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In this dissertation I study three problems in market design: the allocation of re-

sources to schools using deferred acceptance algorithms, the demand reduction of

employees on centralized labor markets, and the alleviation of tra�c congestion. I

show how institutional and behavioral considerations speci�c to each problem can

alleviate several practical limitations faced by current solutions. For the case of

tra�c congestion, I show experimentally that the proposed solution is e�ective.

In Chapter 1, I investigate how school districts could assign resources to schools

when it is desirable to provide stable assignments. An assignment is stable if there

is no student currently assigned to a school that would prefer to be assigned to a

di�erent school that would admit him if it had the resources. Current assignment

algorithms assume resources are �xed. I show how simple modi�cations to these

algorithms produce stable allocations of resources and students to schools.

In Chapter 2, I show how the negotiation of salaries within centralized labor mar-

kets using deferred acceptance algorithms eliminates the incentives of the hiring

�rms to strategically reduce their demand. It is well-known that it is impossible

to eliminate these incentives for the hiring �rms in markets without negotiation of

salaries.

Chapter 3 investigates how to achieve an e�cient distribution of tra�c congestion

on a road network. Tra�c congestion is the product of an externality: drivers do



not consider the cost they impose on other drivers by entering a road. In theory,

Pigouvian prices would solve the problem. In practice, however, these prices face

two important limitations: i) the information required to calculate these prices is

unavailable to policy makers and ii) these prices would e�ectively be new taxes that

would transfer resources from the public to the government. I show how to con-

struct congestion prices that retrieve the required information from the drivers and

do not transfer resources to the government. I circumvent the limitations of Pigou-

vian prices by assuming that individuals make some mistakes when selecting routes

and have a tendency towards truth-telling. Both assumptions are very robust obser-

vations in experimental economics.
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Chapter 1: Resources and Constraints in Matching Markets

Abstract. A matching model is developed in which several matching markets can

be analyzed simultaneously as a single matching market with constraints. This model

is capable of dealing with complex allocation problems such as deciding funding in

school choice problems or regional caps in residents matching. In this model a sta-

ble allocation must resist deviations within markets and across markets. We o�er

a strategy-proof-for-doctors mechanism capable of simultaneously selecting a mar-

ket and an allocation in that market. The allocation selected is shown to be stable

(within market and across markets) and e�cient.

In the United States, public school systems are increasingly adopting a new fund-

ing strategy where funding �follows the child� to the school he or she attends. A

weighted student formula (WSF) at the school district level is its most common

manifestation. Under WSF resources are allocated to students, rather than to schools

and programs, based on their speci�c needs. The WSF ensures more funding is al-

located to students with more expensive educational needs. Speci�c weights are

tailored to meet student needs in every district. In Boston, for example, weights are

distributed across eight categories: grade, poverty, disabilities, continued disabil-

ities, interrupted formal education, English learners, risk students and vocational

students. WSF's are a modern solution to a di�cult allocation problem in school-

ing: funding to schools and programs must depend not only the number, but the
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identity and needs of every student. The WSF strategy is a reminder that all school

districts, using WSF's or not, face two complex allocation decisions: resources to

schools and students to schools.

The second allocation problem has been studied successfully in recent years. Fol-

lowing the seminal paper of Abdulkadirouglu and Sönmez (2003), a lot of attention

has been devoted to several aspects of the admission process; including manipula-

bility,1 e�ciency2 and diversity.3 These e�orts have provided school districts across

the nation with tools to improve their admission systems. For example, the NY and

Boston public school systems now use a version of the deferred acceptance algo-

rithm proposed in the literature.4 However, in all previous models, it is assumed

that resources assigned to schools are �xed, leaving the �rst allocation problem

unattended. Current designs are e�cient only when there is absolutely no freedom

in allocating resources to schools.

In this paper, we make progress towards a uni�ed solution to both allocation prob-

lems when the stability and e�ciency of the �nal allocation are important. In or-

der to gain insight about the new economic phenomena present in this extended

model, consider the prototypical school choice problem. In a particular school dis-

trict, there are several school programs; some of them may share buildings, labo-

ratories, dining rooms and buses, but most importantly all of them share the same

�nancial budget. There is a common pool of applicants. However, not all applicants

have the same needs. For instance, some may require special facilities or instruc-

tors. Two competing procedures suggest themselves as possible solutions to these

1Abdulkadiro§lu et al. (2011); Abdulkadiroglu et al. (2009); Ergin and Sönmez (2006); Hat�eld
and Kojima (2009); Kojima and Pathak (2009); Pathak and Sönmez (2008); Sönmez (1997)

2Aygün and Sönmez (2013); Balinski and Sönmez (1999); Dur et al. (2013); Erdil and Ergin
(2008); Ergin (2002)

3Abdulkadiro§lu (2005); Kominers and Sönmez (2013)

4See for example, Abdulkadiro§lu et al. (2005); Abdulkadiroglu et al. (2006); Abdulkadirouglu
et al. (2005)

2



allocation problems.

First, one could allocate and �x resources to schools in advance, i.e. before match-

ing students to schools, in order to determine the number and kind of seats in ev-

ery school. Denote as market f a market with �xed resources. Assume some stable

allocation is chosen in market f . Hence in market f , the �nal allocation is individ-

ually rational and no blocking pair exists. However, when potentially transferable

resources are introduced to the model, the stability of the chosen allocation is arti-

�cial. It is possible that a student would like to move to a school di�erent from the

one he or she has been assigned and that school would like to admit the student,

but currently has no resources to do so. Furthermore, the student is using resources

in the assigned school and those resources are transferable, in some degree, to the

other school. If resources are moved from one school to the other then, call this

new market g. In market g, the chosen allocation would not be stable. One possi-

ble solution is to sequentially satisfy all would-be blocking pairs, however, it is not

a suitable solutions since it is well know that even in �xed-resources environments

it leads to problems.5 Furthermore, it is not clear whether there is a market and an

allocation in that market capable of eliminating all blocking pairs within markets

and across markets. We extend the concept of stability to allow for inter-market

blocking pairs and show that, under suitable conditions, a stable allocation exists.

In principle, it would be possible to calculate a stable allocation in every market

and then compare them all to choose one that is stable across markets. Such pro-

cedure is computationally very expensive. Moreover, it is highly unlikely for such a

procedure to have nice incentive properties. Hence we focus our attention on �nd-

ing a stable allocation and its market simultaneously.

Second, suppose the allocation of resources across schools is not �xed , and every

school decides independently, subject to a matching process, the number and iden-

5See Roth and Sotomayor (1992)
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tity of admitted students. In this admission process a new economic force would be

in play: the admission of one student by a school directly a�ects the admission ca-

pacity of all other schools by reducing the common pool of resources, i.e. there are

externalities in the resources dimension. Hence some coordination between schools

is required in the admission process. We develop a new algorithm capable of solv-

ing the externalities produced in the admission process using property rights as the

coordination device. Suppose all feasible allocations in this market are denoted f ,g,

etc. Every feasible allocation implicitly assigns resources to every school. Suppose

f assigns students d1, ..., d5 to school h, then it is possible to assign school h with

property rights over �ve seats and inform all other schools to admit students consis-

tent with h having �ve seats. We show that the assignment of property rights can

be done simultaneously with the matching process and show that, under suitable

conditions, it produces a stable and strategy-proof mechanism.

As hinted by the terminology used above, studying several markets and a single

market with constraints is essentially the same. Consider for example a collection

of markets f , g, h,... and then produce a single market with constraints where f ,

g, h,... represent the constraints that must be satis�ed. The process can be done in

the opposite direction. We exploit this insight and the ideas from both approaches

outlined above to produce a uni�ed framework and o�er a mechanism that is stable

(within and across markets), e�cient and strategy-proof for students.

Our design is based on the model of matching with contracts of Hat�eld and Mil-

grom (2005). There are three essential components: i) a set of feasible sets of con-

tracts (a set of markets), ii) a central authority called the matchmaker and iii) the

relevant concept of stability under constraints (stability within and across markets).

We follow the conventional terminology of referring to market participants as �doc-

tors� and �hospitals�.

When constraints are present, the (tentative) admission decisions of one hospital af-

4



fect other hospitals through the constraints binding them together. This externality-

like e�ect can only be e�ciently resolved by the matchmaker. Even in the simplest

economy with externalities there is a need for a government to restore e�ciency,

usually achieved using: taxes, quotas and property rights. The �rst two require the

government to know the e�cient level of activity in the market, while the third

does not. We introduce the matchmaker and provide it with a way to establish

�property rights� over feasible allocations in order to achieve e�ciency. The match-

maker will guarantee both the feasibility and the e�ciency of the �nal match using

property rights. Matchmakers exist in real matching markets with constraints (mar-

kets where there is �exibility in the allocation of resources). Consider the school

choice example above: an authority actually exists and it has been making deci-

sions that allocate property rights over resources. We include this important real

market participant in the model.

The third piece of our construction is the relevant concept of stability. In a model

with no constraints a stable allocation is an individually rational set of contracts

with no blocking sets, i.e. no hospital and group of doctors is willing to reject their

current contracts and implement contracts by themselves. We extend this de�ni-

tion and deem a set of contracts stable if it is i) conditionally stable (given property

rights) and ii) non-extendable in property rights (no resources are wasted). Our

de�nition is a natural extension of stability without constraints and reduces to it as

constraints are removed. Other models with constraints have developed their own

notions of stability with constraints but they usually do not reduce to the standard

de�nition as constraints are removed.6

Models of matching with constrains have been developed since Abdulkadirouglu

and Sönmez (2003) introduced the school choice problem with a�rmative action.

They modi�ed the standard Gale-Shapley algorithm to allow for maximum quan-

6See for example, Kamada and Kojima (2013) .
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tities of certain types of students. Kamada and Kojima (2013) recently developed

a model of matching to �nd e�cient matching of medical graduates to residency

programs in Japan. In their model, there are regional constraints limiting the max-

imum number of doctors hirable in certain regions. They introduced a matchmaker

to assign property rights, which in their model specify the maximum number of res-

idents a hospital can hire. Furthermore, they showed that the matchmaker prefer-

ences have to satisfy a substitutability condition for a stable allocation to exist and

to achieve strategy-proofness for doctors. Our model extends these models in two

important ways: i) we allow for complex constraints and ii) we extend the domain

of admissible preferences from responsive to substitutable preferences. In order to

consider complex constraints we introduce the concept of property rights (con-

tracts from which the doctor dimension has been eliminated) and extend the do-

main of hospitals choice functions to include not only a set of contracts, but also

a set of property rights. We introduce the contract replacement property into

the model to manage substitutions of property rights. When the contract replace-

ment property is satis�ed, hospitals are only willing to substitute contracts with the

same property rights, substitution of contracts with di�erent property rights is pos-

sible, but must be induced by constraints and not the unconstrained preferences.

Finally, we introduce the consistency of choice property to extend admissible

preference from responsive to substitutable preferences. When a hospital satis�es

the consistency of choice property, it never rejects a contract that was previously

held because its property rights have been increased.

In a recent paper, Kominers and Sönmez (2013) studied a model of matching for

diversity with the objective of achieving a certain distribution of students, e�ec-

tively introducing constraints and externalities in the way seats can choose students

(seats being the relevant decision units since each seat could have di�erent prefer-

ences). However, in their model, externalities not only a�ect resources endowed to

6



seats; they a�ect the identity of admissible students. They dealt with this problem

by directly constructing schools choice functions, a suitable solution in their envi-

ronment, but not in a market where hospitals represent agents with preferences.

However, the mechanics of both models are similar. In both models, there is no sta-

ble allocation that is preferred by all members of one side of the market. Hence, an

exogenous device is introduced to the model. In their case, a doctors precedence

and in our case a matchmaker. In our language, precedence grants property rights

to doctors while the matchmaker grants property rights to hospitals. Both devices

make decisions whenever agents' preferences do not agree.

1.1 An example

Suppose a school district wants to assign 4 students d1, d2, d3, d4 to 2 schools h1, h2.

The school district has some �exibility regarding the funding it provides to each

school. Schools produce seats with the funding their receive. For simplicity, suppose

the school district can choose between (q1, q2) = (2, 0) and (q1, q2) = (1, 2), where qi

is the maximum number of students hi can admit. This could happen if it is more

expensive to produce a seat in h1 than in h2 because of di�erentiated investments

already in place. For example, h1 could need to build a classroom for the second

seat whereas other seats only require to cover variable costs.

Suppose this district uses the Gale-Shapley algorithm to allocate its students and

preferences (schools' priorities) are as follows:

d1 : h2, h1

h1 : d3, d4 d2 : h2, h1

h2 : d1, d2, d3, d4 d3 : h1, h2

d4 : h2

The unique stable matching in each scenario, (q1, q2) = (2, 0) and (q1, q2) = (1, 2),

7



are as follow:

(2,0)

h1

h2

d1

d2

d3

d4

(1,2)

h1

h2

d1

d2

d3

d4

Figure 1.1: Unique stable matches

Notice that (q1, q2) = (1, 2) Pareto dominates (q1, q2) = (2, 0) both when both

schools and students' preference matter (as if this example represented a labor mar-

ket) and when only students's preferences matter (as in a school choice problem).

Suppose the school district cares about e�ciency and would like to select a Pareto

e�cient stable matching. In this example one-sided and two-sided Pareto e�ciency

coincide for simplicity. How can the school district decide which of the two assign-

ments to select?

Suppose the school district decides to fund schools according to their tentative ad-

mission. If schools are free to admit as many students they want, the �rst round of

the student-proposing Gale-Shapley algorithm will result in the following tentative

admissions.

h1

h2

d1

d2

d3

d4

Figure 1.2: First tentative assignment

Notice that the number of seats required in each school to support this assignment

is (q1, q2) = (1, 3). At this stage, when some preferences have been revealed, it

seems reasonable to select (q1, q2) = (1, 2) rather than (q1, q2) = (2, 0) since set-

ting (1, 2) would produce less rejections (hence keeping more students in their �rst

choice) than (0, 2). Suppose the school district does so and lets the Gale-Shapley

8



algorithm to continue. Then the �nal assignment would be the optimal one.

This paper extends the previous ideas by generalizing the keeping-more-students-

in-their-�rst-choice idea in the following way. Consider the set of tentative admis-

sions {(h1, d3), (h2, d1), (h2, d2), (h2, d4)} and drop the doctor dimension to pro-

duce the following multiset7 {(h1), (h2), (h2), (h2)}. Notice that the assignment

(q1, q2) = (1, 2) can be represented by {(h1), (h2), (h2)} and (q1, q2) = (2, 0) by

{(h1), (h1)}. Notice that {(h1), (h2), (h2)} is a sub-multiset of the multiset of tenta-

tive assignments while {(h1), (h1)} is not. Thus {(h1), (h2), (h2)} should be chosen.

If assignments (or tentative assignments) had speci�c transaction characteristics,

they could be represented by a set of contracts of the form

{(h1, d3, s13), (h2, d1, s21), (h2, d2, s22), (h2, d4, s24)}, where sij represent the transac-

tional characteristics of the particular match in question. In this case, removing the

doctor dimension would produce a multiset of the form {(h1, s13), (h2, s21), (h2, s22), (h2, s24)}.

In this paper, elements of the form (hi, s) are called property rights.

1.2 Model

Matching models have been successfully used in many applications where transfers

and prices cannot be used to signal market participants the relative value and cost

of di�erent allocations. Classical examples are matching doctors to hospitals for

residency programs, students to colleges and workers to �rms.

1.2.1 Feasible Sets of Contracts

Throughout the paper, capital letters will represent both sets and their cardinality.

If Y is a set and w is an element, we denote Y ∪ {w} by Y w. The set of doctors is

denoted by D and the set of hospitals by H with typical elements d and h, respec-

7A multiset is a list of elements in which repetition of elements is possible, but order does not
matter.
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tively. We assume there is a �nite set of contracts X . A contract x ∈ X speci�es

all payo� relevant conditions between a doctor and a hospital. In general, if S is

the set of conditions that can be described in the market, every element of S could

specify a salary, a workload, a series of tasks, etc, then X ⊂ D × H × S. Through-

out the paper we do not exploit the product structure of the set of contracts and

we only use the fact that every contract speci�es a doctor and a hospital. It will be

assumed that doctors can sign at most one contract and hospitals can sign multiple

contracts, but at most one with a particular doctor.

It is usually assumed that any contract in X can be signed independently (the only

restriction being that doctors can sign at most one contract), i.e. if contract x1

names doctor d1 and hospital h1 they can sign it if both agree on its terms, regard-

less of the contracts signed between say hospital h2 and doctor d2. However, when

there are constraints, the signature of a contract by a hospital h1 may prevent the

signature of other contracts naming di�erent hospitals or doctors. As mentioned

in the introduction, when constraints are present there is an externality-like ef-

fect when agents sign contracts. For example, consider a Mathematics department

and Computer Science department that share a building, classrooms and budget.

Without a pre-allocation of resources, the admission decisions made by the math

department directly a�ect the ability to admit students of the computer science de-

partment. In the resident matching environment, if two hospitals share a common

regional cap, a hospital can prevent other from signing contracts that might violate

the cap.

A set of contracts f ⊂ X is feasible if all contracts in f can be signed simultane-

ously. Let F be the set of all such sets. It is assumed that if a particular set of con-

tracts is feasible, then all of its subsets are also feasible, i.e. f ∈ F and g ⊂ f

implies g ∈ F . It will also be assumed that no contract is trivial X = ∪
F
f . Both

conditions are very weak, the �rst requires free disposal of contracts and the sec-
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ond only establishes that the model should consider contracts that could be feasible

in at least one instance. For notational convenience F will be described only by

its maximal members. In addition, we impose the following condition called doc-

tor independence. Let f ∈ F and let g be a set of contracts identical to f where

the doctors names have been changed and no doctor is named more than once. F is

doctor independent if and only if f ∈ F and g ⊂ X implies g ∈ F . Doctor indepen-

dence precludes restrictions from excluding certain doctors from matchings allowed

to some other doctors. The following examples show how feasibility constraints are

implemented in the model.

Example 1.1. Consider a market with two hospitals h1 and h2 and two doctors d1

and d2 with the constraint that only one contract can be signed. Then set of con-

tracts would be:

X = {(h1, d1), (h1, d2), (h2, d1), (h2, d2)}

and the set of feasible sets would be:

f1 = {(h1, d1)} f2 = {(h1, d2)}

f3 = {(h2, d1)} f4 = {(h2, d2)}

F = {f1, f2, f3, f4}

The following example shows that constraints could include contractual characteris-

tics.

Example 1.2. A school district has two schools h1 and h2 and three students d1,

d2 and d3. The district can �nance either two seats in h1 and one in h2 or three

seats in h2 and o�er students a stipend of s.

X = {(h1, d1), (h1, d2), (h1, d3), (h2, d1, s), (h2, d2, s), (h2, d3, s), (h2, d1), (h2, d2), (h2, d3)}

and the set of feasible sets would be:
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f1 = {(h2, d1, s), (h2, d2, s), (h2, d3, s)}

f2 = {(h1, d1), (h1, d2), (h2, d3)}

f3 = {(h1, d1), (h2, d2), (h1, d3)}

f4 = {(h2, d1), (h1, d2), (h1, d3)}

F = {f1, f2, f3, f4}

In order to de�ne property rights we need to introduce the concept of multisets.

Multisets are generalized sets and are intermediate objects between sets and or-

dered tuples. In a multiset the order does not matter, but there could be many

copies of the same element. For our purposes the following examples display the

meaning of simple operations using multisets.

{1, 1, 1, 3} ∩ {1, 1, 2} = {1, 1}

{1, 1} ∪ {1, 2} = {1, 1, 2}

{1, 1} ⊂ {1, 1, 1, 2}

|{1, 1}| = 2

{1, 1} ] {1, 2} = {1, 1, 1, 2}

Every f ∈ F induces property rights f ∗ for hospitals named in f . For every f ⊂ X

let f ∗ be the multiset formed by all elements of f after dropping the doctors di-

mension. For example, if f = {(h1, d1, s), (h1, d2), (h1, d4), (h2, d3, p)} then f ∗ =

{(h1, s), (h1), (h1), (h2, p)}. Let F∗ be the set of all sets of property rights. We in-

troduce some standard notation used throughout the paper.

For any agent a ∈ D ∪ H and set of contracts Y ⊂ X , set of feasible contracts

f ∈ F , or set of rights f ∗ ∈ F∗, let Ya, fa, f ∗a be the set (multiset) of elements

naming agent a, respectively.

For any set of contracts Y ⊂ X (including singletons), set of feasible contracts f ∈

F , or set of rights f ∗ ∈ F∗, let H(Y ), H(f), H(f ∗) be the set of hospitals named
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in Y ,f , f ∗ respectively. Let D(Y ), D(f) be the set of doctors named in Y and f ,

respectively. Analogously A(·) is the set of agents.

Each doctor d has preferences �d over Xd ∪ {∅} and is characterized by a single-

valued choice function Cd(X) = max�d{x ∈ Xd ∪ {∅}}. Let Rd(X) = X − Cd(X)

be the set of rejected contracts when the set X is o�ered. It will be assumed that

preferences are strict.8 Let CD(X) = ∪
d∈D

Cd(X) and RD(X) = X − CD(X).

Each hospital h has preferences �h over 2Xh . It will be assumed that hospital pref-

erences are strict.9 However, departing from the original model of matching with

contracts, hospital preferences will be characterized by a choice function with two

arguments, the �rst being a set of contracts and the second a multiset of property

rights. Intuitively, a hospital will be o�ered a series of choice problems and it will

choose its most preferred chosen sent among those problems. Formally, Ch(X, f ∗) =

max�h{Y ⊂ Xh | x, y ∈ Y ⇒ D(x) 6= D(y), Y ∗ ⊂ f ∗}. Let Rh(X, f
∗) =

X − Ch(X, f
∗) be the set of rejected contracts. Let Ch(X) = Ch(X,X

∗) and

Rh(X) = X − Ch(X). Let CH(X) = ∪
H
Ch(X) and RH(X) = X − CH(X).

In this model an allocation is a set of contracts, as it determines payo�s for all par-

ticipants in the market. We study stable allocations. Intuitively, a stable allocation

is such that no participant would like to unilaterally reject some of the contracts he

holds or would be able to �nd a partner to sign a mutually agreeable contract. In

matching problems without constraint stability is usually de�ned as follows:

De�nition 1.1. The set of contracts X is unconstrained stable if:

i) It is individually rational: X = ∪
h∈H

Ch(X) = ∪
d∈D

Cd(X)

ii) It is unblocked: there is no hospital h and set of contracts Y 6= Ch(X) such that:

8It could also be assumed that Cd satis�es Cd(X) ∈ Y and Y ⊂ X implies Cd(X) = Cd(Y ).
This property has been called consistency by Kamada and Kojima (2013) and irrelevance of re-
jected contracts by Aygün and Sönmez (2013) and assumes a regular behavior when breaking
indi�erences among contracts.

9It could also be assumed that CH is such that CH(X) ∈ Y and Y ⊂ X implies CH(X) =
CH(Y )

13



Y = Ch(X ∪ Y ) = ∪
d∈D(Y )

Cd(X ∪ Y )

When there are constraints there is an obvious problem with the previous de�ni-

tion, i.e. it is not guaranteed that a particular unconstrained stable set of contracts

is feasible:

Example 1.3. Consider the regional cap example with feasible set given by:

F = {{(h1, d1)}, {(h1, d2)}, {(h2, d1)}, {(h2, d2)}}

Consider the following preferences:

h1 : d1, d2 d1 : h2, h1

h2 : d2, d1 d2 : h1, h2

X = {(h1, d2), (h2, d1)} is unconstrained stable but infeasible.

The previous example shows that the concept of unconstrained stability cannot be

readily applied to the problem of matching with constraints. One might hope that

adding a feasibility requirement would su�ce to restore the concept. However, the

following de�nition and example show that we need to restrict unconstrained stabil-

ity even more.

De�nition 1.2. The set of contracts X is constrained stable if:

i) It is feasible: X ∈ F

ii) It is individually rational: X = ∪
h∈H

Ch(X) = ∪
d∈D

Cd(X)

iii) It is unblocked: there is no hospital h and set of contracts Y 6= Ch(X) such

that:

Y = Ch(X ∪ Y ) = ∪
d∈D(Y )

Cd(X ∪ Y )

Y ∪XA(X)\A(Y ) ∈ F

An allocation is constrained stable if i) it is feasible, ii) individually rational and ii)

there is no blocking hospital and set of doctors that could implement a deviation
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by themselves (taking restrictions into account). The following example shows that

adding feasibility is not enough.

Example 1.4. As in the previous example, assume that the feasible set is given by:

F = {{(h1, d1)}, {(h1, d2)}, {(h2, d1)}, {(h2, d2)}}

and that preferences are as follows:

h1 : d1, d2 d1 : h2, h1

h2 : d2, d1 d2 : h1, h2

There are four candidate sets that satisfy feasibility: X1 = {(h1, d1)}, X2 = {(h1, d2)},

X3 = {(h2, d1)} and X4 = {(h2, d2)}. Consider X1 = {(h1, d1)}. In this alloca-

tion the pair (h2, d2) would like to sign a contract, but the constraint prevents them

from doing so. However, the pair (h2, d1) would like to and could implement a de-

viation from form X1 = {(h1, d1)} to X3 = {(h2, d1)}. Continuing the analysis

reveals that X1 lead to X3, X3 to X4, and X4 to X1. X2 is not stable because h1

would reject d2 in favor of d1.

The previous example shows that there are matching problems with constraints

where all feasible allocations contain at least one blocking pair that could imple-

ment a deviation by themselves. However, X1 and X2 are very di�erent. In X2, h1

is given the right to hold one contract and he is using it on his second most pre-

ferred doctor. This allocation would not be unconstrained stable conditional on

given rights. We exploit this characteristic to de�ne stability in our model. Both

X1 and X4 would be good candidates to be stable in this market, although a mech-

anism would be able to select only one of them as the �nal allocation. If reports are

used to decide which one of them is chosen, then doctors will have an incentive to

manipulate their preferences. Hence we let the matchmaker decide.

15



1.2.2 The Matchmaker

There are practical and theoretical reasons to introduce an authority to make de-

cisions that market participants cannot make by themselves (in an e�cient and

strategy-proof way).

On a practical level, matchmakers exist in real matching with constraints mod-

els. School district authorities decide over budget and resource allocations among

schools, policy makers decide over constraints in medical matching and labor match-

ing, colleges decide over allocations of funds and physical resources among di�erent

departments, etc. These authorities make important decisions in the �nal allocation

of their respective matching markets and need to be included in the model.

On a theoretical level, constraints bind hospitals decisions, therefore a decision by

a hospital creates an externality over other hospitals by �tightening� constraints.

Even in a simple economy with externalities there is a need for a government to

restore e�ciency, usually achieved through taxes, quotas and property rights. The

�rst two require the government to know the e�cient level of activity in the market

while the third does not. We introduce a matchmaker and provide it with a way to

establish �property rights� over feasible allocations in order to achieve e�ciency.

We introduce the matchmaker m into the model of matching with constraints by

his preferences �m over F∗. We assume �m is complete, transitive and strict. We

assume the matchmaker always prefers more contracts signed than less contracts

i.e. |f ∗| ≥ |g∗| implies f ∗ �m g∗.

1.2.3 Stability

As shown by previous examples, the set of (feasible) unconstrained stable and the

set of constrained stable allocations could be empty. However, as hinted in example

4, property rights can be used to de�ne stability. We de�ne stability in a matching
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market with constraints as follows:

De�nition 1.3. The set of contracts X is stable if:

1. It is feasible: X ∈ F

2. It is individually rational: ∪
h∈H

Ch(X) = ∪
d∈D

Cd(X)

3. It is unblocked: Let Y ⊂ X . If H(Y ) = h and Xh 6= Y = Ch(X ∪ Y ) =

CD(Y )(X ∪ Y ), then:

Xh = Ch(X ∪ Y,X∗h)

((X \Xh) ∪ Y )∗ /∈ F∗

The intuition behind the last two conditions is straightforward: hospitals should be-

have optimally conditional on the assigned property rights and no addition of prop-

erty rights should be possible. This de�nition is a generalization of unconstrained

stability and they are equivalent in a model with no constraints.

With this de�nition of stability in hand, the previous example displays a stable al-

location.

Example 1.5. As in the previous example, assume that the feasibility set is given

by:

F = {{(h1, d1)}, {(h1, d2)}, {(h2, d1)}, {(h2, d2)}}

and that preferences are as follows,

h1 : d1, d2 d1 : h2, h1

h2 : d2, d1 d2 : h1, h2

Now there are two stable sets of contracts, namely X1 = {(h1, d1)} and X4 =

{(h2, d2)}.
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1.3 Matching with Constraints Mechanism

Since the ultimate test of a model as the one presented here is its applicability in

real situations we would like to o�er a mechanism with attractive properties regard-

ing four broad goals: e�ciency, transparency, simplicity and fairness.

As is standard in matching models, we achieve fairness by constructing an anony-

mous mechanism. In other words, our mechanism will consider only the stated

preferences of the participants and not their identity when determining an alloca-

tion. In addition, we focus on the stability of the �nal allocation. Stable allocations

are fair in the following sense: no participant is able to provide a �reason� to be

matched with a more preferred partner, i.e. having a higher priority or being pre-

ferred by a di�erent participant than the current match.

In this environment, with ordinal preferences, the most appealing concept of e�-

ciency is Pareto optimality of the �nal allocation. In order to make e�ciency and

fairness compatible we focus on Pareto optimal allocations among the set of stable

allocations.

We consider that transparency of the mechanism is also crucial, in particular par-

ticipants should be able to know the rules of the mechanism and the party imple-

menting the mechanism must be able to tell participants, without con�ict of inter-

est, that it is in their best interest to reveal their private information. Therefore, we

rely on strategy-proof implementation.

We achieve simplicity by �nding a mechanism that simultaneously solves both al-

location problems, resources to hospitals and doctors to hospitals, simultaneously.

Since matching problems are combinatorial problems, solving the problems sequen-

tially would be a rather computationally daunting task. We show this is the case

for a special case of the seat production environment.
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1.3.1 Construction

We start the construction of our mechanism by making the following observation: if

hospitals decide the contracts they sign independently, the �nal allocation might

not be feasible. Hence we need the matchmaker to allocate �property rights� to

eliminate the externality-like e�ect present in the matching with constraints. For-

mally, the externality-like e�ect is characterized as follows: consider a set of con-

tracts X and assume hospitals choose contracts independently without considering

that their decision a�ects and is a�ected by the decisions of other hospitals through

the binding constraints. Then, as shown in previous examples, it is possible that

∪
H
Ch(X) /∈ F∗. In order to guarantee the feasibility of the chosen set, hospitals need

to be aware of their feasible choices at a given decision moment. However, property

rights over feasible options do not exist, i.e. all participants are entitled in common

to resources. The matchmaker assigns property rights by o�ering appropriate feasi-

ble choice problems to hospitals.

Let X be a set of contracts and let F∗(X) be the set of property right sets at X,

de�ned as follows: F∗(X) = {f ∗ ∈ F∗ | f ⊂ X and f ∈ F}. Let Cm(X) =

max�mF(X). Through this process the matchmaker is able to assign property

rights over di�erent con�icting allocations of resources. After a particular allo-

cation of resources has been selected, hospitals choose contracts. Thus h1 selects

Ch1(X, Cm(CH(X))), h2 selects Ch2(X, Cm(CH(X))) and so on. This mechanism is

described in the following example.

Example 1.6. A school district has two schools h1 and h2 and three students d1,

d2 and d3. The district can �nance either two seats in h1 and one in h2 or three

seats in h2 and o�er students a stipend of s.

X = {(h1, d1), (h1, d2), (h1, d3), (h2, d1, s), (h2, d2, s), (h2, d3, s), (h2, d1), (h2, d2), (h2, d3)}

and the set of feasible sets would be:
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f1 = {(h2, d1, s), (h2, d2, s), (h2, d3, s)}

f2 = {(h1, d1), (h1, d2), (h2, d3)}

f3 = {(h1, d1), (h2, d2), (h1, d3)}

f4 = {(h2, d1), (h1, d2), (h1, d3)}

F = {f1, f2, f3, f4}

Consider the following preferences10 for schools. Preferences are responsive. h2

prefers students with stipend to students without stipend:

h1 : d1, d2, d3

h2 : d1, d2, d3

Hence

Ch1(X ) = {(h1, s1), (h1, s2), (h1, s3)}

Ch2(X ) = {(h2, s1, s), (h2, s2, s), (h2, s3, s)}

Not only are the previous school choices not mutually feasible, the choice by the

�rst school is not feasible. The matchmaker can assign property rights in order to

guarantee the feasibility of the �nal allocation. Consider �rst preliminary construc-

tions:

F(CH(X )) = {{h1, h1}, {(h2, s), (h2, s), (h2, s)}}

The matchmaker prefers more contracts to less:

Cm(CH(X )) = {(h2, s), (h2, s), (h2, s)}

Thus,

Ch1(X , f ∗1 ) = ∅

Ch2(X , f ∗1 ) = f1

The matchmaker intervention produces the following aggregate behavior of the

market:

10Strictly speaking preferences are over contracts and not students, but for simplicity we iden-
tify students with their unique contract.
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C̃H(X) = ∪
h∈H

Ch(X, Cm(CH(X)))

In order to de�ne the Matching with Constraints Mechanism we introduce the Gen-

eralized Gale Shapley Algorithm 11, 12 as de�ned by Hat�eld and Milgrom (2005).

De�ne the following order in X × X , (X, Y ) ≥ (X ′, Y ′) if and only if X ⊂ X ′ and

Y ′ ⊂ Y .

De�nition 1.4. The Generalized Gale-Shapley Algorithm (GS) is de�ned as

the iterated application of F (XH , XD) = (X − RD(XD),X − RH(XH)). If the

iterated process �nishes in a �xed point (X,Y ) = F (X,Y ) starting from (X, Y )

we de�ne GS(X, Y ) = X ∩ Y . Analogously, GS(X, Y, f ∗) = X ∩ Y denotes the

�xed point, if any, of iterated applications of F (XH , XD, f
∗) = (X − RD(XD),X −

RH(XH , f
∗))

With the aggregate behavior of the market de�ned as above we can de�ne our match-

ing with constraints mechanism as follows:

De�nition 1.5. The Matching with Constraints Mechanism (MC) is de�ned

as the iterated applications of F̃ (XH , XD) = (X − RD(XD),X − R̃H(XH)). If the

iterated process �nishes in a �xed point (X,Y ) = F̃ (X,Y ) starting from (X, Y ) we

de�ne MC(X, Y ) = X ∩ Y .

1.3.2 Properties

In this section we introduce �ve regularity conditions to guarantee the existence of

a stable set of contracts. The �rst two are the appropriate generalizations of the

11GS has been central in the market design literature and its applications are wide. Applica-
tions to allocate medical students (Roth (1984a); Roth and Peranson (1999)), students to public
universities (Balinski and Sönmez (1999)), and medical graduate to residency programs in Japan
(Kamada and Kojima (2013)) are some examples.

12This algorithm was initially proposed by Gale and Shapley (2013). Subsequent developments
extended the GS algorithm to more general preferences by Roth (1984b) and more general envi-
ronments by Hat�eld and Milgrom (2005).
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substitutes condition and the law of aggregate demand as proposed by Hat�eld

and Milgrom (2005), which in a model without constraints are su�cient to achieve

our goals. The third regularity condition is a generalization of the substitability

condition introduced by Kamada and Kojima (2013), which control the level at

which property rights are transferred to one hospital from another. We introduce

two new conditions to allow the model to handle complex constraints; the consis-

tency of choice property, to compare di�erent allocations in di�erent markets

and the contract replacement property, to correlate hospital preferences and

constraints.

The substitutes condition13 has been shown to guarantee the existence of a sta-

ble allocation in a model without constraints.14 In addition, every market without

constraints can be represented by a market with only one feasible set of contracts.

Hence, a matching market with constraints is a model where simultaneous uncon-

strained markets coexist. We assume that every unconstrained market satis�es the

substitutes condition. In our notation this assumption is equivalent to the following

condition we call the strong substitutes condition.

De�nition 1.6. Ch satis�es the strong substitutes condition if and only if for

every X and Y and f ∗ ∈ F∗ such that X ⊂ Y , we have Rh(X, f
∗) ⊂ Rh(Y, f

∗).

Ch satis�es the substitutes condition if and only if for every X and Y such that

X ⊂ Y , we have Rh(X) ⊂ Rh(Y )

The law of aggregate demand was introduced by Hat�eld and Milgrom (2005) in

order to obtain strategy-proofness in a model without constraints. Analogously to

the substitutes condition, we assume that the law of aggregate demand is satis�ed

in every market. In our model, this is achieved by a condition we call the strong

13The substitutes condition was introduced to the matching literature by Kelso and Crawford
(1982). Weaker conditions are known, see Hat�eld and Kojima (2010).

14for example, see Hat�eld and Milgrom (2005)
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law of aggregate demand.

De�nition 1.7. Ch satis�es the strong law of aggregate demand if and only if

for every X and Y and f ∗ ∈ F∗ such that X ⊂ Y , we have |C(X, f ∗)| ≤ |C(Y, f ∗)|.

Ch satis�es the law of aggregate demand if and only if for every X and Y such

that X ⊂ Y , we have |C(X)| ≤ |C(Y )|.

The strong substitutes condition and the strong law of aggregate demand charac-

terize hospital preferences in this model. Kamada and Kojima (2013) identi�ed a

condition, they call substitability, analogous to the substitutes condition to charac-

terize the matchmaker's preferences. We generalize the substitability condition to

assign property rights in out model. When Cm satis�es the substitutes condition,

the matchmaker never increases the property rights of any hospital after having re-

stricted that hospital. The set of property rights of a given hospital can increase or

decrease, but cannot increase after decreasing.

De�nition 1.8. Cm satis�es the substitutes condition if and only if for every X∗

and Y ∗ such that X∗ ⊂ Y ∗, we have Cm(Y ∗) ∩X∗ ⊂ Cm(X∗).

In this model, in which many markets are studied as a single market with con-

straints, it is necessary to introduce some regularity in hospital preferences across

di�erent market. To see this, suppose X is an unconstrained stable allocation in

market f ; hence there is no blocking set Y in market f ∗, however, there might be

blocking sets in other markets, say g∗. We introduce the consistency of choice

property in order to compare stable allocations in di�erent markets.

De�nition 1.9. Ch satis�es consistency of choice if and only if for every X and

g∗,f ∗ ∈ F∗ such that g∗ ⊂ f ∗, we have Ch(X, g∗) ⊂ Ch(X, f
∗).

One of the main characteristics of matching models, for example the original model

of Gale and Shapley (2013), has been the so called tentative acceptance i.e. the
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ability of a hospital to hold a doctor until a better one arrives and then substitute

one for the other. In a model without constraints or in a model in which all con-

tracts are of the same type (for example distributional constraints) any hospital

can substitute contracts freely. However, in a model with complex constraints and

contracts this is not the case. Suppose for example that a hospital would like to

substitute a contract w with a contract x, if they induce the same property rights,

then the hospital can do so immediately. However, if they induce di�erent prop-

erty rights then the substitution might not be possible. We introduce a contract

replacement property to control these cases.

De�nition 1.10. F satis�es the contract replacement property if and only if

for every X and x,w /∈ X such that CH(Xw) = Xw and CH(Xwx) = Xx, we have

x∗ = w∗

When the contract replacement property is satis�ed, hospitals are only willing to

substitute contracts with the same property rights. Substitution of contracts with

di�erent property rights is also possible, but must be induced by constraints and

not the unconstrained preferences.

With the �ve regularity conditions in place we proceed to show the properties of

this model. We �rst show that C̃H satis�es the substitutes condition, which guar-

antees the existence of an unconstrained stable allocation in the model with only

one hospital whose preferences are represented by C̃H . The next step is to show

that unconstrained stable allocations in the aggregate model are stable allocations

in the model with many hospitals and constraints. We show next that the Match-

ing with Constraints Mechanism is strategy-proof for doctors by showing that C̃H

also satis�es the law of aggregate demand. Finally we show that the Matching with

Constraints Mechanism is e�cient.

Theorem 1.1. Suppose F satis�es the contract replacement property, Cm satis�es

the substitutes condition and Ch satis�es the strong law of aggregate demand, the

24



strong substitutes condition and the consistency of choice condition for all h ∈ H,

then C̃H satis�es the substitutes condition.

Proof. We �rst show that CH(Y z)∗ ⊂ CH(Y zx)∗ in order to use the substitutes

property of Cm. Since CH satis�es the substitutes condition and the law of aggre-

gate demand, there are three cases to consider. i) If x is not chosen, CH(Y z)∗ =

CH(Y zx)∗; ii) if x is simply chosen, i.e CH(Y zx) = CH(Y z)x, then CH(Y z)∗ ⊂

CH(Y zx)∗; iii) if x is chosen in favor of w, i.e. CH(Y zx) = (CH(Y z) \ w)x, then

CH(Y z)∗ ⊂ CH(Y zx)∗ since the contract replacement property implies that x∗ = y∗.

In order to prove that C̃H satis�es the substitutes condition we show that z ∈

C̃H(Y zx) implies z ∈ C̃H(Y z) for arbitrary Y, x, z. z ∈ C̃H(Y zx) implies that

z ∈ CH(Y zx, f ∗) for f ∗ = Cm(CH(Y zx)). By the strong substitutes condition

we have z ∈ CH(Y z, f ∗) and by the de�nition of choice function we have z ∈

CH(Y z, f ∗ ∩ (Y z)∗). Let g∗ = Cm(CH(Y z)), then f ∗ ∩ (Y z)∗ ⊂ g∗ by the sub-

stitutes condition of Cm. Finally, by the consistency of choice property we have

z ∈ CH(Y z, g∗) = C̃H(Y z)

If C̃H satis�es the substitutes condition, then F (XH , XD) = (X − RD(XD),X −

R̃H(XH)) is a monotone function with non-empty set of �xed points. The set of

�xed points is a lattice. In the following theorem we show that these �xed points

are stable allocations.

Theorem 1.2. Suppose F satis�es the contract replacement property, Cm satis�es

the substitutes condition and Ch satis�es the strong law of aggregate demand, the

strong substitutes condition and the consistency of choice condition for all h ∈ H, ,

then the set of stable allocations is not empty.

Proof. Since C̃H satis�es the substitutes condition, then F (XH , XD) = (X −

RD(XD),X − R̃H(XH)) has a non-empty set of �xed points, which forms a com-

plete lattice. Every �xed point is an unconstrained stable set of contracts. Sup-
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pose X is an unconstrained stable set of contracts. We show that X is stable. By

construction, X is feasible and individually rational. Let Y be a set of contracts

such that D(Y ) = h, and Xh 6= Y = Ch(XUY ) = CD(Y )(XUY ). Suppose that

Xd 6= Z = Ch(XUY,X
∗
h), then there is Z ′ such that X 6= Z ′ = C̃H(XUZ ′), which is

a contradiction. Suppose now that ((X \Xh) ∪ Y )∗ ∈ F∗, then Ch(XUY ) is feasible

so C̃H(XUY ) = ((X \Xh) ∪ Y ) 6= X, a contradiction. Hence X is stable.

The next couple theorems show that the law of aggregate demand is also satis�ed;

hence the Matching with Constraints Mechanism is strategy-proof for doctors.

Theorem 1.3. Suppose F satis�es the contract replacement property, Cm satis�es

the substitutes condition and Ch satis�es the strong law of aggregate demand, the

strong substitutes condition and the consistency of choice condition for all h ∈ H, ,

then C̃H satis�es the law of aggregate demand.

Proof. It is su�cient to show that for any Y and x we have
∣∣∣C̃H(Y )

∣∣∣ ≤ ∣∣∣C̃H(Y x)
∣∣∣.

Since CH satis�es the law of aggregate demand and the substitutes condition, we

have 3 cases to consider. i) If x is not chosen, then C̃H(Y ) = C̃H(Y x); ii) If x is

simply chosen, let f ∗ = Cm(CH(Y )) and g∗ = Cm(CH(Y x)). Since x was simply

chosen we have that CH(Y )∗ ⊂ CH(Y x)∗, thus by the substitutes property of Cm

we have that
∣∣∣C̃H(Y )

∣∣∣ ≤ ∣∣∣C̃H(Y x)
∣∣∣; iii) If x is chosen in place of w, then by the

contract replacement property we have that
∣∣∣C̃H(Y )

∣∣∣ ≤ ∣∣∣C̃H(Y x)
∣∣∣.

Theorem 1.4. Suppose F satis�es the contract replacement property, Cm satis�es

the substitutes condition and Ch satis�es the strong law of aggregate demand, the

strong substitutes condition and the consistency of choice condition for all h ∈ H,

then the Matching with Constraints mechanism is strategy-proof for doctors.

Proof. Since C̃H satis�es the law of aggregate demand and the substitutes condi-

tion, the Matching with Constraints mechanism is strategy-proof for doctors by a

result in Hat�eld and Milgrom (2005).
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In a matching market with constraints stability is not e�cient either. Consider a

market with two hospitals, one only looking for doctors specialized in oncology and

the other in neurology. Suppose resources consist on the appropriate equipment

for each practice but are assigned incorrectly. The equipment for oncology to the

neurology hospital and vice versa. Then the allocation where both hospital hire no

doctor is stable, but not e�cient. In order to move to an e�cient allocation of re-

sources a joint redistribution of rights would be needed. Since stability does not

involve multiple hospitals, stability does not imply e�ciency.

Theorem 1.5. Suppose F satis�es the contract replacement property, Cm satis�es

the substitutes condition and Ch satis�es the strong law of aggregate demand, the

strong substitutes condition and the consistency of choice condition for all h ∈ H, ,

then the Matching with Constraints mechanism is e�cient.

Proof. Let X be the set of contracts assigned by the Matching with Constraints

mechanism. Suppose there is a feasible set of contracts Y such that Yh = Ch(XY ) =

CD(Yd)(XY ) for all hospitals and Yd = Cd(XY ) for all doctors. Hence, there is Y

such that X 6= Y = C̃H(XY ) = CD(Y )(XUY ). Hence X is not chosen by the

Matching with Constraints Mechanism.

1.3.3 Structure

In this section we show the structure produced by this model. Consider, for exam-

ple, a market with constraints representing �ve individual markets f ∗1 , ..., f
∗
5 . It is

well-known that, in a market without constraints, the set of stable allocations forms

a lattice. In the following �gure the lattice for market f ∗4 is represented by a rect-

angle, with maximum stable allocation GS(∅,X , f ∗4 ) and minimum stable allocation

GS(X , ∅, f ∗4 ).

The following theorem establishes that, in general, some of these lattices can be

ordered by their maximum and minimum elements.
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GS(∅,X , f4)

GS(X , ∅, f4)

Figure 1.3: The set of stable allocations of market f4

Theorem 1.6. Let C1
H and C2

H be two choice functions satisfying the substitutes

condition such that C1
H(X) ⊂ C2

H(X) for all X, then GS1(∅,X ) ≤ GS2(∅,X ) and

GS1(X , ∅) ≤ GS2(X , ∅). Furthermore, GS1(∅,X ) = GS1(GS2(∅,X )1, GS
2(∅,X )2).

Proof. (Unconstrained) stable allocations are the �xed points of the following func-

tions: F1(XH , XD) = (X−RD(XD),X−R1
H(XH)) in the �rst market and F2(XH , XD) =

(X−RD(XD),X−R2
H(XH)) in the second market. Hence F1(XH , XD) ≤ F2(XH , XD).

Let X1 be the highest �xed point of F1 and X2 be the highest �xed point of F2.

Since X1 = F1(X1) ≤ F2(X1), hence X1 ≤ X2 = ∨{x | x ≤ F2(x)} . For the sec-

ond part consider the following inequality and apply F1 as many times as necessary

GS1(∅,X ) ≤ GS2(∅,X ) ≤ (∅,X ).

The next �gure depicts the lattices of markets f ∗1 , . . . , f
∗
5 with the ordering provided

by the previous theorem. Every gray rectangle represents the set of stable alloca-

tions in each market. The solid black rectangle represents the set of stable alloca-

tions of the market formed by the union of the smaller markets. The red dots are

the Pareto frontier for doctors.

In some applications it might be desirable that the �nal selected allocation is a

Pareto e�cient allocation from the point of view of the doctors. The Matching with

Constraints mechanism does exactly that.

Theorem 1.7. The Matching with Constraints Mechanism is Pareto optimal

for doctors among the set of stable sets of contracts.

Proof. Suppose X is the set of contracts chosen by the Matching with Constraints
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f1

f2
f3

f4

f5

GS(∅,X )

GS(∅,X , f4)

Figure 1.4: The set of stable allocations of markets f1, ..., f5

Mechanism. Suppose Y is a stable set of contracts that Pareto dominates X for

doctors. Then Y is (unconstrained) stable in the market with only one hospital rep-

resented by C̃H . Thus contradicting the fact that X is Pareto optimal for doctors

in the market with only one hospital.

1.4 Conclusion

We developed a matching model in which several matching markets can be ana-

lyzed simultaneously as a single matching market with constraints. We o�ered a

mechanism capable of �nding a stable (within and across markets) and e�cient al-

location. Our mechanism is strategy-proof for doctors and �nds the appropriate

market and the stable allocation in that market simultaneously. The model is capa-

ble of implementing several design previously studied independently, including mod-

els of a�rmative action (Abdulkadirouglu and Sönmez (2003)) and distributional

constraints (Kamada and Kojima (2013)).

As shown in the main text, the required properties for the matching mechanism

with constraints impose a limit on the complexity of constraints and the structure

of preferences. However, it is possible to extend the complexity of constraints by

giving up structure in some other parts of the model. One such move could be to

move from substitutable preferences to additive preferences, in that case one could
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dispense of the contract replacement property since no hospital would �naturally�

replace a doctor for another, and if they do is because a constraint.

In this paper we have focused on a simultaneous solution to the allocation prob-

lems (market and allocation) since computational simplicity is often of practical

concern. Moving to a sequential solution could open the door to even more complex

constraints at the expense of computational power. The simplest example would be

to calculate all stable allocations in all markets and then choose one in the Pareto

frontier. However, it is not clear if such a procedure could have nice incentive prop-

erties in general.

A second extension to the complexity of constraints would be achievable by spe-

cializing our preferences. In particular, in the individual rationality dimension, if

some structure is provided to the individual rational allocations for hospitals the

model could potentially discard the assumption of free disposal of contracts. One

such specialization is the minimum quotas in schools or hospitals.

The tradeo�s of complexity in matching models are still being studied and this pa-

per hopefully has made some of them easier to understand.
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Chapter 2: Strategy-proofness for Hospitals in Matching Markets

Abstract. Strategy-proof implementation is one of the many elements that have

contributed to the successful application of matching theory in real life. However,

in many-to-one matching markets without transfers (e.g., doctors to hospitals with

�xed salaries) there is no stable mechanism which is strategy-proof for hospitals.

Furthermore, strategy-proofness and stability cannot be achieved for both hospitals

and doctors simultaneously even in one-to-one matching markets. This paper shows

that in many-to-one matching markets with transfers it is possible to guarantee sta-

bility and strategy-proofness-for-hospitals whenever an opportunity cost condition is

satis�ed. In addition, it is shown that stability and strategy-proofness are possible

for both hospitals and doctors simultaneously . Finally, it is shown that strategy-

proofness can be achieved in the interior of the core.

Many matching markets have successfully adopted centralized mechanisms as an al-

ternative to the price system.1 In these centralized markets, the �nal allocation is

computed using information provided by market participants. Typically, the �nal

allocation is chosen to be stable with respect to the provided information. However,

it is desirable that stability holds with respect to the actual information. Hence,

1See Abdulkadiro§lu et al. (2005); Abdulkadirouglu et al. (2005); Abdulkadirouglu and Sönmez
(2003) for School Choice, Roth et al. (2004) for Kidney Exchange, Sönmez (2013); Sönmez and
Switzer (2013) for Branch of Choice and Roth and Peranson (1999); Crawford and Knoer (1981);
Kelso and Crawford (1982); Roth and Xing (1994) for Residents Markets.
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participants' incentives to report truthfully are extremely important. In practice,

it is often a goal to make participants best strategy to report their actual informa-

tion, regardless of other agents' reports. Whenever this is achieved it is said that

the mechanism is strategy-proof.

Strategy-proof mechanisms possess several advantages over other mechanisms. First,

it is possible to guarantee that e�ciency or other properties hold with respect to

actual and not only with respect to reported information. This is particularly im-

portant for many institutions since it has been shown experimentally that in some

non-strategy-proof mechanisms, up to 80% of agents misrepresent their preferences.2

Furthermore, submitted preferences are often used in welfare assessments, for exam-

ple by computing the number of participants obtaining their �rst choice, second

choice and so on.3 Second, no resources are wasted by market participants in or-

der to compute better-than-truthful reports. In an auction, which is a special kind

of matching market, bidders spend a lot of time and money devising their strate-

gies and they often hire auction consultants.4 In school choice, parents spend time

and money to obtain better outcomes from non-strategy-proof mechanisms.5 Third,

participants with more information about the market cannot take advantage of less

informed participants. This is particularly important in school choice, where equal

access to education is often a goal.6

In a series of papers, Roth studied several incentive properties of stable mecha-

nisms in two-sided markets without transfers. In these markets there are two kinds

of agents: hospitals and doctors. Hospitals want to be matched with a set of doc-

2See (Chen and Sönmez, 2006) for an example

3See Featherstone (2011) for a discussion about rankings as a welfare criterion.

4Some problems faced by bidders in high-stake auctions are described in Cramton and
Schwartz (2000); Milgrom et al. (2009)

5See Pathak and Sönmez (2008, 2013) for the study of several non-strategy-proof mechanisms.

6See also Pathak and Sönmez (2008, 2013) for a revealing discussion about the issue.
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tors and doctors want to be matched with at most one hospital. The market is said

to be one-to-one whenever hospitals want to be matched with at most one doctor

and many-to-one otherwise. Roth showed that (i) in one-to-one matching mar-

kets, it is possible to obtain strategy-proofness for doctors or hospitals(Roth, 1982),

but not both simultaneously (Roth, 1984b) and (ii) in many-to-one matching mar-

kets, strategy-proofness can be guaranteed for doctors, but not for hospitals (Roth,

1985).

This paper studies many-to-one markets with transfers and shows that stability and

strategy-proofness for both hospitals and all agents (doctors and hospitals simul-

taneously) are possible by characterizing the conditions under which the Vickrey-

Clarke-Groves (VCG) mechanism is stable.7 The VCG mechanism is always strategy-

proof.

This paper uses a version of the assignment game proposed by Shapley and Shubik

(1971) as generalized by Kelso and Crawford (1982). In this model, doctors want

to be matched to at most one hospital and hospitals can be matched to multiple

doctors. In this model, transfers can be made continuously, in discrete quantities,

or not at all.

The �rst contribution of this paper is to show that a VCG mechanism, di�erent

from the pivot mechanism, is stable whenever agents' preferences satisfy an oppor-

tunity cost condition. This condition is satis�ed whenever every doctor can �nd a

hospital that o�ers him at least his opportunity cost. In this mechanism, hospital i

receives a payo� πVi = V (A) − V (A \ i), where V is the coalitional value function

and A is the set of agents in the market. Leonard (1983) proved the result in one-

to-one matching markets and his technique rests completely on the unit demand

assumption. Gul and Stacchetti (1999) proved the result for replica economies.

The second contribution is to identify markets where strategy-proofness, together

7See Vickrey (1961)
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with stability, can be achieved for all agents. The above mechanism cannot be used

directly for all agents since, in general,
∑
i∈A
πVi > V (A). However, careful inspection

reveals that if agent i is receiving a payo� of πVi he is fully capturing two marginal

values. When a new agent enters a matching market, say a doctor, two e�ects take

place. First, a new agent who demands hospitals enters the market; and second,

a new object is available for hospitals currently in the market. In order to obtain

strategy-proofness we only need agents to be able to capture the marginal value of

their information i.e. the marginal value they produce as demanders not as objects.

For agent i, this marginal value is captured by πUi = U(S)−U(S \ i), where U(T ) is

the maximum value that can be achieved with all agents present only using the in-

formation of agents in T . Thus πUi is the marginal contribution of agent i's private

information and πUi − πVi is the marginal contribution of agent i's existence as an

object. If no agent's information is pivotal (the agent himself is pivotal), then the

U mechanism is strategy-proof for all agents and stable whenever the private values

of an e�cient matching belong to the set of stable payo�s.

The third contribution is to show that strategy-proofness either for hospitals or

doctors can be achieved without o�ering an extremal matching. In general, strategy-

proofness is achieved by o�ering agents their most preferred stable allocation.8 In

continuous transfers models, this payo� is characterized by πVi = V (A) − V (A \ i).

However, as discussed above, strategy-proofness can also be obtained by o�ering

agents the marginal contribution of their information, πUi = U(A) − U(A \ i). We

show that the stability of these payo�s is directly linked to the proportion of sur-

plus generated at each side of the market. In particular, for any vector of stable

payo�s {πi}A, there is a division of total surplus that makes the U mechanism sta-

ble and strategy-proof, i.e. πi = U(A)− U(A \ i) for all agents.

8See for example, Crawford and Knoer (1981); Kelso and Crawford (1982); Roth and So-
tomayor (1992)
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Finally, it is shown that strategy-proofness for hospitals can be implemented in dis-

crete transfers. The level to which transfers can be used in a matching markets

varies signi�cantly. However, this paper shows that allowing transfers to be nego-

tiated in the matching process not only would improve e�ciency (with respect to

the reports), but also makes agents more willing to report their true private infor-

mation. This increases the e�ciency (with respect to the actual preferences) and

accountability of the market.

Incentives in matching markets have been studied systematically since Roth's con-

tributions (1982; 1984b; 1985). A �rst line of research has been devoted to �nding

restrictions on preference pro�les for mechanisms to achieve strategy-proofness. De-

mange and Gale (1985) showed that Roth's conclusions hold in very general one-

to-one environments where agents have preferences over each other and all have

possibly di�erent valuations over money. Alcalde and Barberà (1994) showed that

the Gale-Shapley algorithm is the mechanism that achieves stability and strategy-

proofness in the biggest set of preference pro�les where both are possible. Sönmez

(1997; 1999) introduced two kinds of manipulations observed in real matching mar-

kets: capacities misrepresentations and pre-arranged matches. He showed that there

is no mechanism capable of avoiding such manipulations in general. Later on, Ko-

jima (2007) and Kesten (2012) showed that some preference domains avoid those

manipulations. This paper continues this line of research and shows that hospital

strategy-proofness is possible when an opportunity cost condition holds.

A second line of research has studied incentives in large markets. In particular,

Roth and Peranson (1999), Immorlica and Mahdian (2005) and Kojima and Pathak

(2009) show that strategy-proofness for almost all agents is possible as the number

of agents increase, but the diversity of preferences decreases. Roth and Peranson

(1999) showed that this property holds in some physician markets. In small mar-

kets, however, manipulability is still possible with current mechanisms. This paper
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continues the large market spirit by showing that as the number of possible trans-

fers increases, strategy-proofness for all hospitals becomes possible. This fact could

have great practical implications since the discreteness of transfers traded in the

markets is a market design variable.

This paper is also related to the literature on VCG auctions. It is well known that

the VCG payments are lower than the lowest anonymous linear Walrasian equi-

librium payments. However, several deviations from anonymous linear prices can

achieve VCG payments. Ausubel (2006) uses personalized linear prices. Bikhchan-

dani and Ostroy (2002); de Vries et al. (2007); Mishra and Parkes (2007) use per-

sonalized non-linear prices. The opportunity cost condition implies that VCG pay-

o�s can be implemented with anonymous linear prices.

2.1 Matching Markets

Throughout the paper, capital letters will represent both sets and their cardinal-

ity. Similarly, throughout the paper, when an assumption is stated, it is considered

as true in all subsequent parts of the paper, including theorems. We denote the

union of two sets Y and X by Y X. The matching market is formed by two kinds

of agents, doctors and hospitals. The set of doctors is denoted by D and the set of

hospitals by H with typical elements d and h, respectively. We denote the set of all

agents by A = HD. We assume there is a �nite number of agents in the market. It

will be assumed that hospitals can be matched to several doctors, but doctors can

be matched to at most one hospital.

Each doctor d has preferences ud : H{∅} → R. Each hospital h has a capacity ch

and preferences uh : Ch → R, where Ch is the set of subsets of D with cardinality at

most ch. We assume that there is a common utility metric, that a�ects agents pay-

o�s linearly, i.e. if agent a is matched to set T and receives a transfer of ta, then his

payo� is πa = ua(T ) + ta. The level at which transfers can be made in a particular
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market varies considerably across applications. In school choice, societies have de-

cided that wealth should not determine who gets the better schools; hence modeled

as a no-transfers market. In cadet branching, cadets have the opportunity to serve

longer times in order to obtain a branch they like more; hence some discrete trans-

fers are used. Labor markets with �exible transfers would be modeled as continuous

transfers matching markets. In order to simplify the distinction between models

with di�erent degrees of transfers we introduce the de�nition of a q-market.

De�nition 2.1. A q-market is a market where all transfers made are multiples of

1
q
∈ R+. The 0-market represents the no-transfers case and the ∞-market repre-

sents the continuous case.

A q-matching Mt in a q-market is a disjoint collection of sets of doctors M = {Di}i∈H+1

such that |Dh| ≤ ch and a vector of transfers (multiples of 1
q
) t ∈ RD such that

td = 0 for every d ∈ DH+1. A hospital h is matched to the set of doctors Dh and re-

ceives a transfer of −
∑
ti

i∈Dh
. DH+1 are unassigned doctors. The set of matchings in a

market with A agents is denoted by M(A) and the set of matchings where all trans-

fers are zero is denoted by M0(A). Given a particular matching Mt, the associated

payo� of agent a is denoted by πMt
a and the associated private value is uMt

a .

Given a particular matching, every coalition of hospitals and doctors can arrange

o�ers to improve their payo�s from any initial situation; they can try to improve

their monetary component with their current partners, they can try to form new

partnerships, or reject current ones. If such improving coalitions cannot be formed,

then the matching is called stable. Hence stability is the basic notion of equilibrium

in matching markets. In addition to its theoretical appeal, stability has been proved

fundamental for the correct performance of real matching markets since unstable

allocations typically lead to an unraveling of the market.

De�nition 2.2. The q-matching Mt is stable in q-market if and only if
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� πMt
a ≥ ua(∅) for all a ∈ A

� There is no q-matching (Mt)∗ and h ∈ H such that π(Mt)∗
a ≥ πMt

a for all

a ∈ hD∗h with at least one strict inequality.

Notice that the second condition applies only to members of the �blocking coali-

tion� hD∗h and hence to �nd a �blocking matching� (Mt)∗ it would be su�cient to

assign members of hD∗h together and leave everyone else unmatched.

It is well-known that if hospitals' preferences satisfy the substitutes condition, then

the set of stable matchings is not empty.9 In discrete markets, if agents' preferences

between matchings are strict, then there is a hospital-optimal matching MtH and a

doctor-optimal matching MtD.10 The associated payo�s for agent a are denoted by

πMtH
a and πMtD

a , respectively. In the continuous case, a hospital-optimal matching

MtH and a doctor-optimal matching MtD always exit and the associated payo�s

for agent a are also denoted by πMtH
a and πMtD

a . In the continuous case, the optimal

matchings might fail to be unique, but their associated payo�s will be. We assume

hospitals' preferences satisfy the substitutes condition. We �rst de�ne the demand

correspondence and value function for hospitals.

De�nition 2.3. For every hospital h ∈ H, Th(t) = argmax
S∈2D

uh(S) −
∑
i∈S
ti is its

demand correspondence and vh(t) = max
S∈2D

uh(S)−
∑
i∈S
ti is its value function.

De�nition 2.4. uh satis�es the substitutes condition if and only if for every

t, t∗ ∈ RD such that t ≤ t∗, for every T ∈ Th(t), there is T ∗ ∈ Th(t
∗) such that

T ∩ S ⊂ T ∗; where S is the set of doctors with ts = t∗s .

In addition to the substitutes condition we assume that every hospital needs to hire

at least one doctor to produce any surplus and every doctor - hospital pair produce

more surplus together than the unmached doctor.

9See Kelso and Crawford (1982)

10See Hat�eld and Milgrom (2005)
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De�nition 2.5. uh satis�es the marginal product condition if and only if uh(∅) =

0 and for all d ∈ D and Dh ⊂ D such that d /∈ Dh and dDh ∈ Ch we have

uh(dDh) + ud(h)− uh(Dh) ≥ ud(∅).

The above condition allows for cases with uh(dDh) < uh(Dh) with d /∈ Dh i.e. a

hospital would need to be compensated to hire a doctor. In the context of resident

matching, this assumption could feel unnatural, however, in other applications such

a school choice, it is the norm. Schools and colleges usually charge students to get

admitted. Unless otherwise noted, it is assumed that the substitutes and marginal

product conditions are satis�ed by all uh throughout the paper.

2.2 Strategy-Proofness for Hospitals in the continuous market

We begin this section by providing some standard preliminary de�nitions. A mech-

anism φ is a function that maps preference pro�les to q-matchings in a q-market.

The matching at preference pro�le {ui}i∈A is denoted by φ({ui}i∈A) ∈ M(A). A

mechanism φ is said to be strategy-proof for agent a if there exist no preference

pro�le u′a and preferences {ui}i∈A\a for all other agents such that π
φ(u′a,{ui}i∈A\a)
a >

π
φ({ui}i∈A)
a . A mechanism φ is said to be strategy-proof for B (set) if it is strategy-

proof for all b ∈ B. That is, no agent in B has an incentive to misreport his prefer-

ences under the mechanism. The next proposition, due to Roth (1985), establishes

that there is no strategy-proof for Hospitals mechanism in the 0-market. Through-

out the paper, �propositions� will be used to state important known results.

Proposition 2.1. Roth 85. There is no stable and strategy-proof mechanism for

Hospitals in the 0-market.

Example 2.1. Consider a market with three hospitals and four doctors. Hospitals

and Doctors have cardinal valuations over each other. The left matrix contains the

values each hospital assigns to every doctor and the number of doctors they are
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willing to hire. The right matrix contains the values for doctors. It is assumed that

both groups assign a value of zero to being unassigned.

Preferences
Hospitals

d1 d2 d3 d4 q

h1 4 3 2 1 2

h2 4 3 2 1 1

h3 3 2 4 1 1

Doctors

d1 d2 d3 d4

h1 2 2 3 3

h2 1 3 1 2

h3 2 1 2 1

Suppose transfers are prohibited and a stable allocation is to be implemented. In

this case, the ordinal representation is su�cient to characterize the set of stable

matchings. Under the true preference pro�le, there is only one stable matching,

shown on the left. On the right there is an improving deviation for h1.

True Preferences Deviation

h1 : d1 d2 d3 d4

h2 : d1 d2 d3 d4

h3 : d3 d1 d2 d4

d1 : h3 h1 h2

d2 : h2 h1 h3

d3 : h1 h3 h2

d4 : h1 h2 h3

h1 : d1 d4

h2 : d1 d2 d3 d4

h3 : d3 d1 d2 d4

d1 : h3 h1 h2

d2 : h2 h1 h3

d3 : h1 h3 h2

d4 : h1 h2 h3

h1πh1 = 3

h2πh2 = 3

h3πh3 = 3

d1 πd1 = 3

d2 πd2 = 2

d3 πd3 = 3

d4 πd4 = 3

h1πh1 = 5

h2πh2 = 3

h3πh3 = 4

d1 πd1 = 2

d2 πd2 = 3

d3 πd3 = 2

d4 πd4 = 3

Roth's proposition applies to 0-markets. In ∞-markets, however, there is an e�-

cient and strategy-proof mechanism: VCG. The VCG mechanism is de�ned below.

First we de�ne the coalitional value function.

De�nition 2.6. V (S) = max
Mt∈M0(S)

∑
a∈S

πMt
a is the coalitional value function.
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With the coalitional value function at hand, we de�ne the VCG mechanism for a

set of agents B.

De�nition 2.7. The VCG for agents in B works as follows. It is assumed that

the mechanism knows ua for every a ∈ A \ B. Agent b ∈ B sends ub to the mecha-

nism and an outcome (Mt)∗ ∈ argmax
Mt∈M0(A)

∑
a∈A

πMt
a is implemented. Agent b is charged a

payment pb = −
∑

a∈A\b
π

(Mt)∗
a +W (A\b). Where W is a coalitional value function with

the reported and known preferences. Let P =
∑
b∈B

pb be the total collected payments,

let {ta}a∈A\B be a set of real numbers such that P =
∑

a∈A\B
ta. Then the payo� for

agent a ∈ A\B is given by π(Mt)∗
a +ta. Whenever there is a set of transfers {ta}a∈A\B

such that the �nal payo�s are stable, those transfers are implemented.

Lemma 2.1. The VCG mechanism for agents in B is strategy-proof for agents in

B.

If agents in B play their dominant strategy, then every agent b ∈ B receives a pay-

o� equal to πb = V (A)−V (A \ b) (agent b's VCG payo�). We assume agents always

play their dominant strategy. Notice that VCG payo�s for members of B only de-

pend on the value of the coalitional value function and not on a particular e�cient

allocation i.e. VCG payo�s and payments are well-de�ned even when there are mul-

tiple optimal allocations. Furthermore, notice that the only condition on payments

(and payo�s) for members of A \ B is budget balancedness. Whenever there is a set

of transfers transfers {ta}a∈A\B such that the �nal payo�s are stable, we say that

the VCG for set B is stable. Example 2.2 shows that stability for hospitals is possi-

ble in some cases while Example 2.3 shows that it is not always possible.

Example 2.2. Suppose we have the market of example 2.1, but transfers can be

continuously adjusted. Then, VCG for hospitals is strategy-proof and stable.
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Hospitals

d1 d2 d3 d4 q

h1 4 3 2 1 2

h2 4 3 2 1 1

h3 3 2 4 1 1

Doctors

d1 d2 d3 d4

h1 2 2 3 3

h2 1 3 1 2

h3 2 1 2 1

Continuous transfers

h1πh1 = 22− 12 = 10

h2πh2 = 22− 17 = 5

h3πh3 = 22− 17 = 5

d1 πd1 = 0

d2 πd2 = 1

d3 πd3 = 1

d4 πd4 = 0

In the previous example, doctors payo�s are obtained after solving a system of

equations together with some inequalities. For instance, h2 is matched to d2, to-

gether they generate a surplus of 6 and h2's VCG payo� is 5, then h2's payo� must

be 1. The question is if, in general, the payments collected by the mechanism can

be distributed to doctors in a stable way.

In auction theory, Ausubel and Milgrom (2002) have shown that the substitutes

condition is su�cient for the VCG payo�s to be stable, i.e. all collected payments

by the VCG mechanism can be paid to the auctioneer and the outcome is stable.

Unfortunately, in matching markets, the substitutes condition is not su�cient to

obtain the same result. Consider the following example.

Example 2.3. There are two identical hospitals and three identical doctors. uh(A) =

0 if |A| = 0,uh(A) = 10 if |A| = 1, uh(A) = 18 if |A| = 2, uh(A) = 20 if

|A| = 3. ud(∅) = ud(h) = 0. In this market, both hospitals receive a payo� of

πh = V (A)− V (A/h) = 28− 20 = 8 when the VCG mechanism is used. However, in

the unique stable allocation both hospitals receive a payo� πh = 2 and all doctors

receive a payo� πd = 8.

If we want VCG payo�s for Hospitals to agree with their maximum stable pay-

o�, πMt
h = V (A) − V (A \ h) for every hospital, we need to be able to construct

a payo� equivalent (for all agents di�erent than h) allocation in the market with
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agents A/h. In particular, if doctor d is matched to hospital h in the market with

A agents, then we need to �nd an allocation with A \ h agents that provides d

with πMt
d . The natural candidate is one of his blocking coalitions, i.e. one of the

coalitions that would be formed if he were o�ered anything less than πMt
d . Unfor-

tunately, it is possible that a hospital h′ belongs to a blocking coalition with some

doctor d and a di�erent (incompatible) coalition with d′. This is illustrated in the

following example.

Example 2.4. Consider a market with two hospitals and three doctors. The ma-

trix contains the joint surpluses. It is assumed that both groups assign a value of

zero to being unassigned. t and s are a real numbers.
Hospitals

d1 d2 d3 q

h1 3 4 0 2

h2 2 3 1 1

Hospital-optimal

stable payo�s

πh1 = 4 πd1 = 1

πh2 = 1 πd2 = 2

πd3 = 0

VCG for Hospitals

payo�s

πh1 = 5 πd1 = 2 + s+ t

πh2 = 1 πd2 = −t

πd3 = −s

If πd1 < 1 , then d1 and h2 form

a blocking coalition.

If πd2 < 2, then d2 and h2 form a

blocking coalition.

However, in the market without

h1, h2 cannot honor his blocking

o�ers with d1 and d2

simultaneously.

The previous example shows that the substitutes condition is not enough to guar-

antee the equivalence between the maximum stable payo� and the VCG payo� for

hospitals. There are, however, some regularities that the substitutes condition can

provide. Proposition 2.2 states well-known results that are used in our discussion

and proof of Theorem 2.1.

Proposition 2.2. In all matching markets,

� πMtD
d = V (A)− V (A \ d) for every d ∈ D. Leonard (1983)
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� πMtH
d = V (dA) − V (A) for every d ∈ D. Gul and Stacchetti (1999). Where

V (Ad) is the value of a market where an identical doctor d is added.

Proposition 2.2 characterizes doctors' payo�s at the hospital-optimal and doctor-

optimal matchings. Furthermore, it implies the strategy-proofness and stability

of VCG for doctors; as it shows that the VCG payo� for doctors is equal to their

doctor-optimal stable payo�. In this section we provide an analogous result for hos-

pitals. Example 2.4 shows that this cannot be achieved in general, however, we

show that if preferences satisfy a joint restriction we call the opportunity cost

condition, then the equivalence can be guaranteed.

De�nition 2.8. V , the coalitional value, function satis�es the opportunity cost

condition if and only if for all d ∈ D and h ∈ H, V (A \ h)− V (A \ hd) ≥ V (Ad)−

V (A).

On the right hand side of the inequality we have V (Ad)−V (A), this is the opportu-

nity cost of doctor d in the optimal assignment. Intuitively, if a new copy of doctor

d were added to the market, the copy would go to the second highest value alloca-

tion, as the highest value is occupied by the original d. On the left hand side of the

inequality we have V (A \ h)− V (A \ hd), this is the marginal value of d in a market

where h is not present. When the opportunity cost holds, every doctor can �nd a

hospital that o�ers him at least his opportunity cost.

Theorem 2.1. Suppose V satis�es the opportunity cost condition, then πMtH
h =

V (A)− V (A \ h) for every h ∈ H in the continuous transfers market.

Corollary 2.1. Under theorem 2.1 assumptions the VCG for Hospitals is stable

and strategy-proof.

Theorem 2.1 is completely analogous to that of Leonard (1983). When preferences

satisfy the opportunity cost condition it is possible to use VCG for hospitals as a
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strategy-proof and stable mechanism. The opportunity cost condition is a joint con-

dition on preferences, however, there are some individual preferences that imply it.

For instance, linear preferences and unit demand preferences.

De�nition 2.9. Hospital preferences are linear if and only if for all h ∈ H, ch =

|H| and for all Dh ⊂ D, uh(Dh) =
∑
d∈Dh

uh(d). Hospitals preferences are of unit

demand if for all h ∈ H, ch = 1.

Lemma 2.2. Unit demand and linear hospital preferences satisfy the opportunity

cost condition.

2.3 Strategy-Proofness for Hospitals And Doctors in the continuous mar-

ket

We begin this section with another impossibility result due to Roth (1982).

Proposition 2.3. Roth 82. There is no stable and strategy-proof mechanism for

hospitals and doctors in the 0-market, even when hospitals have unit demands.

Example 2.5. Consider a market with two hospitals and two doctors. Hospitals

and Doctors have cardinal valuations over each other. The left matrix contains the

values each hospital assigns to every doctor. All hospital are willing to hire at most

one doctor. The right matrix contains the values for doctors. It is assumed that

both groups assign a value of zero to being unassigned

Continuous transfers
Hospitals

d1 d2

h1 2.5 1

h2 3 4.5

Doctors

d1 d2

h1 1.5 4

h2 2 3.5

Suppose transfers are prohibited and a stable allocation is to be implemented. In

this case, the ordinal representation is su�cient to characterize the set of stable
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matchings. Under the true preference pro�le, there are two stable matchings, shown

on right. Suppose the bottom matching is chosen by the mechanism.

h1 : d1 d2

h2 : d2 d1

d1 : h2 h1

d2 : h1 h2

Matching 1

h1πh1 = 2.5

h2πh2 = 4.5

d1 πd1 = 1.5

d2 πd2 = 3.5

Matching 2

h1πh1 = 1

h2πh2 = 3

d1 πd1 = 4

d2 πd2 = 2

Then h1 can manipulate the outcome by manipulating his preferences.

h1 : d1

h2 : d2 d1

d1 : h2 h1

d2 : h1 h2

Matching 1

h1πh1 = 2.5

h2πh2 = 4.5

d1 πd1 = 1.5

d2 πd2 = 3.5

The mechanism provided by Theorem 2.1 cannot be used directly in this case to

obtain strategy-proofness for all agents. In general,
∑
a∈A

V (A) − V (A \ a) > V (A).

Hence, we need to reduce agents payo�s without losing strategy-proofness. Intu-

itively, agents needs to be able to capture the marginal value generated by their

reports. In auction environments, this is precisely achieved by o�ering every agent

a a payo� equal to V (A)−V (A \ a). In matching environments, this is not the case.

When a new agent enters a matching market, say a doctor d, two e�ects take place:

(1) a new agent who demands hospitals enters the market and (2) a new object is

available for hospitals currently in the market. V (A) − V (A \ d) captures both

marginal e�ects. In order to obtain strategy-proofness we only need the �rst one.

Doctor d's information's marginal value is captured by U(S)−U(S \d), where U(T )

is the maximum value that can be achieved with all agents present only using the

information of agents in T . The U function is de�ned below.
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De�nition 2.10. U(S) = max
Mt∈M0(A)

∑
a∈S

πMt
a is the optimal matching function

It is possible to de�ne a second VCG mechanism using the U function.

De�nition 2.11. The U-VCG mechanism for agents in B works as follows. It

is assumed that the mechanism knows ua for every a ∈ A \B. Agent b ∈ B sends ub

to the mechanism and an outcome (Mt)∗ ∈ argmax
Mt∈M0(A)

∑
a∈A

πMt
a is implemented. Agent

b is charged a payment pb = −
∑

a∈A\b
π

(Mt)∗
a + W ′(A \ b). Where W ′ is the optimal

matching function with the reported and known preferences. Let P =
∑
b∈B

pb be

the total collected payments, let {ta}a∈A\B be a set of real numbers such that P =∑
a∈A\B

ta. Then the payo� for agent a ∈ A\B is given by π(Mt)∗
a + ta. Whenever there

is a set of transfers {ta}a∈A\B such that the �nal payo�s are stable, those transfers

are implemented.

Lemma 2.3. The U-VCG mechanism for agents in B is strategy-proof.

If agents in B play their dominant strategy, then every agent b ∈ B receives a pay-

o� equal to πb = U(A) − U(A \ b). We assume agents always play their dominant

strategy. The di�erence between the VCG and the U -VCG mechanisms is the last

term in their payo�s; U(A/b) = max
Mt∈M0(A)

∑
a∈A/b

πMt
a while V (A/b) = max

Mt∈M0(A/b)

∑
a∈A/b

πMt
a .

If we apply the U -VCG to the previous example we achieve stability and strategy-

proofness for all agents in the market.

Example 2.6. Consider the market of example 2.5 and use the U -VCG mecha-

nism.
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Hospitals

d1 d2

h1 2.5 1

h2 3 4.5

Doctors

d1 d2

h1 1.5 4

h2 4.5 3.5

The payo� for h1 is calculated as follows:

πUh1 = U(A)− U(A \ h1) = 2.5

U(A) = max
Mt∈M0(A)

∑
a∈S

πMt
a = V (h1d1) + V (h2d2)

= 4 + 8 = 12

U(A \ h1) = max
Mt∈M0(A)

∑
a∈A\h1

πMt
a = ud1(h1) + V (h2d2)

= 1.5 + 8 = 9.5

Analogously,

πUd1 = 12− 10.5 = 1.5; πUh2 = 12− 7.5 = 4.5;

πUd2 = 12− 8.5 = 3.5

It is routine to check that the payo�s in example 2.6 are stable. It is instructive

to compare the U -VCG payo�s with the hospital-optimal and doctor-optimal sta-

ble matchings. In particular, πMtH
h1

= 4, πMtH
h2

= 7, πMtH
d1

= 0 and πMtH
d2

= 1

for the hospital-optimal stable matching and πMtD
h1

= 0, πMtD
h1

= 1, πMtH
d1

= 4

and πMtH
d2

= 7 for the doctor-optimal stable matching. The U -VCG mechanism is

achieving strategy-proofness and stability without o�ering either doctors or hos-

pitals their most preferred stable matching. In the following section we study this

property of the U -VCG mechanism. In the previous example, the U -VCG delivers

stable payo�s for all agents. In general, this is not the case. Consider the following

example.

Example 2.7. The U -VCG mechanism is not stable for this market, as it removes

resources from the market.

Hospitals

d1 d2

h1 4 5

h2 4 4

Doctors

d1 d2

h1 0 0

h2 1 4

h1

πh1 = 12− 8 = 4

h2

πh2 = 12− 8 = 4

d1

πd1 = 12− 12 = 0

d2

πd2 = 12− 10 = 2

Both markets in example 2.6 and 2.7 share the same coalitional function, hence

they have the same set of stable payo�s. As it can be observed in the examples, the

division of surplus between agents plays a fundamental role in the stability of the
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U -VCG mechanism. The next de�nition formalizes the idea of a division of surplus.

De�nition 2.12. Let {ua}A be a matching market with hospitals H, doctors D

and A = HD. Consider any other market with the same set of agents A, but di�er-

ent preferences {u′a}A. We say that {ua}A is a division of {u′a}A if and only if for

all Dh ⊂ D and h we have uh(Dh) +
∑
d∈Dh

ud(h) = u′h(Dh) +
∑
d∈Dh

u′d(h) and for all

d ∈ D ud(∅) = u′d(∅).

Notice that if {ua}A is a division of {u′a}A, then the opposite is also true i.e. divi-

sions form an equivalence relation in the set of preferences pro�les. Furthermore,

as lemma 2.4 establishes, divisions have no impact on the set of stable matchings,

which only depend on the coalitional value function.

Lemma 2.4. Let Π ⊂ RA be the set of payo�s arising from stable allocations in

market {ua}A. Let {u′a}A be a division of {ua}A and let Π′ ⊂ RA be its set of stable

payo�s. Then Π = Π′.

Whereas the VCG mechanism, and its stability for hospitals, only depends on the

coalitional value function, the stability of the U -VCG mechanism depends on the

particular division of surplus in the market. Consider examples 2.6 and 2.7. They

share the same coalitional value function and set of stable matchings and payo�s.

However, when the U -VCG mechanism is used to elicit preferences, the resulting

payo�s are stable only for the division in example 2.6. The following theorem shows

that the payo�s delivered by the U -VCG mechanism are stable for at least one rep-

resentative of each equivalence class in the space of preference pro�les.

Theorem 2.2. Let π ∈ Π, then there is a division such that πUa = πa, i.e. there is a

division of surplus such that the U-VCG mechanism is stable and strategy-proof for

all agents.

Theorem 2.2 does not say that the U -VCG mechanism delivers stable payo�s in

every market. However, for every market there is a division of surplus that would
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make the payo�s delivered by the U -VCG mechanism stable. In other words, for

every �xed set of agents A and coalitional function V there is market characterized

by utility functions on {ua}A such that the U -VCG mechanism would deliver stable

payo�s in that market.

Theorem 3 describes the conditions under which utility functions {ua}A produce a

market for which the U -VCG mechanism is produces stable payo�s. We �rst intro-

duce the concept of pivotal information. We say that agent i's information is not

pivotal if when his information is disregarded, but he is still considered part of the

matching market, the optimal allocation does not change.

De�nition 2.13. Let (Mt)∗ ∈ argmax
Mt∈M0(A)

∑
a∈A

πMt
a . Agents i's information is not piv-

otal, with respect to (Mt)∗, whenever (Mt)∗ ∈ argmax
Mt∈M0(A)

∑
a∈A\{i}

πMt
a = ∅.

Theorem 2.3. Let (Mt)∗ ∈ argmax
Mt∈M0(A)

∑
a∈A

πMt
a and let U

(Mt)∗
a be agent a's private

value in (Mt)∗. Suppose V satis�es the opportunity cost condition, no agent's in-

formation is pivotal with respect to (Mt)∗ and (U
(Mt)∗
a )A ∈ Π, then the U-VCG

mechanism is strategy-proof for all agents and stable.

If any agent's information is pivotal, then U -VCG will collect a positive payment

from this agent. If the U -VCG is used to elicit preferences from only one side of

the market, then there is the possibility (studied in the next section) of redistribut-

ing the payments to the other side to maintain all the surplus in the market. When

eliciting preferences from both sides of the market, this possibility disappears. Fur-

thermore, any agent whose information is not pivotal will have a payo� equal to

his private surplus at the chosen allocation. Unfortunately, both conditions are

independent. The next example shows that there are non-pivotal markets where

(Ua)A /∈ Π and pivotal markets where (Ua)A ∈ Π.

Example 2.8. On the left, there is a non-pivotal market where (Ua)A /∈ Π. On the

right, there is a pivotal market where (Ua)A ∈ Π.
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Hospitals

d1 d2

h1 3 4

h2 0 1

Doctors

d1 d2

h1 2 4

h2 0 4

Hospitals

d1 d2

h1 4 2

h2 0 0

Doctors

d1 d2

h1 0 1

h2 0 0

The U -VCG payments can be modi�ed in a market where no agent's information is

pivotal but (Ua)A /∈ Π. Speci�cally, let Mt be any stable matching and let td be the

minimum salary allowed for doctor d, i.e. regardless of the hiring hospital, d will

charge at least td. Of course, this will impact the true preferences in the market,

as now, doctor d will have preferences u′d(h) = ud(h) + td and hospital h will have

preferences u′h(Dh) = uh(Dh) −
∑
d∈Dh

td. With these new preferences, the market is

non-pivotal and (U ′a)A ∈ Π.

2.4 Non-extremal Strategy-Proofness.

In this section we study the one-sided U -VCG. As a �rst motivation, we consider

example 2.6 from the previous section. It can be observed that the U -VCG mech-

anism achieves strategy-proofness for all agents and stability, but does not depend

on o�ering any side their most preferred stable allocation. Example 2.9 shows that

strategy-proofness and stability can be achieved in the interior of the set of stable

payo�s.

Example 2.9. Strategy-proofness can be obtained in the interior of the set of sta-

ble payo�s.
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Hospital Stable Payo�s
Hospitals

d1 d2

h1 2.5 1

h2 3 4.5

Doctors

d1 d2

h1 1.5 4

h2 2 3.5

The U -VCG uses the following values:

U(A) = V (h1d1) + V (h2d2) = 4 + 8 = 12

U(A\h1) = ud1(h1)+V (h2d2) = 1.5+8 = 9.5

U(A\h2) = V (h1d1)+ud2(h2) = 4+3.5 = 7.5

U(A \ d1) = uh1(d1) + V (h2d2) = 2.5 + 8 =

10.5

U(A\d2) = V (h1d1)+uh2(d2) = 4+4.5 = 8.5

Hence,

πUh1 = 12− 9.5 = 2.5; πUh2 = 12− 7.5 = 4.5;

πUd1 = 12− 10.5 = 1.5; πUd2 = 12− 8.5 = 3.5

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Hospital Optimal

U-VCG

Doctor Optimal

πh1

πh2

We know that the U -VCG mechanism is not stable in the market of example 2.7.

However, the following example shows that the U -VCG for doctors is stable and

strategy-proof for doctors.

Example 2.10. One-sided strategy-proofness can be obtained without o�ering that

side their most preferred stable payo�.

Hospital Stable Payo�s

Hospitals

d1 d2

h1 4 5

h2 4 4

Doctors

d1 d2

h1 0 0

h2 1 4

The U -VCG uses the following values:

U(A) = V (h1d1) + V (h2d2) = 4 + 8 = 12

U(A\h1) = ud1(h1)+V (h2d2) = 0+8 = 8

U(A\h2) = V (h1d1)+ud2(h2) = 4+4 = 8

U(A\d1) = uh1(d1)+V (h2d2) = 4+8 = 12

U(A\d2) = uh1(d2)+V (h2d1) = 5+5 = 10 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Hospital Optimal

Hospital U-VCG

Doctor U-VCG

Doctor Optimal

πh1

πh2
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Hence the U -VCG for doctors delivers:

πh1 = V (h1d1)− 0 = 4;

πh2 = V (h2d2)− 2 = 6;

πd1 = 12− 12 = 0; πd2 = 12− 10 = 2

Hence the U -VCG for hospitals delivers:

πUh1 = 12− 8 = 4; πUh2 = 12− 8 = 4;

πd1 = V (h1d1)− 4 = 0;

πd2 = V (h2d2)− 4 = 4

As noted above, the performance of the U -VCG mechanism depends on the divi-

sion of surplus between both sides of the market. In this section, a special class of

division for which the U -VCG for hospitals is stable and strategy-proof are stud-

ied. It is assumed that preferences are linear. When preferences are linear, surplus

can be moved freely from one side to the other. In particular, divisions of the form

uh(Dh) = α(uh(Dh) +
∑
d∈Dh

ud(h)) for all α ∈ [0, 1] are well de�ned.

De�nition 2.14. Let α ∈ [0, 1]. We say that the hospital and doctors preferences

forms an α division if uh(Dh) = α(uh(Dh) +
∑
d∈Dh

ud(h)) for all h and Dh ∈ D.

For a �xed alpha, let πUh (α) the payo� assigned to hospital h by the hospital U -

VCG mechanism. The following lemma describes a few properties of πUh .

Lemma 2.5. Let πUh (α) the payo� assigned to hospital h by the hospital U-VCG

mechanism, then πUh is a monotone increasing piece-wise linear function satisfying:

� πUh (0) = 0 and πUh (1) = V (A)− V (A \ h)

�
d
dα
πUh (α) ≥ α(V (A)− V (A \ h)) for all α ∈ [0, 1]

�
d
dα
πUh (0) = V (hDh) and

d
dα
πUh (0) = 0, where Dh is the set of doctors assigned

to h at the e�cient matching.

The following theorem establishes several conditions for the one-sided U -VCG mech-

anism to deliver stable payo�s in markets characterized by α divisions.

Theorem 2.4. Suppose preferences are linear and Π has a non-empty interior. Let

hd be the hospital matched with d at a �xed e�cient matching.
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� If the lowest stable payo� for every hospital is zero and V (hdd) > V (h′d) for

all d and h′ 6= hd, then there is β ∈ (0, 1) such that for any α ∈ [0, β] πUh (α)

for all h ∈ H is stable.

� For every doctor there are at least two hospitals h, h′ such that V (hd) > 0 and

V (h′d) > 0, then there is β ∈ (0, 1) such that for any α ∈ [β, 1] πUh (α) for all

h ∈ H is stable.

Suppose that in a particular market all the surplus is generated by hospitals. In

this case, hospitals' preferences could be elicited using the VCG for hospitals mech-

anism and the hospital-optimal matching would be implemented in a strategy-proof

manner. In this case every hospital h would receive πUh (1) = V (A) − V (A \ h) as

a payo� and doctors would receive their minimal stable payo�. Now suppose that

in that market, a small quantity of surplus is shifted from hospitals; for example

by o�ering some wages to doctors. In this new market with wages, the set of stable

payo�s has not changed as V (hd) remains unchanged by the wage o�ered by h. In

this market, using VCG for hospitals would still be possible, however, according to

theorem 2.4 if the U -VCG for hospitals mechanism is used instead, then an interior

solution would be achieved i.e. hospitals would receive less than their maximum

stable payo�s and doctors would receive more than their minimum stable payo�s.

2.5 Hospital Strategy-proofness in the q-Market

Roth's theorems show that, in the 0-market, it is not possible to achieve strategy-

proofness for hospitals or all agents simultaneously. In sharp contrast, in the ∞-

market, strategy-proofness and stability for hospitals is possible. Which model de-

scribes better a particular real market depends on the institutional environment.

In school choice, transfers are completely prohibited whereas, in residents match-

ing, the monetary component of any transaction is a fundamental part. In markets

54



where transactions are allowed, the level of discreteness of transfers is a market de-

sign variable. The following theorem shows that, if strategy-proofness for hospitals

is important in a particular market, there is always a discrete level of transactions

that achieves it, i.e. transfers only need to be as small as the smallest common fac-

tor between the set of possible valuations.

Theorem 2.5. Suppose preferences are integer valued and V satis�es the oppor-

tunity cost condition, then strategy-proofness and stability are possible in any q-

market for any q ∈ Z such that q ≥ 1.

When a stable allocation is to be implemented in a market where discrete quan-

tities of money can be exchanged the generalized Gale-Shapley mechanism is the

standard solution. For example, in the formed proposed by Kelso and Crawford

(1982). One important limitation of this mechanism is that it is not strategy-proof

for hospitals. Theorem 2.1 establishes that, when preferences satisfy the opportu-

nity cost condition, and monetary transfers can be continuously adjusted, the VCG

for hospitals is stable and strategy-proof. These two properties can be extended to

markets with discrete quantities of money by using a lowest common denominator

fraction i.e. the smallest tradable quantity of money is su�ciently small to o�set

the smallest change in valuations. One very simple way of expressing this idea is

assuming that preferences are integer-valued. Thus in a market in which prefer-

ences are expressed in thousands of dollars, e.g. the value of a one year contract

between a hospital and a doctor is in thousands of dollars, a stable allocation can

be achieved using the VCG for hospitals mechanism instead of the Gale-Shapley

mechanism.
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2.6 Conclusion

In 2002, 16 law �rms �led a class action law suit, representing 3 former residents

seeking to represent all residents, arguing that the NRMP violated antitrust laws

and was a conspiracy to depress resident's wages. The complaint was:

Defendants and others have illegally contracted, combined and conspired

among themselves to displace competition in the recruitment, hiring,

employment and compensation of resident physicians, and to impose a

scheme of restraints which have the purpose and e�ect of �xing, arti�-

cially depressing, standardizing and stabilizing resident physician com-

pensation and other terms of employment.

Defendants' illegal combination and conspiracy has restrained competi-

tion in the employment of resident physicians by:

(a) stabilizing wages below competitive levels by exchanging competi-

tively sensitive information regarding resident physician compensation

and other terms of employment;

(b) eliminating competition in the recruitment and employment of resi-

dent physicians by assigning prospective resident physician employees to

positions through the National Resident Matching Program (�NRMP�);

and

(c) establishing and complying with anticompetitive accreditation stan-

dards and requirements through the Accreditation Council for Graduate

Medical Education (�ACGME�).

The suit was dismissed on August 12, 2004 in an Opinion, Order & Judgment by

Judge Paul L. Friedman based on evidence regarding the structure of wages in

other decentralized industries and expert opinions from several economists.
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To this date no wage negotiation takes place in the NRMP, however, this paper

shows that allowing transfers to be negotiated in the matching process not only

would �enhance competition�, it would also make agents more willing to report their

true private information. As argued in the introduction, this would increase the e�-

ciency and accountability of the whole program.

2.7 Appendix

This appendix contains the proofs for the theorems stated in the paper. In order

to relate the results of this paper to the literature on VCG auctions we �rst intro-

duce establish a connection between matching markets and auction markets. The

connection establishes that for any stable matching there is an equivalent Walrasian

equilibrium, de�ned as follows.

De�nition 2.15. Let {ua}A be a matching market with hospitals H and doctors

D. Suppose that for all d ∈ D we have ud(h) = 0 for all h ∈ H. A vector t ∈

RD is a Walrasian Equilibrium Price (WEP) if and only if there is Dh ∈ T (t)

such that
⋃
H

Dh = D and for all h 6= h′ Dh

⋂
Dh′ = ∅. ({Dh}H , t) is a Walrasian

Equilibrium (WE).

We �rst consider a couple of lemmas.

Lemma. 2.4 Let Π ⊂ RA be the set of payo�s arising from stable allocations in

market {ua}A. Let {u′a}A be a division of {ua}A and let Π′ ⊂ RA be its set of stable

payo�s. Then, Π = Π′.

Proof. By de�nition, π ∈ Π if and only if
∑
C

πa ≥ V (C) for all C ⊂ A and
∑
A

πa =

V (A). By de�nition of a division, V (C) = V ′(C) for all C ⊂ A, hence Π = Π′. To

see this, consider for example V (hDh) = max
Mt∈M0(hDh)

∑
a∈hDh

ua(Mta) and let D∗ ⊂ Dh

such that V (hDh) = V (hD∗) i.e. D∗ is the optimal subset of doctors among Dh.
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Then by de�nition of a division, for any D ⊂ Dh we have uh(D) +
∑
d∈D∗

ud(h) =

u′h(D) +
∑
d∈D

u′d(h), in particular we have uh(D∗) +
∑
d∈D∗

ud(h) = u′h(D) +
∑
d∈D∗

u′d(h) =

V (hD∗) = V ′(hD∗) = V ′(hDh) = V (hDh).

Lemma 2.6. Let Π ⊂ RA be the set of payo�s arising from stable allocations in

market {ua}A. Let {u′a}A be a division of {ua}A such that u′d(h) = 0 for all h ∈

H. Then (πH , πD) = π ∈ Π if and only if πh = v′h(πD) and πD is a Walrasian

Equilibrium Price in the division {u′a}A.

Proof. Since (πH , πD) = π ∈ Π implies that πh = V (hDh) −
∑
Dh

πd if h is matched

to Dh and πh ≥ V (hD′h) −
∑
D′h

πd for every D′h ⊂ D, then πh = v′h(πD) and πD is a

Walrasian Equilibrium Price in the division {u′a}A.

For completion, as the following results are well-known, we include the proofs for

Proposition 2.

Proposition. 2.2 In all matching markets,

� πMtD
d = V (A)− V (A \ d) for every d ∈ D. Leonard (1983)

� πMtH
d = V (dA) − V (A) for every d ∈ D. Gul and Stacchetti (1999). Where

V (Ad) is the value of a market where an identical doctor d is added.

Proof. We show that πMtD
d = V (A) − V (A \ d) for every d ∈ D. Let MtD be the

doctors optimal matching. Fix d, if d is unassigned in MtD, then the result follows.

If d is assigned to hospital h, let M ′t′D be a matching where everything is identical

to MtD but td and d are removed. In this market, h holds whatever doctors he is

assigned at the current transfers since h preferences satisfy the substitutes condi-

tion. Since the new allocation is stable, it is e�cient. Hence
∑
A\d
πMtD
a = V (A \ d). If

uh(Dh \d)−
∑
Dh\d

πMtD
d < uh(Dh)−

∑
Dh

πMtD
d , then d can increase his payo� in the orig-

inal market, contradicting the maximality of πMtD
d . Thus πMtD

d = V (A) − V (A \ d).

58



To show that πMtH
d = V (Ad) − V (A) for every d ∈ D. Consider a market with

agents A plus a copy of doctor d and a new hospital h′. Let uh′(d) < V (Ad)− V (A)

and zero otherwise. In this new market h′ does not get d (or his copy) in any stable

allocation and hence πMtH
d ≥ V (Ad) − V (A) since (πMtH

D ) constitute a Walrasian

Equilibrium. Suppose now that uh′(d) > V (Ad) − V (A) and zero otherwise. Now

in every stable allocation h′ gets d (or his copy) and hence πd ≤ V (Ad) − V (A)

for any stable allocation in the economy Ah′d. Since any stable allocation in Ah′d

induces a stable allocation in A we have πMtH
d ≤ V (Ad) − V (A). Hence πMtH

d =

V (Ad)− V (A).

Theorem. 2.1 Suppose V satis�es the opportunity cost condition in the continuous

transfers market, then πMtH
h = V (A)− V (A \ h) for every h ∈ H.

Proof. We �rst show that πMtH
h ≤ V (A) − V (A \ h) for all h ∈ H. Without loss

of generality, consider the division where all surplus belongs to hospitals. To show

that πMtH
h ≤ V (A) − V (A \ h) for all h ∈ H. Let h be any hospital and let πMtH

h

be its maximum stable payo�, then πMtH
h = V (A) −

∑
A\h

πMtH
a . Since the hospi-

tal preferred stable allocation belongs to the core, we have
∑
A\h

πMtH
a ≥ V (A/h).

Hence the result. For the converse, without loss of generality, consider the divi-

sion where all surplus belongs to hospitals. For notational simplicity let s∗ be the

set of doctors for hospital s at the doctor optimal stable allocation when hospi-

tal h is not present and let let s∗ be the set of doctors for hospital s at the hospital

optimal stable allocation when hospital h is present. Let π∗ and π∗ be the corre-

sponding prices. By the optimality of s∗ we have vs(π∗) ≥ us(s∗) −
∑
s∗

π∗d, this im-

plies that vs(π∗) ≥ us(s∗) −
∑
s∗

π∗d +
∑
s∗

π∗d −
∑
s∗

π∗d = vs(π∗) +
∑
s∗

(π∗d − π∗d) i.e

0 ≥ vs(π∗) − vs(π∗) +
∑
s∗

(π∗d − π∗d) for all s. We also have that V (A) =
∑
H

vs(π∗) +∑
D

π∗d and V (A/h) =
∑
H/h

vs(π
∗) +

∑
D

π∗d. Subtracting we have V (A) − V (A/h) =∑
H

vs(π∗) +
∑
D

π∗d −
∑
H/h

vs(π
∗)−

∑
D

π∗d, reorganizing terms we have V (A)− V (A/h) =
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vh(π∗) +
∑

[
H\h

vs(π∗) − vs(π
∗) +

∑
s∗

(π∗d − π∗d)] +
∑
h∗

(π∗d − π∗d). Since the second and

third components are non-positive we have V (A) − V (A/h) ≤ vh(π∗) (the third

component is non-positive by the opportunity cost condition).

Lemma. 2.1 and 2.3. Both VCG and U-VCG for agents in B are strategy-proof for

agents in B.

Proof. Suppose agent b ∈ B has preferences ub and the reported and known pref-

erences for other agents are {ua}A\b. Then the VCG payo� for b when sending ub

is ub(M∗) +
∑

a∈A\b
ua(M

∗) − W (A \ b) and ub(M∗∗) +
∑

a∈A\b
ua(M

∗∗) − W (A \ b)

when sending u′b, where (Mt)∗ ∈ argmax
Mt∈M0(A)

∑
a∈A\b

ua(M) + ub(M) and (Mt)∗∗ ∈

argmax
Mt∈M0(A)

∑
a∈A\b

ua(M)+u′b(M). Since ub(M∗)+
∑

a∈A\b
ua(M

∗) ≥ ub(M
∗∗)+

∑
a∈A\b

ua(M
∗∗)

we have that ub(M∗)+
∑

a∈A\b
ua(M

∗)−W (A\b) ≥ ub(M
∗∗)+

∑
a∈A\b

ua(M
∗∗)−W (A\b).

Hence, VCG is strategy-proof for b. The proof for U -VCG is analogous.

Corollary. 2.1 The VCG for Hospitals is stable and strategy-proof.

Proof. The VCG for hospitals is always strategy-proof and and delivers playo�s

equal to V (A)− V (A \ h) for every h ∈ H. According to the previous theorem these

payo�s are identical to the hospital-optimal stable payo�s. Thus, VCG is stable.

Corollary 2.2. In auction markets, VCG payments coincide with the value of the

assigned goods at the lowest Walrasian Equilibrium.

Lemma. 2.2 Unit demand and linear hospital preferences satisfy the opportunity

cost condition.

Proof. Suppose that πMtH
h = V (A) − V (A \ h) for all h ∈ H and �x a hospital

h∗, then there is a stable matching in the market without h∗ in which all agents

receive πMtH
a . By construction for any C ⊂ A \ h∗,

∑
C

πMtH
a ≥ V (C) and V (A \
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h∗) =
∑
A\h∗

πMtH
a . In the market without h∗ doctor d has an optimal stable payo� of

V (A \ h∗) − V (A \ h∗d) (by Leonard's theorem) and V (A \ h∗) − V (A \ h∗d) ≥

πMtH
d = V (Ad) − V (A), where the inequality comes from the optimality of the

doctor-optimal stable payo� and the equality from Gul and Stacchetti's theorem.

Leonard's theorem shows that πMtH
h = V (A) − V (A \ h) for all h ∈ H in the unit

demand case. For the linear case we show directly that πMtH
h = V (A) − V (A \

h) for all h ∈ H. Fix a hospital h∗ and let B the set of doctors matched with h∗.

Let every doctor in B who has a payo� equal to his outside option be unmatched.

For every other d ∈ B, there is a hospital h′, set of doctors A and D ⊂ B such

that V (h′AD) =
∑

a∈h′AB
πMtH
a . Let C be the set of doctors assigned to h′. We show

that V (h′CB) =
∑

a∈h′CB
πMtH
a . V (h′CB) =

∑
a∈h′C

πMtH
a +

∑
a∈B

πMtH
a + (

∑
a∈A

πMtH
a +

πMtH
h′ − V (h′A)), the term in brackets is non-negative by the stability of MtH and

hence V (h′CB) ≥
∑

a∈h′C
πMtH
a +

∑
a∈B

πMtH
a which together with the stability inequality

V (h′CB) ≤
∑

a∈h′C
πMtH
a +

∑
a∈B

πMtH
a imply the result.

Theorem. 2.2 Let π ∈ Π, then there is a division such that πUa = πa, i.e. there is a

division of surplus such that the U-VCG mechanism is stable and strategy-proof for

all agents.

Proof. Let xa be the match of agent a in an e�cient allocation. Let ua(xa) = πa.

For any h and set of doctors Dh 6= xh let uh(Dh) = V (Dhh) −
∑

d∈Dh∩xh
πd. For any d

and h 6= xd let ud(h) = 0. With this division, the allocation is stable whenever any

agent reports a zero value for every match, hence e�cient.

Theorem. 2.3 Let Ua be agent a's private value in an e�cient assignment. Sup-

pose no agent's information is pivotal. i.e. removing one agent's information does

not change the e�cient assignment, and (Ua)A ∈ Π, then the U-VCG mechanism is

strategy-proof for all agents and stable.

Proof. By construction, the U -VCG mechanism is strategy-proof for all agents, if
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no agents information is pivotal, then U(A)− U(A \ a) is equal to the private value

Ua for every agent, which by assumption belongs to Π.

Lemma. 2.5 Let πUh (α) the payo� assigned to hospital h by the hospital U-VCG

mechanism, then πUh is a monotone increasing piecewise linear function satisfying:

� πUh (0) = 0 and πUh (1) = V (A)− V (A \ h)

�
d
dα
πUh (α) ≥ α(V (A)− V (A \ h)) for all α ∈ [0, 1]

�
d
dα
πUh (0) = V (hDh) and

d
dα
πUh (0) = 0, where Dh is the set of doctors assigned

to h at the e�cient matching.

Proof. By de�nition U(A/h)(α) = max
Mt∈M0(A)

∑
a∈A/hDh

uMt
a + (1− α)V (hDh). By the en-

velope theorem (see for example Milgrom and Segal (2002)) U(A/h)(α) is a piece-

wise linear function and U(A/h)(α) is monotone (since V (hDh) ≥ 0 for all h and

Dh that are ever chosen at the optimum). Hence πUh (α) = U(A) − U(A \ h)(α)

is an increasing piecewise linear function such that πUh (0) = 0, πUh (1) = V (A) −

V (A \ h), d
dα
πUh (0) = V (hDh) where Dh is the set of doctors matched with h and

d
dα
πUh (1) = 0. Since πUh (0) = 0 and d

dα
πUh (0) = V (hDh) ≥ V (A) − V (A \ h) we have

πUh (α) ≥ α(V (A)− V (A \ h)) for all α ∈ [0, 1].

Theorem. 2.4 Suppose preferences are linear and Π has a non-empty interior. Let

hd be the hospital matched with d at the e�cient matching.

� If the lowest stable payo� for every hospital is zero and V (hdd) > V (h′d) for

all d and h′ 6= hd, then there is β ∈ (0, 1) such that for any α ∈ [0, β] πUh (α)

for all h ∈ H is stable.

� If for every doctor there are at least two hospitals h, h′ such that V (hd) > 0

and V (h′d) > 0, then there is β ∈ (0, 1) such that for any α ∈ [β, 1] πUh (α) for

all h ∈ H is stable.
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Proof. Since the lowest stable payo� for every hospital is zero, πU(0) is stable. Since

V (hdd) > V (h′d) for all d and h′ 6= hd, it is possible to increase h payo� by ε > 0

and have a set of stable payo�s, i.e. it is possible to reduce the payo� of all doc-

tors matched with hospital h without them being able to form a blocking coalition.

Hence ε(V (h1Dh1), · · · , V (hHDH)) is a stable payo� for hospitals for ε su�ciently

small. Let β = sup{ε > 0|ε(V (h1Dh1), · · · , V (hHDH)) is a stable payoff}. Since Π

is a convex closed set we have the result.

Suppose that for every doctor there are at least two hospitals h, h′ such that V (hd) >

0 and V (h′d) > 0. Suppose there is a hospital h such that d
dα
πUh (α) > 0 for ev-

ery α ∈ (ε, 1) for every ε > 0. This implies that for all α ∈ (ε, 1), πUh (α) =

V (hD∗h) > 0 i.e. hospital h is assigned doctors in D∗h, even when they produce a

surplus V (hD∗h)(1 − α); however, there for every doctor in D∗h there is another hos-

pital h′ such that V (h′d) > V (h′d)(1 − α). Thus for every h there is εh for which

πUh (α) = 0 for all α ∈ [εh, 1]. Let β = max{εh}.

Theorem. 2.5 Suppose preferences are integer valued, then strategy-proofness and

stability are possible in any q-market for any q ∈ Z such that q ≥ 1.

Proof. Suppose the VCG mechanism is used. If preferences are integer valued, then

agent b payment is equal to pb = ub(Mb) −W ′(A) + W ′(A \ b) ∈ Z. If in addition,

q ≥ 1 all possible payments are implementable as a matching. Hence, strategy-

proofness and stability are possible in the ∞-market.
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Chapter 3: The Power of Weak Incentives

Abstract. A social planner would like a socially optimal outcome to be chosen in

an environment with externalities. The standard approach to solving the social plan-

ner's problem is to design mechanisms with desirable incentive properties such as

strategy-proofness or equilibrium uniqueness. These mechanisms make the desired

outcome a Nash equilibrium and rely on agents' rationality to coordinate on it. I

introduce mechanisms with weak incentives to o�er a di�erent approach. These

mechanisms make the desired outcome a Nash equilibrium, but rely on agents' be-

havioral traits - instead of rationality - to coordinate on the desired outcome. A

mechanism with weak incentives is an indirect mechanism in which the payo� of

agent i does not depend on his report. These mechanisms shed light on the relative

importance between making the desired outcome a Nash equilibrium and o�ering in-

centives to coordinate on it. As an application, I show that in large economies, if

players' reports are true on average, mechanisms with weak incentives solve the so-

cial planner's problem. I demonstrate this result using an experimental congestion

game. In the lab, a mechanism with weak incentives realized 95% of the e�ciency

achieved by a social planner with full information. This suggest that lie-aversion, a

well-established behavioral trait, can be used to design e�ective mechanisms.

Ever since Hurwicz (1972) introduced the concept of incentive compatibility, the ac-

cepted wisdom has been that the minimal requirement to implement a social goal is
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to have a mechanism in which the social optimum is a Nash equilibrium. In prac-

tice, however, the standard approach has been to require stronger incentive prop-

erties because incentive compatible mechanisms potentially have undesired Nash

equilibria, or their desired Nash equilibria might not be easy to reach. This ap-

proach has been used in kidney exchange (Roth et al. (2004)), school choice (Ab-

dulkadirouglu and Sönmez (2003)) and military assignments (Sönmez and Switzer

(2013)).

Providing strong incentive properties has been successful in practice, but it has lim-

ited the study of mechanisms in at least three ways: i) it is not applicable to prob-

lems that are incompatible with these incentive properties, ii) it fails to incorporate

behavioral traits as a model of human behavior and iii) it leaves many interesting

questions out of the scope. The �rst limitation is well-understood, but it has typi-

cally been addressed by replacing one incentive property for another. This swap is

not always possible. The second limitation is more delicate. There is evidence that

mechanisms with strong incentive properties sometimes work and sometimes fail.

Typically, their success is attributed to their incentives; however, this interpreta-

tion is inconsistent with their failures. Furthermore, there is evidence that mecha-

nisms without strong incentives properties sometimes succeed. These observations

are consistent with the existence of behavioral traits. Finally, once behavioral traits

are acknowledged, it is possible to investigate, for example, if some strategy-proof

mechanisms are signi�cantly better than others.

This paper addresses the second limitation and shows that behavioral traits can be

as e�ective as strong incentive properties in solving social problems. Speci�cally,

this paper i) introduces mechanisms with weak incentives � the minimal incentives

for the social goal to be a rational choice, and ii) shows that these mechanism can

rely on behavioral traits to solve externality problems in big economies. The ob-

jective is to achieve e�ciency in an environment with externalities: each agent in
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a group must select an action, but the e�cient pro�le of actions depends on the

agents' private information. In this environment, a mechanism with weak incentives

is an indirect mechanism in which each individual selects an action and reports his

private information. The mechanism assigns prices that re�ect the externalities pro-

duced by each action. These mechanisms possess the e�cient pro�le of actions as

a Nash equilibrium, but do not incentivize the truthful revelation of private infor-

mation. Hence, this class of mechanisms constitutes a natural way to de�ne the

incremental value of incentives.

The main drawback of using mechanisms with weak incentives is that they gener-

ically possess many equilibria because best responses are thick, as all reports are

associated with the same payo� for any given action. This does not prevent them

from solving the social planner's problem. Suppose, for example, that agents have

a tendency to report the truth when they cannot pro�t from misrepresenting their

private information. In this case, a mechanism with weak incentives would be as

e�ective as a mechanism with stronger incentive properties. This is indeed the typ-

ical assumption of strategy-proof mechanisms, as they also often possess equilibria

other than truth-telling.

Of course, human beings might or might not report their private information when

confronted with weak incentives. The question is for actual human behavior: What

kind of problems can be e�ectively solved? This paper explores this question by

showing that externality problems in big economies can be e�ectively solved by

mechanisms with weak incentives for a large class of behavioral assumptions. Their

e�ectiveness is con�rmed in the experimental laboratory using a congestion prob-

lem.

Mechanisms with weak incentives are e�ective in solving externality problems in

which average truth-telling is su�cient for achieving e�ciency. For example, the

e�cient provision of a public good requires that the sum of net bene�ts is accu-
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rately signed; if some agents overstate their values while others shade by the same

amount, the result would still be e�cient.1 Analogously, correcting a negative ex-

ternality requires the calculation of the social marginal cost, which typically is the

sum of individual marginal costs of a�ected parties. In these cases, the welfare

function depends on the average private value, not on each individual value. Knowl-

edge of the average type at the e�cient outcome is enough to implement it. Hence,

actions can be priced correctly even if some agents misrepresent their private infor-

mation.

To study the coordination problem, this paper uses non-equilibrium adjustment

processes. These processes characterize how agents select actions and reports, given

a current pro�le of actions and reports. This tool is commonly used in evolution-

ary game theory. It is shown that a concave welfare function is su�cient for a large

class of non-equilibrium adjustment processes to converge to the e�cient Nash equi-

librium in problems characterized by the average type. Both conditions, depen-

dence on average values and concavity of the welfare function, are common in eco-

nomic problems. This theoretical result provides reasons to believe that this class of

mechanism could be e�ective in real life. However, the true test of the e�ectiveness

of a mechanism is empirical.

A tra�c congestion game is used to test the e�ectiveness of a mechanism with weak

incentives in the experimental laboratory. Tra�c congestion represents an ideal

application. It is a big problem in which a very large number of agents play each

1The purchase (or funding) of a unit of public good by one agent has a positive externality on
other agents.
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other repeatedly.2 Commuters have heterogeneous values of commuting and time.3

The welfare function is concave and depends on the average value of time. In prin-

ciple, a social planner could ensure e�cient behavior by introducing a congestion

price equal to the social marginal cost at the e�cient level of tra�c. In practice,

however, policymakers lack the information to set such a price.4 A mechanism de-

sign approach is still necessary.

The experimental design consists of a driving game in which 14 subjects indepen-

dently decide whether to �drive� or �not drive� on a �xed road for 30 rounds of play.

At the beginning of the game, every subject was randomly and privately assigned

two numbers: i) a value of commuting and ii) a value of time. Neither the distribu-

tion nor the support of values was revealed to the subjects. Types were chosen to

ful�ll the following three functions: (i) replicate a large market, (ii) minimize the

set of agents who belong to both the Nash equilibrium without congestion pricing

and the social optimum, and (iii) allow for zero e�ciency gains with the message

mechanism.

Two main treatments were considered: no price and message price. The �rst treat-

ment represents a situation with no congestion prices and the second uses a mech-

anism with weak incentives. The message price treatment uses agents' messages

2Empirical studies have found that the loss of welfare due to tra�c congestion is between $32
and $121 billion dollars every year in the United States. According to Schrank et al. (2012), the
congestion �invoice� for the cost of extra time and fuel in 498 urban areas in 2011 was (in 2011
dollars): $121 billion. On the other hand, Litman (2014) considers that $32 is a more appropriate
value, as the former report consider a value of time �unreasonable� high. The value of time consid-
ered by the former is $16.79 per hour and $8.37 by the latter. These studies also have a di�erent
position on the e�cient level of congestion.

3The value of commuting is the utility derived from getting from A to B. The value of time is
the opportunity cost of every unit of time spent on the road.

4This lack of information is a problem that no system has been able to solve in practice. For
example, both the Congestion Charge in London and Singapore's Area Licensing Scheme, which
are deemed the most successful congestion systems in the world, use demand estimations and an
objective level of congestion to set the congestion price to be charged to drivers. Z.F. Li (1999)
describes the evolution the the Singapore's Area Licensing Scheme, which originally had a tar-
get reduction of 25% - 30%. According to the transport for London report (2003), the London's
congestion charging was originally intended to reduce tra�c by 10% - 15%.
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about their value of time and the observed level of tra�c to calculate congestion

prices. Tra�c observations are used to measure the marginal impact, in time, of

adding an extra vehicle to the road. Messages are used to measure the cost of the

marginal increase in time.

Four additional treatments were considered to provide control and robustness to

the �ndings. The �xed price treatment provides a measure of the maximum observ-

able e�ciency. This treatment considers a social planner with access to all private

information and imposes the optimal �xed congestion price in all rounds. The dy-

namic price treatment follows the same structure of the message price, but behaves

as if all agents reported the truth all the time. The balanced treatment considers

budget-balanced versions of the dynamic and message treatments. The random

treatment considers random types instead of the constructed types used in other

treatments.

The experimental results are promising. E�ciency is measured with respect to the

observed e�ciency achieved by the �xed price treatment, as this treatment repre-

sents the maximum possible e�ciency a policymaker could achieve in a real situ-

ation. The observed e�ciencies are as follows: 65.90% (13.01%) for the no price

treatment and 95.00% (3.44%) for the message treatment.5 The random treatment

achieved an e�ciency of 91.74% (9.3%).6 However, when one of the six sessions is

omitted, the e�ciency of the random treatment becomes 95.65% (3.2%). The low

e�ciency, 72.21%, achieved by one of the random sessions was due to the small

scale of the experiment. In the controlled sessions, types were chosen to represent

a big market. In the low e�ciency session, 4 out of 14 subjects had a market power

5The standard deviation is reported in brackets. The paired Wilcoxon signed-rank test was
used to reject the null hypothesis that the treatments with congestion prices achieve the same
e�ciency as the treatment with no price. In all cases the null was rejected at a con�dence level of
99%.

6This e�ciency is measured with respect to the maximum theoretical e�ciency associated with
each draw of random types. The theoretical e�ciency associated with the message price treatment
is 91.46% (3.31%).
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inconsistent with a big market.

This paper is related to the literature on mechanism design, the growing literature

on behavioral implementation, and the well-established literature on congestion

pricing.

The inconsistent performance of strong rational incentives provides evidence that

human behavior - not accounted for in the rational model - plays a role in the suc-

cess of many mechanisms. The most famous, but not unique, example of a mecha-

nism that fails despite providing strong rational incentives is the second price auc-

tion, which is strategy-proof. Kagel et al. (1987) report an experiment in which

bidders do not report their true value.7 Attiyeh et al. (2000) and Kawagoe and

Mori (2001) report experiments in which another strategy-proof mechanism, a ver-

sion of the Vickrey-Clarke-Groves (VCG) mechanism, achieve rates of truth-telling

as low as 10%. There are mechanisms that display the opposite behavior. Double

auctions are the most well-known example of a mechanism that is typically not in-

centive compatible, but performs well most of the times. Smith (1962; 1980) shows

that the double auction mechanism consistently achieves the competitive equilib-

rium outcome despite agents' manipulation possibilities. Budish and Kessler (2014)

show that the mechanism for the fair allocation of indivisible goods without money

proposed by Budish (2011) performs well in practice, despite providing opportuni-

ties for manipulation.8

The above inconsistencies have led to two di�erent views towards behavioral traits.

The �rst view considers that mechanisms should be robust to behavioral traits.

Saijo et al. (2007) propose double implementation, both in Nash and weakly dom-

inant strategies. Li (2015) proposes implementation in obviously-strategy-proof

7This is a prevalent phenomenon as Kawagoe and Mori (2001); Kagel and Levin (1993) report
similar �ndings.

8Similarly, Che and Tercieux (2015) propose a mechanism which is neither strategy-proof, nor
stable, nor e�cient to obtain a matching that approximately obtains the three properties.
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strategies.9 These notions exacerbate the �rst limitation mentioned above, as they

are harder to provide in practice. Bierbrauer et al. (2014) considers mechanisms

that are robust to individuals with social preferences. Their characterization de-

pends on payo� equivalent reports, a characteristic also present in this paper. Farhi

and Gabaix (2015) implement an optimal tax scheme with behavioral agents who

might not perfectly optimize their budgets, and they show that the optimal tax

scheme is simple, a characteristic shared with this paper. These similarities are in

spirit, not in the letter. However, they might help us understand how behavioral

implementation is di�erent or similar to rational implementation. de Clippel (2014)

shows they are not entirely di�erent, but that their connection is still not well un-

derstood. The second view leverages on behavioral traits to achieve social goals.

This paper belongs to this second branch. In this branch there are several papers

that explore mechanisms without strong incentives, but do not explicitly address

how the desired Nash equilibrium is reached. Abdulkadiro§lu et al. (2011) and Ab-

dulkadiro§lu et al. (2015) propose a non-truth-telling mechanism for school choice

that improves upon a strategy-proof mechanism but provide no evidence that these

gains could be realized in practice or how. Featherstone and Niederle (2015) shows

experimentally that these non-truth-telling equilibria might me very di�cult to

reach in practice and propose a truth-telling-not-strategy-proof mechanism, how-

ever, their experiments only suggest a potential for truth-telling-not-strategy-proof

mechanisms, since they do not explicitly address how their subjects reach equilib-

rium. There are papers that use non-equilibrium strategies as means of implemen-

tation. Fragiadakis and Troyan (2015) shows that focal, non-equilibrium, strategies

can be used to improve e�ciency in an assignment game. In contrast to the men-

tioned papers, this paper: i) deals with externalities instead of assignment games,

9A strategy is obviously dominant if, for any deviating strategy, starting from any earliest in-
formation set where both diverge, the best possible outcome from the latter is no better than the
worst possible outcome of the former.
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ii) provides a general framework for understanding equilibrium selection in terms of

behavioral traits, iii) shows explicitly that average-truth-telling is su�cient to con-

verge to the e�cient outcome, and iv) designs an experiment that allows one to at-

tribute the success of the mechanism to the aforementioned behavioral trait. Both

Featherstone and Niederle (2015) and Fragiadakis and Troyan (2015) experimental

results can be interpreted as leveraging on the agents' tendency to report the truth

- a feature also present in this paper and well-established in the behavioral game

theory literature (Gneezy (2005); Erat and Gneezy (2012); Gneezy et al. (2013)).

This paper is also related to the literature on congestion abatement systems. Ex-

ternalities and externality abatement have been studied consistently at least since

Pigou (1920), who proposed to charge agents the value of the marginal externality

they produce at the e�cient social allocation. As mentioned before, this approach

requires information not available to the policymaker. Many solutions have been

studied. For example, Sandholm (2002; 2005; 2010) provides a systematic treatment

of the dynamics of congestion prices in continuous time. Both Li (2002) and Yang

et al. (2004) provide evidence that prices can also be adjusted in discrete time.

Yang and Wang (2011) study systems of tradable permits. They show that the sys-

tem can achieve full e�ciency when the market for permits is perfectly competi-

tive. Continuing their work, Wang et al. (2014) showed that the system of tradable

permits can be guaranteed to achieve the social optimum allocation by adjusting

the quantity of permits according to the observed price in the permits market. Nie

(2012) have shown that these tradable permit systems are very sensitive to transac-

tion costs in the permits market. Guo and Yang (2010) show that, when demand is

�xed, it is possible to achieve budget balancedness using an appropriate combina-

tion of taxes and subsidies. The message system can achieve budget balancedness

even when demand respond to prices. Several studies have taken congestion games

to the experimental lab. Schneider and Weimann (2004), Selten et al. (2007), and
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Hartman (2012) study route choice behavior with and without congestion prices.

Rapoport et al. (2004) and Rapoport et al. (2014) study entry games with and

without congestion prices. In both the experimental and theoretical literature on

congestion, it is assumed that the policymaker or mechanism knows the value of

the externality i.e. knows every agents' value of time and that this value is homo-

geneous. The theory and experiment in this paper do not assume knowledge of pri-

vate information nor its homogeneity in the population.

3.1 Mechanisms with weak incentives

This section introduces mechanisms with weak incentives in a general framework to

highlight the interactions between rational incentives, information, and behavioral

traits in mechanisms designed to solve the social planer's problem in an environ-

ment with externalities. The purpose of these mechanisms is to isolate behavioral

traits as an equilibrium re�nement. These mechanisms o�er the social optimum

as a Nash equilibrium, but do not incentivize agent's to coordinate on it. Further-

more, it is assumed that agents have private information, but lack common knowl-

edge of the distribution of types. The informational assumption might hold in some

real life applications.

Consider a set of agents N = {1, . . . , N}. Agents must select an action simultane-

ously and independently from each other. Agent i selects actions from the �nite set

Xi. An action pro�le x = (x1, . . . , xN) describes an action for each agent. The set

of action pro�les is denoted by X = ΠNXi. Agent i is described entirely by his type

θi ∈ Θi. Types are private information. Let θ = (θ1, . . . , θN) and Θ = ΠNΘi.

Individuals have quasilinear utility functions vi(x, θi, t) = ui(x, θi) + t, where

ui : X × Θi → R depends on everyone actions and i's private information. Agent i

knows his type θi and his set of strategies Xi, but does not know the distribution of

types.
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The pro�le of actions x ∈ X is e�cient at θ if
∑

N ui(x, θi) ≥
∑

N ui(y, θi) for all

y ∈ X. The e�ciency level associated with an action pro�le x at θ is V (x, θ) =∑
N ui(x, θi). The set of e�cient pro�les of actions at θ is denoted by x∗(θ). A pro-

�le of actions x ∈ X is a Nash equilibrium at θ if vi(xi, x−i, θi) ≥ vi(yi, x−i, θi) for

all yi ∈ Xi for all i ∈ N . The set of Nash equilibria at θ is denoted by x(θ). In

many situations there is no e�cient Nash equilibrium i.e. x(θ)∩x∗(θ) = ∅. Consider

the following example.

Example 3.1. Consider a situation with two agents N = {1, 2} and actions X1 =

{a1, b1} and X2 = {a2, b2}. Each agent has two possible types: Θ1 = {θ1, θ
′
1} and

Θ2 = {θ2, θ
′
2}. Suppose payo�s are as follow:

(θ1, θ2) a2 b2

a1 4, 3 2, 2
b1 3, 5 1, 4

(θ1, θ
′
2) a2 b2

a1 4, 3 2, 4
b1 3, 1 1, 2

(θ′1, θ2) a2 b2

a1 2, 3 4, 2
b1 3, 5 5, 4

(θ′1, θ
′
2) a2 b2

a1 2, 3 4, 4
b1 3, 1 5, 2

The e�cient pro�le of actions and Nash equilibria are as follow: x∗(θ1, θ2) = (b1, a2)

and x(θ1, θ2) = (a1, a2), x∗(θ′1, θ2) = (b1, b2) and x(θ′1, θ2) = (b1, a2), x∗(θ1, θ
′
2) =

(a1, a2) and x(θ1, θ
′
2) = (a1, b2), x∗(θ′1, θ

′
2) = (a1, b2) and x(θ′1, θ

′
2) = (b1, b2).

A social planner would like to ensure that a member of x∗(θ) is chosen by the agents

for all θ ∈ Θ by introducing a mechanism. A mechanism is a pair M, g, with M =

ΠNMi and g : M → O, where Mi is player's i message space and O = X×RN is the

outcome space. A mechanism assigns a pro�le of actions gx(m) and transfers gt(m)

for every pro�le of messages m = (m, . . . ,mN). A message pro�le m is a Nash equi-

librium at θ ∈ Θ if vi(gx(mi,m−i), θi, gt,i(mi,m−i)) ≥ vi(gx(m
′
i,m−i), θi, gt,i(m

′
i,m−i))

for all m′i ∈Mi and i ∈ N . The set of Nash equilibria in the mechanism M, g at θ is

denoted by mg(θ). The mechanism M, g is e�cient whenever x∗(θ) ∩ gx(mg(θ)) 6= ∅
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for all θ ∈ Θ. In this case m∗g(θ) is a selection of mg(θ) such that gx(m∗g(θ)) ∈ x∗(θ)

for all θ ∈ Θ. A message mi is a dominant strategy for agent i at θi if

vi(gx(mi,m−i), θi, gt,i(mi,m−i)) ≥ vi(gx(m
′
i,m−i), θi, gt,i(m

′
i,m−i)) for all m

′
i ∈ Mi

and m−i ∈ M−i = ΠN\iMj. A mechanism M, g is budget balanced at m ∈ M if∑
N ti(m) ≤ 0. It is assumed that the social planner knows Θ, but not the distribu-

tion of types.

It is widely accepted that the existence of an e�cient mechanism is not su�cient to

guarantee that x∗(θ) will be chosen by the agents for all θ ∈ Θ because there might

be multiple equilibria. This problem has been addressed in many di�erent ways.

For example, o�ering a unique equilibrium guarantees that the only rational choice

is the desired outcome and making truth-telling a weakly dominant strategy makes

it easier to coordinate in the truth-telling equilibrium even when there are other

equilibria. There are many other options, but all of them share one characteristic:

they limit the set of problems that can be solved and demand a level of rationality

that might not be available in practice. This paper o�ers an alternative approach

for dealing with multiple equilibria: rely on agents' behavior to coordinate on the

desired outcome. This is done by providing a mechanism that has the desired out-

come x∗(θ) as a Nash equilibrium, but does not incentivize agents to select it. This

class of mechanism posses weak incentives.

A mechanism M, g is a mechanism with weak incentives if Mi = Xi × Θi, gx(x, θ) =

x and gt(x, θ) = p : X × Θ → RN is such that is such that vi(x, θi, pi(x, θ′i, θ̂−i)) =

vi(x, θi, pi(x, θ
′′
i , θ̂−i)) for all x ∈ X, θ′i, θ

′′
i ∈ Θi and θ̂−i ∈ Θ−i. Agents select an

action and send a report about their type, but their payo� does not depend on the

particular report they send. Hence, this class of mechanisms do not incentivize the

revelation of private information. As in the case of direct mechanisms, it is possible

to choose p such that (x∗(θ), θ) becomes a Nash equilibrium for all θ ∈ Θ. For each

agent, pi is a list of prices for each action in Xi. The construction of an e�cient set
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of prices p relies on the celebrated Vickrey - Clarke - Groves mechanism (VCG).10

The VCG mechanism is an e�cient direct mechanism with M = Θ, gx(m) ∈

argmax
y

V (y,m) and gt,i(m) =
∑

N\i uj(x(m),mj) − hi(m−i), where hi : Θ−i → R.

Truth-telling is a dominant strategy in the VCG mechanism. To obtain an e�cient

mechanism with weak incentives, let pi(x, θ) =
∑

N\i uj(x, θj) − hwi (x−i, θ−i) be the

price associated with xi when other agents select x−i, where hi : X−i × Θ−i → R.

These prices de�ne the weak VCG mechanism (wVCG). Both transfers and prices

can be set to represent the marginal impact of the introduction of an agent, in the

case of the VCG, or the selection of an action, for the wVCG. This is achieved by

setting hi(m−i) = max
∑

N\i uj(x,mj) for all i ∈ N for VCG and selecting a default

pro�le of actions x0 ∈ X and letting hwi (x−i, θ−i) =
∑

N\i uj((x
0
i , x−i), θj) for all

i ∈ N for wVCG. Unless otherwise noted, these transfers and prices will be used

in all examples. The di�erences between the VCG and the wVCG are illustrated in

the following example.

Example 3.2. Consider the problem from example 1. The games induced by VCG

and wVCG with default x0 = (b1, b2) when the true state of the world is (θ1, θ2)

are shown below. Transfers and prices are added to (or subtracted from) the payo�

associated with each pro�le of messages.

10Vickrey (1961); Clarke (1971); Groves (1973)
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VCG

(θ1, θ2) θ2 θ′2

θ1 3 + 0, 5− 1 4− 1, 3 + 0

θ′1 1− 1, 4 + 0 2 + 0, 2− 1

wVCG

(θ1, θ2) a2, θ2 a2, θ
′
2 b2, θ2 b2, θ

′
2

a1, θ1 4− 2, 3 + 2 4 + 2, 3 + 2 2− 2, 2 + 0 2 + 2, 2 + 0

a1, θ
′
1 4− 2, 3− 2 4 + 2, 3− 2 2− 2, 2 + 0 2 + 2, 2 + 0

b1, θ1 3 + 0, 5 + 2 3 + 0, 5 + 2 1 + 0, 4 + 0 1 + 0, 4 + 0

b1, θ
′
1 3 + 0, 5− 2 3 + 0, 5− 2 1 + 0, 4 + 0 1 + 0, 4 + 0

In wVCG, there are 4 Nash equilibria

m(θ) = {(b1, θ1, a2, θ2), (a1, θ1, a2, θ
′
2), (b1, θ

′
1, a2, θ2), (b1, θ

′
1, b2, θ2)}

in VCG m(θ1, θ2) = (θ1, θ2) is the unique equilibrium in dominant strategies. Both

mechanism are e�cient.

The following propositions show some properties of mechanisms with weak incen-

tives. All proofs are in the appendix.

Proposition 3.1. There is an e�cient mechanism with weak incentives, namely

the wVCG.

A mechanism with weak incentives makes the e�cient allocation a rational choice

i.e. any x ∈ x∗(θ) can be supported as a Nash equilibrium, however, agents are not

incentivized to reveal their private information. This weakening in solution concept,

with respect to strategy-proofness, allows for some new possibilities. In particular,

budget balancedness is always possible to obtain.
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Proposition 3.2. There is a budget balanced mechanism with weak incentives for

any pro�le of actions. In particular, any e�cient pro�le of actions can be supported

as a budget balanced Nash equilibrium.

In some applications sending a report and selecting an action could be di�cult for

the agents or for the agency collecting the prices. In these cases, decisions could be

preferably made sequentially. The next proposition shows that e�ciency can also

be achieved in this manner.

Proposition 3.3. Any e�cient pro�le of actions can be supported as a subgame

perfect Nash equilibrium of a sequential mechanism with weak incentives.

The above propositions and example show crucial di�erences between VCG and

wVCG. VCG induces the e�cient pro�le of actions by incentivizing the revela-

tion of private information while wVCG allows for e�ciency without incentivizing

agents to select the socially desirable outcome. The wVCG mechanism depends

completely on agents' behavioral traits to coordinate on the desired outcome. The

next section develops the idea of behavioral traits as an equilibrium re�nement.

3.2 Mechanisms with weak incentives in large average economies

This section develops a model in which behavioral traits are used as an equilibrium

re�nement for a mechanism with weak incentives. In this model, agents can adjust

their strategies over time, allowing the emergence of the desired Nash equilibrium

as a social convention. The model is developed in continuous time and agents for

technical convenience.

Agents have a common and �nite set of actions S = {1, . . . , S} with typical ele-

ment s.11 The common set of types Θ is �nite with typical element θ = (θ1, θ2),

11This can be done without loss of generality by letting S = ∪NXi
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θj ∈ RS.12 There is a positive mass of agents µθ of each type θ. The mass of agents

of type θ doing s is denoted by xθs ≥ 0. Pro�les of actions are replaced by distri-

butions of actions x ∈ X = {x ∈ R|Θ|×|S|+ |
∑

s xθs = µθ}. The mass of agents,

of any type, doing s is denoted by xs ≥ 0. The anonymous distribution of ac-

tions X ′ = {x ∈ R|S|+ |
∑

s xs =
∑

θ µθ} describes what actions are being taken

without specifying which type is doing them. For every x ∈ X, let x′ be such that

x′s =
∑

θ xθs.

An agent with type θ doing s has utility function uθs(x) = Fs(x
′)θ1s + θ2s, where

F : X ′ → RS, F ∈ C2 is an observable externality function.13 To simplify notation,

F (x′) will be denoted by F (x). Types are scaled so that for every θ ∈ Θ there is an

action sθ such that uθs(x) = 0 for all x ∈ X. Social welfare is captured by W (x) =∑
θ

∑
s xθsuθs =

∑
s Fs(x)xsθ̄1s(x) +

∑
s xsθ̄2s(x), where θ̄1s(x) = 1

xs

∑
θ xθsθ1s and

θ̄2s(x) = 1
xs

∑
θ xθsθ2s represent the average type doing action s ∈ S. It is assumed

that W is strictly concave. The e�cient distribution of actions x∗ is characterized

by the �rst order conditions of the Kuhn-Tucker problem:14

Fs(x
∗)θ1s + θ2s +

∑
j

∂Fj
∂xs

∑
θ

x∗θjθ1j = λθ − λθs for all θ ∈ Θ, s ∈ S

λθ ≥ 0, λθ[
∑
x∗θj − µθ] = 0 for all θ ∈ Θ

λθs ≥ 0, λθ[x
∗
θs] = 0 for all θ ∈ Θ, s ∈ S

(3.1)

A distribution of actions x constitutes a Nash equilibrium if vθs(x) = max
j∈S

vθj(x)

whenever xθs > 0. Equivalently, x is a Nash equilibrium if there is kθ ≥ 0 such that

vθs(x) = k whenever xθs > 0 and vθs(x) ≤ k whenever xθs = 0.

12This can be done without loss of generality by letting Θ = ∪NΘi

13If there are no externalities, there is no need for a mechanism as each agent could select his
favorite action without hurting others. Both positive and negative externalities are considered.

14The Lagrangian function is L(x, λ) = W (x)−
∑
θ λθ(

∑
j

x∗θj − µθ) +
∑
θ

∑
s λθsxθs
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Pigou (1920) realized that e�ciency can be achieved in the presence of externalities

if agents internalize them through prices. In this case, a price equal to ps(x∗) =∑
j

∂Fj
∂xs

∑
θ

x∗θjθ1j for doing action s ∈ S would make the condition for optimality

and Nash equilibrium identical. To see this observe that the �rst order conditions

imply the conditions for a Nash equilibrium with k = λθ, xθs > 0 implies that

Fs(x
∗)θ1s + θ2s +

∑
j

∂Fj
∂xs

∑
θ

x∗θjθ1j = λθ = k and xθs = 0 implies that Fs(x∗)θ1s + θ2s +∑
j

∂Fj
∂xs

∑
θ

x∗θjθ1j = λθ − λθs ≤ k.

The main problem with the above approach is that the e�cient average type of ac-

tion s, θ̄∗1s = θ̄1s(x
∗), is unknown to the social planner. However, pricing an action

based on reported types and observed actions is feasible i.e. ps(x, x̃) =
∑
j

∂Fj
∂xs

∑
θ

x̃θjθ1j

where x̃θj is the mass of agents reporting being of type θ. This pricing mechanism

is a mechanism with weak incentives. When these prices are used, the e�cient dis-

tribution of actions can be supported as a Nash equilibrium.

As in the discrete case, the mechanism with weak incentives with prices ps(x, x̃) =∑
j

∂Fj
∂xs

∑
θ

x̃θjθ1j for all s ∈ S has multiple equilibria. In particular, for any �xed dis-

tribution of type reports x̃, there is a Nash equilibrium x(x̃) that satis�es Fs(x(x̂))θ1s+

θ2s + ps(x(x̂), x̂) = kθ whenever x(x̂)θs > 0 and Fs(x(x̂))θ1s + θ2s + ps(x(x̂), x̂) ≤

kθ whenever x(x̂)θs = 0.

To understand if agents have any chance of coordinating in the e�cient pro�le of

actions �rst assume that agents always reveal their private information truthfully.

In this case, prices ps(x) =
∑
j

∂Fj
xs

∑
θ

xθjθ1j would only depend on the current pro�le

of actions and the multiplicity of Nash equilibria disappears.15 In standard game

theory, it is almost always assumed that the existence of a single Nash equilibrium

is su�cient for agents to coordinate on it. This section uses a di�erent tool: evo-

lutionary game theory. This theory replaces the strong rational and informational

15When the identity of each individual in a continuum is considered, there is still a continuum
of equilibria as agents of a particular type could distribute themselves di�erently and still respect
the aggregate distribution of types and actions.
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assumptions in standard game theory with assumptions about non-equilibrium be-

havior.16

Agents' individual actions determine a particular distribution of actions x. When x

is Nash equilibrium, it is in the best interest of all agents to follow it. Conversely,

when a non-equilibrium distribution of actions is speci�ed, there is a positive mass

of agents who can gain by changing their action. However, it is not clear when a

sequence of non-equilibrium distributions of actions and their respective deviations

actually lead to a Nash equilibrium. Thus characterizing non-equilibrium behavior

is essential to study the convergence properties of mechanisms with weak incentives.

This approach speci�es how actions associated with the same payo� are chosen, a

critical element in the study of mechanism with weak incentives.

Mean dynamics and Lyapunov functions are introduced to characterize non-equilibrium

behavior. A mean dynamic V : X → R|Θ|×|S| is a function that de�nes an equation

of motion ẋ = V (x) on the space of distributions of actions. V is called admissible

if:

V is Lipschitz continuous

Vθs(x) ≥ 0 whenever xθs = 0∑
S

Vθs(x) = 0 for all θ ∈ Θ

V (x) = 0 implies x is a Nash equilibrium

A function L : X → R such that ∇L(x)′V (x) ≤ 0 for all x ∈ X is a Lyapunov

function for V . An admissible mean dynamic V with Lyapunov function L has im-

portant properties: (i) there is a unique solution trajectory x : R+ → X from any

initial point x ∈ X, (ii) all solution trajectories stay in the space X, (iii) all rest

points of V are Nash equilibria, and (iv) all accumulation points of solution trajec-

tory x are critical points of L ◦ x.17 The following proposition shows that, when all

16Aumann and Brandenburger (1995), for example, have shown that reaching a Nash equilib-
rium instantaneously requires strong informational conditions.

17These are well-known results in the theory of di�erential equations. The �rst condition im-
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agents report their types truthfully, agents can successfully coordinate on the e�-

cient Nash equilibrium.

Proposition 3.4. Let vθs(x) = Fs(x)θ1s + θ2s +
∑
j

∂Fj
∂xs

∑
θ

xθjθ1j for all θ ∈ Θ and

s ∈ S and V an admissible mean dynamic such that V (x) · ∇W (x) > 0 whenever

V (x) 6= 0, then every solution trajectory of V converges to the e�cient distribution

of actions x∗.

V satis�es V (x) · ∇W (x) > 0 for all x such that V (x) 66= 0 whenever, on aggregate,

agents adjust their actions by increasing their payo�s over time; this adjustment

does not need to be optimal for any agent, in particular, the payo� for some indi-

vidual agents might decrease as long as the aggregate welfare increases.

If agents are not guaranteed to tell the truth, the pricing mechanism becomes a

function of their reports as well as their actions. In this case, prices become ps(x, x̃) =∑
j

∂Fj
∂xs

∑
θ

x̃θjθ1j where x is the observable distribution of actions and x̃ is the re-

ported distribution of types. A mean dynamic V̂ : X̂ → R|Θ|×|S×Θ| describes both

the action and reporting behavior, where X̂ = {x̂ ∈ R|Θ|×|S×Θ|
+ |

∑
s xθsθ̂ = µθ}.

x̂θsθ̂ is the mass of agents of type θ taking action s and reporting θ̂ as their type.

Letting xθs =
∑

θ̂ x̂θsθ̂ and assuming that
∑

θ̂ Vθsθ̂(x̂) =
∑

θ̂ Vθsθ̂(ŷ) for every x̂ and

ŷ such that x = y, every mean dynamic V̂ induces a mean dynamic V by letting

Vθs(x) =
∑

θ̂ Vθsθ̂(x̂). Such a mean dynamic is called an average truth-telling dy-

namic if, in addition, its induced V is admissible and V (x) · ∇W (x) > 0 whenever

V (x) 6= 0.

Proposition 3.5. Let V̂ be an average truth-telling mean dynamic, then the mech-

anism with weak incentives de�ned by ps(x, x̂) =
∑
j

∂Fj
∂xs

∑
θ

x̂θjθ1j converges to the

e�cient x∗distribution of actions.

plies existence of a solution to ẋ = V (x) by the Picard�Lindelöf theorem. The second and third
conditions guarantee that the solution does not leave X. The last condition follows the intuition
provided by the Nash equilibrium: agents at a Nash equilibrium do not change their actions while
agents in a non-equilibrium do. See Sandholm (2010) for an introduction.
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In theory, agents following an average truth-telling mean dynamic would converge

to the e�cient distribution of actions. In practice, do agents converge to the e�-

cient distribution of actions? The next section explores this question by using a

mechanism with weak incentives to solve an externality problem in the experimen-

tal laboratory. The experiment is framed as a tra�c congestion problem as real

tra�c involves a large number of agents who lack enough information about each

other to justify convergence to equilibrium by means of the rational model.

3.3 A tra�c congestion model

This sections specializes the model developed in section two to describe a tra�c

congestion problem and describe di�erent interventions a social planner could im-

plement under di�erent informational assumptions. These interventions are latter

tested in the experimental laboratory.

Real life tra�c congestion occurs when thousands of drivers use a road network.

During congested times, the marginal e�ect of each individual on the total conges-

tion is very small, but the total e�ect can be large. Drivers do not know each other,

and do not coordinate routes or departure times. These characteristics are better

captured by the continuous agents model.

A continuum of agents want to commute using a single road during a single peak

time of the day. The total time spent by each agent commuting is a function of

the number of agents on the road and is characterized by a strictly increasing and

strictly convex, twice di�erentiable function t : R→ R+. There is a �nite set of

types Θ, with typical element θ and mass denoted by µθ. Every type is character-

ized by two values: θ1d is the value of time and θ2d is the value of commuting. All

types have an outside option with value 0, staying home. All agents choose between

commuting and staying home, S = {d, h}.

Outcomes are identi�ed by a distribution of actions x ∈ X = {x ∈ R|Θ|×|S|+ |
∑

s xθs =

83



µθ}, where xθd represents the mass of agents of type θ who drive. The utility re-

ceived by an agent of type θ for driving is uθ(x) = θ2d − θ1dt(
∑
θ

xθd). When there

is no risk of confusion, x will be used to denote both the total number of drivers on

the road and the strategy distribution.

3.3.1 Congestion prices

A social planner would select a strategy distribution that maximizes welfare. The

aggregate welfare for a strategy distribution x is given by W (x) =
∑

θ

∑
s xθsuθs.

The e�cient distribution of actions is characterized by the �rst order conditions in

(1). In real life, there are no social planners, but policy makers facing informational

and political constraints. In the following sections we analyze how a policy maker

could implement or approximate the social planner's solution under di�erent infor-

mational and political constraints. Since t is observable it is assumed that policy

makers know t.

3.3.1.1 Full information

Suppose a policy maker had complete information about the commuting time func-

tion t and the mass of each type µθ, then he could calculate the optimal allocation

x∗ and impose a �xed optimal price of driving equal to P ∗ = t′(x∗)
∑
θ

θ1dx
∗
θd.

3.3.1.2 Unknown demand

Assume that the policy maker has no information regarding the demand for com-

muting but can perfectly identify the types i.e. upon observing an agent, the policy

maker can identify θ1d but not θ2d. This is a very strong assumption, but allows the

study of the gradual loss of information from the policy maker's perspective. This

lack of information prevents the policy maker from implementing the optimal �xed
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congestion price P∗ = t′(x∗)
∑
θ

θ1dx
∗
θd. In this case, the following dynamic congestion

price can be implemented: PD(x) = t′(x)
∑
θ

θ1dxθd.

3.3.1.3 Unknown demand and unknown social cost

Suppose the policy maker has no information regarding the demand or social cost.

Policy makers can observe the total number of drivers on the road, but cannot

distinguish their types. Thus the implementation of the dynamic tax PD(x) =

t′(x)
∑
θ

θ1dxθd becomes impossible. The policy maker, however, could ask drivers

to report their value of time and observe tra�c; with this information, a mecha-

nism with weak incentives characterized by the following prices becomes a natural

candidate:PM(x, x̂) = t′(x)
∑
θ

θ1dx̂θd.

3.3.1.4 Revenue neutrality

On top of informational constraints, policy makers usually face political constraints.

In the case of externality abatement, the imposition of a congestion price is usually

seen as a bad alternative, since it involves a new �tax�. Hence it is important to

consider revenue neutral alternatives.

In the context of this model, revenue neutrality is simple to achieve since any con-

gestion price can be replaced by a smaller price on driving and a transfer for not

driving. For example, the dynamic congestion price PD(x) = t′(x)
∑
θ

θ1dxθd can be

replaced by a smaller price PBD(x) = µ−x
µ
t′(x)

∑
θ

θ1dxθd and a transfer SBD(x) =

x
µ
t′(x)

∑
θ

θ1dxθd, where µ =
∑

θ µθ. The analogous division can be implemented for

the message congestion price.
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3.4 A mechanism with weak incentives in the laboratory.

The main objective of the experiment is to test if the message system proposed

above allows drivers to converge to the socially optimal tra�c congestion level. The

previous section provides some evidence that, under average truth-telling, the social

optimum would be observed. The empirical e�ectiveness is tested in the experimen-

tal laboratory.

The experimental design consists of a driving game in which 14 subjects indepen-

dently decide whether to �drive� or �not drive� on a �xed road for 30 rounds of

play.18 At the beginning of each game, every subject was randomly and privately

assigned a type characterized by two numbers: a value of commuting and a value of

time. These values are held �xed over the 30 rounds of play. Neither the distribu-

tion nor the support of values was revealed to the subjects. There is a �xed set of

types.

Types were chosen to ful�ll the following three functions: (i) produce at most one

marginal agent, (ii) minimize the set of agents who belong to both the Nash equi-

librium without congestion pricing and the social optimum, and (iii) allow for zero

e�ciency gains with the message congestion price.

Congestion occurs when thousands of drivers use the road at the same time. How-

ever, designing an experiment that requires thousands of subjects would be both

impractical and expensive. This large numbers problem is addressed through the

experimental design. When there is a large number of drivers, the impact of each

individual on one another is small. In particular, the small increase in travel time

produced by the introduction of one single driver to a road would change the deci-

sion of a small number of current drivers. This feature is reproduced in the exper-

iment by carefully selecting types. In the experiment, when an agent changes his

18In two out of nine session the number of drivers was 16.
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driving decision i.e. drives if he was not driving or the other way around, at most

one other agent �nds it pro�table to change his behavior.

The goal of a congestion price is to change the behavior of agents. An e�ective sys-

tem would not only produce the right level of tra�c congestion, but also the right

set of drivers. In this experiment, types are used to minimize the set of agents who

belong to both the Nash equilibrium without congestion pricing and the social op-

timum. The equilibrium without congestion pricing consists of 10 drivers and the

social optimum consists of 6. However, only two drivers belong to both allocations.

In other words, 12 out of 14 agents have to change their behavior with the intro-

duction of congestion pricing. This radical change in the set of drivers is a strong

test for the e�ectiveness of the system.

Inevitably the message congestion price system will produce a continuum of equilib-

ria. The experimental design exploits this feature by providing the social optimum

and the outcome without congestion pricing as Nash equilibria. This prevents the

message price treatment from producing arti�cial e�ciency gains.

Figures 3.1 and 3.2 contain the list of types used in the experiment and illustrate

their distribution. The congestion function t(x) = x3

12
was chosen to have commute

values and time values on a relatively equal scale.

Type Value of Value of No Congestion Social

Time Commuting Price Optimum

1 2.40 70.00 x x

2 3.60 80.00 x x

3 6.00 32.00 x

4 9.00 35.00 x

5 12.00 38.00 x

6 15.00 41.00 x

7 18.00 44.00 x

8 21.00 48.00 x

9 24.00 51.00 x

10 27.00 54.00 x

11 60.96 82.65 x

12 77.02 76.35 x

13 99.00 99.50 x

14 101.00 100.99 x

Figure 3.1: Type allocations
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Figure 3.2: Experimental types
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In �gure 3.2, every dot represents a type. The red line represents the equilibrium

time when there is no congestion price and the blue line represents the optimal

time when the optimal �xed price is imposed. The gray lines are variations of time

when a driver is added or removed. When no congestion price is in place, all agents

above the red line would �nd pro�table to drive; with the optimal �xed congestion

price in place, only those above the blue line would �nd pro�table to drive. Only

two types are above both lines. Suppose there is no congestion price and all the

agents above the red line are driving and consider the exit of one of the current

drivers. This would reduce congestion and travel time for everyone. In particular,

at the current time (the gray line below the red) only one type would �nd prof-

itable to start driving (type 11) i.e. there is at most one marginal agent.

In theory, with the above types and congestion function, the Nash equilibrium with-

out congestion pricing achieves an e�ciency level of 301.3 experimental dollars

whereas the social optimum achieves an e�ciency of 406.3 experimental dollars,

an increase of 34.8%. In practice, the e�ciency level associated with no congestion

price could be lower or higher than the Nash equilibrium e�ciency. Hence, the ben-

e�ts, if any, of the message system have to be measured against observed e�cien-

cies.

Two main treatments were considered: no price and message price. The �rst treat-

ment represents a situation with no congestion prices and the second uses a mech-

anism with weak incentives. The message price treatment uses agents' messages

about their value of time and the observed level of tra�c to calculate congestion

prices. Tra�c observations are used to measure the marginal impact, in time, of

adding an extra vehicle to the road. Messages are used to measure the cost of the

marginal increase in time.

Four additional treatments were considered to provide control and robustness to the

�ndings. The �xed price treatment provides a measure of the maximum observable
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e�ciency. This treatment considers a social planner with access to all private infor-

mation and imposes the optimal �xed congestion price in all rounds. The dynamic

price treatment follows the same structure of the message price, but behaves as if

all agents reported the truth all the time. The balanced treatment considers budget-

balanced versions of the dynamic and message treatments. The random treatment

considers random types instead of the constructed types used in other treatments.

Each treatment was run 6 times.

Every treatment is associated with a hypothesis derived from the theory section.

1. The no congestion price treatment will achieve the theoretical e�ciency asso-

ciated with no congestion price

2. The �xed price treatment will achieve the theoretical optimal e�ciency

3. The dynamic price treatment will achieve the same e�ciency as the �xed price

treatment

4. There are two hypothesis associated with the message price treatment

(a) Subjects will play an average-truth-telling mean dynamic

(b) The message treatment will achieve the same e�ciency as the �xed price

treatment

5. The balanced treatments will achieve the same e�ciency as the unbalanced

treatments

6. There are two hypothesis associated with the random treatment

(a) Subjects will play an average-truth-telling mean dynamic

(b) The random treatment will achieve the same level of e�ciency as the

message price treatment
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To further replicate the large economy environment, every experimental subject

managed ten identical drivers. In every round, each subject decides whether to

drive or not; if he decides to drive, a driver of his type is introduced to the road (up

to ten); if he decides to not drive, a driver is removed from the road (up to zero).

The experiment was run at the Experimental Economics Lab at the University of

Maryland. There were 130 participants, all undergraduate students at the Uni-

versity of Maryland. There were nine sessions. No subject participated in more

than one session. In every session, subjects participated in six di�erent treatments.

Treatments were played in random order. Participants were seated in isolated booths.

The experiment is programmed in z-Tree (Fischbacher (2007)).

At the beginning of each treatment, each subject was randomly assigned a type,

i.e. a value of commuting D and a value of time v. In addition, they were informed

that in some rounds they could face a congestion price T or a transfer S and that

their experimental payo�s would depend on the observed time t using the follow-

ing formulas: D − vt
60
− T for driving and S for not driving. In all rounds, subjects

could see on screen the current values of T and S, the history of times for all pre-

vious rounds and their private information. In addition, a table with several time

scenarios (t = 5 to t = 85 in steps of 5) with the values for driving and not driving

was provided.

Subjects were informed that in some sections (treatments) they could be asked for

their value of time and were instructed to �send one of the available messages�.

Subjects were informed that messages would be used to calculate the congestion

price for the next period, but the exact mechanism was not explained because in

the experimental setting, due to the small number of participants, every message

had a measurable impact on the congestion price.

Subjects were explained in detail how earnings were calculated. In every round r,

subjects received xr = (0.9764)30−r (x30 = 1,x1 = 0.5) �points� for a conditionally
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optimal action and 0 otherwise. This payment scheme ful�lls two purposes. First,

no Nash equilibrium is favored; remember that for the message treatment there are

many equilibria for this game. Second, it provides incentives for agents to adjust

their strategies over time. Dollar earnings were calculated by adding up all points

and multiplying this quantity by 0.107675. This constant was calculated, and ex-

plained as such, to produce a range from $0 to $14 dollars. In addition, subjects

were paid a $6 show up fee. Subjects received an average payment of $18.28. The

following section present the results of the experiment and gives a general descrip-

tion of some stylized facts.

3.4.1 Experimental results

The results of the experiment are presented in this section. For every treatment,

three di�erent dimensions are described: the number of drivers on the road, their

types, and the e�ciency. The analysis of the results is included in the following sec-

tion.

3.4.1.1 Number of drivers

The main objective of a congestion price is to achieve an e�cient congestion level.

In every round, the number of drivers is measured by xs =
∑
xis , where xis is

the proportion of subject i's 10 drivers currently on the road in round s. The Nash

equilibrium quantity of drivers with no congestion price is 10. The socially optimal

quantity of drivers is 6.
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Figure 3.3: Number of drivers with No
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Figure 3.4: Number of drivers with
Dynamic price
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Figure 3.5: Number of drivers with
Balanced Dynamic price
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Figure 3.6: Number of drivers with
Fixed price
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Figure 3.7: Number of drivers with
Message price
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Figure 3.8: Number of drivers with
Balanced Message price

The number of drivers of every treatment is shown in �gures 3.3 through 3.8. In ev-
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ery �gure, every blue dot is the observed number of drivers in each period in each

session. The blue line is the average over sessions. The read line is the simple aver-

age of each blue dot's number of drivers for periods equal or greater than 11.

Figure 3.3 shows the evolution of the number of drivers for the treatment without

congestion pricing. In this treatment, the Nash equilibrium quantity of drivers is

10. In the experiment, 10.03 was observed.

In �gure 3.6, the results of the �xed congestion price are shown. This treatment

represents the theoretical best option, as it assumes the policy maker knows all the

information, in this case, θ1i and θ2i for every subject. The social optimum is asso-

ciated with 6 drivers. In the experiment, the observed number of drivers was 5.77.

In �gure 3.4 the results of the dynamic price are shown. In the experiment, the

number of drivers was 5.96. It can be observed that the number of drivers �uctu-

ates less around the average and converges faster to the average value when com-

pared with the �xed congestion price or with the no price treatments. In this treat-

ment it is assumed that the policy maker knows vi for every subject and can per-

fectly identify each driver on the road.

Figure 3.7 shows the results for the message price. The observed number of drivers

was 6.92. In this treatment, the policy maker has no information about Di and vi.

Figures 3.5 and 3.8 shown the balanced versions of the dynamic and message price

treatments. It can be observed that the e�ectiveness of the systems is not decreased

by charging lower congestion prices and distributing all the proceeds to subjects

who decide not to drive. In the balanced dynamic price treatment, the observed

number of drivers is 6.14. In the balanced message price treatment, the observed

number of drivers is 7.01.
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3.4.1.2 Identities

An e�ective system would not only produce the right level of tra�c congestion, but

also the right set of drivers. Figures 3.9 through 3.14 are analogous to �gure 3.2.

They show the types in a Cartesian plane where the �x-axis� is the value of time

and the �y-axis� is the value of commuting. Every blue dot represents a type. The

size and the number next to each dot represent the frequency that type was driving

for periods equal to or greater than eleven. The two gray lines represent the Nash

equilibrium time without congestion price and the social optimum time. The green

line represents the observed average time. When all subjects play a Nash equilib-

rium strategy, the frequency of each blue dot is 100% for types above the green line

and 0% for types below the green line.
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Figure 3.9: Identities with No price
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Figure 3.10: Identities with Dynamic
price
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Figure 3.11: Identities with Balanced
Dynamic price
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Figure 3.12: Identities with Fixed price
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Figure 3.13: Identities with Message
price
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Figure 3.14: Identities with Balanced
Message price

In �gure 3.9 the types for the No price treatment are shown. It can be observed

that all types that, in equilibrium, should drive are driving, but not in 100% of the
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periods. On the other hand, some types that should not drive, in equilibrium, drive

some of the periods. In particular, type 11 (value of time = 60.96, value of com-

muting = 82.65) fails to stop driving in 42% of the periods.

In �gure 3.12, the �xed congestion price has been imposed. The types who would

bene�t from driving do, but not in 100% of the periods. In particular, type 1 (value

of time = 2.4, value of commuting = 70) drives in 92% of the periods, despite hav-

ing strong incentives to keep driving. Similarly, type 12 (value of time = 77.02,

value of commuting = 76.35) does not drive in 100% of the periods and forgoes pos-

itive payo�s (and payments).

Figure 3.10 shows the dynamic price treatment. In this treatment, types 1 and 12

display a behavior similar to their behavior in the treatment with the �xed con-

gestion price: they fail to drive 100% of the time, despite being pro�table. In the

�xed congestion price treatment, this behavior had consequences only for the sub-

ject making the suboptimal decision. However, in this treatment, their actions had

an impact on the congestion price charged to others. In particular, types 9 (value of

time = 24, value of commuting = 51) and 10 (value of time = 27, value of commut-

ing = 54) bene�ted from this behavior. On average, when type 12 failed to drive,

despite being pro�table, types 9 and 10 entered the road.

Figure 3.13 shows the message price treatment. It can be observed that, conditional

on observed times and congestion prices, most types who would bene�t from driv-

ing do. However, in this treatment type 12 drove even less than in the treatment

with the dynamic price and this opportunity was seized by types 9 and 10. Bal-

anced treatments are shown in �gures 3.11 and 3.14.

3.4.1.3 E�ciency

E�ciency is measured as the sum of experimental payo�s in very round. Every sub-

ject received two numbers: a value of commuting θ2i and a value of time θ1i. E�-
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ciency in round s is de�ned by Es =
14∑
i=1

(θ2i − θ1i
60
ts)xi, where xi is the proportion

of subject i's 10 drivers currently on the road and ts is the observed time in round

s. In every round, the time was calculated using the function ts(xs) = x3s
12
, where

xs =
∑
xi. All treatments are initialized with xi = 0 for all subjects.
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Figure 3.15: E�ciency with No price
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Figure 3.16: E�ciency with Dynamic
price
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Figure 3.17: E�ciency with Balanced
Dynamic price
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Figure 3.18: E�ciency with Fixed
price
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Figure 3.19: E�ciency with Message
price
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Figure 3.20: E�ciency with Balanced
Message price

The e�ciency of every treatment is shown in �gures 3.15 through 3.20. In every
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�gure, every blue dot is the observed e�ciency in each period in each session. The

blue line is the average over sessions. The read line is the simple average of each

blue dot's e�ciency for periods equal or greater than 11.

Figure 3.15 shows the evolution of e�ciency of the treatment without congestion

pricing. In this treatment, the Nash equilibrium is associated with an e�ciency of

301.3 experimental dollars. In the experiment, the observed e�ciency was 257.7.

In �gure 3.18, the results of the �xed congestion price are shown. This treatment

represents the theoretical maximum e�ciency that can be achieved. It assumes the

policy maker knows all the information, in this case, Di and vi for every subject.

The social optimum achieves an e�ciency of 406.6 experimental dollars. In the ex-

periment, an e�ciency of 390.9 was observed.

In �gure 3.16 the results of the dynamic price are shown. In the experiment, an ef-

�ciency of 393.0 was observed. It can be observed that the e�ciency �uctuates less

around the average and converges faster to the average value. Both characteristics

are consequences of the the stability of the game. In this treatment it is assumed

that the policy maker knows vi for every subject and can perfectly identify each

driver on the road.

Figure 3.19 shows the results for the message price. The observed e�ciency is 371.4

experimental dollars. This is a high level of e�ciency, considering the fact that in

this treatment Di and vi are unknown.

Figures 3.17 and 3.20 show the balanced versions of the dynamic and message price

treatments. It can be observed that e�ciency is not hurt by charging lower conges-

tion prices and distributing all the proceeds to subjects who decide not to drive. In

the balanced dynamic price treatment, the observed e�ciency is 395.0. In the bal-

anced message price treatment, the observed e�ciency is 368.8.
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3.4.2 Analysis

This section evaluates the hypothesis derived from the theory. The main objective

of the experiment is to test whether the message system allows drivers to converge

to the socially optimal tra�c congestion level. Other treatments are design to put

the results of the message price treatment in context. In this section it is considered

that a treatment has converged in period p whenever the average absolute devia-

tion from the mean e�ciency is less or equal to 5% for all consecutive periods. The

mean e�ciency in period p is mp = 1
30−p+1

30∑
i=p

Ei, the absolute deviation in period

w ≥ p with respect to the mean e�ciency at p is ew,p = |Ew −mp| and the average

absolute deviation is ep = 1
30−p+1

30∑
i=p

ei,p
mp

. A treatment converged in period p when-

ever es ≤ 5% for all s > p. All treatments, but the no price treatment, converged on

period 6. The no price treatment converged on period 11.

Hypothesis 1. The no congestion price treatment will achieve the theoretical e�-

ciency associated with no congestion price

This is a standard hypothesis supported the rational model. The theoretical e�-

ciency associated with no congestion price is 301.3 experimental dollars. Figure

3.15 shows that m11 = 257.6. Assuming that Es = m11 + εs, where ε is i.i.d

E[εs] = 0 for all periods s ≥ 11, a t-test was used to evaluate the null hypothe-

sis of m11 = 301.3 versus the alternative m11 6= 301.3. The null was rejected with

con�dence of 99%. In the experiment, the no congestion price achieved a lower e�-

ciency than the rational model. This fact is at odds with a purely rational model of

human behavior. This deviation could have happened in the opposite direction, and

after all, a congestion price might not be needed.

Hypothesis 2. The �xed price treatment will achieve the theoretical optimal e�-

ciency

This is a standard hypothesis supported the rational model: a social planner would
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be able to solve the congestion problem with a pigouvian price. The theoretical ef-

�ciency associated with the optimal congestion is 406.6 experimental dollars. Fig-

ure 3.18 shows that m11 = 390.92. Assuming that Es = m11 + εs, where ε is i.i.d

E[εs] = 0 for all periods s ≥ 11, a t-test was used to evaluate the null hypothe-

sis of m11 = 406.6 versus the alternative m11 < 406.6. The null was rejected with

con�dence of 99%.

Hypothesis 3. The dynamic price treatment will achieve the same e�ciency as

the �xed price treatment

The message treatment di�ers from the �xed price treatment in two aspects: it

changes over time and depends on reports. The dynamic price treatment bridges

these di�erences by changing over time, but is independent of agents' reports. Con-

gestion prices in this treatment behave as if all subjects told the truth all the time.

Figure 3.16 shows that e�ciency observed in the dynamic message treatment was

m11 = 393. A paired Wilcoxon signed-rank test was used to evaluate the null hy-

pothesis that the di�erences between the dynamic price and the �xed price e�cien-

cies were symmetric around zero. This test does not require additional assumptions

about error terms. The null was not rejected (p > 10%).

The e�ciency results of the no price and �xed price treatments show that the con-

clusions of the rational model are likely to fail in a real-world situation. The results

from the �xed price and dynamic price treatments are evidence that theoretical e�-

ciencies might not be achievable in real life.

Hypothesis 4.b The message treatment will achieve the same e�ciency as the

�xed price treatment

Figure 3.19 shows that the message treatment achieved an average e�ciency m11 =

371.36. A paired Wilcoxon signed-rank test was used to evaluate the null hypoth-

esis that the di�erences between the message price and the �xed price e�ciencies

were symmetric around zero. The null was not rejected (p > 10%). The e�ciency
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observed in this treatment is 95% of the e�ciency achievable by a social planner

with full information.

Hypothesis 5 The balanced treatments will achieve the same e�ciency as the un-

balanced treatments

Figures 3.17 and 3.20 show the results of the balanced treatments. The balanced

dynamic price treatment obtained an average e�ciency m11 = 395.03. The balanced

message price treatment obtained an average e�ciency m11 = 368.84. In both cases,

the null hypothesis was that the balanced treatments would achieve an e�ciency

equal to their unbalanced versions. The null hypothesis was not rejected in both

cases (p > 10%).

Table 3.2 contains a summary of the mean e�ciency achieved in every treatment

as a percentage of the mean e�ciency obtained by the �xed tax treatment. The

standard deviation has been scaled accordingly. The table in the middle contains

p-values for the null hypothesis that the row treatment and the column treatment

have the same e�ciency against the alternative that the row has a higher e�ciency.

A paired Wilcoxon signed-rank test was used. The lower portion of the table shows

the results for the number of drivers on the road. Estimates of the average number

of drivers have not been scaled because units represent subjects' decisions directly.

P-values are also reported for the number of drivers. The alternative hypothesis is

that the row treatment has a lower number of drivers than the column treatment.

The last column shows ep, and an analogous measure for the number of drivers, for

every treatment. All estimates are calculated using data from periods 11 to 30.

Figures 3.21 and 3.22 show estimates for e�ciency and the number of drivers for

di�erent choices of initial period of analysis. All treatments are signi�cantly (p-

values < 1% for all periods of analysis) more e�cient than the no price treatment.

Dynamic treatments and the �xed treatment achieve a signi�cantly (p-values < 1%

for all periods of analysis) higher e�ciency than message treatments. 95% con�-
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Period Treatment Measure Mean SD Epsilon

11 No Price e�ciency 65.91% 13.01% 4.88%

11 Fixed e�ciency 100.00% 4.12% 1.19%

11 Dynamic e�ciency 100.53% 3.26% 1.14%

11 Message e�ciency 95.00% 3.44% 1.14%

11 Bdynamic e�ciency 101.05% 2.85% 0.91%

11 Bmessage e�ciency 94.35% 4.86% 1.94%

11 No Price N. of Drivers 10.030 0.323 15.44%

11 Fixed N. of Drivers 5.770 0.493 22.74%

11 Dynamic N. of Drivers 5.963 0.202 22.31%

11 Message N. of Drivers 6.926 0.356 22.36%

11 Bdynamic N. of Drivers 6.147 0.214 25.84%

11 Bmessage N. of Drivers 7.015 0.606 17.06%

Table 3.1: Estimates for period ≥ 11
Period Treatment Measure No Price Fixed Dynamic Message Bdynamic Bmessage

11 No Price e�ciency

11 Fixed e�ciency <1% <1% <1%

11 Dynamic e�ciency <1% <1% <1%

11 Message e�ciency <1%

11 Bdynamic e�ciency <1% <1% <1% <1%

11 Bmessage e�ciency <1%

11 No Price N. of Drivers

11 Fixed N. of Drivers <1% <1% <1% <1% <1%

11 Dynamic N. of Drivers <1% <1% <1% <1%

11 Message N. of Drivers <1%

11 Bdynamic N. of Drivers <1% <1% <1%

11 Bmessage N. of Drivers <1%

Table 3.2: P values for estimates for period ≥ 11

dence interval are shown in Figures 3.23 and 3.24.
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Figure 3.21: E�ciency estimates by
period
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Figure 3.22: No. of Drivers estimates
by period
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Figure 3.23: 95% Con�dence Inter-
vals for e�ciency estimates. Blue: No
price; Red: Message; Orange: Fixed
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vals for Number of Drivers estimates.
Blue: No price; Red: Message; Or-
ange: Fixed

3.4.2.1 Message Congestion Price

This section describes the observed messages and con�rms that subjects followed

an average truth-telling mean dynamic, hence the high levels of e�ciency. In princi-

ple, even assuming that subjects would play a Nash equilibrium, e�ciency gains are

not guaranteed. Figure 3.25 shows the e�ciency levels of all Nash equilibria in the

game induced by the message congestion price by average message: z(x̂) =
∑
θ θ1ix̂θ
x

.
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Figure 3.25: Nash Equilibria E�ciency by average message

In �gure 3.25, when all subjects send the lowest possible value of time, the con-

gestion price is su�ciently low to be completely ine�ective i.e. the Nash equilib-

rium with no congestion price is also a Nash equilibrium of the message congestion

price system. However, as argued before, the �nal outcome of the system does not

only depend on its Nash equilibria, but also (and more importantly) on the non-

equilibrium behavior. In particular, the outcome of the system is tied to the aggre-

gate message, which is determined by individual messages.

Figure 3.26 shows the average message sent by type. Types who drive in the so-

cial optimum are shown in blue, types who do not drive in the social optimum are

shown in gray. It can be observed that those types who drive in the social optimum

send higher messages than those who don't.19 In addition, it can be observed that

some types send higher values than their true values while other types do the op-

posite. Figure 3.27 shows the number of times a particular message was received

by the system as a proportion of the total number of messages received. It can be

observed that the lowest and highest messages are the most often used.

19The mean message sent by those types who drive in the optimal allocation is 29.64 (30.17),
the mean message for other types is 16.06 (24.21). The average message of the optimal group is
greater with a con�dence level of 99% using a Welch's t-test.
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Figure 3.26: Average Message Sent
by Type
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Figure 3.27: Messages Received

Individual messages are important, but they have a very limited impact on the sys-

tem's outcome, as the congestion price depends on the average message. Figures

3.28 and 3.29 show the relationship between the average message and the real aver-

age message, as if all subjects reported their true value of time. Figure 3.28 shows

their evolution over time (all sessions aggregated) and �gure 3.29 shows all data

points.
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Figure 3.28: Average Message over
time

Figure 3.29: Real vs Sent Average
Message

In the previous two �gures, two stylized facts about the average message are readily

observable: (i) the population understates its value of time, (ii) but not to the low-

est possible extent. These behavioral regularities guarantee e�ciency gains in the
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message treatment. Consider the unconditional distribution of messages sent G and

let z∗ be the equilibrium average message when all drivers send their true value of

time. Since average sent messages are smaller than average real messages we have

that G(z∗) = 1 i.e. the highest observed average message will always be below the

real equilibrium average message. Let f(z) be the achieved e�ciency when z is sent

to the system. Then, unless G is degenerate, E[f(z)] > f(0) i.e. the implementa-

tion of the message system is guaranteed to generate e�ciency gains, unlike policy

guesses about the value of time.20 Figures 3.30 and 3.31 shows the empirical uncon-

ditional density and distribution.

Figure 3.30: Density of Average
Message

Figure 3.31: Distribution of Average
Message

The average message can explain that the observed e�ciency gains are positive,

but not their high level. In theory, whenever agents play an average truth-telling

mean dynamic in the presence of the message congestion price, the e�cient out-

come is expected. Recall from previous sections that a mean dynamic V̂ : X̂ →

R|Θ|×|S×Θ| describes what actions and messages are sent and the mean dynamic

Vθs(x) =
∑

θ̂ xθsθ̂ describes all actions as if all agents reported the truth.

20As an example, suppose G is uniform, then the minimum e�ciency of the message system

would be 1
2 + f(0)

2 .
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Hypothesis 4.a Subjects will play an average-truth-telling mean dynamic in the

message price treatment.

An average truth-telling mean dynamic is characterized by one inequality: 0 <

V (x) · ∇W (x) =
∑
ẋθ(θ2d − θ1dt(

∑
θ

xθd) − t′(x)
∑
θ

θ1dxθd) whenever V (x) 6= 0.

This is the covariance between the direction taken by agents and the direction of

greatest increase on welfare. Proposition 5 shows that as long as this covariance is

positive, agents are guaranteed to arrive to the social optimum. Figures 3.32 and

3.33 show observed covariance in the message price treatment. Every observation

is calculated as
∑

(xt,θ − xt−1,θ)(θ2d − θ1dt(
∑
θ

xt,θd) − t′(xt)
∑
θ

θ1dxt,θd) for periods

t = 1 . . . 30. A binomial test was used to reject the hypothesis that the covariance

was zero against the alternative of being greater than zero. The null was rejected

at a con�dence level of 99%. Figures 3.34 and 3.35 show the covariance for the no

price treatment. The null was not rejected (p-value >10%).
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Figure 3.34: Average-truth-telling -
no price treatment
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3.4.3 Robustness

The experimental design pursued in this paper relied on a particular selection of

types. However, it is important to test the robustness of the message price mecha-

nism to di�erent sets of types. Figure 3.36 shows the e�ciency achieved in six dif-

ferent random treatments in which 14 subjects received a random value of time and

a random value of commuting, both sampled from a uniform distribution with sup-

port [1, 100]. These random treatments are otherwise identical to the message price

treatment discussed above.
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Figure 3.36: E�ciency of Random Treatments

Figures 3.37 to 3.48 show the experimental results of every random treatment. Fig-

ures on the left display driving frequency by type. Those types who drive in the

social optimum are depicted in orange. Figures on the right show e�ciency over

time.

Hypothesis 6.a. Subjects will play an average-truth-telling mean dynamic

Hypothesis 6.b. The random treatment will achieve the same level of e�ciency as

the message price treatment

The following table shows the average e�ciency achieved. The message price treat-

ment achieved an e�ciency of 91.46% (3.31%) (with respect to the theoretical op-

timum). A Welch's t-test was used to test the null hypothesis that the e�ciency in

each random treatment is equal to 91.46% against the alternative that the e�ciency

in the random treatment was smaller. In all random treatments, but the third, the

null was not rejected i.e. the message congestion price performed equally on ran-

dom types as in designed types. A binomial test was used to reject the hypothesis

that the covariance was zero against the alternative of being greater than zero.

Random treatments 2 and 3 highlight the importance of the careful selection of

types in the main message treatment. In random treatment 2 the Nash equilib-
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Random Mean SD Equilibrium Message price Avg-truth-telling

1 94.92% 3.74% 77.90% >10% <1%
2 97.51% 0.86% 93.75% >10% 5%
3 72.21% 2.53% 63.34% <1% 5%
4 98.96% 1.38% 91.51% >10% <1%
5 91.48% 1.37% 82.89% >10% 2.13%
6 95.38% 0.88% 67.66% >10% 2.13%

Table 3.3: Random Types E�ciency for Periods 11-30

rium e�ciency without congestion pricing is high, reducing the potential gains of

the message mechanism and hence the ability to identify them. Random treatment

3, on the other hand, displays 4 types who are aligned and hence poorly represent a

situation with a large number of drivers.
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Figure 3.37: Types Random Treatment
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Figure 3.39: Types Random Treatment
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Figure 3.40: E�ciency Random Treat-
ment 1
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Figure 3.41: E�ciency Random Treat-
ment 2
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Figure 3.42: E�ciency Random Treat-
ment 3
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Figure 3.43: Types Random Treatment
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Figure 3.44: Types Random Treatment
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Figure 3.46: E�ciency Random Treat-
ment 4
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Figure 3.47: E�ciency Random Treat-
ment 5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 3.48: E�ciency Random Treat-
ment 6
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3.5 Discussion

A social planner would like a socially optimal outcome x∗(θ) to be chosen in every

state of the world θ ∈ Θ. In general, this can be done in two steps: i) using a mech-

anism M to make x∗(θ) a rational choice (a Nash equilibrium), and ii) providing

M with nice properties that facilitate coordination in x∗(θ). This has been the ob-

jective of mechanism design.21 However, most mechanisms assume that agents are

fully rational all the time and possess common knowledge of types and the struc-

ture of the game induced by the mechanism. These assumptions have proven ex-

tremely useful and powerful as they have allowed the study of very complex prob-

lems as well as the development of many successful mechanisms, but has well iden-

ti�ed limitations.

This paper addresses one of those limitations by incorporating behavioral traits as

a mechanism designer tool and showing that it can be as e�ective as strong incen-

tive properties in solving social problems.

The introduction of behavioral traits to the mechanism design framework enables

the study of questions typically outside the scope of the purely rational model: Are

mechanisms with the same incentive properties equally e�ective?22 Are incentives

more e�ective the stronger they are?23 Are incentives more e�ective the simpler

they are?24 What considerations, other than incentives, a�ect the e�ectiveness of a

21Maskin (2008)

22There might be two e�cient and incentive compatible mechanisms for the same problem, of
which only one is e�ective.

23A measure of incentive strength could be the di�erence in payo� between truth-telling and the
best misrepresentation.

24Consider, for example, truth-telling as a dominant strategy and as a Nash equilibrium, the
former being simpler.
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mechanism?25 When is it e�cient to provide incentives?26 Can non-incentive com-

patible mechanisms be more e�ective than incentive compatible ones?27

The answers to these questions will most likely unveil an intricate relationship be-

tween rational incentives and behavioral traits, opening the door to new methods

for solving problems in practice.

3.6 Appendix

Proposition 3.1. There is an e�cient mechanism with weak incentives, namely

the wVCG.

Proof. Let x∗be an e�cient pro�le of actions and θ be the true pro�le of types.

Suppose all agents other than i select x∗j and report their true type θj. For i, the

payo� associated with doing xi and reporting θ′i is u(xi, x
∗
−i, θi)+

∑
N\i uj(xi, x

∗
−i, θj)−

hwi (x−i, θ−i) which is maximized by selection x∗i as an action and θi as a report.

Proposition 3.2. There is a budget balanced mechanism with weak incentives for

any pro�le of actions. In particular, any e�cient pro�le of actions can be supported

as a budget balanced Nash equilibrium.

Proof. Let x0 be any pro�le of actions and let prices be de�ned as pi(x, θ) =
∑

N\i uj(x, θj)−∑
N\i uj((x

0
i , x−i), θj), thus pi(x

0, θ) = 0 for all i ∈ N and θ ∈ Θ. In particular, let

x0 = x ∈ x∗(θ), then the e�cient pro�le of actions can be supported as a budget

balanced Nash equilibrium.

25For example, a mechanism that converges to the e�cient Nash equilibrium under a wide class
of behavioral procedures have a better change of being e�ective than a mechanism that cannot
guarantee such convergence.

26Usually, the e�ciency of a mechanism is measured by the e�ciency attained within the mech-
anism i.e. by the outcome it produces, however, this measure leaves other considerations out of
the analysis. For example, how expensive is to implement and run the mechanism.

27It is possible that some e�ective mechanisms support x∗(θ) as a non-equilibrium but sensible
pro�le of actions.
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Proposition 3.3. Any e�cient pro�le of actions can be supported as a subgame

perfect Nash equilibrium of a sequential mechanism with weak incentives.

Proof. The timing is as follows: i) agents select an action, ii) the pro�le of actions

is revealed, and iii) agents send a report. Suppose a pro�le of actions x was chosen

in the �rst stage of the game. Suppose other agents have sent θ−i, sending report θ′i

is associated with a payo� equal to u(xi, x
∗
−i, θi) +

∑
N\i uj(xi, x

∗
−i, θj)− hwi (x−i, θ−i),

hence sending θi is a best response. Thus θ constitutes a Nash equilibrium in the

second stage. Suppose agents have chosen x∗−i in the �rst stage, the payo� asso-

ciated with xi subject to selecting the Nash equilibrium θ in the second stage is

u(xi, x
∗
−i, θi) +

∑
N\i uj(xi, x

∗
−i, θj) − hwi (x−i, θ−i), hence i maximizes his payo� by

selecting x∗i as an action. Thus (x∗, θ) is a subgame perfect Nash equilibrium.

Proposition 3.4. Let vθs(x) = Fs(x)θ1s + θ2s +
∑
j

∂Fj
∂xs

∑
θ

xθjθ1j for all θ ∈ Θ and

s ∈ S and V an admissible mean dynamic such that V (x) · ∇W (x) > 0 whenever

V (x) 6= 0, then every solution trajectory of V converges to the e�cient distribution

of actions x∗.

Proof. Let x : R+ → X be a solution trajectory of V , then all of its accumulation

points are critical points of W ◦ x. Since W is concave it has a unique maximizer x∗

and ∇W (x) = 0 only when x = x∗. x∗ is also the unique Nash equilibrium. Since

V (x) · ∇W (x) > 0 whenever V (x) 6= 0, then x∗ becomes the only accumulation

point of W ◦ x (since it is a monotone function).

Proposition 3.5. Let V̂ be an average truth-telling mean dynamic, then the mech-

anism with weak incentives de�ned by ps(x, x̂) =
∑
j

∂Fj
∂xs

∑
θ

x̂θjθ1j converges to the

e�cient x∗distribution of actions.

Proof. The induced mean dynamic V satis�es all the assumptions of the previous

theorem, hence x will converge to x∗. Thus actions will converge to the e�cient

outcome and strategies will converge to any x̂∗such that x∗θs =
∑

θ̂ x̂
∗
θsθ̂
.
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