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Let M be a compact, connected and simply-connected Riemannian manifold,

and suppose that G is a compact, connected Lie group acting on M by isometries.

The dimension of the space of orbits is called the cohomogeneity of the action. If the

direct sum of the higher homotopy groups of M , tensored with the field of rational

numbers, is a finite-dimensional vector space over the rationals, then M is said to be

rationally elliptic. It is known that M is rationally elliptic if it supports an action of

cohomogeneity zero or one. When the cohomogeneity is two, this general result is no

longer true. However, we prove that M is rationally elliptic in the two-dimensional

case under the added assumption that M has nonnegative sectional curvature.
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Chapter 1

Introduction

A simply-connected manifold M is said to be rationally elliptic if

∑∞
n=2 dim(πn(M)⊗Q) <∞.

In the interest of brevity, we shall use the abbreviation elliptic for such manifolds.

This definition is equivalent to the condition that the rational Betti numbers of the

loop space ΩM are polynomially bounded. The simplest example of such a space

is the sphere Sn for n ≥ 2. It was shown by Serre [24] that compact Lie groups are

elliptic. It is a straightforward consequence of the homotopy exact sequence of the

fiber bundle H → G→ G/H that the same is true for their homogeneous spaces.

A manifold on which a group G acts is called a G-manifold. In this thesis we

will consider a compact, connected Riemannian manifold M on which a compact,

connected Lie group G acts as a group of isometries. The space of orbits of this

G-action can be made into a metric space in a natural way and we will denote this

space by MG.
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The dimension of the orbit space is called the cohomogeneity of the action.

Manifolds having actions of cohomogeneity zero or one are known to be elliptic. In

the first case, the manifolds are just the homogeneous spaces mentioned above. The

cohomogeneity one case is more difficult and was proved in a paper of Grove and

Halperin [11].

There is an important conjecture called the Ellipticity Conjecture that states

that every simply connected manifold of (almost) nonnegative curvature is rationally

elliptic [6]. In our work we will prove this conjecture for nonnegatively curved

manifolds supporting a cohomogeneity two action.

Not all manifolds of cohomogeneity greater than one are elliptic. An example

is the connected sum (Sn × Sn)#(Sn × Sn) which supports a cohomogeneity two

isometric action by SO(n)× SO(n), and is known not to be rationally elliptic.

When the manifold has nonnegative curvature, the orbit space will also have

nonnegative curvature in the sense of Alexandrov. We will determine all 2-dimensional

orbit spaces that can support a metric having nonnegative sectional curvature and

show, in each case, that the manifold M is elliptic. Specifically, we shall prove the

following theorem.

Main Theorem. Let M be a compact, connected and simply-connected Riemannian

manifold having nonnegative sectional curvature. Let G be a compact, connected Lie

group acting effectively on M as isometries, with orbit space MG. If dim(MG) = 2,

then M is rationally elliptic.
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The proof of the main theorem utilizes two somewhat different techniques.

Most of the orbit spaces considered can be given a metric of constant sectional

curvature, either 0 or 1. These generate tilings of either the plane R2 or the sphere

S2, respectively. For these cases we will use the Morse theory, and a theorem of

S. Halperin [14], to show that the Betti numbers of the loop space are polynomially

bounded.

For the remaining cases, which are not amenable to this treatment, the result

will follow almost directly from a theorem of K. Grove and S. Halperin in the paper

referenced above.

In all that follows, we shall assume that M is a compact manifold without

boundary, and that M is connected and simply-connected. G will always denote a

compact and connected Lie group.
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Chapter 2

Preliminaries

In this chapter we introduce the notations that we will employ, and briefly describe

the basic tools from topology and geometry needed to develop our thesis. We will

always assume that our manifold M and Lie group G are compact and connected

and that π1(M) = 0. Throughout this paper curvature always signifies sectional

curvature, whenever the noun is used without a modifier.

Homotopy groups πn(X, x0) are always computed with respect to a basepoint.

Usually the basepoint is omitted from the notation for typographical convenience

and we simply write πn(X). Of course πn(X) is abelian for n ≥ 2.
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2.1 Topological Preliminaries

We will now define the basic concepts, establish notations, and gather together the

various topological tools that will be necessary in order to prove our main theorem.

2.1.1 Fibrations and the Homotopy Fiber

The following material is taken from Hatcher [15]. A map p : E → B is said

to have the homotopy lifting property with respect to X if, whenever there is a

homotopy ht : X → B and a map h̃0 : X → E lifting h0, then there is an extension

h̃t : X → E lifting ht. A map p : E → B is called a fibration if it has the homotopy

lifting property with respect to any space. Fiber bundles over paracompact spaces

are fibrations.

We assume in all that follows that B is a pointed space with basepoint b0,

and that E is pointed with basepoint e0 ∈ F = p−1(b0). The basic result on the

homotopy groups of a fibration is the following theorem.

Theorem 2.1. If p : E → B is a fibration, there is an exact sequence of homotopy

groups

...→ πk+1(B)→ πk(F )→ πk(E)→ πk(B)→ ...→ π0(F )→ π0(E)→ π0(B).

This follows directly from the exact homotopy sequence of the pair (E,F ) and the

fact that πn(E,F ) ∼= πn(B).
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The results that we will need for our work are mostly direct consequences

of the concept of the homotopy fiber of a mapping. If f : E → B is a mapping

of topological spaces, f can always be expressed as a composition of a homotopy

equivalence and a fibration. We define the space

Ef = {(x, γ) | x ∈ E, γ : [0, 1]→ B, γ(0) = f(x)}

and the mapping p : Ef → B by p(x, γ) = γ(1).

We denote the space of mappings of the interval [0,1] into B by BI , and give

BI the compact-open topology. Then Ef is given the relative topology as a subset of

E×BI . It is easy to see that the mapping p has the homotopy lifting property and

is, therefore, a fibration. There is an inclusion f̃ : E → Ef defined by f̃(x) = (x, cx),

where cx is the constant curve at f(x). Shortening all curves to the interval [0, 1− t]

gives a deformation retraction of Ef onto E. Thus f̃ is a homotopy equivalence and

f = p ◦ f̃ . If b ∈ B, the homotopy fiber at b is the space

Fb = {(x, γ) | x ∈ E, γ : [0, 1]→ B, γ(0) = f(x), γ(1) = b}.

2.1.2 Rational Homotopy Theory

It is well known that the computation of the homotopy groups of a topological

space X is a difficult, often impossible, task. By tensoring the homotopy groups

with the field of rationals Q, we remove the torsion elements from these groups and
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considerably simplify their computation. As mentioned earlier, if the space X is

the n-sphere Sn, only finitely many (at most two) of the rationalized groups are

non-trivial, and the rationalized homotopy is finite dimensional. Topological spaces

sharing this property with the n-sphere are called rationally elliptic or, for brevity,

elliptic.

We will make the usual assumptions that X is simply-connected and path-

connected. Then the ellipticity of X is equivalent to the condition that the rational

homology of the loop space is polynomially bounded; i.e., there is a constant A > 0

such that

∑n
i=0 dim(Hi(ΩX; Q) ≤ Anr,

for n ≥ 1 and r = dim(πodd(X)⊗Q).

A short but enlightening discussion of these ideas can be found in the book by

Bott and Tu [2]. Félix, Halperin and Thomas present a more complete treatment in

their book [9]. We will not attempt to give the details here since this would require

extensive preparation. It is a deep fact that the rational homotopy of a simply-

connected space is completely described by a certain differential graded algebra

(minimal Sullivan model [26]), whose generators correspond in a one-to-one fashion

to the generators of the rational homotopy groups.
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2.1.3 Two Fundamental Theorems

The theorems in this section are the basis for the main results of this paper. They

are rather technical and we will require the following definitions in order to state

them.

A space S is nilpotent if π1(S) is a nilpotent group that acts nilpotently on

each πi(S), i ≥ 2. In particular, a simply connected space is nilpotent. A nilpotent

space is rational if each Hi(S,Z), i ≥ 1, is a vector space over the rationals. A

nilpotent space S is rationally of finite type if each Hi(S,Q) is finite dimensional.

Lastly, the Lusternik-Schnirelmann category of a space S, cat S, is the least integer

m such that S is the union of m+ 1 open sets, each contractible in S. Clearly, each

smooth compact manifold M has cat M <∞.

One of the main tools that we will employ in our thesis is a theorem of Grove

and Halperin [11]. In their paper they show, among other things, that a compact

Riemannian manifold M supporting a cohomogeneity one action of a Lie group G

is necessarily elliptic. An orbit space of such an action must be either a circle or

an interval. The case of the circle is of no importance for us since, in that case,

M will not be simply-connected. Denote the endpoints of the interval by a and b.

Choose some point e in the interior of the interval. Let A,B,E denote the orbits in

M corresponding to these points. Since these are all homogeneous spaces of G, they

are elliptic. To prove their result, they note the fact that there are disk bundles D(A)

and D(B) in M over A and B, respectively, having E as their common boundary.
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The idea then is to create a ”double mapping cylinder” to represent M as a disjoint

union

A q (E × I) q B

with attaching maps φ0 : E×{0} → A and φ1 : E×{1} → B, where I is the closed

interval [0,1]. By analyzing this cylinder for the various possible cohomogeneity one

actions, they prove that M is elliptic.

The proof they give in their paper is carried out in greater generality, and

does not actually require that A, B and E be homogeneous spaces, but only that

they be elliptic. The cohomogeneity one property was used merely to establish the

ellipticity of these spaces and to show the existence of the disk bundles. Therefore,

if we know that A, B and E are elliptic, and if we can establish the existence of the

disk bundles D(A) and D(B) in some other way, their basic argument will apply

without modification. In view of these remarks, we restate their results in a form

more suited to our needs.

Grove-Halperin Theorem. Let M be a compact, connected Riemannian manifold.

Suppose that A and B are disjoint submanifolds of M and that D(A) and D(B) are

disk bundles in M over A and B, respectively, having the submanifold E as their

common boundary. Then M is elliptic if and only if E (or A or B) is elliptic.
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When O is an orbit of M , we have an inclusion i : O → M and, as described

earlier, we can construct a fibration Oi → M with homotopy fiber F at a point p

in M . We will show later that F has polynomially bounded homology. When the

orbit O is simply connected, it is a straightforward consequence of the Serre spectral

sequence that M also has polynomially bounded homology. Even if the fundamental

group is non-zero, but finite, we may still use this method by considering instead

the universal covering space Õ of O. For i we use the composite mapping

Õ → O →M .

However, when the fundamental group of O is infinite, this method breaks down.

Fortunately, a recent theorem due to S. Halperin [14] provides a solution to this

problem.

Halperin Theorem. Let F → X → Y be a fibration where X is a rationally

elliptic nilpotent space. Suppose that Y is simply connected, rationally of finite type,

and that cat Y <∞. If the Betti numbers dim Hi(F,Q) grow at most polynomially

in i, then Y is rationally elliptic.

Specializing to our situation, F → Oi → M , it follows that, if the Betti

numbers of F grow at most polynomially, then M is rationally elliptic. This result

will play a central role in our argument. It is important to note that a homogeneous

space of a compact Lie group is nilpotent, and that a compact manifold has finite

L-S category.
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2.2 Geometric Preliminaries

In this section we gather together a number of results from Riemannian geometry

and the theory of isometric Lie group actions on Riemannian manifolds that we will

require for our later work.

2.2.1 Alexandrov Spaces

The orbit spaces in which we are interested are examples of what are called Alexan-

drov spaces. Many of the results we shall need for orbit spaces are also true in this

more general context. A brief but illuminating overview of Alexandrov spaces is

[10]. More details can be found in the excellent note of K. Shiohama [25] and in

the book by D. Burago et al. [5]. A discussion of some of the relationships between

orbit spaces and Alexandrov spaces can be found in [6].

We begin with the definition of a length space. A length space L is a metric

space in which the distance between any two points is the infimum of the lengths

of all curves connecting them. Only length spaces which are finite dimensional in

the sense of the Haudorff measure [5] will be considered here. We will be primarily

interested in the case where this metric is complete so that the minimum distance

is actually achieved by some curve, at least when L is locally compact. Then any

two points can be connected by a minimizing geodesic.
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Let S(k) be the simply connected space having constant curvature k (space

form).

Definition 2.2. A space X is said to have curvature ≥ k if for each x ∈ X there is

an open set U ⊂ X, containing x, such that every quadruple of points {a, b, c, d} in

U can be isometrically embedded in S(n) for some n ≥ k.

A length space L of curvature ≥ k is called an Alexandrov space. Alexandrov

spaces have much in common with Riemannian manifolds. For example, since it is

possible to talk about geodesics in an Alexandrov space, we can consider the closure

of the set of geodesic directions at p, and the tangent space is the Euclidean cone

on this space.

2.2.2 Group Actions and Orbit Spaces

We will study an action G × M → M of a compact, connected Lie group on a

compact, connected Riemannian manifold. We assume, without loss of generality,

that the action is effective; i.e., that the set {g ∈ G | gp = p, for all p ∈M} reduces

to the identity element of G. The isotropy group Gp of a point p is the subgroup of

G fixing the point p. The orbit of p is the homogeneous space Gp = G/Gp.We will

assume that G acts by isometries in all that follows.

Points on the same orbit have conjugate isotropy groups. We denote the class

of isotropy groups conjugate to some subgroup K of G by [K]. If [K1] and [K2] are

two such classes, define [K1] ≤ [K2] if some conjugate of K1 is contained in K2. With

12



this definition, the set of conjugacy classes forms a lattice. There is always a smallest

such class [H]. Orbits having isotropy class equal to [H] are called principal orbits.

Other orbits having the same dimension as a principal orbit are called exceptional

orbits. The remaining orbits are called singular orbits. The set of all orbits is called

the orbit space and denoted by MG, or sometimes by M/G. We define the distance

between two points in MG to be the minimum distance between the corresponding

orbits in M . Since G acts by isometries on M the orbits are parallel in the sense

that, if O1 and O2 are any two orbits and if p ∈ O1, then the minimum distance

from p to O2 is independent of p. With this metric, the orbit space is an Alexandrov

space. We shall see in sec. 2.2.3 that, if curv(M) ≥ 0, then curv(MG) ≥ 0 as well.

An action is called polar if there is a complete immersed submanifold S of

M which meets all orbits of G orthogonally. S is called a section of the action

and is always a totally geodesic submanifold. The action is called hyperpolar if, in

addition, the section is flat as, for example, in the well-known adjoint action of a

Lie group on itself.

There is a stratification of orbit types based on the lattice of conjugacy classes

of isotropy groups [7]. For each isotropy group K, the subset of MG having an

isotropy group in [K] is a Riemannian manifold called an orbit stratum. These

strata are locally totally geodesic submanifolds of MG. If S is an orbit stratum,

the set S̃ = π−1(S) is a minimal submanifold of M and the restriction of π to S̃

is a Riemannian submersion. The orbit stratum corresponding to [H], the set of

principal orbits, is open and dense in MG and has dimension equal to dim(MG). All

13



of the remaining boundary strata correspond to singular or exceptional orbits and

are submanifolds of MG. The boundary, if any, of an orbit stratum of dimension k

consists of one or more orbit strata of dimension less than or equal to k − 1. There

is a similar topological stratification of a general Alexandrov space.

Denote the tangent space at the point p ∈ M by Tp. Let TGp be the tangent

space to the orbit Gp, and let Tp
⊥ be the orthogonal complement of TGp so that

Tp = TGp ⊕ Tp
⊥. The differential of the group action induces an action of Gp on

the tangent space Tp. Since G acts by isometries on M and since the tangent space

to Gp is Gp-invariant, the normal space Tp
⊥ is also invariant. More specifically, the

subgroup Gp acts by orthogonal transformations on Tp
⊥. For two-dimensional orbit

spaces, this action is always polar [18]. The space of directions at π(p) is realized

as the quotient Sp
⊥/Gp, where Sp

⊥ is the unit sphere in Tp
⊥. It should be noted, in

particular, that this result allows us to speak of angles at an orbit.

Choose a disk Dp in Tp
⊥. To the principal bundle Gp → G → G/Gp there is

an associated bundle G×Gp Dp and the group G acts on this bundle in the obvious

way. The Slice Theorem [7] provides an especially nice representation of the normal

bundle of the orbit Gp as a G-invariant submanifold of M .

Slice Theorem. For any p ∈ M , a sufficiently small tubular neighborhood D(Gp)

of Gp is equivariantly diffeomorphic to G×Gp D
⊥
p .

14



An important tool which describes the way that the boundary strata are em-

bedded in MG is the Soul Theorem [23]. This theorem guarantees the existence of

a small convex subspace of MG (the soul) which captures the essence of MG. A set

is convex if every segment joining any two points of the set lies entirely in the set.

Soul Theorem. If curv(MG) ≥ 0 and ∂MG 6= ∅, then there exists a convex compact

subset S ⊂ MG with ∂S = ∅, which is a strong deformation retract of MG. If

curv(MG) > 0, then S is a point p, and ∂MG is homeomorphic to S⊥p /Gp.

2.2.3 Riemannian Submersions

The basic facts about Riemannian submersions can be found in O’Neill’s original

paper [21], and in the book [8]. Let M and B be Riemannian manifolds and let

π : M → B be a map. Define the vertical subspace Vp = {v ∈ Tp | π∗v = 0}. The

orthogonal complement of Vp, denoted by Hp, is called the horizontal subspace. The

map π is called a Riemannian submersion if π has maximal rank and π∗ preserves

the lengths of horizontal vectors.

If X is a vector field on M , denote by vX and hX the vertical and horizontal

components of X, respectively. Define a tensor AXY by

AXY = vOhXhY + hOhXvY

where O is the Levi-Civita connection.

15



When X, Y are horizontal, it is easy to show that

AXY = 1
2
v[X, Y ]

where [X, Y ] is the Lie bracket of X and Y . Thus AXY is a measure of the non-

integrability of the horizontal distribution. Let X, Y denote an orthonormal pair of

horizontal vectors at the point p, and let K denote the sectional curvature in the

plane of X and Y . If K ′ denotes the sectional curvature in B corresponding to π∗X

and π∗Y , then

K = K ′ − 3|AXY |2.

It follows that K ′ ≥ K.

2.2.4 Geodesics

In this section we assume that the Riemannian manifold M has been assigned the

canonical Levi-Civita connection with covariant derivative ∇X . Then a geodesic

γ : [0, 1] → M is a curve for which the tangent vector field γ
′
(t) is parallel along

itself

∇γ′ (t)γ
′
(t) = 0.

Let p be a point of M and let Tp be the tangent space at p. Consider the subspace

VP tangent to the orbit at p and let Hp be the orthogonal complement of Vp. Hp is
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called the horizontal subspace at p. A geodesic is said to be horizontal if its tangent

vector at every point γ(t) is a vector in Hγ(t). If γ(t) is a geodesic in MG beginning

at π(p), and if vp is a horizontal lift of γ′(0), there is a unique horizontal geodesic

γ(t) beginning at p with γ
′
(0) = vp. Actually, we have the following lemma.

Lemma 2.3. Let γ(t) be a geodesic which is horizontal at p ∈ M . Then γ(t) is

horizontal at every point.

Let Op denote the orbit through p and let Op and Oq denote any two distinct

orbits of M . Suppose that γ is a geodesic in M that minimizes the distance between

Op and Oq. Then, except for possibly its endpoints, γ lies entirely in a single orbit

stratum. This is the content of the lemma of Kleiner.

Lemma 2.4 (Kleiner). Let γ : [0, 1]→ M be a minimal geodesic joining the orbits

Oγ(0) and Oγ(1). Then Gγ(t) is constant for all t ∈ (0, 1) and is a subgroup of both

Gγ(0) and Gγ(1).

2.2.5 Morse Theory

The best elementary introduction to this material is the book of John Milnor [19].

Let M be a Riemannian manifold and let p and q be two points of M , where we do

not rule out the possibility that p = q. The set of all piecewise smooth paths in M

from p to q will be denoted by Ω(M ; p, q). We define the energy E on Ω(M ; p, q) by

E(ω) =
∫ 1

0
dω
dt

2
dt

17



As is well known from the calculus of variations, the first variation of E van-

ishes; i.e., λ is a critical point of E, precisely when λ is a horizontal geodesic. At a

critical point of E, the Hessian E∗∗ is well-defined. We will be interested in comput-

ing the dimension of its nullspace at γ, which is always finite. For this we need to

look at a second variation of E. We find that the nullspace of E∗∗ consists of certain

vector fields defined along the critical geodesics. These are called Jacobi fields and

satisfy the differential equation

D2J
dt2

+R(γ
′
(t), J)γ

′
(t) = 0,

where
D
dt = ∇γ′(t) is the covariant derivative along γ and R is the Riemann curva-

ture tensor. We define points p, q of M to be conjugate along a geodesic γ if there

is a non-zero Jacobi field along γ vanishing at both p and q. The multiplicity of the

point q along γ is the dimension of the space of such Jacobi fields.

By definition, the index of the Hessian E∗∗ at a critical point γ is the maximum

dimension on which E∗∗ is negative definite. We have the following fundamental

theorem due to Morse. We assume that this geodesic is defined on the interval

[0,T].

Index Theorem. The index λ at a geodesic γ is equal to the number of points γ(t)

with t ∈ (0, T ) such that γ(t) is conjugate to γ(0) along γ, each conjugate point

counted with its multiplicity. The index λ is always finite.

Corollary 2.5. A geodesic segment γ : [0, T ] → M can contain only finitely many

points which are conjugate to γ(0) along γ.
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The great importance of the index is expressed in the fundamental theorem of

Morse Theory.

Morse’s Theorem. Let M be a complete Riemannian manifold and let p, q ∈ M

be two points which are not conjugate along any geodesic. Then Ω(M ; p, q) has the

homotopy type of a countable CW-complex which contains one cell of dimension λ

for each geodesic from p to q of index λ.

There are generalized forms of the Index Theorem and Morse’s Theorem where

one or both of the points p and q are replaced by submanifolds P and Q. The critical

points of the energy functional are smooth geodesics that intersect the manifolds P

and Q orthogonally.

Let Pp denote the tangent space to P at the point p ∈ P . Suppose that γ(t)

is a geodesic defined on [0,T] such that γ(0) ⊥ Pp. A P -Jacobi field is a Jacobi field

which is orthogonal to γ with J(0) ∈ Pγ(0) and J ′(0) − S0J(0) ⊥ Pγ(0), where St is

the second fundamental form of P at γ(t) with respect to γ′(t). A P -focal point is

a point γ(t), t ∈ (0, T ], for which there is a non-zero P -Jacobi field which vanishes

at γ(t). The multiplicity of the the P -focal point is the dimension of such Jacobi

fields. Let ST be the second fundamental form of P at γ(T ). Define a symmetric

bilinear map A on the space spanned by these Jacobi fields

A(J1, J2) = < J ′1(T )− STJ1(T ), J2(T ) >
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whose value at T is contained in Qγ(T ). We have the following extensions of the

Index Theorem [16] and the Morse Theorem [17].

Extended Index Theorem. If γ : [0, T ] → M is a critical geodesic and γ(T ) is

not a focal point of P , then the index of γ is the number of P -focal points γ(t), with

0 < t < T , each counted with its multiplicity, plus the index of A at T .

Extended Morse Theorem. Let M be a complete Riemannian manifold and let

P , Q be two submanifolds of M which do not contain focal points of each other along

any geodesic. Then Ω(M ;P,Q) has the homotopy type of a countable CW-complex

which contains one cell of dimension λ for each geodesic from P to Q of index λ.

2.2.6 Two-Dimensional Orbit Spaces

In this section we assume that M is simply-connected, dim(MG) = 2, curv(M) ≥ 0,

and that curv(MG) ≥ 0. We begin by showing that MG is simply-connected, severely

limiting the possibilities for the orbit space. We note that a closed curve in MG can

be uniformly approximated by a broken geodesic curve in the same homotopy class.

Lemma 2.6. Let γ(t) be a continuous, piecewise geodesic curve in MG. Then γ has

a continuous lift to M .

Proof. On each smooth segment, there is a (not necessarily unique) horizontal lift

beginning at the terminal point of the previous segment.

20



Theorem 2.7. MG is simply-connected.

Proof. Let γ(t) be a closed curve in MG with basepoint p. As noted above, we can

assume that γ is piecewise geodesic, without changing its homotopy class. Then we

can lift γ(t) (not uniquely) to a curve γ̃(t) with both initial and terminal points in

π−1(p). Since all orbits are arcwise connected, we can join these points by a curve

α lying entirely in their common orbit. Since M is simply-connected, there is a

homotopy of γ̃α to a point. The projection of this homotopy is a homotopy of γ(t)

to a point.

Since M is simply-connected, it is orientable. In particular, H1(M ; Z2) = 0.

Since G is connected, so are the orbits of the action. Let C∗ denote the union of

all orbit strata of codimension greater than or equal to three in MG. Let E be the

set of exceptional orbits and let SE denote the special exceptional orbits; i.e., the

set of exceptional orbits on the boundary of MG. Let B denote the set of singular

boundary orbits. We cite the following theorems from Bredon [4], which further

restrict the structure of the orbits and the orbit space.

Theorem 2.8. If H1(M ;Z2) = 0 and if all orbits are connected, then MG − C∗ is

orientable.

Theorem 2.9. If H1(M ;Z2) = 0 and if all orbits are connected, then every orbit of

maximal dimension is orientable.

In particular, the principal orbits and the exceptional orbits are orientable. Of

course when dim(MG) = 2, then C∗ = ∅ so that MG is orientable.
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Theorem 2.10. Suppose that G is connected and that the cohomogeneity of the

action is two. Suppose also that M is compact, connected, H1(M ;Z) = 0, and that

a singular orbit exists. Then the set of exceptional orbits E is empty, and the orbit

space MG is a 2-disk with boundary the set of singular orbits B.

Theorem 2.11. If the cohomogeneity of the action is two, then the boundary of MG

consists exactly of B ∪ closure(SE).

Theorem 2.12. If H1(M ;Z2) = 0 and if a principal orbit is connected, then there

are no special exceptional orbits.

A straightforward consequence of these theorems is the following important corol-

lary.

Corollary 2.13. Suppose that M is simply-connected with a cohomogeneity two

action. If MG has a boundary, it consists entirely of singular orbits, and there are

no exceptional orbits.

Summarizing, if ∂MG = ∅, all of the non-principal orbits are isolated exceptional

orbits, andMG is homeomorphic to a 2-sphere. If ∂MG 6= ∅, there are no exceptional

orbits, and the orbit space is homeomorphic to a 2-disk.

The map π : M → MG, restricted to principal orbits, is a Riemannian sub-

mersion. We consider the case where curv(MG) = 0, ∂MG = ∅, and the only

non-principal orbits are exceptional. Since we are assuming that curv(M) ≥ 0, this

implies (sec. 2.2.3) that curv(M) = 0. If X and Y are horizontal vectors, it follows
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that AXY = 0; i.e., that [X, Y ] is horizontal. Then the horizontal distribution is

integrable, and there is an immersed submanifold S that is orthogonal to each of

the vertical subspaces. It is known in this case that the action is polar [3], and we

have the following theorem of Alexandrino and Töben [1].

Theorem 2.14. Any non-trivial polar action on a simply-connected manifold has

no exceptional orbits.

Grove and Ziller [13] show that in this case, when there are no singular orbits, that

M = R2 ×G/H

where G/H is a principal orbit. But then M is not compact, a contradiction.

Therefore, no flat orbit space can be homeomorphic to a sphere.

We will later need to consider triangles in MG whose sides are geodesics. The

basic theorem regarding such geodesic triangles follows.

Theorem 2.15. Suppose that dim(MG) = 2 and that α, β, γ are the angles of

a geodesic triangle in MG whose interior consists entirely of principal orbits. If

curv(MG) > 0, then α + β + γ > π. If curv(MG) = 0, then α + β + γ = π.

Proof. Since such a geodesic triangle in a two-dimensional orbit space is a manifold

with boundary, and since the curvature is non-negative, the theorem is a straight-

forward consequence of the Gauss-Bonnet theorem for surfaces.
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As previously mentioned, the orbit space can be stratified by components

of different dimensions, corresponding to conjugacy classes of the isotropy groups.

There is a single 2-dimensional stratum corresponding to the principal isotropy

group. These are the principal orbits of the action. The remaining orbit strata

are either 0 or 1-dimensional. When dim(MG) = 2, no exceptional orbit can lie on

a boundary stratum, and non-boundary exceptional orbits correspond to isolated

interior points of MG.

The boundary strata can be either 0 or 1-dimensional. Let p ∈ M be a point

on a k-dimensional orbit stratum. Clearly, the action of the isotropy group Gp on

the normal space at p maps a small ball onto a subset of MG of dimension 2− k. It

follows that the action of Gp restricted to a small sphere is a cohomogeneity 1 − k

action. In particular, at a 0-dimensional boundary stratum, the isotropy group acts

on a sphere with cohomogeneity one and, at a point of a 1-dimensional boundary

stratum, the action on the sphere is transitive.

The closures of two 1-dimensional orbit strata are either disjoint or meet in

0-dimensional strata. When the strata intersect, the angle between them is well

defined and must be one of the four angles π/2, π/3, π/4, or π/6. This important

fact follows from the general theory of isoparametric submanifolds of Sn and the

fact that the orbits of a cohomogeneity one action on Sn are isoparametric. See [27]

for a general description of these ideas and additional references.
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The point p ∈ MG is called an orbifold point if some neighborhood of p is

isometric to a quotient N/Γ, where Γ is a finite group and N is a convex Riemannian

manifold diffeomorphic to Rk. By a result of Lytchak and Thorbergsson [18], orbit

strata of codimension less than or equal to 2 in MG consist entirely of orbifold points.

Of course, when dim(MG) = 2, all points are orbifold points. The group Γ will be Zp

for a non-boundary exceptional orbit, and the action will be orientable since there

is no boundary. On the 1-dimensional orbit strata, the group Z2 acts by reflection.

At the 0-dimensional boundary strata, the dihedral group D2p acts with reflections

to produce the boundary edges.
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Chapter 3

Two-Dimensional Orbit Spaces of Non-Negative Curvature

We continue to assume that M is a compact, connected and simply-connected man-

ifold of nonnegative curvature, that dim(MG) = 2, and that G is a compact, con-

nected Lie group of isometries of M . In this case, the orbit space MG, with the

induced metric, is also a space of nonnegative curvature in the sense of Alexandrov.

Since M is simply-connected and G is connected, the orbit space is orientable by

theorem 2.9. In this chapter, we will classify all possible two dimensional orientable

orbit spaces that can admit a metric of nonnegative curvature. The author is not

aware if it is known at this time whether all of these spaces can actually arise as the

orbit space of some group action.

It was noted earlier that the points of MG corresponding to principal orbits

form a smooth manifold, with boundary either empty or consisting of closed geodesic

arcs and exceptional orbits. Recall that the angle between two boundary arcs must

be one of the angles in the set {π/2, π/3, π/4, π/6}. The interior may also contain

isolated singular points; i.e., the exceptional orbits. At an exceptional orbit, the

tangent space is a cone subtending a solid angle of 2π/p, for some integer p ≥ 2.
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By a triangle in an orbit space, we mean a set of three points, connected

pairwise by minimizing geodesics. By Kleiner’s lemma, these geodesic arcs can

meet pairwise only at the three points. In what follows, by a singular point we

mean either an isolated exceptional orbit, or a boundary point corresponding to a

0-dimensional stratum. A boundary arc is meant to indicate a 1-dimensional orbit

stratum, and may or may not contain its endpoints. Note the important fact that the

boundary arcs are geodesics. It is possible that some of the triangles we construct

will have a side along a boundary arc that is not minimizing. By bisecting each

non-minimizing boundary arc, repeatedly if necessary, and joining the new points

to the interior vertex of the original triangle, we will obtain a new configuration,

consisting entirely of minimizing geodesics and satisfying the same conclusion as

the original one. In positive curvature, let S be the total angle sum of the original

triangles, and suppose that there are k such triangles. If an additional boundary

point is added, the number of triangles will be increased by 1 and the angle sum

by π. Since S + π > (k + 1)π if and only if S > kπ, adding a point preserves

the condition S > kπ. In zero curvature, adding extra points preserves the flatness

property. Therefore, for simplicity of exposition, we will not add the extra points,

and will use nonminimal arcs instead, whenever it is convenient to do so.
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3.1 Positive Curvature

In order to determine the orbit spaces that can support a metric having positive

sectional curvature, we will use the fact that any geodesic triangle on such a space

will have an angle sum exceeding π. We will systematically eliminate orbit spaces

that cannot carry a positive curvature metric, and see that those that we do not

eliminate do in fact support such a metric. Of the surviving orbit spaces, many

can support a metric of constant positive curvature and can generate tilings of the

2-sphere in a natural way.

Our general method of attack to show that an orbit space does not support

positive curvature is quite simple. We triangulate the orbit space in some way,

obtain the sum of all angles for all triangles, and divide by the number of triangles.

If the average is less than or equal to π, we conclude that at least one of the triangles

must have an angle sum less than or equal to π. This conclusion contradicts the

assumption of positive curvature.
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Our first step in the classification is to establish limitations on the number of

singular points and boundary arcs.

Theorem 3.1. Let MG be an orientable 2-dimensional orbit space having positive

curvature in the sense of Alexandrov. Then

a) ∂MG cannot consist of more than 3 boundary arcs.

b) If ∂MG = ∅, then there can be at most 3 exceptional orbits.

c) If ∂MG consists of 1 boundary arc, then there can be at most 1 singular boundary

point. If ∂MG consists of 2 or 3 boundary arcs, then there will be 2 or 3 singular

boundary points, respectively. In any case, there are no exceptional orbits.

Proof. a): This is a special case of a theorem which states that a positively curved

orbit space of dimension n can have at most n + 1 faces. However, we will give

a direct elementary proof of this fact when n is 2. Suppose that there are k > 3

boundary arcs and, therefore, k singular boundary points. Choose one of these

points p and construct geodesic arcs to each of the other singular boundary points

not adjacent to p. This construction creates k−2 triangles for which the total angle

sum is at most kπ/2. The average angle sum for a triangle is
π
2 ·

k
k−2 ≤ π, if k ≥ 4.

Then some triangle must have an angle sum less than or equal to π.

b): Suppose that there are at least four exceptional orbits. Choose any three

of them and connect the points pairwise by minimizing geodesics, thus forming a

geodesic triangle. Connect the fourth point to each of the other three points by

minimizing geodesics. This construction creates four triangles with a total angle
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sum of at most 4π (the sum of the angles at the four conical points) so that some

triangle will have an individual angle sum less than or equal to π.

c): If the boundary consists of a single arc, there can be at most one boundary

singular point (if the ends of the arc intersect at an angle less than π). Otherwise,

there are as many singular boundary points as the number of arcs. By the set of

theorems 2.8 to 2.12, there are no exceptional orbits.

It is convenient to divide the orbit classification problem into two cases, de-

pending on whether the boundary of MG is empty or not. For the remainder of this

chapter we assume that α, β, γ are angles in the set {π/2, π/3, π/4, π/6} and that

p, q, r are integers ≥ 2.

3.1.1 Empty Boundary

When ∂MG = ∅, MG is topologically S2 but may have interior singular points. We

have seen in this case that there can be at most three singular points. These are

necessarily conical points; i.e., orbifold points resulting from an orientable Zp action,

subtending an angle of 2π/p, for p ≥ 2.

No Singular Point

This is the case where MG = S2 and trivially supports a metric of constant

positive curvature.

30



One Singular Point

When there is only one singular point, the angle has a value 2π/p. This orbit

space is sometimes called the Zp teardrop and is known to arise from an S1 action on

S3. While this space has positive curvature, it cannot be given a metric of constant

positive curvature.

Two Singular Points

If there are two singular points, let the angles be 2π/p and 2π/q. This orbit

space is known as the Zp-Zq football and, like the Zp teardrop, supports positive

curvature but not constant positive curvature, unless p = q.

Three Singular Points

Finally, we consider the case of three singular points with angles 2π/p, 2π/q

and 2π/r. We can view this space as the double of the space (with boundary) having

boundary angles π/p, π/q and π/r. There are several possibilities for p, q and r.

One set of possibilities is p = q = 2 and r ≥ 2. The others are p = 2, q = 3

and r = 3, 4 or 5. Each of these spaces can be realized as a spherical triangle in

S2 and, consequently, can be given a constant positive curvature metric. All other

combinations produce triangles with angle sum less than or equal to π.
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3.1.2 Non-Empty Boundary

When ∂MG 6= ∅, the boundary will consist of from one to three arcs, and will not

contain an interior singular point.

One Boundary Arc

Suppose first that the boundary has no singular points. Then the orbit space

can be given the metric of a closed hemisphere of S2, which clearly has constant

positive curvature. Suppose now that the boundary has one singular point with

angle α. Then the double of MG is the Zp teardrop with p = π/α and MG supports

positive, but not constant, curvature.

Two Boundary Arcs

Let the boundary angles be denoted by α and β. The double of MG is the

Zp-Zq football where p = π/α and q = π/β. Therefore, MG supports positive but

not constant curvature (unless α = β).

Three Boundary Arcs

Let the boundary angles be denoted by α, β and γ. Then α + β + γ > π. If

α = β = π/2, then γ can be any allowable angle. If α = π/2 and β = π/3, then

γ = π/3 or π/4. No other combinations are possible. All of these cases can be

realized as spherical triangles and, consequently, can be given a metric of constant

positive curvature.
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3.2 Zero Curvature

In this section we will determine those orbit spaces that can support a flat metric.

We will find that these are all triangles and squares. We summarize the results in

a general theorem. Recall that, if MG has a boundary, there can be no exceptional

orbits.

Theorem 3.2. Let MG be an orientable 2-dimensional orbit space having nonneg-

ative but not strictly positive curvature in the sense of Alexandrov.

a) If ∂MG 6= ∅, then we may assume that ∂MG consists of 3 or 4 boundary arcs.

b) If ∂MG = ∅, then MG contains a point of positive curvature and the orbit space

can be given a metric of strictly positive curvature.

Proof. a): Suppose that there are k > 4 boundary arcs and, therefore, k singular

boundary points. Choose one of these points p and construct geodesic arcs to each

of the other singular boundary points not adjacent to p. This construction creates

k − 2 triangles for which the total angle sum is at most kπ/2. The average angle

sum for a triangle is
π
2 ·

k
k−2 < π, if k > 4. Then some triangle must have an

angle sum less than π. Orbit spaces with one or two boundary arcs, if they exist,

are essentially the same as similar orbit spaces described in the section on positive

curvature, and a proof of the main theorem for all of these spaces will be given that

does not depend on the curvature of the space.
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b): By the results of section 2.2.3, the orbit space must have a point of positive

curvature. It cannot contain four exceptional orbits since, in this case, all of the

angles at the exceptional orbits must be π, and the orbit space must be a flat square.

Under our assumptions, there can be only three exceptional orbits. Connect them

with geodesics to create two triangles. At least one of these triangles encloses a

point of positive curvature and, therefore, must have an angle sum exceeding π.

Since all angle sums for a triangle must be at least π, the average sum is greater

than π and, as in the section on positive curvature, the orbit space can be given a

metric of constant positive curvature.

It follows that, if the orbit space cannot be given a metric of positive curvature, it

must be a planar triangle or a square. As before, the angles of the triangle must be

in the set {π/2, π/3, π/4, π/6}. There are only three such triangles, (π/2, π/4, π/4),

(π/2, π/3, π/6) and (π/3, π/3, π/3).

34



3.3 Tabular Listing

The previous results are summarized in tables 3.1 and 3.2. The exterior and interior

angles are listed for each orbit space. In case 8, where there is one boundary arc but

no angle (a circle), the angle is entered as π to indicate that there is a boundary.

When the orbit space can be represented as a spherical triangle, it is interesting

to determine whether this triangle can be used to produce a tiling of the whole

sphere. This question will be studied in the next section. We summarize the results

of that discussion in the first table. Column ”Tiling?” specifies whether or not S2

can be tiled by the orbit space (or by two copies of a tiling triangle which, when

when glued along some or all of their edges, give the orbit space). When the entry

for ”Tiling?” is ”Yes”, the column ”Tile” gives the basic tiling domain and ”No.

Tiles” is the total number of tiles in the tiling.

The second table gives a similar classification of orbit spaces that can tile the

plane. In this case, the number of tiles will be infinite.

We continue to use the convention that Greek letters denote boundary angles

in the set {π/2, π/3, π/4, π/6}, while latin letters represent integers ≥ 2.
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# Ext ∠’s Int ∠’s Tiling? Tile No. Tiles
1 Yes S2 1
2 2π/p No
3 2π/p, 2π/q No
4 π, π, 2π/p Yes (π/2, π/2, π/p) 4p
5 π, 2π/3, 2π/3 Yes (π/2, π/3, π/3) 24
6 π, 2π/3, π/2 Yes (π/2, π/3, π/4) 48
7 π, 2π/3, 2π/5 Yes (π/2, π/3, π/5) 120
8 π Yes Hemisphere 2
9 α No
10 α, β No
11 π/2, π/2, α Yes (π/2, π/2, α/2) 8π/α
12 π/2, π/3, π/3 Yes (π/2, π/3, π/3) 24
13 π/2, π/3, π/4 Yes (π/2, π/3, π/4) 48

Table 3.1: Orbit Spaces Admitting Positive Curvature

# Ext ∠’s Int ∠’s Tiling? Tile
14 π/2, π/3, π/6 Yes (π/2, π/3, π/6)
15 π/2, π/4, π/4 Yes (π/2, π/4, π/4)
16 π/3, π/3, π/3 Yes (π/3, π/3, π/3)
17 π/2, π/2, π/2, π/2 Yes (π/2, π/2, π/2, π/2)

Table 3.2: Orbit Spaces Admitting Zero Curvature

3.4 Spherical and Planar Tilings

In this section we will see that many of the orbit spaces, those that support constant

curvature, can be made to tile either the sphere or the plane. This will have impor-

tant consequences for our work. We have seen that, except for the trivial cases of

the sphere and hemisphere, all of the orbit spaces MG supporting constant positive

curvature can be realized as spherical triangles, or by gluing along some or all of the

edges of such triangles. These are the cases 1, 4-8 and 11-13 in table 3.1. We will

show that each triangle also generates a tiling of the sphere.
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The orbit spaces 14-17 obviously generate a tiling of the plane.

Cases 1, 8 (Sphere and hemisphere): These cases clearly tile the sphere.

Cases 4, 11 (π/2, π/2, θ): In these cases θ divides 2π evenly with quotient k. Such

a triangle can be bounded by an equator and two longitude lines, making an

angle of θ with each other. Therefore, 2k triangles will tile the whole sphere.

Cases 5, 12 (π/2, π/3, π/3): Reflect over an edge joining angles π/2 and π/3. This

produces a triangle with angles 2π/3, π/3 and π/3. Reflecting twice around

the angle 2π/3 produces a triangle with all three angles equal to 2π/3. This

is a fundamental region for the action of the tetrahedral group on S2, and so

gives a tiling of the sphere with 24 tiles.

Cases 6, 13 (π/2, π/3, π/4): Reflecting the triangle over the edge connecting the

angles π/2 and π/4 produces the triangle of case 5. The tiling consists of 48

tiles.

Case 7 (π/2, π/3, π/5): Reflect around the angle π/5 ten times to remove this an-

gle. When a reflection involves the angle π/2, the vertex is removed. There

remain five vertices, each with angle 2π/3. This pentagon is a fundamental re-

gion for the action of the dodecahedral group on the 2-sphere, and the triangle

tiles the sphere with 120 tiles.
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Chapter 4

Main Theorem

In this chapter we will prove our main theorem. We restate the theorem here for

the convenience of the reader.

Main Theorem. Let M be a compact, connected and simply-connected Riemannian

manifold having nonnegative sectional curvature. Let G be a compact, connected Lie

group acting effectively on M as isometries, with orbit space MG. If dim(MG) = 2,

then M is rationally elliptic.

The proof will be accomplished in two parts. First we will prove the theorem as an

application of the Grove-Halperin theorem for those orbit spaces which do not accept

a metric of constant nonnegative curvature. These are the cases 2, 3, 9 and 10 in

table 3.1. All of the remaining cases can be given a metric of constant nonnegative

curvature and, as we have just seen, can be used to tile either R2 or S2. We will

use these tilings, together with the Morse theory and Halperin’s theorem, to prove

our theorem for these orbit spaces.
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4.1 Proof for Non-Constant Curvature

Our approach in the cases which do not admit spherical tilings is the following. We

judiciously choose two points a and b, typically the most singular orbits in MG, and

a simple smooth arc γ such that MG − |γ| consists of two components, Ca and Cb,

containing a and b, respectively. Here |γ| denotes the support of γ. Set

A = π−1(a), B = π−1(b), E = π−1(|γ|)

D(A) = π−1(Ca), D(B) = π−1(Cb),

where π : M → MG is the projection of M onto the orbit space MG. Clearly E

is the common boundary of D(A) and D(B). We must choose γ so that E is a

C∞-submanifold of M . Since the action of G restricted to any of A, B and E has

at most cohomogeneity one, we know by the Grove-Halperin theorem that each is

elliptic. To finish the proof, we need to show that D(A) and D(B) are disk bundles

over A and B, respectively. Then, by the method of proof of that theorem, it will

follow that M is elliptic.

By the Slice Theorem, the normal bundles of A and B can be expressed as

equivariant tubular neighborhoods NA(ρA) and NB(ρB). The fibers are open disks

of common radii ρA and ρB, respectively. If necessary, we will reduce the radii of the

normal bundles so that their closures have disjoint neighborhoods, and continue to

use ρA and ρB to denote them. To avoid repetition, we will concentrate on the orbit

A in what follows. Of course, similar remarks will hold for B as well. We denote
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the closure of a set S by S and the interior by So in what follows.

Our immediate task is to extend the bundle NA(ρA/2) to a larger disk bundle

M - NB(ρB/2) over A. We begin by defining a vector field R on π(NA(ρA)) which

is a radial vector field along the geodesics emanating from a. Set

T = MG - π(NA(ρA/2)) ∪ π(NB(ρB/2))

where π(NA(ρA/2)) and π(NB(ρB/2)) are the disks of radius ρA/2 and ρB/2 centered

at a and b, respectively. Now T is diffeomorphic to either S1 × I or to I × I. This

diffeomorphism defines a C∞ family of C∞ curves γs(t), parametrized by the first

coordinate. Of course any such diffeomorphism takes the boundary of I into the

boundary of MG, when MG has a boundary. Choose the diffeomorphism so that the

radial curves on the annulus defined by the disks of radius ρA/2 and ρA agree in

some manner with the curves γs(t), say for 0 ≤ t ≤ 1/4, and do the same for the

corresponding annulus around b on the interval 3/4 ≤ t ≤ 1. Define a unit vector

field Y on T in such a way that Yq is the unit tangent vector to the curve γs through

q in the direction of b. Choosing a partition of unity {ρ1, ρ2} subordinate to the

open sets π(NA(ρA/2)) and T o, we obtain a vector field

Xp = ρ1(p)Rp + ρ2(p)Yp

on MG - π(NB(ρB/2)) which is non-singular, except at a. The vector field X has a

unique C∞ horizontal lift Z, even when ∂MG 6= ∅ since, on the boundary, the lift

of the vector is parallel to the orbit stratum. The integral curves of Z fill out the

40



space M - NB(ρB/2). It follows that M - NB(ρB/2) is a disk bundle over A. The

restriction of this bundle to π−1(Ca) is the disk bundle D(A). Similarly, we obtain

the disk bundle D(B) by reversing the direction of the tangent vectors on T .

To finish the proof, we need only specify the orbits a, b, and the point set |γ|

for each case. In case 2, take a to be the exceptional orbit and let b be any other

point. For case 3 choose a and b to be the two exceptional orbits. For case 9, take

a to be the vertex point and let b be any other point on the boundary. Finally, for

case 10, choose a and b to be the two vertices.

It remains to specify the curve γ. For cases 2 and 3, it suffices to set γ(s) =

γs(1/2). For cases 9 and 10, choose the points γ0(1/2) and γ1(1/2) on the boundary

of T . Let p be a point of the orbit P = π−1(γ0(1/2)) and consider the normal space

Np to the orbit P at p. Then, by the Slice Theorem, there is a disk D centered at

0 in Np such that G ×Gp D
⊥
p is equivariantly diffeomorphic to a sufficiently small

tubular neighborhood of P . Since P lies on an orbit stratum of codimension 1 in

MG, the image of this bundle is a smooth arc α0 in MG. Since α0 is perpendicular

to the orbit stratum it follows that, for sufficiently small ε0 > 0, α0(t) is transversal

to the curves γs for t in the interval [0, ε0). Set ε′0 = min(ε0, s/4). A similar result

holds for the point γ1(1/2), giving an arc α1(t) which is transversal in [0, ε′1). Let

α be any C∞ curve, smoothly connecting α0(ε
′
0/2) and α1(ε

′
1/2) and crossing each

γs(t) transversally and lying entirely in the interval 1/4 < t < 3/4. The resulting

curve satisfies all of our requirements. This completes the proof for these four cases.
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4.2 Proof for Constant Curvature

In the constant curvature cases, the orbit spaces generate tilings of R2 or S2. We

will show that the homotopy fiber F of an inclusion of a principal orbit Q into M has

polynomially bounded homology. The Halperin theorem 2.1.3 will then guarantee

ellipticity. In either case, we will need to lift this constant curvature metric to the

space M before we begin the analysis of F .

4.2.1 Lifting a Constant Curvature Metric

We will need to show that when the orbit space can be given a constant curvature

metric, then this metric can be lifted to M . We begin with a basic lemma.

Lemma 4.1. Let <,> denote the usual inner product on Rn and consider the

projection π : Rk × Rn−k → Rk of Rn onto the first factor. Let P , S be positive

operators on Rk and Rn, respectively. Define new metrics gP (u, v) = < Pu, v > on

Rk and gS = < Su, v > on Rn. Then π : (Rn, gS) → (Rk, gP ) is a Riemannian

submersion if and only if S and P are related by

S−1 =

P−1 ∗
∗ ∗


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Proof. Suppose first that π is a Riemannian submersion with horizontal subspace

H = {(x,Ax) | x ∈ Rk and A : Rk → Rn−k}

and vertical subspace V = {0} × Rn−k. Since < SH, V > = gS(H,V ) = 0,

S(x,Ax) ∈ Rk × {0}. Now suppose that x and y ∈ Rk have horizontal lifts (x,Ax)

and (y, Ay). Then

gS((x,Ax), (y, Ay)) = < S(x,Ax), (y, Ay) > = < S(x,Ax), (y, 0) >

= < πS(x,Ax), y > = gP (x, y) = < Px, y >.

Therefore, πS(x,Ax) = Px or S(x,Ax) = (Px, 0). Then we have

(x,Ax) = S−1S(x,Ax) = S−1(Px, 0).

Expressing this relation in block form, where U and P are k × k matrices,

idRk

A

 =

U ∗

W ∗


P

0


we have UP = idRk and WP = A, so that U = P−1.
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Conversely, suppose that S−1 has the above form and that U = P−1. Define

A = WP . Then, if x, y ∈ Rk,

gS((x,Ax), (y, Ay)) = < S(x,Ax), (y, Ay) > =

< S(UPx,WPx), (y, Ay) > = < SS−1(Px, 0), (y, Ay) > =

< (Px, 0), (y, Ay) > = < Px, y > = gP (x, y).

It follows that π is a Riemannian submersion with horizontal subspace

H = {(x,Ax) | x ∈ Rk}.

We will use this lemma only in the case where P = I. Then S−1 will have the

form

I ∗
∗ ∗

 .

Now let p ∈ M . We know that the action of the isotropy group Gp on the

normal sphere is polar and, therefore, so is the action of Gp on the the normal space

Tp
⊥. Then there is a 2-dimensional section S perpendicular to all orbits. We can lift

the constant curvature metric on the orbit space to this section, and then along the

(orthogonal) orbits to the full normal space. The Slice Theorem guarantees that, if

Dp is a sufficiently small disk in Tp
⊥, then G×Gp D

⊥
p is equivariantly diffeomorphic

to a tubular neighborhood of the G-orbit Gp, and we may use this fact to transfer

the metric to this neighborhood. We have thus shown that around each point of

44



MG, there is a neighborhood U where the constant curvature metric on MG can be

lifted to a metric on Ũ = π−1(U). Denote the totality of such neighborhoods for all

points of MG by {Ũα}. Choose a partition of unity fα subordinate to the covering

{Ũα} and let S−1α represent the inverse of the lifted metric on Ũα, relative to the

original metric on M . Then consider the operator S on M defined by

S−1 = Σfα S
−1
α .

This S gives the desired lift, since S−1 is globally equal to the identity in the upper

left hand block of the matrix.

It is important to note that the new metric on M given by g(Su, v) has the

constant curvature orbit space but may no longer have nonnegative curvature. How-

ever, this property will no longer be needed in the sequel, since its only use was to

limit the geometry of the orbit space.

4.2.2 Morse Theory of the Homotopy Fiber

We have seen that the constant curvature metric on MG can be lifted to M . Since

MG tiles the plane or the sphere, we can view the orbit space as multiply embedded

in R2 or S2, and we can regard each horizontal geodesic in M as a curve over a

geodesic in that space.
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Let Q be a principal orbit of M . Consider the homotopy fiber F of the

inclusion i : Q → M at p ∈ M . F is the set of all paths γ : [0, 1] → M with

γ(0) ∈ Q and γ(1) = p. It is convenient for our purposes to consider the paths as

beginning at p and ending on Q. Then γ(0) = p and γ(1) ∈ Q. We will show that

F has polynomially bounded homology and the Halperin theorem 2.1.3 will allow

us to conclude that M is elliptic.

Let E(γ) be the energy functional on F as in section 2.2.5. The critical points

are horizontal geodesics that connect the point p with the orbit Q.

The methods we use are similar for positive and zero curvature, but the details

are somewhat different, and so we will discuss these cases separately.
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4.2.3 Positive Curvature

In the positive curvature cases, the orbit space is a spherical triangle, a double

of such a triangle, the whole sphere, or a hemisphere. All generate tilings of S2

where the triangular cases are of the form (π/2, π/2, π/r), where r is arbitrary, or

(π/2, π/3, π/r), where 3 ≤ r ≤ 5.

Let Q be any principal orbit, and let C denote the union of all great circles in

S2 that contain two or more copies of Q. Choose P in M - π−1(C) to be a principal

orbit such that, for some p ∈ P , p is not a focal point of Q along any geodesic. Let

p′ denote the projection of P in MG. In what follows we denote the antipodal point

of p′ by p′ and the number of tiles in the spherical tiling by c (from the No. Tiles

column in table 3.1).

Since all horizontal geodesics emanating from p lie over great circles passing

through p′ and, since the dimension of the horizontal subspace is 2, the contribution

to the index of a critical geodesic at each crossing of the antipodal point must be 1.

Under our assumptions, there are exactly 2c critical geodesics that meet the

orbit Q only once (c when the orbit space is the double of a spherical triangle). These

correspond to the great circles on S2 from p′ to a point equivalent to Q. We must

count two critical geodesics for each copy of Q, one for each direction from p. Every

other critical geodesic must begin as one of these. For each initial segment there is

just one critical geodesic lying over that great circle and terminating between two

successive crossings of the antipodal point of p.
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Choose one of these initial segments. Suppose that, on the corresponding great

circle, γ is a geodesic having index d, thereby producing a cell of dimension d. We

must consider the contribution of the index of the operator A (sec. 2.2.5) associated

to the second fundamental form of Q, which may be a negative number. Set m equal

to the smallest possible value of index(A). If m ≥ 0 then, after a single circuit, there

will be no additional cells of dimension d, only a cell of higher dimension, since there

is a nonzero contribution at the antipodal point. Therefore, no two extensions of the

same initial segment have the same index. If βd is the d-dimensional Betti number

of F , it follows that

βd ≤ 2c.

If m < 0, we may require as many as 1 − m complete circuits to obtain a larger

value for the index of γ. Then

βd ≤ 2(1−m)c.

Setting λ = max(1, 1−m) and summing the Betti numbers, we have

∑n
i=0 βi ≤ 2cλ(n+ 1)

and F has polynomially, in fact linearly, bounded homology. This proves the main

theorem for positive curvature.
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4.2.4 Zero Curvature

In the zero curvature cases, the orbit space is either a Euclidean triangle with angles

in the restricted set {π/2, π/3, π/4, π/6}, or a square. All generate tilings of R2.

Let Q be any principal orbit, and let C denote the union of all straight lines in

the plane that contain two or more copies of Q, together with the lines that connect

a vertex of the tiling with a copy of Q. Choose P in M - π−1(C) to be a principal

orbit such that, for some p ∈ P , p is not a focal point of Q along any geodesic. We

note the important fact that, in view of our assumptions on p, no critical geodesic

will cross a tile boundary at a vertex.

In zero curvature, since there is no antipodal point, we must look for focal

points at the tile boundaries. This will occur if the focal point is on an orbit that is

more singular than a principal orbit. More precisely, we have the following lemma.

Lemma 4.2. Let Q be a principal orbit with isotropy group H, and let S be any

other orbit with isotropy group K ⊇ H. Suppose that γ(t) is a horizontal geodesic

joining the points s ∈ S and q ∈ Q. Define γk(t) = kγ(t) for k ∈ K. Then γk(t) is

a horizontal geodesic and γk(t) 6= γ(t) if k /∈ H. The set {γk} is parametrized by the

space K/H, and s is a focal point of Q of multiplicity dim(K/H). In particular, if

S is a singular orbit, dim(K/H) ≥ 1.

Proof. Clearly, γk(s) = s and γk(q) ∈ Kq. Furthermore, kq = q if and only if k ∈ H.

Since K acts by isometries, the geodesics γk(t) are horizontal.
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The lemma implies that, since the boundary cannot contain exceptional orbits,

the contribution to the index of a critical geodesic must be positive at every tile

crossing. This fact will allow us to obtain a bound on the Betti numbers of the

homotopy fiber. Since any straight line beginning at p will meet a copy of Q at

most once, these must represent all of the critical geodesics. We can easily compute

a lower bound for their indices and, from this lower bound, compute a bound on the

Betti numbers.

In all cases where the orbit space tiles the plane, the orbit space is either an

equilateral triangle, a square, or a triangle with a reflection that gives one of these

two. We will consider, therefore, only the two cases of tilings by equilateral triangles

and squares. Since we assume that a critical geodesic cannot pass through a vertex,

the following figure illustrates the number of crossings necessary to enter a given

tile.

5 4 5 4 5 4 5

5 4 3 2 3 2 3 4 5

5 4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 2 3 4 5

5 4 3 4 3 4 5

5 5 5

3

3 2 3

3 2 1 2 3

3 2 1 0 1 2 3

3 2 1 2 3

3 2 3

3

Figure 4.1: Number of Tile Crossings - Equilateral Triangle and Square

We will handle the case of the equilateral triangle first, since it is more involved.

Let sn denote the number of triangles in the nth ring with a single edge exposed,

and let dn denote the number with two edges exposed. Then it is easy to see that
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sn+1 = dn − 3 and dn+1 = sn + 6. Adding these equations and setting tn = sn + dn,

we have

tn+1 = tn + 3, and t1 = 3.

It follows that tn = 3n. The total number of tiles in rings 0 through n is

1 + 3 + 6 + ...+ 3n = 1 + 3n(n+ 1)/2.

Since each tile can contain either one or two copies of the orbit space, there is a

maximum of 2 + 3n(n+ 1) copies of Q in rings 0 through n.

Each crossing contributes at least one to the index of a critical geodesic. We

must also allow for the contribution of the index of the operator A (sec. 2.2.5)

associated to the second fundamental form of Q. This may be a negative number.

If we set m equal to its smallest possible value, we will require at most n −m tile

crossings to guarantee that all critical geodesics producing cells of dimension less

than or equal to n have been obtained. It follows that

∑n
i=0 βi ≤ 2 + 3(n−m)(n−m+ 1)

where βi is the ith Betti number.
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Similarly, for the square, we can see that

tn+1 = tn + 4, and t1 = 4.

So tn = 4n and

∑n
i=0 βi ≤ 2 + 4(n−m)(n−m+ 1).

In either case, the Betti numbers are quadratically bounded. This proves the main

theorem for the case of zero curvature.
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4.3 Remarks

1. The main theorem is really a theorem about orbit spaces. If M is a manifold

satisfying all of the conditions of the theorem except for nonnegative curvature,

and if the orbit space can be given a metric of nonnegative curvature, it still

follows that M is elliptic.

2. The proof for constant curvature did not use the cohomogeneity 2 property

except to show that each of these orbit spaces tiled the sphere. We required

only that the action on the normal space was polar in order to lift the constant

curvature metric. If we know that an orbit space can be given a constant curva-

ture metric and can tile the k-plane or the k-sphere, then the orbit space must

consist entirely of orbifold points. Lytchak and Thorbergsson have shown [18]

that the action on the normal space is polar if and only if the point is an

orbifold point. A straightforward argument will show, in this case, that M is

elliptic.
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