

ABSTRACT

Title of Dissertation: DATA CENTRIC CACHE

MEASUREMENT USING HARDWARE
AND SOFTWARE INSTRUMENTATION

 Bryan R. Buck, Ph.D., 2004

Dissertation Directed By: Professor Jeffrey K. Hollingsworth,

Department of Computer Science

The speed at which microprocessors can perform computations is increasing

faster than the speed of access to main memory, making efficient use of memory

caches ever more important. Because of this, information about the cache behavior of

applications is valuable for performance tuning. To be most useful to a programmer,

this information should be presented in a way that relates it to data structures at the

source code level; we will refer to this as data centric cache information. This disser-

tation examines the problem of how to collect such information. We describe tech-

niques for accomplishing this using hardware performance monitors and software in-

strumentation. We discuss both performance monitoring features that are present in

existing processors and a proposed feature for future designs.

The first technique we describe uses sampling of cache miss addresses, relat-

ing them to data structures. We present the results of experiments using an imple-

mentation of this technique inside a simulator, which show that it can collect the de-

sired information accurately and with low overhead. We then discuss a tool called

Cache Scope that implements this on actual hardware, the Intel Itanium 2 processor.

Experiments with this tool validate that perturbation and overhead can be kept low in

a real-world setting. We present examples of tuning the performance of two applica-

tions based on data from this tool. By changing only the layout of data structures, we

achieved approximately 24% and 19% reductions in running time.

We also describe a technique that uses a proposed hardware feature that pro-

vides information about cache evictions to sample eviction addresses. We present

results from an implementation of this technique inside a simulator, showing that

even though this requires storing considerably more data than sampling cache misses,

we are still able to collect information accurate enough to be useful while keeping

overhead low. We discuss an example of performance tuning in which we were able

to reduce the running time of an application by 8% using information gained from

this tool.

DATA CENTRIC CACHE MEASUREMENT USING HARDWARE AND
SOFTWARE INSTRUMENTATION

By

Bryan R. Buck

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:
Professor Jeffrey K. Hollingsworth, Chair
Professor Peter J. Keleher
Professor Alan Sussman
Professor Chau-Wen Tseng
Professor H. Eleanor Kerkham

© Copyright by
Bryan R. Buck

2004

Dedication

To my parents and to Chelsea, for all their help and support.

 ii

Acknowledgements

I would like to thank my advisor, Dr. Jeffrey Hollingsworth, for his help and
guidance.

I would also like to thank my fellow students and members of our research group,
Chadd Williams, Mustafa Tikir, Ray Chen, I-Hsin Chung, Jeff Odom, and James
Waskiewicz for their help.

 iii

Table of Contents

Dedication ... ii
Acknowledgements.. iii
Table of Contents... iv
List of Figures .. vi
List of Tables .. vii
Chapter 1: Introduction ... 1
Chapter 2: Related Work .. 4

2.1 Hardware Instrumentation .. 4
2.2 Software Instrumentation.. 6
2.3 Memory Performance Measurement and Visualization Tools 10
2.4 Adapting System Behavior Automatically ... 13
2.5 Optimization ... 14

Chapter 3: Measuring Cache Misses in Simulation.. 18
3.1 Cache Miss Address Sampling ... 18
3.2 The Simulator.. 21
3.3 Experiments .. 22

3.3.1 Accuracy of Results .. 22
3.3.2 Perturbation of Results.. 24
3.3.3 Instrumentation Overhead... 26
3.3.4 Simulation Overhead .. 28

3.4 Conclusions... 29
Chapter 4: Measuring Cache Misses Using Hardware Monitors................................ 31

4.1 Intel Itanium 2 Performance Monitoring .. 31
4.1.1 PMC and PMD Registers.. 32
4.1.2 Performance Monitor Overflow Interrupt... 33
4.1.3 Event Addresses.. 33

4.2 Linux IA-64 Performance Monitoring Interface... 35
4.3 Cache Scope.. 36

4.3.1 Instrumentation for Sampling Cache Misses 37
4.3.2 Data Analysis Tool ... 41

4.4 Experiments .. 42
4.4.1 Perturbation of Results.. 43
4.4.2 Instrumentation Overhead... 46

4.5 Tuning Using Data Centric Cache Information .. 48
4.5.1 Equake... 49
4.5.2 Twolf... 56

4.6 Conclusions... 61
Chapter 5: Cache Eviction Monitoring ... 63

5.1 Proposed Hardware Feature.. 63
5.2 Instrumentation for Sampling Cache Evictions .. 65
5.3 Experiments .. 68

5.3.1 Accuracy of Results .. 69

 iv

5.3.2 Perturbation of Results.. 77
5.3.3 Instrumentation Overhead... 78

5.4 Performance Tuning Using Data Centric Eviction Information 79
5.5 Conclusions... 82

Chapter 6: Conclusions ... 84
6.1 Summary of Contributions.. 87
6.2 Future Research .. 88

References... 90

 v

 List of Figures

Figure 1: Increase in Cache Misses Due to Instrumentation (Simulator) 25
Figure 2: Instrumentation Overhead (Simulator).. 27
Figure 3: Slowdown Due to Simulation.. 28
Figure 4: Stat Bucket Data Structure .. 40
Figure 5: DView Sample Session ... 42
Figure 6: Increase in L2 Cache Misses on Itanium 2.. 44
Figure 7: Instrumentation Overhead (Itanium 2) .. 47
Figure 8: Memory Allocation in Equake .. 52
Figure 9: Modified Memory Allocation in Equake .. 54
Figure 10: Performance Monitor for Cache Evictions.. 64
Figure 11: Bucket Data Structure for Cache Evictions... 67
Figure 12: Percent Increase in Cache Misses When Sampling Evictions 77
Figure 13: Instrumentation Overhead When Sampling Cache Evictions 78
Figure 14: Loop from Function Resid .. 80
Figure 15: Cache Misses in Mgrid Before and After Optimization............................ 82

 vi

List of Tables

Table 1: Results for Sampling Under Simulator... 23
Table 2: L2 Cache Misses on Itanium 2 in Billions.. 44
Table 3: Data Structure Statistics in Equake... 50
Table 4: Data Structure Statistics in Equake with Named Buckets 52
Table 5: Data Structure Statistics in Optimized Equake... 54
Table 6: Data Structure Statistics in Second Optimized Equake............................... 56
Table 7: Cache Misses in Twolf ... 57
Table 8: Cache Misses in Twolf with Named Buckets... 57
Table 9: Structures in Twolf ... 58
Table 10: Cache Misses in Twolf with Specialized Memory Allocator..................... 60
Table 11: Cache Misses Sampled With Eviction Information.................................... 71
Table 12: Cache Evictions in Mgrid ... 72
Table 13: Cache Eviction Matrix for Applu ... 74
Table 14: Cache Eviction Matrix for Gzip ... 74
Table 15: Cache Eviction Matrix for Mgrid ... 74
Table 16: Cache Eviction Matrix for Su2cor.. 74
Table 17: Cache Eviction Matrix for Swim.. 75
Table 18: Cache Eviction Matrix for Wupwise .. 75
Table 19: Percent of Total Evictions of U by Stat Bucket and Code Line 76
Table 20: Evictions of T by U in Wupwise .. 77
Table 21: Evictions by Code Region in Mgrid ... 79

 vii

Chapter 1: Introduction

Increases in processor speed continue to outpace increases in the speed of ac-

cess to main memory. Because of this, it is becoming ever more important that appli-

cations make effective use of memory caches. Information about an application’s

interaction with the cache is therefore crucial to tuning its performance. This infor-

mation can be gathered using a variety of instrumentation techniques that may in-

volve simulation, adding instrumentation code to the application, or the use of hard-

ware performance monitoring features.

One difference between these techniques is the point in time at which they are

added to the system or application. Hardware features must be added when the sys-

tem is designed, whereas software can add instrumentation at any time from when the

application is in source code form (by modifying the source code) to after the applica-

tion has begun execution (using dynamic instrumentation [14]). Because of this, all-

software approaches are more flexible. For instance, a simulator can be made to pro-

vide almost any kind of information desired, depending only on the level of detail and

fidelity of the simulation. However, simulation can be slow, sometimes prohibitively

so. Hardware performance monitors allow data to be gathered with much lower

overhead, with the tradeoff that the types of data that can be collected are limited to

those the system’s designers decided to support.

To be most useful to a programmer in manually tuning an application, infor-

mation about cache behavior should be presented in a way that relates it to program

data structures at the source code level. We refer to this as data centric cache infor-

mation.

 1

Relating cache information to data structures requires not only counting

cache-related events, but also determining the areas of memory that are associated

with these events. In the past, this has been difficult to accomplish using hardware

monitors, due to limited support for gathering such data. As an example, processors

that include support for counting cache misses have often not provided any way to

determine the addresses that were being accessed to cause them.

The situation is now changing. Several recent processor designs include in-

creased support for performance monitoring. Many processors have for some time

included a way to count cache misses, and a way to trigger an interrupt when a given

number of events (such as cache misses) occur. Some recent processors also provide

the ability to determine the address that was accessed to cause a particular cache miss;

by triggering an interrupt periodically on a cache miss and reading this information, a

tool can sample cache miss addresses. The Intel Itanium 2 [3] supports this feature,

and reportedly so does the IBM POWER4 [83]. There is still more progress to be

made however; as an example, the POWER4 performance monitoring features are

largely undocumented, and are not considered supported features of the processor.

This dissertation will consider the problem of how to provide useful feedback

to a programmer about the cache behavior of the source code-level data structures in

an application. It will present techniques for measuring cache events and relating

them to program data structures, using both simulation and hardware performance

monitors. The discussion of simulation will mainly be in the context of its use in

validating the techniques for use with hardware monitors, and to evaluate future

hardware counter designs.

 2

We will begin in Chapter 2 with a discussion of related work and how our

work differs from it. In Chapter 3 we will discuss gathering data centric cache infor-

mation by sampling cache miss addresses. We will present an evaluation of this

technique using a simulator, and show that it can be used to collect accurate informa-

tion with low overhead.

Next, in Chapter 4, we will describe a tool called Cache Scope, which uses a

modified version of this technique on real hardware, the Intel Itanium 2. This tool

was used to validate the sampling technique in real-world conditions. It was also

used to tune the performance of two applications, in order to demonstrate the useful-

ness of the collected data. The optimized versions of these applications showed re-

ductions in running time of approximately 24% and 19%.

In Chapter 5, we propose a novel hardware feature that would provide infor-

mation about the addresses of data evicted when a cache misses occurs. We discuss a

technique for sampling this eviction information to provide feedback to the user about

the interactions of data structures in the cache. We will then describe an implementa-

tion of this technique inside a simulator, which we used to show that this technique is

feasible in terms of accuracy and overhead. We will also show an example of opti-

mizing an application based the results from this tool, which resulted in an approxi-

mately 8% reduction in running time, in order to show the value of the information it

provides.

Finally, Chapter 6 will present conclusions and future work.

 3

Chapter 2: Related Work

Many types of instrumentation have been used to measure the performance of

the memory hierarchy. These can be thought of as lying along a continuum from

hardware techniques that are designed into the system to software techniques that can

instrument a program after has begin execution. This chapter first describes some of

these instrumentation systems, and then discusses optimizations that have been pro-

posed for improving the use of the memory hierarchy.

2.1 Hardware Instrumentation

An example of hardware support for software instrumentation is the HY-

PERMON performance monitoring system for the Intel iPSC/2 Hypercube [56]. This

system provides hardware support for the collection of software events while keeping

perturbation down, by providing an I/O port that software instrumentation can use to

record event codes. These codes are then timestamped and read by a node or nodes

dedicated to saving or processing the data. Mink et al. [64] describe a similar hybrid

software-hardware instrumentation system that includes hardware support for includ-

ing measurements of resource usage in event records. They also discuss an all-

hardware method, using pattern matching on virtual addresses to trigger the storage of

events. A monitoring system developed for the INCAS project [86] also uses a hy-

brid approach, with events generated by software sent to a Test and Measurement

Processor that is part of each node. This processor filters or summarizes the data and

sends it to a dedicated central test station that presents the information to the user.

The IBM RP3 performance monitoring hardware [13] contains support for collecting

hardware, rather than software events. Each Processor-Memory Element (PME) in-

 4

cludes a Performance Monitor Chip (PMC), which receives event signals from the

other PME elements (with an emphasis on memory events). The data collected can

be read by the PME itself or by the I/O subsystem. For both multi- and single-

processor systems, the MultiKron board [63, 64] provides a way to add performance

monitoring hardware to a system with either an SBus or VME bus. It provides on-

board memory to hold events, which are triggered by software. It also provides pins

that can be connected to host hardware in order to measure external signals, with the

measurements written into memory as part of an event record (sample).

Other systems have used flexibility provided by a hardware system to add in-

strumentation effectively at the hardware level. ATUM [5] uses the ability to change

the microcode in some processors to add instrumentation at the microcode level to

store information about memory references. The FlashPoint [59] system uses the fact

that the Stanford FLASH multiprocessor [44] implements its memory coherence pro-

tocols in software that is executed by a Protocol Processor. The designers observe

that the support needed for measuring memory system performance is very similar to

the support needed to implement a coherence protocol. Therefore, in a system such

as FLASH it is relatively easy to add performance measurement to the code that is

normally executed by the Protocol Processor. One thing that distinguishes FlashPoint

from other systems discussed here is that it returns data centric information, similar to

that returned by MemSpy [58], which will be described below. This allows a user to

determine what program objects are causing performance problems.

Most modern processors include some kind of performance monitoring count-

ers on-chip. These typically provide low-level information about resource utilization

 5

such as cache hit and miss information, stalls, and integer and floating point instruc-

tions executed. Examples include the MIPS R10000 [87], the Compaq Alpha family

[25], the UltraSPARC family [49], and the Intel Pentium [2] and Itanium [3, 36, 80]

families. All of these can provide cache miss information.

Compaq’s DCPI [6] runs on Alpha processors and uses hardware counters and

the ability to determine the instruction that caused a counted event to provide per-

instruction event counts. On Alpha processors that use out-of-order execution, this

requires extra hardware support called ProfileMe. This provides the ability to sample

instructions. The processor periodically tags an instruction to be sampled, which

causes it to save detailed information about its execution. Afterward, it generates an

interrupt, at which time an interrupt handler can read the saved information.

Libraries are often used to simplify the use of hardware monitors, and in some

cases to provide an API that is as similar as possible across processors. These include

PAPI [66] and PCL [8], both of which run on multiple platforms. Perfmon [4] pro-

vides access to the Itanium family performance counters on Linux. PMAPI [1] is a

library for using the POWER family performance counters on AIX.

2.2 Software Instrumentation

The tools described in this dissertation use software instrumentation to control

hardware performance monitors and gather results. Software instrumentation can be

inserted any time from when the source code is written (manually by the programmer)

to after the program has begun executing. Pablo [68, 73] uses modified Fortran and C

compilers to produce a parse tree from source code, and then produces instrumented

source code based on the parse tree and information supplied by the user. Sage++ [11]

 6

is a general-purpose system that facilitates the creation of tools that analyze and mod-

ify source code. It is a library that can parse Fortran, C, or C++ into an internal repre-

sentation that can be navigated and altered using library calls. A modified program

can then be written out as new source code. Sage++ has been used to implement

pC++ [12], an object-parallel extension to C++. ROSE [72] is a tool for building

source-to-source preprocessors, which currently reads and produces C++ code (other

languages may be supported in the future). It allows a user to read in code as an ab-

stract syntax tree, transform the tree, and write it back out as code. MPTrace [29] is a

tool that inserts instrumentation for tracing parallel programs after compilation, by

adding new code to the assembly language version of a program that is produced by a

compiler.

Many tools have been written to transform programs after compilation and

linking. Johnson [40] describes processing a program after linking in order to opti-

mize it, perform profiling, generate performance statistics, and for other uses. FDPR

[67] is a tool used to improve the code locality of programs. First, it reads an execu-

table file and places jumps to instrumentation routines at the end of each basic block,

in order collect information about how often each block is executed. The instru-

mented program is then run, and based on the results the original executable file is

rewritten again, this time reordering basic blocks in order to improve code locality

and reduce branch penalties.

Larus and Ball describe techniques used to rewrite executables [47] in the qp

and qpt programs. These programs provide basic block profiling, and qpt additionally

uses abstract execution [46] to trace a program’s data and instruction references. EEL

 7

[48] is a general-purpose library that provides the ability to rewrite executables using

a machine- and system-independent interface. It has been implemented on the

SPARC architecture. Another general-purpose library that provides the ability to re-

write an executable file is ATOM [81, 84], which is implemented on the Compaq Al-

pha. One difference between these two systems is that EEL is able to insert instru-

mentation code inline in an application, whereas in ATOM instrumentation is written

as a set of functions in a high-level language (usually C) and calls to the instrumenta-

tion code are inserted. Also, ATOM is mostly oriented toward adding instrumenta-

tion code only, whereas EEL provides more general functions for altering executables,

such as replacing code. Etch [78] is a tool similar to these for machines running Mi-

crosoft Windows on the x86 architecture. Because of the environment in which it

runs, it must deal with many challenges that similar tools running on RISC architec-

tures do not. For instance, the instruction set is more complex, with instructions of

varying lengths, and code and data are not easily distinguished in executable files.

Etch allows not only adding instrumentation code to an application, but also rewriting

the application in order to optimize it. An example would be reordering instructions

in order to improve code locality. BIT [51] is a tool for instrumenting Java bytecodes.

It is itself written in Java, and provides functionality similar to ATOM. Because it

instruments at the bytecode level, it can be used on any platform with an implementa-

tion of the Java Virtual Machine.

Some systems have moved the insertion of instrumentation into a program

even later, to when the program is loaded or after it has begun execution. For in-

stance, Bishop [10] describes profiling programs under UNIX by dynamically patch-

 8

ing breakpoint instructions into their images in memory. This allows a controlling

application to become aware of when a particular point in the code has been reached.

The Paragon Performance Monitoring Environment [75] includes the ability to patch

calls to a performance monitoring library into applications that are to be run. These

can produce trace information that can then be analyzed. Taking this further, Paradyn

[62] uses dynamic instrumentation, which allows instrumentation to be generated,

inserted, and removed during the execution of an application. It writes instrumenta-

tion code into the address space of the application and patches the application’s code

to call it at the desired locations, using the debugging interface of the operating sys-

tem. The code for performing this dynamic instrumentation has been incorporated

into the general-purpose Dyninst API library [14]. HP’s Caliper [37] uses dynamic

instrumentation to profile programs, and also provides an interface for using hardware

performance counters. Its dynamic instrumentation is slightly different from Para-

dyn/Dyninst; instead of patching the target application’s code to call the instrumenta-

tion, it rewrites whole functions and inserts the instrumentation inline into the new

function.

Another option that allows instrumentation to be altered easily at runtime is

simulation. Shade [23] performs simulation with instrumentation, mainly oriented

toward tracing. It translates code for a target machine into code for the simulation

host, with tracing code inline (except specialized code written by the user, which is

executed as function calls). The translation is done dynamically, so Shade is able to

insert and remove instrumentation while the program executes. The dynamic nature

of the translation also allows it to handle even self-modifying code.

 9

2.3 Memory Performance Measurement and Visualization Tools

This section will describe some systems that have been designed with the pri-

mary goal of measuring memory hierarchy effects. One such system is Mtool [33], a

performance debugging tool that, among other measurements, provides information

about the amount of performance lost due to the memory hierarchy. To do this, it

first computes an ideal execution time for each basic block in an application, assum-

ing that all memory references will be satisfied by the cache. It then runs an instru-

mented version of the application that gathers information about the actual execution

time of each basic block. The difference between the ideal time and the actual time is

then reported as the approximate loss in a given basic block due to the memory sys-

tem. In contrast to the techniques presented in this dissertation, Mtool does not use

any information about the addresses associated with memory stalls, and therefore re-

turns no data centric information.

MemSpy [58] is a tool for identifying memory system bottlenecks. It pro-

vides both data- and code-oriented information, and allows a user to view statistics

related to particular code and data object combinations. MemSpy uses simulation to

collect its data, allowing it to track detailed information about the reasons for which

cache misses take place. For instance, a cache miss may be a cold miss or due to an

earlier replacement.

For purposes of keeping the code- and data-oriented statistics mentioned

above, MemSpy separates code and data into bins. A code bin is a single procedure,

whereas a data bin is either a single data object or a collection of objects that were all

allocated at the same point in the program with the same call path. The authors argue

 10

that such objects generally behave similarly. Using these types of bins, they then de-

fine statistical bins, which represent combinations of code and data bins. At each

cache miss, the appropriate statistical bin is located and its information is updated.

One way this differs from the techniques described in this dissertation is in the use of

simulation for the tool itself, whereas in our work simulation is only used when prov-

ing techniques that will be used with hardware monitors. In addition, the techniques

we will present do not require instrumentation code to take an action at each and

every cache miss. MemSpy has also been used with a sampling technique, as de-

scribed in [57]. The authors modified MemSpy to simulate only a set of evenly

spaced strings of runs from the full trace of memory references, and found that this

technique provided accuracy to within 0.3% of the actual cache miss rate for the

cache size and applications they tested. This differs from the sampling performed by

our tools, which sample individual misses out of the complete stream.

CPROF [50] is a cache profiling system somewhat similar to MemSpy. It

uses simulation to collect detailed information about cache misses. It is able to pre-

cisely classify misses as compulsory, capacity, or conflict misses, and to identify the

data structure and source code line associated with each miss.

StormWatch [19] is another system that allows a user to study memory system

interaction. It is used for visualizing memory system protocols under Tempest [74], a

library that provides software shared memory and message passing. Tempest allows

for selectable user-defined protocols, which can be application-specific. StormWatch

runs using a trace of protocol activity, which is easy to generate since the protocols

are implemented in software. The goal of StormWatch is to allow a user to select and

 11

tune a memory system protocol to match the communication patterns of an applica-

tion.

SIGMA [27] is a system that uses software instrumentation to gather a trace of

the memory references in an application, which it losslessly compresses. The trace is

then used as input to a simulator, along with a description of the memory system pa-

rameters to be used (cache size, associativity, etc.). The user can also try different

layouts of objects in memory by providing instructions on how to transform the ad-

dresses in the trace to reflect the new layout. The results of the simulation can then

be examined using a set of analysis tools.

Itzkowitz et al. [38] describe a set of extensions to the Sun ONE Studio com-

pilers and performance tools that use hardware counters to gather information about

the behavior of the memory system. These extensions can show event counts on a

per-instruction basis, and can also present them in a data centric way by showing ag-

gregated counts for structure types and elements. Unlike the simulators and hardware

counters used in the work described in this dissertation, the UltraSPARC-III proces-

sors used by this tool do not provide information about the instruction and data ad-

dresses associated with an event, so the reported values are inferred and may be im-

precise.

Fursin et al. [30] describe a technique for estimating a lower bound on the

execution time of scientific applications, and a toolset that implements it. This tech-

nique involves modifying code so that it performs the same amount of computation

but accesses few memory locations, eliminating most cache misses. The modified

code is then profiled to estimate the lower bound.

 12

2.4 Adapting System Behavior Automatically

Other studies have suggested ways for systems to react automatically to in-

formation gained by the measurement of memory hierarchy effects. For instance,

Glass and Cao [32] describe a virtual memory page replacement algorithm based on

the observed pattern of page faults. Their algorithm, SEQ, normally behaves like

LRU, but when it detects a series of page faults to contiguous addresses, it switches to

MRU-like behavior for that sequence. Cox and Fowler [26] describe an algorithm for

detecting data with a migratory access pattern and adapting the coherence protocol to

accommodate it. Migratory data is detected by noting cache lines for which, at the

time of a write, there are exactly two copies of the cached block in the system, and

the processor performing the write is not the same processor that most recently per-

formed a write to that block. For these cache lines, they switch to a strategy in which

a read miss migrates the data, by copying it to the local cache and invalidating it on

the other processor holding a copy in one transaction.

Bershad et al. [9] describe a method of dynamically reducing conflict misses

in a large direct-mapped cache using information provided by an inexpensive piece of

hardware called a Cache Miss Lookaside Buffer. Their technique is based on the fact

that cache lines on certain sets of pages will map to the same position in the cache.

The Cache Miss Lookaside buffer keeps a list of pages on which cache misses occur,

associated with the number of misses on each. This can be used to detect when a set

of pages that map to the same locations in the cache are causing a large number of

misses. All but one of the pages can then be relocated elsewhere in physical memory,

eliminating their competition for the same area of the cache.

 13

Another hardware feature that has been proposed as a means of both measur-

ing memory behavior and adapting to it is informing memory operations [35]. An

informing memory operation allows an application to detect whether a particular ac-

cess hit in the cache. The paper proposes two forms of this, one in which operations

set a cache condition code that can then be tested, and one in which a cache miss

causes a low-overhead trap. The authors propose several uses for this facility, includ-

ing performance monitoring, adapting the application’s execution to tolerate latency,

and enforcing cache coherence in software.

2.5 Optimization

Many studies have analyzed ways to improve an application’s use of the cache.

Their results may be useful in tuning an application after identifying the sources of

memory hierarchy performance problems using tools such as those described in this

dissertation.

One well-known technique is blocking, or tiling, which has been shown to

improve locality in accessing matrices [45, 85]. This is achieved by altering nested

loops to work on sub-matrices, rather than a row at a time. Other techniques, includ-

ing loop interchange, skewing, reversal, fusion, and distribution have also been

shown to be useful in improving locality [60, 85]. Lam et al. [45] and Coleman et al.

[24] study how reuse in tiled loops is affected by the tile size, and how to choose tile

sizes that will lead to good performance. Rivera and Tseng [77] present techniques

for the use of tiling in 3D scientific computations.

One problem with tiling is that the full amount of reuse may not be obtained

due to conflict misses, which is discussed by Lam et al. [45] and studied in detail by

 14

Temam et al. [82]. Chame et al. [17] examine the factors causing conflict misses,

self-interference (interference between items accessed by the same reference) and

cross-interference (between items accessed in separate references). They discuss how

these are affected by tile size, and present an algorithm for choosing a tile size that

will minimize them.

Pingali et al. [70] describe Computation Regrouping, which is a source code

level technique for transforming programs to promote temporal locality in memory

references, by moving computations involving the same data closer together.

Other studies have suggested changing data layout in addition to or instead of

transforming control flow. Methods that have been shown to be useful in eliminating

the conflict misses discussed above include padding and alignment [50, 69, 76].

Kandemir et al. present a linear programming approach for optimizing the combina-

tion of loop and data transformations [41]. It has also been suggested that array lay-

out should be controllable by the programmer [18]. Shackling [42, 43] is a technique

that is similar to tiling, but which uses a data centric approach. Shackling fixes an

order in which data structures will be visited, and, based on this, schedules the com-

putations that should be performed when a data item is accessed.

Ghosh et al. describe Cache Miss Equations (CME) [31], which allow them to

express cache behavior in terms of equations that can be solved to find optimum val-

ues for transformations like blocking and padding. Qiao et al. [71] present practical

results from applying optimization techniques including blocking and padding to sci-

entific applications, with results consistent with predicted performance gains.

 15

Another approach, which requires some hardware support, is to tolerate cache

misses through the use of software-controlled prefetching [16, 65]. Most of the stud-

ies described above have operated on data structures such as matrices, in which the

data layout is determined at compile time. One advantage of prefetching is that it can

more easily be used in the presence of pointers and pointer-based data structures [52,

54]. For instance, Lipasti et al. [52] present a simple heuristic, that the items pointed

to by function parameters should be prefetched at the call site for the function. This

is based on the assumption that pointers passed into a function are likely to be

dereferenced. Luk et al. [54] consider the problem of recursive data structures, and

present several schemes for prefetching items in these structures that are likely to be

visited in the future. Chilimbi and Hirzel [22] describe dynamic hot data stream pre-

fetching. As an application runs, their system profiles memory accesses to find fre-

quently occurring sequences, and inserts code into the application to detect prefixes

of these sequences and prefetch the rest of the stream when they are detected.

ADORE [53] is another system that inserts prefetching code at runtime, based on in-

formation about cache misses that is gathered using hardware performance counters.

The reordering of data and computation at runtime has also been suggested for

reducing cache misses in applications with dynamic memory access patterns [28, 61].

Ding and Kennedy [28] describe locality grouping, which moves interactions involv-

ing the same data item together, and dynamic data packing, which relocates data at

runtime to place items that are used together into the same cache lines. The authors

show that a compiler can perform these transformations automatically, with accept-

able overhead. Methods that have been proposed for placing objects when reordering

 16

data at runtime include first-touch ordering, in which items are placed in the order in

which they will be first accessed, and the use of space filling curves (for problems in

which data items have associated spatial locations, and interact with nearby items)

[61].

Chilimbi, Hill, and Larus [21] describe cache-conscious reorganization and

cache-conscious data layout, which attempt to place related dynamically allocated

structures into the same cache block. They present a system that provides two simple

calls that a programmer can use to give a program these capabilities. In another paper,

Chilimbi, Davidson, and Larus [20] consider the distinct problem of how to arrange

fields within a structure for the best cache reuse. They describe automatic techniques

for structure splitting and field reordering.

A different way to reduce cache misses is to eliminate some memory refer-

ences entirely, by making better use of processor registers, as in [15]. The authors

describe a source-to-source translator that replaces array references to the same sub-

script with references to an automatic variable. This allows a typical compiler’s reg-

ister allocation algorithm to place the value in a register.

 17

Chapter 3: Measuring Cache Misses in Simulation

This chapter will discuss a study of data centric cache measurement using a

cache simulator. While the simulator can be used as a tool in its own right, this work

will concentrate on using it to evaluate how hardware counters can be used by soft-

ware instrumentation. This will be done by providing simulated hardware counters,

and by running software instrumentation that uses them under the simulator so that

we can evaluate the accuracy of the data it gathers and estimate the overhead associ-

ated with it.

3.1 Cache Miss Address Sampling

In order for a tool running on real hardware to relate cache misses to data

structures, it must be able to determine the addresses that were accessed to cause

those misses. However, running instrumentation code to read and process these ad-

dresses every time a cache miss occurs is likely to lead to an unacceptable slowdown

in the application being measured.

One solution to this problem is to sample the cache misses. This can be ac-

complished with the hardware counters on some processors. For instance, many

processors provide a way to count cache misses, and a way to cause an interrupt when

a hardware counter overflows. By setting an initial value in the counter for cache

misses, we can receive an interrupt after a chosen number of misses have occurred.

We also need for the processor to identify the address that was being accessed

to cause the miss. Simply examining the state of the processor when an interrupt oc-

curs due to a cache miss counter overflow is generally not sufficient to accurately de-

termine the addresses associated with the event that caused the interrupt. Due to fea-

 18

tures of modern processors such as pipelining, multiple instruction issue, and out of

order execution, the point at which the execution is interrupted could be a consider-

able distance from the instruction that actually caused the miss. As an example, on

the Itanium 2 the program counter could be up to 48 dynamic instructions away in the

instruction stream from where the event occurred [3]. Other processor state, such as

registers, may also have changed, making it difficult or impossible to reconstruct the

effective address accessed by an instruction, even if the correct instruction could be

located. For this reason, in order to sample the addresses associated with events, the

processor must provide explicit support.

A further argument for sampling is that on some processors that provide the

features described above, it may not be possible to obtain the address of every cache

miss. For instance, on the Intel Itanium 2 [3] and IBM POWER4 [83], a subset of

instructions are selected to be followed through the execution pipeline. Detailed in-

formation such as cache miss addresses is saved only for these instructions. This is

necessary in order to reduce the complexity of the hardware counters.

Given the hardware support described above, we can collect sampled statistics

about the cache misses taking place in an application’s data structures. We will pre-

sent an example of such statistics below in Table 1, which is found in Section 3.3.1.

These statistics were gathered by instrumentation code running under the simulator

mentioned above. The simulator allows us to keep exact statistics in addition to the

sampled statistics, so that the two can be compared in order to evaluate the accuracy

of sampling.

 19

In order to measure per-data structure statistics, we associate a count with

each object in memory, meaning each variable or dynamically allocated block of

memory (or group of related blocks). We then set the hardware counters (which will

be simulated in the experiments described in this chapter) to generate an interrupt af-

ter some chosen number of cache misses. This number is varied through the run, in

order to prevent the sampling frequency from being inadvertently synchronized to the

access patterns of the application. When the interrupt occurs, we read the address of

the cache miss from the hardware, match it to the object in memory that contains it,

and increment its count. After processing the current sample, the entire process is

repeated. The mapping of addresses to objects is performed for program variables by

using the debug information in an executable. For dynamically allocated memory, we

instrument the memory allocation routines to maintain the information needed to per-

form the mapping.

After the execution has completed, or after a representative portion of the exe-

cution, we can examine the counts and rank program objects by the number of cache

misses caused when accessing each. If the number of misses sampled for each object

is proportional to the total number, this will provide the programmer with an accurate

idea of which program objects are experiencing the worst cache behavior.

The individual object miss counts described here are similar to the informa-

tion returned by the tool MemSpy [58]. A major difference between MemSpy and

the present work is that MemSpy used a simulator as the primary means to gather in-

formation, whereas the simulator described in this chapter is used to demonstrate a

low overhead technique for finding memory hierarchy problems using hardware per-

 20

formance counters and software instrumentation. Also, MemSpy used simulation to

examine all cache misses; the tool described here attempts to estimate the total cache

misses for each object by sampling a subset. As noted in section 2.3, a version of

MemSpy using sampling was developed, but the samples used were runs of memory

accesses from a full trace. These runs were then provided as input to the cache simu-

lator. This introduces a different kind of error from the technique discussed here, due

to lack of knowledge about the state of the cache at the beginning of each run of ac-

cesses. The technique described in this dissertation relies on hardware (real or simu-

lated) to provide samples of the cache misses taking place.

3.2 The Simulator

For the study described in this chapter, we implemented the algorithm de-

scribed above inside a simulator. The simulator runs on the Compaq Alpha processor,

and consists of a set of instrumentation code that is inserted into an application to be

measured using the ATOM [81, 84] binary rewriting tool. Code is inserted at each

load and store instruction in the application, to track memory references and calculate

their effects on the simulated cache. Additionally, each basic block is instrumented

with code that maintains a virtual cycle count for the execution by adding in a number

of cycles for executing that block. The cycle counts do not represent any specific

processor, but are meant to model RISC processors in general. The simulator does

not model details such as pipelining and multiple instruction issue. Since the virtual

cycle count is the only timing data used, slowdown due to the instrumentation for

simulation does not affect the results. The cache simulated is a single-level, two-way

 21

set associative data cache. A cache size of 2MB was used for the experiments that

will be described below.

The simulator provides a cache miss counter, an interrupt that can be triggered

when the counter reaches a chosen value, and the ability to determine the address that

was accessed to cause a miss. Additional instrumentation code that runs under the

simulator uses these features to perform cache miss address sampling, and uses the

sampled addresses to produce information about the number of cache misses caused

by each data structure in an application. Since this instrumentation runs under the

simulator, it can be timed using the virtual cycle counter, and it affects the simulated

cache, making it possible to study overhead and perturbation of the results.

3.3 Experiments

To investigate the accuracy and overhead of gathering data centric cache in-

formation by sampling, we ran the cache miss sampling instrumentation we described

above under the simulator on a number of applications from the SPEC95 benchmark

suite. The applications tested were tomcatv, su2cor, applu, swim, mgrid, compress,

and ijpeg. For experiments in which we did not vary the sampling frequency, we

used a default value of sampling one in 50,000 cache misses. The following sections

show the results of these experiments.

3.3.1 Accuracy of Results

We will first examine the accuracy of the results returned by sampling. Table

1 shows the objects in each application causing the most cache misses, both according

to the sampling instrumentation and as determined using exact numbers collected by

the simulator. Up to five objects are shown, with objects causing less than 0.1% of

 22

the total misses deleted. Object names that consist of a hexadecimal number repre-

sent dynamically allocated blocks of memory (the number is the address).

Actual Sampled Application Variable /
Memory Block Rank % Rank %

a 1 22.8 1 23.8
b 2 22.7 3 21.8
c 3 22.4 2 22.3
d 4 17.3 4 17.3

applu

rsd 5 7.1 5 7.0

orig_text_buffer 1 63.4 1 62.3
comp_text_buffer 2 35.8 2 35.8compress
htab 3 0.7 3 1.9

0x14102e000 1 86.0 1 89.9
jpeg_compressed_data 2 11.4 2 10.1ijpeg
0x14102c000 3 0.4 42 0.0

U 1 40.7 2 41.3
R 2 40.5 1 41.4mgrid
V 3 18.8 3 17.2

U 1 58.9 1 58.0
R 2 6.4 3 5.4
S 3 6.0 2 6.4
W2 – sweep 4 3.9 5 3.6

su2cor

W1 – intact 5 3.6 4 3.8

VOLD 1 7.7 2 8.1
CU 2 7.7 10 7.4
POLD 3 7.7 1 8.5
UOLD 4 7.7 13 6.9
P 5 7.7 9 7.4
CV 7 7.7 5 8.0
Z 9 7.7 4 8.0

swim

VNEW 12 7.7 3 8.1

RY 1 22.5 2 22.1
RX 2 22.5 1 22.9
AA 3 15.0 3 15.0
Y 4 10.0 5 10.0

tomcatv

X 5 10.0 4 10.4
Table 1: Results for Sampling Under Simulator

 23

The “rank” columns show the order of the objects when ranked by number of

cache misses. The percent columns show the percentage of all cache misses that were

due to the named variable or block of memory. The “actual” pair of columns shows

exact values collected at a low level in the simulator, and the “sampled” columns

show the values as measured by the sampling algorithm.

Generally, the results were indicative of the actual number of cache misses

occurring due to references to each object. For almost all applications, sampling

ranked the objects in order by the number of actual cache misses, except when the

difference in total cache misses caused by two or more objects was small (less than

one percent).

The largest error in the percent of cache misses estimated by sampling was

seen in ijpeg, where the memory block with the base address 0x14102e000 caused

3.9% fewer cache misses than estimated. Since this object caused 86% of all cache

misses, this difference did not affect the ranking of the objects. The next largest error

was the estimate for the array V in mgrid, which differed from the actual value by

1.5%; all other errors for the objects shown were smaller than this. We can conclude

that for these applications, sampling at the rate used, one in 50,000 cache misses, pro-

vided information that was accurate enough to be useful.

3.3.2 Perturbation of Results

Another aspect of accuracy is how the instrumentation code itself affects the

values being measured. In the case of sampling cache misses, we are interested in

how many cache misses are being caused by the instrumentation code rather than the

original application. Figure 1 shows the percent increase in cache misses for each

 24

application when run with sampling at the frequencies given in the legend. Note that

the scale of the y axis, showing the percentage, is logarithmic.

0.000

0.001

0.010

0.100

1.000

tomcatv swim su2cor mgrid applu compress ijpeg

pe
rc

en
t i

nc
re

as
e

in
 c

ac
he

 m
is

se
s

Sample 1 in 1,000
Sample 1 in 10,000
Sample 1 in 100,000
Sample 1 in 1,000,000

Figure 1: Increase in Cache Misses Due to Instrumentation (Simulator)

The results shown were gathered by running the sampling code under the

simulator along with the application, and comparing the results with runs of the appli-

cation alone under the simulator, with no sampling. For all runs with and without in-

strumentation, the applications were allowed to execute for the same number of ap-

plication instructions (this was made possible by the simulator). Operating system

code is not included in the simulator, so the cache effects of kernel code for context

switches and the delivery of signals for sampling was not modeled.

The increase in cache misses was very low for all applications. The largest

increase, when sampling one in every 1,000 cache misses while running ijpeg, was

approximately 0.15%. The larger increase in ijpeg relative to the other applications is

due to the fact that ijpeg normally has a lower cache miss rate, only 144 misses per

million cycles, and therefore a smaller absolute number of additional cache misses are

 25

required to cause a larger percent increase. For comparison, the application with the

next lowest miss rate is compress, with 361 misses per million cycles, followed by

mgrid, with 6,827.

Interestingly, for mgrid, applu, and compress, the number of additional cache

misses goes up as the sampling frequency goes down, until we reach a sampling fre-

quency of one miss per million. This effect is likely due to the frequency with which

the instrumentation code runs; when it is run often, the data it uses is kept in the cache,

whereas when it is run less frequently, the data is more likely to be evicted from the

cache before the next time the instrumentation code is run to sample a miss. At ex-

tremely low sampling frequencies, this effect becomes unimportant. Factors that af-

fect whether or not this phenomenon will occur with a given application include the

cache miss rate, the size of the memory object map used by the instrumentation, and

frequency with which cache misses land in the same set of objects.

3.3.3 Instrumentation Overhead

Figure 2 shows the increase in running time due to instrumentation code when

sampling with each of the frequencies shown in the legend, for each application tested.

The increase is shown as the percent increase over an uninstrumented run of the same

application. These times are in terms of the virtual cycle count maintained by the

simulator. Again, the scale of the y axis is logarithmic.

The values shown include the time spent executing instrumentation for sam-

pling (in virtual cycles), plus a cost for receiving each interrupt signal that triggers the

instrumentation to take a sample. For this value, we used results obtained experimen-

tally on an SGI Octane workstation with 175Mhz processors. We used the perform-

 26

ance counter support in the Irix operating system to cause an interrupt after a chosen

number of cache misses, which we varied. The cost measured was approximately 50

microseconds per interrupt, or 8,800 cycles. While the clock speed of the processors

used for this test was relatively slow, the number of cycles it takes to handle an inter-

rupt likely has not significantly changed on newer processors.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

tomcatv swim su2cor mgrid applu compress ijpeg

pe
rc

en
t s

lo
w

do
w

n

Sample 1 in 1,000 Sample 1 in 10,000
Sample 1 in 100,000 Sample 1 in 1,000,000

Figure 2: Instrumentation Overhead (Simulator)

The chart shows that the overhead is low unless sampling is performed too of-

ten. At a sampling rate of one in 10,000 misses, which was shown to be sufficient in

Section 3.3.1, the highest slowdown was 1.6%, for tomcatv. The overhead increases

almost linearly as we increase the sampling frequency. At a sampling frequency of

one in 1,000 misses, the overhead becomes significant, with the highest overhead be-

ing approximately 16%, again for tomcatv. However, even this slowdown may be

acceptable, depending on the application.

 27

3.3.4 Simulation Overhead

This section discusses the overhead in actual wall clock time that is incurred

by running an application under the cache simulator. This is distinct from the over-

head discussed in Section 3.3.3, which is the overhead of the instrumentation code

that performs sampling, as measured in virtual cycles by the simulator. Figure 3

shows the slowdown of each application when running under the simulator, in units

of normalized execution time of the application running natively outside the simulator.

This means that a value of ten on the y axis (“slowdown”) indicates ten times the exe-

cution time of the program running outside the simulator.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

tom
cat

v
sw

im
su2

co
r

mgri
d

ap
plu

co
mpre

ss
ijp

eg

sl
ow

do
w

n

cycle count load/store cache simulation

Figure 3: Slowdown Due to Simulation

The execution time for each application is split up into three categories. The

“cycle count” portion represents the slowdown due to the code that maintains the vir-

tual cycle count. “Load/store” represents the slowdown due to having instrumenta-

tion at all load and store instructions. This is measured as the time taken to jump to

and return from an empty function at each load and store. The “cache simulation”

 28

time represents the time added by performing the cache simulation inside the function

called at each load and store.

For all applications, the slowdown due to running under the simulator is large,

ranging from approximately a 37 times slowdown for tomcatv to approximately 109

times for ijpeg. The largest part of this overhead is cache simulation time, which ac-

counts for from a 30 times slowdown for tomcatv to a 90 times slowdown for mgrid.

This is followed by the load/store time (a 5 to 25 times slowdown), and then time

maintaining the virtual cycle count (a 2 to 20 times slowdown). The cache simulation

time could possibly be reduced by optimizing the simulation code, but the load/store

and virtual cycle count times are mostly due to the overhead of jumping to instrumen-

tation code, and cannot be reduced without using a different method of instrumenta-

tion. This is a strong argument for why hardware support for data centric cache in-

formation is needed. With hardware support, a tool incurs only the overheads talked

about in Section 3.3.3, and not the much higher overhead of simulation.

3.4 Conclusions

In this chapter, we have discussed how to use hardware support for sampling

cache miss addresses to collect information about the behavior of data structures at

the source code level. We then described an implementation of this technique that

runs under a cache simulator. Our experiments using this simulator showed that sam-

pling can provide accurate information with low overhead.

We also discussed the overhead of the cache simulator. The applications we

tested showed slowdowns of up to 109 times when run under the simulator. From

 29

this, we conclude that using hardware support is highly desirable for gathering data

centric cache information, in order to avoid the high overhead of simulation.

 30

Chapter 4: Measuring Cache Misses Using Hardware Monitors

This chapter describes a tool named Cache Scope that uses the hardware per-

formance monitors on the Intel Itanium 2 processor to gather data centric cache in-

formation. The instrumentation code used by Cache Scope is a modified and ex-

panded version of the cache miss sampling code described in Chapter 3. One major

addition is that it also gathers code centric information, which can be combined with

the information about data structures. For instance, it is possible to examine where in

the code the cache misses for a particular memory object took place. The following

sections describe the Itanium 2 and its performance monitoring features, the imple-

mentation of cache miss address sampling in Cache Scope, the results of a set of ex-

periments using Cache Scope, and examples of tuning applications based on informa-

tion from the tool.

4.1 Intel Itanium 2 Performance Monitoring

The experiments described in this chapter were performed on a two-processor

system with Intel Itanium 2 processors. The Itanium 2 is a VLIW processor with

many features for speculation and for making use of instruction level parallelism [36,

80]. It is an implementation of the IA-64 architecture, which was developed jointly

by Intel and Hewlett-Packard.

The IA-64 architecture specifies basic performance monitoring support, and

provides for extending it with features specific to each implementation. The Itanium

2 provides substantial performance monitoring abilities beyond those mandated by

the IA-64 architecture, including features that allow the sampling of cache miss ad-

dresses [3].

 31

4.1.1 PMC and PMD Registers

Every IA-64 implementation must provide at least four performance monitor

register pairs. Each pair consists of a Performance Monitor Control register (PMC)

and a Performance Monitor Data Register (PMD). These are labeled PMC/PMD4

through PMC/PMD7 . The PMC register in a pair specifies what event will be

counted, under what conditions it will be counted (for instance, in what privilege lev-

els), and whether or not interrupts will be generated when the value being counted

overflows. These registers are only accessible in privilege level zero (the highest).

The PMD registers contain the actual values; they are writable only at privilege level

zero, but are readable by code running at other levels. Optionally, setting a bit in an-

other special register, the Processor Status Register (PSR), causes the PMDs to return

zero when read from a non-zero privilege level, effectively making reading the PMDs

a privileged operation. This can also be done on a per counter pair basis. In the ex-

periments described in this dissertation, all reading and writing of performance moni-

tor registers is performed in the kernel at privilege level zero.

On the Itanium 2, the PMD registers are 48 bits wide. When a PMD register

is read, the top 16 bits are copied from the high bit of the 48 bit value, so that it ap-

pears sign extended.

All IA-64 implementations also include four additional PMC registers that

contain overflow status bits. These are labeled PMC0 through PMC3. When a

counter overflows, a corresponding bit in one of these four registers is set to one.

PMC0 also contains a “freeze” bit (labeled PMC0.fr), which freezes all counting when

set. This will be discussed below in connection with counter overflow interrupts.

 32

The IA-64 architecture specifies only two events, which are: instructions re-

tired, which counts all instructions that execute fully; and processor clock cycles.

The Itanium 2 adds over 100 events beyond these. The events used by the instrumen-

tation described in this dissertation are: L1 data cache read misses, L1 data cache

reads, L2 data cache misses, and a special event that counts L1 data cache read misses

and allows the measurement code to determine instruction and data addresses associ-

ated with the miss.

4.1.2 Performance Monitor Overflow Interrupt

In order to sample information about cache miss events, it is necessary for in-

strumentation code to be notified periodically that an event has occurred. The IA-64

architecture specifies a performance monitor overflow interrupt that can be used for

this purpose. Since the PMD registers are writable, by setting an initial value in a

PMD, it can be made to overflow after a chosen number of events have occurred.

Interrupts can be enabled or disabled independently for each PMD by setting a

bit in the corresponding PMC (the overflow interrupt bit, PMCn.oi). As mentioned

earlier, when a PMD overflows, a corresponding bit in one of PMC0 through PMC3 is

set to indicate the overflow. If the overflow interrupt (PMCn.oi) bit is set, the proces-

sor then sets the freeze bit, PMC0.fr, and raises a performance monitor interrupt. Set-

ting the freeze bit stops the counters, so that the values read by the interrupt handler

do not reflect an event caused by the interrupt handler itself.

4.1.3 Event Addresses

The Itanium 2 processor features a set of registers named the Event Address

Registers (EARs) that provide addresses and other information related to events tak-

 33

ing place in the cache and TLB. They can record instruction and data addresses for

data cache load misses and data TLB misses, and instruction addresses for instruction

cache and instruction TLB misses. For cache misses, they can also record the number

of cycles the fetch was in flight (the latency of the miss). They are configured

through the Instruction Event Address Configuration register, PMC10, and the Data

Event Address Configuration Register, PMC11. The options that can be set using

these registers include what events to monitor, such as cache vs. TLB events; what

privilege modes to monitor in; whether to allow user mode code to read the register;

and a minimum latency value for the counted events (for example, if monitoring L1

data cache load misses, only misses with a latency equal to or higher than the mini-

mum latency value will be monitored). The data values are read from a set of PMDs,

PMD0 and PMD1 for instruction events and PMD2, PMD3, and PMD17 for data events.

These can only be read when PMC0.fr is set, freezing the performance counters.

In the case of data cache load misses, the processor must track load instruc-

tions as they pass through the pipeline in order to determine the information recorded

by the Data EAR. The processor can track only one instruction at a time, so not all

miss events can be recorded by the Data EAR; while it is tracking one load, all others

are ignored. The processor randomizes which load to track, in order not to skew

sampling results. There is a special event that the performance monitor can count

called DATA_EAR_EVENTS, which counts the number of events tracked by the

Data EAR. By counting this event and enabling an interrupt on overflow, an interrupt

handler can be certain that the Data EAR values it reads are associated with the last

event tracked by the Data EAR. If the Data EAR is set to track data cache load

 34

misses, then the DATA_EAR_EVENTS event is a random subset of all data cache

load misses, allowing sampling of the addresses associated with the misses.

One other important fact to note is that the Data EAR mode that tracks L1

data cache load misses also tracks floating point loads. On the Itanium 2, the L1 data

cache handles only integer data, so all floating point loads go to the L2 cache and

may be sampled by the Data EAR.

4.2 Linux IA-64 Performance Monitoring Interface

Access to the performance monitors under Linux is through the “perfmon”

kernel interface [4], which is part of the standard Linux kernel for IA-64. Such a ker-

nel interface is necessary in order to use the performance monitors from user-level

code, since the performance monitor control registers are accessible only from privi-

lege level zero. Perfmon’s interface is a single kernel call named perfmonctl.

In order to make the perfmon interface portable to different IA-64 implemen-

tations, it provides only a thin layer over the hardware registers, with its main purpose

being to allow user-level code to read and write them. The idea is to provide an im-

plementation-independent way to access the implementation-dependent performance

monitoring features. This is possible because the IA-64 architecture specifies the ba-

sic framework for the performance counters. For instance, putting a certain value in

PMC4 will allow a user to count a certain event on the Itanium 2, but may count some

other event on another IA-64 processor. Perfmon would provide only a way to write

a value into PMC4, and does not have any knowledge of the meaning of the value.

Another function of perfmon is to virtualize the counters on a per-process ba-

sis. A program can choose between monitoring events system-wide or for a single

 35

process. In order to accomplish this, perfmon must be called from the context-switch

code, and for this reason it was made a part of the kernel, not an installable device

driver.

Perfmon also provides support for randomizing the interval between counter

overflows. The user specifies a mask that will be anded with a random number, with

the result being added to the number of events that will pass before an overflow (this

is actually accomplished by subtracting it from the initial value set in the counter).

In order to make the perfmonctl call easier to use, the perfmon project has also

produced a library named libpfm, which simplifies the task of programming the

counters. Given a set of events to count, libpfm determines which registers can be

used to count them, and returns the values that should be written into the hardware

registers to do so. It does not set the registers itself; that is done by calling perfmonctl.

The events are specified by names passed to the library as strings.

Libpfm is made up of two layers, a processor-independent layer that handles

the basic functionality specified in the IA-64 architecture, and a processor-dependent

layer that handles the functionality specific to a particular processor. There are proc-

essor-dependent layers for the Itanium and Itanium 2 processors. The Itanium 2 sup-

port includes features for setting up the Instruction and Data EARs, which are used in

the work described below to capture cache miss addresses.

4.3 Cache Scope

We implemented a tool named Cache Scope that gathers data centric cache in-

formation using the Itanium 2 performance counters. The tool consists of a set of in-

strumentation code that is added to an application to be measured, and an analysis

 36

program that allows a user to examine the data that was gathered. These are de-

scribed below.

4.3.1 Instrumentation for Sampling Cache Misses

The part of Cache Scope that collects data centric cache information about an

application is implemented in a library named libdcache_tool. To measure an appli-

cation, the user links it with this library, and inserts into the application a call to an

initialization function, dctl_initialize. Optionally, the user can also insert calls to the

functions dctl_start_measurement and dctl_stop_measurement, to control what part of

the execution will be monitored.

In order to track dynamic memory allocations, calls to functions such as mal-

loc must be replaced with equivalent calls supplied by Cache Scope (for instance,

dctl_malloc in the case of malloc). This is normally done by adding preprocessor

flags when compiling the program, for instance “-Dmalloc=dctl_malloc.”

There is also a partially completed version of the instrumentation code that

uses the Dyninst API [14] dynamic instrumentation library to insert all necessary calls

into the application at runtime. This version was not used in the work described in

this chapter because Dyninst did not yet support the IA-64 architecture when the

work was done. A completed version of Cache Scope that uses Dyninst would elimi-

nate the requirement to link with the tool library and to manually insert library calls.

The instrumentation code uses libpfm and perfmon to set the Itanium 2 hard-

ware performance monitors to count L1 data cache read misses, L1 data cache reads,

L2 cache misses, and Data EAR events. The Data EAR is set to record information

about L1 data cache load misses and floating point loads.

 37

The interrupt on overflow bit is set for the counter counting Data EAR events

(cache misses). The number of Data EAR events between interrupts is controllable

by the user, by setting an environment variable before executing the program to be

measured. When the interrupt occurs, the instrumentation code reads the address of

the instruction that caused the cache miss, the address that was being accessed, and

the latency of the instruction. It then updates the data structures for the appropriate

memory object (as described below) and restarts the counters. When restarting the

counters, it uses the randomization feature of perfmon to control the number of Data

EAR events between samples, to ensure a representative sampling of events.

For purposes of keeping statistics, memory objects are grouped into equiva-

lence classes, which we refer to as stat buckets. Each global or static variable in the

program is assigned its own stat bucket. When a block of memory is dynamically

allocated, a bucket name is either automatically generated or is supplied by the user,

as described below; this name identifies the bucket to which the block is assigned.

Different blocks may have the same bucket name, so that multiple blocks are assigned

to a single bucket. This is useful when a group of blocks are part of the same data

structure, as in a tree or linked list. Automatically assigned names are generated

based on the names of the top three functions on the call stack above the memory al-

location function that allocated the object. Explicit bucket names are assigned by the

user, by replacing the call to an allocation function with a call to a routine in Cache

Scope’s libdcache_tool library that takes an extra parameter, which is the bucket

name to assign to the block. Typically, a user would run the tool first without explic-

itly naming blocks, and then based on what functions were shown to be allocating

 38

blocks with performance problems, he or she would add explicit names to memory

allocation calls in those functions, to differentiate them from each other. The map of

memory locations to stat buckets is maintained in an interval tree that is implemented

using a red-black tree, in order to provide range queries and efficient insertions, dele-

tions, and lookups. The locations of variables are derived from the debug information

in the executable to be measured. The locations of dynamically allocated memory are

obtained by the Cache Scope memory allocation functions mentioned above.

The information stored in a bucket is illustrated in Figure 4. A bucket keeps a

count of cache events (L1 data cache misses or floating point loads) that have taken

place when accessing the objects associated with the bucket, and the sum of the laten-

cies of these events. This information is split up by the functions in which the cache

events occurred, adding code centric information to supplement the data centric in-

formation we are primarily concerned with. This data is kept in a vector, with an en-

try for each function in which cache misses have occurred for this bucket. The vector

data structure was chosen to conserve memory, since the entries do not require point-

ers to parents or children, as they would in a tree structure. This is necessary because

there are potentially a very large number of combinations of memory object and func-

tion that may occur in a run. The vector is sorted by a unique number that identifies

the function associated with each entry, so the entry for a function can be found using

a binary search. While faster schemes are certainly possible, the overhead of using

this data structure has not been a problem. In addition to the cache information, each

bucket also contains various statistics such as the number of objects assigned to the

bucket and their sizes.

 39

Stat Bucket for array1
Cache Misses

func1() func2() func3()

events: 1,863 events: 53 events: 672
latency: 260,820 latency: 7,420 latency: 94,080

Total bytes allocated: 128,000
Number of objects: 2,000
Max object size: 64

Figure 4: Stat Bucket Data Structure

When an interrupt occurs, first the data address of the associated cache miss or

floating point load is mapped to a bucket using the interval tree. The interval tree

contains a number that identifies the bucket. This number is used as an index into an

array of bucket structures, and within the desired bucket structure is a field that is the

vector of function information. In this vector, functions are identified by a unique

numeric identifier. To find the unique identifier to look for in the vector, the instruc-

tion address associated with the cache miss is looked up in a map of addresses to

functions. This map is implemented as a sorted list of functions with their associated

address ranges, which can be queried using a binary search. The information for this

map comes from the debug information in the executable being measured. The map

contains the unique identifier for the function, which is then used in the binary search

through the vector of function information found earlier. This returns the structure

that represents the data for cache events that take place in the given bucket and func-

 40

tion. Finally, the counts in this structure are updated with the information for the

event.

4.3.2 Data Analysis Tool

When measurement is finished, Cache Scope writes all the data it collected

out to a file in a compact format. This file can be read in by an analysis program

called DView. DView is written in Java, and so is portable to any system for which

Java is available.

DView provides a simple set of commands for examining the data. Figure 5

shows a sample session in which the tool is used to examine the cache events in the

application mgrid. There are commands that produce tables of the objects or func-

tions causing the most latency, as well as commands that can combine the data centric

and code centric data. For instance, a user can produce a table of the functions caus-

ing the most latency when accessing a certain data structure, or the data structures

experiencing the most latency in a given function. Note that the tool presents infor-

mation in terms of the latency associated with sampled events, rather than simply

counts of cache misses.

DView is also able to provide information about the non-cache-related statis-

tics that are kept by the instrumentation code, such as the number of allocated mem-

ory objects that belong to a given bucket, and the size of those objects. This can be

useful in tuning cache performance, as will be seen in the examples in Sections 4.5.1

and 4.5.2.

 41

DView 1.0
 Application: mgrid_base.ia64_linux
 Total latency: 2,751,228
 Total L1 misses: 2,412,080
 Total L2 misses: 2,402,079,498
 Sampling scale: 32,768.50
 Estimated latency: 90,153,614,718
 Average latency: 6.50

Command? objects
Objects by latency:

Object Latency %Latency %Events LPer
All 90,154 100.0% 100.0% 6.5
cmn_x_u__ 56,661 62.8% 64.8% 6.3
cmn_x_r__ 30,487 33.8% 33.4% 6.6
cmn_x_v__ 2,640 2.9% 1.5% 12.9
<UNKNOWN> 162 0.2% 0.1% 8.2
cmn_x_a__ 118 0.1% 0.1% 8.0

Latency values in millions.

Command? quit

Figure 5: DView Sample Session

4.4 Experiments

We ran a series of experiments in which we used Cache Scope to measure the

cache misses in a set of applications from the SPEC CPU2000 benchmark suite. One

goal of this study is to validate the conclusions we made from the simulation results

in the previous chapter by running the sampling technique on hardware. For instance,

running on hardware will allow us to measure the overhead of the instrumentation

code and how the code affects cache misses in a real-world setting. Another goal is

to examine how varying the sampling rate affects these values. This information is

likely to differ from what was observed under the simulator, due to the fact that we

will be sampling not only L1 data cache misses but also all floating point loads.

The applications used in the experiments were wupwise, swim, mgrid, applu,

gcc, mesa, art, mcf, equake, crafty, ammp, parser, gap, and twolf. They were com-

 42

piled using gcc 3.3.3. We ran each application a number of times while sampling

cache misses at different rates, in order to examine the effect of varying this parame-

ter. The rates given are averages; the actual number of events between samples was

randomly varied throughout the run. For tests in which we did not vary the sampling

frequency, we chose one in 32K as our default rate.

We also ran tests in which we did not sample cache misses, but did use the

hardware counters to gather various overall statistics to be compared with the runs in

which sampling was performed. The only statistics gathered in these runs were those

that could be measured with almost no overhead, by starting the counters at the be-

ginning of execution and reading their values at the end, without any requiring any

interrupts while the applications were running.

The results presented are averages over three runs of each application. The

following sections describe the data obtained from these experiments.

4.4.1 Perturbation of Results

Figure 6 shows the increase in L2 cache misses seen in each application we

tested when sampling at the rates shown in the legend, over the number of cache

misses observed when no sampling was performed. Striped bars represent negative

values with the absolute value shown. Note that the scale of the y axis is logarithmic.

Table 2 shows the absolute number of cache misses (in billions) with no sampling and

when sampling at the rates shown. We are concerned primarily with the L2 cache for

several reasons. First, the L1 cache on the Itanium 2 handles only integer loads.

Second, the penalty for going to the L2 cache is small, as low as five cycles for an

integer load and seven cycles for a floating point load [55]. Third, the L1 cache is

 43

only 16KB while the L2 is 256KB. For these reasons, most optimization on the Ita-

nium 2 will likely target the L2 cache.

0.1

1

10

100

1000

am
mp

ap
plu art

cra
fty

eq
ua

ke ga
p gc

c
mcf

mesa
mgri

d
pa

rse
r

sw
im

tw
olf

wup
wise

pe
rc

en
t i

nc
re

as
e

in
 L

2
ca

ch
e

m
is

se
s

Sample 1 in 512K
Sample 1 in 32K
Sample 1 in 2K
Sample 1 in 128

Figure 6: Increase in L2 Cache Misses on Itanium 2

L2 Cache Misses (Billions) at Sampling Rate Application None 512K 32K 2K 128
ammp 3.76 3.77 3.80 4.03 4.18
applu 2.11 2.11 2.12 2.14 2.12
art 2.97 2.97 2.97 2.98 2.98
crafty 0.11 0.11 0.12 0.17 0.29
equake 2.01 1.90 1.97 1.92 1.99
gap 0.55 0.55 0.55 0.56 0.59
gcc 0.52 0.55 0.56 0.58 0.70
mcf 6.01 6.03 6.03 6.07 6.27
mesa 0.14 0.14 0.15 0.19 0.20
mgrid 2.39 2.39 2.40 2.43 2.43
parser 1.71 1.70 1.71 1.82 2.08
swim 6.88 6.88 6.89 6.93 6.92
twolf 4.79 4.69 4.71 4.85 5.48
wupwise 0.68 0.68 0.70 0.70 0.71

Table 2: L2 Cache Misses on Itanium 2 in Billions

 44

The increase in L2 cache misses for most applications was relatively small ex-

cept at the two highest sampling frequencies, and as will be discussed below, some

applications actually showed a decrease in cache misses in the sampled runs. It is

important to note that the sampling frequencies used here cannot be directly com-

pared to those used in the simulations discussed in Chapter 3. The major reason for

this is that the event used is different. Whereas in the simulator the interrupt was

triggered by a specified number of cache misses, on the Itanium 2, L1 data cache

misses and floating point loads both contribute to the count that triggers the interrupt.

In addition, under the simulator we were only able to collect statistics for a limited

portion of each run, due to the high overhead in running time of the simulator. We

therefore needed to use a high sampling frequency in order to extract as much infor-

mation as possible in this limited period.

When sampling one in 512K events, the highest increase in misses was seen in

gcc, which had an approximately 5.3% increase. One feature of this application that

differentiates it from most of the others is that it frequently allocates and deallocates

memory in the heap. Therefore, we might suspect that the instrumentation code that

maintains the map of dynamically allocated memory may be the cause of the cache

disruption. In order to test this possibility, we reran gcc with the code that maintains

the dynamic memory map, but without doing any sampling. These runs produced an

average increase in L2 cache misses of 6.9%, which was very close to and actually

slightly higher than the 5.3% we saw when sampling. Therefore, we conclude that

the increase in cache misses is primarily due to the code for maintaining the map of

 45

dynamically allocated memory. After gcc, the next highest increases in L2 misses

were seen with crafty, with a 2.3% increase.

At a sampling frequency of one in 32K events, the highest increases in cache

misses are seen in gcc, with a 6.1% increase, crafty with 6.3%, and mesa, with 6.5%.

As we further increase the sampling frequency, we see increases in cache misses as

high as 168%, seen when running crafty while sampling one in 128 cache misses.

This shows that increasing the sampling rate does not necessarily lead to increased

accuracy, due to the instrumentation code significantly affecting cache behavior.

As noted above, some applications showed a small decrease in cache misses

when running with sampling as compared to runs without. The largest of these was

seen in equake, which showed a decrease in L2 cache misses of 5.3% when sampling

one in 512K events. This is likely due to the fact that the instrumentation code allo-

cates memory, which can affect the position of memory blocks allocated by the appli-

cation. It was observed by Jalby and Lemuet [39] that for a set of applications they

examined running on the Itanium 2, factors such as the starting addresses of arrays

had a significant effect on cache behavior. In Section 4.5.1, we present data from

equake and how the data was used to perform optimizations; while we were doing

this work, we found equake to be particularly sensitive to this phenomenon. This

may also account for some of the increase in cache misses seen when running gcc

with the memory allocation tracking instrumentation.

4.4.2 Instrumentation Overhead

Figure 7 shows the percent increase in running time for each application when

sampling at the frequencies shown in the legend. This increase is over the running

 46

time of the application with no sampling instrumentation. The scale of the y axis is

logarithmic, with striped bars representing negative values with the absolute value

shown. The overhead measured includes all instrumentation, both for sampling cache

miss addresses and for tracking dynamic memory allocations.

0.1

1

10

100

am
mp

ap
plu art

cra
fty

eq
ua

ke ga
p gc

c
mcf

mesa
mgri

d
pa

rse
r

sw
im

tw
olf

wup
wise

pe
rc

en
t i

nc
re

as
e

in
 r

un
ni

ng
 ti

m
e

Sample 1 in 512K
Sample 1 in 32K
Sample 1 in 2K
Sample 1 in 128

Figure 7: Instrumentation Overhead (Itanium 2)

For the two lowest sampling frequencies tested, the overhead was acceptable

for all applications. Looking at the higher of these frequencies, sampling one in 32K

events, the overhead was less than 1% for ten out of the fourteen applications tested.

The remaining applications were ammp and swim with overheads between 1 and 2%,

gcc with an overhead of approximately 2.3%, and equake with an overhead of ap-

proximately 7.7%.

One reason for the higher overhead in equake appears to be the number of

memory objects it allocates. More memory objects lead to a larger data structure that

the instrumentation code must search through in order to map an address to a stat

 47

bucket. Including both variables and dynamically allocated blocks of memory,

Equake declares or allocates 1,335,667 objects during its run, while the application

with the next highest number of allocations, twolf, declares or allocates 575,418.

Eight of the thirteen applications declare or allocate approximately 1,000 or fewer

objects.

4.5 Tuning Using Data Centric Cache Information

Previous sections have discussed how data centric cache information can be

measured using sampling, the hardware features that enable this, and statistics about

the overhead and accuracy of our implementation of sampling in simulation and on

the Itanium 2. We will next examine the question of the value of the information

provided by the tool.

This section will examine two example applications from the SPEC CPU2000

benchmarks, equake and twolf. We used Cache Scope to analyze these applications

and to tune their performance by improving their utilization of the cache. We will

follow this analysis and optimization step by step, to demonstrate how the tool al-

lowed us to quickly locate where the applications were losing performance due to

poor cache utilization, and to determine how data structures could be changed to en-

able better cache use.

As we will describe, we were able to achieve significant gains in performance

for both applications, showing the usefulness of the information provided by the tool.

This was accomplished in a short time; one day for equake, and a few days for twolf.

The programmer optimizing the applications (the author of this dissertation) had no

prior familiarity with the source code of either application, and relied entirely on the

 48

cache tool to determine what data structures and code to focus on for tuning. Fur-

thermore, the optimizations we will describe consisted almost entirely of changes to

the data structures in the applications, with few changes to the code.

4.5.1 Equake

We will first examine equake. This is an application that simulates seismic

wave propagation in large valleys, and was written by David R. O'Hallaron and Lou-

kas F. Kallivokas [7, 34]. It takes as input a description of a valley and seismic event,

and computes a history of the ground motion. It performs the computations on an un-

structured mesh using a finite element method.

We ran this application with Cache Scope to measure its cache behavior. The

first interesting piece of information this provided was that the hit ratio of reads in the

L1 data cache is only about 64% (this is the ratio of L1 data cache hits to loads that

are eligible to be cached in the L1 data cache). This low hit ratio suggests that cache

behavior could be a performance problem in this application, although it is important

to remember that on Itanium 2 the L1 cache is not used for floating point loads.

Another piece of information that the tool can provide is the average latency

of a cache event. For equake, this is 21.3 cycles. This is high relative to most of the

other applications tested. This value ranged from 6.5 cycles for mgrid to 73.2 cycles

for mcf; however, only three of the applications tested had average latencies greater

than equake’s. This may also indicate that cache performance is being lost due to

poor cache utilization.

Next we will look at which data structures in the application are causing the

most latency. As noted in Section 4.3.2, Cache Scope returns information in terms of

 49

latency rather than the number of cache misses. It is important to note that latency

does not indicate the number of cycles the processor is stalled waiting for a load. The

Itanium 2 performance monitor defines the latency of a load instruction as the number

of cycles the instruction is in flight. Multiple loads may be outstanding at any given

time, and instruction level parallelism may allow the processor to continue executing

other instructions while waiting for data. Nevertheless, using latency as the main

metric allows the tool to return more useful information than a simple count of L1

data cache misses would, since it takes into account the effects of all three levels of

cache. Another point to note is that the latency values returned by Cache Scope are

based only on the subset of events that are tracked by the Data EAR, and as such may

be an underestimate. Not all events are tracked by the Data EAR because it can track

only one load instruction at a time (see Section 4.1.3).

Table 3 shows the stat buckets in the application that cause the most latency,

sorted by latency. As described in Section 4.3.1, a stat bucket represents a data struc-

ture in memory. It can be a global or static variable, a block of dynamically allocated

memory, or a number of related blocks of dynamically allocated memory. For this

run, we allowed the tool to automatically group dynamically allocated memory into

stat buckets. In this example, there are two automatically named buckets, mem_init-

main and readpackafile-main.

Stat Bucket Latency
(millions) % Latency % Events Latency/

Event
mem_init-main 97,184 95.6% 84.8% 24.0
Exc 2,098 2.1% 8.1% 5.4
<STACK> 1,115 1.1% 4.6% 5.0
readpackfile-main 679 0.7% 0.1% 102.1
<UNKNOWN> 548 0.5% 2.3% 5.0

Table 3: Data Structure Statistics in Equake

 50

The “Latency” column shows an estimate of the absolute number of cycles of

latency caused by objects assigned to the given stat bucket, in millions. The “% La-

tency” column shows the percentage of all latency in the application that was caused

by the stat bucket. “% Events” shows the percent of all sampled events that were

caused by the bucket. Finally, “Latency/Event” shows the average latency for the

cache misses caused by the bucket.

The <STACK> bucket represents the stack. The tool is able to create a sepa-

rate bucket for the stack frame of each function, but this creates additional overhead

and was not used in this run. <UNKNOWN> represents all memory that is not asso-

ciated with a known object. This includes such objects as memory used by runtime

libraries that do not have debug information, and any memory that was dynamically

allocated by a library that was not processed by the tool. As mentioned above, the

remaining two buckets are automatically named, indicating that they were allocated

from the functions mem_init and readpackfile, both of which were called from main.

The most important bucket is obviously mem_init-main, which causes 95.6%

of the latency in the application. Looking at the function mem_init, we see that it

uses malloc to allocate a large number of arrays. It would be useful to break this

down further, by the individual arrays or groups of related arrays. As described in

Section 4.3.1, dynamically allocated memory can be explicitly assigned to a stat

bucket named by the user. This is done by using a special call provided by Cache

Scope to allocate the memory. For instance, the user may replace calls to malloc(size)

 51

with calls to dctl_mallocn(size, name). We did this for the memory allocation calls in

mem_init.

Table 4 shows the results of re-running the tool with explicitly named buckets.

The buckets with names beginning with “heap_” represent arrays or groups of arrays

that were dynamically allocated with explicit bucket names. Those shown are all al-

located by the function mem_init. Most of them are parts of a set of three-

dimensional matrices, where each matrix is made up of a group of independently al-

located blocks of memory. The reason they are split up in this way is to allow their

sizes to be determined at runtime, while still making them easy to use in C. An ex-

ample of this is the array “disp,” which is declared as “double ***disp.” The ele-

ments of disp are allocated as in the abbreviated code from equake shown in Figure 8.

Stat Bucket Latency
(millions) % Latency % Events Latency/

Event
heap_K_2 23,673 35.4% 4.2% 118.5
heap_disp_3 18,407 27.5% 36.1% 10.7
heap_K_3 7,487 11.2% 28.9% 5.4
heap_disp_2 3,473 5.2% 3.2% 22.8
Exc 2,134 3.2% 8.1% 5.5
heap_M_2 1,533 2.3% 2.1% 15.2
heap_C_2 1,489 2.2% 2.1% 14.7
<STACK> 1,124 1.7% 4.7% 5.0
heap_M_1 952 1.4% 0.8% 23.9
heap_K_1 929 1.4% 0.2% 80.0

Table 4: Data Structure Statistics in Equake with Named Buckets

/* Displacement array disp[3][ARCHnodes][3] */
disp = (double ***) malloc(3 * sizeof(double **));

for (i = 0; i < 3; i++) {
 disp[i] = (double **) malloc(ARCHnodes * sizeof(double *));
 for (j = 0; j < ARCHnodes; j++) {
 disp[i][j] = (double *) malloc(3 * sizeof(double));
 }
}

Figure 8: Memory Allocation in Equake

 52

The advantage of this is that the matrix can be accessed using the syntax

disp[i][j][k]. The only way to use this syntax without the multiple indirections is to

declare the size statically.

The numbers at the end of the names in Table 4 show the matrix dimension

with which each stat bucket is associated. For the first two dimensions, these are ar-

rays of pointers to the arrays that make up the next dimension. For the third dimen-

sion, the arrays contain the actual data. The second dimension of K, heap_K_2,

causes 35.4% of the total latency. The third dimension of the arrays disp and K,

heap_disp_3 and heap_K_3, together cause approximately 38.7% of the total latency.

Using the code features of our tool shows that the vast majority of these misses take

place in the function smvp. Almost 100% of the latency in heap_K_2, 69.6% percent

of the latency when accessing heap_disp_3, and 99.8% of the latency when accessing

heap_K_3 take place in this function. Smvp computes a matrix vector product, and

contains a loop that iterates over the matrices.

One potential problem here is that the size of the individual arrays that make

up these buckets is very small. Heap_K_2 contains arrays of three pointers, while

heap_K_3 and heap_disp_3 contain arrays of three doubles. Therefore, each of these

arrays is only 24 bytes long. This can easily be seen using the DView tool, which can

show statistics about the sizes of the blocks of memory that make up each stat bucket.

When malloc creates a block of memory, it reserves some memory before and after

the block for its own internal data structures. Since the L2/L3 data cache line size on

the Itanium 2 is 128 bytes, we could pack 5 of the arrays that make up heap_K_2,

heap_K_3, and heap_disp_3 into a single cache line, but this does not happen due to

 53

the overhead of malloc. A way to improve the situation would be to allocate one

large, contiguous array to hold all the pointers or data for each dimension matrix, and

then set the pointer arrays to point into them. This is shown in the code in Figure 9.

m

th

p

double *disp_3;
double **disp_2;
double ***disp_1;

disp_3 = malloc(3 * ARCHnodes * 3 * sizeof(double));

disp_2 = malloc(ARCHnodes * 3 * sizeof(double *));

disp_1 = dctl_mallocn(3 * sizeof(double **));

disp = disp_1;

for (i = 0; i < 3; i++) {
 disp[i] = &disp_2[i*ARCHnodes];

 for (j = 0; j < ARCHnodes; j++) {
 disp[i][j] = &disp_3[i*ARCHnodes*3 + j*3];
 }
 }

Figure 9: Modified Memory Allocation in Equake

This change decreases L1 cache misses in the application by 57%, L2 cache

isses by 30%, and running time by 10%. The results of re-running Cache Scope on

e new version of the application are shown in Table 5.

Stat Bucket Latency % Latency % Events Latency/
Event

heap_K_3 14,886 49.4% 31.6% 22.5
heap_disp_3 7,433 24.7% 38.7% 9.1
heap_K_2 1,316 4.4% 1.2% 52.4
mem_init-main 1,174 3.9% 3.5% 15.8
heap_disp_2 1,111 3.7% 1.5% 35.8
Exc 1,013 3.4% 8.8% 5.5
heap_C_2 639 2.1% 2.3% 13.4
<STACK> 531 1.8% 5.0% 5.0

Table 5: Data Structure Statistics in Optimized Equake

The absolute amount of estimated latency for heap_K_2 is reduced by ap-

roximately 94%, and for heap_disp_3 it is reduced by 40%. The latency for

54

heap_K_3 has almost doubled, but this is more than made up for by the gains in the

other two buckets. Note that this optimization not only improves latency, but lowers

the required bandwidth to memory as well, since more of each cache line fetched is

useful data, rather than overhead bytes used by malloc for its internal data structures.

The arrangement of K and disp each into two pointer arrays (for example,

heap_K_1 and heap_K_2) and a data array (heap_K_3) continues to be a source of

latency. The heap_K_2 bucket is causing 4.4% of the latency in the application, and

heap_disp_2 is two places below it with 3.7%. These misses could easily be avoided

by eliminating the need for those arrays entirely. If we are willing to accept statically

sized matrices, we could simply declare disp and K as three-dimensional arrays.

Table 6 shows the results of making this change. Note that the latency for K

is significantly less than the latency for heap_K_3, where the actual data for the array

was previously stored. This is probably because eliminating the pointers in

heap_K_1 and heap_K_2 freed a large amount of space in the L2 cache that could

then be used for the actual data. In addition, the compiler is more likely to be able to

prefetch data, since the location of the data is computed rather than read from pointers.

All of this is also true for the other main array, disp.

Overall, this version of the application shows an 80% reduction in L1 cache

misses, a 46% reduction in L2 cache misses, and a 24% reduction in running time

over the original, unoptimized application. This required changing only the layout of

data structures and basically no change to the code of the application other than in the

initialization code.

 55

Stat Bucket Latency
(millions) % Latency % Events Latency/

Event
K 6,840 53.4% 32.7% 21.8
disp 3,503 27.3% 40.9% 8.9
Exc 370 2.9% 7.0% 5.5
heap_M_2 307 2.4% 2.3% 13.7
heap_C_2 295 2.3% 2.3% 13.3
<STACK> 270 2.1% 5.5% 5.1
heap_C23_2 196 1.5% 1.4% 14.7
heap_V23_2 151 1.2% 1.2% 13.6
<UNKNOWN> 137 1.1% 2.7% 5.2
heap_M23_2 127 1.0% 1.0% 13.5

Table 6: Data Structure Statistics in Second Optimized Equake

4.5.2 Twolf

The second example program we will look at is twolf. This is a placement

and routing package for creating the lithography artwork for microchip manufacturing

[34, 79], which uses simulated annealing to arrive at a result.

Using Cache Scope, we find that the L1 data cache hit ratio of this application

is about 74%, which is fairly low, although not as low as our previous example. The

average latency is 21.9 cycles, slightly larger than equake. These may be an indica-

tion that poor cache utilization is a performance problem for this application.

Table 7 shows the stat buckets causing the most cache misses and latency in

the application. All of the stat buckets shown are automatically named. The

safe_malloc function that appears in the bucket names is used wherever twolf allo-

cates memory. It simply calls malloc and checks that the return value is not NULL;

therefore the functions we are interested in are those that call safe_malloc. The ma-

jority of cache misses were caused by memory allocated by a small set of functions:

readcell, initialize_rows, findcostf, and parser. To get more useful information about

specific data structures in this application, we must manually name the blocks of

 56

memory that are allocated by these functions. Most of these blocks are allocated as

space to hold a particular C struct; the easiest and most useful way to name them is

after the name of the structure.

Stat Bucket Latency % Latency % Events Latency/
Event

safe_malloc-readcell-main 193,333 62.0% 45.0% 30.1
safe_malloc-initialize_rows-main 35,749 11.5% 16.8% 14.9
safe_malloc-parser-readcell 33,247 10.7% 9.9% 23.4
safe_malloc-findcostf-controlf 27,651 8.9% 9.2% 21.0
<UNKNOWN> 7,397 2.4% 7.6% 6.9

Table 7: Cache Misses in Twolf

Table 8 shows the results of re-running the tool, after altering memory alloca-

tion calls to provide a name for the stat bucket with which the memory should be as-

sociated. We have again used the convention that the named buckets begin with

“heap_” to show that they are dynamically allocated memory.

Stat Bucket Latency % Latency % Events Latency/
Event

heap_NBOX 137,553 42.9% 25.7% 28.1
heap_rows_element 44,420 13.8% 27.8% 8.4
heap_DBOX 23,808 7.4% 5.7% 22.0
heap_TEBOX 19,578 6.1% 3.8% 26.7
heap_CBOX 16,644 5.2% 3.2% 27.5
heap_TIBOX 14,300 4.5% 1.6% 45.6
heap_BINBOX 13,709 4.3% 4.6% 15.5
<UNKNOWN> 7,464 2.3% 5.6% 7.0
heap_cell 6,322 2.0% 1.1% 30.4
heap_netarray 3,334 1.0% 2.0% 8.8

Table 8: Cache Misses in Twolf with Named Buckets

At the top of the list is a cluster of blocks allocated to hold C structs named

NBOX, DBOX, TEBOX, CBOX, TIBOX, and BINBOX. These are all small struc-

tures. The DView program can provide statistics about the size of the objects in a stat

 57

bucket and how many of them were allocated by the application. Table 9 shows this

information for the structures causing the most latency.

Structure Size Number Allocated
BINBOX 24 224,352
CBOX 48 2,724
DBOX 96 1,920
NBOX 48 16,255
TEBOX 40 17,893
TIBOX 16 2,724

Table 9: Structures in Twolf

One thing to note is that some of these are smaller than the Itanium L1 data

cache line size of 64 bytes, and all are smaller than the L2/L3 cache line size of 128

bytes. Therefore, more than one structure could be packed into an L1 or L2/L3 cache

line, but this is probably not happening due to the memory that malloc reserves for its

own data structures before and after an allocated block.

This problem cannot be solved as easily as it could with equake, since these

structures are not all allocated all at one time during program initialization. Instead,

they are allocated and freed individually at various times. Also, they are not always

traversed in a single order. One feature we can make use of, however, is that many of

the structures contain pointers to other structures. It is likely that if structure A points

to structure B, then B will be accessed soon after A (because the program followed

the pointer).

The method we chose to optimize the placement of the structures is similar to

the cache-conscious memory allocation described by Chilimbi et al. [21]. We wrote a

specialized memory allocator for the small structures used by twolf. It has two main

features intended to reduce the cache problems revealed by Cache Scope. First, it can

place small structures directly next to each other in memory. Unlike most malloc im-

 58

plementations, it does not reserve memory before or after each block for its own use;

all overhead memory is located elsewhere. Second, it uses information about which

structures point to others. When memory is allocated, the caller can specify a “hint,”

which is the address of a structure that either will point to the one being allocated, or

be pointed to by it. The memory allocator tries to allocate the new structure in the

same L1 data cache line as the “hint” address. If this is not possible, it tries to allo-

cate it in the same L2 cache line. If this also cannot be done, it simply tries to find a

location in memory that will not conflict in the cache with the cache line containing

the hint address. Note that if this strategy is successful in placing structures that are

used together in the same cache block, it will not only improve latency but also, as

was the case with the optimizations for equake, lower the required bandwidth to

memory by not fetching memory used internally by malloc.

Running the application with this memory allocator results in a 57% decrease

in L1 data cache misses, a 26% decrease in L2 misses, and an 11% reduction in run-

ning time. Table 10 shows the results of running the tool on this version of the pro-

gram. The total latency and latency per event for most stat buckets is down signifi-

cantly from the unoptimized version. For example, for heap_NBOX, the estimated

latency is down approximately 50%, and the latency per event is down from 28.1 cy-

cles to only 13.8 cycles. The latency for heap_CBOX is up almost 30%, but this is

more than made up for by the decreases in other data structures.

The stat bucket that causes the next highest latency below the ones we have

been discussing is heap_tmp_rows_element. The objects associated with this stat

bucket are allocated and used in the same way as those in heap_rows_element, so we

 59

will look at them both. These data structures are similar to the ones we saw in equake,

in that they implement a variably sized two-dimensional array as an array of pointers

to single-dimensional arrays (the arrays of pointers are named “tmp_rows” and

“rows”). The arrays containing the actual data hold a small number of elements of

type char; the statistics kept by Cache Scope show that these arrays are 18 bytes long

when running on the problem size used for our experiments (this can also easily be

seen by examining the source code and input). Since several of these would fit in a

cache line, we could gain some spatial locality by allocating them as one large array,

like we did for the matrices in equake. We would then set the pointers in tmp_rows

and rows to point into this array.

Stat Bucket Latency % Latency % Events Latency/
Event

heap_NBOX 67,925 38.0% 38.5% 13.8
heap_CBOX 21,592 12.1% 2.8% 60.3
heap_TEBOX 15,266 8.5% 5.0% 23.8
heap_DBOX 11,927 6.7% 7.7% 12.1
heap_tmp_rows_element 8,068 4.5% 3.1% 20.6
<UNKNOWN> 7,615 4.3% 8.3% 7.1
heap_rows_element 6,028 3.4% 2.3% 20.3
heap_BINBOX 5,131 2.9% 4.1% 9.9
heap_cell 4,918 2.8% 1.6% 23.7

Table 10: Cache Misses in Twolf with Specialized Memory Allocator

Making this change reduces L1 data cache misses by 33%, L2 cache misses

by 29%, and running time by 16% versus the original version of the application. If

we are willing to accept a compiled-in limit for the largest problem size we can run

the application on, we could also simply make tmp_rows and rows into statically

sized two-dimensional arrays, eliminating the need for indirection. This change gives

us further slight improvements. L1 data cache misses are reduced by 36%, L2 cache

 60

misses are reduced by 35%, and running time is reduced by 19% over the unopti-

mized version of the application.

4.6 Conclusions

In this chapter, we have described Cache Scope, an implementation of data

centric cache measurement on the Intel Itanium 2 processor. One goal of this tool

was to verify that cache miss address sampling is practical on a real system, as pre-

dicted by the simulation results we showed earlier. An important difference between

the simulated system and the Itanium 2 is that on the Itanium 2, we collect informa-

tion about the latency of each cache miss.

We found that perturbation and overhead were acceptable for the lower sam-

pling frequencies we tested, one in 512K and one in 32K cache events, but that they

can become significant when the sampling frequency is increased. The increased per-

turbation at higher sampling frequencies shows that sampling more frequently is not

always more accurate, due to the instrumentation code’s own effect on the cache.

We used Cache Scope to analyze two example applications, equake and twolf,

and we then optimized them based on the results. We found the latency information

to be useful in this analysis. Especially in the case of twolf, we were able to reduce

the observed latency per event (L1 data cache miss or floating point load), due to op-

timizing for multiple levels of cache. We were able to achieve a 24% reduction in

running time for equake, and an almost 19% reduction in running time for twolf.

This was done in a short time, a few days, by a programmer who was not previously

familiar with the code of either application. In both cases, the improvements were

gained by changing data structures rather than code. This demonstrates how Cache

 61

Scope allows a programmer to quickly identify the source of lost performance due to

poor cache utilization. In addition, the optimizations used could not easily have been

performed by a compiler, proving the value of a tool that provides this kind of feed-

back to a programmer.

 62

Chapter 5: Cache Eviction Monitoring

In addition to knowing what data structures are being accessed to cause cache

misses, another piece of information that would be valuable in tuning applications is

an indication of the reason the misses are occurring. Cache misses are usually cate-

gorized into cold misses, conflict misses, and capacity misses. However, it would be

difficult for hardware to determine to which of these categories a particular miss be-

longs. For example, to distinguish a cold miss from the others, the hardware would

need to keep a record of whether each cache line-sized block of main memory had

ever been loaded into the cache.

An alternative way to obtain information about why cache misses are occur-

ring would be to look at data that is already in the cache, and record the circum-

stances under which it is evicted. This would require significantly less hardware sup-

port than attempting to classify misses as described above. This chapter will describe

a novel hardware monitoring feature that would provide the address of the data that is

evicted from the cache when a miss occurs. Using this feature, a tool could provide

feedback to a user about how the source code level data structures in an application

are interacting in the cache. This chapter will discuss an example of such a tool, im-

plemented in simulation. This tool samples both cache miss and eviction information,

providing a superset of the information gathered by the Cache Scope tool described in

Section 4.3.1.

5.1 Proposed Hardware Feature

In order to provide data centric information about cache eviction behavior, we

propose a new hardware monitoring feature. When a cache miss occurs, in addition

 63

to storing the address of the data that missed in the cache, the new feature would store

the address of the data that was evicted as a result. The hardware should also provide

the cache miss counter and interrupt on counter overflow features that we previously

discussed for sampling cache misses, so that the eviction information can be gathered

by sampling cache misses. The proposed hardware features are depicted in Figure 10.

L1 cache

virtual
address

to

tag data

Figure 10: Performance Monitor for Cache Evictions

It should be relatively simple for hardware to provide the eviction address.

The cache maintains a tag for each line in the cache, which identifies the area of

memory the line is caching. When a cache miss occurs, before replacing a cache line,

the hardware could store the tag of the line that is about to be replaced. The saved tag

or its associated address could then be made available to software through a special

purpose register.

In general, gathering data centric cache information requires using virtual,

rather than physical addresses. For cache misses, this is quite simple, since the virtual

CPU

physical
… …

L2 cache
and main
memory

performance monitors

address of last miss

tag of evicted
data virtual

address
of miss

interrupt
address of last eviction

miss count

 64

address being accessed is available at the time the cache miss occurs, and the proces-

sor can simply save it. For cache evictions, it is more difficult to provide a virtual

address, since the cache line tags are usually based on the physical address. In order

to simplify the hardware requirements, we propose that the cache eviction hardware

monitor provide only the physical address, and leave it to software to map this to a

virtual address within an application’s address space. This requires the inverse of the

mapping that must normally be performed, which is to map virtual addresses to

physical. Operating system features such as paging to disk and the ability to map the

same physical page into multiple virtual locations complicate this mapping. For the

experiments described in this dissertation, we have assumed that perfect information

is available about the virtual addresses of cache misses and evictions. Since most

HPC users size their application data and/or systems so that the working set fits into

memory, paging is usually infrequent, so this is not a serious limitation.

5.2 Instrumentation for Sampling Cache Evictions

Since the addresses of evicted data are not provided by any existing processor,

we implemented eviction sampling in code that runs under a cache simulator. The

cache simulator used is a modified version of the one described in Section 3.2, which

was previously used to study sampling cache misses. It consists of a set of instrumen-

tation code that is inserted into an application using the ATOM [81, 84] binary rewrit-

ing tool. In addition to providing an emulated register containing the address associ-

ated with the most recent cache miss, the modified simulator also provides a register

that contains the address of the data evicted as a result of the miss.

 65

The instrumentation code for sampling cache evictions is also inserted into the

application using ATOM. As was the case for our experiments in sampling cache

misses, this instrumentation runs under the simulator, so that we can measure its

overhead and effects on the cache. The cache eviction sampling instrumentation is

based on the same code as that described in Section 4.3.1 for sampling cache misses.

We use the interrupt on overflow feature of the emulated cache miss counter to set up

an interrupt that will occur after some number of cache misses. When a miss occurs,

we retrieve the address that was accessed to cause the miss, and also the address of

the data that was evicted from the cache as a result of the miss.

Cache miss and eviction statistics are kept in an extended version of the stat

bucket structure described in Section 4.3.1. The extended stat bucket structure is

shown Figure 11. As before, the stat buckets contain a vector that is used to store in-

formation about cache misses and where in the code they take place. In addition, they

contain a vector of information about cache evictions. There is an entry in this vector

for each stat bucket with an object that has caused an eviction of an object in the

bucket in question. Each entry in the eviction information vector contains another

vector that holds the actual eviction counts, broken down by the area of code in which

they took place. For instance, in Figure 11, array3 has caused 89 evictions of array1

at line 4 in the function func2. Note that the code areas used are lines of code, not

whole functions as was the case with Cache Scope. This is made possible by using

functionality of ATOM that can return more detailed information from the line num-

ber table in the executable. One other difference between the cache eviction tool and

Cache Scope is that the eviction tool names dynamically allocated blocks of memory

 66

differently. Dynamically allocated memory is assigned to a named bucket based on

the execution path leading to the allocation function that created it. This includes not

only the names of the functions but also the address from which each function was

called, so that two blocks of memory allocated from two different places in the same

function will be given different names. This did not result in a significant difference

in the applications we tested.

Bucket for array1
Cache Misses

func1() line 2 func2() line 17 func2() line 55
misses: 608 misses: 284 misses: 325

Cache Evictions

func2() line 7 func3() line 37 func3() line 45 By array2
evictions: 94 evictions: 987 evictions: 27

func1() line 12 func2() line 4 func3() line 43 By array3

evictions: 8 evictions: 89 evictions: 12

Figure 11: Bucket Data Structure for Cache Evictions

Since misses and evictions occur together, i.e. every miss triggers an eviction,

it is not strictly necessary to maintain information about both. Cache misses could be

derived from eviction information by adding the number of times an object was the

cause of an eviction. A possible disadvantage of this doing this is that the miss in-

formation would not be easily available in real-time as the application executes. Our

 67

current implementation does maintain miss information separately from eviction in-

formation.

The data gathered by the tool is written out in a compressed format, and can

be examined using a separate tool named read_data. The read_data program can dis-

play the data about both cache misses and evictions in a number of ways. It can show

the stat buckets or functions causing the most cache misses, and the stat buckets caus-

ing the most evictions of a particular bucket. It can combine code centric and data

centric information, for instance to show the stat buckets causing the most cache

misses in a particular function, or the stat buckets causing the most evictions of a

given bucket in a given function.

5.3 Experiments

In order to evaluate the accuracy and overhead of sampling cache miss and

eviction information, we performed a series of experiments in which we ran the cache

miss and eviction sampling instrumentation on a set of applications from the SPEC

CPU95 [50] and SPEC CPU2000 [34] benchmark suites. From SPEC CPU95, we

used the application su2cor. From SPEC CPU 2000, we used applu, gzip, mgrid,

swim, and wupwise. The applications were compiled with the Compaq C compiler

V6.3-028 and Compaq Fortran compiler V5.4A-1472.

For these experiments, we simulated a 64KB four-way set associative cache

with a line size of 32 bytes. These values were chosen as realistic ones for a RISC

processor. Cache misses are assigned an average penalty of 20 cycles. This is based

on the assumption that L1 cache misses that are satisfied by the L2 cache incur a pen-

alty of 12 cycles, and that accesses that must go to main memory require 60 cycles;

 68

these values were again chosen to model current processors. Unless otherwise noted,

the sampling interval was set to sample an average of one in every 25,000 cache

misses, with the actual value pseudo-randomly varied throughout the run in order to

obtain a more representative sample.

5.3.1 Accuracy of Results

We will first examine the accuracy of sampling cache miss and eviction in-

formation. Our tool records information at a number of levels of granularity. At the

coarsest level of data centric information, it records the number of cache misses that

took place when accessing the objects in each stat bucket. This can be broken down

into the misses for each stat bucket that occurred in each line of code in the applica-

tion. At this level, the tool collects information similar to that gathered by Cache

Scope, described in 4.3.1.

Cache eviction information represents another level of granularity. The tool

records the number of times memory associated with each stat bucket is evicted by

loads of memory associated with each other stat bucket. This can also be broken

down by the line of code at which the evictions took place.

In order to allow a comparison of actual statistics versus those estimated by

the instrumentation code, the simulator collects the same types of information gath-

ered by the instrumentation. This is done at a low level in the simulator, and counts

every cache miss and eviction. This provides us with exact values to compare the re-

sults from the instrumentation code against.

 69

5.3.1.1 Cache Misses

We will first examine the results of sampling cache misses. Although this in-

formation is similar to the data collected by the tools already described in this disser-

tation, it is necessary to revisit it to determine whether its accuracy is affected by the

additional overhead and perturbation of collecting detailed cache eviction information,

which involves more instrumentation code and larger instrumentation data structures.

Table 11 shows the results of sampling cache misses in the set of applications

we tested. It lists the five objects causing the most cache misses in each application,

excluding any objects causing less than 1% of the total number for the application.

The “stat bucket” column lists the names of the stat buckets, which may represent

variables or data structures in dynamically allocated memory. As explained in sec-

tion 5.2, buckets representing dynamically allocated memory are named by the code

path through which they were allocated. This is shown as a series of function names

with line numbers. For example, gzip contains a block of memory that was allocated

by spec_init at line 88, which was called from main at line 276.

The “rank” columns show the order of the objects when ranked by number of

cache misses, and the percent columns show the percentage of all cache misses that

were due to the named stat bucket. The actual values were collected at a low level in

the simulator, and are therefore precise, whereas the sampled value are as estimated

by the instrumentation code. This information was gathered from separate instru-

mented and uninstrumented runs during the same portion of the applications’ execu-

tions (this is made possible by the simulator).

 70

Actual Sampled Application Stat Bucket Rank % Rank %
C 1 19.2 3 18.6
B 2 19.2 2 19.3
A 3 19.1 1 19.7
D 4 14.4 5 13.9

applu

rsd 5 13.9 4 14.1

gzip spec_init(88)-main(276) 1 99.5 1 100.0

U 1 50.5 1 51.3
R 2 39.0 2 39.0mgrid
V 3 10.2 3 9.6

U 1 16.8 1 16.7
W1-intact 2 9.2 2 9.0
W2-intact 3 8.1 3 8.2
W2-sweep 4 6.9 4 7.0

su2cor

W1-sweep 5 5.8 5 5.8

UNEW 1 13.3 2 13.4
PNEW 2 13.3 3 13.2
VNEW 3 13.3 1 13.6
CU 4 6.7 9 6.6
CV 5 6.7 5 6.7

swim

U 10 6.7 4 6.7

U 1 30.3 1 29.0
UD 2 15.1 2 15.5
T 3 13.4 3 13.6
S 4 12.5 4 13.0

wupwise

P 5 11.3 5 11.3
Table 11: Cache Misses Sampled With Eviction Information

In general, the sampling technique ranked the variables correctly except when

the actual difference between the number of cache misses being caused by two ob-

jects was small. The value reported for the percent of cache misses due to each vari-

able was also accurate to within a small range of error. The largest error seen with

sampling was for wupwise, in which the percentage for the array U reported by the

sampling algorithm was off by 1.3 percentage points. Therefore, we can conclude

 71

that the cache miss information gathered by the tool is sufficiently accurate, even with

the extra overhead and perturbation caused by adding the sampling of cache eviction

data.

5.3.1.2 Cache Evictions

Table 12 shows information about the evictions taking place in one of our test

applications, mgrid. It lists the three objects that caused the most cache misses in the

application in the “stat bucket” column. In the “evicted by” column, it lists the ob-

jects that caused more than 1% of the total evictions of each variable. The “rank”

columns show the order of the objects when ranked by number of evictions of the

variable they caused. The “%” columns show the percentage of all of evictions of the

object in the “variable” column that were caused by the object in the “evicted by”

column. Again, the “actual” columns show precise information as gathered by the

simulator in a run with no instrumentation, while the “sampled” columns show the

values collected by the instrumentation code.

Actual Sampled Stat Bucket Evicted By Rank % Rank %
U 1 60.3 1 60.8
R 2 20.2 2 20.1 U
V 3 19.5 3 19.1

U 1 97.0 2 96.8 V V 2 2.9 3 3.2

R 1 73.8 1 74.1 R U 2 25.9 2 25.7

Table 12: Cache Evictions in Mgrid

Sampling one in 25,000 cache misses returned accurate information for the

applications we tested. The largest difference between the actual and sampled values

 72

in Table 12 is for the evictions of U by itself, for which the value estimated by sam-

pling is approximately 0.5 percentage points higher than the actual one.

To quantify the accuracy of sampling across all the applications we tested, we

measured the difference between actual and sampled values for the buckets that were

identified as the top ten in terms of cache misses for each application. It is important

to note that when measuring the error in the sampled data, we are only concerned

with variables that are causing a large number of cache misses (which implies that

they are experiencing a large number of cache evictions as well). Any variable iden-

tified as causing few cache misses can be disregarded as unimportant to performance

tuning. Reflecting this, we discarded any buckets in the top ten that did not cause at

least 10% of the total cache misses in an application. Out of the remaining buckets,

the largest difference in the estimated percentage of evictions caused by a bucket to

the actual value was seen in wupwise, with a difference of 5.1%.

Table 13 through Table 18 show eviction results from all applications tested.

The objects shown are the top five in terms of cache misses, in order, excluding ob-

jects causing less than 1% of all cache misses. The row labels identify the objects

causing evictions, and the column labels show the objects being evicted. The num-

bers in each box are the percentage of the total evictions of the column object that are

caused by the row object. The variable names in su2cor that include the suffixes –i

and –s indicate variables of the given names that are defined in the subroutines “in-

tact” and “sweep,” respectively, and the variable “spec_init” in gzip represents a

block of memory dynamically allocated by the function “spec_init.” We can see from

the percentages shown that all applications show significant patterns in evictions of

 73

some of the objects listed in the tables. For all six applications, there is at least one

object listed that causes 35% or more of the cache evictions of another.

applu
 evicted
 c a b d rsd

c 41.5 4.0 21.1 27.9 8.4
a 11.3 44.5 22.7 17.8 11.3
b 23.7 21.9 43.7 1.9 7.8
d 11.9 21.4 2.4 44.4 7.8
rsd 5.5 4.1 6.7 4.6 52.2

evicted by

other 6.1 4.1 3.4 3.4 12.5
Table 13: Cache Eviction Matrix for Applu

gzip
 evicted
 prev window spec_init

prev 61.2 82.5 44.5
window 36.0 15.2 39.9
spec_init 1.0 0.1 5.2 evicted by

other 1.8 2.2 10.4
Table 14: Cache Eviction Matrix for Gzip

mgrid
 evicted
 U R V

U 60.8 25.7 96.8
R 20.1 74.1 0.0
V 19.1 0.2 3.2evicted by

other 0.0 0.0 0.0
Table 15: Cache Eviction Matrix for Mgrid

su2cor
 evicted
 U W1-i W2-i W2-s W1-s

U 20.0 57.9 32.6 25.1 27.0
W1-i 27.8 0.2 45.2 2.3 4.2
W2-i 26.7 0.5 2.7 29.2 12.8
W2-s 7.6 17.9 13.5 3.0 0.4
W1-s 2.5 22.1 3.1 30.0 4.1

evicted by

other 15.4 1.4 2.9 10.4 51.5
Table 16: Cache Eviction Matrix for Su2cor

 74

swim
 evicted
 UNEW PNEW VNEW CU CV

UNEW 6.7 51.3 23.5 0.0 32.7
PNEW 28.8 7.0 30.5 0.0 0.0
VNEW 31.5 25.1 11.7 0.1 0.0
CU 0.0 0.0 0.0 35.1 34.9
CV 0.0 0.0 16.0 0.0 0.0

evicted by

other 33.0 16.6 18.3 64.8 32.4
Table 17: Cache Eviction Matrix for Swim

wupwise
 evicted
 U UD T S P

U 41.4 35.7 40.8 25.2 27.3
UD 16.0 50.3 0.0 0.0 8.8
T 13.2 0.0 47.7 7.4 0.0
S 11.2 0.0 6.5 67.4 0.8
P 8.2 7.1 0.0 0.0 63.1

evicted by

other 10.0 6.9 5.0 0.0 0.0
Table 18: Cache Eviction Matrix for Wupwise

5.3.1.3 Evictions by Code Area

At the finest level of granularity supported by the eviction sampling instru-

mentation code, we keep counts for how many times each variable was evicted by

each other variable at each line of code in the application. Table 19 shows an exam-

ple, again from mgrid. For each variable named in the left column, it lists the five

lines of code at which the most evictions of U caused by the named variable occur

(excluding lines at which less than 1% of the total evictions of U occur). The lines

are ranked by the number of evictions, and the percentages shown are the percent of

all evictions of U caused by the given variable and line, both actually and as esti-

mated by sampling. Even at this level of granularity, the results returned are close to

the actual values, with the largest difference being the number of evictions of U

 75

caused by accessing V at line 204 in the function resid; the estimated value is 1.1 per-

centage points lower than the actual one.

Actual Sampled Stat Bucket Function Line Rank % Rank %
resid 218 1 20.6 1 21.0
psinv 162 2 10.8 2 9.9
resid 216 3 4.6 3 4.2
interp 287 4 3.1 6 3.1
interp 308 5 2.9 4 3.5

U

interp 296 7 2.8 5 3.1

V resid 204 1 16.4 1 16.7

resid 204 1 19.6 1 20.1 R Psinv 176 2 0.2 2 0.2
Table 19: Percent of Total Evictions of U by Stat Bucket and Code Line

The accuracy seen with mgrid was typical of the applications we tested. To

verify this, we again looked at the 10 buckets causing the most cache misses in each

application, excluding any buckets causing less than 10% of the total cache misses.

The largest error in the reported percentage of cache evictions of a given bucket

caused by a particular combination of another bucket and a line of code was approxi-

mately 3.9 percentage points, seen in wupwise, for evictions of the variable T caused

by cache misses in U. The error in the estimation accounts for only 0.7% of the total

evictions of the variable. Table 20 shows the evictions of T by U caused by each line

of code, excluding information about lines that cause less than 1% of the evictions of

T. Although the error causes the two lines of code shown to be ranked incorrectly,

the estimates made by sampling are sufficiently close to be useful.

 76

Actual Sampled Function Line Rank % Rank %
zgemm 263 1 16.8 2 12.8
zgemm 250 2 15.8 1 14.1

Table 20: Evictions of T by U in Wupwise

5.3.2 Perturbation of Results

As we did for sampling cache misses in Section 3.3.2, we will now look at

how sampling cache evictions affects the cache behavior of an application. Figure 12

shows the percentage increase in cache misses due to instrumentation code when run-

ning each of the applications and sampling at several sampling frequencies. This in-

formation was obtained by comparing the number of cache misses in a run without

instrumentation (cache misses are still measured by the simulator) with the number of

misses in a set of runs in which we sampled one in 250, one in 2,500, one in 25,000,

and one in 250,000 cache misses. Note that the scale of the y axis is logarithmic.

0.01

0.1

1

10

100

applu gzip mgrid su2cor swim wupwise

pe
rc

en
t i

nc
re

as
e

in
 c

ac
he

 m
is

se
s Sample 1 in 250 Sample 1 in 2,500

Sample 1 in 25,000 Sample 1 in 250,000

Figure 12: Percent Increase in Cache Misses When Sampling Evictions

At our default sampling frequency, one in 25,000 misses, the increase in cache

misses was extremely low for all applications. We see the largest increase with gzip,

which experienced approximately 0.3% more cache misses with instrumentation than

 77

without. At higher sampling frequencies, the instrumentation code begins to signifi-

cantly perturb the results; for gzip, sampling one in 250 misses results in a 15% in-

crease in cache misses. The average increase across all applications at this sampling

frequency was approximately 5%. As we saw when sampling only cache misses, this

shows that sampling more frequently does not always lead to higher accuracy, due to

the instrumentation code’s effect on the cache.

5.3.3 Instrumentation Overhead

Figure 13 shows the overhead that is added to the execution time of each ap-

plication by the instrumentation code when sampling cache evictions at several fre-

quencies. This includes the virtual cycle count of the instructions executed in the in-

strumentation code, as well as a per-interrupt cost for handling an interrupt and deliv-

ering it to instrumentation code.

0.01

0.1

1

10

100

applu gzip mgrid su2cor swim wupwise

pe
rc

en
t i

nc
re

as
e

in
 r

un
ni

ng
 ti

m
e

Sample 1 in 250 Sample 1 in 2,500
Sample 1 in 25,000 Sample 1 in 250,000

Figure 13: Instrumentation Overhead When Sampling Cache Evictions

 78

At the default sampling frequency of one in 25,000 misses, the highest over-

head was seen in swim, which had an increase in execution time of slightly less than

1%. The overhead becomes more significant at higher samples frequencies, with the

overhead for swim rising to 66% when sampling one in 250 cache misses. The aver-

age overhead over all applications when sampling one in 250 cache misses was ap-

proximately 36%.

5.4 Performance Tuning Using Data Centric Eviction Information

This section will present an example of using the data provided by the cache

eviction tool to optimize an application. We will examine mgrid from the SPEC

CPU2000 benchmark suite. For this application, our tool indicates that two arrays, U

and R, cause approximately 90% of all cache misses. Looking at the eviction infor-

mation for mgrid in Table 12, we find that each of these is most often being evicted

by accesses to itself.

To better understand this problem, we looked at the next finer level of granu-

larity in the data to determine what parts of the code are causing this to happen.

Table 21 shows the lines of code at which the most evictions of U by U and R by R

are occurring.

Bucket/Evicted By Function Line % Evictions
resid 218 21.0
psinv 162 9.9 U evicted by U
resid 216 4.2

psinv 168 14.9
psinv 174 14.6 R evicted by R
psinv 176 13.8

Table 21: Evictions by Code Region in Mgrid

 79

 Three lines together cause almost 32% of all evictions of U by itself, one in

the function resid and the others in the function psinv. For evictions of R by itself,

the table shows that a small set of lines from psinv cause approximately 43% of all

such evictions.

Looking at the function “resid,” we find the loop shown in Figure 14. The ar-

ray U that is used in this loop is declared elsewhere as a large single-dimensional ar-

ray, parts of which are passed into resid and other functions in such a way that they

are interpreted as one- or three-dimensional arrays of various sizes; in the case of

resid, part of U is passed in as an N by N by N array. The array R is used similarly.

The fact that these arrays are declared and used in this way may prevent the compiler

from performing optimizations that would involve changing their layout in memory,

since the layout depends on values computed at runtime.

w

 DO 600 I3=2,N-1
 DO 600 I2=2,N-1
 DO 600 I1=2,N-1
600 R(I1,I2,I3)=V(I1,I2,I3)
 > -A(0)*(U(I1, I2, I3))
 > -A(1)*(U(I1-1,I2, I3) + U(I1+1,I2, I3)
 > + U(I1, I2-1,I3) + U(I1, I2+1,I3)
 > + U(I1, I2, I3-1) + U(I1, I2, I3+1))
 > -A(2)*(U(I1-1,I2-1,I3) + U(I1+1,I2-1,I3)
 > + U(I1-1,I2+1,I3) + U(I1+1,I2+1,I3)
 > + U(I1, I2-1,I3-1) + U(I1, I2+1,I3-1)
 > + U(I1, I2-1,I3+1) + U(I1, I2+1,I3+1)
 > + U(I1-1,I2, I3-1) + U(I1-1,I2, I3+1)
 > + U(I1+1,I2, I3-1) + U(I1+1,I2, I3+1))
 > -A(3)*(U(I1-1,I2-1,I3-1) + U(I1+1,I2-1,I3-1)
 > + U(I1-1,I2+1,I3-1) + U(I1+1,I2+1,I3-1)
 > + U(I1-1,I2-1,I3+1) + U(I1+1,I2-1,I3+1)
 > + U(I1-1,I2+1,I3+1) + U(I1+1,I2+1,I3+1))

Figure 14: Loop from Function Resid

With the reference data set from the SPEC2000 benchmarks, resid is called

ith varying values for N, up to 130. Each element of U is eight bytes, so the array U

80

can be over 16MB in size. Because of the large size of the array, the references to U

with subscripts I2-1 to I2+1, and I3-1 to I3+1 will likely be evicted from the cache

before being reused in other iterations, suggesting that tiling [45, 85] would be effec-

tive at increasing reuse. We tiled the loop with a tile size of 8 by 8 by 8, which al-

lowed an entire tile for each of the three arrays accessed to fit into the L1 cache. We

also padded the first dimension of the array to make its size a multiple of the cache

line size and in such a way as to help eliminate conflicts within tiles. We then padded

the beginning of the arrays so that they would start on cache line boundaries as used

in resid. Note that as mentioned above, the arrays are not used as first declared in the

program, which must be taken into account when padding. For instance, the main

program passes part of U, offset from the beginning, into resid as resid’s argument U,

so the main program’s U must be padded such that the offset begins on a cache line

boundary. Finally, since the code inside the loop is short, we unrolled the innermost

loop over a tile, in order to eliminate some of the extra overhead of the new loops in-

troduced for tiling. The function “psinv” has a loop similar to the one in “resid,” to

which the same optimizations were applied.

While a compiler could potentially apply the code transformations mentioned

automatically, for the reasons discussed above it would be difficult for it to combine

them with changing the layout of the arrays, making it advantageous to perform the

transformations manually.

Figure 15 shows the number of cache misses in U, V, and R before and after

the optimizations. Although slightly more cache misses take place in V (2%), there

are 29% and 20% fewer misses in U and R, respectively. Overall, cache misses were

 81

reduced by 22%. Looking only at cache misses in resid, our simulator shows that

there are 48% fewer misses in U, but approximately 2% more misses in V and R, for

an overall improvement of 29%. The “psinv” function shows a similar pattern; R

causes 48% fewer cache misses, while U causes 2% more. These provide a speedup

in these functions of 11% for resid and 7% for psinv, and an overall speedup of 8%.

0

50

100

150

200

250

U V R

ca
ch

e
m

is
se

s (
m

ill
io

ns
)

unoptimized
optimized

Figure 15: Cache Misses in Mgrid Before and After Optimization

5.5 Conclusions

In this chapter, we have discussed a proposed hardware feature that would

capture information about the data that is evicted from the cache when a miss occurs.

We presented a technique that uses this feature to sample cache eviction addresses, in

order to provide feedback to a user about how data structures are interacting in the

cache. We implemented this technique in a simulator, and ran a series of experiments

in which we measured the cache evictions in a set of benchmark applications. These

experiments showed that accuracy and overhead were acceptable, even though the

instrumentation code must use larger data structures that hold more fine-grained in-

 82

formation than was the case when sampling only cache misses. When looking spe-

cifically at the finer-grained information, such as the cache evictions taking place at a

particular place in the code, accuracy is reduced for objects that do not cause many

cache misses. However, this is not a serious limitation, since for performance tuning

we are most interested in the objects that cause the most cache misses.

To examine the value of the information gathered by sampling evictions, we

used the tool to analyze one application, mgrid, in detail. Using information from the

tool, we were able to perform optimizations by hand that reduced the running time of

the application by 8%, showing the usefulness of this information.

 83

Chapter 6: Conclusions

In this dissertation, we have examined the problem of providing useful feed-

back to a programmer about the cache behavior of application data structures at the

source code level. We refer to this as data centric cache measurement. We have

shown that the information needed to do this can be gathered using hardware per-

formance monitors that can be practically incorporated into processor designs. These

monitors are used by software instrumentation that collects and aggregates the data.

We first described a technique in which software instrumentation uses hard-

ware performance monitors that provide information about cache miss addresses to

sample those addresses and relate them to data structures. The results of our study of

this technique in simulation showed that sampling allows us to gather accurate infor-

mation with low overhead. We also examined the overhead of the cache simulator,

which was high; for the applications we tested, the slowdown when running under the

simulator ranged from 37 to 109 times the normal execution time of the applications.

This is a strong argument for why hardware support is needed in order to perform

data centric cache measurement.

We next described a tool named Cache Scope, which is an implementation of

data centric cache measurement on actual hardware, the Intel Itanium 2 processor.

Using Cache Scope, we demonstrated the practicality of the sampling technique in a

real system. We found that the instrumentation’s perturbation of cache behavior and

overhead can become significant if samples are taken too often, but that for Cache

Scope running on the Itanium 2 sampling approximately one in every 32K cache

events provided acceptable accuracy and overhead for the applications we tested.

 84

One difference between the Itanium 2 and the simulator is that the Itanium 2

provides information about the latency associated with each cache miss. We found

this information to be extremely useful; the Itanium 2 has three levels of cache, and

therefore the number of L1 data cache misses alone does not necessarily determine

how a data structure’s cache behavior is affecting performance. This is especially

true because the L1 cache does not store floating point values. Cache Scope therefore

ranks data structures by cumulative latency, not by number of cache misses.

We used Cache Scope to analyze two applications, and tuned them based on

the results. We were able to achieve a 24% reduction in running time on one applica-

tion and an almost 19% reduction in the other. This was done almost entirely by

changing the data structures in the applications, with few changes to the code. Fur-

thermore, the tuning was performed in a short time, one day in the case of one appli-

cation, by a programmer who was not previously familiar with the applications’

source code. From this, we can conclude that the tool was useful in providing feed-

back about cache behavior for performance tuning.

This dissertation also discussed a proposed hardware feature that would pro-

vide information about the data that is evicted from the cache when a miss occurs.

We described a technique for using this feature to sample cache eviction information

and to provide feedback to a user about how data structures are interacting in the

cache. We implemented this technique in simulation and performed a study in which

we used it to measure cache evictions in a number of applications. We found that

even though it requires processing of much finer-grained information than was the

case when sampling only cache misses, we were still able to collect the information

 85

with sufficient accuracy and low overhead. We did find that the accuracy of the evic-

tion information degrades when looking at objects causing few cache misses. Though

this must be taken into account, it does not significantly affect the usefulness of the

tool, since for performance tuning we are concerned only with objects that are caus-

ing many cache misses.

We found that in many of the applications we tested, there were objects in

memory for which some other particular object caused most of the cache evictions,

making the data significant for helping to understand how data structures are interact-

ing in the cache. We examined one application, mgrid, in more detail, and using in-

formation gained from the tool were able to improve its performance by 8%. From

this, we conclude that sampling cache eviction information is useful in providing the

user with feedback about cache behavior for performance tuning.

Throughout the studies we have described, we found that hardware support for

obtaining cache miss and eviction addresses enables the creation of tools that provide

feedback to the user about the cache behavior of data structures at the source code

level. The creation of these tools would not otherwise be possible, except through

techniques such as simulation, which have severe limitations such as high overhead.

We think that this is a strong argument for including such features in future proces-

sors, and for making them available to software developers. In some cases, such as

the Intel Itanium 2, this has already started to happen, and some of the techniques de-

scribed in this dissertation can be used on these today. In many cases, however, per-

formance monitoring features continue to be limited, or even if they are present, may

be partly or entirely undocumented. An example of this is the IBM POWER4 proces-

 86

sor, which possesses sophisticated performance monitoring features that are unfortu-

nately mostly undocumented (although the PMAPI [1] kernel interface provides ac-

cess to a subset of these features). We hope that demonstrating the usefulness of

these features will lead to more vendors including and documenting them.

6.1 Summary of Contributions

This dissertation has made a number of contributions in answering the ques-

tion of how to provide feedback to a user about the cache behavior of data structures

at the source code level. One such contribution is to show how hardware perform-

ance monitors that can provide the addresses related to cache misses, along with the

ability to generate periodic interrupts when cache misses occur, can be used to meas-

ure the cache behavior of data structures. Using simulation and an implementation on

the Intel Itanium 2 processor, we showed that this technique can gather the desired

information accurately and with low overhead. This had not previously been done,

since prior tools had either used simulation for the tool itself (as opposed to as a

method of validating a hardware approach), or were unable to determine the ad-

dresses associated with specific cache misses.

This dissertation also demonstrated the usefulness of this data centric informa-

tion, by describing how it was used to improve the performance of two applications

from the SPEC CPU2000 benchmark suite.

Furthermore, this dissertation introduced the idea of a new hardware feature

that would provide information about the data that is evicted from the cache when a

miss occurs. It described in detail how software instrumentation could use the infor-

mation from such a feature to provide feedback about how data structures are inter-

 87

acting in the cache. Using simulation, we showed that this technique is able to gather

accurate information for the most important objects in an application, while maintain-

ing a low overhead. We showed that this information is useful in performance tuning

by using it to improve the performance of a sample application.

6.2 Future Research

In the future, more processors may become available that provide cache miss

addresses. It would useful to port the Cache Scope cache miss sampling tool to such

processors, and to study the ways in which each architecture’s unique features affect

cache performance.

It would also be interesting to examine ways to automatically control the

overhead and perturbation of the instrumentation code by dynamically changing the

sampling frequency. Although we have shown that it is possible to choose a sam-

pling frequency that is appropriate for a wide range of applications, this would further

improve the robustness of a sampling tool.

Another interesting area of study would be how to use data centric cache in-

formation to provide feedback to a compiler. Based on this information, the compiler

could automatically change the layout of data structures or alter the code that accesses

them in order to improve use of the cache. This would be especially useful for prob-

lems that would be difficult for a compiler to analyze statically, such as difficult to

analyze uses of pointers in C.

The idea of automatically using feedback could also be extended to memory

allocation. The results from cache miss sampling could be used by the memory allo-

cator to decide where newly allocated blocks of memory should be placed. Possibly

 88

the feedback could be used in the same run of the application in which it was gathered

– cache miss addresses could be continuously sampled, and the memory allocator

could adapt based on the latest results. If eviction information is available, it could be

particularly useful, since it may provide information about cache conflicts between

data structures that are being used concurrently; future allocations could attempt to

avoid such conflicts.

No existing processor includes a way to sample cache eviction addresses. If

this could be implemented in hardware, it would make it possible to use this tech-

nique on a much wider set of applications, many of which cannot be run under a

simulator due to memory or performance constraints.

There are other uses of eviction addresses that could be examined as well. As

one example, by looking at the difference between misses and evictions for a certain

data structure, we should be able to estimate how much of the data structure is being

kept in the cache at any given time. It would be useful to investigate whether sam-

pling provides sufficient accuracy to make an estimate of this value useful.

 89

References

1. AIX 5L Version 5.2 Performance Tools Guide and Reference. IBM, IBM Or-

der Number SC23-4859-01, 2003.

2. IA-32 Intel Architecture Software Developer's Manual, Volume 1:Basic Archi-
tecture. Intel, Intel Order Number 253665, 2004.

3. Intel Itanium 2 Processor Reference Manual for Software Development and
Optimization. Intel, Intel Order Number 251110-002, 2003.

4. Perfmon project web site, HP, 2003.
 http://www.hpl.hp.com/research/linux/perfmon/

5. Agrawal, A., Sites, R.L. and Horowitz, M., ATUM: A New Technique for
Capturing Address Traces Using Microcode. In Proceedings of the 13th An-
nual International Symposium on Computer Architecture, (1986), 119-127.

6. Anderson, J., Berc, L., Chrysos, G., Dean, J., Ghemawat, S., Hicks, J., Leung,
S.-T., Licktenberg, M., Vandevoorder, M., Walkdspurger, C.A. and Weihl,
W.E., Transparent, Low-Overhead Profiling on Modern Processors. In Pro-
ceedings of the Workshop on Profile and Feedback-Directed Compilation,
(Paris, France, 1998).

7. Bao, H., Bielak, J., Ghattas, O., Kallivokas, L.F., O'Hallaron, D.R., Schew-
chuk, J.R. and Xu, J. Large-scale simulation of elastic wave propagation in
heterogeneous media on parallel computers. Computer Methods in Applied
Mechanics and Engineering, 152 (1-2). 85-102.

8. Berrendorf, R., Ziegler, H. and Mohr, B. The Performance Counter Library
(PCL) web site, Research Centre Juelich GmbH, 2003.

 http://www.fz-juelich.de/zam/PCL/

9. Bershad, B.N., Lee, D., Romer, T.H. and Chen, J.B., Avoiding Conflict
Misses Dynamically in Large Direct-Mapped Caches. In Proceedings of the
6th Annual International Conference on Architectural Support for Program-
ming Languages and Operating Systems, (1994), 158-170.

10. Bishop, M. Profiling Under UNIX by Patching. Software Practice and Ex-
perience, 17 (10). 729-739.

11. Bodin, F., Beckman, P., Gannon, D., Gotwals, J., Narayana, S., Srinivas, S.
and Winnicka, B., Sage++: An Object-Oriented Toolkit and Class Library for
Building Fortran and C++ Restructuring Tools. In Proceedings of the Second
Annual Object-Oriented Numerics Conference (OON-SKI), (Sunriver, OR,
1994), 122-138.

 90

http://www.hpl.hp.com/research/linux/perfmon/
http://www.fz-juelich.de/zam/PCL/

12. Bodin, F., Beckman, P., Gannon, D., Narayana, S. and Yang, S.X. Distributed
pC++: Basic Ideas for an Object Parallel Language. Scientific Programming,
2 (3).

13. Brantley, W.C., McAuliffe, K.P. and Ngo, T.A. RP3 Performance Monitoring
Hardware. in Simmons, M., Koskela, R. and Bucker, I. eds. Instrumentation
for Future Parallel Computer Systems, Addison-Wesley, 1989, 35-47.

14. Buck, B.R. and Hollingsworth, J.K. An API for Runtime Code Patching. The
International Journal of High Performance Computing Applications, 14 (4).
317-329.

15. Callahan, D., Carr, S. and Kennedy, K., Improving Register Allocation for
Subscripted Variables. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), (White Plains,
NY, 1990), 53-65.

16. Callahan, D., Kennedy, K. and Porterfield, A., Software Prefetching. In Pro-
ceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS IV), (Santa Clara, CA,
1991), 40-52.

17. Chame, J. and Moon, S., A Tile Selection Algorithm for Data Locality and
Cache Interference. In Proceedings of the 1999 International Conference on
Supercomputing, (Rhodes, Greece, 1999), 492-499.

18. Chatterjee, S., Jain, V.V., Lebeck, A.R., Mundhra, S. and Thottethodi, M.,
Nonlinear Array Layouts for Hierarchical Memory Systems. In Proceedings
of the 1999 International Conference on Supercomputing, (Rhodes, Greece,
1999), 444-453.

19. Chilimbi, T.M., Ball, T., Eick, S.G. and Larus, J.R., StormWatch: A Tool for
Visualizing Memory System Protocols. In Proceedings of Supercomputing '95,
(San Diego, CA, 1995).

20. Chilimbi, T.M., Davidson, B. and Larus, J.R., Cache-Conscious Structure
Definition. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), (Atlanta, GA, 1999), 13-
24.

21. Chilimbi, T.M., Hill, M.D. and Larus, J.R., Cache-Conscious Structure Layout.
In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), (Atlanta, GA, 1999), 1-12.

22. Chilimbi, T.M. and Hirzel, M., Dynamic Hot Data Stream Prefetching for
General-Purpose Programs. In Proceedings of the ACL SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), (Berlin,
Germany, 2002).

 91

23. Cmelik, R.F. and Keppel, D., Shade: A Fast Instruction-Set Emulator for Exe-
cution Profiling. In Proceedings of the 1994 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, (1994), 128-137.

24. Coleman, S. and McKinley, K.S., Tile Size Selection Using Cache Organiza-
tion and Data Layout. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), (La Jolla, Cali-
fornia, 1995), 279-290.

25. Compaq Computer Corporation Alpha Architecture Handbook (Version 4),
1998.

26. Cox, A.L. and Fowler, R.J., Adaptive Cache Coherency for Detecting Migra-
tory Shared Data. In Proceedings of the 20th Annual International Symposium
on Computer Architecture, (1993).

27. De Rose, L., Ekanadham, K. and Hollingsworth, J.K., SIGMA: A Simulator
Infrastructure to Guide Memory Analysis. In Proceedings of SC2002, (Balti-
more, MD, 2002).

28. Ding, C. and Kennedy, K., Improving Cache Performance in Dynamic Appli-
cations through Data and Computation Reorganization at Run Time. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), (Atlanta, GA, 1999), 229-241.

29. Eggers, S.J., Keppel, D.R. and Koldinger, E.J., Techniques for Efficient Inline
Tracing on a Shared-Memory Multiprocessor. In Proceedings of the 1990
ACM SIGMETRICS Conference on Measuring and Modeling of Computer
Systems, (1990), 37-47.

30. Fursin, G., O'Boyle, M.F.P., Temam, O. and Watts, G. A Fast and Accurate
Method for Determining a Lower Bound on Execution Time. Concurrency
and Computation: Practice and Experience, 16 (2-3). 271-292.

31. Ghosh, S., Martonosi, M. and Malik, S., Precise Miss Analysis for Program
Transformations with Caches of Arbitrary Associativity. In Proceedings of the
8th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VIII), (San Jose, California, 1998),
228-239.

32. Glass, G. and Cao, P., Adaptive Page Replacement Based on Memory Refer-
ence Behavior. In Proceedings of the 1997 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, (Seattle,
WA, 1997), 115-126.

33. Goldberg, A.J. and Hennessy, J.L. MTOOL: An Integrated System for Per-
formance Debugging Shared Memory Multiprocessor Applications. IEEE
Transactions on Parallel and Distributed Systems, 4 (1). 28-40.

 92

34. Henning, J.L. SPEC CPU2000: Measuring CPU Performane in the New Mil-
lenium. Computer, 33 (7). 28-35.

35. Horowitz, M., Martonosi, M., Mowry, T.C. and Smith, M.D., Informing
Memory Operations: Providing Memory Performance Feedback in Modern
Processors. In Proceedings of the 23rd Annual International Symposium on
Computer Architecture, (Philadelphia, PA, 1996).

36. Huck, J., Morris, D., Ross, J., Knies, A., Mulder, H. and Zahir, R. Introducing
the IA-64 Architecture. IEEE Micro, 20 (5). 12-23.

37. Hundt, R. HP Caliper: A Framework for Performance Analysis Tools. IEEE
Concurrency, 8 (4). 64-71.

38. Itzkowitz, M., Wylie, B.J.N., Aoki, C. and Kosche, N., Memory Profiling us-
ing Hardware Counters. In Proceedings of SC2003, (Phoenix, AZ, 2003).

39. Jalby, W. and Lemuet, C., Exploring and Optimizing Itanium2 Cache Per-
formance for Scientific Computing. In Proceedings of the Second Workshop
on Explicitly Parallel Instruction Computing Architectures and Compiler
Technology, (Istanbul, Turkey, 2002).

40. Johnson, S.C., Postloading for Fun and Profit. In Proceedings of the USENIX
Winter Conference, (1990), 325-330.

41. Kandemir, M., Bannerjee, P., Choudhary, A., Ramanujam, J. and Ayguade, E.,
An Integer Linear Programming Approach for Optimizing Cache Locality. In
Proceedings of the 1999 International Conference on Supercomputing, (Rho-
des, Greece, 1999), 500-509.

42. Kodukula, I., Ahmed, N. and Pingali, K., Data-Centric Multi-Level Blocking.
In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), (Las Vegas, NV, 1997), 346-357.

43. Kodukula, I., Pingali, K., Cox, R. and Maydan, D., An Experimental Evalua-
tion of Tiling and Shackling for Memory Hierarchy Management. In Proceed-
ings of the 1999 International Conference on Supercomputing, (Rhodes,
Greece, 1999), 482-491.

44. Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K.,
Chapin, J., Nakahira, D., Baxter, J., Horowitz, M., Gupta, A., Rosenblum, M.
and Hennessy, J., The Stanford FLASH Multiprocessor. In Proceedings of the
21st International Symposium on Computer Architecture, (Chicago, IL, 1994),
302-313.

45. Lam, M.S., Rothberg, E.E. and Wolf, M.E., The Cache Performance and Op-
timizations of Blocked Algorithms. In Proceedings of the International Con-

 93

ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-IV), (San Jose, California, 1991), 63-74.

46. Larus, J.R. Abstract Execution: A Technique for Efficiently Tracing Programs.
Software Practice and Experience, 20 (12). 1241-1258.

47. Larus, J.R. and Ball, T. Rewriting Executable Files to Measure Program Be-
havior. Software -- Practice and Experience, 24 (2). 197-218.

48. Larus, J.R. and Schnarr, E., EEL: Machine-Independent Executable Editing.
In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), (La Jolla, CA, 1995), ACM, 291-300.

49. Lauterbach, G. and Horel, T. UltraSPARC-III: Designing Third Generation
64-Bit Performance. IEEE Micro, 19 (3). 73-85.

50. Lebeck, A.R. and Wood, D.A. Cache Profiling and the SPEC Benchmarks: A
Case Study. IEEE Computer, 27 (9). 15-26.

51. Lee, H.B. and Zorn, B.G., BIT: A Tool for Instrumenting Java Bytescodes. In
Proceedings of the USENIX Symposium on Internet Technologies and Systems,
(Monterey, CA, 1997), 73-82.

52. Lipasti, M.H., Schmidt, W.J., Kunkel, S.R. and Roediger, R.R., SPAID: Soft-
ware Prefetching in Pointer- and Call-Intensive Environments. In Proceedings
of the International Symposium on Microarchitecture, (Ann Arbor, MI, 1995),
231-236.

53. Lu, J., Chen, H., Fu, R., Hsu, W.-C., Othmer, B., Yew, P.-C. and Chen, D.-Y.,
The Performance of Runtime Data Cache Prefeteching in a Dynamic Optimi-
zation System. In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture, (San Diego, CA, 2003), 180-190.

54. Luk, C.-K. and Mowry, T.C., Compiler-Based Prefetching for Recursive Data
Structures. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS VII),
(Cambridge, 1996), 222-233.

55. Lyon, T., Delano, E., McNairy, C. and Mulla, D., Data Cache Design Consid-
erations for the Itanium 2 Processor. In Proceedings of the International Con-
ference on Computer Design, (Freiburg, Germany, 2002), 356-363.

56. Malony, A.D. and Reed, D.A., A Hardware-Based Performance Monitor for
the Intel iPSC/2 Hypercube. In Proceedings of the 1990 International Confer-
ence on Supercomputing, (Amsterdam, 1990), 213-226.

57. Martonosi, M., Gupta, A. and Anderson, T., Effectiveness of Trace Sampling
for Performance Debugging Tools. In Proceedings of the 1993 ACM SIG-

 94

METRICS Conference on Measurement and Modeling of Computer Systems,
(1993).

58. Martonosi, M., Gupta, A. and Anderson, T., MemSpy: Analyzing Memory
System Bottlenecks in Programs. In Proceedings of the 1992 SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, (Newport,
Rhode Island, 1992), 1-12.

59. Martonosi, M., Ofelt, D. and Heinrich, M., Integrating Performance Monitor-
ing and Communication in Parallel Computers. In Proceedings of the 1996
ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, (Philadelphia, PA, 1996).

60. McKinley, K.S., Carr, S. and Tseng, C.-W. Improving Data Locality with
Loop Transformations. ACM Transactions on Programming Languages and
Systems, 18 (4). 424-453.

61. Mellor-Crummey, J., Whalley, D. and Kennedy, K., Improving Memory Hier-
archy Performance for Irregular Applications. In Proceedings of the 1999 In-
ternational Conference on Supercomputing, (Rhodes, Greece, 1999), 425-432.

62. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B.,
Karavanic, K.L., Kunchithapadam, K. and Newhall, T. The Paradyn Parallel
Performance Measurement Tools. IEEE Computer, 28 (11). 37-46.

63. Mink, A. Operating Principles of Multikron II Performance Instrumentation
for MIMD Computers. National Institute of Standards and Technology,
NISTIR 5571, Gaithersburg, MD, 1994.

64. Mink, A., Carpenter, R., Nacht, G. and Roberts, J. Multiprocessor Perform-
ance Measurement Instrumentation. IEEE Computer, 23 (9). 63-75.

65. Mowry, T.C., Lam, M.S. and Gupta, A., Design and Implementation of a
Compiler Algorithm for Prefetching. In Proceedings of the International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS V), (Boston, MA, 1992), 62-73.

66. Mucci, P.J., Browne, S., Deane, C. and Ho, G., PAPI: A Portable Interface to
Hardware Performance Counters. In Proceedings of the Department of De-
fense HPCMP Users Group Conference, (Monterey, CA, 1999).

67. Nahshon, I. and Bernstein, D., FDPR - A Post-pass Object-code Optimization
Tool. In Proceedings of International Conference on Compiler Construction,
(Linkoping, Sweden, 1996), Springer-Verlag, 355.

68. Noe, R.J. and Aydt, R.A. Pablo Instrumenation Environment User's Guide.
University of Illinois, 1996.

 95

69. Panda, P.R., Nakamura, H., Dutt, N.D. and Nicolau, A. Augmenting Loop Til-
ing with Data Alignment for Improved Cache Performance. IEEE Transac-
tions on Computers, 48 (2). 142-149.

70. Pingali, V.K., McKee, S.A., Hseih, W.C. and Carter, J.B., Computation Re-
grouping: Restructuring Programs for Temporal Data Cache Locality. In Pro-
ceedings of the 16th International Conference on Supercomputing, (New York,
NY, 2002), 252-261.

71. Qiao, X., Gan, Q., Liu, Z., Guo, X. and Li, X., Cache Optimization in Scien-
tific Computations. In Proceedings of the ACM Symposium on Applied Com-
puting, (February 1999, 1999), 548-552.

72. Quinlan, D., Rose: A Preprocessor Generation Tool for Leveraging the Se-
mantics of Parallel Object-Oriented Frameworks to Drive Optimizations via
Source Code Transformations. In Proceedings of the Eighth International
Workshop on Compilers for Parallel Computers (CPC '00), (Aussois, France,
2000).

73. Reed, D.A., Aydt, R.A., Noe, R.J., Roth, P.C., Shields, K.A., Schwartz, B.W.
and Tavera, L.F. Scalable Performance Analysis: The Pablo Performance
Analysis Environment. in Skjellum, A. ed. Scalable Parallel Libraries Con-
ference, IEEE Computer Society, 1993, 104-113.

74. Reinhardt, S.K., Larus, J.R. and Wood, D.A., Typhoon and Tempest: User-
Level Shared Memory. In Proceedings of the ACM/IEEE International Sym-
posium on Computer Architecture, (1994).

75. Ries, B., Anderson, R., Auld, W., Breazeal, D., Callaghan, K., Richards, E.
and Smith, W., The Paragon Performance Monitoring Environment. In Pro-
ceedings of Supercomputing '93, (Portland, OR, 1993), 850-859.

76. Rivera, G. and Tseng, C.-W., Data Transformations for Eliminating Conflict
Misses. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), (Montreal, Canada, 1998), 38-
49.

77. Rivera, G. and Tseng, C.-W., Tiling Optimizations for 3D Scientific Compu-
tations. In Proceedings of SC2000, (Dallax, Texas, 2000).

78. Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W., H. Levy, H. and
Bershad, B., Instrumentation and optimization of Win32/Intel executables us-
ing Etch. In Proceedings of the USENIX Windows NT Workshop, (Seattle,
WA, USA, 1997), 1-7.

79. Sechen, C. and Sangiovanni-Vincentelli, A. The TimberWolf Placement and
Routing Package. IEEE Journal of Solid-State Circuits, 20 (2). 432-439.

 96

80. Sharangpani, H. and Arora, K. Itanium Processor Microarchitecture. IEEE
Micro, 20 (5). 24-43.

81. Srivastava, A. and Eustace, A., ATOM: A system for Building Customized
Program Analysis Tools. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), (Orlando, FL,
1994), 196-205.

82. Temam, O., Fricker, C. and Jalby, W., Cache Interference Phenomena. In
Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, (Nashville, Tennessee, 1994), 261-271.

83. Tendler, J.M., Dodson, J.S., J. S. Fields, J., Le, H. and Sinharoy, B. POWER4
System Microarchitecture. IBM Journal of Research and Development, 46 (1).
5-26.

84. Wilson, L.S., Neth, C.A. and Rickenbaugh, M.J. Delivering Binary Object
Modification Tools for Program Analysis and Optimization. Digital Technical
Journal, 8 (1). 18-31.

85. Wolf, M.E. and Lam, M.S., A Data Locality Optimizing Algorithm. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), (Toronto, Ontaro, Canada, 1991), 30-44.

86. Wybranietz, D. and Haban, D., Monitoring and Performance Measuring Dis-
tributed Systems during Operation. In Proceedings of the 1988 ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems,
(Santa Fe, New Mexico, 1988), 197-206.

87. Zagha, M., Larson, B., Turner, S. and Itzkowitz, M., Performance Analysis
Using the MIPS R10000 Performance Counters. In Proceedings of Supercom-
puting '96, (Pittsburgh, PA, 1996).

 97

	Introduction
	Related Work
	Hardware Instrumentation
	Software Instrumentation
	Memory Performance Measurement and Visualization Tools
	Adapting System Behavior Automatically
	Optimization

	Measuring Cache Misses in Simulation
	Cache Miss Address Sampling
	The Simulator
	Experiments
	Accuracy of Results
	Perturbation of Results
	Instrumentation Overhead
	Simulation Overhead

	Conclusions

	Measuring Cache Misses Using Hardware Monitors
	Intel Itanium 2 Performance Monitoring
	PMC and PMD Registers
	Performance Monitor Overflow Interrupt
	Event Addresses

	Linux IA-64 Performance Monitoring Interface
	Cache Scope
	Instrumentation for Sampling Cache Misses
	Data Analysis Tool

	Experiments
	Perturbation of Results
	Instrumentation Overhead

	Tuning Using Data Centric Cache Information
	Equake
	Twolf

	Conclusions

	Cache Eviction Monitoring
	Proposed Hardware Feature
	Instrumentation for Sampling Cache Evictions
	Experiments
	Accuracy of Results
	Cache Misses
	Cache Evictions
	Evictions by Code Area

	Perturbation of Results
	Instrumentation Overhead

	Performance Tuning Using Data Centric Eviction Information
	Conclusions

	Conclusions
	Summary of Contributions
	Future Research

