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Chapter 1 

Introduction 

Information visualization can be defined as the use of computer-supported 

interactive visual representation of abstract data to amplify cognition [8]. Information 

visualization is more likely to be used to display database content (e.g. recorded stock 

values, health statistics) than output of models or simulations. It aims to provide 

compact graphical presentations and user interfaces for interactively manipulating 

large numbers of items (102 - 106), possibly extracted from far larger datasets [40, 

36]. Information visualization, sometimes called visual data mining, uses the 

remarkable human visual system to enable users to make discoveries or decisions, or 

propose explanations about patterns or exceptions.  Perceptual psychologists and 

graphic designers (e.g. Tufte, 1983) provide guidance about presenting static 

information, while the growing power of desktop computers allows user-interface 

designers to propose rich interaction mechanisms to manipulate the data in real time. 

Treemap [32] is an interactive information visualization tool for visualizing 

hierarchical data. It makes effective use of display space and represents hierarchical 

data by a set of nested rectangles generated by a recursive space-partitioning 

algorithm. The focus is at leaf level where the actual data items are shown. The data 

attributes are shown by size and color of the rectangles. Treemap enables users to 

compare data items as well as sub-trees and helps to identify the patterns or 

exceptions. It also facilitates users in grouping the data by creating new hierarchies 
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through dynamically selecting a series of data attributes, modifying the existing 

hierarchies and saving the hierarchies.  

However, many real world applications involve monitoring and analyzing time 

series data. Time series data can be defined as an ordered sequence of values of a 

variable or an attribute at equal points in time (daily, weekly, monthly etc). Examples 

of time series data include demographic analysis to study the birth rates, stock market 

analysis to spot market trends, sales forecasting to examine sales patterns and predict 

future trends, health statistics to identify disease trends, work load projections, 

weather forecasting, etc. 

In general, a time-series graph, plotted with time stamps on the x-axis and 

attribute values on the y-axis, is used to represent this data. There have been many 

interactive visualization techniques that support display and exploration of time series 

data [9]. Recently, focus has shifted to developing tools for specifying dynamic 

queries for identifying time-dependent patterns [17]. 

Analyzing time series data, however, is not trivial. Many real world phenomena 

show information at different levels of detail. Analyzing each individual data item’s 

time series as a separate graph or a record may not be sufficient to understand the 

overall trends in the data. It might be useful to analyze the data at different levels of 

detail to spot the overall trends and patterns in the data. For example, consider stock 

market data where attributes like stock price and number of stocks traded constantly 

change with time. A common trend is to study whether a stock’s market value has 

increased or decreased and which stock has the highest/lowest value. A hierarchical 
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structure can be imposed on stock market data, as defined by the industry groups or 

other industry-specific attributes. This hierarchical organization of stock market data 

helps the users to identify the performance of an industry group as a whole as well as 

the individual companies in that industry and enables the users to visualize the market 

shifts in a broader perspective.  

 

Figure 1.1 Temporal treemap showing %preterm births in 2001. Each rectangle is 

a state, grouped by geographical region. A shade of green shows states with preterm 

birth rate less than 5% and a shade of red indicates states with preterm birth rate 

greater than 5%. 
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Current implementations of treemaps support data that is static or fixed. Making 

use of the existing treemap technique, temporal treemaps introduce a new time 

dimension to visualize timeseries data. 

Temporal treemaps are developed for visualizing hierarchical datasets where one 

or more data attribute values change over time. The temporal changes can be 

monitored by mapping the attribute value changes over time to the color attribute in 

treemap. Experience has demonstrated that changes to sizes are difficult for users to 

follow. 

Figure 1.1 is an example of temporal treemaps for visualizing percentage of live 

births that were born preterm in 1990. The data is collected for each state for 12 years 

(1990 to 2001). Each rectangle in Figure 1.1 represents a state, grouped by region. 

The color of the rectangle (a shade of green and red) is mapped to the %preterm 

births in 2001. The time step slider on the right side of Figure 1.1 is used to navigate 

thru time periods to identify the trends as observed by the color changes in the 

treemap. It has been observed that District of Columbia showed the highest %preterm 

birth rate of all the states in US. 

Users can view data by navigating through each time period or animate over a 

range of time periods. Temporal treemaps also provide a graphic overview consisting 

of timeseries graphs of the data items, tightly coupled with the treemap overview as 

shown in the lower corner of Figure 1.1.  

 4



This thesis discusses the related work, preliminary design issues and 

implementation details, case studies, research contributions and future possible 

extensions to the current work. 

• Chapter 2 discusses the background work in treemaps and other related 

interactive techniques for visualizing hierarchical and time series data. 

• Chapter 3 describes the user requirements and design issues that led to the 

implementation of temporal treemaps. 

• Chapter 4 illustrates the implementation details of temporal treemaps. 

• Chapter 5 presents five case studies and explains how temporal treemaps aid 

in visualizing time series data. This chapter also discusses the feedback 

collected from the users. 

• Chapter 6 describes the research contributions of this thesis and future work. 

A brief introduction of temporal treemaps is available at 

http://www.cs.umd.edu/hcil/treemap/timeseries.html 

Temporal treemaps will be included in Treemap 4.2 and the online documentation 

provides a detailed explanation of all the supported features and their usage.
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Chapter 2  

Related work 

The main focus of this thesis is to enhance treemaps to visualize time series of 

data which is hierarchical in nature to monitor temporal changes at a broader level. A 

brief discussion of interactive techniques that support hierarchical and/or temporal 

data visualization is presented in this chapter. 

2.1 Treemaps History 

Treemaps [32] were first developed at the Human-Computer Interaction 

Laboratory (HCIL) of the University of Maryland during the 1990s. Treemap is a 

visualization tool that uses 100% of the available display space by mapping the 

hierarchy onto a rectangular region in a space-filling manner. It allows rapid 

comparison of the size of nodes or the shape of sub-trees and creates a display of leaf 

node values based on size and color [21]. Dynamic query filters [1] were added to 

facilitate the exploration of data. Users can filter out unwanted or uninteresting items 

from the display. 

The basic idea of flexible hierarchy was first implemented in CatTrees [23], a 

class project prototype, which allows interactive manipulation to the hierarchy. 

CatTrees was an enhancement to treemaps, and was built on earlier versions of 

treemaps.  CatTrees was limited to categorical data. Later, the idea of CatTrees was 

extended to handle both categorical and numerical data and a new prototype interface 

for creating and manipulating flexible hierarchies was developed in another class 
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project [34]. Flexible hierarchy facilitates users to categorize the data, define new 

meaningful hierarchies by selecting the attributes and adding them to the hierarchy, 

and save the hierarchies. Numerical data is categorized by defining bins or numeric 

ranges in the data. The interface was refined and integrated in Treemap 4.0 

(www.cs.umd.edu/hcil/treemap). 

 

Figure 2.1.1 Visualizing 62 projects, each rectangle represents a project, size of 

the rectangle is proportional to the budget allocated, color is proportional to budget 

balance, a shade of red-white represents over spent projects, and a shade of white-

green represents under spent projects, projects are grouped by region and then by 

department. 
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Figure 2.1.1 shows an abstract visual representation of project portfolio data, 

which consists of 62 projects, grouped by project status attribute. Each rectangle 

represents a project. The hierarchical structure in Figure 2.1.1 is obtained by 

imposing a new hierarchy of attribute project status. The size of each rectangle is 

proportional to the budget allocated attribute and color is related to the budget 

balance attribute, light colored rectangles represent under-spent projects, dark colored 

rectangles represent over-spent projects.  

Users can identify that the three projects (dark rectangles) have run out of budget 

in the scoping and requirements analysis phase which is the first phase in the life 

cycle. Users can see that the large projects, Network Monitor and Photonics (large 

rectangles) are under-spent (light color). 

More recently treemaps are used extensively in wide variety of applications from 

monitoring stock market data [35] to production management [28]. The historical 

summary of treemaps and related research can be found at 

http://www.cs.umd.edu/hcil/treemap-history. 

2.2 Hierarchical Data: Visualizations 

Extensive research is being done in interactive visualization of hierarchical data. 

Several focus+context techniques have been specified to view large hierarchies in 

their entirety without losing context such as the hyperbolic tree browser [25]. The 

hierarchy is laid out uniformly on the hyperbolic plane and this plane is mapped onto 

a circular display region thus effectively using display space. The hyperbolic browser 
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initially displays a tree with its root at the center, and the focus can be shifted to other 

nodes of interest using smooth transformations and animation.  

 

Figure 2.2.1Hyperbolic browser showing an organization chart, with root at the 

center [25]. 

Cone trees [31] present a 3D representation of hierarchical information to 

maximize effective use of the available screen space and enable visualization of the 

whole structure. The root of the tree is located at the apex of the cone and all its 

children are arranged around the circular base of the cone in 3D. Interaction is 

achieved by rotating the 3D representation to reveal the hidden parts of the tree and 

zooming. 
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Figure 2.2.2 Cone tree visualization of a Unix file directory system [31]. 

Reconfigurable disc trees (RDT) [20] is a new visualization technique which can 

alleviate the disadvantages of cone trees significantly for large hierarchies while 

maintaining its context of using 3D depth by using disc instead of cones as the basic 

shape. In RDT, each node is associated with a disc around which its children are 

placed.  

Hierarchical Flip Zooming [6] is another focus+context technique for visualizing 

hierarchical information sets. It allows for independent focus+context views at each 

node of the hierarchy and enables parallel exploration of different branches of the 

hierarchy. 

Bubble trees [7] present a tree visualization mechanism based on the natural 

property of trees to recursively sub-categorize themselves into sub-trees. Each sub-

tree is graphically represented as a bubble, which aggregates detail by enclosing 
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lower level information. Navigation and information retrieval are facilitated through 

an elegant set of browsing interactions. 

Information slices [2] present a new visualization technique for visualizing and 

manipulating large hierarchies using one or more semi-circular discs.  Each disc 

accommodates 5 to 10 levels of hierarchy with deeper hierarchies shown by a series 

of cascaded discs. The attribute values are shown at leaf level with leaves framed out 

in each disc depending on the size of each leaf. Several options are provided to 

interactively explore the data by zooming on to a part of the tree and expanding the 

sub tree, controlling the level of detail on each disc etc. 

 

Figure 2.2.3 Visualization of JDK 1.2 distribution file directory using Information 

Slice technique, with the whole directory tree on the left hand side and a sub directory 

zoomed onto another slice on the right hand side [2]. 
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The Magic Eye View [24] technique for visualizing hierarchies presents another 

focus+context approach that maps a hierarchy graph onto the surface of a hemisphere, 

and then applies a projection in order to change the focus area interactively by 

moving the center of projection.  

 

Figure 2.2.4 Magic Eye view visualization technique showing a derived tree of 

ontology with 1100 nodes [24]. 

Cheops [3] presents another novel approach to the representation, browsing and 

exploration of huge, complex information hierarchies. The Cheops method is based 

on compressed visualization of a hierarchical data set and maintains context within a 

complex hierarchy while providing easy access to details. 
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Figure 2.2.5 Cheops display showing the www information with 9 hierarchy levels 

(grayed out), blue-highlighted nodes indicate the sub category “Health/Medicine” 

(fifth child in the Natural sciences branch) in the “Natural Sciences” (third child from 

the root) category in the whole tree [3]. 

 

Tablelens [30] is a focus+context (fisheye) technique for visualizing and making 

sense of large tables. Tablelens fuses symbolic and graphical representations into a 

single coherent view that can be fluidly adjusted by the user. It allows the users to 

sort and filter data based on values of individual columns. Users can isolate a single 

variable or group of variable using row focusing techniques and sort successively on 

those variables thus creating a virtual hierarchy. 
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Figure 2.2.6 Table lens visualization of Olympic diving medal results, columns sorted 

first by Gender, then by Events etc. which in a way shows the hierarchical structure 

formed by Gender as the first level, Events as the second level etc. [30]. 

 

Infozoom [37] is another tool for visualization and exploration of tabular 

databases. During the Infovis 2003 contest (http://infovis.org/infovis2003/) it was 

demonstrated that Infozoom can be used for visualization, analysis and pair-wise 

comparison of trees. It displays data sets in tables with attributes as rows and objects 

as columns.  
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Figure 2.2.7 Infozoom visualization of two animal classifications (Infovis 2003, 

Contest data) as table, highlighting the differences between two classification trees in 

black [37]. 

Each column shows the leaf of the tree and the path from the leaf to the root is 

stored in attributes (rows) of the table. The attributes can be hierarchically ordered. 

Mosaics [15] are space-filling designs composed of contiguous rectangles 

(“tiles”). Mosaic display is a graphical method for visualizing n-way contingency 

tables, where the area of the rectangle represents the cell frequencies in the 

contingency table. The rectangles can be shaded or colored depending on the 

statistical model used.  
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Figure 2.2.8 A Mosaic display showing the eye and hair color statistical data of 

696 subjects, with hair color mapped to columns and eye color mapped to rows and 

the color shade showing the standard residuals from the statistical model [15]. 

 

A collection of related mosaics (also known as mosaic matrix) can be used to 

show all pair-wise relationships of a set of elements in a multi-way contingency table 

of categorical variables. Mosaic displays are static visualizations created with 

preprocessed data, which resemble treemaps for fixed level hierarchies.  

2.3 Temporal Data: Visualizations 

Many applications deal with the data that has temporal dimension for example 

medical, demographic, production, inventory management, and financial applications. 

Typically, time-series graphs are used to represent time series data by plotting time on 

x-axis and value on y-axis. Interest in time-related data has led to many new 
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visualization techniques that facilitate interactive exploration of time-oriented and 

visualization of large data sets. Several interactive techniques for visualizing time-

oriented information are found in [33] 

. 

 

 

Figure 2.3.1 Pixel based recursive pattern visualization showing the DOWJONES, 

GOLD, IBM, and DOLLAR stock prices for 7 years and 12 months. Each vertical bar 

represents a year, subdivided into 12 months. Color shows the stock price, light color 

shows high stock prices and dark color shows low stock prices. Users map the color 

changes to those of stock prices, for example IBM stock price has fell sharply after 

the first one and half month [27]. 

Recursive pattern visualization [22] allows users to arrange data by some 

attribute, which is semantically meaningful as shown in Figure 2.3.1. Recursive 

pattern visualization technique provides a display of time series data divided 
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hierarchically into different time periods (day, week, month, etc.). For example, it 

groups all the data items belonging to one day in a first level pattern, those belonging 

to same week in second level pattern and those belonging to the same month in third 

level pattern. Each data item is mapped to a colored pixel, color showing the attribute 

value of the data item, thus enabling the users to identify patterns. 

Spiral visualizations [9] uses Archimedes spirals where time progresses along 

each spiral lap with time stamps aligned to spokes on the spirals.  

 

Figure 2.3.2 A spiral display showing the monthly consumption for Baphia 

Capparidifolia by chimpanzees during 1980-1988. Each lap corresponds to a year and 

spokes correspond to the months in the year. Area of the blot shows the actual 

consumption percentage. Users follow the spiral laps or spokes and observe the areas 

of blots for tracking consumption trends, for example the highest percentage 

consumption occurred in a particular month for all the years [9]. 
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Bars, blots etc., are used to represent data at a specific time period, and color and 

area/height show other attributes. Zooming in and out on subsets of the spiral, 

animating and controlling the duration between each spiral achieve interaction. For 

data sets with multiple time series attributes, spiral displays show each attribute with 

a different marking at each time point in a 3D projected view. 

Disk Tree and Time Tubes [11] are examples of Web Ecology and Evolution 

Visualization (WEEV) techniques for monitoring WWW web log data. Disk Trees 

represent the web site hierarchy by concentric circles, where each circle corresponds 

to one level of hierarchy, showing web pages as points, links as lines between points, 

number of page requests by line thickness and brightness of the line going from the 

referring page to the destination and page life cycle stage by color (red for new, green 

for continued and yellow for deleted pages). A new dimension of time is added to 

Disk Trees, by laying out several Disk Trees on a time axis, resulting in Time Tubes 

showing the evolution of the web over longer time periods. For each time period of 

web ecology tube, a disk tree showing that week’s data is inserted in the tube. Any 

week’s data can be viewed by clicking on the slice representing that week, or multiple 

week data can be viewed with all the slices in a row, mapped on to a time axis. 

Interaction is achieved by mouse-over, zooming etc.  

All the disk trees can be stacked up in a time tube so that users can animate over 

time, automatically or in response to their input, and view the data over all time 

periods. However, identifying the changes and interpreting the series of changes 

depends on the users’ ability to do comparisons between different time points. 
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Figure 2.3.3 Time tubes and disk trees showing the WWW web ecology and page 

visitation counts for four weeks [11]. 

Disk trees [12] of page visit counts are arranged in visualization spread sheet. The 

concept of visualization spreadsheet is based on the tabular layout where each cell 

shows abstract visual representation of large data set, the ability to modify cell 

contents using operators and the automatic update of cells, based on their 

dependencies, when they are manipulated. Users can perform visual operations that 

are synchronized across rows and columns, such as “visual usage pattern 

subtraction”, for example column one shows the result of subtracting week one from 

week two, while column two is week three subtracted from week two. This lets the 

users quickly understand the usage patterns over time which would other wise be 

complex to notice. 
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Information visualizations with multiple coordinated views enable users to rapidly 

explore complex data and discover relationships [18]. Initially interactive StarField 

[1] visualizations, similar to a scatter plot, are used for exploring web log data [19] 

where individual page access requests are shown on two-dimensional displays, with 

size and color showing some other attribute. Zooming and filtering options are used 

to support the interactive exploration of data.  Different visualizations (time vs url 

(macro/micro), time vs hostname, client host vs url, referrer vs url, referrer vs time, 

etc.) showing different patterns over time are presented. The difference in web page 

requests during weekends and regular working days was clearly identified using those 

visualizations.  

 

Figure 2.3.4 Coordinated visualizations for context: Visualizing the WWW log data 

for HCIL website (www.cs.umd.edu/hcil) for 2 months [18]. 
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Since the web log data is highly context dependent, it might be helpful to consider 

web site topology for interpretation of the log data. The coordinated visualization [18] 

in Figure 2.3.4 has an outline window on the left hand side showing the hierarchical 

view of URL’s on the site web browser window in the lower right corner displays the 

selected web page and the Spotfire [38] display spots requests for a given URL, with 

time on x-axis and hostname on y-axis. All this added context helps the users 

understand the over all patterns in the data set. 

Time Searcher [17] is an interactive visualization tool for querying and 

exploration of time series data. It introduces a new graphical technique for querying 

time series data, known as Timeboxes. Timeboxes are rectangular regions that are 

placed and directly manipulated on a timeline, with the boundaries of the region 

providing the relevant query parameters.  

 

Figure 2.3.5 TimeSearcher showing the stock data for 12 months [17]. 
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TimeSearcher provides a graphic overview of all the data items on the left top 

window along with each data items graph on the left bottom window. These two 

windows are synchronized: clicking on an item in one window will lead to updating 

of the other. The details of the data item can be read from the details window on the 

right top, list of items can be read from the right bottom window. A variety of options 

are provided to specify and modify different queries. 

The financial website, smartmoney.com [35], provides various maps to observe 

the performance of several hundred stocks at once, thereby enabling the users to spot 

the investment trends and opportunities. Its Map of the Market presents a graphical 

overview of the price performance of more than 600 stocks at once (Figure 2.3.3).  

 

Figure 2.3.6 SmartMoney.com‘s Map of the Market showing the % change in stock 

prices on Feb 10, 2004 since the past 26 weeks [35]. 
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The visualization in the Map of the Market is a customized version of traditional 

treemap display. Each rectangle in the map represents an individual company, with 

size of the rectangle proportional to the company’s market capitalization and color 

proportional to the price performance, light colored rectangles indicate the %increase 

in stock prices and dark colored rectangles indicate %decrease in stock prices. Also, a 

three level hierarchy is imposed, defined by industry, sector and the company itself at 

the lowest level. The market shifts for an industry or a sector can be studied by 

zooming in/out in the map. The Map of the Market provides four different time 

periods: previous market close, 26 weeks, 52 weeks, and year to date. Any one-time 

period can be selected by clicking on the radio buttons. The default view gives the 

stock performance of the company since the previous market close. By fixing the end 

time period, it calculates the %changes in stock values from the start period (selected 

by the viewer) to that end period and colors the map accordingly. Also, the Map of 

the Market highlights the top 6 gainers or losers depending on the users’ choice, thus 

enabling the users to quickly identify the leaders and laggards in all the time periods. 

The stocks in Figure 2.3.3 are light colored indicating that the stock prices have 

increased from the past 26 weeks. The highlighted companies (rectangles with the 

popup showing the company name) are the top 6 gainers from the past 26 weeks. 

This is the closest related work to the study described in this thesis. The 

SmartMoney application is designed for monitoring stock data and hence has specific 

significant pre-determined time periods.  
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Calendar and time schedules are the most familiar time lines. Calendar visualizers 

[26] use several simultaneous displays, zooming and fisheye like quality to display 

detailed appointment information and to coordinate appointments and meetings. In 

cluster and calendar based visualization methods, temporal patterns and trends on 

multiple time scales (days, weeks, seasons) are identified simultaneously by 

clustering similar daily patterns and visualizing the average patterns as graphs and the 

corresponding days on a calendar [42].  

 

Figure 2.3.7 Cluster and Calendar based visualization of number of employees and 

their working hours/patterns in ECN. Patterns are shown as time series graphs with 

number of employees on y-axis and daily working hours on x-axis. Clusters are 

shown on the calendars. Color shows the corresponding clusters and patterns.  For 

example, cluster 722 shows that there are fewer people in summer [42]. 
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Patterns are shown as graphs and clusters on the calendar. Colors are used to 

indicate corresponding clusters and patterns. The average value per cluster is shown 

as a colored graph adjacent to the calendar view in which each day is colored 

according to the cluster to which it belongs. The calendar view and the graphical view 

of patterns are tightly coupled. Clicking on a day in the calendar would highlight the 

remaining days, which belong to the same cluster. 

Clinical data consists of treatment information, laboratory data, and physical 

findings observed/collected over time. Cousins and Kahn [13] have developed a 

visualization technique based on the “time line” concept, an abstract entity to 

represent a sequence of events ordered by time. The user interface supports several 

options (slice, filter, overlay, new, and add) to modify timelines.  

Lifelines [29] present an interactive technique for visualizing individual’s medical 

history data over time. The screen is horizontally divided to represent various time 

periods under which a person’s medical history is graphically depicted. Symbols such 

as horizontal lines, color of the lines, icons are used to represent time-oriented events 

in a person’s life. Lifelines give an overview of the entire medical record, as the users 

zoom in to subsequent smaller time intervals the display is updated automatically 

showing the details. Additional information like ultrasound scan images can be 

displayed to get more context information. 

Nowell et al., [27] discusses shortfalls of certain techniques for visualizing 

temporal data. In particular, users may not be able to recognize major changes 

 26



between two displays if the change is abrupt. They recommend that visualizations for 

temporal data include the information from the preceding or following period in a 

way that is distinct from the present period. 

2.4 Summary 

This survey of related work illustrates issues related to time series and/or temporal 

data. Visualization of hierarchical data illustrates various perspectives that are 

appropriate for these data sets. Factors like layout, zooming, and interaction lead to a 

variety of ways to display such data sets and interpret these data sets [2, 3, 7, 15, 20, 

25, 31, and 37]. Time series and temporal data visualizations present various 

techniques to address issues like periodicity [19, 26, 29, and 42], support multiple 

time series attributes [9], and querying [17, 33]. Visualizations with multiple 

coordinated views or context information help users explore the data rapidly [11, 12, 

18, and 19]. Even though applications like SmartMoney help visualize stock market 

data over time, design and implementation of general purpose systems that rapidly 

combine hierarchical data visualization with the time series visualization may be 

difficult.
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Chapter 3 

User Requirements and Design 

Treemaps are extensively used for visualizing hierarchical data. Earlier 

implementations were limited to visualizing predefined hierarchies. Later, flexible 

hierarchy was introduced in Treemap 4.0 (www.cs.umd.edu/hcil/treemaps) which 

enables the users to impose new hierarchical structures with the available data 

attributes. Current implementations are time invariant. Most of the applications of 

treemaps involve monitoring data which is often time oriented. For example, the 

stock prices in stock market data, production data for monitoring amount produced or 

lost production etc. Traditionally, such time oriented data is collected separately and 

is viewed separately in treemap with the visualization showing data at any one time 

period. Or a new attribute showing the %change between first and last time periods is 

added manually to the data set. Although it gives a summary of changes over time, it 

is only a part of the time series data analysis.   

To address this problem, a new temporal dimension is introduced to visualize the 

time series data in a single display. Time series data is a series of real value 

measurements taken at consecutive points of time. The goal of visually exploring this 

time series data is to understand how data is distributed at any time point t, how it 

varies over time from t  to t  and to identify patterns and/or similarities. i j

Temporal treemaps are developed to support time series data sets, which is only 

one component of “time-oriented” data [33].  Other types of time-oriented data 
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include existential changes (creation and deletion of data items) and spatio-temporal 

changes (changes in location, position, etc.). Data items have one or more static 

attributes and one or more time-varying attributes, where the number of time points 

and the interpretation of those points remain the same for every data item in the data 

set. These time-varying attributes could be either categorical or numerical. 

Categorical time series data sets involve attributes with discrete values that change 

over time. On the other hand the hierarchical structure of the data could also change 

over time due to existential changes. New data items can be added and existing data 

items can be removed from the data set. These aspects of time oriented changes are 

not supported by temporal treemaps. For categorical attribute changes, if the focus is 

on monitoring number of items in each category, temporal treemaps provides a way 

to track this number of items over time. This process is discussed in detail in Section 

5.6 and is demonstrated in Chapter 5, Section 5.5. 

The hierarchical structure of data is represented by a set of nested rectangles 

where the attributes are mapped to the size and color of the rectangles. Temporal 

treemaps map time series data attributes to color attributes of treemaps. The time 

varying data attribute could be mapped to the size of treemap nodes. As the attribute 

values change over time, the size of the rectangles changes, resulting in different 

aspect ratios, which makes it hard to compare the rectangles. Experience has shown 

that changes in size of the rectangles are hard to follow and hence size attribute is not 

used for showing temporal attribute changes. 
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Figure 3.1 shows the temporal treemap visualization of oil production data. When 

the data set is loaded, data items are displayed as a set of nested rectangles showing 

the hierarchical structure of the data in the top left corner of the application. These 

rectangles are generated by a recursive space-partitioning algorithm (one of the three 

algorithms: squarified, slice and dice, and strip) [5]. Each rectangle at the leaf level 

(lowest level) is a data item and is labeled by its name.  

 

Figure 3.1 Temporal treemap application window: treemap window, time series graph 

window, histogram window, details table and series tab. 

The position of that item in the hierarchy can be identified from the labels, from 

the item to the root. Detailed information of any data item can be obtained by simply 
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clicking on the rectangle for that item; this would display the details in the upper 

right-hand window (Figure 3.1). 

All the options that support interactive exploration of data are distributed into five 

tabs: main, legend, filters, series, and hierarchy tabs. The main tab provides the 

options for choosing partitioning algorithm, font size, border size, and overlay label 

option, legend tab consists of label, size and color options. Any available data 

attribute can be used for color coding the treemap where as only numerical attributes 

are used for size coding. Dynamic query filters in the filters tab can be used to filter 

out unwanted or uninteresting data items from the display.  When users select a range 

of values, the data items that fall outside the range are grayed out and can be hidden 

using “hide filtered” option. A new search option is added to filters tab, which 

enables the users to search the treemap based on a substring. The non-search results 

can be hidden from treemap by filtering them. The hierarchy tab consists of the 

controls for specifying and changing flexible hierarchies. 

The lower left corner of temporal treemaps shows the time series graph overview 

of all data items. Initially the time series graphs of all the data items are displayed. 

Individual data item’s time series graph can be displayed by clicking on that item in 

the treemap. Two or more data items can be compared using the graph overview by 

selecting (Ctrl+click on the rectangle) them in the treemap. The graph scale can be 

normalized depending on user needs. 

The lower middle area shows the data distribution in the form of histograms for 

all time periods. They are displayed in a vertical linear fashion.  
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The series tab on the lower right corner consists of the options for exploring the 

time series data. Any time varying attribute can be selected from a scroll down list of 

all time series attributes. The binning widget shows the series minimum and 

maximum. Users can bin the data and assign colors to each bin. Users have to group 

the data depending on its significance, specify the colors either discrete or continuous 

spectrum of colors, and interpret the resulting visualization by mapping attribute 

values to the color of the rectangles in the treemap. 

Users can navigate through the time periods using the time slider or animate over 

a range of time periods. As the slider moves, data is updated and color of the 

rectangles is changed in the treemap accordingly.  

3.1 Overviews 

Temporal treemaps provide three overviews: treemap overview showing the 

hierarchical structure of the data set, graphic overview showing the time series data of 

selected series attribute, and histogram overview showing the data distribution over 

time. 

The treemap display utilizes all the available space and displays large hierarchical 

data sets up to 100,000 nodes on a single screen. This display enables the users to 

zoom in to a particular sub tree, explore the details of the data items in that sub tree. 

Double-clicking on a rectangle would zoom in on the rectangle to occupy the entire 

display space while mouse right-click would zoom out level by level. The size and 

color of the rectangles show other attributes. Here color shows the time series 

attribute values at any time point. 
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The graph window provides another form of overview by displaying the extreme 

values that can be found in the data set at each time point known as a “data 

envelope”, this overview is optionally shown in the background of the time series 

graphs. The graph overview provides further support for browsing the data set.  

 

 

Figure 3.2 Timeseries graph overview of oil production data collected from 373 oil 

wells, showing the graph envelope. 

Mouse over on a graph envelope line would highlight that line thus displaying the 

individual item in the context of the larger data set. Also the name of the item is 

displayed in a pop up, along with the value of the item at the time point closest to the 

point where the mouse-over occurred and the corresponding rectangle in the treemap 

is highlighted along with the item details. Mouse over on a rectangle in treemap 

would highlight its corresponding time series graph in the graph overview, with the 

item name shown in a pop up window. This tight coupling in response to light weight 

mouse movement will encourage exploration based on visual examination of the 

graph overview. 
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Overdrawing and clutter might cause the graph overview display to become less 

useful for large data sets. Furthermore, the computational overhead of drawing and 

updating the graph overviews and processing the mouse over handling can lead to 

substantial performance degradation with large number of data items (104 – 106). 

The histogram representation provides a limited overview by displaying the data 

distribution over time in a linear vertical fashion. As this display shows a small 

number of time points, users often have to scroll to effectively use the display. 

Another possible overview would be to display the histograms in a separate 

visualization spreadsheet where each cell would show the data distribution at any 

time point.  

 

Figure 3.3 Histogram Overview of Oil Production data showing the amount of lost 

production for 4 days. 
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The problem with this approach is that displaying them in a separate window would 

involve switching between two windows. This window switching would result in 

flow interruption for the users and the interaction may not be utilized to the full 

extent. 

3.2 Missing data 

Missing data is a form of uncertainty which is the common problem in time series 

data that can be attributed to either measurement failure or error [10]. The simplest 

method for treating this uncertainty is to use some noticeable supplemental value. 

Twiddy [41] proposed a way of handling missing data by using gray shades called a 

“restorer” technique. The display combines the exact data and missing data through 

visual blending but can be distinguishable on close examination. The user distraction 

is minimal in restorer. 

Temporal treemaps treat missing values by using a supplemental value and 

assigning a color to that value. The value chosen must be different from the actual 

data values. Users can specify this value in the data file (See Appendix A) which is 

plugged in for the blank cells. This value is excluded from the relative change 

calculations and aggregation. 

Figure 3.4 shows the missing data value and color options. Users can click on the 

button and select a color to identify the missing data points. The color selected for 

missing data value should be different from the normal color gradient chosen for time 

series values to avoid distraction. As the users navigate from one time period to other 
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time period, they can easily identify the data items with missing values by their 

specific color.  

 

Figure 3.4 Monitoring Oil production data, showing the missing data replaced with a 

value of “-1”, shown on the lower right corner; light blue colored rectangles 

represents the items (oil wells) with missing data on day_2. 

Treemaps facilitate the aggregation of lower level data items by controlling the 

visible hierarchy level. An aggregate value (average, maximum, or minimum) is 

calculated and assigned to the rectangle representing the sub-tree. Missing data items 

are not considered in calculating this aggregate value. It might be helpful to show the 

missing data items in the aggregated rectangle. One option would be to aggregate the 
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missing data items separately and show them as a portion of the actual aggregated 

rectangle. Another possibility would be to show the missing data items in their 

assigned positions, but aggregate only the values of the data items that are present. 

These two ideas are not yet implemented. 

This approach of using supplemental values for missing data has two problems. 

First, if the supplemental value used is 0 or any negative value, then these nodes 

would be ignored by treemap if size coded with any time period. This problem is 

solved by adding a value of “1” to zero or less than zero valued data items, so that all 

the data items are retained in the display.  Since we are using a unit value for all the 

nodes, the significance of the rectangle sizes is not preserved, as the rectangles with 

values -100 and -1 would be equal in size. A future possibility to address this problem 

would be to provide a menu of options: 1) Use absolute value, 2) Ignore negative 

values, and 3) Add the absolute value of the most negative number +1 to all the 

values. Second, time series graphs of the data items are misleading in understanding 

the trends. The supplemental values must be excluded from the time series graph 

display. This feature is not yet implemented. 

The %changes cannot be calculated if the data item in the reference time period 

has a zero value; it would result in divide by zero error. For such data items, the 

%change is shown as +100% or -100% depending on its attribute value. Another 

possible option would be to have a special value that implies “Cannot calculate the 

%value for this item”. 
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3.3 Overlaying labels at selected hierarchy level 

When the data set is large and deep, data items may not be obvious as the space is 

lost in displaying the hierarchy levels. More over while observing the changes over 

time focus is on leaf level items. In such cases borders may be removed and the pixels 

can be reclaimed for displaying data items. Context information (hierarchical 

structure and labels of items in hierarchy levels) is lost when the borders are removed. 

Text labels are important to understand the context in which visualized data appear.  

 

Figure 3.5 Visualizing HCIL web logs grouped by directory structure, without 

borders and with overlay labels at center of node, showing the labels at hierarchy 

level 4. 
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In such cases labels are overlaid on top of the rectangles by extending the use of 

excentric labeling [14] dynamic technique for the scatter plot. Users have the 

flexibility to control the level of detail by selecting the hierarchy level so that the 

labels of items at that level are shown. 

The overlaid labels are displayed either at the top or center of the corresponding 

rectangle, depending on the user’s choice.  The labels are displayed in such a way that 

they are visible on a light and black background. The labels are first painted with 

black ink and then painted with white ink, with one pixel shifted up.  

The label overlaying is important for visualizing time series data. When the users 

navigate from one time period to another, their focus is on the data items with an 

intent to identify the color changes over time. In such cases, one possibility to 

facilitate easy exploration would be to remove the borders/labels when the users grab 

the time slider and repaint the borders/labels when the users release the time slider.  

Since the slider can be operated with the key board shortcuts, repainting the 

borders/labels caused a flickering effect when key board shortcuts are used to operate 

slider, which otherwise worked well with the mouse operation. 

3.4. Other Features 

Filters and Search 

Users can filter the unwanted/uninterested items from the display using dynamic 

query sliders [1]. As users select a range of values for any numeric attribute, the items 

that fall outside the selected range are grayed out dynamically and can be hidden from 

the display. In visualizing time series data, it might be interesting to filter the data 

 39



items that have increased, decreased, or remained same in value from the previous 

time period. Temporal treemaps provide these filters in the form of three check boxes 

as shown in middle right corner of Figure 3.6. 

 

Figure 3.6 Visualizing Oil production data, grouped by Business center and asset 

team, size is proportional to amount of estimated production of oil, color proportional 

to amount of lost production, grayed out rectangles show the wells whose lost 

production on day_2 is less than that on day_1. 

The three check boxes are selected by default showing all the data items. 

Unselecting any of the filters would gray out the items, which fail to pass filters. For 

example “decreasing” filter is unselected in Figure 3.6. The gray color rectangles in 
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Figure 3.6 show the oil wells whose delta production loss has decreased on day_2 

compared to that on day_1. Users can get a quick overview of what has increased, 

decreased, and remained constant from the previous day with these filters. Filtering 

the data items using the dynamic query sliders or time series filters will also filter the 

corresponding time series graphs from the display.  

Among the filtering features, it is helpful to be able to do a selection or a filtering 

with a sub string search or eventually a regular expression search.  

 
 

Figure 3.7 Visualization of web logs for HCIL, grouped by directory structure. Search 

for “gif” images, colored rectangles represent gif images, grayed out rectangles are 

non-search results. 
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Users can search for a sub string and filter out all the non-search results. An item 

is described as a search result if that item name or attribute value starts with or 

contains the search keyword. All the non-search results are grayed out enabling the 

users to identify the search results easily (Figure 3.7). In the initial implementation, 

search results were highlighted. This is modified as highlighting prevents the users 

from visualizing the item’s color attribute and the color used for highlighting may be 

used in color coding as well.  

Figure 3.8 shows the user interface for specifying the search string to search 

treemap in any available attribute. 

 

 
 

Figure 3.8 User interface for specifying sub string search based filtering. 
 
 

3.5. Getting started with temporal treemaps 

3.5.1 Visualizing numerical attribute changes over time 

The envision process for visualizing time series data presents a procedure to help 

the users to get started with the application and to explore the time series data. The 

data set can be created manually or can be generated using TTSGenerator from 

several treemap data sets. A brief explanation of TTSGenerator is given in Appendix 

C.  
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After loading a treemap time series data file, users can select any time series 

attribute from the list of available attributes. This would display all the controls and 

color the treemap with some default gradient. Users then have to create groups/bins 

based on the significance of data attribute and specify colors to each group. The 

colors can be discrete or they can form a continuous spectrum. It is helpful to create a 

spectrum of colors with in the group and discrete colors between the groups. Colors 

should be chosen in such a way that the first and last groups can be easily 

distinguished from other groups to observe the minimum and maximum values in the 

series. Users can select to view %changes with respect to a reference time period. 

These %changes can be divided into at least two groups showing the %decrease 

(minimum to 0) and %increase (0 to maximum) in data items. These groups can be 

further divided into smaller groups (-100%, -50%, 0, 50%, 100%) depending on the 

user needs.  

Once the colors are specified, users can move the slider to see the changes over 

time. The slider can be operated with key board shortcuts (left and right arrow keys). 

Users can specify a range of time periods with the range slider and select to animate 

over that range with the specified delay. They can switch between border and no 

border and choose to overlay labels when borders are removed. These settings can be 

saved and reloaded for later use. Users can select search and filter options and graphic 

overview to interactively explore the time series data.  

The time series graph overview can be used to see the trending information for 

one or more data items. Users can select the data item with dark color and see the 
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time series graph for that item or can select any time series graph and view its details 

in the treemap. 

3.5.2 Visualizing categorical attribute changes over time 

Temporal treemaps can be used for visualizing categorical attribute changes over 

time by tracking the number of data items in each category. The input data is stored in 

different treemap data sets with each file corresponding to one time period. Load any 

one file and create a settings file with the desired visualization depending on the users 

needs. One possibility would be to group the data by categorical attributes that user is 

interested in. Then use the same attribute for color coding and choose strip 

partitioning method to preserve the order in which groups are displayed. Create a list 

file consisting of all the files for all time periods. A sample list file is shown in 

Appendix B. Reload the settings file along with the list file. This would display the 

time periods on the top right corner, beside the detail on demand table. Users can 

view any time period data by selecting that time period from the list.  

To view the number of items in each category, all the data items in each category 

are aggregated by their count and a new time series file is created using “Export” 

option in the “File” menu, with the number of items as time series attribute and 

categories as data items. A supplemental value “-1” is added if the category does not 

exist in any time period.  

Load the new time series file and color the treemap with the time series attribute 

(number of items). Group the data with the static attribute and label it with the time 
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series attribute. Select colors based on the user needs and navigate thru the time 

periods using the slider. This process is demonstrated in Chapter 5, Section 5.5. 
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Chapter 4  

Temporal Treemaps Implementation 

Temporal treemaps was an extension to the original treemap implementation and 

was developed on top of the existing treemap code.  Treemaps as well as temporal 

treemaps were implemented in Java 2, using the Java Swing toolkit for user-interface 

widgets.   

Treemaps is a research prototype that is available for free for educational use and 

also licensed for commercial use. Many features were added to treemaps over time 

which included years of developmental work and substantial redesign. A list of 

people who have contributed to this research project is available at 

http://www.cs.umd.edu/hcil/treemap.  

This chapter provides an overview of temporal treemaps implementation, along 

with a brief overview of the original treemap implementation.  

4.1 A Tour of the Code 

This section provides a quick overview of the current implementation of treemap 

code. Initially all the classes were in a single package, new packages were introduced 

recently. The main package consists of classes that drive the treemap application: 

TreemapProgram initializes the program, TreemapModel constructs the tree data 

structures and does the initial calculations, Treemap paints the nested rectangles 

based on the layout algorithm and ControlPanel initializes the available controls to 
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modify the display. Several other classes in the main package support additional 

features like binning, color binning and layout algorithms. A variety of packages 

provide the features of Treemap functionality. 

• edu.umd.cs.treemap.filefilters:  displays file dialogs depending on the file 

type. The dialogs let the users pick a file to load from a list of files. They 

display only the files that have the chosen extension and hides others from 

being displayed on the list. There are several types of files, tm3, tts, tms, 

xml, tnv, lst etc. 

• edu.umd.cs.treemap.hierarchy: handles the flexible hierarchy feature. 

These classes manage the addition and deletion of attributes from the 

hierarchy and also notify other classes when such things have happened. 

• edu.umd.cs.treemap.filereader: performs the basic input output operations. 

It has separate classes for reading data from tm3, tts, tnv and xml and for 

writing data in tm3 and xml format. 

• edu.umd.cs.treemap.listener: event listeners classes for displaying popup 

on mouse events. NodeClick and NodeCursor listeners capture the mouse 

click and mouse moved events on treemap where as LineClick and 

LineCursor listeners capture mouse clicked and mouse moved events on 

the time series graphs in the graphic overview window. 
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4.2 Data Management 

4.2.1 Input File Format 

Temporal treemaps uses a simple file format for input file. Data files are simple 

text tab delimited files and pertain to a specific format. 

A valid treemap time series data file consists of series of headers that explain 

attribute names, series names, time stamps and attribute data types as explained 

below. 

1. Number of time stamps for each attribute. For single valued attributes it is 1, 

for multi valued / series attributes it is the width of time series. 

2. Time Series Name: name of the time series to be monitored. For single valued 

items, enter “Single”. 

3. Attribute names: For static attributes, it is the attribute name. For multi valued 

attributes, it is the time point label. For example, 1980, 1982, etc. 

4. Attribute data type: Specifies the data type of the attribute to the program. It 

could be one of the following; Integer, float, string, and date. 

5. Individual items: Each row corresponds to one individual data item. The 

item’s attribute values must correspond to the column. The item’s hierarchy 

can be entered at the end of the line after a blank column. 

A sample treemap time series (tts) data file is given in Appendix A.  
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4.2.2 Data Structures 

TreemapModel is an abstract data type which consists of some information about 

the global characteristics of the data set, such as the attribute types, attribute names. 

This class contains all the data manipulation and data filtering aspects of the tree as 

well as the data structures that facilitate data filtering and manipulation.  

Data from the tts (See Appendix A) data file is read by an instance of java class 

TreemapTTSReader. The global information such as number of static attributes, time 

varying attributes, length of each time series attribute, attribute types, and attribute 

names are initialized after reading the first four lines in the data file. 

Actual data items are read into an ArrayList of TreemapNode instances, one for 

each item in the data set. Each of these instances contains the name of the object, the 

attribute value object array for static attributes and a two dimensional array for 

dynamic variables to store the time series values for each dynamic attribute. The 

hierarchical path from the root to the node is initiated recursively in TTSReader itself. 

New data structures are created to store actual data items and items in the 

hierarchy separately. All the numerical attributes are sorted with 

TreemapNodeComparator; the sorted order is used in filtering and binning. Series 

attribute values are sorted and the minimum and maximum values in each time period 

are stored. These values are later used for showing the data envelope. 

Finally, model contains a flag for showing %changes. Initially it is set to false. 

When set to true, %changes are calculated on the fly and displayed in the binning 

widget.  
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4.2.3 Loading a data file 

A data file can be loaded by selecting “Open” from the File menu. This action 

creates a TimeSeriesFileFilter from the edu.umd.cs.treemap.filefilter package and 

displays a list of tts and tms files in a JFileChooser window. The filename is used to 

create root of the tree, whose title can be changed later. The TreemapTTSReader 

reads through the data file line by line, initializes the global data structures after 

reading the metadata in the first few lines. The individual items are read into 

TreemapNode and a tree structure is created. When TreemapTTSReader finishes 

reading the items from the file, TreemapModel.CommonContructor2() method 

calculates the aggregate values, sorts the numerical attribute values and sets the 

default size and color attributes. An instance of Treemap class draws the treemap 

constructed by its model. An instance of Java class ControlPanel creates the controls 

in a JSplitPane. Graphic overview and histogram overview are painted when a multi-

valued attribute is selected for color coding treemap. 

4.3 Graphical User Interface 

The temporal treemaps graphical user interface consists of several Swing 

windows. 

• TreemapProgram is a JFrame that acts as the main application window. It 

contains a menubar, a vertical and a horizontal split pane. It contains Treemap 

on its left top area, AttributeTable and ControlPanel on its right top area and 

GraphPanel and HistogramPanel on its left bottom. 
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• Treemap is JPanel which paints the data items as nested rectangles based on 

the layout algorithm and handles Mouse Listeners, KeyListeners, 

TreemapNodeClick and TreemapNodeCursor Listeners. 

• AttributeTable is a JTable that displays item details on demand and 

implements TreemapNodeClick listener. 

• ControlPanel is a JTabbedPane with the controls being distributed in five tabs: 

main, legend, filters, series and hierarchy. 
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Figure 4.1A Schematic overview of classes in temporal treemaps. 
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• GrpahPanel is another JPanel with all line graphs. 

• HistogramPanel is a JPanel with histogram display of data distribution in all 

time periods. 

A schematic overview of the classes involved is given in Figure 4.1. 

Typical treemaps have a treemap display and a split pane consisting of attribute 

table and control panel with four tabs (main, legend, filters and hierarchy). Graph 

panel and histogram panel are newly added in temporal treemaps. 

4.3.1 Overview of Series Tab 

Initially Series tab has a “Color” combo box with all the series or multi valued 

attributes, with “None” as selected index. 

 Upon selecting a series attribute from the combo box, the following swing 

components are displayed as shown in Figure 4.2. 

• JSlider to navigate through time periods 

• TMRangeSlider for selecting a range of time stamps and “Start” and “Reset” 

JButtons to animate the display with a “Delay” of specified milliseconds. 

• JCheckBox to change from absolute value to relative changes mode. 

• JComboBox with all the time periods, any one time period can be selected as 

a reference point. 

• JComboBox with all the time periods. 

• JCheckboxes for “increasing”, “decreasing” and “no change at all” 

• Binning widget with missing data option. 
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Figure 4.2 Controls in Series Tab 

4.3.2 Display and Interaction handling 

The display space consists of a JSplitPane which accommodates a Treemap and 

another JSplitPane consisting of GraphPanel and HistogramPanel. Treemap paints 

nodes, instances of TreemapNode in a recursive fashion based on the layout 

algorithm. GraphPanel displays the axis. When a time series attribute is selected, the 

axis, labels on the axis, and lines that plot the values of all items are drawn with 

Graph.PaintComponent method.  
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The display window has mouse event handlers and event listeners which facilitate 

the interaction between different views. Mouse click event in Treemap registers a 

NodeClickListeners and implements nodeClick() method in AttributeTable and 

GraphPanel. The GraphPanel.nodeClick method draws the line plot of the node on 

which mouse click occurred. Mouse click event is handled in three different ways in 

Treemap, a single left mouse click would highlight the path, double click would zoom 

the display and CTRL+click would select the node by setting flag to true. This action 

draws graphs of all selected nodes.  

The mouse Click event on an internal node (node in the hierarchical structure) 

would retrieve all its leaves or all data items under that sub tree and display the time 

series graphs of these items only.  

The mouse motion event handler captures the current position of the mouse, 

computes the TreemapNode at that position with findNodeContaningPoint() method. 

If this is a new item under the cursor, then NodeCursorListener interface implements 

nodeCursor. The nodeCursor method in Treemap displays the popup and nodeCursor 

method in GraphPanel displays the popup in the graph overview. 

The Java class Graph implements two Mouse listeners which register mouse 

motion with LineCursorListener and mouse click event with LineClickListener. 

Mouse over on the time series graphs in GraphPanel would highlight the line graph, 

show the item name, nearest (x,y) ordered pair, highlight the corresponding 

TreemapNode in Treemap, show the popup and update the detail table.  
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4.3.3 Coupling treemap with time series graphs 

Tight coupling between treemap and time series graphs is achieved through 

coordinated highlighting, updating textual labels, and the details in the detail on 

demand table. When the user clicks on a treemap node, Treemap.nodeCursor method 

highlights that particular node and GraphPanel.nodeCursor highlights the 

corresponding time series graph.  

The java class Graph uses a global variable LineUnderCursor to store the 

corresponding time series graph index. Each line has an index which is equal to the 

order in which they are painted initially. A hash table idToIndexHash stores the 

treemap node id and time series index entries. GraphPanel.nodeCursor passed the 

node id as an argument to Graph.setNodeCursor method. This method checks 

whether that node’s time series graph exists or not. If it does not exist it returns null. 

If it exists, it sets LineUnderCursor and paints the pop-up at the end of the time series 

graph. 

Similarly, when the users do a mouse over in the time series graph overview, the 

nearest time series graph and the corresponding treemap node is highlighted. Graph 

uses three arrays of hash tables: indexToVal[numTimeSteps] – stores an index and 

series attribute value for each time period; indexToNodeId[numTimeSteps] – stores 

the same index and node id for each time period; valToPixel[numTimeSteps] – stores 

the series attribute value and the corresponding pixel value on the panel for each time 

period. When the users move the mouse, the x,y coordinates are captured and the two 

time periods t1, t2 are determined so that the point t1<= x <=t2. Determining t1 and 
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t2 limits the search to the y-values in these two time periods. These y-values are 

retrieved from the valToPixel [t1] and valToPixel[t2] hash tables. Then a linear 

search is performed in the key set of these two hash tables and the index of the key 

for which the difference in the pixels is minimum is returned. From this index, the 

node and its name are determined using the indexToNodeId hash table. Once the 

corresponding treemap node is identified, it is highlighted, popups are displayed and 

the detail on demand table is updated. If the user clicks on this line, then only that 

time series graph is displayed. 

4.4 Performance 

Performance of temporal treemaps depends on the number of data items, number 

of data attributes, number of hierarchy levels, and number of time periods. Treemaps 

can handle datasets consisting of up to 20,000 data items, 10 data attributes and with 

18 levels of hierarchy. Much larger data sets can be handled by increasing the 

memory allocated to run treemaps. This can be done thru command line using the 

option <-Xmx[v]M>. But for such large data sets, it takes several seconds to update 

the screen when data items are filtered or hierarchy is changed. 

Based on the available data sets, temporal treemaps can handle up to 20 time 

periods, a few thousands of data items with fast interaction (<<1s). It is observed that 

for the HCIL web logs data consisting of 3300 data items, 7 attributes, 12 hierarchy 

levels, and four time periods, the interaction is sluggish (1–2s). The time taken to read 

this data file is approximately 1-2s, but to load the settings it took 3-4s. The 

bottleneck in the performance is in the method that implements coupling of  the  
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treemap with the time series graph. Also, as the number of time periods increase 

(>20), the slider will become cluttered with the overlapping ticks and labels. This 

would also have an effect on the performance as the array size will be increased and 

performing linear search in array will increase the time to retrieve the data. 

The input data sets are stored in the memory as simple text tab delimited files. For 

each time period, the data is retrieved from an array of values and set to the 

corresponding nodes and then corresponding colors are applied. For visualizing 

percentage changes, the values are calculated each time when the time period is 

changed. An alternative would be to have a buffer of multiple preprocessed (with all 

settings applied) treemaps in the main memory and load the corresponding treemap 

for each time period. In this case performance depends on how fast the treemap can 

be accessed from the main memory, but once it is displayed the interaction can be 

guaranteed to be fast. 
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Chapter 5 

Case studies 

In this section five case studies are presented to demonstrate the use of temporal 

treemaps. 

5.1 NCHS Death Statistics 

The National Center for Health Statistics (NCHS) publishes death statistics which 

consists of number of deaths due to 43 different diseases collected over 18 years 

(1981 – 1998), per 100,000 people of age 65 plus. The hierarchical structure shows 

the disease categories. The main goal of visualizing this data is to identify the disease 

trends. 

The original data consisted of statistical information of the number of deaths due 

to each disease and the total number of deaths in each disease category. The latter was 

greater than the sum of all diseases in that category. The difference is shown in 

treemap by imposing a new disease/disease category “other” at each level to indicate 

deaths due to unidentified diseases. For example, Other diseases of heart in the 

Diseases of heart category represents people who died of unidentified heart diseases.  

Figure 5.1.1 shows an abstract visualization of 43 causes of deaths grouped by 

disease categories. The hierarchical structure in Figure 5.1.1 exemplifies pre-defined 

variable depth hierarchy. Each rectangle represents a disease; size of the rectangle is 

proportional to the number of deaths due to that disease in 1998 and color is 
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proportional to the number of deaths in 1981, with light to dark shade showing a 

minimum to maximum number of deaths. 

 

Figure 5.1.1 Visualization of 43 causes of death statistics over 18 years grouped by 

disease category. Each rectangle represents a cause of death with size proportional to 

number of deaths in 1998 and a shade of white –yellow-purple showing increasing 

number of deaths in 1981. 

Users can see that Old myocardial infarction and Acute myocardial infarction are 

two major causes of deaths in 1998 (large rectangles) as well in 1981 (dark 

rectangles). 
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Figure 5.1.2 shows the number of deaths in 1998. Users can see that Old 

myocardial infarction and Acute myocardial infarction are still the major causes of 

deaths though the number of deaths due to these diseases having decreased as inferred 

from the color change (purple to red). 

 

Figure 5.1.2 Visualization of same 43 causes of deaths statistics in 1998. 

While animating visualization of this data over the time period 1981-98, users can 

observe that some of rectangles changed their color more frequently and non-

monotonously, they appear to be flickering and catch attention more perceptively 

compared to other monotonous changes elsewhere. For example, this flickering is 

observed in Old and Acute myocardial infarction, Other diseases of the heart, 
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Alzheimers disease, Other (non-pneumonia) and Other causes of deaths. For such 

changes the time series graph display helps users better understand the trends (Figure 

5.1.3). 

 

Figure 5.1.3 Time series graph overview of death statistics of 43 diseases. 

From the time series graph overview in Figure 5.1.3 users can see that there are 

four diseases with large number of deaths (top 4 time series graphs).  Users can 

observe that Old myocardial infarction (highlighted in blue with the name shown in 

popup) is the major cause of death and has been the major cause for all the eighteen 

years. Most of the disease trends are monotonous. There are about 30 diseases for 

which the number of deaths is less than 100 (cluttered time series graphs at the 

bottom of Figure 5.1.3). 

Figure 5.1.4 shows the visualization of same disease statistics with color of the 

rectangle proportional to the %change in death rates from 1981 to 1998. A shade of 

green indicates %decrease in the death rate and shade of red indicates %increase in 

death rates from 1981 to 1998. 
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Users can see that Alzheimer’s disease has increased by 1085%. This might be 

because Alzheimer’s disease has been diagnosed recently and the cause of such deaths 

in earlier years was not classified as Alzheimer’s.  

 

Figure 5.1.4 Visualization of relative changes in death rates in 1998 with respect to 

1981, grouped by disease categories. Each rectangle represents a disease; size is 

proportional to number of deaths in 1998 and color is proportional to % change in 

number of deaths from 1981 to 1998, with green-white color showing % decrease and 

white –red showing %increase in death rate. 

There is a significant drop in death rates due to heart diseases except 

Hypertension whose death rate has increased by 50%. The death rate due to 
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Malignant neoplasms does not show much variation relative to 1981, fluctuated by 

about 5 to 10%. 

Visualizing the %changes in 1998 with respect to 1990 showed an increase in 

death rates for about 23 causes of deaths and a decrease in death rate for about 18 

causes of death. Death rates are increasing at a higher rate till 1990 compared to the 

death rates from 1990 to 1998. 

5.2 HCIL Web logs  

HCIL web log data consists of the HCIL (www.cs.umd.edu/hcil) web statistics 

like page name, user id, group id, modification time, creation time, size and hitcount. 

These web logs are collected over four weeks, labeled as Week_1, Week_2, Week_3, 

and Week_4. The time series attribute is hitcount.  

From these given four log files, a single time series dataset is generated using a 

routine known as TTSGenerator (See Appendix c). Users can specify a missing value 

to fill in the data value for missing pages (pages that don’t exist during some time 

period). 

Figure 5.2.1 shows the treemap visualization of web directory structure during 

Week_1. Users can see that there are a total of 3293 files in the HCIL, 4% of which 

have a size of 0 bytes. It might be because either the file content is zero or the access 

is restricted. This file directory tree is 9 levels deep and the deepest sub-tree is 

hcil/members/arose/gridl/edu.  

 63

http://www.cs.umd.edu/hcil


 

Figure 5.2.1 Visualization of HCIL web log during week_1, grouped by directory 

structure. Each rectangle represents a file/web page, size proportional to file size in 

bytes, and color proportional to hitcount, a color shade of white -yellow- purple 

represents 0 to 4298 hitcount. 

The largest directory in HCIL is millionVis (largest rectangle), the next large 

directories are kiddesign and datelens, and the largest file is UIST 2002 – 

fishcal.mpg(55MB) in hcil/datelens directory and the other big file is 

precslider.gif(35MB) in hcil/millionvis. 

 64



Figure 5.2.2 shows the temporal visualization of HCIL web hitcounts during 

week_1. Users can see that few html files in Jazz-chat and iv03contest directory does 

not exist in week_1. 

 

Figure 5.2.2 Visualization of HCIL web logs during week_1, grouped by directory 

structure. Each rectangle represents a web page and color represents hitcount. White 

color shows missing pages, yellow – purple gradient shows 0 to 4300 hits. 

The highest hitcount is registered for banner-images (from the dark color). Jazz-

chat has 0 to 1 hits during week_1. Kiddesign, Photolib and Treemaps were popular 

with more than 100 hits. In hcil/jazz, 100 to 400 hits have been registered for 
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hcil/jazz/img/nav files, the index.shtml files, and the few image files in 

jazz/applications.  

In the hcil/pubs directory a total of 1254 hits have been registered and index.html 

was visited 124 times. The tech-reports.html has 397 hits and index.html and 

products.shtml have more than 100 hits. The files in hcil/pubs/books have a wide 

range of hit count from 0 to 100. All the files in hcil/pubs/screenshots directory have 

been visited an average of 10 times. 

 

Figure 5.2.3 Visualizing HCIL web logs during week_2. 

The hcil/members/ gif images are visited an average of 30 to 300 times among 

which ben-formal.gif has the highest hitcount of 371 hits. HCIL faculty and research 
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staff images have been visited 80 to 400 times, and the student images have been 

visited 1 to 40 times. Index.html or index.shtml pages in all directories are visited 

more than 100 times, showing that HCIL is popular 

Figures 5.2.3 – 5.2.5 show abstract visual representations of HCIL web logs 

during Week_2 to Week_4 respectively. The overall activities in these visualizations 

are similar to the one in Figure 5.2.2 with some minor changes. Kiddesign and 

photolib are still popular applications. Iv03contest directory doesn’t exist in week_2. 

 

Figure 5.2.4 Visualization of HCIL web logs during Week_3. 

Jazzchat was busy in week_3. A directory hcil/iv03Contest is created with three 

files, and these files had 190 to 220 hits. There were 0 hits for acm-award-pics. 
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Banner-images had the highest hitcount and it was highest in all weeks.  All the files 

in HCIL had highest hitcount during week_3. 

 

Figure 5.2.5 Visualization of HCIL web logs in week_4. 

In week_4, new files in jazz chat and new datasets in iv03contest were created. 

These newly created datasets are the largest files in the HCIL directory and were 

visited 50 times. Few files in counterpoint directory were deleted (white color). The 

most popular application (visited more times) in all the time periods is kiddesign. The 

other applications like photolib, treemaps, visible human and photomesa have a total 

of around 5000 hits. 
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Since the HCIL web logs data is large (3300 files) and is deep (9 levels), most of 

the screen space is lost for showing directory structure. While monitoring page 

hitcounts over time, users are interested in visualizing the changes in different areas 

rather than the details. Users can reclaim more pixels by removing the borders as 

shown in Figure 5.2.6. 

 

Figure 5.2.6 Visualization of HCIL web logs in Week_2 without borders and with 

overlaid labels. 

Users can remove the borders and navigate through time periods focusing on the 

color changes over the treemap. Figure 5.2.6 overlaid labels of directories at level 4 in 

the directory structure. This label overlay helps the users retain context. Users can 
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switch between removing and adding borders depending on their needs. Users can 

identify the dark colored areas to be most popular and the white color rectangles 

represent the files that were deleted. 

 

 

Figure 5.2.7 Visualization of HCIL web logs in week_4 without borders. 

From the graphic overview, users can see that banner images had highest hitcount 

in all time periods and this hitcount was very high compared to all other files.  

Analysis: 

This data is published by IV03 Contest (www.cs.umd.edu/hcil/iv03contest/) with 

intent to evaluate visualization tools based on some data dependent taks. Analyzing 
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this data in temporal treemaps has resulted in the implementation of TTSGenerator, 

missing data, overlay labeling, and search option. 

 The original data was large consisting of 70,000 leaf nodes. Since treemap 

(Treemap 4.0) cannot handle (interaction was too slow) such a large data, a subset of 

the data (everything under HCIL subtree) is exported into a new treemap data set for 

all the four logs. Then the issue was to convert the regular treemap data set to treemap 

time series format. To create a super set of all the four logs in time series format, a 

new routine TTSGenerator was developed. TTSGenerator is implemented by Aleks 

Aris, a graduate student in HCIL.  

Some pages were newly created and some existing pages were deleted resulting in 

missing data. The design decision to use a supplement value of “-1” for page 

hitcounts was made. This value was shown in the data file in the first row, second 

column of the series attribute. After the data file was created, the problem was to 

identify the missing pages in the data set, which led to the missing data color.  This 

helped to identify the newly created pages and the deleted pages. 

One of the tasks was to find the gif images in the directory. In an effort to answer 

the question, search option was added to filters.  Search in the label field was 

implemented first which was then improved to search in any attribute. 

Since the directory structure is deep (10 levels), much space is used for drawing 

the hierarchy levels compared to the actual data items. While viewing the changes 

over time it was really hard to visualize the color changes, as the leaf nodes were 

hardly visible. Viewing the changes without borders helped to identify the popular 
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areas in the treemap, but the context information is lost. Hence overlay labels are used 

to show the labels at any selected hierarchy level to retain the context information.  

5.3 Daily Oil Production 

Temporal treemaps can be used to monitor daily production from oil and gas 

wells.   Data is collected from oil wells and reported each day. 

 

Figure 5.3.1 Monitoring Oil well data on Day_1, grouped by their geographical 

region/location. Each rectangle represents an oil well, size proportional to amount 

of oil produced and color proportional to lost production, white represent zero oil 

lost, shade of yellow to black is proportional to maximum oil lost. Light gray 

color represents oil wells that did not report data. 
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This data consists of the amount (barrels) of oil produced in each oil well, amount 

of oil lost in production (less amount of oil is produced than expected), amount of gas 

produced, delta oil lost, delta gas lost etc. The main goal of monitoring this 

production data is to observe the amount of oil lost in production each day for four 

consecutive days 

The Treemap shown in Figure 5.3.1 summarizes the production of 373 oil wells 

grouped by geographical region/location on Day_1.  Each box in the Treemap (Figure 

5.3.1) represents a well.  The size of the rectangle is proportional to number of barrels 

of oil produced in a well and the color indicates “lost” production – the difference 

between the actual and expected barrels produced. 

Figure 5.3.1 shows at a glance which of the wells are the largest producers (i.e. 

the large rectangles), and the color indicates where the oil is lost in production. In this 

data some of the oil wells did not report the production statistics due to technical 

problems. This missing data from these oil wells is replaced with a “-1” and is 

identified with a different color (light gray/blue in Figure 5.3.1). 

Area A is the problem area as almost all the wells in that area, have reported oil 

loss. Area D has few oil wells, which have lost 175 units of oil. Oil wells in Area B 

299 did not report any oil loss.  
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Figure 5.3.2Visualizing same oil well data on Day_2 

Figure 5.3.2 shows the oil production data on day _2. Area A has been reporting 

oil loss for two continuous days. Area C is doing well, all the oil wells have produced 

the estimated oil to be produced. Area B 299 has 3 oil wells, which have lost about 10 

barrels of oil. Half of the oil wells in HAT AREA did not report. The largest rectangle 

in Area D did not report the data (inferred from the gray color). 

 74



 

Figure 5.3.3Visualizing same oil well data on Day_3 

Data has not received from the largest oil well on Day_3 as well. On Day_3, oil 

loss is confined to HAT AREA only. Remaining oil wells did not report any oil loss. 

HAT AREA has reported the maximum oil loss and almost half the oil wells in this 

area have lost oil on day 3. 
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Figure 5.3.4 Visualizing same Oil well data on Day_4 

Figure 5.3.4 shows the oil loss in different areas on day_4. The largest oil well has 

reported oil loss after two continuous days of missing data. Few oil wells in Area D 

did not report data. HAT AREA continues to be the problem area from day 3 to day 4 

with most of wells losing oil. Data was not received from a few oil wells in HAT 

AREA.  Area A is also the problem area since the maximum amount of oil is lost in 

the oil wells in this area. Area B 299 is doing well except for one oil well which has 

been losing oil constantly. 
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From the histogram display and the envelope, it can be observed that the 

maximum amount of oil loss occurred on days 1, 3 and 4, but not on day 2.On day 3 

and day 4, there are few wells, which have lost half the amount of maximum oil loss.  

5.4 NCHS Live births data 

Live births data is provided by March of Dimes perinatal data center published in 

NCHS natality file. Live births consists of number of live births, percentage of all live 

births that were singletons, percentage of all live births that were multiples, 

percentage of all live births that were born preterm, percentage of singleton live births 

that were born preterm, percentage of multiple live births that were born preterm, and 

percentage of live births that were born preterm in whites, blacks, Hispanics, native 

Americans, and Asians. This data is published by NCHS and is collected for every 

state from 1990 to 2001. 

This case study demonstrates the utility of temporal treemaps for identifying the 

trends in percentage live births that were preterm as a whole and in each race. 

Figure 5.4.1 shows an abstract graphical visualization of percentage of all live 

births that were born preterm in 1990. Each rectangle represents a state in US and are 

grouped by geographical regions such as 1-west, 2-Rockies, etc. There is no size 

coding. The color of the rectangle (shade of green) is proportional to the %preterms 

in all live births. 

Users can infer that District of Columbia has highest %preterm births from its 

dark color. The time series graph overview in the lower left corner shows that District 

of Columbia (top line graph) has the highest %preterm births for all the years. 
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Louisiana and Mississippi have the next highest %preterm births. 5-Central has 

highest average %preterm births (from the dark shade in that region). 

 

Figure 5.4.1 Visualizing percentage of live births that were born preterm in 1990. 

Each rectangle is a state; grouped by geographical region; layout is slice and dice; 

colored by %preterm in live births. 

West, Rockies, and Far MidWest (light shade in these regions) have lower 

%preterm compared to MidWest, Central, and MidSouth regions (dark shade in these 

regions). 

Figure 5.4.2 shows the same preterm birth data with color showing %preterm 

births in 2001.  
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Figure 5.4.2 Visualizing %preterm births for each state in 2001. 

The percentage of live births that were born preterm is increasing from 1990 

(light shade in Figure 5.4.1) to 2001 (dark shade in Figure 5.4.2). District of 

Columbia and Mississippi has the highest %preterm births in 2001 as well. 
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Figure 5.4.3 Visualizing %changes in live births that were born preterm from 1990 to 

2001. 

Figure 5.4.3 shows the %changes in %preterm births from 1990 to 2001. A shade 

of red indicates %increase in preterm birth rate and shade of green indicates 

%increase. District of Columbia is the only state that has showed a decrease in 

preterm birth rate and for every other state preterm birth rate is increasing. 

Massachusetts, New Hampshire, and West Virginia showed an increase in preterm 

birth rate by 35%. 
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Figure 5.4.4 Visualizing %preterm in live births in 2001. Each rectangle is a state, 

grouped by geographical region and race. Color shows the %preterm in live births in 

2001. A shade of yellow shows %preterm births less than 10% and shade of red 

shows 10% to 36%. 

Figure 5.4.4 shows the %preterm birth for each state and race. Users can see that 

blacks have highest %preterm births and the highest %preterm birth rate is observed 

in Central region. 

5.5 Monitoring monthly help desk tickets 

This case study explains how temporal treemaps were modified to handle 

categorical attribute changes over time. The IT department in Chevron Texaco at 
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New Orleans uses traditional treemap to visualize monthly help desk tickets. Each 

month, tickets are issued for problem areas in their IT department. Each ticket has 

attributes like Status, Title, SWDATECREATED, SWDATERESOLVED, Ticket Id, 

AssignedTo_CAI, Name, Department, Division, Functional Data Area, First App, etc. 

Figure 5.5.1 shows the treemap visualization of help desk tickets in December. 

 

Figure 5.5.1 shows the treemap display of help desk tickets in December. Each 

rectangle is a ticket, grouped by Functional Data Area and First App. Colored by 

Functional Data Area. 

Each rectangle in Figure 5.5.1 is a ticket, grouped by Functional Data Area and 

First App. Examples of categories are Transportation, Production etc. Functional Data 
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Area is also used for color coding the treemap, so that each group can be uniquely 

identified by its color. These settings are set by a manager and are saved in treemap 

settings file. This view is deployed on the web so that other people can monitor the 

help desk tickets data. Their idea is to use the same settings but with different data 

every month. 

In the following month, the data file was replaced with the new data file as new 

tickets are issued.  Prior implementation of treemap used to save the attribute values 

in the settings file and is dependent on the data file. When the new data is loaded with 

the previous settings file, it crashed. Each time when the data is changed, a new 

similar settings file is created and deployed on the web.  

This problem is solved by modifying the treemap settings file. Temporal treemaps 

write the attribute name into the file and while reading it is made sure that the settings 

are applied to the attribute with that name only. Hence, the settings file can be used 

with changing data.  

Another option was to present all the data in a single view. This is achieved by 

creating a list file with the first column showing the titles (time periods in this case), 

second column showing the data file names, and the third column showing the 

treemap settings file names. The actual list file used in this case study is shown in 

Appendix B. When a settings file is loaded with this list file, a new list of settings tab 

is displayed beside the detail on demand table on the top right corner (Figure 5.5.2). 
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Figure 5.5.2 Visualizing help desk tickets in June. Each rectangle is a ticket, grouped 

by Functional Data Area and First App attributes. Color shows the Functional Data 

Area. 

Users can access each month data in a single view, without having to load the data 

separately. Users can select the time period and view the data corresponding to that 

time period. Figure 5.5.2 shows the help desk tickets in June. Production has highest 

number of tickets in June.  
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Figure 5.5.3 Visualizing help desk tickets in July. 

From Figure 5.5.2 and Figure 5.5.3 it can be seen that there are three new areas 

(#N/A, Unix, WEB) in which help desk tickets are issued in July but not in June.  The 

number of tickets in HES and Transportation areas has decreased in July compared to 

June. There are more tickets in Production in July compared to those in June. 

Another possible method to visualize the number of tickets in each category is to 

aggregate the number of tickets in each category and view it using the time slider in 

temporal treemaps. Users can select to export a time series file from the current 

visualization. This action would create a new time series file with the categories as 

items and introduce a new time series attribute whose value is equal to the number of 

 85



tickets in each category. Figure 5.5.4 shows the time series visualization of number of 

tickets in each category for 8 months (June – December). 

 

Figure 5.5.4 Visualization of help desk tickets, aggregated by number of tickets in 

each Functional Data Area, and number of tickets as the time series attribute. 

The visualization in Figure 5.5.4 shows the aggregated number of tickets in each 

category. Each rectangle is a Functional Data Area, grouped by Functional Data Area, 

labeled by number of tickets in September, colored by number of tickets in 

September.  

From Figure 5.5.4, Production has the highest number of tickets in September. 

There are no tickets issued for WEB category. Drilling has the minimum number of 
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tickets issued in September. General, HES, and Other categories have around 30 

tickets issued. From the top most time series graph (shown in popup) Production has 

the highest number of tickets issued in all the months and in September it has 88 

tickets issued. 

Figure 5.5.5 shows the aggregated time series visualization of number of tickets in 

each Functional Data Area in December. 

 

Figure 5.5.5 Visualizing aggregated number of tickets in each area in December. 

More number of tickets are issued in each area in December compared to 

September. No tickets are issued in Unix, WEB, and #N/A areas. 

Temporal treemaps present an aggregated time series view of help desk tickets. 
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Analysis: The original implementation was different and is refined based on the 

feedback collected from the Chevron Texaco IT department. This work has saved 

time to create a settings file each time when the data is changed. It also enables the 

users to view the data in a single view. 

Initially buttons are used to show the time periods. There was no cue in the user 

interface to show which data set the user is working on. The buttons are changed to 

radio buttons, which clearly show the data set that the user is working on. Also the 

title of the treemap shows the time period. When the user switches time period, main 

tab is highlighted. The idea was to leave the tab highlighted as it was before. This is 

fixed in the modified version.  

Another suggestion was to carry over the modified settings from one time period 

to another time period. This is helpful when users are concentrating on only one 

category. They can filter all other categories, and then switch the time periods.  This 

can be implemented as an option “Remember settings”. When users select this option, 

the current settings can be saved in a temporary file and applied after switching to a 

new time period. 

 
5.6 Feedback  
 

This section discusses the feedback collected from two HCIL members. 

Subject 1: This subject has not used treemaps before and was more interested in the 

time series graph overview and hence commented on presenting more information in 

that overview. More visual cues like color of the line, color of the time point, missing 
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value points could be added to the time series graph. One option would be to draw a 

small circle at each time point on the time series graph so that the color of the circle 

indicates the data item’s color in the treemap. In the same way, missing values can be 

shown with the circles colored with the missing value color. The time series graph 

should be disconnected at the time points with missing values for that data item. 

The visual clutter observed in most of the examples can be avoided by using a log 

scale on the y-axis of the graph. This can be provided as an option. Another possible 

solution is to filter out the extreme time series graphs and zoom the graphs to occupy 

the entire available space. Apply some interpolation techniques to show a smooth 

transition from one point to another. 

Filters were distracting as there is no cue in the interface that it filters the items 

whose values were increasing from the “previous” time period. 

Subject 2: This subject has extensive experience in using treemaps and was able to 

use GUI features like color binning without any problem. He was distracted with the 

slider and was not able to identify the color changes over time. He was able to 

coordinate the time series graphs with the treemap overview. In the time series graph 

overview, there is no visual cue, which would indicate the current time period.  A 

vertical bar in the time series graph overview could show the current time period. As 

the user moves the slider, the position of the vertical bar is updated. Clicking on any 

time series graph would select the time period nearest to the position of mouse click. 

This would update the position of the vertical bar, the time slider, and the treemap to 

show the new time period. 
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Chapter 6 

Conclusions 

This thesis extends the concept of treemaps to visualize time series data through 

mapping temporal changes to the color attribute of treemaps. 

6.1 Research Contributions 

Specific contributions of this thesis include: 

• Visualizing time series data: This thesis extends the concept of treemaps to 

visualize time series data while retaining the hierarchical structure of the data. 

Users can identify trends at the item level as well as at the sub tree level. The 

user interface supports interactive exploration of data with features such as 

animating over time, visualizing %changes, and filtering data items whose 

values have increased, decreased or remained constant etc. 

• Time series graph overview: The implementation coordinates the time series 

graph overview with the treemap overview to provide additional capabilities 

to explore the data. These two views are tightly coupled in response to mouse 

movements and encourage visual exploration of the data. 

• Improved labeling: Temporal treemaps support overlay labeling to gain screen 

space by removing borders but still retain the context. This is achieved by 

painting labels at the center or top of the group of items. The labels are 

painted in such a way that they are visible in both light and black 

backgrounds. 
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• Missing data: Missing data is one of the common problems in visualizing time 

series data, which would mislead the users in interpreting the visualization. 

Temporal treemaps handle missing data in a simple method by using a 

supplemental value. Users can assign any color to the supplemental value and 

identify the data items with that color in the treemap. Distraction can be 

avoided by using a value and color different from the time series values and 

colors respectively. For example, in visualizing HCIL web logs, supplemental 

value for page hitcount is -1 and is colored white, which enables users to 

distinguish existing and non-existing pages in the treemap.  

• Implementation: Temporal treemaps are an extension to treemap 

implementation and are implemented in Java using the Swing toolkit for user 

interface widgets. It uses object oriented design techniques that support the 

use of sub-classing (packaging) to easily add new classes of features. 

• Systems engineering approach: The design and implementation of temporal 

treemaps has followed the systems engineering developmental cycle.  

Analysis of user requirements, identification of the software classes to be 

modified, identification of design alternatives, and tradeoff analysis between 

various design alternatives is carried out prior to the implementation. This 

approach has resulted in reusable and extensible software modules, in terms of 

input data format and user interface widgets. 

• Validation through case studies: The utility of temporal treemaps was 

demonstrated through five case studies from task domains like health 

 91



statistics, web logs (Chapter 5). Animation, ability to view relative changes 

over absolute values, and tightly coupled graphic overviews helped users to 

identify trends in their data sets. This has also resulted in numerous 

suggestions for improvements. 

• Section 6.2 describes a subset of future possible extensions to temporal 

treemaps to increase their utility. Further work needs to be done in this area to 

identify the potential extensions that are interesting and relevant to the users. 

• Temporal treemaps will be included in regular treemaps code base as Treemap 

4.2. The user interface features in temporal treemaps must comply with those 

of the original Treemap 4.1. For example the time series controls in the series 

tab have to be removed and placed in the legend tab. 

6.2 Future Work 

This work has mainly focused on exploring the ideas and demonstrating the 

capabilities thereby leaving a wide scope of future possibilities to extend the current 

work. 

6.2.1 Scaling 

Time series data sets are large both in terms of number of data items, number of 

hierarchy levels or number of time periods to be monitored. For data sets with large 

numbers of data items (order of 105) traditional treemap display may not be helpful 

since the area occupied by each item is not large enough to visualize the changes in 

color. For data sets with deeper hierarchies, data items can be aggregated. Scaling 
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treemaps to handle large data sets can be achieved through animated display [14]. 

Another possibility of scaling temporal treemaps is to accommodate a large number 

of time points (100 or more time points). This would include a new input file format, 

efficient data structures for storing large data and efficient display techniques. 

Separating time series attributes from static attributes and replacing tab delimiters 

with other delimiters like “,” or “;” would result in easy management of input files. 

Another improvement would be to replace the tab delimited file with an xml file and 

use an xml parser for reading the input data. Horizontal scrolling and zooming should 

be implemented to interactively view the graphical overview of time series data. The 

histogram display can be discarded, as it is hard to accommodate large time periods.  

6.2.2 Generating textual summaries 

The main goal of visualizing time series data is to identify the patterns and/or 

outliers. Graphical visualization and statistical analysis are two common methods of 

examining time series data. A method to generate textual summaries by selecting 

important patterns, mapping the patterns to words and phrases, and generating actual 

text based on these words and phrases for weather forecasts, gas-turbine sensor 

readings, and hospital intensive care data is discussed in [39]. MIMSY [16] provides 

a user interface for textual queries to study temporal patterns in stock market data.  

A subroutine can be implemented in temporal treemaps which generates a short 

summary of time series data upon user request. This summary may contain a 

description of the time-dependent pattern, outlier items, leaders and laggards along 
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with the data item details. For example, when the user clicks on a treemap node, a 

text message “The (attribute name) for (node name) has increased by (%attribute 

value) from (time period)”. 

6.2.3 Coupling TimeSearcher with Treemap 

TimeSearcher [17] provides a prototype environment for interactive querying and 

exploration of time-series data. Temporal treemap utility can be enhanced by tight 

coupling of treemaps with TimeSearcher. The graphic overview and the menu in 

TimeSearcher can be added below the main treemap window. The details on demand 

in TimeSearcher can be shown adjacent to the details on demand table in treemap.  

Interaction is achieved by coordinating mouse motions and highlighting.  Mouse 

over in the TimeSearcher graphic overview would highlight the nearest time series 

graph and the corresponding rectangle/data item in the treemap and vice versa. While 

posing a query in the time searcher, the corresponding nodes of the qualifying graphs 

are shown in their original color, while the rest of the items can be grayed out or 

hidden. This enables users to quickly spot the clusters and patterns in the query result 

set. Drag and drop query by example can be implemented by dragging an item from 

the treemap and dropping it in the TimeSearcher’s query space which would result in 

all graphs with that pattern. 

6.2.4 Additional Features 

The following are few possibilities that would provide more features or options. 
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• A modified time slider can be added to the x-axis of the graphic display.  This 

time slider consists of three pointers, one for the current time period and the 

other two for selecting a range of time periods for animation. 

• The color gradient can be added parallel to the y-axis of graphic display. This 

helps users to quickly match the time series graphs with the data items in the 

treemap.  

• Binning by node option which lets the users create three bins based on the 

selected node’s value, being one less than the value of the selected node, other 

equal to the node and the third greater than the value of the selected node. 

This can be done by selecting the node and dragging and dropping the node in 

the binning widget, which would insert a bin separator at the selected node’s 

value in that particular time period. Binning by average value could be 

another possible extension to group by the average value, similar to binning 

by node. 

• Export functionality can be added to export selected part of the data in 

selected time periods to create a new treemap time series data file. 
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Appendix A 

A Sample Treemap Timeseries (.tts) data file 

A sample timeseries data file is shown in Figure A.1 based on help desk tickets 

data. The original data is modified and only a few data items are shown to illustrate 

the file format. The static data attributes are Functional Data Area and First App and 

the time series attribute is Number of tickets over four time periods (June, July, 

August, and September).  

The first four rows show the data attribute information. Each column corresponds 

to a data attribute and each row shows the data item. The missing value is shown in 

the first row, fourth column. 

 

Figure A.1 A sample timeseries (.tts) data file. 

Each line from the fifth line is a data item with its attributes shown in respective 

columns. Pre-defined hierarchy can be specified for each data item at the end of row, 

with a blank line between the attributes and the hierarchy. 
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Appendix B 

A sample list of settings file 

A sample list of settings file is shown in Figure B.1. This is the actual list file 

based on help desk tickets data for eight months. The first header line shows the 

names of the columns. First column shows the time period name (shown in treemap 

as list of radio buttons), second column shows the treemap data file name (.tm3), third 

column shows the treemap settings file name (.tms).  

 

Figure B.1 A sample list of settings (.lst) file. 
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Appendix C 

TTSGenerator 

TTSGenerator is a command line oriented Java subroutine which generates a 

treemap time series (tts) data file from two or more treemap (tm3) data sets.  It reads 

the data from the input files and merges the attributes for similar data items in the 

time series format based on input key. The static attribute values are same for any 

data item in all the input files and the attribute values are different for the time series 

attributes. A missing value is substituted for the time series attribute if the data item 

does not exist in any time period. A key is a combination of one or more attributes 

and/or hierarchy. If the data has a predefined hierarchy, then it is sufficient to specify 

the hierarchy as key, otherwise the unique attribute or combination of attributes 

should be specified as the key. 

For example, the following command generates a time series file temp.tts from 

three treemap files t1.tm3, t2.tm3, and t3.tm3. 

Java –jar ttsgen.jar –o temp.tts 3 t1.tms t2.tm3 t3.tm3 1 B -1 1 H 

• -jat ttsgen.jar: jar file to execute TTSGenerator. 

• -o temp.tts: specifies that the output of TTSGenerator is written into temp.tts 

file. 

• 3 t1.tm3 t2.tm3 t3.tm3:“3” indicates the number of input treemap data sets 

(tm3) and “t1.tm3, t2.tm3, t3.tm3” are the input treemap data set file names. 

 98



• 1 B -1: “1” indicates the number of time series attributes, “B” shows the time 

series attribute column in the input treemap data files and “-1” shows the 

missing value.  

• 1 H: 1 specifies the number of attributes that constitute the key. This key is 

used to combine the data attributes in different files to one file. “H” is the first 

column of the hierarchy. 

Note: The column names are the headers that appear in Microsoft Excel on top of 

each column. 
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