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In the present thesis, we investigate the interfacial dynamics of a three-dimensional

droplet in a viscous fluid flowing through a square microfluidic channel with a rectan-

gular cross-sectional constriction. The effects of various parameters of the two fluids

and the sizes of the constriction geometry are considered. The numerical computa-

tion for the current problem requires a highly-accurate and efficient method owing

to the very small/large deformation of the droplet shape at low/high flow rates, the

small droplet-solid gap and the complicated three-dimensional geometries. An effi-

cient fully-implicit three-dimensional Spectral Boundary Element method developed

by Dimitrakopoulos [11] is employed.

Our results show that the droplet dynamics is significantly influenced by the

non-symmetric shape of the rectangular cross-sectional constriction, i.e. owing to the

constriction shape the droplet deforms much less in the flow-direction by forming a

flat disk shape. As the capillary number is decreased, the droplet deformation in

the flow-direction decreases owing to the larger surface tension. The effects of the

viscosity ratio are complicated with viscosity ratio near unity showing the largest

deformation.
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Chapter 1

Introduction

In the present thesis, we investigate the interfacial dynamics of a three-dimensional

droplet in a viscous fluid flowing through a square channel with a rectangular cross-

sectional constriction. The problem of a droplet squeezing through a constriction

in a capillary channel is of fundamental importance as a prototype study that can

be applicable to many industrial and physiological processes. We closely investigate

the physics of the problem for a wide range of capillary number Ca, viscosity ratio

λ, and geometric size of the channel and the constriction.

An efficient three-dimensional fully-implicit Spectral Boundary Element method

developed by Dimitrakopoulos [11] is used to solve the problem. We emphasize that

this is a challenging computational problem because it requires (i) a highly accurate

stable numerical method due to the very small/large deformation of the droplet at

low/high flow rates, and the close interaction between the droplet and the solid sur-

faces and (ii) an efficient algorithm for the large-size complicated three-dimensional

geometries.
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1.1 Objectives of the Current Study

The study of a droplet squeezing through a constricted capillary is a prototype

model for the two-phase flow in porous media and microfluidic channels which can

be found in many areas of research. It is encountered in many industrial processes

(e.g. enhanced oil recovery, oil sand processing, ground water purification, fixed-

bed catalytic reactors and microfluidic devices) and in physiological processes (e.g.

red blood cell motion in blood vessels and in vivo transportation of drugs through

tissues or capillary networks).

Previously, intense amount of studies has been motivated by its application to

enhanced oil recovery as the oil price has rocketed over the past few decades [44]. The

physics involved in the displacement of oil droplets through a pore constriction via

injection of another fluid was the key to understanding and improving the efficiency

of the oil recovery [31].

Recently, the ongoing development of advanced microfluidic devices has moti-

vated further studies in this area. A flow-focusing device that can synthesize highly

monodisperse droplets, bubbles and particles of controlled size has shown numerous

potential applications [22, 43]. The ability to control the flow rate and the sequence

of reagents addition with extreme precision has allowed new methods for biological

and chemical reactions and analysis [38, 40].

We emphasize that a prototype study may embrace the challenge of scaling

up in order to be closer to an application, especially for a large-scale study such as

the oil recovery process. However, the fundamental understanding of the droplet
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interfacial dynamics in a single channel helps much in the physical understanding

of the large-scale complicated geometries.

1.2 Literature Survey on the Droplet Squeezing through a

Constriction

Many prototype models have been designed to study the dynamics of droplets in

constricted capillary channels. The motion of droplets in a viscous fluid through

a constriction has several parameters that determine the flow. These parameters

include the geometry of the capillary pore, fluids properties and fluid-fluid interac-

tion parameters. Depending on these factors, a droplet can either flow through the

constriction, break up into daughter droplets or become trapped at the neck of the

constriction. Due to this complexity, each individual study normally focuses on a

specific phenomenon.

A plethora of literature has covered the droplet motion and the snap-off mech-

anism in viscous flows in a straight tube [2, 21, 28]. For a droplet moving through

a constricted capillary tube, Roof studied the snap-off as a mechanism that traps

oil drops in porous media [37]. He found a pressure equilibrium position of a menis-

cus of an oil-water interface beyond which the snap-off would occur. Numerous

experimental studies were conducted to understand the behavior of droplet in con-

strictions [16, 51, 30, 19, 1]. Han and Funatsu [19] conducted experiments on the

deformation and snap-off of droplets in converging tubes. Olbricht and Leal [30]

performed experiments on a droplet moving through a circular tube varying in di-
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ameter and reported the significance of the effect of geometry on the deformation

and the snap-off of the droplet. Gauglitz, St. Laurent and Radke [16] experimen-

tally studied the snap-off of large droplets in a constricted capillary channel and

determined the breakup time and the produced droplet’s length. Later they derived

an evolution equation for the thickness of a thin film between the droplet and the

wall in the constricted geometry and showed that the film grows in time and snaps

off the droplet. Arriola and Willhite [1] conducted experiments on an oil droplet in

a non-circular pore throat along with the effect of surfactants on the mobilization of

the droplet. They found a region for stable and unstable droplet motion in terms of

the effect of interfacial tension, flow velocity and droplet length. They also observed

that due to the corners of the non-circular throat and thus the higher flow rate, the

snap-off process is faster.

Along with the experimental studies, theoretical and numerical studies have

also been conducted. Ratulowski and Chang [36] based on a linear stability analy-

sis studied the snap-off at a strong constriction for both axisymmetric and square

constriction. Martinez and Udell [27] numerically studied a droplet in periodically

constricted tube but did not find snap-off or trapping. Tsai and Miksis [45] used

an axisymmetric boundary integral method to study the droplet snap-off process

and the effects of the capillary number, viscosity ratio and geometry sizes. Studies

of capsules in capillary channels, where the thin membrane properties have to be

considered, were also conducted. Leyrat-Maurin and Barthes-Biesel [26] studied the

motion of a capsule through a hyperbolic constriction. For an overview of droplet

motion in a tube or a channel mentioned above, Olbricht has presented a review
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of the prototype studies of multi-phase flow in porous media [31]. Muradoglu and

Gokaltun’s algorithm is based on the two-dimensional front-tracking method while

they studied a freely-rising drop in a single constriction or a periodically constricted

channels. The interactions of two buoyancy-driven drops in a continuously con-

stricted channel were also investigated [29]. Later, the algorithm was extended to

study buoyancy-driven motion and breakup of viscous drops in sinusoidally con-

stricted channels with respect to the effects of the channel geometry, drop size and

Bond number [32]. They reported critical values for the droplet break-up. Stud-

ies that are focused on the trapping of a droplet where reported. Most recently,

Zinchenko and Davis [54, 4] studied a droplet squeezing though a granular model

constriction using a boundary integral method utilizing a Heberker representation.

They were able to obtain results for the condition of a droplet trapping at the pore

neck of granular geometries. They also emphasized that the ability of an algorithm

to determine the near-critical conditions for the trapping is highly challenging due

to the small droplet-wall gap.

Another closely related prototype study for the current thesis is the study

of droplet motion in a rectangular channel or between two infinite parallel planes.

Rectangular microchannels resemble many of the microchannels in microfluidic de-

vices [25, 3, 42]. The rectangular channels can give the advantages of high loadability

and low sample dispersion at the same time [42]. Previous studies investigated the

droplet motion confined between two infinite parallel plates. Shapris and Haber

conducted a theoretical work to study the migration of a two-dimensional droplet in

parallel planes [39]. Staben, Zinchenko & Davis studied a three-dimensional parti-
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cle between parallel planes using a boundary integral method [41]. Vananroye et al.

conducted an experimental study of a three-dimensional droplet under shear flow

between parallel plates and showed the difference in the motion of the droplet com-

pared to bulk flow [46, 47]. They reported the effect of the confined geometry on

the droplet deformation, the critical capillary number and the critical viscosity of

breaking. Griggs et al. studied the behavior of a three-dimensional single deformable

drop in a Poiseuille flow between two infinite parallel plane walls by numerical com-

putation. Aside from the relationships between deformation, Ca and wall proximity,

they also focused on the three-dimensional droplet shape [18].

To our knowledge, the current thesis is the first numerical study of a droplet

motion in a rectangular constriction. The interfacial dynamics of a droplet squeez-

ing through a non-axisymmetric constriction differs from that in an axisymmetric

constriction or in between two infinite parallel walls owing to the effects of the

non-axisymmetric directions of expansion and compression of the droplet.

1.3 Literature Survey on Numerical Methods

There has been abundant application of the boundary integral method in the field

of fluid dynamics for low-Reynolds number flows over the past three decades. The

efficiency of the boundary integral method results from avoiding the calculation

within the flow domain. Since Youngren and Acrivos [53] first introduced the method

in the study of interfacial dynamics in Stokes flow, the versatility of the method

has allowed the study of many different problems such as rigid particles, droplet
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deformation and breakup, particle-wall interaction and deformation of red blood

cells. Many versions of the boundary integral method has been developed based on

different discretization schemes [45, 41, 54, 23].

Among them, the spectral boundary element method has been developed to

utilize the high accuracy of the spectral method [6, 49, 11]. The main attraction of

the spectral boundary element method is the exponential convergence in numerical

accuracy while maintaining the versatility of the boundary element method. Dim-

itrakopoulos and Higdon has employed the spectral boundary element method in

the study of a droplet displacement from a solid surface under Stokes flow [5, 6, 8]

and gravitational force [7]. Later, Wang and Dimitrakopoulos studied the hemo-

dynamic forces exerted on endothelial cells or leukocytes adhering to the surface of

blood vessels [49, 48] and Dimitrakopoulos studied the deformation and the sliding

of a droplet adhering to a solid surface in shear flow [10] and gravitational force

[13]. Recently, Dodson and Dimitrakopoulos extended its application in studied a

capsules in Stokes flow [14, 15].

1.4 Overview of Current Research

In this thesis, we study the dynamics of a droplet squeezing through a rectangular

cross-sectional constriction under constant flow rate and no-slip boundary conditions

in low-Reynolds number flows as shown in Figure 1.1.

The mathematical formulation and the numerical method are discussed in

Chapter 2 and 3, respectively. In Chapter 4, a general case model is studied first

7
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Figure 1.1: Illustration of a droplet in a square channel with a rectangular constric-

tion.

and then various comparison cases are examined to see the effects of the physical

and geometrical parameters.

For all computations, both fluids are considered isothermal and Newtonian

while the surface tension is constant and the gravitational effects are neglected. We

restrict the half-length of the square cross-section of the channel to R = 1 and

droplet size to a = 0.6 initially placed before the constriction so that the center of

mass of the droplet is located at Xc = −3. We determine the droplet velocity Ux,

droplet length, width and height Lx, Ly, Lz, droplet surface area Sd and minimum

distance hmin between the droplet and solid wall with respect to time t and the

droplet center of mass Xc.

The parameters affecting the problem include the size of the constriction,

8



Constriction length

Constriction gap

Figure 1.2: Illustration of the constriction having different lengths and minimum

gap.

capillary number Ca and viscosity ratio λ. Figure 1.2 illustrates geometries of

different the constriction length and minimum gap sizes we investigate.

The equation for our full-cosine constriction is

z = R − 0.5d[1.0 + cos(πx/l)] (1.1)

where R is the half-length of the side of the channel and d is the constriction depth.

x varies −l ≤ x ≤ l so that equation (1.1) represents full cosine bump.
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Chapter 2

Mathematical Formulation

2.1 Derivation of Boundary Integral Equations(BIE)

When the Reynolds number is sufficiently small, the inertial terms in the Navier-

Stokes equations are neglected and the flow is governed by the Stokes equations

∇ · σ ≡ −∇p + µ∇2u = 0 (2.1)

and the continuity equation

∇ · u = 0 (2.2)

where σ represents the stress tensor, p is the dynamic pressure, µ is the viscosity of

the fluid and u is the velocity vector.

By introducing the fundamental solutions Sij and Tijk for the three-dimensional

Stokes equations (2.1) and the continuity equation (2.2), and then integrating over

a volume of fluid bounded by a surface SB shown in Figure 2.1(a), the velocity at

a point x0 on the surface is expressed by the following Boundary Integral equation

(BIE),

ui(x0) = −
1

4πµ

∫
SB

[Sij(x̂)fj(x) − µTijk(x̂)uj(x)nk(x)] dS (2.3)

This equation relates the velocity u at each point x0 on the boundary SB by the

10
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Figure 2.1: Illustrations for the geometry of the BIEs (2.3) and (2.15).

surface integral of the stress and velocity over all the points x on the same boundary.

The normal vector n points into the domain surrounded by the boundary SB while

the force vector f is defined by fj(x) = σjk(x)nk(x). The fundamental solution for

the velocity Sij and the corresponding stress Tijk are given by

Sij =
δij

r
+

x̂ix̂j

r3
(2.4)

Tijk = −6
x̂ix̂j x̂k

r5
(2.5)

where x̂ = x − x0. A detailed derivation may be found in Pozrikidis [33].

Equation (2.3) can be named as the “inner” equation because it solves for

the fluid flow inside a specific boundary SB shown in Figure 2.1(a). An “outer”

equation can be derived to express the flow field outside a boundary SB shown in

Figure 2.1(b),

u(x0) − 2u∞(x0) = −
1

4πµ

∫
SB

(S · f − µT · u · n) dS (2.6)

11



where u∞ is the undisturbed fluid velocity and the normal vector n points into the

flow domain (i.e. out of the boundary SB).

2.2 BIE for a Droplet in a Channel

Boundary integral equation for the case of a droplet moving in a confined geometry

(channel) can also be derived. As illustrated in Figure 2.2, the droplet fluid (fluid 1)

has density ρ1 and viscosity µ1 = λµ and is confined in a channel. The outer fluid

(fluid 2) has density ρ2 and viscosity µ2 = µ. The flow velocity for fluid 1 and fluid

2 is denoted u1 and u2, respectively. For the droplet interface Sd, the boundary

conditions are

u = u1 = u2 (2.7)

∆f ≡ f
2
− f

1
= γ(∇ · n)n + (ρ2 − ρ1)(g · x)n (2.8)

where the subscripts “1” and “2” represent the internal and external flow, respec-

tively. The interfacial tension γ is assumed to be constant and the magnitude of

the gravity acceleration is g. For the boundary condition of the channel surface

denoted S2, u∞ and stress f∞ are the undisturbed flow velocity and stress at the

each end of the channel Sf
2 which is assumed far enough from the droplet interface.

Sw
2

is the solid boundary(i.e. the channel and the constriction). Then the boundary

conditions are

u2 = 0 on boundary Sw
2

(2.9)

u2 = u∞ or f
2

= f∞ on boundary Sf
2 (2.10)

The normal vector n at the interface Sd and the surface S2 points into fluid 2. The

12
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Figure 2.2: Illustration of a droplet in the fluid inside a channel with constriction.

droplet interior fluid is driven to flow by the exterior flow. Thus by applying the

governing equation (2.3) on the fluid flow both inside and outside the drop, and

then subtracting between the two equations, a general Boundary Integral equation

for both flow regions can be derived as

Ωu(x0) = −

∫
S2

[S · f
2
− µT · u2 · n] dS

−

∫
Sd

[S · ∆f − (1 − λ)µT · u · n] dS (2.11)

For points on Sd, Ω = 4π(1 + λ)µ; for points on S2, Ω = 4πµ.

2.3 Dimensionless Parameters of the Current Problem

If the shear rate of the flow is below a certain critical value, the surface tension

force and the external viscous force on the drop interface can balance each other,

and a steady state can be reached. Otherwise the drop bursts and produces two or

13



more daughter droplets. The evolution of the droplet shape and the steady-state

deformation are among the principal goals of both experimental and theoretical

studies in this area.

The lengths are non-dimensionalized with the half length R of the side of the

square channel, velocity with the average bulk velocity U , and time with R/U . The

problem of interfacial dynamics in Stokes flow is governed by the viscosity ratio λ,

the capillary number Ca and the droplet size a given by

λ =
µ1

µ
(2.12)

Ca =
µU

γ
(2.13)

a = ã/R (2.14)

where ã is the radius of a sphere with the same volume as the droplet. The capillary

number Ca measures two competing forces: the viscous forces and the surface ten-

sion forces. The viscous stress imposed on the interface by the exterior flow induces

the flow inside the drop and causes the interfacial deformation, while the surface

tension forces resist the deformation. When steady state is reached, the surface

tension forces balance the viscous forces and the droplet deformation ceases.

The steady unidirectional flow in the square channel far from the droplet is

given as [52]

ux
∞

C
= (1 − z2) +

∞∑
n=1

Bn cosh(αny) cos(αnz) (2.15)

where

C =
−(∆p/∆x)

2µ
(2.16)
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Bncosh(αn) = (−1)n 4

αn
3

(2.17)

αn =
(2n − 1)π

2
(2.18)

The variables y and z are non-dimensionalized with the channel size R. The flow

rate Q and the average velocity U in the channel are given by

Q

C
=

8

3
+

∞∑
n=1

(−1)n 16

αn
5

sin(αn) tanh(αn) (2.19)

U

C
=

Q

AC
=

2

3
+

∞∑
n=1

(−1)n 4

αn
5

sin(αn) tanh(αn) (2.20)

where A denotes the non-dimensionalized cross-sectional area of the square channel.

In our computations, the infinite series in equation (2.15) is cut off after n=40 with

a truncation error of O(10−5).

2.4 Rest Physical Variables of Interest

For our results, we obtain five main quantities; droplet velocity, the deformation of

the droplet in x, y, z directions, the surface area of the droplet and the minimum

distance between the droplet and the solid surfaces.

We calculate the length Lx, the width Ly and the height Lz of the droplet as

the maximum distance in the x, y, z coordinates of the droplet surface as illustrated

in Fig(b). We employ a Newton’s method for the optimization.

The minimum distance between the droplet surface and the solid surface hmin

is calculated using a Newton’s method for the optimization.
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Chapter 3

Numerical Method for Interfacial

Dynamics

3.1 Spectral Element Formulation

In this thesis, we utilize the fully-implicit three-dimensional Spectral Boundary El-

ement method developed by Dimitrakopoulos [11]. According to this method, the

problem boundary is divided into a moderate number NE of surface elements, each

of which is mapped onto a two-dimensional domain in terms of the parametric vari-

ables ξ and η. The variables are zeros of orthogonal polynomials, such as Legendre,

Chebyshev or Jacobi polynomials, on [−1, 1]. If NB basis points are used, then the

geometry x can be represented by

x(ξ, η) =
NB∑
i=1

NB∑
j=1

x(ξi, ηj)hj(η)hi(ξ) (3.1)

where hi(ξ) and hj(η) are the (NB − 1)-order Lagrangian interpolant polynomial.

The physical variables u and f are represented similarly.

The discretized expressions for the geometry and the physical variables are

substituted into the boundary integral equations which it is required that the integral

equations be satisfied at the discrete set of basis points x0(ξi, ηj), where i, j =
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1, 2, . . . , NB. This yields a linear system of 3NEN2

B algebraic equations

u = Af + Bu (3.2)

The system matrices A and B are defined as integrals of the kernels S and T

(equations 2.4, 2.5) and the basis functions over the set of the surface elements.

The numerical integration is performed by Gauss-Legendre quadrature with the aid

of variable transformations. Owing to the singularity in the kernels, special care

must be taken to ensure the accurate numerical evaluation of these integrations

[6, 11].

The BIEs, combined with the boundary data at the NEN2

B basis points, yield,

for a known interface, a consistent set of 3NEN2

B equations in 3NEN2

B unknowns

which is solved using Gaussian elimination.

3.2 Explicit Time-integration Algorithm

We consider a three-dimensional droplet suspended in an infinite fluid undergoing a

low-Reynolds-number flow. The governing equations are the Stokes equations along

with the continuity equation. The corresponding Boundary Integral equation (2.11)

and the boundary conditions (2.7) - (2.8) described in Section 2.2. The drop interface

is discretized into NE elements with NB ×NB spectral basis points on each element.

These points are of Lobatto type, i.e. end points along with interior points. For

a given droplet geometry, the velocity on the droplet interface is obtained by the

Spectral Boundary Element method described in Section 3.1.

In order to determine the shape x(t) of the drop as a function of time, a time-
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integration algorithm is employed to solve the kinematic condition at the interface,

which has the general form

dx

dt
= (u · n)n + Utt (3.3)

The first term on the right hand side is the contribution of the normal interfacial

velocity which determines the interfacial shape of the droplet. The second term

denoting the contribution of a velocity tangential to the interface, only affects the

distribution of the spectral points along the interface.

Thus, we determine the interfacial velocity u of the known shape x(t) from

BIE (2.11), and then the discretized points of the droplet interface are advanced by a

time interval ∆t to obtain the shape x(t+∆t). An explicit high-order Runge-Kutta

method is employed for the time-integration. We note that explicit time-integration

schemes have commonly been employed with various discretization methods, e.g.

Leyrat-Maurin, and Barthes-Biesel [26], Griggs, Zinchenko and Davis [18], Janssen

and Anderson [23] and Jensen, Stone and Henrik Bruus [24].

However, for any explicit scheme, the employed time step ∆t needs to satisfy

the Courant condition to have numerical stability. The dimensionless form of the

Courant condition may be written as

∆t < 0(Ca∆xmin) (3.4)

where ∆xmin represents the minimum length scale (e.g. grid size). For the problem

of a droplet squeezing through a constriction, the thin film between the droplet and

the solid limits the time step to be very small.
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3.3 Implicit Time-integration Algorithm

In order to avoid the penalty of small time steps required by the Courant condition,

we employ an efficient fully-implicit spectral boundary element algorithm for interfa-

cial dynamics in Stokes flow developed by Dimitrakopoulos[11]. The method is based

on a mathematically rigorous combination of implicit schemes with a Jacobian-free

three-dimensional Newton method. Thus the algorithm has the essential stability

property of the implicit formula and allows very large time steps regardless of the

grid density.

For the current problem, we utilized the third-order diagonally-implicit Runge-

Kutta scheme to achieve sufficient accuracy shown in Table 3.1. The accuracy of

our results has been verified by comparing different time steps (∆t = 0.01, 0.025

and 0.05) and basis points NB = 10, 12.

Table 3.1: Diagonally-implicit Runge-Kutta (DIRK) scheme of third order [11]

xS1 = xn + ∆tb0a(xs1)

xs2 = xn + ∆t[0.5(1 − b0)a(xs1) + b0a(xs2)]

xn+1 = xn + ∆t[b1a(xs1) + b2a(xn+1)]
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3.4 Spectral Boundary Element Dicretization of a Droplet

in a Channel

A demonstration of the discretization of the channel geometry is shown in Figure 3.1.

Note that 4 elements are defined for each row on the solid geometry while 2 rows

of element are used for the constriction. The fluid boundary in the inlet and outlet

of the channel is composed of one element on each side. In order to account for the

undisturbed velocity at the end, the half-length of the channel is defined at least 9

times longer than the half-size of the channel’s side R. Our convergence runs showed

negligible error for this length.
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Figure 3.1: Spectral Boundary Element discretization of a channel and a droplet.
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Chapter 4

Results and Discussion

In this chapter, we first validate our method by comparing our results with findings

from previous studies. Then we examine the motion of a droplet squeezing through

a rectangularly-constricted square channel from various aspects, starting with the

comparison between the square and the rectangular constriction. Afterwards, we

determine the effects of the capillary number, viscosity ratio, constriction length

and constriction gap size on the droplet velocity, deformation, and droplet-solid

minimum gap.

4.1 Validation

We validate our numerical algorithm for droplet dynamics in capillary tubes by

comparing our data with those of previous studies. Figure 4.1 shows the comparison

of our results for the droplet motion in a cylindrical tube with the previous studies

of the same geometry and conditions. For capillary number Ca ranging from 0.075

to 0.15 and viscosity ratio λ from 0.001 to 10, our data (solid dots) are found to be

in excellent agreement with previous results [45, 28].
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Figure 4.1: Validation of our algorithm by comparison with previous studies:

(a),(b),(c) from Tsai and Miksis [45] and (d) from Martinez and Udell [28]. The

solid dots represent our data.
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4.2 Rectangular and Square Constriction

We first decide our standard case of a droplet squeezing through a rectangular con-

striction in a square channel. For our standard case, the cross-sectional dimension

of the channel is defined as y × z = 2 × 2 with the minimum gap of the full-cosine

constriction equals to 1.0 and defined only on z-axis. Thus the cross-sectional di-

mension of the rectangular constriction is y× z = 2×1 at its minimum. The length

of the constriction is 1.0 and the constriction is located at the center of the channel

x = 0. A droplet of radius a = 0.6 is initially placed at Xc = −3.0 where Xc is

the droplet’s center of mass. The rest problem parameters are: capillary number

Ca = 0.1 and viscosity ratio λ = 5. A three-dimensional shape of the geometry is

shown in Figure 4.2(a).

The comparing case of a droplet squeezing through a square constriction has

the same parameters as the rectangular constriction but now the cross-sectional

dimension of the constriction is y × z = 1 × 1. Thus it has symmetry on y, z and

yz-axis throughout the computation. A three-dimensional shape of this geometries

is shown in Figure 4.2(b).

In Figure 4.3 we plot the droplet velocity in the flow direction Ux versus the its

center of mass Xc and Xc versus time t. We can see that the droplet travels faster

in the square constriction with its maximum velocity reaching more than twice the

velocity of the droplet in the rectangular constriction. Note that the flow rate of

the outer fluid in the middle of the square constriction is exactly twice the flow rate

of in the middle of the rectangular constriction. The higher increase of the droplet
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velocity is induced by the deformation of its shape.

The evolution of the droplet shapes in the rectangular and the square con-

strictions are shown in Figure 4.4 and Figure 4.5. In Figure 4.4 where the two-

dimensional droplet shapes in y-axis view are drawn at time t = 0, 1, 1.25, 1.5, 1.75,

2, 3, we see that the droplet velocity in the square constriction increases earlier and

higher by the larger deformation of the droplet, starting at the nose of the droplet

followed by the rear. In Figure 4.5, we can see the evolution of the three-dimensional

droplet shapes in y and z-axis view. The droplet at its centroid positions Xc = -0.5,

0, 0.5 are drawn to see the major differences of the deformation. Clearly the x-length

of the droplet in the square constriction increases much longer while the droplet in

rectangular constriction is able to extend in y-direction. However the magnitude of

extension in the y-direction is minor.
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(a) Rectangular constriction

(b) Square constriction

Figure 4.2: Perspective of square channels with (a) a rectangular and (b) a square

full-cosine constriction of 1.0 length and 1.0 minimum gap.
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Figure 4.3: (a) Droplet centroid Xc versus time t and (b) droplet velocity Ux versus

its centroid Xc for a droplet with a = 0.6, Ca = 0.1 and λ = 5 squeezing through a

rectangular and a square full-cosine constriction with 1.0 length and 1.0 minimum

gap.
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Figure 4.4: Evolution of the droplet profile with Ca = 0.1, λ = 5, a = 0.6, at

t = 0, 1, 1.25, 1.5, 1.75, 2.0, 3 squeezing through a rectangular and a square full-cosine

constriction with 1.0 length and 1.0 minimum gap (y-axis view).

It is more feasible to study the deformation by looking at Figure 4.6 and

Figure 4.7 where the droplet’s length in the x, y, z coordinates are plotted. Unlike

the square constriction, the asymmetric rectangular constriction geometry enables

the droplet to stay extended in y-axis as shown in Figure 4.6(b). Thus when the

droplet is entering and passing through the constriction it doesn’t have to deform

as much in x-direction. At the exit of the constriction the droplet experiences

compression in the flow direction and expansion in the z-direction. When the droplet

is escaping the constriction, the velocity of the droplet’s nose decreases rapidly while

the rear part of the droplet is still inside the constriction and moving fast. The

velocity difference in the flow direction causes the droplet to expand in z-axis in

oder to maintain the incompressible fluid condition. However the droplet doesn’t

expand in y-axis but rather is compressed. This is because the expansion in z-axis

is more significant due to the outer fluid flow direction. The outer fluid profile

28



near the constriction wall points along the shape of the constriction. In z-direction,

the droplet surface near the solid surface experiences shear force parallel to the

constriction wall thus the droplet prefers to expand in z-axis much more. After

droplet has completely passed the constriction, the droplet deforms towards its

steady-state shape.

Figure 4.8(a) shows the surface area Sd of the droplet versus its centroid Xc.

In current study, the droplet’s surface area Sd is used as to measure the overall mag-

nitude of deformation. The droplet squeezing through the rectangular constriction

shows smaller overall deformation owing to the wider constriction gap and slower

droplet velocity.

Figure 4.8(b) shows the minimum drop-solid distance hmin versus Xc. Surpris-

ingly, the minimum gap is smaller for the rectangular constriction. Owing to the

slower droplet velocity and its smaller deformation, the droplet squeezing through

rectangular constriction shows thinner film between the droplet and the bump. The

discontinuities before and after the droplet-solid minimum gap indicate that the

minimum gap position changed from the straight channel to constriction, or vice

versa.
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Figure 4.5: Three-dimensional y and z-axis shapes of the droplets with a = 0.6,

Ca = 0.1, λ = 5, at Xc = −0.5, 0, 0.5, squeezing through a rectangular and a square

full-cosine constriction with 1.0 length and 1.0 minimum gap.
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Figure 4.6: (a) Droplet x-length Lx and (b) y-length Ly versus its centroid Xc for

a droplet with a = 0.6, Ca = 0.1 and λ = 5 squeezing through a rectangular and a

square full-cosine constriction with 1.0 length and 1.0 minimum gap.
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Figure 4.7: Droplet z-length Lz versus its centroid Xc for a droplet with a = 0.6,

Ca = 0.1 and λ = 5 squeezing through a rectangular and a square full-cosine

constriction with 1.0 length and 1.0 minimum gap.
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4.3 Rectangular Constriction

In this section, we consider the effects of several parameters on a droplet squeezing

through a rectangular constriction in a square channel. The parameters include

the capillary number Ca, the viscosity ratio λ, the constriction length and the

constriction gap size. Again the effects of each parameters are investigated using

the shapes of the droplet and the plots of droplet’s centroid Xc, droplet’s velocity

in the flow direction Ux, droplet’s surface area Sd and minimum gap between the

droplet and the solid hmin.

4.3.1 Effects of Capillary Number

Now we vary the capillary number while keeping all other parameters fixed. The

three capillary numbers we investigated are Ca = 0.05, 0.1, 0.2. Previous studies

have reported that large capillary number droplets in a straight tube do not have

steady state solution. A droplet of a = 0.9 showed jetting behavior at Ca = 1.0

[45] and for a = 0.726, at Ca = 0.75 [28]. Thus we stay away from these values

to eliminate other effects. The viscosity ratio is fixed at λ = 5, the droplet size at

a = 0.6, the constriction length at 1.0 and the minimum gap is 1.0.

As shown in Figure 4.10, the velocity increases as the capillary number is

increased but the effect is not significant in the current range of the capillary number.

Due to the droplet surface closer to the solid wall, lower capillary number droplets

has more drag force causing the droplet to be slower. On the other hand, the smaller

gap also indicates the outer fluid will have higher velocity. Nevertheless the velocity
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Figure 4.8: (a) Droplet surface area Sd and (b) droplet-solid minimum distance hmin

versus its centroid Xc for a droplet with a = 0.6, Ca = 0.1 and λ = 5 squeezing

through a rectangular and a square full-cosine constriction with 1.0 length and 1.0

minimum gap.
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decrease due to drag force exerts stronger influence as shown in the figure.

Figure 4.11 and Figure 4.12(a) show the projection lengths of the droplet in

x, y, z-coordinates. At the upstream of the constriction, the droplet’s x-length Lx

increases as the capillary number is increased while its z-length Lz decreases. The

lower capillary number droplets having higher surface tension, require more energy

to deform from its spherical shape and thus deform less. This can be readily seen in

Figure 4.13(a) where the droplet with the lowest capillary number has the minimum

surface area.

At the downstream of the constriction, the lower capillary number droplets

experience compression on x, y-axes and the expansion on z-axis with the same

reason as described above. In Figure 4.13(a), the second maximum of the droplet’s

surface area is smaller for the lower capillary number droplets showing that the

dominant factor is the surface tension. Also the droplets existing the constriction

show different rates of deformation. The lower capillary number droplets deform

more quickly.

We observed a dimple at the rear of the droplet, namely a “heart-shape” of

the droplet at the downstream of the constriction for capillary number 0.1 and

0.2. Figure 4.15 shows the three-dimensional shape of the droplet at the droplet’s

centroid Xc = 1.3.

In Figure 4.13(b), we plot the minimum distance between the droplet and

the solid. We can see as the capillary number decreases, the gap between the two

surfaces becomes very thin down to hmin = 0.031 which is less than 6% of it’s

spherical radius. We again emphasize that the computation of a close surface to
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surface interaction is numerically difficult to solve. In Figure 4.14, we can see

that the size of the droplet-solid minimum distance is close to the grid sizes of the

geometries. We also notice the minimum gap is obtained when the droplet’s centroid

is slightly down the downstream of the constriction at Xc = 0.47.

Figure 4.9 shows the three-dimensional shapes of the droplets of Ca = 0.05, 0.1, 0.2

at Xc = 0 view in y and z-axes.
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Figure 4.9: Three-dimensional y and z-axis shapes of the droplets with a = 0.6,

Ca = 0.05, 0.1, 0.2, λ = 5, at Xc = 0, squeezing through a rectangular full-cosine

constriction with 1.0 length and 1.0 minimum gap.
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Figure 4.10: (a) Droplet centroid Xc versus time t and (b) droplet velocity Ux versus

its centroid Xc for a droplet with a = 0.6, Ca = 0.05, 0.1 and 0.2 and λ = 5 squeezing

through a rectangular full-cosine constriction with 1.0 length and 1.0 minimum gap.

38



0.55

0.6

0.65

0.7

0.75

0.8

-3 -2 -1 0 1 2 3 4 5

L
x

Xc

Ca = 0.05
0.1
0.2

0.57

0.58

0.59

0.6

0.61

0.62

-3 -2 -1 0 1 2 3 4 5

L
y

Xc

Ca = 0.05
0.1
0.2

Figure 4.11: (a) Droplet x-length Lx and (b) y-length Ly versus its centroid Xc

for a droplet with a = 0.6, Ca = 0.05, 0.1 and 0.2 and λ = 5 squeezing through a

rectangular full-cosine constriction with 1.0 length and 1.0 minimum gap.
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Figure 4.12: Droplet z-length Lz versus its centroid Xc for a droplet with a =

0.6, Ca = 0.05, 0.1 and 0.2 and λ = 5 squeezing through a rectangular full-cosine

constriction with 1.0 length and 1.0 minimum gap.
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Figure 4.13: (a) Droplet surface area Sd and (b) droplet-solid minimum distance

hmin versus its centroid Xc for a droplet with a = 0.6, Ca = 0.05, 0.1 and 0.2 and

λ = 5 squeezing through a rectangular full-cosine constriction with 1.0 length and

1.0 minimum gap.
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Figure 4.14: Minimum distance between the droplet and the solid hmin = 0.031 at

Xc = 0.47 for a droplet with a = 0.6, Ca = 0.05 and λ = 5 squeezing through a

rectangular full-cosine constriction with 1.0 length and 1.0 minimum gap.
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Figure 4.15: Three-dimensional shape of a droplet with a = 0.6, Ca = 0.2, λ = 5

forming a dimple at the rear-part of the droplet at its centroid Xc = 1.3 (heart-

shape).

4.3.2 Effects of Viscosity Ratio

Now we compare the effects of viscosity ratios on the droplet squeezing through

the rectangular constriction in a square channel. We use five viscosity ratios λ =

0, 0.1, 1, 5 and 10 with fixed capillary number Ca = 0.1, minimum gap constriction

of 1.0 and droplet size a = 0.6. Most of the graphs, we plotted three viscosity ratios

(λ = 0, 1, 10) for visuality although the discussion is made for all five values.

On Figure 4.17, we plot the velocity of the droplet Ux respect to the position

of the droplet Xc and the position of the droplet centroid Xc versus time t. Higher

viscosity ratio droplet starts with lower velocity and moves slower through the con-

striction. Due to higher hydrodynamic resistance of the inner fluid, the internal flow
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is slower At the narrowest gap of the constriction, the velocity reaches the maximum

for all viscosity ratio while the magnitude of the effect increases due to higher outer

fluid velocity at the minimum gap.

However the deformation of droplet while squeezing through constriction shows

complex behavior differing in x, y, z- projection length. At the upstream of constric-

tion, the droplet length in the x-direction Lx is highest for the viscosity ratio λ = 1.

This maximum deformation is different from the steady-state deformation in that

it is in its transient stage. Several other studies have found the maximum of the

deformation of a droplet at its transient stage to be the largest at viscosity ratio

around λ = 2. Griggs et al. reported a droplet moving across a channel towards the

centerline has a maximum deformation at λ = 2 [18] and Yechun found for a droplet

larger than a channel has a maximum deformation at at λ = 2.04 before it reaches

the steady state. However, the reason is unclear and hasn’t been describe to date.

For the droplets with λ < 1, which can be thought of as bubbles, the decrease of the

deformation can be explained with the rate of deformation. The constriction length

is not long enough for the droplet to deform fully and since the lower λ droplets

travels faster, they have less time to deform. Also the initial slope of the Lx defor-

mation at the upstream of the constriction for λ < 1 is similar but it doesn’t reach

higher deformation than λ = 1 which implies that for droplets with λ < 1, their

deformation are limited by the residual time inside the constriction. This discussion

can be argued analogous to the growth of the coating film between the droplet-solid

surfaces [17]. The discussion by Tsai and Miksis [45] where they reported that for

Ca = 0.2 and λ = 0.001, the droplet moves through the constriction too fast for the

44



thin-film instability to grow and thus the deformation of a droplet surface depends

on the velocity of the droplet. The maximum deformation in x, y, z-coordinates for

λ < 1 are reached before the constriction.

For droplets with viscosity ratio λ > 1, e.g. a DEGG10 system (a UCON-

165 droplet in diethylene-glycol) experimented in a constricted capillary tube by

Hemmat and Borhan [20] has viscosity ratio of 2.25, the deformation in Lx decreases

as the viscosity ratio increases. Due to the higher viscosity of the inner fluid and

slower fluid flow inside, the droplet needs more time to deform. Thus even though

the droplet is move slower in passing the constriction, it is deformed less. The

explanation as according to the droplet velocity and it residual time has its proof

from the fact that the deformation at the steady state is larger for higher viscosity

ratio [18]. At the downstream, we again confirm the discussion by observing that

the effect of the droplet velocity for λ < 1 on the deformation diminishes while for

λ > 1, the effect is valid.

All y-projection lengths show very small deformation (Ly deformation differ-

ence is less than 3% that of Lx). Nevertheless, the y-projection length of the droplet

Ly shows even more diverse behavior. For λ > 1, the droplet’s y-length reaches

a maximum expansion at the narrowest gap of the constriction. As the viscosity

ratio is increased the y-length increases to compensate for the smaller extension in

droplet’s x-length. For λ ≤< 1, the droplet reaches a minimum just before or at the

narrowest constriction gap then extend to a maximum length. Looking at both Lx

and Ly, we can see that for λ ≤ 1, the droplet’s maximum or minimum deforma-

tion is produced off the center of the constriction whereas for λ > 1, it is alway at
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Xc = 0. Moreover the in contrast to λ > 1, λ ≤ 1 droplets has maximum Lx at the

minimum Ly. At the downstream of the constriction, the droplet y-length reaches

a minimum, lower as the viscosity ratio decreases. The viscosity ratio λ < 1 shows

the opposite owing to the droplet velocity as described previously.

The minimum distance between the droplet and the solid hmin is plotted in

Figure 4.20(b). The droplet with highest viscosity ratio has the lowest hmin since

more viscous droplet deformed less. Figure 4.21 shows the smallest minimum

droplet-solid distance we obtained in our computations at capillary number Ca =

0.05 and viscosity ratio λ = 10. The gap decreased as small as 0.027.
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Figure 4.16: Three-dimensional y and z-axis shapes of the droplets with a = 0.6,

Ca = 0.1, λ = 0, 1, 10, at Xc = 0, squeezing through a rectangular full-cosine

constriction with 1.0 length and 1.0 minimum gap.
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Figure 4.17: (a) Droplet centroid Xc versus time t and (b) droplet velocity Ux

versus its centroid Xc for a droplet with a = 0.6, Ca = 0.1 and λ = 0, 0.1, 1, 5 and

10 squeezing through a rectangular full-cosine constriction with 1.0 length and 1.0

minimum gap.
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Figure 4.18: (a) Droplet x-length Lx and (b) y-length Ly versus its centroid Xc for

a droplet with a = 0.6, Ca = 0.1 and λ = 0, 0.1, 1, 5 and 10 squeezing through a

rectangular full-cosine constriction with 1.0 length and 1.0 minimum gap.
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Figure 4.19: Droplet z-length Lz versus its centroid Xc for a droplet with a = 0.6,
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Figure 4.20: (a) Droplet surface area Sd and (b) droplet-solid minimum distance

hmin versus its centroid Xc for a droplet with a = 0.6, Ca = 0.1 and λ = 0, 0.1, 1, 5

and 10 squeezing through a rectangular full-cosine constriction with 1.0 length and

1.0 minimum gap.
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4.3.3 Effects of Constriction Length

Next we consider the effects of the constriction length. All other parameters are

fixed, in particular capillary number Ca = 0.1, viscosity ratio λ = 5, minimum gap

1.0 and droplet size a = 0.6. The geometries of the different constriction lengths are

presented in Figure 4.22.

Investigating the graphs, we can see that the velocity and the deformation

is affected by the constriction length due to the actual geometrically length of the

constriction. Figure 4.24 shows the velocity of the droplet versus its centroid Xc and

Xc versus time t. For longer constriction. the droplet starts to speed up earlier and

reaches higher velocity at the center of the bump although the outer fluid velocity

is the constant at the minimum constriction gap. Figure 4.25 and Figure 4.26

where the projection lengths in x, y, z-coordinates are shown deformation increases

as the bump length is increased due to the effect of the geometrical shape and the

outer fluid velocity thus both the velocity and the shape of the droplet assist each

other to make the droplet move faster. On the exit of the constriction, the droplet

deformations in all three directions are less for shorter bump length.

Overall, for longer bump length the higher deformation is obtained as shown by

the surface area Sd in Figure 4.27(a). Notice the rate of the droplet lengths Lx, Ly, Lz

deformations and the surface area Sd change are nearly equal for all bump lengths

even though the constriction gradients are different. The rate of deformation shows

a limit for a fixed capillary number and viscosity ratio.

The minimum gap between the droplet and the solid hmin decreases as the
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constriction length is decreased as shown in Figure 4.27(b) owing to the smaller

deformation.
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Figure 4.21: Minimum distance between the droplet and the solid hmin = 0.027 at

Xc = 0.46 for a droplet with a = 0.6, Ca = 0.05 and λ = 10 squeezing through a

rectangular full-cosine constriction with 1.0 length and 1.0 minimum gap.

54



Figure 4.22: Geometries of square channels with a rectangular full-cosine constric-

tion having 1.0, 2.0, 3.0 length and 1.0 minimum gap.
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Figure 4.23: Three-dimensional shapes of the droplets with a = 0.6, Ca = 0.1,

λ = 5, at Xc = 0, squeezing through a rectangular full-cosine constriction with

1.0, 2.0, 3.0 length and 1.0 minimum gap.
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Figure 4.24: (a) Droplet centroid Xc versus time t and (b) droplet velocity Ux versus

its centroid Xc for a droplet with a = 0.6, Ca = 0.1 and λ = 5 squeezing through a

rectangular full-cosine constriction with 1.0, 2.0, 3.0 length and 1.0 minimum gap.
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Figure 4.25: (a) Droplet x-length Lx and (b) y-length Ly versus its centroid Xc

for a droplet with a = 0.6, Ca = 0.1 and λ = 5 squeezing through a rectangular

full-cosine constriction with 1.0, 2.0, 3.0 length and 1.0 minimum gap.
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Figure 4.26: Droplet z-length Lz versus its centroid Xc for a droplet with a = 0.6,

Ca = 0.1 and λ = 5 squeezing through a rectangular full-cosine constriction with

1.0, 2.0, 3.0 length and 1.0 minimum gap.
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4.3.4 Effects of Constriction Gap

The effects of the constriction gap sizes of 1.4, 1.0 are investigated. Other parameters

are set fixed at droplet size a = 0.6, capillary number Ca = 0.1, viscosity ratio λ = 5

and the constriction length = 1.0. The droplet is smaller than the constriction gap

size 1.4 thus the deformation is only induced by the profile of the outer fluid flow.

The geometries of the different constriction gap sizes are depicted in Figure 4.28.

Figure 4.29 shows the shapes of the droplet in the constriction with the gap

sizes of 1.4 is much less deformed compared to the 1.0 gap size constriction. In

Figure 4.30 where the velocity of the droplet versus its centroid Xc and Xc versus

time t are shown, the droplet in the channel with the constriction gap sizes of 1.4 is

slower.

Figure 4.31, Figure 4.32 and Figure 4.33(a) all show that for the smaller con-

striction gap size the deformation is higher. A large difference in the minimum gap

between the droplet and the solid surface Sd is shown in Figure 4.33(b).
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Figure 4.27: (a) Droplet surface area Sd and (b) droplet-solid minimum distance

hmin versus its centroid Xc for a droplet with a = 0.6, Ca = 0.1 and λ = 5

squeezing through a rectangular full-cosine constriction with 1.0, 2.0, 3.0 length and

1.0 minimum gap.
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Figure 4.28: Geometries of square channels with a rectangular full-cosine constric-

tion having 1.0 length and 1.4, 1.0 minimum gap.
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Figure 4.29: Three-dimensional shapes of the droplets with a = 0.6, Ca = 0.1,

λ = 5, at Xc = 0, squeezing through a rectangular full-cosine constriction with 1.0

length and 1.4, 1.0 minimum gap.
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Figure 4.30: (a) Droplet centroid Xc versus time t and (b) droplet velocity Ux versus

its centroid Xc for a droplet with a = 0.6, Ca = 0.1 and λ = 5 squeezing through a

rectangular full-cosine constriction with 1.0 length and 1.4, 1.0 minimum gap.
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Figure 4.31: (a) Droplet x-length Lx and (b) y-length Ly versus its centroid Xc

for a droplet with a = 0.6, Ca = 0.1 and λ = 5 squeezing through a rectangular

full-cosine constriction with 1.0 length and 1.4, 1.0 minimum gap.
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Figure 4.32: Droplet z-length Lz versus its centroid Xc for a droplet with a = 0.6,

Ca = 0.1 and λ = 5 squeezing through a rectangular full-cosine constriction with

1.0 length and 1.4, 1.0 minimum gap.
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In the range of the parameters studied in this thesis, our results show no sign

of snap-off. The droplet doesn’t produce any threads inside the constriction which is

a sign for snapping-off. The rectangular constriction having no “neck” by which we

mean constriction in both y, z-axis, it is much harder for the droplet to break into

daughter droplets and the mechanism of the droplet snap-off should be different.
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Figure 4.33: (a) Droplet surface area Sd and (b) droplet-solid minimum distance hmin

versus its centroid Xc for a droplet with a = 0.6, Ca = 0.1 and λ = 5 squeezing

through a rectangular full-cosine constriction with 1.0 length and 1.4, 1.0 minimum

gap.
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4.4 Conclusion

We examined the squeezing motion of a single droplet in a square cross-sectional

microfluidic channel with a rectangular constriction filled with another immiscible

fluid. We started by investigating the differences between a square and a rectangular

constriction in a square microchannel. Then we considered the influences of the

capillary number, fluids’ viscosities and the geometric size on the droplet interfacial

shape, droplet velocity and the minimum gap between the droplet and the solid

wall.

The capillary number and the viscosity ratio we investigated have some similar

behavior on the droplet squeezing through constriction compared to that of the

previous studies on an axisymmetric tube. As we increased the capillary number we

found higher deformation and thicker fluid between the droplet and solid surface.

As we increased the viscosity ratio, the droplet acted as a more rigid droplet and

deformed slower. However, due to the non-symmetric geometry of our constriction

different dynamics and motion of the droplet was also identified. In particular,

owing to the unconstricted y-axis, the droplet formed a flat disk shape and the

overall deformation of the droplet was smaller. For lower capillary numbers and

larger viscosity ratios, the droplet’s y-length deformed more but only in a very

small magnitude and for all runs it stayed within 3% of its original length.

At least in the range of parameters studied here, no sign of snap-off of the

droplet was found since owing to the rectangular constriction, the droplet does not

show a “neck”. In the case of a smaller rectangular gap, the mechanism of the droplet
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snap-off, if any, is expected to be different compared to a axisymmetric constriction.

This would be of a great interest in our further study since it can provide a guidance

in the designing of microfluidic devices where rectangular channels are commonly

used for emulsion production or sorting.
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