CAR-TR-772 March 1995
CS-TR-3474
ISR-TR-95-53

Browsing Hierarchical Data with
Multi-Level Dynamic Queries
and Pruning

Harsha P. Kumar, Catherine Plaisant and Ben Shneidérman

Human-Computer Interaction Laboratory
Department of Computer Science
Institute for Systems Research*
University of Maryland, College Park, MD 20742-3255
harsha@src.umd.edu, plaisant@cs.umd.edu, ben@cs.umd.edu

Abstract

Users often must browse hierarchies with thousands of nodes in search of those that best mat
their information needs. THRDQ Tree-browse(Pruning withDynamicQueries) visualization

tool was specified, designed and developed for this purpose. This tool presents trees in two tightly
coupled views, one a detailed view and the other an overview. Users can use dynamic queries,
method for rapidly filtering data, to filter nodes at each level of the tree. The dynamic query panels
are user-customizable. Subtrees of unselected nodes are pruned out, leading to compact views
relevant nodes. Usability testing of the PDQ Tree-browser, done with 8 subjects, helped asses
strengths and identify possible improvements. The PDQ Tree-browser was used in Network
Management (600 nodes) and UniversityFinder (1100 nodes) applications. A controlled
experiment, with 24 subjects, showed that pruning significantly improved performance speed anc
subjective user satisfaction. Future research directions are suggested.

please address correspondence to Ben Shneiderman

To appear innternational Journal of Human-Computer Studies

Kumar, Plaisant, Shneiderman

1 Introduction

Decisions are an integral part of human life. Whether deciding what movie to see or choosinc
which universities to apply to, people are constantly faced with decisions. Many everyday
decisions and in engineering applications require the selection of one or a few elements fron
many, possibly thousands of elements. In such cases, users often try to make a “"good" choice
deciding first what they daot want, i.e. they first try to reduce the data set to a smaller, more
manageable size. After some iterations, it is easier to make the final selection(s) from the reduce
data set. Thigterative refinemenor progressive queryingf data sets is sometimes known as
hierarchical decision-making.

A hierarchical data set (HDS) (also called a “‘tree") organizes data points into a hierarchy
HDSs are common, e.g. sales & budget data, catalogs of products, library indices, computer fils
systems etc. A HDS can be filtered (queried and reduced) effectively using a hierarchical-decisiot
making process because the data is inherently hierarchical.

The original motivation for this work was our research on user interfaces for network
management (Kumar, Plaisant, Teittinen, & Shneiderman, 1994). While working on a user
interface for satellite network configuration, we were faced with the task of choosing one leaf node
from a large tree of thousands of nodes. Further, the task was such that the number of interestit
leaf nodes could be reduced drastically based on selection criteria at various levels in the tree. Th
problem prompted us to design and implement the FB@n{ng withDynamicQueries) Tree-
browser.

2 PDQ Tree-browser Requirements

Based on our task analyses in the network management scenario and other tree-browsir

applications, we specified the requirements for the PDQ Tree-browser visualization tool:

* Browse the entire tree and view it at different levels.

* Query nodes at all levels on the basis of attribute values. Querying mechanism should be eas
rapid, yet powerful.

* Hide uninteresting nodes and branches rapidly, and thus reduce the data set progressivel
Iterate easily by revealing hidden nodes / branches.

3 Previous Work

Information search is a vast topic (Marchionini, 1995), but previous work on hierarchical data is
more limited. Early work emphasized aesthetic and easy-to-read tree and graph layouts (Battist:
Eades, Tamassia, & Tollis, 1989), and browsing / exploring / searching trees and graphs, but nor
of them provide a good solution to the attributes-based querying and browsing problem. Many

Kumar, Plaisant, Shneiderman

visual browsers address 2D-browsing, and some allow for manual pruning of uninteresting
subtrees / subgraphs. Commonly used tree visualizations include 2D node-link diagrams, spact
filling treemaps, 3D node-link diagrams and tables-of-contents or outliners.

An advantage of node-link visualizations of trees is that they are a familiar mapping of
structured relationships and therefore easy to understand. They can also display attributes of linl
by color or size if required. However, node-link diagrams make inefficient use of screen space
and even trees of medium size need multiple screens to be completely displayed. This necessitai
scrolling of the diagram and global context is lost, since only a part of the diagram is visible at any
given time.

Beard & Walker (1990) usechaap window a miniature of the entire information space with a
wire-frame box to aid users in remembering their location. The map window is better known as ar
overview, the entire information space shown in full size isDeéailed Viewand the wire-frame
box is thefield-of-viewor thepanner(Plaisant, Carr, & Shneiderman, 1995). The field-of-view
can be dragged around in the overview to pan the detailed view. Similarly, scrolling the detailed
view updates the position of the field-of-view in the overview. Hence, the overview and the
detailed view are said to Géghtly-coupled Beard & Walker found that an overview significantly
improves user performance, and the pan technique and the zoom and pan technique we
significantly faster than the scroll technique.

Plaisantt al. provide a taxonomy and guidelines for image-browsers. This work attempts to
standardize some of the terms being used by researchers today, e.g. Detail View, Field-of-view
etc. Different kinds of browsers such as ""Detail only"”, “"One window with zoom and replace",
and ""Tiled multilevel browser" are shown. The authors identify 5 classes of tasks that are
accomplished with image browsers, e.g. open ended exploration, navigation, monitoring, etc.

The treemap visualization of tree structures uses a two-dimensional (2D) space-filling approac
in which each node is a rectangle whose area is proportional to some attribute such as node si
(Shneiderman, 1992). On the other hand, the treemap algorithm utilizes 100 % of the designate
space. Sections of the hierarchy containing more important information can be allocated more
display space while portions of the hierarchy which are less important to the specific task at han
can be allocated less space. Treemaps have been used for file management, network managen
(Kumaret al, 1994), budgets, sports data, etc.

Robertson, Mackinlay, & Card (1991) and Chignell, Zubrec, & Poblete (1993) used 3D node-
link diagrams in order to visualize tree structures. Robegsah, in the Information Visualizer
project at Xerox PARC, developed a tool called Cone Trees that allows for animation of 3D trees
They contend that interactive animation can effectively shift cognitive processing load to the
perceptual system. They descrimrdening operatioigRobertsoret al, 1991) where the user
can manually prune and grow the view of the tree. Prune and grow operations are done either k

Kumar, Plaisant, Shneiderman

menu or by gestures directed at a node. While these gardening operations do help in managing a
understanding large, complex hierarchies, this manual mechanism of pruning or growing one
subtree at a time, is clearly not sufficient nor very effective in specifying complex searches
spanning several levels of the tree.

Chignellet al. (1993) built the Info-TV tool, which allows two styles of pruning:

» The sub-branch(es) for which the chosen node is the root can be removed from the screen

* The nodes and labels are removed, but the links remain

The authors however, do not describe how the nodes whose sub-trees are to be pruned ¢
specified by the user. It is assumed that the user makes these specifications manually by selecti
these nodes.

Visualizations have also been used traditionally to browse of graph structures. Examples c
graph visualizations include hypertext graphs, finite-state diagrams, flow-charts, parse-trees, per
charts, dataflow diagrams, wiring diagrams and hierarchical decompositions.

According to Henry (1992), and Henry and Hudson (1991), the “"best layout" depends on thi
user's current region of interest. Consequently, a single layout algorithm cannot always produce th
best results. Thus, thebility of users to customizée layout to meet their current needs and
interests is essential. Therefore, users must be providethtethctive tooldo iteratively dissect
large graphs into manageable pieces. Henry and Hudson describe manual selection in which use
select nodes and edges using simple direct manipulation techniques, and algorithmic selection i
which users apply an algorithm to the graph. But by classifying manual selectioonilyto
individual selection or marguee selection, the authors are greatly restricting the range of interestin
selection subsets that can be specified by the user. They conclude by identifying two primary
future directions: using domain specific graph semantics to guide the layout and the selection, an
creating a methodology that can be used to kanldnteractive system for non-programmers to
specify selection and layout algorithn@ur work extends their strategies.

Gedye (1988) built a system that presents users with a list of all the objects. They can choose i
object, and then upon choosing one particular relationship, a directed acyclic graph, tree, or a
equivalence set is created in a new window. So, the tangled web that would have resulted b
showing all the relationships is eliminated by using one window per relationship. Noting that both
zooming and panning were inadequate for arbitrary graph structures, the authors implemente
pruning in order to assist in the browsing. A subgraph is selected that contains few enough node
to comfortably fit in the window, and this subgraph is displayed in its entirety. The subgraph
obtained by the pruning procedure is called the "display graph".

Schaffer, Zuo, Bartum, Dill, Dubs, Greenberg, & Roseman (1996) found that users performec
better using fisheye views of hierarchically-clustered graphs than using full-zoom views. Hollands,
Carey, Matthews, & McCann (1989), however found users getting somewhat disoriented while

Kumar, Plaisant, Shneiderman

using fisheye views for complex tasks. None of the fisheye view implementations described above
allow for attributes-based specification of the foci of interest.

The review of the literature pertaining to tree and graph browsers did not provide a good answe
to the problem of specifying selection subsets on large connected data sets like trees and grapt
Those that do allow for uninteresting nodes / subtrees / subgraphs to be pruned out, require use
to make subset specifications manually. We believe that Dynamic Queries can be used effectivel
for this purpose. Dynamic Queries describes the interactive user control of visual query parametel
that generates a rapid (100 msec update) animated visual display of database search resul
Dynamic queries are an application of the direct manipulation principles in the database
environment. They depend on presenting a visual overview, powerful filtering tools, continuous
visual display of information, pointing rather than typing, and rapid, incremental, and reversible
control of the query (Shneiderman, 1992). Dynamic queries have been applied to browse
databases of houses, movies, chemical tables of elements etc. These concepts of dynamic query
and tight-coupling are similar to those of Focusing and Linking (Buja, McDonald, Michalak, &
Stuetzle, 1991).

4 PDQ Tree-browser design

4.1 Theory

Our PDQ Tree-browser design consists of the following features:

* Two tightly-coupled node-link views of the tree (Overview and Detailed View)

* Dynamic Query Environment for users to customize their dynamic query panels
* Dynamic Queries at different levels of the tree

* Pruning of subtrees of uninteresting nodes to get more compact views

4.1.1 Dynamic Queries on Hierarchical Data Setynamic queries have been applied to data
sets consisting of independent data points (Ahlberg and Shneiderman, 1994). In such case
whether a data point satisfies a given query or not does not affect the outcome for other data point
This is because there are no interrelationships between the data points. Thus, the data set can
thought of as "“flat". Queries are merely queries on the attributes of individual data points. Foi
example, in the FilmFinder, each movie is an independent data point. Similarly, in the
HomeFinder (Shneiderman, 1994), each house is an independent data point.

In a "non-flat" data set, on the other hand, there are predefined interrelationships between da
points. For example, in a HDS, some nodes are related to some others by the parent-chil
relationship (Kumaet al, 1994). Therefore, whether a node matches a given query or not might
affect some other nodes. Specifically, while searching a hierarchical data set in a top-down manne
(i.e. parent first), it makes sense to prune out all descendant nodes of nodes that do not match t

Kumar, Plaisant, Shneiderman

guery. For example, if users are looking for departments in universities with low tuition, it makes
sense to eliminate those departments whose universities have high tuition. When criteria (like lov
tuition, high average SAT scores, high placement indices etc.) exist at all or most levels in the
hierarchy stepwise refinement of the quean be done to progressively reduce the initial (large)
data set into a smaller set, from which good choices may be made.

4.1.2 Dynamic Query Environments The HomeFinder and the FilmFinder are examples of
systems that provide hard-coded graphical widgets for the user to manipulate in order tc
dynamically update the visual display. If the user wanted to find homes that were within 2 miles of
any hospital, the current HomeFinder interface would have to be reprogrammed.

Therefore, ®ynamic Query Environmentfirst implemented in a browser for the National
Center for Health Statistics (Shneiderman, 1994), should allow users to customize dynamic quer
control panels based on current interests. Users should be able to select what combination «
attributes they wish to query on, and have the appropriate widgets created, at run-time. The methc
of selecting the attributes and creating widgets should be easy, and also allow for modifications
backtracking. Having the interface not be application-dependent would have the added advantage
reusability across applications.

4.2 Description of the Interface
The PDQ Tree-browser interface consists of two main parts (Figure 1):

» Data Display. The tree structure is visualized in two tightly-coupled views, a detailed view (on
the right) and an overview (on the left). If the PDQ Tree-browser window is resized by the
user, the field-of-view shape and size is updated automatically.

 Dynamic Query Panel This panel (below the Data Display) consists of two parts, the
Attributes List on the left and the Widgets Panel on the right. Initially, there are no query
widgets in the Widgets Panel. Users may select (by dragging-and-dropping) up to three
attributes from the Attributes List for each level in the hierarchy (except the root level). This
causes an appropriate widget (range-slider for numerical attributes and menu for textua
attributes) to be created and initialized. Queries (on up to 3 attributes) at each level are AND-e«
together. Users can replace an existing widget with another by dropping a new attribute nam
over the original widget's attribute name. Existing widgets can be deleted by dropping “~"No
Query" onto the corresponding attribute name.

Kumar, Plaisant, Shneiderman

The Treeview and Range-slider widgets of the University of Maryland Widget LibYary
(Carr, Jog, Kumar, Teittinen, & Ahlberg, 1994) were used in the PDQ Tree-browser
implementation.

If users manipulate a widget at the current lowest level displayed, the nodes matching the quel
at that level are colored yellow, otherwise they are gray. These updates of the data display are re:
time (within 100 msec of updates to the control widgets) in accordance with the principle of
dynamic queries. Buffering was done in order to make the updates as smooth and flicker-free &
possible.

If users manipulate a widget at a level other than the current lowest level, the tree visualizatiol
first "jumps" to that level, i.e. the level of the widget is made the tree's current lowest level. This
is done so that the structure of the tree during direct manipulation of the widgets remains constar
and only the colors of the nodes change. Then the nodes at the new lowest level are updated (
coloring yellow or gray) in real-time to show whether they match the query or not.

The tree structure chang@dy when the current lowest level of the tree is changed, which can
be accomplished by users in three ways:

» By clicking on the corresponding level button (i.e. the buttons labeled “Network', "DPC",

“LIM" and ""Port") just below the data display (Figure 1).

* By manipulating a widget at any level other than the current lowest level, as explained above.
» By clicking on the + or - buttons to either increase or decrease the levels displayed.

When the current lowest level is changed so as to show more jpeuaiag of the tree is done
S0 as to eliminate subtrees of nodes that do not match the query at their own levels. For example,
the user manipulates the range slider for Network ID such that Nets 1 and 2 do not match th
guery (Figure 2), and then increases the lowest level displayed by 1, the children of nets 1 and
are not shown, while children of other nets are shown (Figure 3). Nets 1 and 2 now appear in gra)
while all the other nets appear in orange, simply to show that those nodes did match the query i
their own level. This feedback enables users to go back and change queries at higher levels, a
thus iteratively refine the selection subset.

As explained above, nodes at the current lowest level are colored either yellow or gray, while
nodes at higher levels are colored either orange or gray. Also, the level button corresponding to tr
current lowest level is colored yellow so as to focus the attention of the user to that level. Buttons &
other levels are colored gray.

When the current lowest level is changed so as to show fewer levels, the tree is simpl
“folded" back to the new lowest level, and then the nodes at that level are colored either yellow o
gray based on the query at that level. Thus, users can easily jump back and forth between levels
order to fine-tune their search.

Kumar, Plaisant, Shneiderman

The Attributes List on the left shows only the attributes corresponding to the current lowest
level. Users can access names of attributes at other levels by choosing the appropriate level nar
(e.g. Network, DPC, etc.) from the attributes menu just above the Attributes List (Figure 1).

There are four feedback indicators, one corresponding to each level (other than the root level
that are updated in order to show the number and proportion of nodes that currently match th
qguery (i.e. number of “hits"). The proportion of the feedback indicator that is colored yellow
corresponds to the proportion of hits. This proportion is a percentage of the total number of node
at that level, not of the number of nodes at that level currently displayed. The actual number of hit:
is also displayed at the top of each feedback indicator. Proportion indicators are displayed fron
level 1 down to the current lowest level only , those for deeper levels are hidden (grayed out). Thi
is because calculating the number of nodes Wwatld match the query at deeper levels is
computationally intensive and would slow down the dynamic queries on nodes at the current level
At any time users can select the button to hide the grayed out nodes.

To summarize, the PDQ Tree-browser is a visualization tool for hierarchical data that makes
use of dynamic queries and pruning. The PDQ Tree-browser uses two coordinated or tightly-
coupled views of the same tree, one a detailed view and the other an overview. The user can sele
up to 3 attributes (numerical or textual) for dynamically querying nodes at each level in the
hierarchy. Subtrees of nodes that do not match the query at their own level are pruned out of th
visualization. Thus, one can reduce a large data set (with thousands of nodes) to a much small
set, from which good selections can be made.

4.3 Example Application: The UniversityFinder

We applied the PDQ Tree-browser to 2 applications, Network Management and the
UniversityFinder. The latter is described here. The database organizes universities hierarchically
we have regions of the world, followed by states, then universities, and finally, departments. The
UniversityFinder demo is available on videotape (Kumar, 1995).

Let us say that | am a high-school senior looking for universities that best match my needs. Th
PDQ Tree-browser initially shows all the regions in the world. | ask to see the entire tree to get ar
idea of the size of the database. The feedback indicators show that there are 740 departments in Z
universities in 62 states in 5 regions of the world (Figure 4).

| realize that panning this entire tree is not an easy task and return to the region level. Since | a
only interested in regions where English is the primary language, | create a textual menu o
primary languages by dragging-and-dropping the attribute Primary Language on to one of the
empty slots under the Region level button. | select English from the menu and the South Americi
turns gray, while USA, Canada, Africa and Europe remain yellow.

Kumar, Plaisant, Shneiderman

| now proceed to the state level. South America's subtree is not expanded. That subtree wi
pruned out since South America did not satisfy our criterion for primary language. However,
South America is still shown in gray in order to provide context feedback.

I would really like to study in a state that is relatively safe, so | choose to query on the level of
violence. | manipulate the range-slider to select only states with a violence index less than 65
leaving 37 states. | further reduce the number of interesting states by choosing only those witl
good traffic conditions. The number of states has now dropped to only 7 (Figure 5).

Now, | can look at the universities, but first | recapture space occupied by uninteresting state
by clicking on the Hide Gray Leaves button. This gives me a more compact view that often is
visible on a single screen. When | now go to the university level, only the remaining 7 states are
expanded to show 25 universities.

I now reduce the number of universities by first eliminating those with high tuition and then
setting the average SAT scores to closely match mine. | hide gray leaves once again and see the
am down to 7 universities: a couple in Arkansas, a couple in Ontario, etc.

Satisfied with this set of universities, | proceed to the department level to closely look at
departments (Figure 6) that best match my interests and needs in terms of availability of financia
aid, etc.

4.4 PDQ Tree-browser Limitations

The UniversityFinder scenario demonstrates how the PDQ Tree-browser can be applied tc

everyday applications, in addition to complex applications like network management. The tool

itself is general and can be used for any hierarchical data set with attributes for nodes at differer
levels of the hierarchy. However, the current implementation does have the following limitations:

» The PDQ Tree-browser interface has been "“fine-tuned" for a tree of depth 5. The underlyinc
tree data structure and node-link widgets place no constraints on the depth of the tree, but tt
current interface has been customized to look best for a tree of depth 5, e.g. the levels of th
tree in the detailed view align nicely with the corresponding buttons and query widgets.

» Users can select only up to 3 attributes to query on at each level, and these queries can only
ANDed together. ORs and NOTSs are not supported currently.

» Since the focus of this work was not on layout, the algorithm used produces an aesthetic tid
layout, but not the most compact one. Also, the implementation does not enforce the overview
to always show the entire tree (so users might have to scroll the overview).

» Users can not open subtrees of nodes by manually selecting (e.g. double-clicking) them. Wi
believe that both manual selection and attributes-based selection are necessary in a comple
system.

Kumar, Plaisant, Shneiderman

4.5 Possible design alternatives

There are some interesting design alternatives that deserve special mention here:

* Pruning vs. graying out: The PDQ Tree-browser prunes out subtrees of nodes that do no
match the query at their own level. Another approach would have been to show the entire
subtree, but with all the nodes grayed out. The possible advantage of this approach over th
pruning approach would be the increased constancy in the tree structure. Expert users mig}
experience improved productivity as they get more and more familiar with the tree structure.
The disadvantage of this approach is that the tree is displayed in its entirety at any level, eve
when most of the nodes that take up a lot of screen space are uninteresting. This results |
increased overheads of scrolling and panning and slower response times. In Section 6, w
describe a controlled experiment which compared these behavior alternatives.

* Whether to update the data display when a query widget is created or replaced at a leve
different from the current lowest level: The PDQ Tree-browser changes levels whenever
widgets at levels other than the current lowest level are manipulated. But it does not chang:
levels when a new widget is created or an existing widget replaced, at a level different from the
current lowest level. This design decision was based on the assumption that users might crea
a number of widgets at different levels at the same time (e.g. at the beginning), and not wan
the level to change each time. The disadvantage of this approach is that the data display
potentially inaccurate till the next time users visit that level.

4.6 Generalizing the design

This section attempts to generalize the PDQ Tree-browser design so as to overcome some of i
limitations and make it more generally applicable to trees of varying structures and sizes. ldeas o
extending the query interface to allow specification of complex boolean queries are discussed. Th
PDQ Tree-browser illustrated the advantages of using dynamic queries and pruning while
visualizing trees as 2D node-link diagrams. The same advantages are there to be had by other t1
visualizations as well, e.g. treemaps and Cone Trees. We illustrate this with examples for the
treemap case.

4.6.1 Coping with varying structure and growing sizeln this section, we examine some of the
issues that need to be addressed in order for our design to be extensible to trees of varyir
structure and size.

» Trees of arbitrary depth: Figure 7 shows how one might extend the current PDQ Tree-
browser interface to handle trees arbitrarily deep. Due to screen space constraints, it will not b
possible to see all the query widgets at all levels in the hierarchy. In Figure 7, on the lower left

10 Kumar, Plaisant, Shneiderman

corner, is a list of levels in the hierarchy, from which users select the current lowest level (level
2 in this case). The Attributes List then updates to show the list of attributes for level 2. The
guery widgets for the current lowest level and for the previous level visited (i.e. level 1 in this
case) are shown in the query panel.

Trees of arbitrary size: As the size of the tree to be visualized becomes larger, performance
would tend to deteriorate and the browsing mechanism becomes inadequate. But there ai

approaches that can be taken to alleviate this problem:

Performance issue®ur node-link layout algorithm, in the worst case (i.e. when all nodes are

to be shown), requires 2 complete traversals of the tree, Increasing levels displayed require
more than 3 traversals of the entire tree, in the worst case. Dynamically querying nodes at an
level is more efficient in that is only requires traversal of each node at that level and not of the
entire tree. Therefore, the system is likely to slow down appreciably as the size of the tree
increases, especially for operations that require re-computation of the structure and layout.

More sophisticated data structures and algorithms would be necessary in order to minimize th
performance deteriorations. For example, one might only traverse the nodes visible in the
detailed view to evaluate dynamic queries. But this would mean that the overview would not be
tightly-coupled with the detailed view. Algorithms for pruning could be improved so that only
subtrees that have been dynamically queried since the last structure change need to t
traversed. There are several interesting challenges that remain to be solved, with respect 1
performance issues.

Interface issueddeally, the overview would always show the entire data display in miniature,

even if it means that no details are visible; and the overview provides only global context.
However, when the size of the tree gets huge (say 50,000 nodes), there is no way that or
overview would suffice. Plaisant, Carr, & Hasegawa (1992) found that in some cases, it
might even be useful to provide an intermediate view in addition to the overview and the
detailed view, when the detail-to-overview zoom ratio is above 20.

Another feature that might be useful is to allow users to restrict the nodes to be displayec
beforedisplaying them. For example, if the user requests to see a new level with 20,000 nodes
the system should present the user with the option of restricting this set (feedback might be
provided by displaying the number of matching nodes) before displaying it.

11 Kumar, Plaisant, Shneiderman

4.6.2 Specification of general boolean querie$he current PDQ Tree-browser implementation
allows users to specify an AND of queries on 0-3 attributes at each level. An improved interface
would allow any number of ANDs, ORs and NOTSs. But specifying complex boolean queries
graphically is a challenge, as it may be difficult to interpret a set of graphical widgets, boolean
operators and parentheses, even for experienced users.

The PDQ Tree-browser could accommodate complex boolean queries by using the Filter-Flov
metaphor in which queries are shown as water streams flowing through sequential filters for
ANDs, parallel filters for ORs, and inverted filters for NOTs (Young & Shneiderman, 1993). The
decrease in the breadth of the water stream while passing through a filter represents the reducti
in the data set due to the corresponding query.

4.6.3 Pruning applied to treemapsIt was in fact, a treemap of a network hub that first
highlighted the need for some mechanism to hide subsets of nodes / prune subtrees that were r
interesting and recapture screen space. Uninteresting leaf nodes had taken up about 40 % of t
total display space.

Figure 8 shows how pruning can help treemaps recapture screen space allocated 1
uninteresting subtrees.

4.6.4 Dynamic queries and pruning applied to cone tree®Robertsoret al. (1991) describe
““gardening operations" where the user can manually prune and grow the view of the tree. Prur
and grow operations are done either by menu or by gestures directed at a node. We believe tr
allowing users to make attributes-based subset specifications in addition to these manual subs
specifications will help make Cone Trees more powerful and useful.

5 Usability Testing

In order to assess and improve the PDQ Tree-browser, usability evaluations were performed, i
which 8 subjects were given training and asked to perform specified tasks using the PDQ Tree
browser. The UniversityFinder data was used in the testing.

5.1 Methods

With each subject, the following procedures were followed:

* Introduction: The experiment was introduced to the subjects by explaining the
UniversityFinder scenario (Section 4.3).

» Description of features: PDQ Tree-browser features were demonstrated one by one ani
subjects were given the opportunity to try each one.

12 Kumar, Plaisant, Shneiderman

Tasks: Subjects were asked to perform 7 tasks. The initial tasks focused on specific feature:
while later tasks were designed to evaluate the tool as a whole (See Section 5.3 for details
Subjects were encouraged to think aloud while performing the tasks. Comments and
suggestions were recorded as they were made. Interesting actions and sources of confusit
were also recorded.

Subjective evaluation: Subjects were asked to rate specific features of the system (on a scale
1 to 9), identify what they liked and disliked most about the PDQ Tree-browser and make
suggestions for improvement.

Analysis: Finally, all comments and suggestions made by subjects were compiled into one lis
(Section 5.4). The mean and standard deviation were computed for each rating and som
graphs were plotted.

5.2 Subjects

Pilot testing was done with 2 graduate students, to try out the tasks and get preliminary reaction:
The tasks were refined, a subjective evaluation questionnaire was designed, and the software w
tested with 6 subjects. The subjects were familiar with tree structures and pruning, databas
guerying, GUIs and direct manipulation widgets. The subjects ranged from graduate students an
undergraduate seniors in Computer Science / Electrical Engineering to a faculty research assistan

5.3 Tasks
The range of (7) tasks included:
Feature-based testingTesting the specific features of the PDQ Tree-browser.

Tight-coupling of overview and detailed view: 2D browsing of the node-link diagrams using
panning, scrolling and changing levels features only.

Dynamic Query Environments: Building and modifying dynamic query panels using drags-
and-drops. Directly manipulating the widgets to produce real-time color updates of the nodes.
Tree Dynamics: Tree pruning and associated structure and layout changes. Issues relating
getting familiar with the tree structure and dis-orientation due to structural changes. Ability to
iteratively refine queries, by jumping back and forth between levels.

Task-based testing Testing queries of varying complexity and type. This classification of queries
is general and independent of this particular PDQ Tree-browser design and implementation.

Simple attributes-based" queries: For example, how many states have a level of violenct
index <= 60 and good traffic conditions?

Complex associative "structure-based" queries: For example, how many states satisfy all th
following constraints: regions with standard of living >= 50 but <= 95, states with population

13 Kumar, Plaisant, Shneiderman

density <= 72 and good traffic conditions, public universities with out-of-state full-time tuition
<= $3000 per semester and average SAT scores of >= 1100 and at least one department.

5.4 Results
The subjective evaluations revealed which features were liked and which needed improvement:

5.4.1 Most liked features:When asked what was the one thing they liked the most about the
PDQ Tree-browser, subjects responses included:

* “Dynamic querying and pruning to get multiple views based on current interests."

e Easy to learn, convenient and straight-forward to use."

* The ability to locate interesting parts of large trees."

* Easy to create complex multi-level queries."

* 'l liked seeing the tree structure of the data, which would usually be tabular.”

* Shows adequate information."

* Tightly-coupled overview and detailed view."

5.4.2 Subijective ratings:Users rated 22 aspects of the PDQ Tree-browser on scales of 1 to 9,
where 1 was the worst rating and 9 the best rating. They also rated 3 possible features. Fc
example, users gave a mean rating of 8.7 (standard deviation = 0.5) to the usefulness of pruning.
mean rating of 8.2 (standard deviation = 1.0) to the usefulness of dynamic queries, while the eas
of range-slider manipulation got a mean rating of only 4.8 (standard deviation = 2.4).

5.4.3 Suggestions for improvement

Subjects were also asked to make suggestions for improvement and possible new features. All tl
suggestions were tabulated, resulting in 19 possible enhancements to the system. Some of the
are obvious ones that would be inexpensive to incorporate into the system, while others woulc
require more effort:

(1) Ability to manually add or remove 1 or more nodes to the selection subset resulting from the
dynamic queries (by clicking, marquee etc.). Thus, the ideal subset specification mechanism woul
allow both query-based specification as well as manual specification. Some issues relating t
keeping track of these nodes and avoiding complications later in the query process need to
addressed.

(2) Pruning and the Hide Gray Leaves feature were clearly well liked by the subjects. Most of
them used the latter frequently to recapture screen space from uninteresting gray nodes and foc

14 Kumar, Plaisant, Shneiderman

the search. Removing nodes like this also made the system faster. Many subjects agreed tha
Hide All Gray Nodes feature would be very useful. Some subjects also felt that the default
behavior could be to hide gray nodes (when levels changed) and users could ask to see gray noc
(for context) if they were interested. This suggestion should help make the views even more
compact. But the preferred default behavior depends on the structure of the tree (fan-out at eac
level) and also the type of tasks; therefore this requires more investigation. In fact, one subjec
liked seeing the gray nodes at higher levels and used the Hide Gray Leaves feature only once. }
said the presence of the gray nodes at higher levels helped in visually separating disjoint groups
nodes.

(3) Subjects found the response time of some PDQ Tree-browser features to be slow, especial
increasing levels when the number of nodes was high.

(4) 1t was observed that subjects get somewhat disoriented when the level of the tree was change
This is because the layout algorithm generates a fresh layout whenever the tree structure chang:
i.e. whenever more or less levels are requested to be seen. It is felt that this problem can &
significantly alleviated by retaining the same current focus. For example, if the user asks to see th
University level while the state Florida is near the center, the new view should be initialized to
show universities within Florida.

(5) Panning the detailed view by dragging the field-of-view in the overview was found useful, but
some improvements to the design are required. One subject emphasized the need to always fit t
overview into one screen only, so that no scrolling of the overview is required. As mentioned
before, this is what we had designed, but it wasn't enforced in this implementation. Another
subject suggested that users should be able to click anywhere in the overview and have the field-c
view jump to that position. This would enable fast coarse navigation. Fine-tuning could then be
accomplished by dragging the field-of-view.

(6) The catchiest quote received from one of the subjects was this: "Drag-and-drop becomes a dr:
for experienced users, so drop it!". Some other subjects also echoed the feeling that it might b
easier and faster to just replace each drop area with a menu of attributes at that level. Some ot
subjects enjoyed the drag-and-drop mechanism to create and modify query panels.

(7) Ability to specify complex boolean queries involving ORs and NOTS, in addition to the ANDs
allowed currently.

15 Kumar, Plaisant, Shneiderman

(8) One task (Task 6) required subjects to look for departments within 3 states, Wyoming,
Wisconsin and Washington. This is basically restricting states to Wyoming OR Wisconsin OR
Washington. The menu allows users to select 1-of-n textual values. A widget to select m-of-n
textual values needs to be designed and implemented.

(9) One subject wished that there was a way to search upwards in the tree, i.e. to be able to que
on universities and then see the states which contained the selected universities. Another subje
made an interesting suggestion, that the PDQ Tree-browser should allow users to hide certai
levels on demand. For example, if users are interested in looking at all universities in USA, and d«
not care about the states they are in, it should be possible to remove the State level totally and th
get it back when desired.

6 A controlled experiment

With our guidance, three students, Robert Ross, Zhijun Zhang and Eun-Mi Choi, conducted ¢
controlled experiment to compare 3 behavior alternatives for the PDQ Tree-browser (Ross, Zhan¢
& Choi, 1994). The UniversityFinder database was used in this experiment. These behaviol
alternatives related to pruning subtrees of nodes that did not match the query at their own level:
The 3 treatments were as follows: (two of these were discussed in Section 4.5)

Full-tree: Subtrees of unselected nodes are shown in their entirety, but are colored gray.

Partially-pruned: Subtrees of unselected nodes are pruned out but the nodes themselves ar
shown in gray (This is the behavior option that the PDQ Tree-browser currently uses).

Fully-pruned: Subtrees of unselected nodes and the unselected nodes themselves are pruned ou

It was hypothesized that subjects using the full-tree interface would take longer than those usin
the partially or fully-pruned interfaces. Although the full-tree allows for a static display of the tree,

it's inclusion of all irrelevant nodes would probably slow down the response time, add too much
useless information to the user's visual field, and create a need for excessive scrolling/panning «
the displays to get to relevant nodes. Due to the longer task completion times and more difficult
complex searching required, users would also have lower subjective ratings for the full-tree
interface than for the pruned interfaces. Further, the completion times and subjective ratings for th
pruned interfaces would be approximately equal (differences would not be significant). It was
postulated that the fully-pruned interface promised the most compact views, while the partially-

16 Kumar, Plaisant, Shneiderman

pruned interface offered additional context feedback that might help in tasks requiring severa
iterations (to refine the query).

24 subjects were randomly assigned to use one (and only one) of these three treatmer
(between-groups experimental design). They performed a set of seven tasks. Afterwards, the
filled out an electronic questionnaire (QUIS) to subjectively evaluate the treatment that they hac
used. The results (Tables 1 and 2) showed that the times to complete the set of seven tasks wk
significantly different at the 0.05 level with interface 1 being slower than 2, which was slower than
3. In terms of subjective satisfaction, 2 rated higher than 3, which was preferred to interface 1.

Full-Tree Partially-Pruned Fully-Pruned
1917 883 705
(609) (121) (139)

Table 1: Mean task completion times (in seconds) with standard deviations in parentheses

Full-Tree Partially-Pruned Fully-Pruned
0.42 0.71 0.64
(0.12) (0.08) (0.07)

Table 2: Mean subjective satisfaction ratings (normalized to O - 1, 1 being best) with standarc
deviations in parentheses

For total task completion time, an ANOVA gave F(2, 21) = 25.2 which was significant at the 0.01
level. Then, using pairwise t-tests, it was found that all results were significant at the 0.05 level.
Therefore, in this controlled experiment, the fully-pruned interface was the fastest, while the full-
tree interface was the slowest. The differences between the full-tree and the pruned interfaces we
also significant at the 0.01 level, but the differences between the partially and fully-pruned
interfaces were not. For subjective ratings also, the ANOVA produced an F that was significant a
the 0.01 level. Also, all of the pairwise t-tests were significant at the 0.05 level. Users liked the
partially-pruned interface the best and disliked the full-tree interface the most. Differences betweel
the full-tree and the two pruned interfaces were also significant at the 0.01 level although
differences between the partially and fully-pruned interfaces were not. In addition to the overall
times for each interface, the times to complete each task were also compared.

The poor performance times of subjects using the full-tree interface might be partly due to poo
system response times. Specifically, that interface had consistently (noticeably) slower respons
times, especially when expanding to the lower levels ("University" and "Department"” levels).

17 Kumar, Plaisant, Shneiderman

The differences between the two pruned interfaces were not as clear cut; task performance w
faster with the fully-pruned interface but the partially-pruned interface got higher subjective ratings.
The fan-out of the particular tree used probably increased the differences between these tw
interfaces. Specifically, the UniversityFinder tree has a large fan-out (50 states in USA) from the
Region level to the State level, and this might help explain why the fully-pruned interface had fastel
performance times than the partially-pruned interface (a significant proportion of states were gray
and thus took up a significant proportion of screen space). It would be interesting to repeat the
experiment with trees of varying fan-out.

This controlled experiment clearly showed the advantages of pruning. The choice of whethe
nodes not matching the query should be grayed or removed out is best provided via the interface
the users.

7 Conclusions

The PDQ Tree-browser visualization tool presents trees in two tightly-coupled views, one a
detailed view and the other an overview. Users can use dynamic queries to filter nodes at each lev
of the tree. The dynamic query panels are user-customizable. Subtrees of unselected nodes ¢
pruned out, a feature that usability testing and a controlled experiment, showed to be very usefu
Possible enhancements to the PDQ Tree-browsee identified.

The concepts of dynamic querying and pruning are general enough that they can be applie
effectively to other existing tree visualizations like treemaps and Cone Trees. These concepts al
also extensible to graph structures, but that would require careful thinking and design.

7.1 Future Directions

(1) PDQ Tree-browser refinements

* Implementing the improvements that were identified in the usability testing (Section 5.4.3).

 The PDQ Tree-browser interface has been "fine-tuned" for a tree of depth 5 (See Section 4.
for details). The interface could be extended to cope with varying structure and growing size by
following the suggestions in section 4.6.1 or otherwise.

» Further study of which approach is better in terms of hiding vs. showing gray nodes (at highet
levels) by default is needed (to extend the work of Retsa), 1994). This investigation
should take into consideration different types of tasks, applications and tree structures (fan-ouf
depth, breadth, size) and attempt to identify when either approach will yield superior
performance.

18 Kumar, Plaisant, Shneiderman

(2) General GUI extensionsNewer widgets need to be developed to enable users to specify
multiple selections on textual attributes easily. Another useful widget would be an extension of the
2-box slider to a n-box slider.

(3) Extension to Graph Structures The PDQ Tree-browser extended dynamic queries to one
class of non-flat data sets, i.e. hierarchical data sets. The most general form of any data set, is t
arbitrary graph. Graphs have nodes connected via an arbitrary number of links of different types
Each link represents a relationship between (among) the connected nodes. We believe that PC
Tree-browser concepts of dynamic querying and pruning / selective growing can be extended t
graph structures as well. Instead of distinct levels in the hierarchy, we would then think of distinct
classes of nodes (and even links).

7.2 Other tree-browsing research issues

(1) Semantics-based browsingGeneric 2D browsers (Plaisast,al, 1995) treat the information
space being browsed as images only. We believe that browsing of trees can be facilitated by takir
advantage of the underlying structure of the tree. Fast navigation between siblings, up to paren
and grand-parents etc., without having to manually scroll and pan would be useful options.
Traversal of the tree in preorder, postorder and inorder, and tours of nodes marked either manual
or by a query are interesting topics for investigation.

(2) Layout issues There is a clear need for layout guidelines for tightly-coupled overviews and
detailed views, as the size and fan-out of trees vary. For example, if the tree is wider than deep (i
was the case in the UniversityFinder scenario) then it makes sense to have the tree drawn fro
left-to-right (or right-to-left) and the overview to the left (or right) of the detailed view. On the
other hand, if the tree is deeper than it is wide, then it might be better to have the tree drawn fror
top to bottom and the overview below the detailed view. If the tree structure changes frequently
and has to be redrawn, then it might be a good strategy to utilize the overview optimally by making
the remaining tree occupy the entire overview space. But this might lead to some disorientation, a
the zoom ratio will keep varying.

Acknowledgments

We are thankful to Dr. Michael Ball for his insightful suggestions, to Robert Ross, Zhijun Zhang
and Eun-Mi Choi for designing and running the controlled experiment that was described in this
paper, and to all the usability testing subjects who provided us with invaluable feedback. Thank:
also to Edward Johnson for suggesting the name "PDQ Trees" for our system.

19 Kumar, Plaisant, Shneiderman

This project was supported in part by Hughes Network Systems, Maryland Industrial
Partnerships (MIPS), the Center for Satellite and Hybrid Communication Networks, and the
National Science Foundation grants NSFD CD 8803012 and NSF-EEC 94-02384.

References

AHLBERG, C., SHNEIDERMAN, B. (1994)isual Information Seeking: Tight Coupling of
Dynamic Queries with Starfield DisplayBroceedings of the ACM Conference on
Human Factors in Computing Systempg, 313-317, ACM., New York.

BATTISTA, G. D., EADES, P., TAMASSIA, R., TOLLIS, I.G. (1989Algorithms for
drawing graphs: An annotated bibliographynpublished Technical Report, Brown
University, Computer Science Department, October.

BEARD, D. V., WALKER II, J. Q.(1990). Navigational Techniques to Improve the Display of
Large Two-Dimensional Spacd3ehavior & Information Technolog9 (6), 451-466.

BUJA, A.,, MCDONALD, J. A., MICHALAK, J., STUETZLE, W. (1991). Interactive Data
Visualization using Focusing and Linkingroceedings of the IEEE Visualization ‘91
Conferencepp. 156-163, San Diego, CA, IEEE Computer Society Press, October .

CARR, D., JOG, N. K., KUMAR, H., TEITTINEN, M., AHLBERG, C. (1994). Using
interaction object graphs to specify and develop graphical widgets. Technical report CS-
TR-3344, University of Maryland, Department of Computer Science, September.

CHIGNELL, M. H. , ZUBEREC, S., POBLETE, F. (1993). An Exploration in the Design
Space of Three Dimensional Hierarchiésoceedings of the Human Factors Socijety,
Santa Monica, CA.

GEDYE, D. (1988)Browsing the tangled weMaster's thesis report, University of California at
Berkeley, Division of Computer Science, May.

HENRY, T. (1992)Interactive Graph Layout: the Exploration of Large GrapRhl.D. Thesis,,
University of Arizona, Tucson, AZ, May.

HENRY, T. R., HUDSON, S. E. (1991). Interactive Graph LaybuProceedings of the ACM
SIGGRAPH Symposium on User Interface Software and Technglpg¥5-64,
ACM, New York, November.

HOLLANDS, J. G., CAREY, T. T., MATTHEWS, M. L., MCCANN, C. A. (1989).
Presenting a Graphical Network: A Comparison of Performance Using Fisheye and
Scrolling Views. In G. Salvendy and M.J.Smith, E@esigning and Using Human-
Computer Interfaces and Knowledge Based Systpms313-320, Amsterdam::
Elsevier Science.

20 Kumar, Plaisant, Shneiderman

KUMAR, H. (1995). Visualizing Hierarchical Data with Dynamic Queries and Pruning - The
Tree-browser. In Catherine Plaisant, BACIL Open House '95 VidedHuman-
Computer Interaction Laboratory, University of Maryland, June.

KUMAR, H., PLAISANT, C., TEITTINEN, M., SHNEIDERMAN, B. (1994) Visual
Information Management for Network Configuratidrechnical Report CS-TR-3288,
University of Maryland, Department of Computer Science, June.

MARCHIONINI, G. (1995).Information Seeking in Electronic Environmen@Gambridge
University Press, UK.

PLAISANT, C., CARR, D., HASEGAWA, H. (1992)/hen an intermediate view matters - A
2D-browser experimenflechnical Report CS-TR-2980, University of Maryland
Department of Computer Science, October.

PLAISANT, C., CARR, D., SHNEIDERMAN, B. (1995). Image Browser Taxonomy and
Guidelines for Designer$i-EE Softwarel2, (2), 21-32March.

ROBERTSON, G. G., MACKINLAY, J. D., CARD, S. K. (1991). Cone Trees: Animated 3D
Visualizations of Hierarchical Informatiofroceedings of the ACM Conference on
Human Factors in Computing Systempg, 189-194, New York:ACM.

ROSS, R., ZHANG, Z., CHOI, E. (1994)sing the Tree-browser to visualize information for
database queriesUnpublished report, University of Maryland, Department of
Computer Science, December.

SCHAFFER, D., ZUO, Z., BARTRUM, L., DILL, J., DUBS, S., GREENBERG, S,,
ROSEMAN, M. (1996). Comparing Fisheye and Full-Zoom Techniques for
Navigation of Hierarchically Clustered NetworlksCM Transactions on Information
Systemd4, (2).

SHNEIDERMAN, B. (1992). Tree Visualization with Treemaps: 2-d Space-Filling Approach.,
ACM Transactions on Graphic$l, (1), pp. 92-99, January.

SHNEIDERMAN, B. (1994). Dynamic queries for visual information seekdB&E Software
11,(6), 70-77.

YOUNG, D., SHNEIDERMAN, B. (1993). A graphical filter/flow representation of boolean
gueries: A prototype implementation and evaluatimurnal of the American Society
for Information Sciencet4, (6), pp. 327-339, February.

Biographies

Harsha Prem Kumareceived a B.Tech. in Textile Engineering from the Indian Institute of
Technology, New Delhi, India in 1992, and an M.S. in Systems Engineering from the University

21 Kumar, Plaisant, Shneiderman

of Maryland at College Park, in 1994. He is currently a member of the Usability Engineering
group at Bellcore, Inc., Piscataway, New Jersey. His research interests include informatior
visualization, user interfaces for network management, and interactive information systems.

Catherine Plaisanis assistant research scientist at the Human-Computer Interaction Laboratory of
the Center for Automation Research at the University of Maryland. Her work centers primarily on
graphical user interface design and evaluation. She has worked on various research projects relai
to hypertext, touchscreens, public access information systems, information visualization and man
other domains. Plaisant received a general engineering degree from I'Ecole Nationale Supérieu
des Arts et Métiers in Paris France, and a Docteur Ingénieur degree from the Université Pierre ¢
Marie Curie in Paris.

Ben Shneidermais a professor of computer science, head of the Human-Computer Interaction
Laboratory and a member of the Institute of Systems Research, all at the University of Maryland a
College Park. He organizes an annual satellite television presentation, "User Interface Strategies
is the author oBoftware Psychology: Human Factors in Computer and Information Systems
(Little Brown, 1980) andDesigning the User Interface: Strategies for Effective Human-Computer
Interaction: Third Edition(Addison-Wesley, 1997) and the editor$parks of Innovation in
Human-Computer InteractiofAblex, 1993). Shneiderman received his Ph.D in computer Science
from the University of New York at Stony Brook.

22 Kumar, Plaisant, Shneiderman

Q0BJINUI 18M0I1Q-31T, O Y3 :T 2mSI1g

A4anp yaen 10N saoq | Kaang sayayen |

1Aa1 uauny 10| puaba]

L 94od i g

|

TIOH 661 (0) Whuhdod

JOSMOI(—-I.1],

ayey pneg

= = uonezingn
aurey | | uonezinn | | sme1s
0036 008F o 0 -]ml . €02 2692 dnoun zw_."
F_ R | F__Fm e F |
ajey pneg | uonezinn | gL uemyos Wdn| o__ _g 2 T T
6L
6 Mod _ Wi _ 2da _ SUO0/MBN _.I+- ﬂ.l b [9A97] = uod saNqUNY
] [|]
[9 u0d = — =
T =
940d =
N ==
AN HWHII
ST SddH —— #
TN —— _
e s —=)
[T23dan HH],N,, _/
910d =N
~TTERIA —— ,,M
- [9uod 69daH =
ZAi o n]HWHWl&l
TTEWA
AT -
T 978N
1 5daH
AT
I T B
025daH
940d
i AT |
{81 5dan
X T ZwWn / A

uondg 83

Kumar, Plaisant, Shneiderman

23

Figure 2: Nets 1 and 2 do not match query

Figure 3: Subtrees of Nets 1 and 2 are pruned out

24 Kumar, Plaisant, Shneiderman

File Option
A - _Engineenng | A
English
-Computer Sciej
Engineering_|
omputer Sciej
Engineering
I)
Engineering |
[WORLD _[—
Journalism_|
English
-Computer Sciej
Engineering_|
English]
Computer Scief
Engineering]
omputer Scief
Engineering f
4 7 _-_Joumnalism_{ 7
) N} I}
Attributes Department — | Level 4 __-_J :_J Region | State University Department| 740
286
No Query S i
Name Hide gray leaves l . I 62 I ,
I I J I
I I I
7
Tree-browser
Copyright (C) 1994 HOIL | Matches Query | Daes Hot Match Query
Figure 4: PDQ Tree-browser applied to the University Finder application
Fle Option
n i § Kentucky -
Kansas
lowa
Indiana
lllinois
ldaho
Hawraii
i Georgia
i\ Porida
i Delaware
4 _connecticut
4 colorado
il califomia
Alahama
‘South America/
HNorthWest
Ontario
Manitoba
Quebec
7 7
I~) =)]
Attributes State ~| Lever 2 -] | Region state | university | Department |
x:ﬂ‘z"’"’ = Hide gray leaves| [Primary_Lang [Level_of Viok 7 J J
English ~ 4- ZH :;5
Level_of_Violence
Population_Density Traffic_Condil | |
Good =
u I J J J
Iurp;?gem_(c]? ggv:ﬁf 3 | Matches Query | Does ot Match Query

Figure 5: Querying for desirable states

25

Kumar, Plaisant, Shneiderman

SOTISIDATUN /T JO 198 NS WOTIO[S [eUL] (9 2InS1g

Asanp yayen 10N meoc_ Asanp we:uaa_z_ [3A37] JUaLI) .-ez_ _u-__ﬂaﬁu_ h@amﬂﬁﬂwwmu ! ...OaMMeH
oorL OLLL
F_ R _ poos
| 19S By Hpuey uE_E_ |
98€E £SG1L N
_— M- ysibu oun
| uoning 40 | ._o_> 10 jaAa] Bue” Arewud | _8%»_ Aedbopm AaonpIon
L
71 [weunsdoq =3 [ams [Cwoboy [+ [= b 181 [~ eunmdea sanquny
s]
/ r—m=
= | m::ww:.m:m mn..l, —y
=
[“Bunaauibug m oW ————— epeuey —3
“Q_UW Lszmgs P— -5—.-‘—“_ W\“ﬂ
[T usibuz - ==
CETET AT
_Imqmmﬂmq uznoag uyor
ja10g Janduiod:
:tmwz_ uj sesuexy
jaing LQ-:mESW_ D 48jioys
_ ysibu3g
[Buuaauibug
jaiag aanduo) (j93] aremela
[usibuz
_ wisiewnor atemelaq
[Buizeuibug N@ aigon
ja10g Janduwioy
[Buuaauibuz IS 8pouy §6 *fl—— PUejs| apouy
jaidg anduo)y
_ BUiioAz
_ FTLUE
.7 eI A

uondg ag

Kumar, Plaisant, Shneiderman

26

Overview Detailed View

LIST OF LEVELS Current Level 2 EI

Level 0 name .
Attributes Level 2 Level 1

Level 1 name List - Level 2 guery widgets query widgets

Level 2 name

Level 3 name | |>| |<| |

Level 4 name

Level 5 name —

Level 6 name

Level 7 name

Figure 7: Extending the PDQ Tree-browser design to trees of arbitrary depth

27 Kumar, Plaisant, Shneiderman

A B C A B C
(a) Level 1 (b) Level 1 dynamically queried
Al Bl Cl Al Cil
C2 C2
B2
A2 A2
C3 C3
B3
C4 C4

(c) Level 2 without pruning

(d) Level 2 with pruning

Figure 8: Pruning applied to treemaps

Kumar, Plaisant, Shneiderman

