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Abstract

The detailed theoretical analysis of very large time-constant (VLT) in-
tegrators which use either charge elimination (T-cell and Huang’s integra-
tors) or charge cancellation (Nagaraj’s and charge-differencing integrators)
are described. Using a new area-efficient design, the charge-differencing (CD)
integrator, the capacitance spread ratio can be easily reduced to less than
the reciprocal of the square root of the product of the pole frequency and
the sampling period. Non-ideal effects of op-amp like finite DC gain and
offset voltage can also be compensated by employing offset storing capacitor

operating only with the bi-phase clocking scheme.






1 Introduction

Conventional first-order or biquad designs[l, 2] require a minimum capaci-
tance spread ratio of approximately 1/(QoT"), where € is the pole frequency
and T is the sampling period. For the low frequency application, the ratio
becomes very large and impractical to use such circuits. One approach to
overcome this problem is to reduce the sampling frequency. However, the
choice of the clock frequency is the need to maintain the compatibility with
the rest of the SC circuits and this is not always feasible. The other factor
to use high clock frequency is to make the area of the anti-aliasing filters
and smoothing filters smaller. Therefore, to facilitate the on-chip integra-
tion, new circuits designed to reduce the capacitance spread called very large

time-constant (VLT) circuits are pursued.

2 VLT Integrators

To reduce the capacitance spread, VLT circuits use input signal attenuation,
that is, the signal will be attenuated in either in a single phase or in two
different phases. Several approaches have been explored for realizing the very
large time-constant integrators in an area-efficient way and their principle of
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operations will be investigated below.

2.1 T-Network VLT integrator

A simple way to attenuate the signal in the SC circuits is to use the capacitor
divider. A circuit based on this approach is called the T-network. A lossless
inverting integrator is shown in Fig. 1, where the input attenuator comprises

the capacitors Cy, Cs2, and Cp. A small effective input sampling capacitor
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Figure 1: T-network inverting integrator.

is generated, thus a large time-constant can be achieved. In this circuit, the
input signal is attenuated twice in only a single phase. It can be easily shown

the transfer function is

0102 2—1/2 (1)
CalCo+ CrtCy)1— 2

H(z)=—



The time-constant is determined by the product of two capacitor ratios not
just a single ratio and this can reduce the spread ratio approximately down
to 1/4/QT when this integrator is used to design first-order or biquadratic
filters. In the same analysis, the lossless non-inverting T-network integrator
shown in Fig. 2 has the same transfer function as above except the sign is

changed. The advantage of T-network circuits is that it can be combined

/ o _/Vout
2 +~

Figure 2: T-network non-inverting integrator.

with the conventional SC circuits easily. However, it suffers from a strong
sensitivity to the stray capacitance. From the Fig. 1 or Fig. 2, it is known that
any parasitic capacitance from the T-junction to ground will directly add to
the values of C. Furthermore, if there is any wiring parasitic capacitance
between the LHS plate of C; and and the RHS plate of Cs,, this appears in
shunt with the small effective capacitance and significantly deviate the time-
constant of the integrator. These parasitics can cause the time constant to
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change by as much as 10%[3]. Besides, two large capacitors C4 and Cp are

needed in such a circuit, thus, this is not very area-eflicient.

2.2 Hwuang’s VLT integrator

The outputs of op-amps are only sampled in one of the clock phases and are
idle in the other phase in the conventional SC circuit design. Due to this
observation, it is instructive to exploit such an idle phase in order to reduce
either the influences of op-amp’s non-ideal effects (such as offset voltages
and finite DC gains) on circuit performance or capacitance spread. A circuit
based on this is shown in Fig. 3[4]. During the phase 1, C; is the input
sampling capacitor, while Cg and C; are the integrating capacitors. The
input voltage is attenuated to —[C1Vin(2)]/(Cp + Cz). During the clock
phase 2, only capacitors C3 and C4 form an inverting integrator and the
charge stored in (s is then transferred to 4. These procedures are used to
attenuate the input signal in the two different phases, therefore the VLT can
be achieved by much smaller capacitance spread ratio. The transfer function
is
Vout (%) C Cyz 12
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Figure 3: Huang’s inverting integrator.
In the same analysis, the non-inverting integrator can be designed as shown
in Fig. 4. Due to the inevitable two half delays, it can only realize a forward

Euler transformed integrator and the transfer function can also be shown as

~ Vour(2) C1Cyz ™!
H(z) = Vin(2) — Ca(Cp + Cy)(1 — 21’ ®)

This kind of integrators is stray-insensitive and does not suffer the para-
sitics problem which T-network encountered. However, such integrators still
need two large capacitors C4 and Cp and require more switches than T-
network integrators. Especially, if a fast op-amp is used, there is a glitch
between two clock phases. This is due to that there is no feedback during
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Figure 4: Huang’s non-inverting integrator.

the non-overlapping periods and the op-amp is open-circuited. One addi-
tional capacitor C,, can be added between the output of op-amp and the
RHS plates of Cg and C; to eliminate such a problem.

Both T-network and Huang’s integrators use the charge elimination ap-
proach to achieve the large time constant. The operational principle of this
approach is to attenuate the signal by several capacitors in one phase. Then,
using the charge elimination to discharge the un-wanted charges and transfer
the needed charge to the output in the other phase. It is obviously that more

switches are usually required and the large capacitors can not be shared by



using such a scheme.

2.3 Nagaraj’s VLT Integrator

The VLT integrators which are discussed so far need two large capacitors and
this is not very area-efficient. A integrator shown in Fig. 5 [3] was proposed
by Nagaraj to share the large capacitor, thus only one large capacitor is

required. The operational principle of this circuit is as follows. During the
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Figure 5: Naragaj’s inverting integrator.

phase 1, a charge C1V;, is transferred from C; to C'4 and the output voltage is
sampled by C, at the same time. In this step, the input voltage is attenuated
by the factor of C/C 4, because C} is the largest capacitor in the VLT circuit

application. During the phase 2, C; withdraws the charge C,V;, back from



C4, while C, redistributes its charge with Cy4. In the other words, the signal
is attenuated again in this step. Functionally, the entire operation can be
thought of as attenuating the input voltage by a factor C;/Cy4 in the phase
1 and then integrating it onto C4 through the capacitor C, in the phase 2.
Therefore, the input signal is attenuated in two consecutive phases and the
large capacitor is also shared in such a design. The capacitor Cy is used
as both attenuating capacitor and integrating capacitor, thus, making such
a circuit very area-efficient. The transfer function of this integrator can be
obtained as
Vout (2) Clcaz—l/Q

H(z) = Vilz)  Ca(Ca+ C)(1—2z1) (4)

The non-inverting integrator can also be designed and analyzed in the same
way. This integrator is stray-insensitive and does not have the glitch problem
during the non-overlapping periods. Besides, it can save about 50% in the

total capacitance when compared with the T-network or Huang’s integrators.

2.4 Charge-Differencing (CD) VLT Integrator

In some applications which have high sampling frequency and very low pole

frequencies, Nagaraj’s integrator may still require a lot of capacitance area,



because a large capacitor is always needed. To overcome such a problem, a

CD integrator was design and shown in Fig. 6 [5]. Its operational principle
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Figure 6: Charge-Differencing integrator.

can be stated as follows. When switches 1 are closed, the charge Vi, (n)C] is
accumulated in the capacitors C'4 and C,2. The output voltage is sampled by
Cq1 simultaneously, i.e., the charge [Vi,(n)Co1C1]/(Ca + Ch2) is transferred
into C,1. When the switches 2 are closed, a charge Vi,(n)C| is effectively
pulled back to ground from capacitors Cy4 and Cj,;. Since C, received the
charge [V;,,(n)C4C1]/(Ca+Caz) in the previous phase, Cy; has to compensate

the net difference charge [Vi,(n)Cy2C1]/(Ca + Cyu2) before it redistributes the
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charge received in the previous phase with C4. The transfer function

g Yew) __ Ci(Ca=Cu)z™? ‘
H(z) = Vin(2)  (Ca+ Car)(Ca + Caz)(1 — 271 (5)

can be obtained.

The charge differencing technique is based on both the difference of capac-
itors and ratio of capacitors, thus the capacitance spread ratio can be made
very small. The inverting and non-inverting integrators can be obtained by
choosing the appropriate capacitor values of C,y and C,;. This integrator is
stray-insensitive, glitch-free, and only one medium capacitor is needed. From
the Fig. 5 and Fig. 6, we can observe that Nagaraj’s integrator is just a spe-
cial case of the CD integrator and both use the charge cancellation approach
to achieve very large time constant. This is conceptually different from the
charge elimination approach used in T-network and Huang’s Integrators. In
terms of area-efficiency, charge-difference integrator is much preferred. Note
that due to using the difference of two capacitors in charge differencing tech-
nique, the difference between two capacitors should not be arbitrarily chosen
very small. Let us consider the quantity ¢ = a & b. The sensitivity of ¢
with respect to a is S{=(dc/c)/(da/a)=a/(a £ b). If a = b > 0, it is obvious

that the case of differencing give higher S¢. Fortunately, the capacitor ratio
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can be easily controlled within 0.1% if the layout is carefully done. Then,
the variability (or relative change) would not become too large. Taking a
reasonable choice of C,; = 1.5, and C,, = 1.0, the total capacitance is about
30% less than using Nagaraj’s integrators but the sensitivity only increases

by a few times.

3 GOC CD VLT Integrators

It is known that the performance of switched capacitor circuits will be de-
graded due to the non-ideal effects of op-amps such as offset voltages and
finite DC gains. Since these non-ideal effects can usually be improved simul-
taneously, the circuits with gain- and offset-compensation are called GOC
circuits. The discussion here will concentrate on the GOC VLT circuits us-
ing the CD integrator, since this is the most area-efficient design.

Due to the charge cancellation approach which the CD integrator uses, we
have to maintain the connection between the right-hand-side (RHS) plate of
C and the left-hand-side (LHS) plate of C'4 in both phases. Thus, the charge
can be pumped into the charge integrator in one phase and be pulled back in

the other phase. From this observation, GOC CD inverting integrator was
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designed and shown in the Fig. 7[5]. Note that capacitor C,; is chosen bigger
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Figure 7: GOC Charge-Differencing inverting integrator.

than Cy in the inverting integrator.

When the phase 2 is on, the LHS plate of capacitor C, is connected to
ground. Therefore, this capacitor stores the offset voltage —V,,. During the
phase 1, the LHS plate of C, is connected to the RHS plate of C; and the
LHS plates of C4 and (5. Since the RHS plate of C, is only connected to
the negative terminal of op-amp, the charge held in this plate is preserved.
Consequently, the LHS plate of C, acts like the virtual ground. Note that the

arrangement of clock phases surrounding the capacitor C, is very important



and the choices will depend on the clock phases associated with the integrat-
ing capacitors C,; and C,;. In the above case, the virtual ground exists in
the phase 1. If the switch phases surrounding the capacitor C, are changed,
the virtual ground will appear in the phase 2 and this will affect the effects
of GOC dramatically in some cases. The details will be elaborated below.
Suppose the V=0, gain=co and the offset voltage is V,,. When the
phase 1 is on, the LHS plate of C, is connected to the junction of Cy, C,,,
and Cy4. The voltage in this junction is equal to zero. However, the voltage
of this junction is changed to V,; when the phase 2 is on. Conceptually,
this is like the input voltage V,, exists. As the same analysis as the CD
integrator does, [C1(Cay — Ca1)Vos]|/[(Ca + Ca1)(Ca + Ca2)] can be expected
in the output voltage. Besides, C,; sampled the output voltage in the phase
2 and redistributed the charge with C4 in the phase 1. This charge will be
held in the Cy, thus, (Cy2V,s)/(Ca + Caz) is also expected in the output

voltage. Using the time domain analysis,

1 C Ca —'Ca
Vou(n+3) = 1(Cer — i)

1
V;'n ‘/ou - s
(CA + Cal)(CA + Ca2) (n) + t(n 2)

Ca2 C1(Caz — Ca1)
CA + Ca? (CA + Cal)(CA + CaQ)

+ )WVos (6)

can be obtained. This satisfies the previous conjecture. Comparing with the
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equation of the non-GOC CD integrator which has the effective offset voltage

Cal Ca2
Vvos 7)
(CA+Ca1+CA+Oa2) ( )

a factor of more than 2 can always be achieved. In the especial case of
Ca2 = 0, the output voltage of the GOC CD integrator due to the V,, is
approximately inversely proportional to C4%. Thus, the offset voltage is even
much reduced. In the typical VLT application, a factor of more than 10 can
be obtained easily.

As claimed before, the switch phases associated with the offset storage
capacitor C, is very important. If these switch phases are changed, the

effective offset voltage becomes

( Cal Cl(Cal - Oa?)
CA + Cal (CA + Cal)(CA —+ Ca,2)

Wos- (8)

When C,, = 0, the offset voltage term of output equation, in fact, becomes
slightly worse instead of getting improved when compared with the non-GOC
CD integrator.

From above discussion, we know that when to choose the virtual ground
is critical. Note that in the charge-differencing circuits shown in Fig. 6, we

do the sampling in both phases, therefore, the gain and offset-compensation
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is not so effective as the special case when C,; = 0. Fortunately, the effec-
tive DC gain of op-amp is high when used in the low frequency application
(assume the output signal does not change abruptly). If such performance
can not be satisfied, the other GOC circuits have to be pursued.

In the same way, the GOC CD non-inverting integrator is shown in Fig. 8,

where, U, is larger than C;;. The time domain analysis gives
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Figure 8: GOC Charge-Differencing non-inverting integrator.

10 Ci(Caz — Car) : 1
‘/O'Ut(n -f 2) - (CA ‘l“ Cal)(CA + Caz)v;n(n) + ‘/;ut(n - 2)
+ ( Ca.l CI(CU.I - Ca?) )‘/os' (9)

CA + Cal (CA + Cal)(CA + CaZ)

It is noted that the switch phases associated with C, are different from those
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of Fig. 7.

4 First Order Section Design

After the GOC CD integrators have been designed, first order filter can be
built based on these circuits. The negative first order filter is shown in Fig. 9,

where the capacitor C,; is chosen to be larger than the capacitor Cy3. From
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Figure 9: GOC CD inverting first-order filter.
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the time domain analysis, the following equation can be obtained

Vout(n + %) Cat glfig‘,;ccl)z oy
e G Yt~
oy e

Due to the choices of Cy; and Clg,
(CatCan + Co)(Cat Cu) _ | (11)

(Ca+ Ca1)(Ca+ Coz + C3)
The location of pole is inside the unit circle, therefore the stability can be

always assured. Consider the transfer function in the s-domain,

1—|—3/Q1

(12)

Setting o = 2/(QT), 1 = 2/(4T), and perform the bilinear transforma-
tion, the transfer function in the z-domain is

—k(l +21)— (1 —24)27!
(14 20) + (zo—1)

H(z) = (13)

~ Comparing the coefficients,

2 _ Ca(Co1 — Caz)
I14+z0 (Ca+Cat)(Ca+ Coz+Cy)

(14)

For the lowpass filter, assume Q7T <« 1, O = —2f; (f, is the sampling
frequency), unit gain (k = 1), and Cy; — Cy2 = 4, the capacitor values can
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be chosen as

Cl == 02 = 1 (15)

Ca=Cp=K=~ . (16)

That is, the capacitance spread ratio is just about §/4/QoT.
In the same way, the non-negative first order section can be designed and

shown in Fig. 10. Note that the phases associated with (', has been changed
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Figure 10: GOC CD non-inverting first-order filter.

and the capacitor C,; is larger than the capacitor C,; to assure the system
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stability. The time domain analysis gives

C1(Caz — Ca1)
(Ca+ Co2)(Ca+ Coy + C2)
(Ca+Ca1)(Ca+ Coa+ C2)

‘/ou —-1/2
(Ca+Car + C2)(Ca + Cyu2) t(n /2)
Cal(CA + Cl + 02) - CaQ(Cl + CZ - Oal)
(CA + Cal + C?)(CA + Ca?)

‘/;ut(n + 1/2) ‘/m(n)

+

V.. (17)

+

5 Biquadratic Section Design

With the above GOC charge-differencing Integrator, two type of biquads
(referred to as the E and F circuits in [1], and Type-I and Type-II biquads
here) can also be built[5] and shown in Fig. 11 and Fig. 12 respectively.
Type-I biquad gives simpler design equations, while those of Type-II biquad
are slightly more complicated. Using the signal flow graphs (assume V,, =

0) shown in Fig. 13 and Fig. 14 respectively, the transfer functions can be

obtained|[6]
Vout (2
. A-(A+B-0)'+(B-D)z? (18)
E—(E+F -Gz ¢ (F — H)z-?
Where,
_Ce Cp+Cy
4=al - )
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Figure 11: GOC CD Type-I second-order filter.

Ce¢,Cg+Cy Cs
B= =5 20
C1 Cn — Che Ca+Ca (20)
Cs + C
C=—=2177 21
CA + Ca,Z ( )
05 C?
D= . 22
CA+CG1+OA+O¢12 ( )
For the Type-I biquad,
(Cg + Cn1)(CB + Ci2)
E = 23
Ci(Cr1 — Cya) (23)
e Cy (Ce + Cu)(Cp + Ch2) (24)
Ca+Cu C1(Cr — Cia)
Cy+ Cs
— 25
CA + Ca? ( )
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Figure 12: GOC CD Type-II second-order filter.

Cs Cs

= Ca+Cau * Ca+Car (26)
For the Type-II biquad,
SRR o
G- ”@%‘6‘; (29)
H= T?CT (30)
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Figure 13: SFG of Type-I second-order filter.
Consider a second order lowpass notch (LPN) filter in the s-domain[7],

14 s2/Q32
1+ 5/(Q00) +52/0F

H,(s)= (31)

Performing the bilinear transformation, where 7" is the sampling period, the

z-domain transfer function is given by

(2t +1) — (2] = 2)27" + (a7 + 1)27*

B [ R e O e P P o RV P M
where 1 = 2/(T) > 1 and z¢ = 2/(T) > 1. Also defining
o= 4)(a2 + 20/Q + 1) ~ (%T) (3)
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Figure 14: SFG of Type-II second-order filter.

B = (20/2Q)[4/(zd + z0/Q + 1)] = QT/Q (34)

v=4/(zi +1) = (7)™ (35)

Note that @« < 8 < 1 in general. The transfer function becomes

(- o) 4
M= e e pe v (- P 9

For the Type-I implementation, the following equations must be satisfied

o= CICZ(CaI - CaZ)(Cbl - 062) (37)
(Ca+ Ca1)(Ca + Co2)(Cp + Cr1)(Cs + Cia)
C1C3(Cr1 — Cha)

(Ca+ Ca2)(Cs 4+ Cn)(Cp + Chg)

p= (38)
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C105(Ca1 — Ca2)(Ch1 — Cho)

= CalCa+ Cu)(Ca £ Cua)(C + Crt)’ (39)
To minimize the capacitance spread, a reasonable choice is
Ch=Ch=Ca=Cp=Cu=Cp=1 (40)
Cor=Cn=1+8 (41)
Cp=Cy =K, (42)

where é should not be too small for the acceptable sensitivity. The capacitor

values can be solved as,

K =\/6/v/a+(6/2)? —1—68/2m/8/(QT) -1 (43)

C3 = (B/a)(6/(k+1+0)) ~ Q. (44)
For the unity gain,

CQ == Cs =1 (45)

Cs = (Q2/Q2) (K +1). (46)

Note that the dynamic scaling and minimum capacitance scaling should be
performed by the suitable software. In the same analysis, if the Type-II

implementation is chosen[6],

o= C1C2(Car — Co2)(Ch1 — Che) (47)
(Ca+ Ca)(Ca+ Cu2)(Cr 4+ Cot)(Cr + Cha)
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Ci(Chi — Cha)

P = Co ¥ Cn)(C T O 5 C) (48)
= C105(Cua = Cua)(Cun — Cp) (49)
Ce(Ca+ Ca1)(Ca + Ca2)(Cp + Ch1)
The capacitor values can be assigned as follows:
Ca2=Cra=C1=Cy=Cy =Cp =1 (50)
Ca=Chn=1+$6 (51)
Cs=Cp=K, (52)
to reduce the capacitance spread, then K is the solution of
(K + 1) 2K 410 4 (5 e EDEE_FUZB)
For unity DC gain, Qo7 < 1 and ;T < 1, it can be shown,
K = 1\/6/(QT) — 1 (54)
Cy=Cs=1 (55)
Cs = (88)/(a(K + 1+ 8)(K + 1)) ~ 1/Qq (56)
Co = (/7)(K + 1+ Cy) ~ (/2K +1+ Cy). (57)

From the above analysis, it has been showed that Type-I is suitable for high
Q (quality factor > 1) application and Type-II should be used in the low Q

circuits in terms of small capacitance spread.
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