 +  U(I1-1,I2,  I3-1) + U(I1-1,I2,  I3+1) 
    >                 +  U(I1+1,I2,  I3-1) + U(I1+1,I2,  I3+1) )
    >      -A(3)*( U(I1-1,I2-1,I3-1) + U(I1+1,I2-1,I3-1) 
    >                 +  U(I1-1,I2+1,I3-1) + U(I1+1,I2+1,I3-1) 
    >                 +  U(I1-1,I2-1,I3+1) + U(I1+1,I2-1,I3+1) 
    >                 +  U(I1-1,I2+1,I3+1) + U(I1+1,I2+1,I3+1) )
 
Figure 14: Loop from Function Resid 

With the reference data set from the SPEC2000 benchmarks, resid is called 

ith varying values for N, up to 130.  Each element of U is eight bytes, so the array U 
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can be over 16MB in size.  Because of the large size of the array, the references to U 

with subscripts I2-1 to I2+1, and I3-1 to I3+1 will likely be evicted from the cache 

before being reused in other iterations, suggesting that tiling [45, 85] would be effec-

tive at increasing reuse.  We tiled the loop with a tile size of 8 by 8 by 8, which al-

lowed an entire tile for each of the three arrays accessed to fit into the L1 cache.  We 

also padded the first dimension of the array to make its size a multiple of the cache 

line size and in such a way as to help eliminate conflicts within tiles.  We then padded 

the beginning of the arrays so that they would start on cache line boundaries as used 

in resid.  Note that as mentioned above, the arrays are not used as first declared in the 

program, which must be taken into account when padding.  For instance, the main 

program passes part of U, offset from the beginning, into resid as resid’s argument U, 

so the main program’s U must be padded such that the offset begins on a cache line 

boundary.  Finally, since the code inside the loop is short, we unrolled the innermost 

loop over a tile, in order to eliminate some of the extra overhead of the new loops in-

troduced for tiling.  The function “psinv” has a loop similar to the one in “resid,” to 

which the same optimizations were applied. 

While a compiler could potentially apply the code transformations mentioned 

automatically, for the reasons discussed above it would be difficult for it to combine 

them with changing the layout of the arrays, making it advantageous to perform the 

transformations manually. 

Figure 15 shows the number of cache misses in U, V, and R before and after 

the optimizations.  Although slightly more cache misses take place in V (2%), there 

are 29% and 20% fewer misses in U and R, respectively.  Overall, cache misses were 
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reduced by 22%.  Looking only at cache misses in resid, our simulator shows that 

there are 48% fewer misses in U, but approximately 2% more misses in V and R, for 

an overall improvement of 29%.  The “psinv” function shows a similar pattern; R 

causes 48% fewer cache misses, while U causes 2% more.  These provide a speedup 

in these functions of 11% for resid and 7% for psinv, and an overall speedup of 8%. 
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Figure 15: Cache Misses in Mgrid Before and After Optimization 

5.5 Conclusions 

In this chapter, we have discussed a proposed hardware feature that would 

capture information about the data that is evicted from the cache when a miss occurs.  

We presented a technique that uses this feature to sample cache eviction addresses, in 

order to provide feedback to a user about how data structures are interacting in the 

cache.  We implemented this technique in a simulator, and ran a series of experiments 

in which we measured the cache evictions in a set of benchmark applications.  These 

experiments showed that accuracy and overhead were acceptable, even though the 

instrumentation code must use larger data structures that hold more fine-grained in-
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formation than was the case when sampling only cache misses.  When looking spe-

cifically at the finer-grained information, such as the cache evictions taking place at a 

particular place in the code, accuracy is reduced for objects that do not cause many 

cache misses.  However, this is not a serious limitation, since for performance tuning 

we are most interested in the objects that cause the most cache misses. 

To examine the value of the information gathered by sampling evictions, we 

used the tool to analyze one application, mgrid, in detail.  Using information from the 

tool, we were able to perform optimizations by hand that reduced the running time of 

the application by 8%, showing the usefulness of this information. 
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Chapter 6: Conclusions 

In this dissertation, we have examined the problem of providing useful feed-

back to a programmer about the cache behavior of application data structures at the 

source code level.  We refer to this as data centric cache measurement.  We have 

shown that the information needed to do this can be gathered using hardware per-

formance monitors that can be practically incorporated into processor designs.  These 

monitors are used by software instrumentation that collects and aggregates the data. 

We first described a technique in which software instrumentation uses hard-

ware performance monitors that provide information about cache miss addresses to 

sample those addresses and relate them to data structures.  The results of our study of 

this technique in simulation showed that sampling allows us to gather accurate infor-

mation with low overhead.  We also examined the overhead of the cache simulator, 

which was high; for the applications we tested, the slowdown when running under the 

simulator ranged from 37 to 109 times the normal execution time of the applications.  

This is a strong argument for why hardware support is needed in order to perform 

data centric cache measurement. 

We next described a tool named Cache Scope, which is an implementation of 

data centric cache measurement on actual hardware, the Intel Itanium 2 processor.  

Using Cache Scope, we demonstrated the practicality of the sampling technique in a 

real system.  We found that the instrumentation’s perturbation of cache behavior and 

overhead can become significant if samples are taken too often, but that for  Cache 

Scope running on the Itanium 2 sampling approximately one in every 32K cache 

events provided acceptable accuracy and overhead for the applications we tested. 

 84 
 



 

One difference between the Itanium 2 and the simulator is that the Itanium 2 

provides information about the latency associated with each cache miss.  We found 

this information to be extremely useful; the Itanium 2 has three levels of cache, and 

therefore the number of L1 data cache misses alone does not necessarily determine 

how a data structure’s cache behavior is affecting performance.  This is especially 

true because the L1 cache does not store floating point values.  Cache Scope therefore 

ranks data structures by cumulative latency, not by number of cache misses. 

We used Cache Scope to analyze two applications, and tuned them based on 

the results.  We were able to achieve a 24% reduction in running time on one applica-

tion and an almost 19% reduction in the other.  This was done almost entirely by 

changing the data structures in the applications, with few changes to the code.  Fur-

thermore, the tuning was performed in a short time, one day in the case of one appli-

cation, by a programmer who was not previously familiar with the applications’ 

source code.  From this, we can conclude that the tool was useful in providing feed-

back about cache behavior for performance tuning. 

This dissertation also discussed a proposed hardware feature that would pro-

vide information about the data that is evicted from the cache when a miss occurs.  

We described a technique for using this feature to sample cache eviction information 

and to provide feedback to a user about how data structures are interacting in the 

cache.  We implemented this technique in simulation and performed a study in which 

we used it to measure cache evictions in a number of applications.  We found that 

even though it requires processing of much finer-grained information than was the 

case when sampling only cache misses, we were still able to collect the information 
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with sufficient accuracy and low overhead.  We did find that the accuracy of the evic-

tion information degrades when looking at objects causing few cache misses.  Though 

this must be taken into account, it does not significantly affect the usefulness of the 

tool, since for performance tuning we are concerned only with objects that are caus-

ing many cache misses. 

We found that in many of the applications we tested, there were objects in 

memory for which some other particular object caused most of the cache evictions, 

making the data significant for helping to understand how data structures are interact-

ing in the cache.  We examined one application, mgrid, in more detail, and using in-

formation gained from the tool were able to improve its performance by 8%.  From 

this, we conclude that sampling cache eviction information is useful in providing the 

user with feedback about cache behavior for performance tuning. 

Throughout the studies we have described, we found that hardware support for 

obtaining cache miss and eviction addresses enables the creation of tools that provide 

feedback to the user about the cache behavior of data structures at the source code 

level.  The creation of these tools would not otherwise be possible, except through 

techniques such as simulation, which have severe limitations such as high overhead.  

We think that this is a strong argument for including such features in future proces-

sors, and for making them available to software developers.  In some cases, such as 

the Intel Itanium 2, this has already started to happen, and some of the techniques de-

scribed in this dissertation can be used on these today.  In many cases, however, per-

formance monitoring features continue to be limited, or even if they are present, may 

be partly or entirely undocumented.  An example of this is the IBM POWER4 proces-
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sor, which possesses sophisticated performance monitoring features that are unfortu-

nately mostly undocumented (although the PMAPI [1] kernel interface provides ac-

cess to a subset of these features).  We hope that demonstrating the usefulness of 

these features will lead to more vendors including and documenting them. 

6.1 Summary of Contributions 

This dissertation has made a number of contributions in answering the ques-

tion of how to provide feedback to a user about the cache behavior of data structures 

at the source code level.  One such contribution is to show how hardware perform-

ance monitors that can provide the addresses related to cache misses, along with the 

ability to generate periodic interrupts when cache misses occur, can be used to meas-

ure the cache behavior of data structures.  Using simulation and an implementation on 

the Intel Itanium 2 processor, we showed that this technique can gather the desired 

information accurately and with low overhead.  This had not previously been done, 

since prior tools had either used simulation for the tool itself (as opposed to as a 

method of validating a hardware approach), or were unable to determine the ad-

dresses associated with specific cache misses. 

This dissertation also demonstrated the usefulness of this data centric informa-

tion, by describing how it was used to improve the performance of two applications 

from the SPEC CPU2000 benchmark suite. 

Furthermore, this dissertation introduced the idea of a new hardware feature 

that would provide information about the data that is evicted from the cache when a 

miss occurs.  It described in detail how software instrumentation could use the infor-

mation from such a feature to provide feedback about how data structures are inter-
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acting in the cache.  Using simulation, we showed that this technique is able to gather 

accurate information for the most important objects in an application, while maintain-

ing a low overhead.  We showed that this information is useful in performance tuning 

by using it to improve the performance of a sample application. 

6.2 Future Research 

In the future, more processors may become available that provide cache miss 

addresses.  It would useful to port the Cache Scope cache miss sampling tool to such 

processors, and to study the ways in which each architecture’s unique features affect 

cache performance. 

It would also be interesting to examine ways to automatically control the 

overhead and perturbation of the instrumentation code by dynamically changing the 

sampling frequency.  Although we have shown that it is possible to choose a sam-

pling frequency that is appropriate for a wide range of applications, this would further 

improve the robustness of a sampling tool. 

Another interesting area of study would be how to use data centric cache in-

formation to provide feedback to a compiler.  Based on this information, the compiler 

could automatically change the layout of data structures or alter the code that accesses 

them in order to improve use of the cache.  This would be especially useful for prob-

lems that would be difficult for a compiler to analyze statically, such as difficult to 

analyze uses of pointers in C. 

The idea of automatically using feedback could also be extended to memory 

allocation.  The results from cache miss sampling could be used by the memory allo-

cator to decide where newly allocated blocks of memory should be placed.  Possibly 
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the feedback could be used in the same run of the application in which it was gathered 

– cache miss addresses could be continuously sampled, and the memory allocator 

could adapt based on the latest results.  If eviction information is available, it could be 

particularly useful, since it may provide information about cache conflicts between 

data structures that are being used concurrently; future allocations could attempt to 

avoid such conflicts. 

No existing processor includes a way to sample cache eviction addresses.  If 

this could be implemented in hardware, it would make it possible to use this tech-

nique on a much wider set of applications, many of which cannot be run under a 

simulator due to memory or performance constraints. 

There are other uses of eviction addresses that could be examined as well.  As 

one example, by looking at the difference between misses and evictions for a certain 

data structure, we should be able to estimate how much of the data structure is being 

kept in the cache at any given time.  It would be useful to investigate whether sam-

pling provides sufficient accuracy to make an estimate of this value useful. 
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