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The global mean surface air temperature (SAT) has demonstrated the “unequivocal 

warming”. To understand the impact of the global warming,  it is very important to 

quantify the spatial and temporal patterns of the surface air temperature change. 

Currently, most observational studies rely on in situ temperature measurements over 

the land and ocean. But the uneven and sparse nature of these temperature 

measurements may cause large uncertainty for the climate analysis especially at local 

and regional scales. With the rapid development of satellite data, it is possible to 

estimate spatial complete surface air temperature from satellite data using advanced 

statistical models. The satellite data-based estimation can serve as a better data source 

for local and regional climate analysis to reduce analysis uncertainty. 



  

In this dissertation, I firstly examined the uncertainty of four mainstream gridded 

SAT datasets over the global land area (i.e., BEST-LAND, CRU-TEM4v, NASA-

GISS, NOAA-NCEI). The comprehensive assessment of these datasets concludes that 

different data coverage may cause remarkable differences (i.e., -0.4 ~ 0.6°C) of 

calculated large scale (i.e., global, hemispheric) average SAT anomaly using different 

datasets. Moreover, these datasets show even larger differences at regional and local 

scale (5°×5°). The local and regional data differences can lead to statistically 

significant differences on linear trends of SAT estimated using different datasets. The 

correlation analysis shows strong relationship between the uncertainty of estimated 

SAT trends and the density of in situ measurements across different regions. 

To reduce the uncertainty of surface air temperature data, I developed a statistical 

modelling framework which can estimate daily surface air temperature using remote 

sensing land surface temperature and radiation products. The framework uses 

machine learning models (i.e., rule-based Cubist regression model and multivariate 

adaptive regression spline) to characterize the physical difference between land 

surface temperature and surface air temperature by including radiation products at 

both surface and the top of the atmosphere. The model was firstly developed for the 

Tibetan Plateau using Cubist model trained with Chinese Meteorological 

Administration station measurements. Comprehensive evaluation show that the 

Cubist model can estimate the surface air temperature with nearly zero degree Celsius 

bias and small RMSEs between 1.6 °C ~ 2.1 °C. The estimated SAT over the entire 

Plateau for 2000-2015 show that the warming of the western part of the Plateau has 

been more prominent than the rest of the region. This result show the potential 



  

underestimation of conventional station measurements based studies because there 

are no station measurements to represent the rapid warming region. 

The machine learning model is then extended to the northern high latitudes with 

necessary modification to account for the regional difference of the diurnal 

temperature cycle as well as the large data volume of the northern high latitudes. The 

MARS model trained using data over the northern high latitudes from the Global 

Historical Climatology Network daily data archive show a reasonable model 

performance with the bias of around -0.2 °C and the RMSE ranging between 2.1 – 2.6 

°C. Further evaluation shows that the model performs worse over permanent snow 

and ice surface due to the insufficient training data to represent this specific surface 

conditions.  

Overall, this research demonstrated that leveraging advanced statistical methods and 

satellite products can help generating high quality surface air temperature data which 

can provide much needed spatial details to reduce the uncertainty of local and 

regional climate analysis. The model developed in this research is generic and can be 

further extended to other regions with proper modification and training using high 

quality local data. 
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Preface 

The dissertation contains six different chapters. The first chapter provides the overview 

of the scope and background of the research, while Chapter 2 to Chapter 4 describe the 

results of three inter-connected research. The Chapter 5 summarizes the lessons learned 

regarding applying machine learning models to reduce data uncertainty for local and 

regional climate studies, and the last chapter provides the conclusion of the dissertation 

and lay out future work to enhance the research. 

Chapter 2 has been published on the Journal of Geographical Research: Atmosphere. 

Chapter 2 and Chapter 5 have been submitted to the journal Remote Sensing of 

Environment for publication. The submitted manuscript have contributions from Drs. 

Zhen Song, Yuan Zhou, Miaogen Shen, and Baiqing Xu who aided on accessing and 

processing station measurements and satellite observations. Chapter 4 will be 

submitted to peer reviewed journal for publication in the future. The co-author of this 

manuscript also includes Drs. Zhen Song and Yuan Zhou who provided the access to 

satellite derived radiation products.  
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Chapter 1  Introduction 

1.1 Background and motivation 

The global mean surface temperature (GMST) has demonstrated the “unequivocal 

warming” in the climate system (IPCC, 2013), but the warming rate of GMST in the 

last two decades has slowed down because of internal variability (Yan et al., 2016). 

Research argued that this “warming hiatus” is the result of energy redistribution caused 

by large atmospheric and oceanic circulations (Trenberth, 2015; Xie, 2016). However, 

it should be noted that although GMST is a useful indicator for monitoring climate 

change, this integrated indicator has very little direct impact on the human society and 

ecosystems. It is the local, regional and seasonal variations of temperature that are vital 

for assessing impacts of climate change (Nature Geoscience, 2014). Different evidence 

has shown varying warming rate at different regions, such as the “warming hole” in 

central continental United States which has experienced cooling trends that is 

significantly different than rapid warming patterns in neighboring regions (Pan et al., 

2004). However, due to incomplete coverage and uncertainty in data, variations of 

surface temperature at different spatial and temporal scales remain unclear (Ji et al., 

2014).  

Currently, studies mainly rely on model simulations and in-situ observations from 

meteorological stations to quantify surface temperature changes (Dai, 2013; Hegerl et 

al., 2014; Huntington, 2006). Stations over land, the majority of which located in 

Europe and North America, are sparsely and unevenly distributed across different 

continents (Hegerl et al., 2014). To minimize the uncertainty caused by incomplete 
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station coverage, efforts have been made to fill gaps at coarse scales (e.g., 1°-5°) by 

interpolating observations or simply averaging observations from neighboring stations 

(Hansen et al., 2010; Jones et al., 2012; Rohde et al., 2013; Vose et al., 2012). However, 

these spatially filled data may still introduce large uncertainty in the tropics, high 

latitudes, and mountainous regions where long-term high-quality observations could 

be rare. This data uncertainty could affect the estimation of spatial and temporal 

variations of the surface warming rate and its impacts (Thorne et al., 2016).  

For model based research, different assumptions and parameterizations could lead to 

uncertainty in model simulations (Trenberth, 2015; Xie, 2016; Yan et al., 2016). 

Therefore, quantifying the surface warming rate at regional and local scales based on 

different global or regional models could produce different or sometimes contradictory 

results (Trenberth, 2015; Trenberth et al., 2014; Trenberth and Fasullo, 2013). The 

multi-model ensemble mean is usually used to reduce impacts of model uncertainty at 

large scale studies. Although multi-model ensemble mean provides complete spatial 

coverage, models could differ notably at regional and local scales, thus hampering the 

confidence of warming analysis at different spatial and temporal scales. 

Recently, remotely sensed data have been valued for climate studies and model 

improvements (Yang et al., 2013, 2016). Efforts have been made to derive essential 

climate variables (ECVs) for climate studies, such as air temperature, land surface 

temperature, precipitation, and Earth energy budget using remotely sensed data 

acquired since late 1970s (Ashouri et al., 2014; Shi et al., 2016; Shi and Bates, 2011; 

Yu et al., 2008). These satellite products provide unique opportunities to estimate the 

spatial and temporal variations of the surface warming rate because of the global 
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coverage and various spatial and temporal resolutions. However, the data length and 

inconsistency of single-sensor products, due to the short lifetime of satellites/sensors, 

has limited their applications in climate studies so far (National Research Council, 

2004). To address this issue, National Research Council has proposed the development 

of climate data records (CDR) from environmental satellites by combining data from 

multiple platforms and sensors for long-term climate studies (National Research 

Council, 2004). Although there would still be uncertainty in CDRs, the complete data 

coverage can provide valuable insights to quantify the surface warming rate and its 

impacts across different spatial and temporal scales.  

With the increasing amount of satellite observations available to the research 

community, researchers have turned the attention to use advanced statistical modeling 

approach to provide an alternative of the surface temperature datasets, especially for 

the regions that are experiencing dramatic change in the recent decades (Alfieri et al., 

2013; Good, 2015; Hall et al., 2013; Meyer et al., 2016; Rayner et al., 2018; Shen and 

Leptoukh, 2011; Squintu et al., 2019; Zhang et al., 2016). Particularly, machine 

learning models have become widely popular to estimate the surface air temperature 

with the remote sensing LST as the main input (Meyer et al., 2016; Noi et al., 2017; 

Xu et al., 2018; Zhang et al., 2016). The application of machine learning on mapping 

SAT is mainly because of the strong correlation between the satellite estimated land 

surface temperature and the station measured surface air temperature across different 

landscapes (Good et al., 2017; Lu et al., 2018; Nielsen-Englyst et al., 2019). However, 

these studies all share the same limitation that the estimated surface air temperature is 

only available for clear sky conditions due to the input land surface temperature data 
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(usually derived from thermal infrared satellite data) are prone to cloud contamination. 

This so called “clear sky bias” makes it difficult to apply the estimated temperature 

data for climate studies in an unbiased manner. As land surface temperature has been 

recognized by the Global Climate Observing System (GCOS) as one of the ECVs 

(WMO, 2016), it becomes more important to address this limitation caused by cloud 

contamination. 

The research of my dissertation is mainly motivated by two factors. The first factor is 

the low confidence of our current understanding of surface air temperature change at 

regional and local scales, which can be attributed to the lack of high quality temperature 

datasets. The second factor is the great potential of leveraging machine learning and 

remote sensing products to provide high quality climate datasets to enhance our 

confidence in local and regional climate analysis. 

In the remaining of this chapter, I will first briefly review the status of current surface 

temperature datasets, including station measurements, global gridded datasets based on 

station measurements, model-based temperature datasets, and remote sensing 

temperature datasets. Afterwards, the overarching research question and three different 

research objectives of this dissertation are outlined before the overview of the 

dissertation structure. 

1.2 Review of current surface temperature data 

1.2.1 Weather station measurements 

It is the invention of the Six’s thermometer (or the maximum-minimum thermometer) 

in 1780 make it possible to accurately measure and record the temperature of a local 
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area over a period of time, for example 24 hours. In 1781, the Meteorological 

Observatory Hohenpeißenberg, the world’s oldest mountain weather station, was 

established (Gantner et al., 2000). It has been continuously measuring temperature 

since then. However, it is not until 1850s that the instrumental records of thermometer 

measured temperature at weather stations become available for different parts of the 

world (Hansen et al., 2010). Since then, the number of available global weather stations 

has been increasing steadily. The archived temperature measurements of these stations 

have become the basis for climate scientists to reconstruct the historical record of global 

surface temperature over the land. Since these temperature measurements were 

collected by different authorities (e.g., states, countries, research groups), there are 

multiple efforts led by different international institutions to collect, curate, archive, and 

distribute the historical temperature measurements for climate studies. Table 1-1 lists 

the major collections of historical temperature measurements that are freely available 

for public use. With the increasing volume of temperature measurements, the 

uncertainty of the reconstructed time series of GMST has decreased notably (Hansen 

et al., 2010; IPCC, 2014; Jones, 2016).   

Table 1-1. The summary of the available collections of weather station measured 
historical near surface air temperature data. 

Name Source Data frequency Number of 
stations 

GHCN-M NOAA NCEI Monthly ~26,000 

GHCN-D NOAA NCEI Daily ~100,000 

ISD NOAA NCEI Sub-daily/ 
daily/monthly ~35,000 

ISTI ISTI Daily ~36,000 

BEST Berkeley Earth Daily ~39,000 
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Although the number of the weather stations worldwide has been increasing steadily, 

both the distribution of the station and the distribution of the increase has been rather 

uneven. Most of the stations are clustered at the regions with higher level of economic 

development before the 1950s, such as, North America, Europe, and the coastal regions 

of Australia. On the contrary, the less developed and less populated regions of the world 

have been neglected for very long time period, such as, Africa, South America, high 

mountainous regions, and high latitudes. Unfortunately, these regions are also very 

vulnerable to anthropogenic climate change. Although the distribution of the historical 

and current weather stations is uneven, many studies have concluded that the current 

archive of weather station data can capture the change of GMST over land with limited 

uncertainty with proper data processing (Hansen et al., 2010; IPCC, 2014; Jones, 2016). 

The high confidence at the global scale can be attributed to the spatial autocorrelation 

of the near surface air temperature. Theoretically, I need at least 400 weather stations 

that are located at the selected locations of the world over the land to accurately capture 

the trend of GMST (Thorne et al., 2017). However, the lack of weather station 

measurements has led to low level of confidence for the regional and climate analysis.   

1.2.2 Station based gridded temperature data 

Although the number of weather stations is growing, the station measured data can only 

represent the temperature of a limited region. To infer the temperature of any given 

corner of the world, researchers have developed spatial interpolation methods to 

generate the temperature of any given locations based on available station temperature 

measurements. Here, I want to emphasize the difference between “measurement” and 

“estimation”. As defined by the Oxford English Dictionary, “measurement” is “the 
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size, length, or amount of something, as established by using an instrument or device 

marked in standard units”; “estimation” is “a rough calculation of the value, number, 

quantity, or extent of something.” In this dissertation research, “measurement” only 

refers to the temperature data measured by weather stations. Thus, all SAT datasets 

other than the station measurements are the estimation of the temperature of any given 

locations using predefined mathematical methods. These datasets are all subject to 

errors and uncertainty associated with the data and methods that they are using.   

With different spatio-temporal interpolation methods, several global gridded 

temperature datasets are developed by different institutions independently (Table 1-2). 

Each of these datasets is developed by different institutions independently. The 

Berkeley Earth uses more than 36,000 globally distributed weather station data and a 

modified Gaussian process regression (or Kriging interpolation) to generate the BEST-

LAND (Rohde et al., 2013). The Climate Research Unit at the University of East Anglia 

(UEA-CRU) uses the temperature measurements of about 5,600 weather stations 

worldwide to produce the CRU-TEM4v, which is used as the land component of the 

global temperature dataset maintained by United Kingdom’s Met Office Hadley Center 

(HadCRU) ( Jones et al., 2012). Difference from other datasets, the CRU-TEM4v does 

not fill the data gap for any months and any 5°×5° grids with no station measurements 

(Jones et al., 2012). The Goddard Institute for Space Studies at the National 

Aeronautics and Space Administration (NASA-GISS) generates its long-term global 

gridded temperature estimation by weighted averaging the temperature measurements 

of the weather stations (within 1200 km radius for each 2°×2° grid) from the GHCN-

M archive (Hansen et al., 2010). The NOAA National Center for Environmental 
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Information (NOAA-NCEI) also maintains its long-term global gridded temperature 

data using the temperature measurements of the GHCN-M via the empirical orthogonal 

teleconnection (EOT) method which minimize the data noise and preserve large scale 

dynamics and trends (Smith et al., 2008; Vose et al., 2012). These four datasets are 

created to routinely monitor the GMST change and are updated monthly to reflect the 

most recent dynamic of the GMST.  

Table 1-2. The summary of the global gridded near surface air temperature datasets. 

Name Grid size Interpolation 
method 

Temporal 
range Reference 

BEST-LAND 1°×1° Gaussian process 
regression* 1753-present Rohde et al., 

(2013) 

CRU-TEM4v 5°×5° Not applicable 1850-present Jones et al., 
(2012a) 

NASA-GISS 2°×2° Inverse distance 
weighting 1880-present Hansen et al., 

(2010) 

NOAA-NCEI 5°×5° Empirical orthogonal 
teleconnection 1880-present Vose et al., 

(2012) 

CRU-Ts.4.02 0.5°×0.5° Angular distance 
weighting 1901-present Harris et al., 

(2014) 
*: The BEST-LAND dataset uses a modified version of Gaussian process regression by 
accounting for the station measurement error in their iterative weighting process 
(Rohde et al., 2013). 

Besides the CRU-TEM4v, the UEA-CRU also produces a high resolution monthly 

climate dataset (i.e., CRU-Ts.4.02) using the similar source of weather station 

temperature measurements (Harris et al., 2014). The purpose of the CRU-Ts.4.02 is not 

to monitor the global temperature change, but to provide a high resolution climatology 

dataset that contain useful spatial details for climate impact studies. Therefore, the 

CRU-Ts.4.02 includes not only temperature but also precipitation, solar radiation and 

other important meteorological variables. With this purpose, the CRU-Ts.4.02 has been 

widely popular for both global, regional and local studies in ecology, biogeography, 
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and other related fields. However, the accuracy and quality of the CRU-Ts.4.02 has not 

been comprehensively evaluated for regions with limited station measurements. 

Particularly, the analysis of CRU-Ts.4.02 surface temperature data has found that the 

estimated SATs of many 0.5°×0.5° grids are derived only using stations outside of the 

target grids within certain radius (Harris et al., 2014).  

1.2.3 Model-based data 

In addition to the station-based temperature datasets, there are also many climate model 

or land surface model reanalysis data which also contains the estimation of temperature 

at various spatial and temporal resolutions. These datasets are produced via the 

reanalysis process, which is a consistent reprocessing of historical observations from 

both weather stations and satellite sensors using various numerical models (Dee et al., 

2013, 2011; Trenberth et al., 2008). In other words, the reanalysis process uses a 

statistical framework combine the observational information and model simulation via 

physical constraints (Dee et al., 2013).  It firstly started in early 1980s and has evolved 

remarkably since then to produce high quality gridded datasets which are fundamental 

to research in the Earth sciences (Dee et al., 2013). There are several generations of 

reanalysis datasets that are produced by different international institutions, including 

NOAA National Centers for Environmental Prediction (NCEP), NASA Global 

Modeling and Assimilation Office (GMAO), the European Center for Medium-Range 

Weather Forecasts (ECMWF), and the Japanese Meteorological Administration 

(JMA). The major differences between different generations are the statistical 

frameworks and the observation data used during the reanalysis process. 
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Table 1-3 lists the major global reanalysis datasets that has been produced by different 

agencies. Considering the scope of this dissertation, I only summarized the most recent 

version of reanalysis products from various agencies instead of listing all historical 

reanalysis datasets. ECMWF released its newest version of reanalysis data, ECMWF 

Reanalysis version 5 (ERA-5) with its Integrated Forecast System (IFS) (Hersbach and 

Dee, 2016). The ERA-5 has replaced its predecessor ERA-Interim with notable 

improvements, such as, using climate-appropriate inputs, higher spatial and temporal 

resolution, providing uncertainty with 10-member ensemble data assimilation, and 

improved model system and bias correction scheme (Hersbach and Dee, 2016). The 

ERA-5 provides the estimation of SAT at the grid size of 0.25°×0.25° globally for every 

3 hours since 1979 and it will be further extended to 1950s for climate studies. The 

NASA GMAO generates the Modern-Era Retrospective analysis for Research and 

Application version 2 (MERRA-2) reanalysis dataset at the grid size of 0.5°×0.625° 

globally spanning the satellite observing ear since 1980 till present (Gelaro et al., 2017). 

The NOAA NCEP generates its Climate Forecast System Reanalysis (NCEP-CSFR) at 

the coarse grid size of 2.5°×2.5° globally using its most recent operational climate 

forecast system (CFSv2). It has remarkable improvements comparing to its predecessor 

NCEP Reanalysis 2 (NCEP-R2) developed in cooperation with the Department of 

Energy (DOE) with a coupled global atmosphere, ocean, land surface and cryosphere 

reanalysis scheme and improved input data (Saha et al., 2013, 2010). The Japanese 

Meteorological Agency (JMA) also produce a global reanalysis data at the Gaussian 

grid T319l60 (with the approximate grid size of 0.56°×0.56°) spanning from 1958. 

Since JMA’s original project is to develop a 55-year reanalysis dataset, it is named as 
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JRA-55 since then even though the dataset has exceeded its original time span 

(Kobayashi et al., 2015). At last, the NASA Global Land Data Assimilation System 

(GLDAS) generates a suite of datasets at different resolutions for global land only using 

various land surface models (LSM), such as, Noah LSM, Community Land Model 

(CLM), Variable Infiltration Capacity (VIC) LSM, Catchment LSM, and Mosaic LSM. 

The purpose of GLDAS is to produce high quality datasets of fundamental variables 

for the terrestrial hydrological cycle to improve the understanding of land-surface-

atmosphere interactions (Beaudoing and Rodell, 2016; Rodell et al., 2004).    

Table 1-3. The list of the global model-based datasets produced by different 
international institutions. 

Name Temporal range/ 
frequency 

Spatial 
resolution Source Reference 

ERA-5 1979-present/ 
hourly 0.25°×0.25° ECMWF (Hersbach and 

Dee, 2016) 

MERRA2 1980-present/ 
hourly 0.5°×0.625° NASA 

GMAO 
(Gelaro et al., 

2017) 
NCEP-
CSFR 

1979-present/ 6-
hourly  2.5°×2.5° NOAA NCEP (Kanamitsu et 

al., 2002) 

JRA-55 1958-present/ 3-
hourly ~0.56°×0.56° JMA (Kobayashi et 

al., 2015) 

GLDAS 1979-present/ 3-
hourly* 

0.25°×0.25°/ 
1°×1° 

NASA LDAS 
(Land only) 

(Rodell et al., 
2004) 

 

With substantial efforts, these model based datasets provide valuable spatial 

information of fundamental variables of the climate system, including the SAT. 

However, the uncertainty of these datasets are still not fully understood. The 

uncertainty of these model based datasets is the combination of the uncertainty 

inherited from the model and the uncertainty introduced by the input data. Many of 

these model based datasets use observations from different instruments and satellite 

platforms as a part of the inputs. The change of instruments may introduce biases and 
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errors into the model which could further propagate into the final model outputs. 

Various studies have demonstrated the large biases and regional discontinuities of the 

current model based datasets at different geographical regions and time periods (Dee 

et al., 2013; Trenberth et al., 2008).  

1.2.4 Remotely sensed data 

Table 1-4 lists existing global temperature datasets that are derived or collected by 

various satellite missions. In the list, there are three different types of remote sensing 

temperature datasets, i.e., brightness temperature (BT), land surface temperature 

(LST), and temperature profile. The remote sensing BT data are the observations of the 

radiance of the radiation traveling upward from the top of the atmosphere to satellite 

sensors. BT data are usually the raw data containing the information of both Earth 

surface and the atmosphere column. The Advanced Very High Resolution Radiometer 

(AVHRR) onboard the series of NOAA Polar Orbiting Environmental Satellites 

(POES) has been collecting thermal infrared BT data since late 1970s.  

Table 1-4. The summary of remote sensing temperature datasets including temperature 
profiles, land surface temperature (LST), and brightness temperature (BT) of different 
satellite platforms. 

Dataset Name Time coverage Spatial 
resolution Variables* Satellite 

Platform(s) 

AIRS/AMSU 2002-present/ 
daily 1°×1° Temperature 

profile EOS Aqua 

MOD07/MYD07 2000-present/ 
monthly 5 km/ 1°×1° Temperature 

profile EOS Terra/Aqua 

HIRS CDR 1979-2017/ 
daily ~30 km Temperature 

profile NOAA POES 

MOD11/MYD11 2000-present/ 
daily 

1 km/ 
0.05°×0.05° LST EOS Terra/Aqua 

(A)ATSR CDR 1995-2012/ 
daily 

1 km/ 
0.05°×0.05° LST Envisat 
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AVHRR CDR 1981-present/ 
daily 

4 km/ 
0.05°×0.05° BT NOAA POES 

VIIRS LST 2012-present/ 
daily 750 m LST Suomi NPP/JPSS 

 

Although the thermal infrared BT contains a mixed signal of surface and atmosphere, 

BT data has been used to estimate the LST data to monitor the temperature of the “skin” 

of Earth since 1980s. Most thermal infrared LST products are estimated using split-

window algorithms developed for different satellite sensors onboard satellite platforms, 

such as, MODIS, AVHRR, VIIRS, and ATSR/AATSR (Scarino et al., 2017; Wan and 

Dozier, 1996; Yu et al., 2008). These LST datasets have been available since late 1990s 

and early 2000s, which provide useful thermal information of Earth’s surface. 

However, the thermal infrared LST data are only available for clear sky conditions and 

they become unavailable when there is cloud presenting during satellite overpassing 

time. Despite this limitation, it has become more popular in recent years for regional 

and local climate analysis because its strong correlation with the near surface air 

temperature. However, it should be noted that the LST is physically different from the 

SAT which are the common climate variables that are used for the majority of climate 

studies at different scales. 

Additionally, there are also temperature profile products derived from thermal infrared 

sounders onboard different satellite platforms, such as, High-resolution InfraRed 

Sounder (HIRS) and Atmospheric InfRared Sounder (AIRS). These temperature profile 

products contain temperature estimation of multiple vertical layers of the atmosphere 

at different pressure levels (including 2m height). NOAA  NCEI generated a long-term 

climate data records (CDR) temperature profile products using HIRS data ranging from 
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1979 to 2017 with the horizontal resolution of ~30 km (Peng et al., 2016; Shi et al., 

2016). Other temperature profile data include AIRS/AMSU-A monthly gridded 

temperature data at 1°×1° (Chahine et al., 2006) and MODIS products 

(MOD07/MYD07) (Seemann et al., 2003; Sobrino et al., 2015), both starting from early 

2000s. Similarly with the LST data, these thermal infrared temperature profile products 

are only available during clear sky conditions, thus leading to possible clear sky bias in 

the climate analysis. Additionally, the uncertainty of these products are still not fully 

understood because of the insensitivity of the designed thermal sounder channels to 

surface conditions. 

1.3 Research questions and design 

In this dissertation research, I would like to answer the research question that how I can 

use advanced statistical models and remote sensing data to reduce the uncertainty of 

surface air temperature data at regional and local scales. To answer this research 

question, the dissertation research has been further separated into three research 

objectives. 

The first research objective is to quantify the uncertainty of major existing surface air 

temperature datasets that are estimated based on station temperature measurements at 

different spatial and temporal scales. Because of the importance of the GMST, many 

research has focused on reconciling the difference of among different station based 

temperature datasets. However, little attention has been paid to understand how 

different surface air temperature datasets may differ at different spatial and temporal 

scales, and how the difference at different scales may affect the confidence of the 

climate analysis using these data. To answer these questions, I plan to comprehensively 
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quantify the differences of four major global gridded SAT datasets at different spatial 

and temporal scales, and evaluate the impact of the data difference on trend analysis at 

regional and local scales. 

After quantifying the uncertainty of the existing global gridded SAT data, the second 

research objective is to develop a statistical framework to estimate SAT at high spatial 

and temporal resolution using remote sensing product for the Tibetan Plateau. As 

identified by my research of the first research objective, the existing global gridded 

SAT datasets show large uncertainty over the high mountainous regions. The large 

uncertainty is likely caused by the lack of station measurements of these regions. As 

the world’s “Third Pole”, the Tibetan Plateau has experienced dramatic climate change 

in the last decades. However, the uncertainty of existing SAT datasets lead to low 

confidence of the regional and local climate analysis over the Tibetan Plateau. A high 

quality SAT dataset at high spatial and temporal resolution of the Tibetan Plateau is of 

urgent need to improve our understanding of how the climate, ecosystem, hydrological 

cycle have changed over this vulnerable region. Therefore, I developed a machine 

learning based modeling framework to generate a daily SAT data of the Tibetan Plateau 

using remote sensing LST data and radiation products. 

Besides the high mountainous regions, the high latitudes also suffer from large data 

uncertainty related to the lack of station observations as identified by the research of 

my first research objective. The third research objective is to adapt the developed 

machine learning based framework to larger geographical extents. The northern high 

latitudes has seen amplified warming as a whole comparing to the rest of the world. 

However, the lack of in situ measurements has limited the comprehensive 
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understanding of the warming amplification and its impacts on the environment at 

local, regional and global scales. With the successful development of the machine 

learning based framework in the second research objective, I adapted the generic 

framework to the entire northern high latitudes to demonstrate the applicability of the 

machine learning framework to other regions. 

1.4 Structure of the dissertation 

With these predefined three research objectives, the dissertation is organized as follow. 

Chapter 2 describes the research of quantifying the uncertainty of existing global 

gridding SAT datasets over the land area and how the uncertainty affects the confidence 

of local and regional warming trend analysis. Additionally, Chapter 2 also analyzes the 

potential factor that contributes to the uncertainty among these datasets. Chapter 3 

summarizes the research of developing a machine learning based framework to 

estimate the daily SAT over the Tibetan Plateau. Within Chapter 3, different modeling 

strategies are firstly described and then compared. After comprehensive evaluation of 

different modeling strategies, the results of the best modeling strategy are then 

presented. Chapter 3 also presents the warming analysis of the Tibetan Plateau using 

the newly estimated SAT dataset generated from the machine learning model. Chapter 

4 presents the research results of the third research objective by adapting the machine 

learning framework developed in Chapter 3 to the northern high latitudes. This chapter 

firstly describes the importance of high quality SAT data on improving the 

understanding of the climate change over the northern high latitudes. It then presents 

the details on how the machine learning model framework developed over the Tibetan 

Plateau is adapted for the northern high latitudes considering some unique features of 
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the northern high latitudes. Chapter 5 then summarizes the lessons learned from the 

machine learning modeling research on how to avoid potential pitfalls of the machine 

learning model through cautious design and training of a machine learning model with 

the support of physical mechanisms. Last, Chapter 6 summarizes the research of the 

dissertation and emphasize the key findings and future research directions. 
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Chapter 2  Inequality of Weather Station Data Cause Large Uncertainty 

of Regional and Local Climate Analysis 

2.1 Summary 

Several groups routinely produce gridded land surface air temperature (LSAT) data 

sets using station measurements to assess the status and impact of climate change. The 

Intergovernmental Panel on Climate Change Fifth Assessment Report suggests that 

estimated global and hemispheric mean LSAT trends of different data sets are 

consistent. However, less attention has been paid to the inter-comparison at 

local/regional scales, which is important for local/regional studies. In this study I 

comprehensively compared four data sets at different spatial and temporal scales, 

including Berkley Earth Surface Temperature land surface air temperature data set 

(BEST-LAND), Climate Research Unit Temperature Data Set version 4 

(CRUTEM4v), National Aeronautics and Space Administration Goddard Institute for 

Space Studies data (NASA-GISS), and National Oceanic and Atmospheric 

Administration National Center for Environmental Information data (NOAA-NCEI). 

The mean LSAT anomalies are remarkably different because of the data coverage 

differences, with the magnitude nearly 0.4 °C for the global and Northern Hemisphere 

and 0.6 °C for the Southern Hemisphere. This study additionally finds that on the 

regional scale, northern high latitudes, southern middle-to-high latitudes, and the 

equator show the largest differences nearly 0.8 °C. These differences cause notable 

differences for the trend calculation at regional scales. At the local scale, four data sets 

show significant variations over South America, Africa, Maritime Continent, central 

Australia, and Antarctica, which leads to remarkable differences in the local trend 
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analysis. For some areas, different data sets produce conflicting results of whether 

warming exists. Our analysis shows that the differences across scales are associated 

with the availability of stations and the use of infilling techniques. Our results suggest 

that conventional LSAT data sets using only station observations have large 

uncertainties across scales, especially over station-sparse areas. In developing future 

LSAT data sets, the data uncertainty caused by limited and unevenly distributed station 

observations must be reduced. 

2.2 Background 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 

(AR5) concludes that it is confident that the global land surface air temperature (LSAT) 

has warmed since the 1900s, and the increase after the 1970s has been much faster than 

previous years (IPCC, 2014). This high confidence is based on consistent results using 

four LSAT datasets produced independently by Berkley Earth, NASA Goddard 

Institute of Space Studies (GISS), NOAA National Center for Environmental 

Information (NCEI), and Climate Research Unite (CRU) at University of East Anglia 

(Hartmann et al., 2013; Jones, 2016). This consistency is only achieved after 

improvements of these datasets in the recent decade. Jones (2016) asserts that the 

consistency of the large-scale temperature estimates mainly resulted from 1) similar 

raw input station data, 2) similar methods for correcting biases and adjusting 

inhomogeneity of the raw data, and 3) spatial autocorrelation of the temperature data. 

Despite the global LSAT being one of the most direct indicators of climate change, it 

has very little direct impact on ecosystems and human societies, which are mainly 

influenced by local and regional temperature variations. An analysis based on the 
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global LSAT reflects the general status of the surface temperature over the global land, 

but misses the crucial spatial pattern of the surface temperature changes that directly 

influence ecosystems and millions of people (Editorial, 2017). This spatial pattern of 

the LSAT change will directly affect the essential functions of human and natural 

systems, such as vegetation productivity, hydrological events (e.g., snow melting and 

surface run-off), and human health. To produce global temperature records, these 

institutions usually generate gridded datasets first with various methods using 

preprocessed station-based observations at coarse grid-boxes (e.g., 1°–5°) (Hansen et 

al., 2010; Jones et al., 2012; Muller et al., 2013; Vose et al., 2012). These gridded 

datasets have been used in various studies to quantify LSAT changes and assess LSAT's 

impact on human and natural systems at different spatial scales. 

Unfortunately, the confidence regarding spatial details of the LSAT change is still low, 

especially for regions with sparse stations (IPCC, 2014). Most regional- and local-scale 

studies mainly focus on regions with abundant ground-based observations, such as 

Continental United States (CONUS), China, Australia, and Europe. Regional studies 

like these could draw relatively confident conclusions of the regional mean LSAT 

change. However, the confidence is usually low when it comes to the spatial details of 

the LSAT change, which could partially be attributed to the station data quality and 

different preprocessing and gridding methods. Fall et al. (2011) question the potential 

large biases in observations collected by the United States Historical Climatology 

Network, of which many stations cannot meet the official World Meteorology 

Organisation (WMO) siting guidance. However, the overall biases of the network in 

recent decades can be better explained by instrumental changes rather than siting biases 



 

 
21 

(Hartmann et al., 2013; Menne et al., 2010).The confidence of regional analysis is 

worse for observation-sparse regions, such as the Antarctic, high mountains, and other 

sparsely populated areas. Research can usually agree on the sign of the LSAT change 

(i.e., warming or cooling) for the regional mean LSAT by interpolating available sparse 

ground-based observations. However, a significant inconsistency or even disagreement 

in the magnitude and spatial pattern of the LSAT change has been observed (Thorne et 

al., 2016). 

Surprisingly, little attention has been paid to quantify differences among different 

gridded temperature datasets and to assess their impact on the LSAT trend calculation 

at regional and local scales with the importance and wide application of these datasets 

(Thorne et al., 2016). Since IPCC's Fourth Assessment Report (AR4), many efforts 

have been made to improve the data quality of individual gridded LSAT dataset by 

improving spatial coverage, preprocessing, and gridding methods (Hansen et al., 2010; 

Jones et al., 2012; Muller et al., 2013; Vose et al., 2012). The ultimate goal of these 

improvements is to reconcile the differences of the global mean LSAT calculated from 

different data sets, which has been proven successful (Thorne et al., 2016). However, 

no comprehensive quantification of the dataset differences and the impact on the LSAT 

trend analysis has been made at the regional and local scales (Thorn et al., 2016). Vose 

et al. Vose et al. (2005) conducted an inter-comparison between the gridded LSAT 

datasets produced by CRU, GISS, and NCEI at the global, hemispheric, and grid-box 

levels. Their study focused on the impact of different gridding techniques and 

averaging methods on the global and hemispheric mean LSAT (Vose et al., 2005). They 

only provide a comparison of the estimated linear LSAT trends at the grid-box level 
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for the CRU and NCEI data, and conclude that a general agreement is met at the grid-

box level with large regional variations (Vose et al., 2005). Furthermore, with the recent 

improvements of these datasets and the new development of the Berkley Earth LSAT 

dataset, this topic must be comprehensively revisited (Muller et al., 2013). 

In addition, gridded LSAT datasets are all constructed using available observations 

collected by national and regional station networks, which are constantly changing 

through time (Menne and Williams, 2009). In general, the availability of observations 

has significantly increased, especially during 1950–1980 (Hansen et al., 2010). 

However, the change of the data availability is not steady through time, and not even 

across continents (Hegerl et al., 2014). Different datasets have extended their spatial 

coverage over different regions by including networks from various agencies and 

research groups over high latitudes, such as the Antarctic and Greenland (Hansen et al., 

2010; Jones et al., 2012). Despite these “data-hunting” efforts, the number of stations 

used in most, if not all, datasets even decreased in the recent decades (Hansen et al., 

2010; Hegerl et al., 2014). This reduction is mainly caused by the elimination of 

stations in South America and Africa. The reduction could be alarming for both 

developers and users of these datasets mainly because this will increase the dependence 

of the LSAT datasets on specific stations over data-sparse regions. With recent effort, 

the GHCN monthly data (version 4) reverse this decreasing pattern including more 

station data since 1980s (Rennie et al., 2014). This new station data will be used as 

main input for both NOAA and NASA for future products. It is still worthwhile to 

understand how the variation across datasets evolves through time in response to the 

changing data availability. 
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The present study focuses on quantifying the differences among four gridded LSAT 

datasets and their impact on the LSAT trend estimation. Even though most of these 

datasets are using similar raw input data (except BEST which uses much more stations 

than others), different quality control procedures, homogenization methods, and 

gridding techniques could lead to different spatial coverages and values at the grid-box 

levels (Jones, 2016). This analysis intends to perform a comprehensive assessment to 

(i) evaluate the data coverage biases of LSAT at the global and regional scales and (ii) 

quantify the dataset differences and their impact on the LSAT trend estimation at the 

regional and local scales. In this study, I use local scale and grid-box scale 

interchangeably since the grid-box level is the finest scale of gridded datasets. Section 

2 summarizes the information of individual datasets necessary for the inter-comparison 

and preprocessing procedures to make the inter-comparison meaningful. Section 3 

presents the difference of global and hemispheric mean LSAT caused by data coverage 

differences. Sections 4 and 5 present the inter-comparison results. The discussion and 

the conclusion are provided to summarize the inter-comparison results and the 

implications for the future LSAT change analysis and the new LSAT data development. 

2.3 Data and methods 

Table 2-1 summarizes the basic information of four major gridded LSAT datasets used 

in this comparison. These four datasets have been widely used for assessing the status 

of climate change and its impact on ecosystem and society (IPCC, 2014; Jones, 2016) 

because of their rigorous quality control, routine (monthly) updates, good 

documentation and completeness of their archive. Each dataset is briefly described in 

the following section to ensure appropriate interpretation of current inter-comparison. 



 

 
24 

More detailed information of individual data sets should be directed to the references 

listed in Table 2-1. 

Table 2-1. The Summary of BEST-LAND, CRU-TEM4v, NASA-GISS, and NOAA-
NCEI.   

 Grid 
size 

Climatology 
period 

No. of 
stations 

Homogenization 
method  

Interpolation 
method 

referenc
e 

BEST-
LAND 

1°×1° 1951-1980 36,866 “scalpel”: split 
time series using 
detected break 
points and 
automatically 
adjust weight for 
each time series 

Gaussian 
process 
regression/Krigi
ng 

Muller 
et al. 
2013; 
Rohde et 
al. 2013 

CRU-
TEM4v 

5°×5° 1961-1990 5,583 Comparing with 
neighbor stations 

No interpolation 
implemented 

Jones et 
al., 2012 

NASA-
GISS 

2°×2° 1951-1980 7,290 Comparing with 
neighbor stations; 
urbanization 
adjustment 

Distance-
dependent 
weighted 
average of 
station 
observations 
within 1200 km 
radius 

Hansen 
et al., 
2010 

NOAA-
NCEI 

5°×5° 1961-1990 7,280 Comparing with 
neighbor stations 

Two-step (low 
and high 
frequency) 
reconstruction 
using Empirical 
Orthogonal 
Teleconnection 

Smith et 
al., 
2008; 
Vose et 
al., 2012 

 

2.3.1 Berkley Earth Surface Temperature dataset (BEST-LAND) 

The Berkley Earth Surface Temperature land surface air temperature dataset (BEST-

LAND) combines station temperature measurements from 14 different sources with a 

total archive of 44,455 sites (Muller et al., 2013; Rohde et al., 2013). A total of 36,866 

sites have been kept for the final BEST-LAND process after removing duplicate 

stations in different datasets and stations with measurements less than 1 year or missing 

location meta data (Rohde et al., 2013). The largest data source used by BEST-LAND 

is the GHCN-Daily (more than 25,000 stations) and GHCN-Monthly (GHCNM-v3 
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with 7280 stations, which will be replaced by GHCNM-v4 later this year) data archive 

managed by NOAA NCEI. These datasets contain temperature measurements from 180 

countries (Menne et al., 2012). After preprocessing and monthly averaging, the station 

measurements are interpolated into 15,984 equal-area grid cells (with nearly 1.25° 

resolution at the equator) for the earth surface using Gaussian process regression (i.e., 

Kriging interpolation), then regridded into 1°×1° grid-boxes (Rohde et al., 2013; 

Thorne et al., 2016). 

The station data used in BEST-LAND are raw data from each data source with no 

homogenization and limited data quality control. Before the interpolation process, it 

uses a pair-wise method to identify statistical breakpoints within the original data for 

each station compared with its neighboring stations (Rohde et al., 2013). Unlike other 

groups, BEST-LAND does not correct the detected discontinuities potentially caused 

by site relocation, instrument changes, and urbanization effects. Instead, it separates 

original data into different fragments at detected breakpoints and treats these fragments 

as data from different stations. This process, called “scalpel”, is intentionally designed 

to reduce the human bias caused by adjustment (Muller et al., 2013; Rohde et al., 2013). 

An original archive of 36,866 stations produces 179,928 data fragments with the 

“scalpel” process (Rohde et al., 2013). These fragments are then used to produce the 

temperature data field for each cell using Kriging interpolation with an integrated 

iterative bias adjustment and outlier de-weighting process. This process is designed to 

be tolerant of data records with a limited length, thereby allowing majority of the 

reliable station observations to be used in the analysis. BEST-LAND provides 
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temperature anomalies from 1850 to present time comparing to the climatology period 

of 1951–1980. 

2.3.2 Climate Research Unit temperature dataset (CRU-TEM4v) 

CRU-TEM4v is a gridded LSAT dataset provided by the Climate Research Unit at the 

University of East Anglia with the variance adjusted for changing station numbers 

within each grid (i.e., 5° × 5°). The station temperature measurements used in CRU-

TEM4v are combined from multiple data sources with a total of 5583 stations (Jones 

et al., 2012). The main data source is the National Meteorology Services (NMSs) of 

countries across the world comprising 2444 stations in the final archive. Another 

important data source for CRU-TEM4v is the decadal World Weather Report (WWR) 

starting from 1950s onwards, which provides data records for underrepresented nations 

in NMS data (mainly South America, Africa, Asia and many island groups) (Jones et 

al., 2012). With its most recent data archive update, CRU-TEM4v has improved its 

data coverage over the Arctic compared to its predecessor (i.e., CRU-TEM3v) by 

including more data for the Arctic region provided by Bekryaev et al. (2010) and the 

Danish Meteorological Institute reports. 

Instead of performing homogenization for all stations, CRU mostly relies on 

homogenized temperature records provided by NMSs (Jones et al., 2012). Additionally, 

CRU identifies 219 data records for additional adjustment of homogeneity caused by 

various factors, such as change of instruments, site locations, and local environments. 

The adjustment is performed by comparing with multiple neighboring stations (Jones 

et al., 2012). The time series of absolute temperature are then converted into anomalies 

by simply subtracting the long-term average for each month derived from a base period 
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(i.e., 1961–1990 for CRU-TEM4v) for each station, which is referred to as the climate 

anomaly method (CAM). Finally, a temperature anomaly of each grid-box is generated 

by simple averaging of all the available station anomalies within each grid-box (Jones 

et al., 2012). Station availability changes through time for some grid-boxes; hence, 

CRU-TEM4v has also adjusted the variance of each grid-box to account for this factor 

using the method outlined in Brohan et al. ( 2006). 

2.3.3 NASA GISS temperature dataset (NASA-GISS) 

The NASA Goddard Institute for Space Studies produces a global land surface air 

temperature dataset using the reference station method (Hansen et al., 2010). The 

majority of station temperature time series used by the NASA-GISS is obtained from 

GHCN-Monthly version 3 with a total of 7280 stations. By selecting stations with at 

least 20 years of records, nearly 6300 stations are kept for further analysis. Hansen et 

al. (2010) also use monthly data collected by the Scientific Committee on Antarctic 

Research (SCAR) since 1957 to fulfill data gaps in the GHCN station archives. Similar 

with CRU-TEM4v, the original time series are inspected for homogeneity and adjusted 

for inhomogeneity if necessary. Moreover, Hansen et al. (2010) utilize satellite night-

light radiance data to identify the stations affected by urban effects. They correct these 

station measurements by comparing them with their neighboring rural stations. 

After the adjustments, the station measurements are converted to anomalies compared 

to their long-term average for each month derived from the base period of 1951–1980. 

The temperature anomalies for 2°×2° grid cells are generated by weighted averaging 

of the anomalies for all stations within 1200 km of that grid. The weight for each station 
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is a linear function decreasing with its distance from the grid center (Hansen et al., 

2010). 

2.3.4 NOAA NCEI temperature dataset (NOAA-NCEI) 

The NOAA National Center for Environmental Information Surface Temperature 

Dataset at a 5° × 5° grid-box is created by separately constructing low-frequency and 

high-frequency variations. The station observations used by NOAA-NCEI are from the 

GHCN-Monthly dataset (GHCNM-v3). The inhomogeneity adjustments for each time 

series are implemented for each station using a pair-wise method compared with its 

neighboring stations (Menne & Williams, 2009). All homogenized data records are 

then converted to anomalies with the base period for 1961–1990. For each grid-box, 

the anomalies for the stations within the grid-box are averaged into a “super-

observation,” which is used for the final reconstruction process (Vose et al., 2012). 

The reconstruction for the NOAA-NCEI assumes that temperature anomaly time series 

can be divided into two different components: low frequency variations that reflect 

long-term changes and high frequency variations that represent temperature variability 

over short time periods (Smith et al., 2008; Smith and Reynolds, 2005; Vose et al., 

2012). Therefore, the low frequency component is first derived by a simple spatio-

temporal smoothing method (Smith et al., 2008). The residual anomaly time series for 

each grid-box is then fitted to a group of large-scale spatial-covariance modes derived 

from the modern era data (1982–1991, with a maximum spatial coverage) using the 

empirical orthogonal teleconnections (Smith and Reynolds, 2005; van den Dool et al., 

2000). The final temperature anomaly time series for each grid-box is obtained by 

simply adding the smoothed low-frequency time series and the fitted high-frequency 



 

 
29 

time series. The residuals of the reconstructed data compared with the original data are 

treated as background noise potentially arising from uneven sampling, observation 

errors, etc. (Vose et al., 2012). The reconstruction is designed to capture the key trends 

and patterns while neglecting the local, short-term irregularities, and provide anomalies 

in unsampled areas by identifying spatial-covariance modes (Smith et al., 2008). For 

consistency with its ocean counterpart, the anomalies over the land grid-box (with base 

period of 1961–1990) are converted to anomalies comparing to base period of 1971–

2000 (Vose et al., 2012). 

2.3.5 Data processing 

Each dataset has its own spatial resolution and climatology period; hence, all datasets 

must be adjusted to the same spatial resolution and climatology period to ensure a 

meaningful inter-comparison. First, NOAA-NCEI and CRU-TEM4v are adjusted to the 

LSAT anomaly values against the monthly climatology of 1951–1980 by subtracting 

the 30-year mean value (1951-1980) for each month from the original anomaly. After 

the climatology adjustment, fine resolution datasets (i.e., BEST-LAND and NASA-

GISS) are aggregated to the spatial resolution of 5°×5° by weighted average 

considering the grid area change caused by the latitude. 

The comparison is performed at different spatial scales, including global, hemispheric, 

latitudinal, regional, and local scales. The spatial average is calculated using weighted 

average considering the grid area change caused by the latitude. The latitudinal average 

is calculated for each 20° latitudinal band, while the regional average is calculated 

based on the regions described in Table 2-2. In addition, the spatial coverage is different 

across datasets because of the different gridding methods and source data used by each 
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group. Hence, I define two valid spatial coverages for calculating the spatial average: 

native and common data coverage. The native coverage for a dataset includes all grid-

boxes, of which the dataset has a non-missing anomaly value, whereas the common 

coverage only includes grid-boxes, of which all four datasets have non-missing 

anomaly values. All spatial averages are calculated based on both native and common 

coverages. 

The datasets are also compared at different temporal scales, including annual and 

seasonal mean. Therefore, the monthly anomaly is averaged through a given year or 

season. In this study, I define four seasons as December–January–February (DJF), 

March–April–May (MAM), June–July–August (JJA), and September–October–

November (SON), where the December value is from the previous year. 

For trend calculation, I  use ordinary the least square (OLS) method to estimate the 

linear trend for the given time periods (i.e., 1901-2017, 1951-2017, 1981-2017 and 

1998-2017). However, temperature data are usually strongly autocorrelated, which will 

lead to underestimation of standard error for OLS-estimated trends (Hausfather et al., 

2017; Lee and Lund, 2004; Santer et al., 2000). To address this issue, I consider an 

autoregressive-moving-average model with the order of 1 for each component (i.e., 

ARMA(1,1)) to adjust standard errors of estimated trends for  global, hemispheric, 

regional and local scales. More details of the adjustment method can be found in 

Hausfather et al. (2017) and Lee & Lund (2004).  

To test whether LSAT differences across datasets cause significant impact on linear 

trend calculation, I adopt the method from Hausfather et al. (2017) which calculates the 

statistical significance of linear trends of dataset difference time series. In theory, when 
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data coverage is the same, difference between trends estimated from two time series is 

the same as trends estimated from the difference time series. This method can avoid 

the dependency of different datasets caused by similar source data (Hausfather et al., 

2017). Because BEST-LAND uses much more stations to generate the gridded product, 

I use it as our reference for the difference time series calculation. The difference time 

series of CRU-TEM4v, NASA-GISS, and NOAA-NCEI comparing to BEST-LAND 

are then used to estimate the difference trends using OLS. I also use ARMA(1,1) model 

to address the autocorrelation in difference time series. 

Table 2-2. Geographical Boundaries of the Regions Used for Calculating the Spatial 
Average.  

Continent Min. latitude 
(degrees North) 

Max. latitude 
(degrees North) 

Min. longitude 
(degrees East) 

Max. longitude 
(degrees East) 

North 
America 1 

(NA1) 
15 50 −165 −50 

North 
America 2 

(NA2) 
50 85 −165 −50 

South 
America 1 

(SA1) 
−23.5 15 −90 −30 

South 
America 2 

(SA2) 
−60 −23.5 −80 −40 

Europe (EUR) 35 80 −15 60 

Africa (AFR) −35 30 −20 50 

Asia 1 (AS1) 5 50 45 150 

Asia 2 (AS2) 50 80 60 180 

Maritime 
Continent 

(MCT) 
−10 5 90 165 

Australia 
(AUS) −50 −10 110 155 

Antarctica 
(ANT) −90 −60 −180 180 

Greenland 
(GRL) 60 90 −70 −10 



 

 
32 

2.4 Differences of the global and hemispheric mean LSATs 

I first examine how different spatial coverages affect the calculation of large-scale 

mean LSAT (i.e., global and hemispheric averages) by comparing the spatial average 

calculated using different coverages (i.e., native and common coverages) for each 

dataset. Figure 2-1 shows the differences between the global and hemispheric averages 

of the native coverage and the ones of the common coverage. The CRU-TEM4v 

generally has the lowest differences in the mean LSATs calculated using different data 

coverages because CRU-TEM4v does not use interpolation techniques to fill in the 

grid-boxes with no observations (Cowtan & Way, 2014; Jones et al., 2012). Thus, it 

has the smallest native coverage similar with the common data coverage for all datasets. 

 

Figure 2-1. Differences between the temperature anomalies calculated using the native 
coverage and the common coverage for four datasets (ANN: annual; DJF: December–
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January–February; MAM: March–April–May; JJA: June–July–August; and SON: 
September–October–November). 

For the global scale, the data coverage caused differences are relatively stable for the 

annual mean, ranging between ±0.2°C, but vary remarkably for the seasonal mean, 

especially for DJF and MAM before 1960, which vary between ±0.4°C. The difference 

caused by the data coverage is substantial considering that the magnitude of global 

warming is around 1.8°C since 1900 (Jones, 2016). NASA-GISS and BEST-LAND 

have the largest differences because they both use infilling techniques to estimate 

temperatures of the grid-boxes with no stations. Meanwhile, NOAA-NCEI has smaller 

differences, followed by CRU-TEM4v. Figure 2-2 depicts that BEST-LAND and 

NASA-GISS have the highest percentage of valid land area for the whole study period 

because of spatial infilling, especially over high latitudes and the tropics. 
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Figure 2-2. Decadal change of the percentage of land areas with valid LSAT anomaly 
values for different 10-degree latitudinal bands for each dataset. 

The difference of the northern hemisphere (NH) mean LSAT has the largest variation 

before 1950s for both annual and seasonal mean LSATs. The variation is relatively 

smaller for the annual mean and warm seasons (JJA and SON) (i.e., ±0.2°C), but much 

larger for the cold seasons (DJF and MAM) ranging from −0.6°C to 0.4°C. The large 

variation before 1950s are mostly caused by the data coverage differences for 0–70°N 

(Figure 2-2). The difference caused by the data coverage of this region is mostly caused 

by the low data coverage of CRU-TEM4v and NOAA-NCEI, which do not provide 
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LSAT for grid-boxes with no station observations (Jones et al., 2012; Smith et al., 2008; 

Vose et al., 2012). 

In contrast with the northern hemisphere, the difference for the southern hemisphere 

mean LSAT shows the largest variations after the 1950s. The difference ranges from 

−0.4°C to 0.3°C for the annual mean LSAT and DJF mean LSAT.  It varies within 

(−0.6, 0.4)°C for MAM/SON and (−0.6, 0.6)°C for JJA. The large variation after 1950s 

is mostly caused by the rapid increase of the data coverage in BEST-LAND and NASA-

GISS (Figure 2-2). This data coverage improvement is the result of the extensive efforts 

to add new station observations over the southern high latitudes (Hansen et al., 2010; 

Rohde et al., 2013). Although the number of stations over the southern high latitudes 

is still very limited, BEST-LAND and NASA-GISS use spatial interpolation methods 

to fill in the data gaps, which provides complete data coverage for this region. Notably, 

the difference in data coverage for the SH results in an obvious trend for certain time 

periods, such as in MAM 1970-2000 (Figure 2-1). 

Furthermore, I examine the impact of dataset differences on the estimated trend for 

different time periods and seasons (Table A1). For global mean LSATs, CRU-TEM4v, 

NASA-GISS, and NOAA-NCEI all show significant difference trends comparing to 

BEST-LAND for both annual and seasonal during 1951-2017. The difference trends 

range from 0.01 to 0.02 degree/decade. This positive difference trend pattern also 

presents in NH for almost all seasons and datasets, while it only appears in NASA-

GISS and NOAA-NCEI for SH. During 1981-2017, CRU-TEM4v shows a significant 

trend difference with BEST-LAND for both global and NH mean, while NASA-GISS 

and NOAA-NCEI mainly differ with BEST-LAND for SH. Due to relative short time 
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period for 1998-2017, I only find that CRU-TEM4v differs significantly from BEST-

LAND for NH trends of mean LSATs. 

Although a previous analysis claims that large-scale mean LSAT should be robust 

against the dataset choice (Jones, 2016), our analysis shows that it is sensitive to the 

data coverage of different datasets. The difference causes significant trend differences 

estimated from different data. This issue should be examined more carefully in the 

future IPCC assessment. The users of these datasets should be cautious in terms of the 

conclusions inferred from the global/hemispheric mean LSAT using only single 

dataset, particularly for seasonal mean temperatures. 

2.5 Latitudinal and regional LSAT differences 

2.5.1 Decadal and annual mean LSAT comparison 

Figure 2-3 and Figure 2-4 demonstrate the differences of the regional mean LSAT 

anomalies for different latitudinal zones and predefined regions in Table 2-2. I only 

show the decadal mean values instead of the individual years or months to focus on the 

systematic differences rather than on the inter-annual variability. Figure 2-3 shows that 

overall LSAT changed remarkably for all regions in all four datasets, especially in 

recent decades, but with strong latitudinal variations. However, the differences among 

the four data sets are evident despite the agreement on the general warming patterns. 
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Figure 2-3. Differences of the decadal annual mean LSAT anomaly between the four 
data sets for different latitudinal bands. 

As shown in Figure 2-3, the four datasets have the smallest differences at the southern 

mid-latitude and northern mid-to-high latitude (i.e., 30–50°S and 30–70°N), which are 

regions with rich ground stations (Figure 2-2). The differences are larger near the 

equator and the largest in the southern high latitude and polar regions (i.e., 50–70°S, 

10°S–10°N, and 70–90°N/S), where only a very limited number of, if any, station 

observations are available. The differences are as large as 0.8°C for some time periods. 

Although previous research suggests that the differences among these data sets are 

reduced at a global scale because of the introduction of more stations (Jones, 2016), I 

find that the latitudinal differences do not necessarily decrease through time, especially 

for high latitudes. For example, the difference between CRU-TEM4v and NOAA-

NCEI at 70–90°N is approximately 0.6°C for the 21st century, which is much larger 

than those in the 1980s and 1990s. One possible reason for this pattern is the decline of 

available stations in certain regions (Figure 2-2). Additionally, different interpolation 
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methods also contribute to this difference. BEST-LAND and NASA-GISS assign large 

weights to very high latitude stations to represent unsampled regions in high latitude 

regions, while CRU-TEM4v and NOAA-NCEI tend to give larger weights to closer 

regions with more stations available.  

For the regional mean LSAT, Figure 2-4 shows that the four datasets have the highest 

degree of agreement for North America, Europe, Asia, and Australia. For less-

populated regions, such as South America, Greenland, and Antarctica, the differences 

are much larger than the others.  

 

Figure 2-4. Same as Figure 2-3, but for different regions described in Table 2-2. 

This pattern is highly correlated with the spatial distribution of available ground 

stations (Figure A1 in Hansen et al. (2010)). Similar with the latitudinal comparison, 

the differences among these datasets show notable increases in recent decades for most 
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continents, including high-latitude North America (NA2), South America, Asia, Africa, 

Maritime Continent, Australia, Antarctica, and Greenland. 

Figure 2-5 shows the latitudinal and regional comparison using the Taylor diagram 

(Taylor, 2001). The annual mean LSAT anomaly time series are used in these 

comparisons. BEST-LAND has the best spatial coverage, and the values calculated 

from BEST-LAND are used as the reference for the diagram because no “true” values 

exist for the latitudinal/regional mean LSAT. For the latitudinal comparison (Figure 

2-5a) the Taylor diagram confirms that high-latitude and polar regions have the lowest 

degree of agreement among these datasets, followed by the tropics. In addition, CRU-

TEM4v and NOAA-NCEI tend to have larger deviations from the reference (i.e., 

BEST-LAND), whereas NASA-GISS has better agreement with BEST-LAND. For the 

regional comparison (Figure 2-5b), Antarctica, Greenland, Maritime Continent, and 

South America show the largest variations, while Europe, Asia, and low-to-mid latitude 

North America exhibit the best agreement among the four datasets. 

 

Figure 2-5. The normalized Taylor diagram for (a) latitudinal zones and (b) selected 
regions as described in Table 2-2 (both using BEST-LAND as the reference). 
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2.5.2 LSAT warming trend comparison for latitudinal bands 

I compare the latitudinal/regional linear trends estimated using these datasets for 

different time periods (i.e., 1901–2017, 1951–2017, 1981–2017, and 1998–2017) to 

examine how the temperature differences among these datasets influence the surface 

warming trend analysis at the latitudinal/regional scales. Figure 2-6 illustrates a 

comparison of the annual and seasonal trends for different latitudes. All datasets 

generally show consistent latitudinal patterns of the LSAT trends. For the annual 

trends, the northern mid-high latitudes (i.e., 50–90°N) experience the highest warming 

rates for all time periods. In addition, the warming trends for this region accelerated in 

the recent decades, especially since 1981. However, the increasing warming trend does 

not exist in other latitudes. Some latitudes even experience smaller LSAT trends in 

recent decades. For instance, the LSAT trend of 30–50°N is not significant (around 

0.1°C/decade) for 1998–2017, but it is above 0.2°C/decade for 1951–2017 and nearly 

0.35°C/decade for 1981–2017. This slowdown of warming also happens for 90–50°S. 

The trend for other latitudes do not notably differ in the recent decades.  
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Figure 2-6. The comparison of the linear trends (unit: degree per decade) of the annual and seasonal mean LSAT for different latitudinal 
bands. The error bar around each point indicates the adjusted standard error of the linear trend estimation. The linear trends are calculated 
for different time periods. 
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The high latitudes (70–90°S/N) have the largest seasonal variations with a larger 

magnitude of warming during the cold seasons (i.e., DJF and MAM for the NH and 

JJA and SON for the SH) and a smaller magnitude of warming during the warm 

seasons. The “warming acceleration” for the northern-high latitudes exists in almost all 

seasons, except in the summer time (i.e., JJA). The southern-high latitudes (i.e., 90–

70° S) only shows a significant warming trend during its spring season (i.e., SON). In 

addition, this region exhibits the “warming acceleration” phenomenon with the 

warming rate reaching almost 1°C/decade in 1998–2017, which is much larger than 

0.3°C/decade for the other time periods. The LSAT trends of 30°S–50°N during DJF 

and MAM for 1998-2017 are insignificant or even negative (i.e., cooling) for these 

latitudinal bands. However, most of them are significantly positive (i.e., warming) for 

the other time periods. 

Despite the general agreements among the four datasets, notable differences also exist 

for the LSAT trends across different latitudes and time periods. For the equator (i.e., 

10°S–10°N), the LSAT trends estimated from CRU-TEM4v are consistently smaller 

by more than 50% than those of the other datasets for the whole study period (1901–

2017). The LSAT trends for the equator of CRU-TEM4v and BEST-LAND for 1951–

2017 are similar, but always smaller than the ones of NASA-GISS and NOAA-NCEI 

for all seasons. For the southern hemisphere mid-to-high latitudes (i.e., 70–50°S), 

BEST-LAND has the highest LSAT trends followed by CRU-TEM4v and NOAA-

NCEI. Meanwhile, NASA-GISS has the lowest LSAT trend for 1901–2017. The 

relative difference of the LSAT trend for this region between BEST-LAND and NASA-

GISS ranges from 62% to 93% for different seasons. For DJF and MAM, the sign of 
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the estimated LSAT trends for this region differs across datasets. This inter-dataset 

differences also occur during the time period from 1951 to 2017. Moreover, the 

estimated LSAT trends for the high latitudes in both hemispheres differ across datasets. 

CRU-TEM4v and BEST-LAND usually have larger estimated trends than NASA-

GISS and NOAA-NCEI for the northern high latitude (i.e., 70–90°N) during most 

seasons and time periods. In the recent decades (i.e., 1981–2017 and 1998–2017), the 

trend differences across different datasets become more remarkable, especially for the 

annual trend and the seasonal trends of summer and fall (i.e., JJA and SON). The largest 

relative differences reach 48%, 61%, and 51% for the annual, summer, and fall LSAT 

trends during 1981–2017.  

Using BEST-LAND as the reference, I test the significance of trend differences for 

different time periods and different seasons (Table A2). CRU-TEM4v has consistently 

significant lower trends for both annual and seasonal mean LSATs during 1901-2017 

over Equator (i.e., S10-N10). During 1951-2017, CRU-TEM4v shows significantly 

higher trends over northern hemisphere (i.e., N10-N70) for annual mean LSATS, while 

this pattern expands to high-latitudes for fall season (i.e., SON). In the recent decades 

(1981-2017 and 1998-2017), CRU-TEM4v shows significant positive trend differences 

for northern latitude bands for most seasons and negative trend differences for southern 

high latitudes (i.e., S90-S50). Meanwhile, NASA-GISS shows significant negative 

trend differences during 1901-2017 for most southern latitudinal bands. It also presents 

significant trend differences for northern latitudes during summer time (i.e., JJA). 

However, the significant trend differences between NASA-GISS and BEST-LAND 

expand to much broader regions from 1951 over the tropics and subtropics (i.e., S30-
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N30). NOAA-NCEI shows the similar pattern to NASA-GISS but with larger 

magnitude of trend differences. In addition, during 1901-2017, NOAA-NCEI also 

appears to have significant trend differences during MAM season for S30-N50 

latitudinal belts. This trend difference analysis indicates that choice of different datasets 

leads to significant differences for warming trend calculation. 

2.5.3 LSAT warming trend analysis for the selected regions 

Similar with the latitudinal band analysis, I also compare the LSAT trends estimated 

using different datasets of different time periods for the predefined regions (Table 2-2). 

The estimated LSAT trends generally have the highest degree of agreements over North 

America, Europe, and Asia, while they notably differ over South America, Africa, 

Maritime Continent, Australia, Antarctica, and Greenland (Figure 2-7). This pattern 

generally agrees with the spatial distribution of the ground stations commonly used for 

generating these datasets. 
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Figure 2-7. Same as Figure 2-6, but for different regions described in Table 2-2. 
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For South America, the LSAT trends estimated using NASA-GISS and NOAA-NCEI 

are consistently higher than those of BEST-LAND. Meanwhile, CRU-TEM4v has the 

lowest LSAT trends for the long-term analysis (i.e., 1901–2017 and 1951–2017). The 

differences are the largest over tropical South America (i.e., SA1), Greenland (GRL) 

and Antarctica (ANT). A large part of the tropical South America is covered by dense 

forests, in which setting up ground stations is difficult and leads to a large uncertainty 

of the observation-based datasets because of the substantial data gaps (Frenne and 

Verheyen, 2016). 

Trends estimated from four datasets differ notably over Antarctica for both annual and 

seasonal mean LSATs. The most notable difference for the annual trends is during 

1981–2017 when BEST-LAND suggests that Antarctica is warming at a rate of 

0.2°C/decade, while other datasets all indicate that it experiences a pause of warming 

or even slight cooling (insignificant) during the last four decades. For the fall season 

over Antarctica (i.e., MAM), the LSAT trends estimated from different datasets often 

disagree with others in terms of whether Antarctica is warming or cooling for different 

time periods. 

For Greenland, these four datasets have a large discrepancy for both annual and 

seasonal trend calculation. NASA-GISS has the highest LSAT trends for the long-term 

(i.e., 1901–2017 and 1951–2017) for all seasons, while this pattern does not persist in 

recent decades (i.e., 1981–2017 and 1998–2017). For the spring time (i.e. MAM) 

during the whole study period (i.e., 1901–2017), NASA-GISS presents an evidence of 

a warming Greenland with a significant warming rate of 0.15°C/decade, while NOAA-

NCEI shows no significant warming during the same periods.  
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Using BEST-LAND as reference, CRU-TEM4v shows significantly different trends 

over high latitude North America (NA2), Europe (EUR), and South America (SA1, 

SA2) during 1901-2017. More regions, including the lower part of Asia (AS1), Africa 

(AFR), maritime continent (MCT) and Antarctica (ANT), also show significant trend 

differences after 1951, especially since 1981 (Table A3). Although NASA-GISS has 

better agreement with BEST-LAND in terms of absolute anomalies, it also appears to 

have significant trend differences for lower part of Asia, South America, Africa, 

maritime continent, and Antarctica mostly after 1951. Surprisingly, NASA-GISS has 

significant negative trend differences comparing with BEST-LAND over lower part of 

North America (NA1) during 1901-2017, which is a region with abundant station 

observations. The substantial trend difference is likely the combined impact of different 

station data (BEST uses a much larger station data archive than CHCNMv3) and 

different homogenization methods. Further research is necessary to further detangle 

contributions of individual factors. For NOAA-NCEI, it also exhibits significant trend 

differences with BEST-LAND over South America, Africa, high latitude regions in 

Asia and North America, Europe, and Antarctica. 

2.6 The comparison of grid-box LSAT and local trend analysis 

Existing studies rarely examine the LSAT difference across datasets at the local scale 

and its impact on local trend calculation. I present herein the comparison results for 

both the LSAT and estimated trend at the grid-box scale. 
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2.6.1 Grid-box LSAT comparison 

Figure 2-8 demonstrates the coefficients of variations (COV) for the LSATs of the four 

datasets. I show the temporal evolution of the LSAT variations across datasets by 

separating the whole study periods into six 20-year periods (i.e., 1901–1920, 1921–

1940, 1941–1960, 1961–1980, 1981–2000, and 2001–2017). Figure 2-8 (a–f) shows 

the spatial pattern of the COV for different time periods, while Figure 2-8 (g–l) 

demonstrate the histogram of the COV for each time period. The COV is only 

calculated for the land grid-boxes, where the four datasets have valid values during the 

time period. 

 

Figure 2-8. The spatial pattern of the coefficients of variation (COV) of the annual 
mean LSAT between four data sets for different time periods (i.e., 1901–1920, 1921–
1940, 1941–1960, 1961–1980, 1981–2000, and 2001–2017) (a–f). Only common data 
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coverage areas are shown in the map; and the corresponding histograms of the COV of 
the annual mean LSAT between the four data sets for different time periods (g-l). 

The continental United States and Europe have the lowest LSAT variations 

across datasets for all time periods, while other parts of the world experience gradual 

decreases of the LSAT variations across datasets through time. The decrease of the 

LSAT variations for most parts of the land, including South America, Africa, and 

majority of Asia, happens during 1981–2000, which might have been a result of the 

introduction of new ground stations worldwide. However, some regions still have 

relatively large variations since 1981 despite more stations being used for these 

datasets, including the west part of South America, Sahel, Indian subcontinents, 

Southeast Asia as well as the west and central Australia. The variation drops 

substantially in the last two decades (i.e., 2001–2017) for most regions. Only a small 

portion of the grid-boxes over central Australia, central Africa, and high latitudes still 

have large variations. This temporal evolution is clearly captured by the leftward 

shifting of the histograms across different time periods (Figure 2-8 g–l). 

2.6.2 Grid-box LSAT trend comparison 

Figure 2-9 shows the spatial pattern of the annual LSAT trend for the common data 

coverage areas during different time periods (i.e., 1901–2017, 1951–2017, 1981–2017, 

and 1998-2017). BEST-LAND has the highest spatial resolution and full data coverage; 

hence, I use the trends estimated from BEST-LAND as the references because of the 

lack of “true values” of LSAT trends. 
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Figure 2-9 Upper panel: the spatial pattern of the linear trends (unit: degrees per decade) of the annual mean LSAT of BEST-LAND for 
1901–2017, 1951–2017,1981–2017, and 1998-2017. Bottom panel: relative trend differences of the annual mean LSATs for CRU-
TEM4v, NASA-GISS, and NOAA-NCEI compared to BEST-LAND over 1901–2017, 1951–2017, 1981–2017, and 1998-2017. Only 
common data coverage areas are shown in the maps. 
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The upper panel in Figure 2-9 shows a clear spatial pattern of the surface warming for 

different time periods based on BEST-LAND. Northern mid-to-high latitudes 

experienced the highest rate of surface warming. The surface warming for majority of 

the land grid-boxes has accelerated since 1951, with the most profound acceleration 

occurring at Europe, North Africa, North China, Central Asia, and Siberia. However, 

certain regions experience smaller warming trends or even cooling trends in the recent 

two decades (1998-2017). These regions include northeast part of North America, 

southwest tip of Africa continent, central Asia, and northern China. The spatial patterns 

of the surface warming based on other datasets (i.e., CRU-TEM4v, NASA-GISS, 

NOAA-NCEI) are similar with the one of BEST-LAND (not presented here). 

The lower panel of Figure 2-9 shows the relative difference maps of the annual trends 

of CRU-TEM4v, NASA-GISS, and NOAA-NCEI compared to BEST-LAND. CRU-

TEM4v shows the largest differences compared to BEST-LAND, especially over 

station-sparse regions, such as Africa. The relative trend difference can even reach 95% 

(in the central part of Africa). Other regions, such as South America, high latitudes in 

North America, and Asia also show large relative differences over different time 

periods. The large discrepancy of the LSAT trends occurred at Africa and South 

America.  

For NASA-GISS and NOAA-NCEI, they both show relatively small trend differences 

over a long period (1901-2017, 1951-2017). But station sparse regions like tropical 

South America, Africa and north Australia demonstrate large trend differences reaching 

50%. In recent decades (1981-2017), trend differences increase remarkably over central 

Asia, India, southern Africa continent and north Australia (more than 80%). For the 
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past two decades, due to relative short data length, the estimated trends show substantial 

differences across all datasets. 

Figure 2-10 demonstrates the scatter plots of the annual trend comparison among 

different datasets for different time periods using BEST-LAND as the reference. CRU-

TEM4v appeared to be the most inconsistent with BEST-LAND with the lowest 

correlation coefficients (R), largest mean differences (MD), and largest root mean 

square differences (RMSD) for all time periods. In contrast, NASA-GISS has the 

highest degree of agreement with BEST-LAND for the annual trend supported by the 

highest R and smallest RMSD for all time periods. For some grid-boxes, different 

datasets disagree on the sign of estimated LSAT trends. The degree of this 

disagreement increases in recent decades because of the large standard errors of the 

estimated trends caused by short data records and large inter-annual variability. 
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Figure 2-10 The scatterplots of the linear trend of the annual mean LSAT for different 
time periods (i.e., 1901–2017, 1951–2017, 1981–2017, and 1998-2017) for CRU-
TEM4v, NASA-GISS, and NOAA-NCEI compared to BEST-LAND. Red points 
indicate the estimated trends are not significant for either dataset; blue points represent 
that only one estimated trend is significant; green points indicate both estimated trends 
are significant.   

Table 2-3 presents the detailed statistics for the annual and seasonal trend comparison 

across datasets using BEST-LAND’s estimations as the reference. CRU-TEM4v 

generally has the largest differences compared to BEST-LAND, while NASA-GISS 

has the smallest differences. For the seasonal trend comparison, all datasets seem to 

have a higher degree of agreement for MAM and DJF for all datasets. Despite the high 

correlation coefficients in the recent decades, the variations of the LSAT trends 

increase with time, which are shown by the increasing RMSD values for both annual 

and seasonal LSAT trends for all datasets. The RMSD for CRU-TEM4v increases from  
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Table 2-3. Statistics of the estimated trend differences (unit: degrees per decade) among CRU-TEM4v, NASA-GISS, and NOAA-NCEI 
using BEST-LAND as the reference for 1901–2017, 1951–2017, 1981-2017, and 1998–2017. (R: correlation coefficient; MD: mean 
difference; RMSD: root mean square difference; ANN: annual; MAM: March–April–May; JJA: June–July–August; SON: September–
October–November; and DJF: December–January–February). 

  
CRU-TEM4v NASA-GISS NOAA-NCEI 

R MD RMSD R MD RMSD R MD RMSD 

19
01

–2
01

7 ANN 0.674 -0.001 0.064 0.858 -0.001 0.029 0.787 -0.005 0.036 
MAM 0.781 0.000 0.069 0.923 0.000 0.033 0.872 -0.006 0.044 
JJA 0.602 -0.001 0.065 0.752 0.000 0.035 0.633 -0.001 0.042 
SON 0.689 -0.001 0.066 0.842 -0.002 0.032 0.746 -0.004 0.042 
DJF 0.761 -0.001 0.078 0.906 0.001 0.038 0.857 -0.006 0.051 

19
51

–2
01

7 ANN 0.778 0.010 0.077 0.903 0.007 0.039 0.832 -0.006 0.052 
MAM 0.861 0.004 0.084 0.943 0.005 0.047 0.895 -0.013 0.065 
JJA 0.610 0.008 0.082 0.768 0.004 0.047 0.660 -0.004 0.058 
SON 0.783 0.016 0.086 0.899 0.009 0.042 0.754 -0.001 0.064 
DJF 0.855 0.012 0.096 0.939 0.010 0.056 0.871 -0.005 0.082 

19
81

–2
01

7 ANN 0.841 0.024 0.121 0.897 -0.005 0.071 0.834 -0.023 0.093 
MAM 0.911 0.014 0.127 0.942 -0.008 0.091 0.899 -0.029 0.123 
JJA 0.772 0.027 0.127 0.839 0.003 0.089 0.796 -0.006 0.105 
SON 0.875 0.030 0.143 0.930 -0.001 0.085 0.823 -0.024 0.130 
DJF 0.838 0.020 0.162 0.928 -0.012 0.092 0.833 -0.027 0.137 

19
98

–2
01

7 ANN 0.864 0.038 0.253 0.914 -0.012 0.168 0.811 -0.014 0.226 
MAM 0.922 0.021 0.266 0.957 -0.015 0.216 0.895 -0.033 0.292 
JJA 0.620 0.052 0.253 0.648 -0.002 0.196 0.557 0.014 0.221 
SON 0.846 0.049 0.307 0.897 0.000 0.192 0.730 -0.011 0.285 
DJF 0.893 0.010 0.345 0.936 -0.030 0.231 0.858 -0.022 0.323 
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(0.064, 0.078) °C/decade for 1901–2017 to (0.253, 0.345) °C/decade for 1998–2017. 

The RMSD for NASA-GISS also increases from (0.029, 0.038) °C/decade (1901–

2017) to (0.068, 0.216) °C/decade (1981–2017). 

2.7 Discussion and conclusion 

In this study, I thoroughly examine the differences of four LSAT datasets (i.e., CRU-

TEM4v, BEST-LAND, NASA-GISS, and NOAA-NCEI) at different spatial and 

temporal scales and their potential impacts on the trend calculation. The data coverage 

used for calculating the large-scale mean LSAT at global and hemispheric scales has a 

strong impact on the final time series. For the global annual mean LSAT, different data 

coverages introduce an LSAT anomaly difference at the magnitude of 0.15°C. This 

difference is even larger for different seasons (i.e., 0.4°C for DJF and MAM and 0.2°C 

for JJA and SON). For the hemispheric mean LSAT, the anomaly differences caused 

by differences in data coverages are nearly 0.6°C and 0.3°C for the cold and warm 

seasons, respectively. 

The mean LSAT differences at the latitudinal scale are most prominent at high latitudes 

(e.g., 70–90°N and 50–90°S) and at the equator (i.e., 10°S–10°N). The decadal mean 

LSAT differences are as large as 0.6°C and 0.3° for high latitudes and the equator, 

respectively. These large differences lead to notable differences for the LSAT trend 

estimation. The relative difference of the LSAT trend for the high latitudes and the 

equator ranges from 35% to 60% for different seasons and time periods. Meanwhile, 

the LSAT differences across datasets for the southern high latitudes cause different 

signs for the estimated LSAT trends for the recent decades. This notable disagreement 

would lead to different conclusions of whether the warming of the region is accelerating 
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or slowing down, which is essential for understanding the status of the current climate 

change and its impacts on the ecosystem and the society. 

At the regional scale, these datasets have the highest degree of agreement over North 

America, Europe, and Asia, but notably differ over South America, Antarctica, Africa, 

and Maritime Continent. This difference may be attributed to the skewed distribution 

of the ground station data used to generate these datasets and different interpolation 

methods. Most stations are clustered in regions that are more developed and populated. 

The regional mean LSAT differences are nearly 0.4°C even after 2000. As a result, the 

trends estimated from different datasets differ substantially for those regions. The 

relative trend difference across datasets ranges from 28% to 93% over different regions 

and time periods. The LSAT differences across datasets for Antarctica and Greenland 

even cause different signs of the estimated trends, thereby leading to contrasting 

conclusions on these most vulnerable regions. 

At local scale, our analysis show that the regions with the largest LSAT variation across 

datasets are grid-boxes over South America, Africa, Indian subcontinent, central and 

northern Australia, southeast Asia, and Siberia, which was consistent with the regional-

scale analysis. The LSAT variation across datasets decreases with time, with the lowest 

variation among datasets seen after 2000. For the trend analysis, the largest variation 

of the trends often occurs at the grid-boxes with the largest LSAT variation across 

datasets. The relative difference of trends estimated from different datasets can reach 

nearly 90% over different regions and time periods. CRU-TEM4v generally appears to 

have the largest grid-box scale differences, while NASA-GISS has the smallest 

differences compared to BEST-LAND. The uncertainty of the LSAT trend estimation 
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caused by the dataset differences (i.e., RMSD) ranges from 0.035 to 0.086°C/decade 

for the long-term trend (i.e., 1901–2017) to 0.097–0.305°C/decade for recent decades 

(i.e., 1981–2017). 

Based on the previous comparison across different scales, the dataset differences 

strongly depend on the station data availability at any scales. Indeed, the main challenge 

of generating observation-based LSAT data sets is to obtain homogenized station 

observations and ingest them into the final product. The stations used for each dataset 

vary significantly because of different quality control procedures and raw data sources 

(Table 2-2). Examining the variation of the number of stations used by each dataset 

over different regions and grid-boxes would further advance the understanding of the 

dataset variation. CRU provides the number of stations used in each grid-box to 

generate CRU-TEM4v, which is used herein as a proxy since CRU uses least amount 

of stations in the final dataset.  

Figure 2-11 demonstrates the coefficients of variation (COV) of the grid-box LSAT 

trend for different time periods and its relationship with the number of stations available 

in each grid-box. The box plots showed that the spread and the mean value of the COV 

when there are less than 5 stations in the entire 5°×5° grid-box were significantly larger 

than the grid-boxes with more stations. This large cross-dataset variation could be 

expected because using a very limited number of stations to capture the full LSAT 

dynamic of LSAT across such a large area (e.g., approximately 500 km × 500 km at 

low latitudes), especially over regions with complex topography or heterogeneous 

landscapes, is very challenging (EDW, 2015). Additionally, the within-grid-box 

distribution can also contribute to this variation since interpolation methods used by 
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BEST-LAND and NASA-GISS tend to give less weights to the clustered stations while 

they give more weights to the isolated stations in the grid-box. 

 

Figure 2-11. Left panel: the spatial patterns of the linear trend of the annual mean LSAT 
for different time periods (i.e., 1901–2017, 1951–2017, 1981–2017, and 1998-2017) 
among the four datasets. Gray areas are grids, where at least two datasets do not have 
significant trends for that time periods. Right panel: corresponding box-plots of the 
coefficients of variation of the linear trend for the grid-boxes grouped by the number 
of stations available in the grid boxes used by CRU-TEM4v. 

This limitation of the observation-based data sets needs to be addressed to increase the 

confidence of climate change studies based on these data sets. One way to address this 
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issue is to improve the design and implementation of the global station network. 

Different international initiatives have already started the process of improving the 

density and the quality of station measurements, such as the International Surface 

Temperature Initiative (ISTI, Rennie et al. (2014)) and the new network 

implementation plan described by the Global Climate Observing System (Thorne et al., 

2017b; WMO, 2016). 

Although continuing this improvement is critical and necessary, doing so is time and 

resource consuming. Moreover, the improvement would mostly benefit the data set for 

the future, which cannot directly reduce the variations across datasets for the past. In 

contrast, remote sensing data are in a unique niche to provide nearly spatial-complete 

information over land surface. Several off-the-shelf global surface temperature 

products at various spatial resolutions for the recent decades (since the 1980s) are 

currently available, including both land surface temperature and air temperature 

profiles. Remotely sensed products suffer from their own limitations, such as the 

observation time change across satellites and warm biases due to cloud contamination. 

On the other hand, atmospheric reanalysis data have also been very popular in various 

applications. Despite its known uncertainties, reanalysis data provide valuable 

complete global temperature data at various resolutions. With appropriate statistical 

methods, combining global station network observations, reanalysis temperature data 

and remotely sensed temperature products to generate a spatial-complete LSAT data is 

possible. Efforts in this aspect are already ongoing, which could significantly benefit 

climate change studies requiring LSAT data sets (Merchant et al., 2013; Thorne et al., 

2017b). 
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Chapter 3  Estimating the Near Surface Air Temperature of the Tibetan 

Plateau  

3.1 Summary 

The Tibetan Plateau (TP) has experienced rapid warming in recent decades. However, 

the meteorological stations of the TP are scarce and mostly located at the eastern and 

southern parts of the TP where the elevation is relatively low, which increases the 

uncertainty of regional and local climate studies. Recently, the remotely sensed land 

surface temperature (LST) has been used to estimate the surface air temperature (SAT). 

However, the thermal infrared based LST is prone to cloud contamination, which limits 

the availability of the estimated SAT. This study presents a novel all sky model based 

on the rule-based Cubist regression to estimate all sky daily SAT using LST, incident 

solar radiation (ISR), top-of-atmosphere (TOA) albedo and outgoing longwave 

radiation (OLR). The model is trained using station data of the Chinese Meteorological 

Administration (CMA) and corresponding satellite products. The output is evaluated 

using independent station data with the bias of -0.07 °C and RMSE of 1.87°C. 

Additionally, the 25-fold cross validation shows a stable model performance (RMSE: 

1.6-2.8 °C). Moreover, the all sky Cubist model increases the availability of the 

estimated SAT by nearly three times. I used the all sky Cubist model to estimate the 

daily SAT of the TP for 2002-2016 at 0.05°×0.05°. I compared our all sky Cubist model 

estimated SAT with three reanalysis datasets (i.e., GLDAS, CLDAS, CMFD). Our 

model estimation shows similar spatial and temporal dynamics with these existing data 

but outperforms them with lower bias and RMSE when benchmarked against CMA 

station data. The estimated SAT data could be very useful for regional and local climate 
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studies over the TP. Although the model is developed for the TP, the framework is 

generic and may be extended to other regions with proper model training using local 

data. 

3.2 Background 

The Tibetan Plateau (TP) is the world’s highest plateau in central Asia with an average 

elevation higher than 4000 meters above sea level (ASL) (Figure 3-1(a)) (Yang et al., 

2014). As the world’s “Third Pole”, it is the origins of major rivers in Asia and regulates 

regional and global weather patterns (Yao et al., 2018). Many previous studies reported 

that the Tibetan Plateau, similar with other high mountainous areas, has experienced 

more rapid surface temperature change comparing to many other parts of the world, 

especially after early 1950s.   The reported warming exists for both mean, minimum, 

and maximum surface air temperatures (SAT), leading to the decreasing diurnal 

temperature range of the TP (Duan and Xiao, 2015; Li et al., 2005; Liu et al., 2009; Liu 

and Chen, 2000; Yang and Ren, 2017). As a consequence of the SAT change, the TP 

has shown remarkable changes of its cryosphere, hydrological cycles, and ecosystems. 

For example, Shen et al. (2015) reported that the snow cover of the TP has reduced by 

5.7% during 1997-2012;  Yang et al. (2014) demonstrated that the central TP 

experiences more convective precipitation and more surface runoff while the southern 

and eastern regions experience reduction in both precipitation and surface run off in 

recent decades; multiple studies observed that the vegetation activity shows strong 

response to surface temperature change over the TP (Cao et al., 2018; Cong et al., 2017; 

Shen et al., 2015). 
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Figure 3-1. (a) The elevation map of the Tibetan Plateau and the location of the China 
Meteorological Administration (CMA) stations (black triangles) and the Institute of 
Tibetan Plateau Research (ITP) stations (red pentagram) within the Tibetan Plateau; 
(b) the elevation distributions of the CMA stations (blue line) and the GMTED DEM 
for the entire TP (red line). 

However, previous studies heavily rely on SAT data measured by unevenly distributed 

meteorological stations (Figure 3-1 (a)). Figure 3-1 (b) shows the elevation distribution 

of the CMA stations and the elevation distribution of the radar-based digital elevation 

model (DEM) of the entire TP. Over 70% of the CMA stations are located at relatively 

low elevation (< 4,000 meters ASL) and the eastern part of the TP, while almost no 

operational CMA stations are placed beyond 5000 meters ASL. The sparse and biased 

station samples may increase the uncertainty of local and regional climate analysis and 

corresponding impact studies (Pepin et al., 2015; Rao et al., 2018; Yao et al., 2018). 

Alternatively, previous studies also use several spatially complete SAT datasets which 

are produced through either data interpolation or data assimilation, such as, Global 

Land Data Assimilation System (GLDAS) data, Chinese Meteorological Forcing Data 

(CMFD), Chinese Land Data Assimilation System (CLDAS), and Climate Research 

Unit (CRU) high resolution climate dataset. These datasets provide important 

information for the regions with no station measurements. However, the spatial 

resolutions of these datasets are relatively coarse, which may cause large uncertainty 
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in applications, especially for the region of the TP with complex terrain (An et al., 

2018). Additionally, these datasets, developed at global or national scales, have not 

been comprehensively validated for the TP and usually have large uncertainty 

associated with the methods or land surface models used during their production.    

Meanwhile, remotely sensed land surface temperature (LST) has been widely used to 

study regional and global climate change due to its strong correlation with SAT and its 

global coverage from multiple satellite missions (Good et al., 2017; Pepin et al., 2016). 

Using monthly LST data of Moderate resolution Imaging Spectroradiometer (MODIS), 

Qin et al. (2009) reported that the warming rate of the TP has shown notable 

dependency on the elevation during 2000-2006. Despite the strong correlation between 

LST and SAT, they are two distinct variables with different physical definitions. To 

overcome this limitation, researchers have developed various methods to estimate SAT 

using LST of various sensors, such as, MODIS (F. Huang et al., 2017; Lu et al., 2018; 

Zhang et al., 2016), Spinning Enhanced Visible and Infrared Imager (SEVIRI) (Good, 

2015), and Advanced Very High Resolution Radiometer (AVHRR) (Prince et al., 

1998). Most of these methods are based on linear regression using LST and other 

auxiliary input, such as, land cover, surface roughness, day length, and 

evapotranspiration (Good, 2015; F. Huang et al., 2017; Meyer et al., 2016; Noi et al., 

2017; Zhang et al., 2016). Recently, studies have also explored different machine 

learning (ML) models (e.g., support vector machine, artificial neural network, random 

forest, Cubist regression, etc.) to estimate SAT using LST (Meyer et al., 2016; Noi et 

al., 2017; Zhang et al., 2016). Generally, the ML models perform better than linear 

regression models because ML models can better capture the complex relationship 
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between LST and SAT. Besides ML models, spatiotemporal interpolation methods, 

such as, geographically weighted regression, hierarchical Bayesian model, and kriging 

regression, have also been used to generate high resolution SAT using LST and other 

auxiliary inputs (Chen et al., 2014; Li et al., 2018; Lu et al., 2018).   

Despite the recent progress, the LST-based SAT estimation still suffers a major 

limitation caused by the cloud contamination. Since most of current LST data are 

derived from thermal infrared data, the LST data are unavailable when cloud exists 

during satellite overpassing time. The cloud contamination has strong impacts on the 

availability and the quality of the SAT estimated using existing methods. Noi et al. 

(2017) reported that using four instantaneous MODIS LSTs (i.e., daytime and 

nighttime LSTs of both Terra MODIS and Aqua MODIS products) can accurately 

estimate daily SAT with the root-mean-squared-error (RMSE) less than 2 K. However, 

the RMSE of the estimated SAT increases (larger than 3 K) when cloud contamination 

occurs (Noi et al., 2017). To account for cloud contamination, Zhang et al. (2016)’s 

framework estimate the daily SAT by dynamically integrating available MODIS LSTs 

based on their quality. Although Zhang el al. (2016)’s method can increase the 

availability of the estimated SAT, it still requires at least one high quality clear sky 

LST and the estimated SAT has different levels of uncertainty due to the changing 

availability and quality of MODIS LSTs (ranging from 1.5 to 3.5 K) (Zhang et al., 

2016). Zhang et al. (2008) reported that the annual average cloud coverage of the TP 

ranges from 40% - 60% during 1971-2004. The frequent cloud contamination can have 

serious implications on the quality and availability of the estimated SAT using existing 

methods. 
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The main objective of this study is to develop a method that can produce daily SAT of 

the TP with relatively high resolution (i.e., 0.05°×0.05°) that are not or less prone to 

frequent cloud contamination. Different from existing studies, I propose a ML model 

to estimate daily SAT using all available LSTs and remotely sensed radiation variables 

at both the surface and top-of-atmosphere (TOA) levels. These radiation variables are 

available for both clear sky and cloudy sky conditions and contain important 

information about surface energy exchange. Theoretically, the surface energy exchange 

regulates SAT and its difference with LST. Thus, including these radiation variables 

may help capturing the physical process of surface heat exchange thus improving the 

model performance. In this study, I choose the rule-based Cubist regressing (hereafter 

referred as Cubist) as our base model since previous studies all reported that the Cubist 

has the best performance on estimating SAT using LSTs over different regions 

including the TP (Noi et al., 2017; Zhang et al., 2016). To robustly estimate the all sky 

SAT, I also compare two different strategies using 1) one generic model for both clear 

sky and cloudy sky conditions or 2) two separate models for clear sky and cloudy sky 

conditions separately. To the best of our knowledge, this study is the first study using 

machine learning models to estimate daily all sky condition SAT with remotely sensed 

products. The estimated all sky SAT dataset can be very important for climate analysis 

and relevant impact studies for the TP. The structure of this manuscript is organized as 

follow: section 2 describes the data and necessary data processing used in this study; 

section 3 summarizes the overall research method, Cubist regression model, and the 

evaluation strategies of this study; model training and validation results are reported in 

section 4, while section 5 describe the results of cross comparison with existing 
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datasets; section 6 discusses the advantages and limitations of this study while the 

conclusion is presented in section 7. 

3.3 Data 

The data used in this study include 1) the station measured SAT for model training and 

evaluation, 2) the SAT of various reanalysis/forcing datasets for cross comparison, and 

3) the remotely sensed variables as the model inputs (i.e., elevation, LST, surface 

variables and radiation variables). Each category of the data (i.e., station data, remotely 

sensed data, and reanalysis/forcing data) is further described in the corresponding 

subsections with the details that are meaningful to this study. 

3.3.1 Station data 

In this study, the station measured SAT data are used for both model training and 

evaluation (Table 3-1). The main source of the daily average SAT used in this study is 

135 meteorological stations of the TP managed by the Chinese Meteorological 

Administration (CMA). The data between 2002 and 2015 were downloaded from the 

CMA’s National Meteorological Information Center (NMIC) (http://data.cma.cn). 

Additionally, I also collected daily average SAT of 10 individual experiment stations 

managed by different research groups of the Institute of Tibetan Plateau Research (ITP) 

to independently evaluate the Cubist model performance. Different from CMA stations, 

ITP stations have various length of data records since most of these stations are not 

operational meteorological stations. Moreover, three out of 10 ITP stations are located 

in regions with elevation above 5,000 meters ASL, which are used to evaluate Cubist 
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model performance over high elevation regions. The location of the CMA stations and 

ITP stations is presented in Figure 3-1 (a). 

Table 3-1. The summary of observational and model-based surface air temperature data 
used in this chapter. 

Dataset Data Type 
Resolution 

(Spatial/temporal) 
Data 

Source Reference 

CMA Station data - / Daily NMIC  - 

ITP Station data - / Daily TPE Yao et al. 
(2012) 

CMFD Reanalysis data 0.10° / 3-hourly TPE Chen et al. 
(2011) 

CLDAS Reanalysis data 0.0625°/ hourly NMIC Shi et al. 
(2011) 

GLDAS Reanalysis data 0.25° / 3-hourly NASA 
GES DISC 

Rodell et al. 
(2004) 

3.3.2 Remote sensing data 

The remote sensing data used in this study are listed in Table 3-2. The Global Multi-

resolution Terrain Elevation Data 2010 (GMTED2010) was downloaded from the 

United States Geological Survey (USGS). It is produced by combining multiple high-

quality DEM datasets from various international institutions. The GMTED2010 data, 

with an original resolution of 7.5 arc-seconds, were resampled to 0.05°×0.05° by simple 

averaging to match with the resolution of other remotely sensed data. 

Table 3-2. The summary of the remote sensing data used in this chapter. 

Variable Dataset(s) Variable 
Category 

Resolution 
(Spatial/temporal) 

Data 
Source References 

Elevation GMTED2010 Geo-
location 7.5′′ / Static USGS 

Danielson 
& Gesch 
(2011) 

http://data.cma.cn/en
http://en.tpedatabase.cn/
http://en.tpedatabase.cn/
http://data.cma.cn/en
https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm
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Land surface 
temperature 

(LST) 

MOD11C1, 
MYD11C1 

Clear sky 
only 0.05°/ Daily 

NASA 
LP 

DAAC 

Wan et al. 
(2015a, b) 

Incident solar 
radiation (ISR) GLASS05B01 All sky 0.05°/ Daily UMD Zhang et al. 

(2014) 

Outgoing 
longwave 
radiation 
(OLR) 

AVHOLR All sky 0.05°/ Daily UMD Zhou et al. 
(2019) 

Top-of-
atmosphere 

albedo 
(TOAALB) 

AVHALB All sky 0.05°/ Daily BNU Song et al. 
(2018) 

Land surface 
albedo 

(SFCALB) 
MCD43C1 Clear sky 

only 0.05°/ Daily 
NASA 

LP 
DAAC 

Schaaf & 
Wang 
(2015) 

Normalized 
Difference 
Vegetation 

Index (NDVI) 

MOD13C1, 
MYD13C1 

Clear sky 
only 0.05°/ 16-day 

NASA 
LP 

DAAC 

Didan 
(2015a, b) 

Normalized 
Difference 

Snow Index 
(NDSI) 

MOD10C1, 
MYD10C1 

Clear sky 
only 0.05°/ Daily NSIDC 

Hall & 
Riggs 

(2015a, b) 

 

In this study, I use MODIS daily composite LST data in a 0.05°×0.05° grid (i.e., 

MOD11C1 and MYD11C1), which were downloaded from NASA Land Process 

Distributed Active Archive Center (i.e., LP DAAC, https://lpdaac.usgs.gov/) (Wan et 

al., 2015a, 2015b). These products are generated by aggregating MODIS Level 2 LST 

products (i.e., MOD11_L2 and MYD11_L2) with strict quality control. Each product 

(MOD11C1 and MYD11C1) contains both daytime and nighttime LSTs from different 

satellite viewing time. Previous studies have proven that combining all four LST values 

can improve the accuracy of the estimated SAT (Noi et al., 2017; Zhang et al., 2016). 

https://lpdaac.usgs.gov/dataset_discovery
https://lpdaac.usgs.gov/dataset_discovery
https://lpdaac.usgs.gov/dataset_discovery
http://glass.umd.edu/index.html
https://lpdaac.usgs.gov/dataset_discovery
https://lpdaac.usgs.gov/dataset_discovery
https://lpdaac.usgs.gov/dataset_discovery
https://lpdaac.usgs.gov/dataset_discovery
https://lpdaac.usgs.gov/dataset_discovery
https://lpdaac.usgs.gov/dataset_discovery
https://nsidc.org/data
https://lpdaac.usgs.gov/
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In this study, I also use three remotely sensed radiation products, including Global 

LAnd Surface Satellite (GLASS) incident solar radiation (ISR) at the surface, 

University of Maryland’s (UMD) TOA outgoing longwave radiation (OLR), and 

Beijing Normal University’s (BNU) TOA albedo (TOAALB). The GLASS ISR data 

are derived from multiple satellites’ data, including AVHRR, MODIS and available 

geostationary satellites’ data (Zhang et al., 2014). The OLR data are produced using 

AVHRR and MODIS thermal infrared data based on linear regression models derived 

from radiative transfer model (RTM) simulations (Zhou et al., 2019). The TOAALB 

data are also produced using AVHRR and MODIS data with linear models derived 

from RTM simulations (Song et al., 2018). All radiation products are daily data with 

the same spatial resolution of 0.05°×0.05° for all sky conditions. 

The surface variables used in this study include MODIS surface albedo (SFCALB), 

Normalized Difference Vegetation Index (NDVI) and Normalized Difference Snow 

Index (NDSI). The MODIS surface albedo product (MCD43C1) provides daily surface 

albedo in a 0.05°×0.05° grid (Schaaf and Wang, 2015). Although MCD43C1 is a daily 

product, it estimates daily albedo using MODIS data within a 16-day moving window. 

Therefore, it might not reflect the real surface information of a specific day especially 

over regions with rapid surface dynamics. The MODIS NDVI data include MOD13C1 

and MYD13C1, which are aggregated 16-day products in the same 0.05°×0.05° grid 

derived using Terra and Aqua MODIS data respectively (Didan, 2015a, 2015b). Both 

MCD43C1 and MOD13C1/MYD13C1 data were downloaded from NASA LP DAAC. 

Furthermore, the daily MODIS NDSI data (i.e., MOD10C1 and MYD10C1) were 
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acquired from National Snow and Ice Data Center (NSIDC, https://nsidc.org/) (Hall 

and Riggs, 2015a, 2015b) in the same 0.05°×0.05° grid. 

Since LST has strong correlation with SAT, I use the all available LSTs (i.e., four 

instantaneous MODIS) to better capture the diurnal cycle of the surface temperature. 

Because the difference between LST and SAT is related with surface heat exchange, I 

propose to include radiation variables (i.e., ISR, OLR, and TOAALB) to reflect the 

crucial process that may improve the accuracy of estimated SAT. Since surface 

conditions can also affect the difference between LST and SAT, the surface variables 

are also used as candidate inputs for the model. However, the radiation variables are 

available for all sky conditions, while the surface variables are only available for clear 

sky conditions. Thus, including radiation variables would likely increase the data 

availability of the estimated SAT.    

3.3.3 Model-based data 

In this study,  the SAT data of three reanalysis/meteorological forcing datasets  (see 

Table 3-1) are also used to assess the performance of the Cubist model estimated SAT 

of the TP. NASA GLDAS produces reanalysis datasets regularly using multiple land 

surface models at different spatial resolutions (Rodell et al., 2004). I downloaded the 

SAT data from the GLDAS NOAH reanalysis dataset via NASA’s Goddard Earth 

Sciences Data and Information Services Center (GES DISC). The spatial and temporal 

resolution of this dataset is 0.25°×0.25° and 3-hourly respectively with the complete 

coverage over the global land area except the Antarctic since 2000. In addition, I also 

downloaded the SAT data of the CMA’s CLDAS reanalysis data. The CLDAS data are 

produced hourly in a 0.0625°×0.0625° grid since 2008 (Shi et al., 2011; Xie et al., 
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2011). Lastly, the CMFD SAT data were downloaded from the ITP’s Third Pole 

Environment Database (TPE). The CMFD dataset contains 3-hourly SAT in a 

0.1°×0.1° grid from 1979 to 2016, which is generated by dynamically adjusting the bias 

of GLDAS reanalysis SAT data to match CMA station observations via spline 

interpolation (Chen et al., 2011; Yang et al., 2010).    

3.3.4 Data processing 

As mentioned earlier, the GMTED2010 elevation data were aggregated to the 

0.05°×0.05° grid which is the same with all other remotely sensed datasets. To train 

and evaluate the model, I extracted all remotely sensed data for all CMA and ITP 

stations aforementioned (Table 3-1) via nearest neighborhood method. These extracted 

remotely sensed data were then paired with the corresponding station SAT data. The 

station-satellite data pairs were labeled as either clear sky or cloudy sky observations 

based on the quality flags of the satellite data. Considering different satellite data may 

have different cloud masks in their quality flags, I only marked the data as clear sky 

observations when all satellite data’ quality flags were cloud free; otherwise, the data 

were labeled as cloudy observations.  

Since MODIS LSTs are only available under the cloud free condition, the missing 

values were replaced using a temporal moving window (i.e., ± five days) method. When 

there is at least one clear sky LST within this 11-day time period, the clear sky LST 

value which is temporally closest to the target date is used to replace the missing value. 

The purpose of this step is not to accurately predict LST under the cloudy conditions, 

but rather to provide a first guess of LST that can be used by the Cubist model to 

estimate SAT. This step could be replaced by more complex spatio-temporal gap filling 
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of LST data, but it is out of the scope of this study. The sensitivity of the data 

availability and model performance on the moving window size will be discussed later.  

To generate daily NDVI for each grid, 16-day MODIS NDVI data (i.e., MOD13C1 and 

MYD13C1) were firstly merged into one NDVI time series with corresponding date 

information for each grid. The merged NDVI time series were then filtered using 

Savitzkey-Golay method to further remove possible cloud contamination (Chen et al., 

2004). Finally, the filtered time series were interpolated into daily time series based on 

the double sigmoid model. For all reanalysis and meteorological forcing datasets, I 

aggregated their sub-daily SAT values to daily mean SAT by averaging all estimations 

within the same day for each grid but leave them as their native spatial resolutions. 

3.4 Methods 

The overall design of this study is presented in Figure 3-2.  First, all station-satellite 

data pairs were extracted and processed as described in section 2 for model training 

and evaluation. Only part of the CMA station-satellite data (2004-2013) were used for 

model training, while the rest of the CMA station-satellite data and the ITP station-

satellite data were kept for independent model evaluation. The Cubist model was 

trained using the leave-one-station-out (LOSO) strategy to determine the parameters of 

the final model. I use LOSO to reduce the risk of overfitting by mimicking the process 

of estimating SAT for unknown regions with no station data (Meyer et al., 2016). After 

the model parameters were determined using LOSO, I compared two different 

modeling strategies to estimate daily SAT of all sky conditions (i.e., a universal all sky 

model vs. two separate models for clear and cloudy sky separately). The model strategy 

with the best accuracy evaluated using station data was chosen as the final model. 
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Lastly, the final model was evaluated by comparing with independent station data, the 

25-fold cross validation, and cross comparing with the reanalysis/forcing data. The 

basis of the Cubist model and the model training/evaluation methods are further 

descripted in the following subsections. 

 

Figure 3-2. The overall flowchart of the model training and evaluation strategies of this 
chapter. 



 

 
74 

3.4.1 The basis of the rule-based Cubist regression 

The Cubist model is a rule-based regression method developed by (Quinlan, 1993a, 

1993b, 1992). The Cubist model does not give one final model like other machine 

learning methods, but it generates a set of rules and multi-variate predictive models 

associated with the rules based on the independent variables used. Once the rules and 

rule-associated models are determined, a specific set of independent variables will 

correspond to predictive models based on rules that best suits this set of independent 

variables. It is originally developed as a commercial software with limited 

documentation comparing to other popular machine learning methods. It has been 

adapted by researchers using open source statistical language R and become a popular 

model in different disciplines (Kuhn et al., 2018; Kuhn and Johnson, 2013). Despite 

the lack of documentation, the Cubist model is summarized herein based on existing 

research and documentations.  

The Cubist model originates from the M5 model tree (Quinlan, 1992), which is an 

improved version of the simple decision tree model. M5 firstly develops a full tree by 

recursively partitioning all samples into different nodes, which is called tree growing 

process. After the tree is produced, a multiple linear regression model is fitted for each 

node. However, some nodes might have large model errors due to insufficient samples. 

Then, the M5 creates a smaller set of generalized regression models considering the 

training error, the numbers of sample and the goodness-of-fit for each node, which is 

called tree pruning process. After the pruning process, the M5 creates a set of rules and 

corresponding multi-variate linear regression models (Figure 3-3). Specifically, a rule 

is constructed using one or multiple input variables (i.e., variables listed in Table 3-2). 
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For instance, a rule may be set as “elevation > 3500 meters and OLR < 87 W/m2”, 

which creates a subset of data with the elevation higher than 3500 meters ASL and 

OLR lower than 87 W/m2. Although the original tree partitioning is recursive, final rule 

sets after pruning may be overlapping, which means a sample may be assigned into 

multiple subsets based on different rules. In these cases, predictions from different 

subsets will be averaged to generate the merged prediction.  

 

Figure 3-3. The schematic of the non-committee Cubist regression model. 

Next, the Cubist model utilize a boosting-like technique to enhance its prediction 

performance with a process named committee prediction (Kuhn and Johnson, 2013). 

Since the M5 model tree does not produce perfect prediction, the Cubist model uses 

the model error of the initial model to adjust the original dependent variable (i.e., SAT 

in this study) and creates a new M5 model tree using same inputs and processes. This 

process repeats multiple times which is predefined to create the final model and each 
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individual M5 model is considered a committee (Figure 3-4). The final prediction of 

the Cubist model is calculated by averaging corresponding predictions of each 

committee. 

 

Figure 3-4. The structure of the rule-based Cubist regression model with M committees. 

3.4.2 Model training and evaluation strategies 

To build and evaluate the proposed model, the station-satellite data pairs were separated 

into two sets: 1) the training set and 2) the validation set. The training set contains CMA 

station-satellite data pairs from 2004 to 2013, while the validation set includes all ITP 

station-satellite data pairs and the ones of CMA of the year 2002, 2003, 2014, and 2015. 

As mentioned earlier, I compare two different strategies to estimate SAT of all sky 

conditions (strategy I: a universal all sky model; strategy II: two models for 

clear/cloudy sky conditions separately). Table 3-3 lists all candidate models for both 

strategies using different combinations of variables listed in Table 3-2, including, 
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elevation, LSTs, radiation variables, and surface variables. Since surface variables are 

only available for clear sky conditions, only Strategy II’s clear sky models include them 

(i.e., NDVI, NDSI, and SFCALB) as model inputs.  

Table 3-3. The summary of variables used in different Cubist models in this chapter. 

Model 
Type # Geolocation 

& Elevation Day of Year LST Radiation 
Variables 

Surface 
Variables 

Clear 
Sky 

(CLR) 

0 Yes Yes Yes - - 

1 Yes Yes - Yes - 

2 Yes Yes Yes - Yes 

3 Yes Yes - Yes Yes 

4 Yes Yes Yes Yes - 

5 Yes Yes Yes Yes Yes 

Cloudy 
Sky 

(CLD) 

0 Yes Yes Gap-filled - - 

1 Yes Yes - Yes - 

4 Yes Yes Gap-filled Yes - 

All Sky 
(ALL) 

0 Yes Yes Gap-filled - - 

1 Yes Yes - Yes - 

4 Yes Yes Gap-filled Yes - 

 

In the Cubist model, two parameters need to be determined through training, i.e., the 

number of committees and the number of neighbors. During the training process, I used 

the LOSO strategy to select model parameters to avoid the overfitting issue as 

mentioned earlier (Meyer et al., 2016). Firstly, the training data were grouped by 

stations. For each iteration, a series of Cubist models were fitted using different 

combinations of model parameters using data of all stations except one which was 

randomly chosen. Then, the models were evaluated using the data of the left-out station. 

After each station has been used as the left-out station to evaluate different model 
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parameters, the final model parameters were selected based on the model performance 

across all iterations. 

To evaluate the final Cubist model, I first used the validation dataset of CMA stations 

of the year 2002, 2003, 2014 and 2015 to assess the model performance when it is 

applied to data of different years. Additionally, the model was also evaluated using 

independent data of 10 ITP stations. Furthermore, I carried out a 25-fold cross 

validation experiment to examine the robustness of our model.  

Lastly, I applied the final Cubist model to the entire TP for the year of 2014. The 

estimated SAT of the TP was cross compared with three reanalysis/forcing datasets 

listed in Table 3-1. The main purpose of the cross comparison is to evaluate the spatial 

and temporal (i.e., seasonal) pattern of the estimated SAT. Additionally, I also 

compared the accuracy of our Cubist estimation and the existing datasets using CMA 

station data as the reference since all datasets have their own uncertainty. 

3.5 Model training and evaluation results 

3.5.1 The comparison of different modeling strategies 

The statistics of all candidate models listed in Table 3-3 are presented in Table 3-4. For 

clear sky models, the full model (i.e., CLR-5) has the best performance with the lowest 

RMSE and the highest R2. The clear sky model without surface variables (i.e., CLR-4) 

also achieves comparable performance with the full model (CLR-5). However, when 

LSTs are replaced by TOA radiations (i.e., CLR-0 vs. CLR-1, CLR-2 vs. CLR-3), the 

performance of the models without LSTs are worse than the models with LSTs. The 

clear sky models indicate that LSTs have strong impacts on the Cubist model 

performance while radiation variables can be good supplemental variables to improve 
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the model performance. Figure 3-5 demonstrates the density scatter plots of all Cubist 

models for the estimated daily mean SATs against the CMA station measurements. 

Table 3-4. The comparison of the training statistics for all Cubist models listed in Table 
3-3. 

Model Type Model 
Number 

Bias  
(℃) 

RMSE  
(℃) R2 Data 

Count 

Clear Sky 
Model 
(CLR) 

0 -0.134 1.373 0.978 102,457 
1 -0.027 1.937 0.955 102,457 
2 -0.133 1.344 0.979 102,457 
3 -0.039 1.864 0.958 102,457 
4 -0.111 1.291 0.980 102,457 
5 -0.108 1.265 0.981 102,457 

Cloudy Sky 
Model 
(CLD) 

0 -0.091 1.618 0.969 268,938 
1 -0.018 2.058 0.949 268,938 
4 -0.096 1.484 0.974 268,938 

All Sky 
Model 
(ALL) 

0 -0.104 1.549 0.972 371,395 
1 -0.021 2.048 0.951 371,395 
4 -0.106 1.434 0.976 371,395 

 

For cloudy sky models, the model with the temporally gap-filled LSTs and radiation 

variables (i.e., CLD-4) has the best performance with lowest RMSE. However, the 

model performance deteriorates when either gap-filled LSTs or radiation variables are 

dropped out from the model (i.e., CLD-0, CLD-1). Nonetheless, the model with only 

gap-filled LSTs (CLD-0) still outperforms the model with only radiation variables 

(CLD-1), which is similar with clear sky models. Moreover, the best cloudy sky model 

(CLD-4) performs slightly worse than the corresponding clear sky model (CLR-4) 

which may be caused by the uncertainty of gap-filled LSTs. 
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Figure 3-3-5. The density scatter plots of all 12 Cubist models listed in Table 3-3 for 
training results: (a) CLR-0, (b) CLR-1, (c) CLR-2, (d) CLR-3, (e) CLR-4, (f) CLR-5, 
(g) CLD-0, (h) CLD-1, (i) CLD4, (j) ALL-0, (k) ALL-1, (l)ALL-4. 

The best all sky model is the one with both gap-filled LSTs and radiation variables 

(ALL-4), followed by the model with only gap-filled LSTs (ALL-0) and the model 

with only radiation variables (ALL-1). Moreover, the best all sky model (ALL-4) has 
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better overall performance than the best cloudy-sky model (CLD-4) but underperforms 

the best clear sky model (CLR-5). However, the al sky model, ALL-4, can estimate 

daily SAT for much more observations instead of the clear sky only model (CLR-5) 

(i.e., number of data points: 371,395 vs. 102,457) with comparable overall accuracy. 

In practice, this advantage can largely increase the data availability without notably 

sacrificing the data quality.   

Table 3-5 summarizes the validation results for all 12 Cubist models using temporally 

independent CMA station data (of the year 2002, 2003, 2014, and 2015). For all sky 

models, I further calculated the statistics for clear sky and cloudy sky observations 

separately to directly compare with the results of clear/cloudy sky models. For clear 

sky condition, all models with LSTs as inputs show comparable performance with each 

other but outperforms the models without LSTs. This further confirms that LSTs have 

major contribution to accurately estimate daily mean SAT. The best model is still the 

full model with all variables as inputs (CLR-5). For cloudy and all sky models, the 

models with both gap-filled LSTs and radiation variables are the best model of its 

category (i.e., CLD-4 and ALL-4). Figure 3-6 shows the density scatter plots of the 

best models within each category (i.e., CLR-5, CLD-4, and ALL-4). For the model 

ALL-4, the density scatter plots of clear sky and cloudy sky observations are also 

presented separately to directly compare with the results of CLD-4 and CLR-5 (Figure 

3-6 (c-d)). 

Table 3-5. The comparison of the statistics for the validation results for different cubist 
models listed in Table 3-3. In this table, the validation for all sky models is further 
separated for clear sky and cloudy sky data. 

Model 
Type 

Model 
Number 

Data 
Type 

Bias  
(℃) 

RMSE 
(℃) R2 Data Count 
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Clear Sky 
Model 
(CLR) 

0 - -0.141 1.638 0.967 40,528 
1 - -0.085 2.373 0.931 40,528 
2 - -0.144 1.637 0.967 40,528 
3 - -0.096 2.372 0.932 40,528 
4 - -0.116 1.643 0.967 40,528 
5 - -0.113 1.631 0.967 40,528 

Cloudy 
Sky Model 

(CLD) 

0 - -0.027 1.983 0.951 109,713 
1 - 0.021 2.489 0.924 109,713 
4 - -0.025 1.917 0.955 109,713 

All Sky 
Model 
(ALL) 

0 
All -0.067 1.884 0.957 150,241 

Clear 0.028 1.647 0.967 40,528 
Cloudy -0.106 1.986 0.952 109,713 

1 
All -0.024 2.460 0.927 150,241 

Clear 0.097 2.362 0.932 40,528 
Cloudy -0.080 2.496 0.924 109,713 

4 
All -0.059 1.837 0.959 150,241 

Clear -0.069 1.634 0.967 40,528 
Cloudy -0.058 1.922 0.954 109,713 

 

For all sky models, when the samples are separated into clear/cloudy conditions, the 

estimation of all sky models can achieve similar or even better accuracy with the 

estimation of the corresponding clear/cloudy sky models. For example, the statistics of 

ALL-4 for clear sky and cloudy sky observations are similar with the statistics of the 

corresponding clear sky model (CLR-4; RMSE: 1.634 °C vs. 1.643 °C; Bias: -0.069 °C 

vs. -0.116 °C; R2: 0.967 vs. 0.967) and cloudy sky model (CLD-4; RMSE: 1.922 °C 

vs. 1.917 °C; Bias: -0.058 °C vs. -0.025 °C; R2: 0.954 vs. 0.955). In general, the all sky 

model with gap-filled LSTs and radiation variables (i.e., ALL-4) shows the best overall 

performance with satisfactory accuracy and the capability of overcoming cloud 
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contamination issue. Therefore, I only evaluate the ALL-4 model in the remaining part 

of this study. 

 

Figure 3-6. The density scatter plots of the validation results for the best model in each 
category (a) CLR-5, (b) CLD-4, (c) clear sky observations of ALL-4, (d) cloudy sky 
observations of ALL-4,  and (e) all sky observations of ALL-4. 

3.5.2 The Independent evaluation with ITP station measurements 

To further validate the all sky model independently, the data of 10 ITP stations of 

varying time periods were used in this study. Out of these 10 stations, three of them are 

located at elevation higher than 5,000 ASL. Figure 3-7 presents the validation results 

using these ITP station data. The estimated daily mean SAT show good agreement with 

the station measurements with nearly zero bias. However, the RMSE is slightly larger 

than the ones of model training and validation results using the CMA station data 

(RMSE: 2.18°C vs. 1.84°C). Furthermore, the accuracy of estimated SAT for stations 

with elevation higher than 5,000 meters ASL is slightly worse than other ITP stations 

(RMSE: 2.29°C vs. 2.05°C). This result is possible considering that the training data 
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do not contain any stations above 5,000 meters ASL. This lack of representation could 

increase the uncertainty of the estimated SATs over high elevation regions (Zhang et 

al., 2016). 

 

Figure 3-7. The density scatter plot of the independent validation for the final Cubist 
model using data of 10 Institute of Tibetan Plateau Research (ITP) stations. 

3.5.3 The cross comparison with model-based data 

In addition to evaluate the proposed model with station measurements, I also compared 

the Cubist estimation of the TP with three reanalysis/meteorological forcing datasets 

listed in Table 3-1.  Figure 3-8 compares the spatial pattern of the monthly mean SAT 

of our Cubist model estimation (Figure 3-8 (a-d)) with GLDAS (Figure 3-8 (e-h)), 

CLDAS (Figure 3-8 (i-l)), and CMFD (Figure 3-8 (m-p)) for January, April, July, and 

October 2014. Overall, all four datasets show very similar spatial and temporal SAT 

gradients across the entire TP. Generally, the SAT is higher at the regions with low 

altitudes (i.e., the northern and southeast parts of the TP) while the high elevation 
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regions (e.g., the western and central areas of the TP) have lower temperature. 

Additionally, all datasets show the same seasonal SAT dynamics.  

Despite the consistency, there are still notable differences among these datasets. Even 

though GLDAS may capture the overall spatial pattern of the SAT, it does not have the 

same level of spatial details as the Cubist estimation because GLDAS’s resolution is 

very coarse (0.25° vs. 0.05°). The lack of the spatial details can be troublesome because 

parts of the TP have very complex terrain. It is not suitable to use such coarse resolution 

to represent the climate and ecosystem processes of those regions. Additionally, the 

CLDAS SAT appears to have larger spatial gradients, especially for April and July 

2014. 

Considering all these datasets have their own uncertainties, I use validation years’ 

CMA station measurements as a reference to compare the accuracy of these four 

datasets. Both CMFD and GLDAS show substantial underestimation (Bias: -2.47°C vs. 

-3.11°C) when compared to the reference CMA station data. The CLDAS data notably 

overestimates the surface temperature with a bias of 1.07°C while the Cubist model 

estimation shows nearly zero bias (-0.07°C). Furthermore, the Cubist model estimation 

shows smaller uncertainty than other three datasets (RMSE: 1.84°C (Cubist) vs. 4.82°C 

(GLDAS) vs. 4.20 (CMFD) vs. 3.31°C (CLDAS)). In summary, the Cubist model 

estimated SAT of the TP has better accuracy than existing reanalysis and forcing 

datasets and can capture the SAT’s spatial and temporal dynamics of the TP. 
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Figure 3-8. The spatial and temporal patterns of (a-d) the Cubist model estimated 
surface air temperature (SAT), (e-h) the GLDAS SAT, (i-l) the CLDAS SAT, and (m-
p) the CMFD SAT data of January, April, July and October 2014. 

3.6 Warming analysis of the Tibetan Plateau 

I applied the final all sky Cubist regression model to the entire Tibetan Plateau for 

2000-2015. The estimated SAT is then used to estimate the surface warming rate of the 

TP. Figure 3-9 demonstrates the spatial pattern of the estimated surface warming rate 

over the TP for annual mean SAT, cold season (from December till May) mean SATA 

and warm season (from June till November) mean SAT. The estimation of both annual 

and seasonal mean SAT warming rate shows rapid warming of the TP during the past 

16 years with fastest annual warming occurs over the western part of the Plateau. If 

compared with the elevation map of the Plateau, this fast warming region is located at 

high elevation mountainous areas, which is also missed by the CMA station 

measurements network. In other words, the warming studies depending only on the 

station measurements would likely underestimate the warming rate of the Plateau. This 

pattern persists through all seasonal mean SAT warming analysis. Moreover, the 
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underestimation of station measurements of the cold season mean can be more severe 

due to the warming rate of the western part of the Plateau is much higher than the 

annual mean or warm season mean SAT.  

 

Figure 3-9. The surface warming rate of the annual mean temperature, cold season 
mean temperature (DJFMAM), and warm season mean temperature (JJASON) and its 
reference to the elevation and station distribution of the Tibetan Plateau. 

To further demonstrate the advantage of the Cubist-based SAT estimation, I calculated 

the regional annual mean SAT anomalies across the entire Tibetan Plateau between 

2000-2015. Figure 3-10 shows the comparison of the time series of the annual mean 

SAT anomalies of TP (against climatology period 2001-2010) using the CMA station 

measurements and the Cubist-based regional dataset generated by this research. The 

Cubist-based time series show a faster warming pattern than the station-based time 

series. If the warming rate is quantified using the estimated linear trend, the Cubist-

based data suggest that the TP has been warming at a faster rate for 2000-2015 than 

previously estimated (i.e., 0.512 °C/decade v.s. 0.465 °C/decade). This difference may 
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be caused by the undersampling of the western part of the plateau by CMA station 

network, especially over the high elevation regions. 

 

Figure 3-10. The time series of estimated regional annual mean surface air 
temperature anomalies over the entire Tibetan Plateau using Chinese Meteorological 
Stations measurements (red line) and the Cubist-based dataset (green line). 

3.7 Conclusion 

This study demonstrates that combining LSTs and radiation variables at both the 

surface and TOA levels can produce daily all sky SAT data with high accuracy. With 

a reasonably defined temporal moving window to fill the gap of missing LST caused 

by cloud contamination, the all sky Cubist model can largely increase the data 

availability of estimated daily mean SAT over the Tibetan Plateau. The model has been 

validated using spatially and temporally independent station data and cross validation 

with nearly zero bias and reasonable RMSEs (1.8-2.2 °C). When cross compared with 

the existing reanalysis/forcing datasets, the Cubist model estimated SAT can represent 

the spatial and temporal dynamics of the surface temperature of the TP and retain 

important spatial details. When all datasets were benchmarked against the CMA station 
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data, the Cubist model show better performance with no notable bias and much smaller 

RMSEs. However, the 25-fold cross-validation practice suggests that the 

representativeness of the training dataset is of great importance to produce a high-

quality machine learning model with no built-in bias.      

With the all sky Cubist model, I generated a 0.05°×0.05° daily average surface air 

temperature dataset for the entire Tibetan Plateau for 2002-2016. The resulting dataset 

is of great value to study recent climate warming and corresponding impacts over the 

entire Tibetan Plateau. However, as mentioned earlier, the training data are only from 

the finite CMA stations. Therefore, users should be aware of the potential larger 

uncertainty for the regions of which the weather/climate patterns might not be 

represented by the CMA station data, such as, the regions with very high elevations 

(e.g., above 6,000 meters ASL) or with complex topography. Although the model is 

developed for the Tibetan Plateau, the framework of this model could be extended to 

other regions since the underlining mechanism should be similar. However, when the 

framework is applied to other areas, the model should be properly retrained using the 

data of the target area to ensure that the model are built correctly with representative 

training data.  

Despite the improved accuracy and data availability of the daily SAT dataset, there are 

still uncertainties require further investigations to improve the resulted data. First, all 

input satellite data have different level of uncertainties which can be propagated into 

this empirical-based estimation. Therefore, it will be beneficial to understand the 

sensitivity of the estimated SAT regarding to the uncertainty of each individual input 

variables. Secondly, due to the complex terrain of the TP, there are grids with large 
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elevation gradients. It can be very challenging to assess the accuracy of these regions. 

Hence, it is necessary to use more independent data of the regions with very high 

elevations and complex topography, if available, to comprehensively evaluate the 

quality of the estimated SAT data. Moreover, there are growing demands of grid-level 

uncertainty assessment to improve the confidence of local and regional applications 

using various climate datasets. Thus, it is of the best interest to provide the uncertainty 

value associated with each grid for the estimated SAT data using advanced statistical 

methods, such as, Markov Chain Monte Carlo (MCMC), bootstrapping etc. Lastly, I 

are planning to extend this model using AVHRR data to generate long-term SAT 

climate data records of the TP (since 1982) to enable climate applications for the last 

four decades. 
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Chapter 4  Estimating the Surface Air Temperature of the Northern High 

Latitudes Using Machine Learning Model 

4.1 Summary 

The northern high latitude consists of a complex physical system with atmosphere, 

cryosphere, ocean, and biosphere. It has experienced dramatic climate and 

environmental changes in the past decades. Overall, the temperature of the northern 

high latitudes has warmed faster than the rest of the world based on historical 

observations and model simulations. However, the lack of high quality surface air 

temperature dataset has led to low confidence of the climate analysis at local and 

regional scales over the northern high latitudes. Recently, research has used remote 

sensing land surface temperature and ice surface temperature products to assess the 

temperature change over the northern high latitudes and its associated changes. 

However, the different physical meaning of remote sensing land/ice surface 

temperature has limited its application for climate analysis. To address this issue, I 

adapted the machine learning framework developed in the previous chapter for the 

Tibetan Plateau by considering the unique features of the northern high latitudes. 

Because of the large data volume of this study area, the rule-based Cubist regression 

model in the original framework has been replaced by the multivariate adaptive 

regression splines model. The adapted machine learning model is trained and evaluated 

using the Global Historical Climatology Network daily station data archive. Using data 

of 642 stations, the model estimated surface air temperature has good performance with 

the bias of -0.1 ~ -0.2 °C and the RMSE of 2.1 ~ 2.6 °C. However, due to lack of 

stations over the permanent ice surface, the model performs worse over the permanent 
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ice surface than other surface conditions (RMSE: 2.8 °C vs. 2.4 °C). When the model 

is applied to the entire northern high latitudes, the estimated SAT show reasonable 

spatial and seasonal dynamics when compared with existing datasets but it can provide 

much detailed spatial information for climate analysis.    

4.2 Background 

The northern high latitudes (NHL), defined as the geographical regions poleward of 

60°N, consists of a complex physical system with atmosphere, cryosphere, ocean, and 

biosphere (Groisman and Soja, 2007; Hwang et al., 2018). The NHL is an integral part 

of Earth system and plays a fundamental role on regulating climate system, 

hydrological cycle, ecosystem dynamics, and societal activities at local, regional and 

even global scales (Hwang et al., 2018). The terrestrial snow and ice host within the 

NHL account for a majority of the fresh water resource of the world (J. Huang et al., 

2017). The NHL is also home to a diverse set of the Earth’s biome, such as, boreal 

forest, tundra, steppe, taiga, and desert. The permafrost under the ground of the NHL 

stores a substantial amount of organic carbon, which is an important major carbon sink. 

Through large scale atmospheric and oceanic circulations, the NHL strongly affects the 

weather and climate pattern of the Northern Hemisphere. Studies have demonstrated 

the influence of the Arctic on the extreme weather events at mid-latitude (Cohen et al., 

2014; Overland et al., 2016). 

Due to anthropogenic climate change, the NHL has experienced remarkable 

environmental change across all components (Bhatt et al., 2017; Hwang et al., 2018; 

Loranty et al., 2018). Both observational information and model simulations have 

reported rapid temperature warming over the NHL during the last few decades (J. 
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Huang et al., 2017). Moreover, the warming over the NHL has been reported to be 

much faster than other regions. More specifically, the analysis based on station 

temperature measurements has reported that the SAT over the NHL warmed 2-3 times 

faster than the global average since 1970s, while similar results are also found by other 

climate model simulation based studies (J. Huang et al., 2017; Pithan and Mauritsen, 

2014). Moreover, climate model simulations further suggest that this warming 

amplification over the NHL will likely continue through the future at a rate of 1.5-4.5 

times faster than other parts of the world (Pithan and Mauritsen, 2014). This warming 

amplification has already caused remarkable environmental change within the NHL 

and other regions. For example, the warming SAT and prolonged growing season for 

vegetation has led to the change of vegetation phenology within the NHL, thus 

affecting the carbon cycle locally (Bhatt et al., 2017; Pearson et al., 2013; Swann et al., 

2010). Additionally, the increasing temperature also change the freeze/thaw cycle of 

the active soil layers of the NHL (Loranty et al., 2018; Watts et al., 2014; Zhang et al., 

2013). Observations also reported the advance of snow and ice melting during the 

summer and the delay of snow and ice accumulation during the winter, which results 

to reduced amount of snow and ice and shortened snow/ice accumulation season (Chen 

et al., 2018). These changes notably impact the hydrological regime and associated 

processes, such as, methane emission, seasonal flooding, and animal migration (Watts 

et al., 2014; Woods and Caballero, 2016; Zhang et al., 2013). Recently, studies have 

also attributed the increasing occurrence of the extreme weather events at the mid-

latitude to the warming NHL, such as, extreme cold winters and extreme precipitation 

events (Cohen et al., 2014; Overland et al., 2016). However, the analysis of these 
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impact studies are not noncontroversial due to the lack of high quality climate 

observations. 

Despite the high confidence of the overall warming of the NHL, the confidence of local 

and regional climate analysis remains low for the NHL due to the lack of observational 

data and the lack of comprehensive understanding of the complex physical processes 

of the NHL (Döscher et al., 2014; Jung et al., 2016; Laudon et al., 2017). Observation-

based warming studies predominantly use station measured temperature data to assess 

the warming rate of the NHL. However, the weather stations with thermometers are 

very sparse over the NHL (Figure 4-1). In the Global Historical Climatology Network 

daily data archive (GHCN-D), there are total 642 weather stations within the NHL with 

the measurements of daily mean SAT. Of these stations, nearly 30% of them are 

clustered within Alaska and 15%-20% of stations are within the northern Europe. The 

rest of the stations are sparsely distributed across the vast majority of the land mass 

over the NHL, leaving Greenland and the eastern part of the Eurasia undersampled. 

The inequality of the station measurements may lead to large uncertainty for the local 

and regional climate analysis over the undersampled regions as pointed out in the 

second chapter. Studies have also attempted to conduce climate analysis using global 

and regional reanalysis datasets, such as, ERA-5, MERRA-2, GLDAS, and JRA-55 etc. 

These datasets suffer large uncertainty and notable biases for the polar regions. 
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Figure 4-1. The distribution of Global Historical Climatology Network - Daily (GHCN-
D) for the northern high latitude. The red dots are the weather stations of the GHCN-D 
with daily mean temperature measurements over the northern high latitude. The 
background image is the blue marble image of 2014/08 created using NASA EOS 
MODIS data.  

As an alternative, researchers also explored satellite remote sensing products to study 

the warming of the northern high latitude because of the global coverage of the remote 

sensing data. Among remote sensing data, the LST and IST data have been mostly 

popular because of their strong correlation with the SAT. For example, Hall et al. 

(2013) examined the warming of Greenland using MODIS IST products for 2000-2012 
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and found dramatic warming of the Greenland and faster melting. Westergaard-Nielsen 

et al. (2018) used MODIS LST products to analyze the temperature change of ice-free 

part of Greenland and found varying seasonal and latitudinal pattern of the warming 

for 2001-2015. Despite the strong correlation between remotely sensed LST/IST and 

SAT, they are physically different variables as pointed out in earlier chapters. Good 

(2016) found that the satellite LST data are usually several degrees Celsius higher than 

station measured SAT over the NHL during summer months based on data of 

Atmospheric Radiation Measurement stations (ARM). But Nielsen-Englyst et al. 

(2019) used multi-year temperature measurements of 29 in situ sites over the northern 

Alaska, Greenland, and Arctic Ocean and documented that the satellite IST data are 

nearly 2°C cooler than the SAT measurements, while the largest differences occur 

when the temperature is below 0°C or when the ice is meltin. The difference between 

satellite LST/IST and SAT would likely cause biases while the LST or IST produces 

were used as the proxy for the SAT. 

Given the importance of the NHL and the observed dramatic change over the NHL, 

one would expect there were substantial efforts on providing high quality climate data 

to improve our understanding of the critical change over the NHL. However, past and 

current research efforts mostly focus on improving the capability of modeling and 

forecasting the change of the NHL, while only limited progress has been made to 

provide high quality and spatial complete climate data based on remotely sensed data. 

With the increasing attention of using satellite LST to approximate SAT, different 

methods have been developed to estimate SAT from remotely sensed LST including 

linear regression models, machine learning models and spatio-temporal interpolation 
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models as described in Chapter 3. Using machine learning models to map SAT using 

remotely sensed LST has become more popular in recent years because of the ability 

to account for the nonlinearity nature of the difference between SAT and LST. 

However, as outline in Chapter 3, these methods fail to address the issue of cloud 

contamination on remotely sensed LST products which may lead to reduced data 

quality and availability. Therefore, I developed a machine learning based modeling 

framework to estimate SAT using remotely sensed LST and satellite radiation products 

for all sky conditions in Chapter 3. Although the model is developed using the data of 

the Tibetan Plateau, I would argue that the generic modeling framework can be adapted 

to the NHL to generate high quality all sky daily SAT data of the NHL using satellite 

products. 

The purpose of this chapter is to adapt the machine learning based all sky model 

described in Chapter 3 to generate a daily all sky SAT dataset over the NHL at the grid 

size of 0.05°×0.05°. However, the model needs to be retrained using appropriate 

station-satellite data pairs over the NHL in order to ensure the accuracy of the final 

estimation. Additionally, there is another situation need to be taken into consideration 

while adapting the model developed in Chapter 3 for the NHL. Parts of the NHL 

periodically experience polar day and polar night when the diurnal cycle of the surface 

temperature is different from a typical temperature diurnal cycle. Meanwhile, the 

satellite products of the TOA albedo and incident solar radiation are unavailable for 

polar night situation since there is no incoming solar radiation. Therefore, the all sky 

model for the NHL ideally need to handle this situation. In this chapter, the section 4.3 

summarizes the station measurements, remote sensing data, and model-based data. The 
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section 4.4 describes the multivariate adaptive regression spline model and the strategy 

of model training and evaluation used in this chapter. The section 4.5 presents the 

results of model training and evaluation using both station measurements and existing 

SAT datasets. The section 4.6 shows the analysis of the surface warming rate over the 

NHL using the SAT data estimated from the MARS model with satellite products as 

inputs. 

4.3 Data 

Similar with the Chapter 3, this chapter also includes three different categories of data 

for model training, evaluation and analysis. The three categories include station 

temperature measurements, remote sensing products, and existing SAT datasets. Since 

most of the data used in this chapter has already been previously introduced in other 

chapters, I will focus on the data that have not been described before  

In this chapter, the station temperature measurements are used for both model training 

and evaluation. The main source of the daily average SAT used in this study is 642 

meteorological stations within the archive of GHCN-D over the NHL. The station 

measurements from 2002 to 2017 were downloaded from the NOAA NCEI. The spatial 

distribution of these GHCN-D stations over the NHL is presented in Figure 4-1. 

Although there are more than 642 stations over the NHL within the GHCN-D data 

archive, these are the only stations providing the daily mean SAT measurements after 

2000. 

The remote sensing data used in this study are listed in Table 4-1. The Global Multi-

resolution Terrain Elevation Data 2010 (GMTED2010) was downloaded from the 

United States Geological Survey (USGS). It is produced by combining multiple high-
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quality DEM datasets from various international institutions. The GMTED2010 data, 

with an original resolution of 7.5 arc-seconds, were resampled to 0.05°×0.05° by simple 

averaging to match with the resolution of other remotely sensed data. 

Table 4-1. The summary of the remote sensing data used in this chapter. 

Variable Dataset(s) Variable 
Category 

Resolution 
(Spatial/temporal) 

Data 
Source References 

Elevation GMTED2010 Geo-
location 7.5′′ / Static USGS 

Danielson 
& Gesch 
(2011) 

Land surface 
temperature 

(LST) 

MOD11C1, 
MYD11C1 

Clear sky 
only 0.05°/ Daily 

NASA 
LP 

DAAC 

Wan et al. 
(2015a, b) 

Incident solar 
radiation (ISR) GLASS05B01 All sky 0.05°/ Daily UMD Zhang et al. 

(2014) 

Outgoing 
longwave 
radiation 
(OLR) 

AVHOLR All sky 0.05°/ Daily UMD Zhou et al. 
(Submitted) 

Top-of-
atmosphere 

albedo 
(TOAALB) 

AVHALB All sky 0.05°/ Daily BNU Song et al. 
(2018) 

In this study, I use MODIS daily composite LST data in a 0.05°×0.05° grid (i.e., 

MOD11C1 and MYD11C1), which were downloaded from NASA Land Process 

Distributed Active Archive Center (i.e., LP DAAC, https://lpdaac.usgs.gov/) (Wan et 

al., 2015a, b). These products are generated by aggregating MODIS Level 2 LST 

products (i.e., MOD11_L2 and MYD11_L2) with strict quality control. Each product 

(MOD11C1 and MYD11C1) contains both daytime and nighttime LSTs from different 

satellite viewing time. It should be noted that there are no nighttime/daytime LST 

values for the regions experiencing polar day/night situation.  

https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm
https://lpdaac.usgs.gov/dataset_discovery
https://lpdaac.usgs.gov/dataset_discovery
https://lpdaac.usgs.gov/dataset_discovery
http://glass.umd.edu/index.html
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In this study, I also use three remotely sensed radiation products, including Global 

LAnd Surface Satellite (GLASS) incident solar radiation (ISR) at the surface, 

University of Maryland’s (UMD) TOA outgoing longwave radiation (OLR), and 

Beijing Normal University’s (BNU) TOA albedo (TOAALB). The GLASS ISR data 

are derived from multiple satellites’ data, including AVHRR, MODIS and available 

geostationary satellites’ data (Zhang et al., 2014). The OLR data are produced using 

AVHRR and MODIS thermal infrared data based on linear regression models derived 

from radiative transfer model (RTM) simulations (Zhou et al., 2019). The TOAALB 

data are also produced using AVHRR and MODIS data with linear models derived 

from RTM simulations (Song et al., 2018). All radiation products provide daily data 

with the same spatial resolution of 0.05°×0.05° for all sky conditions except for regions 

experiencing polar day/night condition. 

Since LST has strong correlation with SAT, I use the all available LSTs (i.e., four 

instantaneous MODIS) to better capture the diurnal cycle of the surface temperature. 

Because the difference between LST and SAT is related with surface heat exchange, I 

propose to include radiation variables (i.e., ISR, OLR, and TOAALB) to reflect the 

crucial process that may improve the accuracy of estimated SAT. The experiments in 

Chapter 3 have demonstrated that the all sky model without surface variables can 

achieve satisfactory accuracy, thus I did not include the surface variables in this 

chapter. Additionally, I calculated the day length for each 0.05°×0.05° grid based on 

the location and the day of year as an indicator for the polar day/night.   

To evaluate the spatial and temporal pattern of the estimated SAT, two global gridded 

SAT datasets with relative high resolution are used in this chapter. The SAT of the 
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CRU-Ts.4.02 is derived by spatially interpolating the measurements of around 6,000 

weather stations worldwide via the angular distance weighting (ADW) method (Harris 

et al., 2014). It provides the estimation of monthly SAT with the grid size of 0.5°×0.5° 

for the global land area. The GLDAS provide the 3-hourly SAT estimation at the grid 

size of 0.25°×0.25° for the global land area using the Noah land surface model (Rodell 

et al., 2004). 

Table 4-2. The summary of observational and model-based surface air temperature data 
used in this chapter. 

Dataset Data Type 
Resolution 

(Spatial/temporal) 
Data 

Source Reference 

CRU-
Ts.4.02 

Station 
interpolation data 0.5° / monthly UAE CRU (Harris et al., 

2014) 

GLDAS Reanalysis data 0.25° / 3-hourly NASA 
GES DISC 

Rodell et al. 
(2004) 

4.4 Methods 

In Chapter 3, the model is developed using the rule-based Cubist regression model 

which is a tree-based regression model. Although Cubist model has shown great 

strengths in estimating the SAT at different regions, it requires substantial 

computational resources to train the model, especially for the model structure with 

committee enhancements. The high computational cost can limit the model’s 

application to larger geographical extents. Thus, in this chapter I choose to replace the 

Cubist regression model with a non-parametric method with better computational 

efficiency, i.e., the multivariate adaptive regression spline model (MARS). Studies 

have shown that the MARS is suitable of handling large data volume without 

https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
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sacrificing the performance of model output and the MARS is also very flexible and 

easy to understand and interpret \?references?\. 

 

Figure 4-2. The overall research road map of Chapter 4. 

4.4.1 The multivariate adaptive regression spline model (MARS) 

MARS is a non-parametric regression model which can be viewed as the extension of 

a general linear regression model automatically accounting for the nonlinearities of a 

data set (Friedman, 1991; Hastie et al., 2009). It does not require that the relationship 

between the predictor and dependent variables is linear. In general, MARS modeling 

split the feature hyperspace of predictors into separate hyper-regions and then use a 

linear regression to characterize the relationship between dependent and independent 

variables. The joint point where the slope changes among different hyper-regions is 

defined as a knot and  the set of knots determined by the MARS model is used to create 

a set of basis functions (or splines), which represents either transformations of a single 
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independent variable or interactions of multiple variables. The determination of the 

knots and basis functions is completely based on the data sets used for training and is 

specific to the problem in MARS. This data-based feature makes MARS a powerful 

and flexible adaptive regression method (Hastie et al., 2009; Zhou et al., 2018). 

Additionally, the MARS model also allows the inclusion of the product of multiple 

simple basis functions to represent the interactions between different variables. To what 

degree of the interactions between different variables may occur may be constrained 

by a user-defined parameter of the MARS model. This feature is unique to MARS and 

its later modifications (Kuter et al., 2015). 

During the model building process, MARS uses a two-stage strategy, namely, “forward 

pass” and “backward pass”. The forward pass is used to select a suitable collection of 

joins and corresponding basis functions, and it is repeated till a predefined maximum 

number has been reached. The foreword pass keeps the knot that gives the best fit and 

then fits the response using linear functions that are both nonzero on one size of the 

know. Once one variable is selected, the splits on other variables can depend on the 

existing splits. The forward pass will continue till a user predefined maximum number 

of basis functions. Once the forward pass has completed, there is a full model tree with 

a suite of knot and basis functions. The backward pass then evaluates the contribution 

of these splits and associated basis functions and decide whether they should be 

removed from the model or not (i.e., pruning) (Friedman, 1991; Hastie et al., 2009; 

Kuter et al., 2015). The pruning is designed to remove the basis functions which give 

the smallest increase in the residual sum of squares step-by-step. The purpose of this 

backward elimination process is to reduce the model complexity thus decrease the risk 
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of over-fitting. The final model is chosen based on a generalized cross-validation 

(GCV) measure of the mean square error (MSE). The procedure of the GCV is designed 

to evaluate which variables should be kept in the final model by introducing a penalty 

on including more variables to the model (Friedman, 1991; Hastie et al., 2009). 

Moreover, the CSV is also used to determine the importance of individual variables 

and rank the variables by computing the GCV with and without each variable in the 

model. 

It should also be noted that “MARS” has been trademarked and licensed exclusively to 

Salford Systems. Although it is okay to use MARS as an abbreviation for the statistical 

model, it cannot be used as the name for other software that carrying out this model 

unless authorized by Salford Systems. In this chapter, I used the R software package 

named “earth” to carry out the MARS model and to apply the model to the entire NHL.  

4.4.2 The strategy of model training and evaluation 

To train the all sky MARS model, I first extracted the station-satellite data pairs for all 

642 GHCN-D stations following the same data processing procedure documented in 

Chapter 3. Considering the stations have different length of measurements record (1-

18 years since 2000), only the stations with the data records longer than 10 years are 

used for model training, which accounts for about 82% of the stations over the NHL. 

The rest of the station data of which the length of records is shorter than 10 years are 

kept as an independent set of data to evaluate the quality of MARS estimated SAT. The 

distribution of the data length of all 642 GHCN-D stations is presented in Figure 4-3. 
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Figure 4-3. The histogram of the length of temperature records for all 642 stations 
within the GHCN-Daily archive. 

 In the MARS model, two parameters need to be determined through training, i.e., the 

degree of interactions allowed, and the maximum number of pruned terms allowed in 

the final model. During the training process, I used the LOSO strategy to select model 

parameters to avoid the overfitting issue as mentioned earlier (Meyer et al., 2016). 

Firstly, the training data were grouped by stations. For each iteration, a series of MARS 

models were fitted using different combinations of model parameters using data of all 

stations except one which was randomly chosen. Then, the models were evaluated 

using the data of the left-out station. After each station has been used as the left-out 

station to evaluate different model parameters, the final model parameters were 

selected based on the model performance across all iterations. 
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To evaluate the final MARS model, I first used the validation dataset of the GHCN-

Daily stations with less than 10-year’s data to assess the performance of the final 

MARS model when it is applied to the data of different stations. Then, I applied the 

final MARS model to the satellite data of the entire NHL for the year of 2002-2017. 

The estimated SAT of the NHL was cross compared with two existing datasets listed 

in Table 4-2. The main purpose of the cross comparison is to evaluate the spatial and 

temporal (i.e., seasonal) pattern of the estimated SAT. Additionally, I also compared 

the accuracy of our Cubist estimation and the existing datasets using GHCN-D station 

data as the reference since all datasets have their own uncertainty. 

4.5 Estimating the SAT of the northern high latitudes 

4.5.1 The results of model training and evaluation using station measurements 

Figure 4-4 presents the density scatter plot of the training results of the final MARS 

model for the NHL. Generally, the MARS model estimated daily SAT show strong 

agreement with the GHCN-D station SAT measurements with the majority of the points 

distributing around the 1:1 line. The overall model accuracy and precision is good with 

the bias of -0.24 °C and the RMSE of 2.21 °C. There are still scattering around the 1:1 

line, especially over the low temperature range (i.e., < -20 °C). Additionally, when the 

statistics of the MARS model are compared to the ones of the Cubist model listed in 

Chapter 3, the MARS model show slightly worse performance with the bias 0.1 °C 

higher and the RMSE nearly 0.4 °C higher than the Cubist model. This is likely caused 

by the increased uncertainty of the satellite products over the high latitude. 
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Figure 4-4. The density scatter plot of the training results for the MARS model. The 
red color indicates high point density while the blue color represents low point density. 

 

Figure 4-5 exhibits the performance of the final MARS model for the NHL when it is 

evaluated using the set of independent GHCN-D station measured SAT. The density 

scatter plot of the independent evaluation shows similar pattern of the one of the model 

training result. The points are mostly clustered along the 1:1 line with larger scattering 

at the low temperature range. However, the RMSE of the independent evaluation is 

notably higher than the model training result by 0.4 °C.  To further diagnosing this 

larger uncertainty, I suspect there might be systematic differences of the model 
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performance related to surface conditions. Therefore, I further separated the evaluation 

into two surface conditions: the permanent ice surface and the rest of the surface 

conditions. The data of the stations located at the permanent ice surface show similar 

bias with the rest of the data (i.e., -0.19 °C vs. -0.14 °C). But there are notable RMSE 

differences between these two surface conditions. The MARS estimated SAT show 

larger RMSE (2.87 °C) over the permanent ice surface when comparing to the GHCN-

D station measurements while the RMSE of the rest data is only 2.35 °C.  

 

Figure 4-5. Similar with Figure 4-4, but for the validation results using the data of the 
independent GHCN-D stations. 
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However, the number of stations that are located over the permanent ice surface is very 

limited. There is only about 6% of the GHCN-D stations used in this chapter belongs 

to this surface condition. This could be one of the reason why the MARS model 

performs worse over permanent ice surface. Nonetheless, the overall model 

performance has shown satisfactory results for the NHL. The MARS model can provide 

a much needed high resolution daily all sky SAT dataset of the NHL for local and 

regional climate studies. 

4.5.2 The cross comparison with model-based data 

The all sky MARS model has been applied to the MODIS satellite data of the entire 

NHL. Before the MARS estimated SAT can be applied to relevant studies, it is cross 

compared with two existing gridded SAT datasets which covers the NHL at various 

spatial resolution, i.e., CRU-Ts.4.02 and GLDAS. Figure 4-6 presents the cross 

comparison of these three SAT estimations at monthly mean level for four different 

months of the year 2014 (i.e., January, April, July and October, 2014). These four 

months are chosen to represent four different seasons of the NHL. Generally, the 

MARS estimated SAT shows better agreement with GLDAS SAT estimation than with 

CRU-Ts.4.02, especially over the winter and summer months (i.e., 2014-01 and 2014-

07). Overall, the MARS SAT estimation shows reasonable latitudinal and altitudinal 

gradients and seasonal dynamics of the estimated SAT. 
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Figure 4-6. The cross comparison of the monthly mean SAT between the MARS model 
estimation with the SATs of CRU-Ts.4.02 and GLDAS for January, April, July, and 
October, 2014. 

When compared with CRU-Ts.4.02, both MARS and GLDAS SAT estimations show 

smaller seasonal change of the SAT over the eastern part of Eurasia and the northern 
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Europe. Additionally, the spatial and seasonal patterns of the SAT estimation of 

Greenland demonstrated by CRU-Ts.4.02 show larger differences with the other two 

SAT estimations. Although there is no evidence supporting which estimation of the 

SAT is better, previous studies have questioned the quality of the CRU-Ts.4.02 over 

station sparse regions including the NHL. Over these station sparse regions, the 

0.5°×0.5° grid of the CRU-Ts.4.02 may use station measurements that are far from the 

target grid to estimate the local SAT, which could lead to large data uncertainty. 

4.6 Conclusion 

In this chapter, the previously developed machine learning model for the Tibetan 

Plateau is adapted to the NHL with proper modifications to account for the unique 

features of the NHL. In order to handle with the large data volume, the original rule-

based Cubist regression model is replaced by the MARS model for the NHL. 

Additionally, the model is designed to be able to handle the unique feature of polar 

day/night over the NHL by including the day length variable into the model as an 

indicator. The model is trained using the station temperature measurements over the 

NHL accessed through the GHCN-Daily data archive. The model training and 

evaluation results show that the modified machine learning model performs relatively 

well overall but has moderate dependency on the surface conditions. Specifically, the 

model estimated SAT shows larger RMSE and bias over the permanent ice surface. 

This surface condition dependency is likely caused by the insufficient amount of 

permanent ice surface data used during mode training. When the model is applied to 

the entire NHL, the estimated SAT data show reasonable spatial and seasonal dynamics 

of surface temperature comparing with two existing datasets, i.e., CRU-Ts.4.02 and 
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GLDAS. The successful adaption of the machine learning framework to the NHL 

demonstrated the genericity and applicability of this framework on estimating the 

surface air temperature using remote sensing products. This framework can be very 

beneficial when applied to regions with limited station temperature measurements. 

However, the model need to be carefully modified and trained using high quality of 

station measurements. 
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Chapter 5  Strengths and Pitfalls of Machine Learning Applications: The 

Lessons Learned  

5.1 Leveraging machine learning and remote sensing 

In recent decades, artificial intelligence (AI) technology has unequivocally accelerated 

scientific discovery in most, if not all, fields, including earth system science. As a 

subset of AI, machine learning has been gaining ground in earth system science. In the 

Web of Science database, there are 4052 publications related to the term “machine 

learning” within earth science related fields from 1991 to 2018 (Figure 5-1). Both the 

number of publications and citations has been growing exponentially. Additionally, the 

average number of citations for all previous publications is also increasing steadily, 

which indicates, in my opinion, the increasing popularity of machine learning in earth 

sciences. 

 

Figure 5-1. The growth of scientific publications on the topic of machine learning and 
earth sciences on the Web of Science between 1991 and 2018. 
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The name of “machine learning” has been coined in 1950s by computer scientists. 

Despite its early debut, machine learning has only gained its popularity since early 

2000s in earth sciences. As statistical models, machine learning models are usually 

trained using existing data to answer questions of interest with good performance. The 

statistical model used for machine learning has always been around. In fact, most 

machine learning techniques are based on statistical models developed in the 1970s and 

1980s. The major power engine of the machine learning explosion in earth science is 

the data and computation capability. Free access to the incredible amount of remote 

sensing data is the fuel, while the rapid development of high performance computation 

is the engine powering this rapid growth of machine learning applications. 

In my dissertation research, I tested the framework of using well developed machine 

learning model (i.e., rule-based Cubist regression model and MARS model) to achieve 

the objective of generating high spatial resolution all sky daily SAT  datasets for the 

Tibetan Plateau and the northern high latitudes, which are two regions experienced 

dramatic climate change. The research is driven by the fact that these two regions are 

lack of high quality climate data to reduce the uncertainty of regional and local climate 

analysis. Remote sensing data contains valuable observational information of the 

Earth’s surface and atmosphere, which can be used to estimate fundamental physical 

variables of the complex processes of the Earth system. I combined machine learning 

models with remote sensing products using the station measurements as the reference 

data to constrain the model. With careful design and proper training and evaluation, the 

machine learning model provides the estimation of the daily SAT for the two study 

regions. Different from existing studies, my model SAT estimations for both clear sky 
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and cloudy sky conditions with reasonable quality. This feature is very important for 

improving the quality of remote sensing based SAT datasets to address the issue of 

cloud contamination on thermal infrared observations. This improvement is a direct 

results of a physically meaningful machine learning model by using remote sensing 

radiation variables to account for the physical differences between remote sensing LST 

and SAT. 

Although machine learning models can create great benefits as demonstrated in 

previous chapters, it is very important to understand the sensitivity of the model and 

what may cause large model uncertainty. In this chapter, I use the all sky Cubist model 

developed in Chapter 3 as an example to show how the quality and representativeness 

of the training datasets may lead to an unstable model thus causing large model 

uncertainty. I will also discuss the trade-off between model complexity, the risk of 

overestimation, and the computational cost for large scale applications from my own 

experiences while developing the model for the Tibetan Plateau. These are all lessons 

learned during the process of this dissertation research. 

5.2 An unstable model and how to avoid it  

While developing the all sky Cubist regression model, I used the LOSO strategy to 

avoid the risk of model overfitting caused by model training. Figure 5-2 shows the 

RMSE and R2 of the final LOSO result of each individual CMA stations used during 

the model training process. In general, the final Cubist model performs well for most 

stations with RMSE lower than 2 °C and R2 higher than 0.95 (Figure 5-2 (a, d)). 

However, there are some stations with relatively large uncertainty. These stations 

appear to be located at the regions with relatively complex terrain. Figure 5-2(b) shows 
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that stations above 4,000 meters ASL may show larger RMSE during this LOSO 

analysis. Figure 5-2(c) demonstrates that the Cubist model estimation of nearly 80% of 

the CMA stations has RMSE less than 2.1°C. This result shows comparable or slightly 

better performance than previous studies’ clear sky only models. Overall, the LOSO 

result suggests that the Cubist model trained with limited amount of station data may 

be applied to other regions of the Plateau with acceptable accuracy for all sky 

conditions. 
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Figure 5-2. The results of the leave-one-station-out (LOSO) experiment: (a) the 
spatial distribution of the RMSE of all CMA stations; (b) the scatter plot between the 
RMSE and the elevation of all CMA stations; (c) the histogram of the RMSE of all 
CMA stations, where the solid blue vertical line indicates the median value and the 
two dashed vertical lines refer to the 25% and 75% quantiles respectively; (d) the 
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spatial distribution of the R2 of all CMA stations. The background colors of (a) and 
(d) are the elevation of the GMTED2010 data. 

To further investigate the robustness of the machine learning model, I carried out a 25-

fold cross validation experiments. In this experiment, all CMA station-satellite data 

pairs were randomly divided into 25 folds by station ID. During each iteration, a Cubist 

model was fitted using 24 folds of data with the same parameters previously determined 

by the LOSO. This model was then evaluated using the left-out fold of data. This 

process was repeated 25 times until all 25 folds of data have been used to independently 

evaluate a Cubist model. This cross validation process is used to examine the sensitivity 

of the Cubist model on the training datasets. Figure 5-3 exhibits the RMSE of all 25 

models trained with slightly different set of training data. In general, most models in 

the 25-fold cross validation experiment have relatively low RMSE (1.6°C – 2.1°C). 

However, some models (i.e., model No. 2, 9, 19) show relatively large RMSEs 

(>2.5°C) compared with other models.  

 

Figure 5-3. The RMSE of the 25-fold cross validation experiment using all CMA 
station data. 
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To better understand potential error sources, I examined the four Cubist models with 

largest RMSEs in the 25-fold cross validation experiment (i.e., Fold-2, 9, 19, 25). 

Figure 5-4 presents the density scatter plots of validation results, the comparison of 

data distributions of the training and validation data, and the quantile-quantile (Q-Q) 

plots between the training and validation datasets. For most of these cases (except 

model 2), the data distributions of training and validation data are notably different. For 

example, Fold-19 and Fold-25 all show that the distributions of their validation data 

are shifted rightwards from the distributions of their training data; Fold-9 exhibits a 

double-peak distribution of its validation data which is different from the near normal 

distribution of it training data. The Q-Q plots also confirm these differences among 

training/validation data’s distribution. This common characteristic of these three cases 

underpins the assumption of machine learning models. Machine learning models are 

designed to predict unknown situations by learning from existing data/observations. 

The underlying assumption of most machine learning models is that the training data 

should represent the overall data distribution reasonably well. If this assumption is 

invalid, like in these cases, the performance of the prediction/estimation can be notably 

affected. Therefore, it is very important to ensure the representativeness of the data 

during model training process. Nevertheless, when I examined the distributions of the 

training data for all four cases, it is quite assuring to see that they share almost the same 

distribution despite the difference of their training data. This implies that when the 

amount of training data is large enough the sample distribution may be very close to 

the real data distribution. However, it is always the best practice to examine and 
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increase, if possible, the representativeness of the training data to ensure the trained 

machine learning model is not biased from the beginning.  

 

Figure 5-4. First column (a, d, g, j): the density scatter plots of four Cubist models with 
largest RMSEs in Figure 5-3 (i.e., No. 2, 9, 19, 25); second column (b, e, h, k): the 
comparisons of the data distributions of SATs from the training and validation datasets 
of each model; third column (c, f, i, l): the quantile-quantile (Q-Q) plots of SATs 
between the training and validation datasets of each model. 
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5.3 The model complexity trade-off 

While developing a machine learning model, the users almost always have the freedom 

to define certain parameters of the model which may affect the performance of the 

model. In the Cubist model case, there are two key parameters need to be determined, 

i.e., the number of committees used and the number of neighbors used in the model. 

Among these two, the number of committees strongly affects the complexity of the 

final model since it defines how many iterations of a tree-based regression model are 

used in the model. The higher the number is the more complex the model is. As there 

is no theoretical way to determine the value of these parameters for machine learning 

model, users are always suggested to tune the parameters using either random or 

systematic searching approach. The random searching generates a set of parameters 

randomly and then chooses the final parameter value by selecting the one with the best 

model performance. The systematic searching choose the final parameter value from a 

comprehensive set of parameters defined through a systematic way, which is usually 

through a uniform sampling of the potential parameter spaces. In this dissertation, I 

choose systematic searching to determine the parameters of the Cubist model and 

MARS from a large set of parameters (typically 100~200 different combinations of the 

two used parameters). For the Cubist model described in Chapter 3, the model 

uncertainty defined as the RMSE shows a decreasing pattern with the increasing model 

complexity no matter how many neighbors are used to modify the final model 

estimation (Figure 5-5). 
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Figure 5-5. The relationship between the all-sky Cubist model uncertainty quantified 
using the root-mean-square-error (RMSE) and the model complexity defined by the 
number of committees used in the Cubist model. 

However, there are also associated costs of the increasing model complexity. The first 

cost is the computational cost. The computational time of a Cubist model is linearly 

related to the number of committees used in the model. With more committees, the 

number of single tree-based model increases linearly. For example, using the same 

computational resources it cost roughly 17 hours to train a Cubist regression model 

with 100 committees while it only took 3.2 hours to train a Cubist model with 10 

committees. Although the increasing model complexity reduces the model uncertainty, 

the trade-off between computational costs and accuracy gain need to be taken into 

consideration. In the Cubist case, the model performance only improves at a level of 

0.05 °C while the computational cost more than doubled between a 50-committee 

model and a 100-committee model (Figure 5-5). This issue can be much more server 

when using more computational intense models or apply models to large volume of 

data. 
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Finally, the increasing model complexity may also cause higher risk of model 

overfitting. Theoretically, machine learning are statistical models trained with existing 

data. By increasing the model complexity, it can perfectly fit the data used during 

model training process. However, once the model is applied to a new set of data, it 

might perform poorly because the overfitted model cannot handle the information of 

the new data. To avoid this issue, different studies have suggested slightly different 

solutions. For example, while choosing the parameter for final models, users may 

choose the parameter yielding acceptable model accuracy (within 2% range or one 

standard deviation of all model accuracy values) and with lower complexity instead of 

choosing the best model with higher model complexity. Moreover, users can 

strategically design a model training process that theoretically can prevent the model 

overfitting issue from occurring, like the leave one station out cross validation strategy 

that was used in this dissertation research (Meyer et al., 2016; Noi et al., 2017). 
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Chapter 6  Conclusion and Future Work 

6.1 Summary of the key findings  

In this dissertation, I conducted a series of research to answer the overarching question 

of how I can use advanced statistical methods and remote sensing data to reduce the 

uncertainty of surface air temperature data at regional and local scales. 

I firstly comprehensively compared four major global gridded land surface air 

temperature datasets, i.e., BEST-LAND, CRU-TEM4v, NASA-GISS, and NOAA-

NCEI, at different spatial and temporal scales. The large scale mean LSAT anomalies 

are remarkably different because of the data coverage differences, with the magnitude 

nearly 0.4 °C for the global and Northern Hemisphere and 0.6 °C for the Southern 

Hemisphere. This study additionally finds that on the regional scale, northern high 

latitudes, southern middle-to-high latitudes, and the equator show the largest 

differences nearly 0.8 °C. These differences may cause notable differences for the trend 

calculation at regional scales. At the local scale, four datasets show significant 

variations over South America, Africa, Maritime Continent, central Australia, and 

Antarctica, which leads to remarkable differences in the local trend analysis. For some 

areas, different data sets produce conflicting results of whether warming exists. Our 

analysis shows that the differences across scales are associated with the availability of 

stations and the use of infilling techniques. My results suggest that conventional LSAT 

data sets using only station observations have large uncertainties across scales, 

especially over station-sparse areas. In developing future LSAT data sets, the data 

uncertainty caused by limited and unevenly distributed station observations must be 

reduced. To the best of my knowledge, this is the first comprehensive assessment of 
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the four major SAT datasets at local and regional scales since the IPCC Fifth 

Assessment Report, providing strong evidence for the future research to reduce the 

uncertainty of global gridded SAT datasets. 

To reduce the uncertainty of regional and local surface air temperature datasets, I then 

developed a machine learning framework to estimate the daily SAT over the Tibetan 

Plateau with a high spatial resolution. This machine learning model is a novel all sky 

model based on the rule-based Cubist regression to estimate all sky daily SAT using 

LST, ISR, TOA albedo and OLR. The model is trained using station data of the Chinese 

Meteorological Administration and corresponding satellite products. The output is 

evaluated using independent station data with the bias of -0.07 °C and RMSE of 

1.87°C. Additionally, the 25-fold cross validation shows a stable model performance 

(RMSE: 1.6-2.8 °C). Moreover, the all sky Cubist model increases the availability of 

the estimated SAT by nearly three times. I used the all sky Cubist model to estimate 

the daily SAT of the TP for 2002-2016 at 0.05°×0.05°. I also compared the all sky 

Cubist model estimated SAT with three reanalysis datasets (i.e., GLDAS, CLDAS, 

CMFD). My model estimation shows similar spatial and temporal dynamics with these 

existing data but outperforms them with lower bias and RMSE when benchmarked 

against CMA station data. Using the estimated SAT over the Tibetan Plateau, I found 

that the western part of the Plateau has experienced dramatic warming for the time 

period of 2002-2015, which did not reflect by any CMA station temperature 

measurements. The estimated SAT data could be very useful for regional and local 

climate studies over the TP.  



 

 
126 

Although the machine learning model is developed for the TP, the framework is generic 

and may be extended to other regions with proper model training using local data. Thus, 

I extended the machine learning model to a larger geographical extent, the northern 

high latitudes which has experienced dramatic temperature change in the last decades. 

To apply the machine learning model to the northern high latitudes, I modified the 

model to account for the differences between the TP and the NHL. Because of the large 

data volume of this study area, the rule-based Cubist regression model in the original 

framework has been replaced by the multivariate adaptive regression splines model. 

The adapted machine learning model is trained and evaluated using the Global 

Historical Climatology Network daily station data archive. Using data of 642 stations, 

the model estimated surface air temperature has good performance with the bias of -

0.1 ~ -0.2 °C and the RMSE of 2.1 ~ 2.6 °C. However, due to lack of stations over the 

permanent ice surface, the model performs worse over the permanent ice surface than 

other surface conditions (RMSE: 2.8 °C vs. 2.4 °C). When the model is applied to the 

entire northern high latitudes, the estimated SAT show reasonable spatial and seasonal 

dynamics when compared with existing datasets but it can provide much detailed 

spatial information for climate analysis. 

Overall, the research in this dissertation has demonstrated the great potential of 

leveraging machine learning and remote sensing products to estimate the SAT at high 

spatial resolution. The applications of this modeling framework to the Tibetan Plateau 

and the northern high latitudes show that the estimated SAT data provide unique value 

for local and regional climate analysis, demonstrating the important spatial details 

which are otherwise missing from the station-based datasets. However, the machine 
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learning model need to be trained and evaluated with extreme cautions to ensure that 

the model is not biased or unstable because of model overfitting or poor 

representativeness of training datasets. 

6.2 Future research plan 

Although this model framework has been applied to the time period starting from 2000 

till 2017, the MODIS era, 18 years of data are not necessarily sufficient for climate 

studies considering the natural variability and other factors. Therefore, I plan to extend 

the model for both the Tibetan Plateau and the northern high latitudes to data from 

multiple satellite platforms, including (A)ATSR and AVHRR data. With the AVHRR 

data spanning from the 1980s, the model can generate a long-term time series of high 

resolution SAT dataset for nearly four decades for both the Tibetan Plateau and the 

northern high latitudes. However, attention need to be paid to address the inconsistency 

among different satellite platforms caused by different satellite overpassing time as 

well as the inconsistent sensor calibration. Additionally, I would like to extend the 

machine learning framework to estimate daily maximum/minimum temperature as well 

as the diurnal temperature range over these study regions since the extreme values of 

the SAT also play fundamental role on affecting ecosystem activities and regional 

environmental change. 

Moreover, all input satellite data have different level of uncertainties which can be 

propagated into this statistical-based estimation. Therefore, it will be beneficial to 

understand the sensitivity of the estimated SAT regarding to the uncertainty of each 

individual input variables. In addition, there are growing demands of grid-level 

uncertainty assessment to improve the confidence of local and regional applications 
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using various climate datasets. Thus, it is of the best interest to provide the uncertainty 

value associated with each grid for the estimated SAT data using advanced statistical 

methods, such as, Markov Chain Monte Carlo (MCMC), bootstrapping etc. 

Lastly, I would like to explore the possibility of extending the developed machine 

learning model to even larger geographical extent, e.g., continents where stations are 

sparse (like South America, Antarctica, and Africa). The successful application of the 

machine learning model for those continents will be very important to increase the 

confidence of climate analysis over these station sparse regions.  
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Appendix 

Table A1. Estimated trends of difference series (using BEST-LAND as the reference) using common data coverage for global mean LSAT and hemispheric mean 
LSAT data. Number with bold red font indicate the difference trend is significant (p<0.05). The significance test use ARMA(1,1) to address autocorrelation issue 
in temperature time series (SH: southern hemisphere; NH: northern hemisphere; ANN: annual mean LSAT; MAM: March-April-May mean LSAT; JJA: June-
July-August mean LSAT; SON: September-October-November mean LSAT; DJF: December-January-February mean LSAT). 

 CRU-TEM4v NASA-GISS NOAA-NCEI 
ANN MAM JJA SON DJF ANN MAM JJA SON DJF ANN MAM JJA SON DJF 

19
01

-2
01

7 Global -0.005 -0.003 -0.005 -0.006 -0.004 -0.005 -0.004 -0.004 -0.008 -0.004 0.000 0.000 0.002 -0.001 -0.002 

SH -0.007 -0.006 -0.002 -0.008 -0.010 0.005 0.009 0.010 -0.001 0.003 0.018 0.022 0.016 0.015 0.018 

NH -0.004 -0.002 -0.006 -0.005 -0.002 -0.008 -0.008 -0.008 -0.010 -0.006 -0.006 -0.007 -0.003 -0.006 -0.008 

19
51

-2
01

7 Global 0.014 0.010 0.011 0.019 0.018 0.014 0.013 0.011 0.015 0.016 0.012 0.006 0.008 0.017 0.015 

SH 0.001 0.000 -0.003 -0.004 0.011 0.020 0.024 0.011 0.014 0.032 0.026 0.030 0.012 0.021 0.043 

NH 0.019 0.013 0.016 0.027 0.020 0.012 0.009 0.011 0.016 0.011 0.007 -0.002 0.006 0.016 0.006 

19
81

-2
01

7 Global 0.027 0.022 0.030 0.029 0.025 0.008 0.008 0.016 0.010 -0.002 0.002 -0.003 0.006 0.005 0.002 

SH 0.002 0.003 0.021 -0.017 0.003 0.021 0.021 0.022 0.011 0.031 0.020 0.040 0.008 -0.012 0.044 

NH 0.035 0.028 0.033 0.044 0.032 0.003 0.003 0.014 0.010 -0.014 -0.004 -0.018 0.005 0.011 -0.013 

19
98

-2
01

7 Global 0.019 0.012 0.031 0.023 0.005 0.009 0.011 0.018 0.019 -0.016 0.007 -0.004 0.021 0.011 0.002 

SH -0.038 -0.040 -0.003 -0.062 -0.042 0.041 0.043 0.041 0.025 0.053 0.032 0.060 0.040 -0.026 0.059 

NH 0.038 0.028 0.041 0.051 0.021 -0.002 0.001 0.010 0.017 -0.039 -0.001 -0.025 0.014 0.023 -0.016 
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Table A2. Estimated trends of difference series (using BEST-LAND as the reference) using common data coverage for latitudinal band mean LSATs. Number with 
bold red font indicate the difference trend is significant (p<0.05). The significance test use ARMA(1,1) to address autocorrelation issue in temperature time series 
(ANN: annual mean LSAT; MAM: March-April-May mean LSAT; JJA: June-July-August mean LSAT; SON: September-October-November mean LSAT; DJF: 
December-January-February mean LSAT). 

 
1901-2017 1951-2017 1981-2017 1998-2017 

ANN MAM JJA SON DJF ANN MAM JJA SON DJF ANN MAM JJA SON DJF ANN MAM JJA SON DJF 

C
R

U
-T

EM
4v

 

S90-S70 -0.049 -0.138 -0.062 0.004 0.005 -0.049 -0.138 -0.062 0.004 0.005 -0.102 -0.222 -0.011 0.027 -0.153 0.195 -0.090 0.240 0.523 0.121 

S70-S50 -0.013 -0.005 -0.018 -0.026 -0.015 -0.002 0.015 -0.051 -0.025 0.016 -0.082 -0.160 -0.154 -0.038 -0.031 -0.168 -0.249 -0.390 -0.099 -
0.047 

S50-S30 -0.004 -0.008 0.004 -0.005 -0.005 -0.002 -0.009 -0.001 -0.001 0.006 -0.005 -0.003 -0.002 -0.013 -0.004 -0.011 -0.001 -0.006 -0.011 -
0.020 

S30-S10 -0.003 0.000 0.001 -0.008 -0.003 0.011 0.017 0.004 -0.004 0.029 0.004 0.016 0.017 -0.026 0.011 -0.059 -0.049 -0.026 -0.100 -
0.054 

S10-N10 -0.040 -0.035 -0.031 -0.039 -0.055 -0.010 -0.016 -0.006 -0.005 -0.015 0.023 0.023 0.048 0.012 0.009 0.028 0.030 0.047 0.016 0.016 

N10-N30 -0.001 -0.005 0.003 0.002 -0.004 0.036 0.026 0.040 0.044 0.037 0.047 0.038 0.042 0.058 0.042 0.045 0.055 0.043 0.025 0.024 

N30-N50 -0.003 -0.003 -0.010 -0.004 0.004 0.021 0.016 0.008 0.029 0.029 0.044 0.034 0.033 0.055 0.059 0.024 0.019 0.027 0.036 0.025 

N50-N70 0.001 0.007 -0.004 -0.003 0.004 0.009 0.005 0.008 0.020 0.006 0.010 0.003 0.017 0.023 -0.005 0.036 -0.002 0.052 0.078 0.003 

N70-N90 0.034 0.003 0.015 0.056 0.032 0.022 -0.006 0.066 0.033 -0.025 0.089 0.055 0.177 0.081 -0.084 0.126 -0.017 0.340 0.157 -
0.263 

N
A

SA
-G

IS
S 

S90-S70 -0.052 -0.132 -0.083 0.004 0.001 -0.052 -0.132 -0.083 0.004 0.001 -0.088 -0.241 -0.100 0.082 -0.067 0.072 -0.198 -0.150 0.545 0.069 

S70-S50 -0.032 -0.034 -0.039 -0.032 -0.032 -0.026 -0.043 -0.078 -0.020 0.002 -0.112 -0.210 -0.188 -0.024 -0.054 -0.175 -0.325 -0.413 -0.031 0.008 

S50-S30 -0.008 -0.010 0.001 -0.011 -0.014 -0.004 -0.007 -0.003 -0.002 -0.002 -0.014 -0.018 -0.015 -0.008 -0.014 0.009 0.003 0.017 0.024 -
0.013 

S30-S10 0.003 0.008 0.008 -0.005 0.004 0.021 0.031 0.009 0.009 0.036 0.031 0.042 0.028 0.006 0.052 0.055 0.080 0.058 0.013 0.074 

S10-N10 0.012 0.023 0.020 0.005 0.000 0.034 0.035 0.034 0.034 0.032 0.018 0.019 0.026 0.016 0.010 0.041 0.028 0.043 0.053 0.034 

N10-N30 -0.002 -0.006 0.013 -0.003 -0.012 0.021 0.015 0.029 0.020 0.018 0.019 0.019 0.038 0.017 -0.003 0.022 0.041 0.023 0.031 -
0.016 

N30-N50 -0.014 -0.013 -0.019 -0.015 -0.009 0.009 0.008 -0.003 0.013 0.020 0.012 0.014 0.012 0.020 0.004 0.012 0.018 0.020 0.032 -
0.030 

N50-N70 -0.007 -0.007 -0.015 -0.011 0.003 0.003 0.001 0.008 0.012 -0.008 -0.011 -0.014 0.014 0.003 -0.040 -0.029 -0.040 0.006 -0.010 -
0.070 

N70-N90 0.012 0.016 -0.010 0.008 0.056 -0.024 -0.059 -0.028 -0.018 0.031 -0.176 -0.273 -0.150 -0.119 -0.185 -0.445 -0.670 -0.302 -0.375 -
0.405 

N
O

A
A

-
N

C
EI

 S90-S70 0.018 -0.091 0.049 0.089 0.007 0.018 -0.091 0.049 0.089 0.007 -0.005 -0.115 -0.036 0.156 -0.087 0.249 -0.450 0.360 0.623 -
0.030 

S70-S50 -0.026 -0.028 -0.029 -0.025 -0.015 -0.042 -0.080 -0.080 0.004 -0.019 -0.160 -0.228 -0.313 -0.025 -0.106 -0.224 -0.160 -0.618 -0.233 -
0.015 
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S50-S30 0.001 0.004 0.008 -0.006 -0.004 -0.006 -0.005 -0.001 -0.012 -0.005 -0.019 -0.002 -0.011 -0.030 -0.033 -0.004 0.017 0.024 -0.020 -
0.035 

S30-S10 0.020 0.025 0.016 0.017 0.022 0.031 0.039 0.012 0.022 0.051 0.035 0.059 0.017 -0.002 0.068 0.048 0.094 0.066 -0.038 0.078 

S10-N10 0.017 0.019 0.023 0.018 0.007 0.038 0.038 0.036 0.041 0.038 0.014 0.028 0.017 -0.004 0.019 0.033 0.042 0.012 0.024 0.062 

N10-N30 -0.002 -0.011 0.017 0.001 -0.015 0.012 0.000 0.021 0.015 0.008 0.003 -0.021 0.017 0.015 -0.003 -0.009 -0.033 0.009 0.003 -
0.027 

N30-N50 -0.011 -0.011 -0.011 -0.010 -0.013 0.005 -0.002 -0.005 0.017 0.011 0.016 0.000 0.012 0.034 0.017 0.031 0.005 0.044 0.056 0.016 

N50-N70 -0.005 -0.002 -0.014 -0.009 0.003 -0.002 -0.009 -0.005 0.011 -0.004 -0.023 -0.030 -0.004 -0.006 -0.044 -0.015 -0.047 0.003 0.015 -
0.040 

N70-N90 0.006 -0.019 0.017 -0.020 0.062 -0.078 -0.126 -0.007 -0.125 -0.040 -0.257 -0.375 -0.069 -0.292 -0.305 -0.530 -0.872 -0.041 -0.543 -
0.506 
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Table A3. Estimated trends of difference series (using BEST-LAND as the reference) using common data coverage for regional mean LSATs. Number with bold 
red font indicate the difference trend is significant (p<0.05). The significance test use ARMA(1,1) to address autocorrelation issue in temperature time series. 
(ANN: annual mean LSAT; MAM: March-April-May mean LSAT; JJA: June-July-August mean LSAT; SON: September-October-November mean LSAT; DJF: 
December-January-February mean LSAT). 

  
1901-2017 1951-2017 1981-2017 1998-2017 

ANN MAM JJA SON DJF ANN MAM JJA SON DJF ANN MAM JJA SON DJF ANN MAM JJA SON DJF 

C
R

U
-T

EM
4v

 

Greenland 0.000 0.001 0.010 0.008 
-

0.005 
-

0.007 
-

0.013 0.014 0.005 
-

0.004 0.037 0.026 0.025 0.061 
-

0.015 0.121 0.130 0.115 0.135 0.101 

North America 2 0.032 0.050 0.035 0.023 0.023 0.003 0.011 0.019 0.003 
-

0.021 
-

0.023 
-

0.004 
-

0.004 
-

0.019 
-

0.073 
-

0.034 
-

0.006 
-

0.032 
-

0.004 
-

0.128 

Asia 2 
-

0.008 
-

0.002 
-

0.014 
-

0.018 0.001 0.016 0.002 0.009 0.032 0.023 0.026 0.001 0.032 0.044 0.028 0.064 
-

0.032 0.099 0.119 0.066 

Europe 
-

0.010 
-

0.011 
-

0.018 
-

0.008 
-

0.004 0.004 0.002 
-

0.003 0.013 0.003 0.028 0.017 0.025 0.038 0.028 0.032 0.010 0.029 0.057 0.021 

North America 1 
-

0.004 
-

0.002 
-

0.017 
-

0.003 0.006 0.008 0.012 
-

0.001 0.011 0.011 0.010 0.021 0.004 0.015 0.003 0.015 0.039 0.023 0.049 
-

0.045 

Asia 1 
-

0.004 
-

0.009 0.003 
-

0.003 
-

0.007 0.036 0.024 0.029 0.047 0.045 0.067 0.044 0.058 0.078 0.092 0.021 
-

0.001 0.033 0.008 0.059 

South America 1 
-

0.044 
-

0.036 
-

0.035 
-

0.047 
-

0.053 
-

0.014 
-

0.016 
-

0.016 
-

0.020 
-

0.006 
-

0.019 
-

0.021 
-

0.010 
-

0.026 
-

0.016 
-

0.082 
-

0.077 
-

0.076 
-

0.120 
-

0.062 

Africa 
-

0.006 
-

0.001 
-

0.002 
-

0.012 
-

0.006 0.041 0.039 0.044 0.042 0.043 0.067 0.076 0.088 0.051 0.046 0.089 0.113 0.114 0.070 0.033 

Maritime Continent 
-

0.042 
-

0.041 
-

0.045 
-

0.029 
-

0.054 
-

0.008 
-

0.005 
-

0.022 
-

0.001 
-

0.002 0.040 0.064 0.025 0.035 0.025 0.088 0.123 0.074 0.080 0.090 

Australia 0.003 0.000 0.006 0.004 0.001 
-

0.011 
-

0.011 
-

0.011 
-

0.014 
-

0.007 
-

0.010 
-

0.011 
-

0.004 
-

0.018 
-

0.007 
-

0.046 
-

0.058 
-

0.016 
-

0.056 
-

0.045 

South America 2 
-

0.020 
-

0.021 
-

0.007 
-

0.019 
-

0.030 
-

0.030 
-

0.037 
-

0.027 
-

0.030 
-

0.027 
-

0.026 
-

0.022 
-

0.035 
-

0.034 
-

0.014 
-

0.044 
-

0.015 
-

0.080 
-

0.075 
-

0.009 

Antarctica 0.014 0.017 
-

0.040 0.014 0.026 
-

0.013 0.006 
-

0.074 
-

0.010 0.025 
-

0.114 
-

0.222 
-

0.157 
-

0.037 
-

0.079 
-

0.096 
-

0.275 
-

0.272 0.082 
-

0.015 

N
A

SA
-G

IS
S 

Greenland 0.003 
-

0.002 
-

0.021 0.006 0.039 0.024 0.037 0.009 0.026 0.050 0.001 
-

0.026 0.023 0.032 0.025 0.062 0.059 0.142 0.091 0.059 

North America 2 0.001 0.007 0.003 
-

0.005 
-

0.004 
-

0.012 0.011 0.005 
-

0.005 
-

0.057 
-

0.055 
-

0.032 
-

0.023 
-

0.031 
-

0.134 0.013 0.103 
-

0.022 0.057 
-

0.035 

Asia 2 
-

0.016 
-

0.019 
-

0.033 
-

0.022 0.008 0.006 
-

0.015 
-

0.001 0.023 0.018 
-

0.008 
-

0.042 0.004 0.013 0.004 
-

0.104 
-

0.177 
-

0.056 
-

0.097 
-

0.091 

Europe 
-

0.007 
-

0.008 
-

0.013 
-

0.008 0.000 0.006 0.004 0.005 0.009 0.007 0.012 0.012 0.029 0.020 
-

0.008 
-

0.006 
-

0.020 0.028 0.011 
-

0.045 

North America 1 
-

0.020 
-

0.017 
-

0.029 
-

0.022 
-

0.013 0.002 0.012 
-

0.013 0.001 0.008 
-

0.009 0.013 
-

0.019 
-

0.003 
-

0.028 0.009 0.067 0.012 0.035 
-

0.077 

Asia 1 0.000 
-

0.004 0.010 0.001 
-

0.006 0.029 0.018 0.023 0.035 0.036 0.035 0.027 0.044 0.039 0.033 0.028 0.014 0.050 0.043 
-

0.004 

South America 1 0.020 0.032 0.024 0.010 0.012 0.040 0.045 0.030 0.034 0.048 0.012 0.011 0.015 0.000 0.019 0.025 0.023 0.050 
-

0.015 0.042 

Africa 
-

0.018 
-

0.014 
-

0.005 
-

0.028 
-

0.025 0.011 0.015 0.015 0.004 0.012 0.019 0.037 0.038 0.006 
-

0.001 0.023 0.062 0.009 0.021 
-

0.005 
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Maritime Continent 
-

0.005 
-

0.005 0.002 
-

0.003 
-

0.017 0.033 0.034 0.025 0.030 0.043 
-

0.001 0.009 0.000 
-

0.021 0.006 0.072 0.088 0.030 0.037 0.139 

Australia 0.014 0.019 0.016 0.007 0.013 0.020 0.024 0.015 0.016 0.026 0.038 0.026 0.022 0.043 0.063 0.119 0.086 0.114 0.146 0.137 

South America 2 
-

0.015 
-

0.019 
-

0.002 
-

0.013 
-

0.026 
-

0.013 
-

0.018 
-

0.015 
-

0.010 
-

0.010 
-

0.037 
-

0.041 
-

0.044 
-

0.036 
-

0.029 
-

0.019 
-

0.011 
-

0.020 
-

0.006 
-

0.043 

Antarctica 0.003 
-

0.058 
-

0.054 0.004 0.052 
-

0.018 
-

0.052 
-

0.073 
-

0.003 0.014 
-

0.113 
-

0.258 
-

0.189 0.026 
-

0.047 
-

0.131 
-

0.374 
-

0.425 0.188 0.036 

N
O

A
A

-N
C

EI
 

Greenland 
-

0.031 
-

0.032 
-

0.028 
-

0.034 
-

0.027 
-

0.029 0.006 
-

0.019 
-

0.055 
-

0.063 
-

0.107 
-

0.116 0.087 
-

0.070 
-

0.216 0.130 0.179 0.245 0.254 
-

0.064 

North America 2 0.005 0.016 0.011 
-

0.004 
-

0.010 
-

0.017 
-

0.015 
-

0.006 
-

0.008 
-

0.049 
-

0.046 
-

0.022 
-

0.027 
-

0.043 
-

0.081 0.016 0.014 
-

0.004 0.057 
-

0.032 

Asia 2 
-

0.015 
-

0.012 
-

0.034 
-

0.021 0.010 0.004 
-

0.015 
-

0.008 0.016 0.028 
-

0.038 
-

0.072 
-

0.017 
-

0.013 
-

0.038 
-

0.079 
-

0.153 
-

0.044 
-

0.066 
-

0.035 

Europe 
-

0.012 
-

0.014 
-

0.016 
-

0.010 
-

0.008 
-

0.010 
-

0.021 
-

0.010 0.008 
-

0.013 0.017 0.001 0.021 0.045 0.010 0.024 0.004 0.042 0.058 0.023 

North America 1 
-

0.005 
-

0.005 
-

0.006 
-

0.005 
-

0.006 0.006 0.006 0.003 0.012 0.001 
-

0.001 0.002 0.004 0.012 
-

0.027 0.044 0.049 0.031 0.084 0.001 

Asia 1 
-

0.007 
-

0.013 0.010 
-

0.004 
-

0.021 0.015 0.003 0.011 0.024 0.021 0.013 
-

0.010 0.018 0.020 0.029 0.001 
-

0.055 0.026 0.011 0.017 

South America 1 0.033 0.034 0.034 0.030 0.028 0.046 0.049 0.028 0.043 0.064 0.010 0.027 
-

0.006 
-

0.022 0.042 0.009 0.010 0.038 
-

0.062 0.055 

Africa 0.000 0.002 0.003 
-

0.003 
-

0.002 0.021 0.023 0.020 0.019 0.021 0.036 0.047 0.043 0.025 0.029 0.039 0.081 0.038 0.025 0.007 

Maritime Continent 
-

0.013 
-

0.014 
-

0.010 
-

0.009 
-

0.021 0.023 0.020 0.008 0.031 0.031 
-

0.021 
-

0.008 
-

0.021 
-

0.041 
-

0.015 0.009 0.054 
-

0.054 
-

0.039 0.098 

Australia 0.012 0.015 0.014 0.010 0.009 0.016 0.018 0.013 0.013 0.021 0.019 0.020 0.004 0.020 0.030 0.076 0.064 0.094 0.076 0.074 

South America 2 0.004 0.007 0.013 0.002 
-

0.007 
-

0.012 
-

0.013 
-

0.009 
-

0.011 
-

0.013 
-

0.047 
-

0.042 
-

0.063 
-

0.047 
-

0.039 
-

0.020 0.024 
-

0.048 
-

0.035 
-

0.016 

Antarctica 
-

0.052 
-

0.114 
-

0.057 0.036 
-

0.022 
-

0.030 
-

0.100 
-

0.067 0.045 
-

0.003 
-

0.103 
-

0.210 
-

0.205 0.068 
-

0.102 
-

0.068 
-

0.267 
-

0.323 0.103 
-

0.008 
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