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ABC efflux transporters are a key factor leading to multidrug resistance in

cancer. Overexpression of these transporters significantly decreases the efficacy of

anti-cancer drugs. Along with selection and induction, drug resistance may be trans-

ferred between cells, which is the focus of this dissertaion. Specifically, we consider

the intercellular transfer of P-glycoprotein (P-gp), a well-known ABC transporter

that was shown to confer resistance to many common chemotherapeutic drugs.

In a recent paper, Durán et al. studied the dynamics of mixed cultures of

resistant and sensitive NCI-H460 (human non-small cell lung cancer) cell lines [1].

As expected, the experimental data showed a gradual increase in the percentage of

resistance cells and a decrease in the percentage of sensitive cells. The experimental

work was accompanied with a mathematical model that assumed P-gp transfer

from resistant cells to sensitive cells, rendering them temporarily resistant. The

mathematical model provided a reasonable fit to the experimental data.

In this dissertation we develop three new mathematical model for the transfer



of drug resistance between cancer cells. Our first model is based on incorporating

a resistance phenotype into a model of cancer growth [2]. The resulting model

for P-gp transfer, written as a system of integro-differential equations, follows the

dynamics of proliferating, quiescent, and apoptotic cells, with a varying resistance

phenotype. We show that this model provides a good match to the dynamics of the

experimental data of [1]. The mathematical model further suggests that resistant

cancer cells have a slower division rate than the sensitive cells.

Our second model is a reaction-diffusion model with sensitive, resistant, and

temporarily resistant cancer cells occupying a 2-dimensional space. We use this

model as another extension of [1]. We show that this model, with competition and

diffusion in space, provides an even better fit to the experimental data [1]. We

incorporate a cytotoxic drug and study the effects of varying treatment protocols

on the size and makeup of the tumor. We show that constant infusion leads to a

small but highly resistant tumor, while small doses do not do enough to control the

overall growth of the tumor.

Our final model extends [3], an integro-differential equation with resistance

modeled as a continuous variable and a Boltzmann type integral describing the

transfer of P-gp expression. We again extend the model into a 2-dimensional spatial

domain and incorporate competition inhibited growth. The resulting model, written

as a single partial differential equation, shows that over time the resistance transfer

leads to a uniform distribution of resistance levels, which is consisten with the results

of [3]. We include a cytotoxic agent and determine that, as with our second model, it

alone cannot successfully eradicate the tumor. We briefly present a second extension



wherein we include two distinct transfer rules. We show that there is no qualitative

difference between the single transfer rule and the two-transfer rule model.
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Chapter 1: Introduction

The work in this dissertation uses mathematical models to study the transfer

of a specific protein, P-glycoprotein, between cells and how this transfer affects

multidrug resistance in cancer. Since this work integrates mathematics and cancer

biology, we begin with a discussion of the biology in our models. This opening

chapter will give a brief primer of the mechanisms of cancer.

1.1 Biology of Cancer

Cancer is a worldwide public health issue and the second leading cause of

death in the United States [4]. In the United States alone, there were an estimated

1.5 million new cases in 2016, with almost 600,000 expected deaths [4]. The lifetime

probability of being diagnosed with some type of invasive cancer hovers around 40%,

with that number slightly higher for men and slightly lower for women [4]. Cancer

is a group of diseases arising from the loss of control of cell growth [5]. Uninhibited

cellular growth is the most prevalent marker of cancer. Malfunctions in the systems

that regulate this growth can happen anywhere in the body. This explains the many

different types of cancers, from blood cancers including leukemias to solid tumors

including the most common- breast, lung, and prostrate cancers [4].
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In order to achieve unlimited growth, apoptosis must be at least partially inhib-

ited [6,7]. Apoptosis is the inherent mechanism used in cellular self-destruction [8].

Cancer occurs when a series of mutations in the proteins constructing cellular growth

control systems cause the loss of appropriate functionality [5]. These mutations can

be genetic, occuring during the copying of DNA, as well as epigenetic, induced by

outside factors or events [5, 9]. Common carcinogens, such as smoking, radioactive

materials, and sunburns, are activities and events that can damage DNA and cause

mutations [5,10,11]. The uninhibited growth can eventually disrupt organ function,

leading to death [12]. Interestingly, since many cancers develop after child-bearing

years, there is no evolutionary pressure to limit these mutations [5].

With the improvement in treatment protocols and therapies, several cancers

have high 5-year survival rates if diagnosed early. For example, the average 5-year

survival rate for breast cancer is 90% [13]. Once cancerous cells have metastasized

and a secondary tumor begins growing elsewhere, the 5-year survival rate plum-

mets. If a breast tumor has undergone metastasis, the 5-year survival rate drops to

26% [13]. Cancer cells are also able to vascularize through angiogenesis, the process

of creating their own blood vessels to sustain large tumors [14,15].

Surgery, chemotherapy, radiotherapy, and immunotherapy are currently the

four main protocols for treatment. Some form of surgery has been prevalent since

the time of the ancient Greeks, where Hippocrates first identified a tumor as a

karkinos [16]. Surgical removal of a solid tumor is still the most common method

but it is now known that surgery alone might not deliver a cure. There may be

cancer cells that are not removed through surgery and are able to regrow the tumor,
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so chemotherapy and radiotherapy is used as an adjuvant therapy. If a tumor is too

large or not sufficiently isolated, chemotherapy may be used first as neoadjuvant

therapy to shrink the tumor to a manageable size for surgery [17].

Chemotherapy is the delivery of a poisonous chemical compound used to tar-

get cells. Most drugs slow down or stop mitosis [18–20]. While this is the most

straightforward way of decreasing the tumor load, it often cannot eradicate the

tumor completely. The main reason for treatment failure is due to the develop-

ment of drug resistance, wherein cancer cells evolve to become less affected by the

chemotherapeutic agent [21]. Radiation therapy, or radiotherapy, damages the can-

cer cell DNA through ionizing radiation, leading to apoptosis [22,23]. Immunother-

apy prods the immune system, either directly or indirectly, to attack and suppress

tumor growth [24, 25]. The immune response may act by slowing down the pro-

liferation and growth of cancer cells [25]. Consequently, immunotherapy does not

yield drug resistance in the way that chemotherapy does [26]. There are now well

over 100 chemotherapeutic agents that can be used in combinations and alongside

immunotherapies.

In all cases, drugs target the cell cycle. Cells in quiescence are not affected

until they enter an active proliferation stage. Most therapies do not differentiate

between cancerous and healthy cells. They are adjusted to the rate of proliferation

of cancer cells, which is why fast proliferating cells such as hair cells are adversely

affected by cancer treatments [27]. There is a balance between doses that are enough

to affect the tumor and not too high to cause substantial damage to healthy tissues.
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1.2 Drug Resistance

Figure 1.1: The most prevalent mechanisms by which a cancer cell inherits and

exhibits drug resistance. Figure adapted from [28].

Resistance of tumor cells to anti-cancer drugs is one of the most important chal-

lenges facing oncologists. The Norton-Simon hypothesis states that the reduction

in tumor volume resulting from chemotherapy is proportional to the unperturbed

rate of growth of a tumor of the same size [29, 30]. Unfortunately drug resistance

can slow down this reduction. Drug resistance can be caused by intrinsic factors,

such as location in the tumor, or by genetic events such as mutations [31]. Mul-

tidrug resistance has been previously explained as an overexpression of ABCB1 but

there are a plethora of other mechanisms at play as well, including decreased drug

uptake and evasion of apoptosis [31]. As drugs are administered, cancer cells can

mutate and their progeny become more resistant and the drugs less effective [32].

Understanding the mechanisms that cause and propagate resistance is paramount

to devising methods for overcoming it.
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When administering drugs to cancer patients there are two main types of drugs:

(i) cytostatic drugs, which target cancer cells by slowing down their proliferation rate

and (ii) cytotoxic drugs, which kill the cells. Both cytostatic and cytotoxic drugs

can harm healthy cells yet have an increased effect on tumor cells, although there

are cytostatic drugs that act on the tumor environment which can avoid uneccessary

harm to healthy cells [33]. Not all cancer cells exhibit the same traits, genotypically

or phenotypically, and so tumor heterogeneity is very important in understanding

the effects of both types of drugs. This dissertation will focus on one specific protein

overexpression that causes resistance to multiple drugs simultaneously.

Antineoplastic resistance is often the key impediment to effective cancer treat-

ment. Though advances in early detection have increased survival rates across

several cancer subtypes, resistance to chemotherapy is prevalent [34, 35], and the

majority of patients will relapse at a certain point following treatment. Therapeutic

failure may be attributed to intrinsic tumor heterogeneity prior to therapy (e.g.,

spatial localization of cancer cells within a tumor, initial cellular genetic landscape,

cell-cycle length variations, etc.) or induced tumor heterogeneity after initiation of

therapy, such as altered molecular signaling, genetic modification, and microenvi-

ronmental alterations.

Development of resistance to one drug can also lead to resistance to other struc-

turally and mechanistically unrelated drugs, a phenomenon referred to as multidrug

resistance (MDR). MDR can be understood through different biological factors and

is often identified with drug efflux [36]. There has been increasing evidence that

drug cellular uptake is regulated by transport proteins expressed on the cellular
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membrane, which are responsible for drug transport across the plasma membrane

and throughout the cell. One such example is the family of ABC (ATP Binding

Cassette) transporters. ABC transporters can pump away chemotherapeutic agents,

which allow certain cells to withstand the drugs’ cytotoxic effect [31]. These non

drug-specific transporters provide a mechanism for the cells to resist unrelated drugs,

which then leads to a chemotherapy breakdown. While ABC transporters have im-

portant roles in the importation of nutrients and exportation of toxic molecules [37],

their overexpression is a serious obstacle in anti-cancer therapies.

1.2.1 P-glycoprotein

P-glycoprotein (P-gp), a product of the ABCB1 (mdr1 ) gene, is a well-known

ABC transporter that correlates with MDR [38, 39]. It has been shown to confer

resistance to many common chemotherapeutic drugs [40–43] and is expressed in

many human cancers [44]. In normal human tissues it is concentrated in cells in

the liver, pancreas, kidney, colon, and jejunum [45]. P-gp targets xenobiotics and

there is a lengthy list of substrates it can expel, including common anti-cancer drugs

doxorubicin, paclitaxel, and imatinib. The MDR1 gene encodes the transmembrane

P-gp pump that cells use to excrete structurally and chemically diverse drugs [8].

A drug molecule is bound by the P-gp’s cytoplasmic domain; the protein subse-

quently uses ATP hydrolysis and opens itself to the extracellular space and expels

the drug molecule [8]. The overexpression of P-gp can lead to resistance of more

than 100 times higher than normal cells [46]. Two studies in 2005 showed resistant
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populations can spread their resistance to sensitive cells [47, 48]. More recently,

intracellular membrane nanotubes were shown to carry P-gp between neighboring

cells [44].

Drug resistance is often a multifactorial, complex process that arises through a

series of genetic and non-genetic changes across multiple cancers. Such changes can

be the consequence of drug administration (therapy-dependent), or can be acquired

independently of any drug (therapy-independent). The focus of this work is on drug

resistance that may be transferred between cells, e.g., via cell-to-cell communication.

1.3 Setup of the Dissertation

In this dissertation we develop new mathematical models for the transfer of

drug resistance between cancer cells. Our first model, studied in Chapter 3, is

based on incorporating a resistance phenotype into a model of cancer growth [2].

The resulting model for P-gp transfer, written as a system of integro-differential

equations, follows the dynamics of proliferating, quiescent, and apoptotic cells, with

a varying resistance phenotype. We show that this model provides a good match

to the dynamics of the experimental data of [1]. The mathematical model further

suggests that resistant cancer cells have a slower division rate than the sensitive

cells.

The second model, studied in Chapter 4, is a set of reaction-diffusion equations

governing the growth of sensitive and resistant cancer cells in the presence of a

chemotherapeutic agent. Since the resistant cells in the experiments from [1] were
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induced through doses of doxorubicin, that is the drug we consider here. We allow

the drug efflux action of the P-gp pumps to affect the diffusion of the drug and

incorporate a temporarily resistant phenotype. We study the effects of constant

infusion versus on/off treatment of the drug. We show the lack of existence of an

optimal therapy under the constraints of the model.

Our third model, studied in Chapter 5, continues the work of [3,49] in studying

a set of Boltzmann type integro differential equations to investigate resistance as a

continuous variable. We extend this measure by including two spatial dimensions

and density-dependent proliferation. The resulting reaction-diffusion equation in-

corporates the reaction as an integral term summing over all the of nearby transfers

of resistance that result in a specific resistance level. We show that the model agrees

with the findings of [3]. The model is then extended by incorporating the effects of

the cytotoxic drug doxorubicin. We study different protocols and demonstrate that

there is no optimal way to control the propagation of resistance.
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Chapter 2: Mathematical Models of Multidrug Resistance

Early mathematical models of drug resistance in cancer are due to Goldie &

Coldman [50]. Their work is based on a probabilistic model in which the presence of

a drug leads to cellular mutations which results in drug resistance. The approach of

Goldie & Coldman was not immediately widely accepted. Rosen [51] believed that

resistance was independent of dose and proposed a model for cellular competition,

arguing that resistance is selected through competition and is not induced by the

drug, as Goldie & Coldman had argued. To emphasize his point, Rosen used for [51]

the same title used by Goldie & Coldman a year earlier. It has been shown since

that selection and induction can coexist and both lead to drug resistance [52–55].

In this section we provide details about some of the models that were developed to

describe MDR.
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2.1 Recent Models

Panetta [56] developed a heterogeneous tumor model with induced resistance:

dx

dt
= [r1 − d1(t)]x, (2.1a)

dy

dt
= b1d1(t)x+ [r2 − d2(t)]y. (2.1b)

In this model x(t) represents sensitive cell mass and y(t) represents resistant

cell mass. b1 represents the resistant cell induction rate due to the effects of the

chemotherapy drug d1. A second function of time, d2, represents the effect of the

drug on resistant cells, so d2 ≡ 0 if they are completely resistant. Both sets of cells

exhibit exponential growth. Panetta used this model to study treatment protocols

and find at what point the tumor stops regressing with the drug.

Jackson & Byrne [14] added a spatial component through a radially symmetric

reaction-diffusion model without induction from the drug:

∂d

∂t
+∇ · (ud) = ∇ · (D(r)∇d) + Γ(r)(db(t)− d)− λd, (2.2a)

∂p

∂t
+∇ · (up) = Dp∆p+ Fp(p)− Cp(d, p), (2.2b)

∂q

∂t
+∇ · (uq) = Dq∆q + Fq(q)− Cq(d, q). (2.2c)

This model includes an equation for the drug, d(t), with diffusion term D(r)

assuming that the distance from the center of the tumor may affect diffusion. Γ(r) is
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the rate coefficient of blood-tissue transfer and db(t) is the prescribed drug concen-

tration in the vasculature. p(t) represents the sensitive cells and q(t) the resistant

cells. Fp and Fq are proliferation rates and the terms Cp and Cq are the effect

of chemotherapy. Jackson & Byrne showed that the effectiveness of the treatment

protocols depended on the initial make-ups of the tumor.

MDR has been studied in connection with tumor heterogeneity [14, 57–59].

Lorz et al. [59] modeled resistance as a continuous variable and demonstrated that

the presence of a cytotoxic agent leads to diminished heterogeneity and a population

of overwhelmingly resistant cells. Lavi et al. extended the approach of Lorz to model

intratumoral heterogeneity [57]. For a further review on mathematical models of

MDR we refer to [58] and the references therein.

2.2 Optimal Treatment

Mathematical tools can be used to identify treatment strategies that optimize

certain aspects, such as minimizing the overall tumor load or minimizing the amount

of drug.

Panetta [56] studied a sequential drug administration and used the ratio of

resistant to sensitive cells to analytically show when to switch from one drug to

another. Goldie & Coldman [60] attempted to determine whether sequential or

combination therapies are more effective. While combination therapy may be im-

practical due to high toxicity, they determined that it is the optimal option. Lorz et

al. [59] found a specific parameter set for which resistance will occur based on the
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amount of drug dose, and then in [61] studied a combination of cytotoxic and cy-

tostatic drugs. They showed intra-tumor heterogeneity is decreased under constant

infusion of a cytotoxic drug, with drug resistance levels rising dramatically.

In the early 2000s De Pillis & Radunskaya studied optimal control within

models of cancer treatment [62–64]. They emphasize the role of the immune system

in mediating the growth of the tumor. Their model from [63] is written as:

dN

dt
= r2N(1− b2N)− c4TN − a3(1− e−u)N, (2.3a)

dT

dt
= r1T (1− b1T )− c2IT − c3TN − a2(1− e−u)T, (2.3b)

dI

dt
= s+

ρIT

α + T
− c1IT − d1I − a1(1− e−u)I, (2.3c)

du

dt
= v(t)− d2u. (2.3d)

N(t) is the number of normal cells, T(t) the tumor cells, I(t) the immune cells,

and u(t) the drug. There is competition between the normal cells and tumor cells.

Interaction between the immune cells and the tumor cells can lead to inactivation

of immune cells but also can lead to the death of the tumor cells. The presence

of tumor cells stimulates the immune response so immune cells exhibit nonlinear

growth when interacting with tumor cells. Finally, all the cells are affected by the

existence of the drug u with a fractional cell kill term. They show that the optimal

drug treatment protocol is ’bang-bang’, where either a full dose or zero dose is given

for each time step.

In the last 10-15 years Ledzewicz & Schättler have been developing optimal
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control theory and its application to anti-cancer therapies. In [65] they consider an

ODE model with sensitive compartment S(t) and resistant compartment R(t):

dS

dt
= −aS + (2− q)aS + rcR, (2.4a)

dR

dt
= −cR + (2− r)cR + qaS. (2.4b)

The first terms on the right are the deaths of the mother cells. The second

terms include the progeny along with the return mutations back from resistant to

sensitive (and vice versa). Inclusion of a constant drug dose u changes the repre-

sentation to be as follows:

dS

dt
= −aS + (1− u)(2− q)aS + rcR, (2.5a)

dR

dt
= −cR + (2− r)cR + (1− u)qaS. (2.5b)

As in general optimal control problems, the problem is formulated as to optimize

an objective functional,

J =

∫ T

0

L(N, u)dt+ φ(T,N(T )). (2.6)

In any model the necessary conditions, including minimum and transversality condi-

tions, for the existence of an optimal control are given by the Pontryagin Maximum
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Principle [66, 67]. For the type of functionals 2.6, Ledzewicz & Schättler show the

existence of optimal solutions and conditions for singular controls. For more detail

we refer to their books [67,68].

2.3 P-Glycoprotein

Several mathematical models for specific mechanisms of resistance have been

derived and studied. As mentioned in 1.2.1, P-glycoprotein is one of the most well-

known of these mechanisms. It is an ABC transporter than allows cells to excrete a

variety of anti-cancer drugs. Michelson and Slate [69] derived a model incorporating

adenosine triphosphate (ATP) and adenosine biphosphate (ADP). They note that

the efflux generated by Pgp overexpression is only possible when ATP is also present

since it needs to bond with p170. A later work [70] includes the presence of an

inhibitor. A biophysical model was introduced by Panagiotopoulou et. al [71].

They show that the internal makeup of the tumor and the interaction between the

drug molecular weight and the membrane are drivers of MDR. These factors impact

the chance of an interaction between the drug drug and a protein transporter.

Relatively little attention has been given in the mathematical community to

modeling the transfer of drug resistance between cells. A recent work by Durán

et al. [1], derived two models for P-gp transfer assuming P-gp expression has a

discrete characteristic: P-gp in a cell is either overexpressed or not. These models

are written as a coupled system of ordinary differential equations (ODEs) describing

the behavior of sensitive cells (S), resistant cells (R), and temporarily resistant cells
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(SR). Interaction between sensitive and resistant cells allows the resistant population

to transfer P-gp to the sensitive cells, which become temporarily resistant. Since

this is a phenotypic change, the progenies of these cells revert back to a sensitive

state. The resistant cells are not affected by the interaction and exhibit logistic

growth. The first model, with no consideration of the action of a drug, of [1] is

given by

dS

dt
=
S

τs

(
1− R + S + SR

K

)
− SR

τc
+
SR
τ∗
, (2.7a)

dR

dt
=
R

τr

(
1− R + S + SR

K

)
, (2.7b)

dSR
dt

=
SR
τr

(
1− R + S + SR

K

)
+
SR

τc
− SR

τ∗
. (2.7c)

A second model proposed in [1] extends (2.7 by assuming that P-gp is trans-

fered through the shedding of microvessicles (MVs) by resistant cells. MVs are

small particles that are released via plasma membrane blebbing. In addition to

their role in mediating inflammation, coagulation, and vascular homeostasis, they

are important mediators of MDR, as they facilitate cell-to-cell communication and

can deliver proteins between cells [72]. The intake of MVs by sensitive cells may

lead to temporary resistance. A system of ODEs that incorporates the role of MVs
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(Q) in mediating MDR is written in [1] as

dS

dt
=
S

τs

(
1− R + S + SR

K

)
− QS

τη
+
SR
τ∗
, (2.8a)

dR

dt
=
R

τr

(
1− R + S + SR

K

)
, (2.8b)

dSR
dt

=
SR
τr

(
1− R + S + SR

K

)
+
QS

τη
− SR

τ∗
, (2.8c)

dQ

dt
= λ1R− λ2S

(
Q

Qth +Q

)
. (2.8d)

In addition to introducing the mathematical models, Durán et al. conducted

experiments on mixed cultures of NCI-H460 cell line (human non-small cell lung

carcinoma) cells and NCI-H460/R resistant cells that were selected from NCI-H460

cells after three months of doxorubicin selective pressure. Cultures of only sensitive,

only resistant, and mixed cultures were seeded in ratios 1:1, 3:1, and 7:1 sensitive to

resistant cells and their growth was followed over time. Flow cytometry was used to

measure P-gp expression levels at time points 0, 24, 48, 72, and 96 hours, and P-gp

transfer was analyzed every 24 hours. The experimental data was used to calibrate

the parameters of the mathematical models.

Pasquier et al. [49] studied cell-to-cell transfers of P-gp in co-cultures com-

bining a sensitive human breast cancer MCF-7 cell line, and a P-gp overexpressed

variant, selected for its resistance towards doxorubicin. Pasquier et al. derived

a Boltzmann type integro-partial differential equation structured by a continuum

variable corresponding to P-gp activity. The model was used to quantify the trans-
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fer of P-gp activity and, in conjunction with the experimental data, to confirm the

cell-to-cell transfer of functional P-gp. p is the continuous variable that measures

resistance, with a density dependent growth term along with a transfer term T that

encompasses all transfers that end with resistance level p.

∂u(t, p)

∂t
= ρ(p)u(t, p) + 2τ(T (u(t, ·))− u(t, p)), (2.9a)

u(0, p) = u0(p) ∈ L1
+(1, 104). (2.9b)

Here, the transfer operator T (u)(p) is defined as

T (u)(p) =

∫∞
−∞ u(p+ f(p̂)p̂)u(p− (1− f(p̂))p̂) dp̂∫ 104

1
u(p̂)p̂ dp̂

. (2.10)

A study extending this work to multiple transfer rules has been recently pub-

lished in [3]. This study is the motivation for Chapter 5.
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Chapter 3: A Cell-Cycle Model of P-gp Transfer

3.1 Introduction

In this chapter we study an extension of the Durán et al. [1] model (2.7) that

we introduced in Chapter 2.3. The model is reproduced again below:

dS

dt
=
S

τs

(
1− R + S + SR

K

)
− SR

τc
+
SR
τ∗
, (3.1a)

dR

dt
=
R

τr

(
1− R + S + SR

K

)
, (3.1b)

dSR
dt

=
SR
τr

(
1− R + S + SR

K

)
+
SR

τc
− SR

τ∗
. (3.1c)

Since the model (3.1) produces more accurate results than the alternate Durán

et al. model (2.8), we use (3.1) as the reference model to which we compare our

results.

In addition to introducing the mathematical models, Durán et al. conducted

experiments on mixed cultures of NCI-H460 cell line (human non-small cell lung

carcinoma) cells and NCI-H460/R resistant cells that were selected from NCI-H460

cells after three months of doxorubicin selective pressure. Cultures of only sensitive,

only resistant, and mixed cultures were seeded in ratios 1:1, 3:1, and 7:1 sensitive to
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resistant cells and their growth was followed over time. Flow cytometry was used to

measure P-gp expression levels at time points 0, 24, 48, 72, and 96 hours, and P-gp

transfer was analyzed every 24 hours. The experimental data was used to calibrate

the parameters of the mathematical models.

In Fig. 3.1 we show the dynamics of the fractions of sensitive and resistant

cells over time for different seeding ratios. Shown are the experimental results and

simulations of (3.1). Clearly, while some general trends are common between the

experimental data and the simulations, the fit is not optimal. For example, it takes

about half the simulation time (50 hours) for the simulations to begin following

the general growth trend of the data. Intriguingly, the microvessicle model, (2.8),

produces a worse fit to the experimental data than model (3.1), [1].
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Figure 3.1: Fractions of resistant (left) and sensitive (right) cells over time. Dots cor-

respond to the experimental data of [1]. Solid lines are simulations of the model (3.1)

of [1].

Our goal in this chapter is to develop a new mathematical model for the

transfer of drug resistance between cancer cell subpopulations that will provide a
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better fit to the experimental data of [1]. Since neither the experiments nor models

of [1] include a drug, we propose a model that incorporates no action of a drug.

Building on the idea of separating the cancer cells into three subtypes: sensitive,

resistant, and temporary resistant, we aim at providing a more accurate model by

better capturing the cancer growth dynamics. Accordingly, we incorporate the three

subpopulations into a cancer growth model of Greene et al. [2]. This model considers

cells in three states: quiescent, proliferating, and apoptotic, with transition rates

that depend on the cellular density. The model was shown in [2] to provide an

accurate fit to the growth dynamics of OVCAR-8, an ovarian cancer cell line. By

incorporating drug resistance and a mechanism of resistance transfer into the model

of [2] we provide a better match to the NCI-H460 experimental data of [1].

The structure of this chapter is as follows: In section 3.2 we derive our new

model for the P-gp transfer between cancer cells. Simulations of the model and

a sensitivity study of the model parameters are shown in section 3.3. Concluding

remarks are provided in section 3.4. The results presented in this chapter were

published in [73].

3.2 Our Model

Our starting point is the cancer growth model of Greene et al. [2]. In this

model, cancer cells are divided into three compartments: proliferating (P ), quies-

cent (Q), and apoptotic (A) cells (see Fig. 3.2). The transition rates between the

compartments are assumed to depend on the cellular density. Quiescent cells can
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either remain quiescent, start proliferating, or commit apoptosis. Proliferating cells

complete the cell cycle unless they transition to apoptosis. Once the cell cycle is

completed and a cell divides, both cells transition to the quiescent compartment.

Once a cell commits to apoptosis, it stays in the apoptotic compartment until it

dies. The duration of the cell-cycle is assumed to be normally distributed, and the

time spent in the apoptotic cycle follows a gamma distribution. The model was

designed to predict variations in growth as a function of the intrinsic heterogeneity

originating from the varying duration of the cell-cycle and apoptosis. The model

parameters were fitted in [2] to experimental data coming from OVCAR-8, an ovar-

ian cancer cell line. However, the model is generic and could be used to describe

the growth of other cancers.

To describe resistance transfer during cancer growth, we incorporate drug

resistance into the PQA model of [2]. We split the quiescent compartment, Q, into

sensitive (Sq) and resistant (Rq) subtypes. The proliferative compartment, P , is

also divided into sensitive (Sp) and resistant (Rp) cells. In addition, the proliferative

compartment also includes a temporarily resistant phenotype (Tp). Similarly to the

original PQA model, we leave the apoptotic stage as a single compartment since

we assume that cells that enter apoptosis are committed to it. In our model the

transfer of P-gp happens as the quiescent cells start proliferating. We assume that

once cells have begun proliferating they maintain their phenotype. We define ξ

to be the fraction of sensitive quiescent cells that become temporarily resistant as

they transition to a proliferating state. Since P-gp transfer only leads to temporary

resistance we stipulate that the progeny of temporarily resistant cells are sensitive
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Figure 3.2: Diagram representing the PQA model from [2]. Here, P denotes the

proliferative compartment, with NP (t) cells at time t. Proliferating cells can either

transition to apoptosis, A, or to quiescence Q, upon completion of the cell-cycle.

At time t there are NA(t) apoptotic cells and NQ(t) quiescent cells. Quiescent cells

can either transition to P with rate αp(t), or to A with rate αaq(t). The implicit

transition rates due to the completion of the cell cycles are shown in dashed lines.
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cells. The amount of P-gp in a temporarily resistant proliferating cell is divided

between the daughter cells so we consider both offsprings to be sensitive. Clearly,

a more accurate model can include a larger range of resistance levels (temporary or

permanent). With the rather limited experimental data at our disposal, we prefer

the simpler approach presented here. A diagram corresponding to our model is

shown in Fig. 3.3.

Two equivalent model formulations were introduced in [2]: a stochastic agent-

based model, and an integro-differential (IDE) model. In this chapter we choose to

work with the IDE model and extend it to incorporate drug resistance. Our model

equations are written as a system of six IDEs. The first two equations provide the

dynamics of the quiescent cells:

dSq
dt

= −αspSq(t)− αasqSq(t)

+2

∫ t

0

fp(t− t∗;µ1, σ1)(1− ξ)αspSq(t∗)
(

1−
∫ t

t∗

αasp(s)ds

)
dt∗

+2

∫ t

0

fp(t− t∗;µ2, σ2)ξαspSq(t∗)

(
1−

∫ t

t∗

αasp(s)ds

)
dt∗,

dRq

dt
= −αrpRq(t)− αarqRq(t)

+2

∫ t

0

fp(t− t∗;µ2, σ2)αrpRq(t∗)

(
1−

∫ t

t∗

αarp(s)ds

)
dt∗.

(3.2)
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Figure 3.3: Diagram representing the proposed model (3.2)–(3.4). The quiescent

cells, Q, are divided into two types: resistant quiescent cells, Rq(t), sensitive qui-

escent cells, Sq(t). The proliferating cells, P , are divided into three compartments:

resistant proliferating cells, Rp(t), temporary resistant proliferating cells, Tp(t), and

sensitive proliferating cells, Sp(t). Resistant proliferating cells become resistant qui-

escent cells upon completing the cell cycle. Sensitive and temporary resistant pro-

liferating cells become sensitive quiescent cells when they complete the cell cycle.

Proliferating and quiescent cells may become apoptotic cells, a compartment they

leave only when they die. The time spent in the proliferating cycle is normally

distributed with parameters that may vary depending on whether the proliferating

cells are resistant or not.
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Three equations follow the dynamics of proliferating cells:

dSp
dt

= (1− ξ)αspSq(t)− αaspSp(t)

−
∫ t

0

fp(t− t∗;µ1, σ1)(1− ξ)αspSq(t∗)
(

1−
∫ t

t∗

αasp(s)ds

)
dt∗,

dRp

dt
= αrpRq(t)− αarpRp(t)

−
∫ t

0

fp(t− t∗;µ2, σ2)αrpRq(t∗)

(
1−

∫ t

t∗

αarp(s)ds

)
dt∗,

dTp
dt

= ξαspSq(t)− αatpTp(t)

−
∫ t

0

fp(t− t∗;µ2, σ2)ξαspSq(t∗)

(
1−

∫ t

t∗

αatp(s)ds

)
dt∗.

(3.3)

A sixth equation describes the dynamics of apoptotic cells:

dA

dt
= αasqSq(t) + αarqRq(t) + αaspSp(t) + αarpRp(t) + αatpTp(t)

−
∫ t

0

fa(t− t∗)αN(t∗)dt∗.

(3.4)

The first equation in (3.2) follows the dynamics of the sensitive quiescent cells,

Sq. The first term on the RHS, −αspSq(t), corresponds to the fraction of cells lost as

a result of the transition to the proliferative compartment P . This term encompasses

cells that stay sensitive and those that become temporarily resistant. The second

term, αasqSq(t), corresponds to the loss as a result of the transition to apoptosis.

The integral term

2

∫ t

0

fp(t− t∗;µ, σ)αspSq(t∗)

(
1−

∫ t

t∗

αasp(s)ds

)
dt∗

corresponds to the increase in Sq due to the progeny of the sensitive proliferat-

ing cells. We assume that all proliferating cells originated from quiescent cells, so

αspSq(t∗) includes all sensitive proliferating cells. There are two such terms, the first

(with 1− ξ) corresponds to sensitive proliferating cells that competed their prolifer-

ating cycle (hence the factor of 2 in front of the integral). The second term (with ξ)
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corresponds to temporary resistant cells that completed their proliferation cycle and

became sensitive quiescent cells. We assume that the time spent in the proliferative

compartment is normally distributed with mean µ and standard deviation σ, both

measured in hours,

fp(t;µ, σ) =
1√
2πσ

e−
(t−µ)2

2σ2 . (3.5)

The term 1 −
∫ t
t∗
αasp(s)ds describes the cells in the cell cycle that did not move

to apoptosis before completing the proliferation cycle, where t corresponds to the

time cells entered the proliferating compartment. Overall, the full integral accounts

for the progeny for the proliferating cells whose time spent in the cell cycle has

come to an end. The somewhat complex bookkeeping in this model (expressed by

the integral terms) is due to assuming a distribution on the time cells may take to

proliferate (and die), as opposed to the more standard approach of assuming that

these values are constant. We allow the proliferation time, characterized by the

parameters of the normal distribution, µ and σ, to differ between the resistant and

sensitive populations since resistant cells may have a slower proliferation rate [74].

If these parameters are assumed to be identical for resistant and sensitive cells, both

integrals terms can be combined into one term.

The second equation in (3.2) describes the dynamics of the resistant quiescent

population, Rq. The RHS is similar to the first equation, with a loss term due to

transition into the cell cycle and another loss term due to transition to apoptosis.

Since we assume that these cells exhibit a resistant genotype we do not allow them

to lose their resistance and so the integral term represents the progeny from all the
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resistant cells in the cell cycle that have their time span end at a certain time t.

Similar equations are provided for the three types of cells in the proliferative

compartment, described in (3.3). The first term on the RHS of the first equation

for the sensitive proliferative population, Sp, represents the fraction of sensitive qui-

escent cells that started proliferating but stayed sensitive and did not acquire any

temporary resistance. We include an apoptotic term and the same integral seen

in (3.2), representing the end of the cell cycle in which each proliferating cell that

has not transitioned into apoptosis divides into two new quiescent cells. The second

equation, for the resistant proliferating cells, Rp, includes a transition term from

resistant quiescent to resistant proliferative and another term representing transi-

tion to apoptosis term with the integral from the second equation in (3.2) showing

the loss due to division at the end of the cell cycle, as cells transition to the resis-

tant quiescent cells compartment. The third equation, for the temporary resistant

proliferating cells, Tp, has the same three types of terms, with ξ multiplying the

transition term from sensitive quiescent showing the fraction of cells that acquired

temporary resistance.

Finally, (3.4) describes the apoptotic compartment. Once cells start apoptosis

we no longer distinguish between resistant or sensitive cells. Equation (3.4) includes

the five growth terms that correspond to the transitions from all compartments in

(3.2)–(3.3). The length of time spent in apoptotic state is assumed to be a Gamma

distribution,

fa(t) =
λω

Γ(ω)
tω−1e−λt, (3.6)
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with λ and γ the rate and shape parameters of the apoptotic process and Γ(·) the

gamma function. Once cells complete the time committed to apoptosis, they are

removed from the system. The integral term describes this removal for all cells

that die at time t. In this term we denote the total loss by αN(t) := αasqSq(t) +

αarqRq(t) + αaspSp(t) + αarpRp(t) + αatpTp(t).

The transitions rates from [2] are functions of β(ρ) and d, the equilibrium

fraction of proliferating cells and the fraction in apoptosis, which we take to be

constant. We set βm and ρm as the maxima for β, and ρ, respectively, and define

β(ρ) =
{ βme

−a(ρ−ρm)2/ρ(1+ε−ρ)2 if 0 < ρ < 1 + ε,

0 otherwise.

(3.7)

Here, ε is a parameter governing the shape of β(ρ), and

a =
ε log(βm/d)

(1− ρm)2
. (3.8)

We define the transitions αsp(t) and αrp(t) as the rates from sensitive qui-

escent to sensitive or temporarily resistant proliferating and resistant quiescent to

resistant proliferating, respectively. We make the assumption that P-gp expression

is independent of the transition. Hence, we set αsp(t) = αrp(t). The intrinsic death

terms from quiescent to apoptotic are αasq(t) and αarq(t), with the death terms

from proliferative to apoptotic being αasp(t),αarp(t), and αatp(t). We again con-

sider no effect of P-gp transfer on these terms and thus have αasq(t) = αarq(t) and
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αasp(t) = αarp(t) = αatp(t). These transition rates are shown below.

αsp(t) = αrp(t) = c
(β(ρ(t))N(t)− P (t))+

Q(t)
, (3.9)

αasp(t) = αarp(t) = αatp(t) = cγ
(dN(t)− A(t))+

P (t)
, (3.10)

αasq(t) = αarq(t) = c(1− γ)
(dN(t)− A(t))+

Q(t)
. (3.11)

Here, Q(t), P (t), and A(t) are the total number of cells in each respective compart-

ment and N(t) = Q(t) +P (t) +A(t) with ρ(t) = N(t)/K for a carrying capacity K.

The transition from Q to P is a function of the difference between the current prolif-

erative population, P (t), and the desired (or equilibrium) proliferative population,

β(ρ(t))N(t). Similarly, the transitions into apoptosis are functions of the difference

between current apoptotic population A(t), and desired fraction in apoptosis dN(t),

where d is taken to be a small constant < 0.05. c is the cellular reaction rate and γ

describes the rate difference between the proliferating cells and quiescent cells when

going into apoptosis.

3.3 Results

3.3.1 Numerical Methods

We use a four-step explicit Adams-Bashforth (AB) method to approximate

solutions of the system (3.2)–(3.4). This solver is chosen since it does not require

temporary intermediate values, which simplifies the calculations due to the presence

of the integral terms. The method can be written as

yn+1 = yn +
∆t

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3), (3.12)
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with lower degree AB methods for the first 3 steps. Integrals of the form

∫ t

0

h1(t, t∗)

(
1−

∫ t

t∗

h2(s)ds

)
dt∗ (3.13)

are discretized using the same time steps used with the AB method (3.12). If we

denote

I(t, t∗) =

∫ t

t∗

h2(s)ds,

we can approximate I(t+ ∆t, t∗) with

I(t+ ∆t, t∗) =

∫ t+∆t

t∗

h2(s)ds =

∫ t

t∗

h2(s)ds+

∫ t+∆t

t

h2(s)ds

≈
∫ t

t∗

h2(s)ds+ h2(t)∆t = I(t, t∗) + h2(t)∆t.

(3.14)

Equation (3.14) requires only one function evaluation. The complete integral (3.13)

is then evaluated with a composite trapezoidal rule on a uniform grid:∫ t

0

h1(t, t∗)

(
1−

∫ t

t∗

h2(s)ds

)
dt∗ ≈

∆t

2

N∑
k=1

(h1(t, tk)(1− I(t, tk))

+ h1(t, tk+1)(1− I(t, tk+1))) ,

(3.15)

with tk the kth point and N the size of the discretization.

In our simulations, we optimized the model parameters using Matlab’s non-

linear least squares function, fitting the solution of (3.2)–(3.4) to the experimental

data of [1]. We set d = 0.03, which corresponds to the same fraction of cells in

apoptosis from [2]. The full list of parameters and their ranges is given in Table 3.1.

The optimal values used in the simulations are given in Table 3.2 for the case in

which resistant cells and sensitive cells have different growth parameters, and in

Table 3.3 for the case when the growth parameters are identical for both sensitive

and resistant cells.
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Table 3.1: Parameter Values & Descriptions

Parameter Range Description Reference

t [0,180] (hours) Time [1]

µ1 [10,∞) (hours) Mean length of (sensitive) cell cycle [2]

σ1 [0,10] (hours) Standard deviation of (sensitive) cell cycle [2]

µ2 [12,∞) (hours) Mean length of (resistant) cell cycle [2]

σ2 [0,10] (hours) Standard deviation of (sensitive) cell cycle [2]

ω 4.9436 Shape parameter of entire apoptotic process [2]

λ 0.19117 (per hour) Rate parameter of entire apoptotic process [2]

ρ(t) [0,∞) Density of cells at time t [2]

K 7.5× 105 Carrying capacity [1]

d [0.01,0.05] Fraction of cells in apoptosis [2]

β(ρ) [0,1] Fraction in cell cycle as a function of density [2]

βm [0,1] Maximum of β(ρ) [2]

ρm [0,1] Maximizing density of β(ρ) [2]

ε [0,∞) Parameter governing shape of β(ρ) [2]

c [0,∞) (per hour) Cellular reaction rate [2]

γ [0,1] Rate difference between αap and αaq [2]

ξ [0,1] Fraction of cells becoming temporarily resistant
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Table 3.2: Parameters values used in simulations with different growth parameters

for the sensitive and resistant cells

Parameter µ1 σ1 µ2 σ2 ω λ K

Value 10.0258 9.2818 12.0033 5.8467 4.9436 0.19117 7× 105

Parameter d βm ρm ε c γ ξ

Value 0.03 0.8 0.0458 0 15.4753 0.8331 0.0412

Table 3.3: Parameters Values Used in Simulations with identical growth parameters

for the sensitive and resistant cells

Parameter µ1 σ1 µ2 σ2 ω λ K

Value 10.2365 4.3263 10.2365 4.3263 4.9436 0.19117 7× 105

Parameter d βm ρm ε c γ ξ

Value 0.03 0.8 0.2 0.2346 1.6732 0.5011 0.4828
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3.3.2 Simulations
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Figure 3.4: The dynamics of the total population of resistant and sensitive cells

over 200 hours simulated with (3.2)–(3.4). We consider the three initial ratios of

sensitive to resistant cells: 1:1, 3:1, and 7:1.

Our first simulations show the total population of sensitive and resistant cells

over time for three different initial conditions. Following the setup of [1] we run

separate simulations for a 1:1, 3:1, and 7:1 initial ratio of sensitive to resistant cells.

The resistant subtype, as described in [1], are cells that have been given Doxorubicin

for three months and survived. At time t = 0 all cells are assumed to be quiescent.

Fig. 3.4 shows growth up to a carrying capacity and then a small decline, which

compares well to the data shown in [1]. The trend of the population growth is

similar in all three cases.

We next look at the how the fractions of sensitive and resistant cells change

over time. The results are shown in Fig. 3.5. We compared simulations of our

model (3.2)–(3.4) with simulations of the model of [1] given by (3.1). The simulations

33



results are plotted on top of the experimental data of [1]. A comparison between

the results produced by both models shows that the new model (3.2)–(3.4) provides

a substantially better match to the experimental data over the simulated 96 hours,

compared with the model (3.1), both in terms of the absolute error, as well as

the overall trend. We see an early inflection point in our model due to the faster

proliferation rate of the sensitive cells. Initially the growth of the sensitive cell

fraction outpaces the resistant cell fraction. After around 12 hours the resistant

cells begin to catch up. Then the transfer of resistance contributes to a rise in

the fraction of resistant cells. We significantly oversampled the data to check for

overfitting and the results were similar, which makes sense given the lack of observed

oscillations in the experiemental data.

We test the sensitivity of the model (3.2)–(3.4) to changes in four of the pa-

rameters, d, c, ε, and ξ. Fig. 3.6 shows how the overall population varies when d, c,

and ε, respectively, are changed. We ran simulations to compare how the sensitive

and resistant fractions change but these result with only negligible changes so we

focus on total cell population. Changes to d, the parameter governing the fraction

of cells in apoptosis, are shown in the top left graph in Fig. 3.6. There is a small

effect on the overall population once it has reached carrying capacity with a larger

death parameter correlating with a faster decline but the system overall does not

change much as d changes. The cellular reaction rate c amplifies the magnitude

of cells moving from quiescent stage into the cell cycle. The simulation shown in

the top right graph in Fig. 3.6 confirms that a low c value correlates with slower

growth. However, for larger values of c, the growth is mostly independent of c. The
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Figure 3.5: Fractions of resistant (left) and sensitive (right) cells over time. Top:

initial ratio 1:1. Middle: initial ratio 3:1. Bottom: initial ratio 7:1. Dots correspond

to the experimental data of [1]. Dashed lines are simulations with the model (3.1)

of [1]. Solid lines are simulations of (3.2)–(3.4).
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Figure 3.6: Sensitivity study of (3.2)–(3.4) for the case of an initial sensitive to

resistant ratio of 3:1. All graphs show the total cell population over time. Top

Left: varying d, the fraction of cells in apoptosis. Top Right: varying c, the cellular

reaction rate that governs the transition from quiescent to proliferative. Bottom:

varying ε, the shape parameter for β(ρ).
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parameter ε governs the shape of β(ρ), the equilibrium, or desired, amount of cells

in the cell-cycle. The bottom left graph in Fig. 3.6 demonstrates that the total

population is sensitive to changes in ε. While the sensitive and resistant fractions

remain consistent, any deviation from ε = 0 leads to a significant decrease in the

overall growth. ε = 0 implies that β(ρ) = βm, a constant. This corresponds to a

lack of dependence on density. We expect this to be the best fit as the model and

experimental data address a local phenomenon.

The parameter ξ, which governs the fraction of sensitive quiescent cells that

become temporarily resistant as they enter the cell cycle, is the final parameter we

varied. Resistant cells proliferate at a slower rate but we see that the difference is

not enough to induce change on the overall population. However, there is a shift

in the sensitive and resistant fractions, as would be expected. Fig. 3.7 shows the

population and the two fractions while Fig. 3.8 shows a zoomed on version of Fig. 3.7

to highlight the shift towards more resistance as ξ is raised. The larger ξ is, the

more cells become temporarily resistant and so the overall resistant fraction rises.

We also ran simulations in which we allowed the sensitive and resistant cells

to have the same growth parameters (i.e., a normal distribution with identical mean

and standard deviations for the cell cycle length). Without the slower proliferation

our optimized parameters have a much larger value for ξ, the fraction of sensitive

quiescent cells that become temporarily resistant. In these simulations we have

almost half of them becoming resistant (ξ = 0.4828). The results of these simulations

are shown in Fig. 3.9 (compare with Fig. 3.5 where resistant cells are assumed to grow

slower than the sensitive cells). Even in this case, our model (3.2)–(3.4) provides a
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Figure 3.7: Top Left: Fraction of sensitive cells as ξ, the fraction of sensitive qui-

escent cells that transition to temporarily resistant when in the proliferative state,

varies. Top Right: Fraction of resistant cells as ξ varies. Bottom: Total Population

as ξ varies.
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Figure 3.8: Left: A close up for the fraction of sensitive cells as ξ, the fraction of

sensitive quiescent cells that transition to temporarily resistant when in the pro-

liferative state, varies. Right: A close up for the fraction of resistant cells as ξ

varies.

better match in capturing the trend of the data compared with the model of [1].

We note that the parameters are optimized based on the available experimental

data that was collected over the first 96 hours. When simulating our model beyond

96 hours with identical growth distributions for the sensitive and the resistance cells,

the fractions of sensitive and resistant cells trend back towards their initial values.

The model (3.1) exhibits a limit dynamics in which the sensitive and resistant cells

settle towards equilibrium values albeit values that are different than the initial

distribution.

It is easy to understand the reason for this asymptotic behavior when the

growth distributions of sensitive and resistant cells are identical. In this case, we

can assume that Rp changes at a similar rate to Sp+Tp. When the carrying capacity
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is approached, β(ρ) gets increasingly small. This means that the transition rates

from quiescence to the proliferative compartment shrink. Once all the temporarily

resistant proliferating cells divide into sensitive quiescent cells, the transition rates

are too small to repopulate Tp. The overwhelming majority of cells are quiescent,

either resistant or sensitive. When temporary resistant cells make up a small fraction

of the population, the asymptotic distribution of cells reverts to the initial values.

This can all be avoided by allowing the resistant population to proliferate at a slower

rate than the sensitive cells, which is a biologically solid assumption [74].

3.4 Discussion

Mathematical models of the mechanisms of cellular growth may assist in study-

ing and understanding the emergence and evolution of MDR. The cell-to-cell trans-

fer of P-gp and its effect have not been extensively studied by the mathematical

community.

In this chapter we propose a model for the resistance transfer between cells.

Our model assumes that cells are either quiescent, proliferative, or in the apoptotic

stage. Cells in the quiescent and proliferative stages are designated either resistant

or sensitive, with an extra compartment for temporarily resistant proliferative cells.

We assume that a certain fraction of sensitive cells become temporarily resistant

due to P-gp transfer as they become proliferative and enter the cell cycle. This

model is an extension of the cancer growth model of Greene et al. [2] to which we

incorporated drug resistance.
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Figure 3.9: Fractions of resistant (left) and sensitive (right) cells over time assuming

identical growth parameters for the sensitive and the resistant cells. The parameters

used in this figure are given in Table 3.3. Top: initial ratio 1:1. Middle: initial ratio

3:1. Bottom: initial ratio 7:1. Dots correspond to the experimental data of [1].

Dashed lines are simulations with the model (3.1) of [1]. Solid lines are simulations

of (3.2)–(3.4).
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We fit our model to the experimental data from [1] and show that the more

detailed description of the growth dynamics in our model provides a better fit to

the experimental data than the fit that can be obtained using the original model

of [1]. We demonstrate that a better match to the experimental data is obtained

when resistant cells are allowed to grow at a different rate than the sensitive cells.

The best fit is obtained when the resistant cells grow more slowly than the sensitive

cells, which is consistent with known experimental data.

With this better fit our model could now potentially be used for studying a

similar setup under drug treatment. Given data on sensitive and resistant responses

to the action of a drug, this would be a reasonable next step.
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Chapter 4: A Reaction-Diffusion Model for the Spread of Transferred

Resistance

In this chapter we present another extension of Durán et. al [1]. Here we

incorporate a spatial component rather than a cell-cycle model. The structure of the

chapter is as follows: we begin with a simple reaction-diffusion model for resistant

and sensitive cancer cells. We then add a temporarily resistant type, mirroring the

model of chapter 3. We then look at a system with no P-glycoprotein transfer but

the inclusion of a chemotherapeutic drug. Finally we put it all together with a model

that incorporates transferred resistance alongside the mass action of the drug.

4.1 A First Model

Reaction-diffusion equations are a common type of parabolic partial differ-

ential equations. They can be applied to chemistry, biology, physics, and other

dynamic processes [75]. These equations have been used in the study of pattern

formation since Alan Turing’s seminal work on morphogenesis [76]. The change

in the concentration variable is modeled as a function of two forces, a (chemical

or otherwise) reaction along with diffusion across space. We begin with a coupled

reaction-diffusion system: a scaled Lotka-Volterra competition model with the ad-
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dition of diffusion [77]. This system with diffusion and competition is commonly

called a Fisher-KPP system (Kolmogorov, Petrovsky, and Piskunov) [78,79].

∂ u

∂ t
= Du∆u+ u(1− u− v), (4.1a)

∂ v

∂ t
= Dv∆ v + av(1− u− v). (4.1b)

We consider space in two dimensions x and y, thus ∆ = ∂2

∂x2
+ ∂2

∂y2
. In this

model u(x, y, t) represents the density of the cancer cells sensitive to a drug, with

values between 0 and 1, while v(x, y, t) represents the density of the cancer cells

exhibiting MDR. Each diffuses at a certain rate, Du and Dv, respectively. Both

sets of cells exhibit logistic growth limited by competition for space. We let a < 1

assuming that resistant cells grow slower than sensitive cells. We will revisit this

assumption later in this chapter.

4.1.1 Numerical Methods

In order to simulate (4.1) we discretize the system using the finite difference

method. We use n for each time step and i and j for the two spatial dimensions.

The time derivatives are discretized via the forward, or explicit, Euler method, with

k = ∆t:

∂u

∂t
|t=n ≈

un+1
i,j − uni,j

k
. (4.2)
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We use an implicit 5-point stencil for the finite difference approximations. In

this case the (i, j) component of the Laplacian at time step n is written as

∆u ≈
un+1
i+1,j + un+1

i−1,j + un+1
i,j+1 + un+1

i,j−1 − 4un+1
i,j

h2
, (4.3)

where h = ∆x. We take the sum of the four closest values at the next time step,

n+ 1, and subtract four times the value of the (i, j) component at t = n+ 1. This is

an implicit method so combined with the explicit Euler, we are using a semi-implicit

method of updating each component. This allows us to solve a linear system for

each un+1
i,j and vn+1

i,j . For each un+1
i,j , we have:

un+1
i,j − uni,j

k
≈ Du

un+1
i+1,j + un+1

i−1,j + un+1
i,j+1 + un+1

i,j−1 − 4un+1
i,j

h2
+uni,j(1−uni,j−vni,j). (4.4)

We set up the discretized equation for vn+1
i,j in the same manner. In implement-

ing the code on Matlab we utilize sparse matrices to increase the efficiency of the

simulation. The simulations of the extensions of this model used in the upcoming

sections all use a similar discretization.

Since we are going to use this as an extension of Durán et. al [1] in the next

sections, we run a simulation assuming a 1:1 ratio of sensitive to resistant cells

equally spaced in the center of a two-dimensional domain with Dirichlet boundary

conditions (Figure 4.1). We set u = 0 and v = 0 on the boundary. Without the

presence of a drug, the competitive advantage of the sensitive cells allows them
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to quickly overtake the resistant population. What looks like a dip in sensitive

population in the center is due to the population growing faster at the edge and the

center eventually catching up. The plots show the respective densities after 10, 50,

and 100 hours. The parameters used throughout the simulations are described in

Section 4.2.1.

When we extend the simulations to two months, we see that the sensitive cells

represent over 90% of the tumor in Figure 4.2, as expected. In this simple case,

the only distinction between the two populations is the slower growth rate of the

resistant cells, making it clear that the advantage lies with the sensitive cells.

Simulations for populations with 3:1 and 7:1 initial ratios exhibit similar, if

exaggerated, characteristics. Without any external forces on this system, the re-

sistant cells cannot overcome the sensitive cells and, while the tumor will grow to

capacity, the sensitive cells will dominate.

4.1.2 Fisher’s Equation

When we make two simplifying assumptions, namely that Du = Dv = D, and

a = 1, then we can rewrite the system (4.1) as follows:

∂ u

∂ t
= D∆u+ u(1− u− v), (4.5a)

∂ v

∂ t
= D∆ v + v(1− u− v). (4.5b)

Adding both equations and setting µ = u+ v we get
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Figure 4.1: Simulation of (4.1). Densities of sensitive (left) and resistant (right)

cells over time. Initial 1:1 ratio. Top: t=10 hours. Middle: t=50 hours. Bottom:

t=100 hours.
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Figure 4.2: Simulation of (4.1). Densities of sensitive (left) and resistant (right)

cells after two months. Initial 1:1 ratio.

∂µ

∂ t
= D∆µ+ µ(1− µ). (4.6)

Equation (4.6) is the classic Fisher equation, from the 1937 paper on the spread

of a certain allele [78]. There are two equilibrium states, µ = 0, and µ = 1, and in

between traveling wave solutions can exist. We can see these in Figure 4.3 as the

tumor grows to the equilibrium state µ = 1.
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Figure 4.3: Simulation of the Fisher equation (4.6). Overall tumor density is shown

over a period of 100 hours. Left: t=10 hours. Middle: t=50 hours. Right: t=100

hours.
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4.2 Transferred Resistance

As discussed in Chapters 2 & 3, the overabundance of P-glycoprotein pumps

leads to MDR. We understand that resistant cells can transfer P-gp pumps to nearby

sensitive cells. We apply the transfer of resistance terms of [1] to (4.1) to incorporate

a third equation for those temporarily resistant cells.

∂ u

∂ t
= Du∆u+ u(1− u− v − w)− kuuv + kww, (4.7a)

∂ v

∂ t
= Dv∆ v + avv(1− u− v − w), (4.7b)

∂ w

∂ t
= Dw∆w + aww(1− u− v − w) + kuuv − kww. (4.7c)

Here, w(x, y, t) represents temporarily resistant cells. The resistant cells trans-

fer a small amount of P-gp pumps to nearby sensitive cells, allowing for a short-term

change in the resistant phenotype. After a specified amount of time, controlled by

kw, the temporarily resistant cell turns back into a sensitive cell.

4.2.1 Simulations of The Transferred Resistance Model (4.7)

As in Chapter 3, we optimized parameters using Matlab’s nonlinear least

squares function. We fit the solution of (4.7) to the experimental data of [1]. To deal

with the inherent scarcity of data points and concerns about overfitting we synthe-

sized extra points using linear interpolation to confirm our results. Since we do not

assume any phenotypic difference between resistant and temporarily resistant cells,
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we force av = aw in all simulations. The full set of parameters with their ranges is

given in Table 4.1. The optimal values used in the simulations are given in Table

4.2.

The results for the parameter optimization are shown in Figures 4.4 and 4.5.

The top plot in Figure 4.4 shows the percentage of sensitive cells in (4.7) over 100

hours against the experimental data. For comparison, the bottom plot shows the

simulations of (3.2)-(3.4) and of [1] against the same experimental data. Whereas

(3.2)-(3.4), while originally a great improvement, had a small jump in percentage

followed by a linear decline, (4.7) follows the data much more closely. We can

see similar effects in Figure 4.5 for resistant cells, which in all cases include both

permanently and temporarily resistant cells. Using these parameters we now can

look at further growth dynamics.

We see the growth of the system over those same 100 hours in Figure 4.6. We

start with an equal amount of sensitive and resistant cells spaced in a small grid

in the center of our domain. We set no initial temporarily resistant cells and keep

u = 0, v = 0, w = 0 as the Dirichlet boundary condition. In the top row of Figure

(4.6) we see an initial depletion of sensitive cells due to the transfer of P-gp from the

nearby resistant cells. Meanwhile on the edge of the initial population the sensitive

cells grow faster than the resistant cells due to their competitive advantage. After

100 hours we see that the relative sizes of each population are almost uniformly

dispersed throughout our domain. The optimized transfer terms were ku = 0.1150

and kw = 0.0757, agreeing with common understanding that the transfer of P-gp

is not an overwhelming aspect of the system. Despite the existence of temporarily

50



Table 4.1: Parameter Values & Descriptions

Parameter Range Description

tend [0,1460] (hours) Length of Time Interval

Nz [10, 1000] Length of one side of square domain

dt [0.1,10] (hours) Length of discretized time step

dz [0.1,10] Length of spatial step

Du [0.05,5] Diffusion coefficient for sensitive cells

Dv [0.05,5] Diffusion coefficient for resistant cells

Dw [0.05,5] Diffusion coefficient for temporarily resistant cells

Dc [0.05,∞) Diffusion coefficient for the drug

ε [0,∞) Scaling parameter for drug diffusion

av [0.5, 0.85] Growth parameter for resistant cells

aw [0.5, 0.85] Growth parameter for temporarily resistant cells

du [0.8, 1] Death parameter of sensitive cells due to drug

dv [0.1, 0.5] Death parameter of resistant cells due to drug

dw [0.1, 0.5] Death parameter of temporarily resistant cells due to drug

γ [0,1] Inherent decay rate of drug

λu [0,1] Drug uptake parameter for sensitive cells

λv [0,1] Drug uptake parameter for resistant cells

λw [0,1] Drug uptake parameter for temporarily resistant cells

ku [0.01, 0.2] P-gp transfer parameter for sensitive and resistant cell interaction

kw [0.01, 0.2] Reversion parameter for temporarily resistant back to sensitive
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Figure 4.4: Fractions of sensitive cells over time assuming a 1:1 initial ratio. Dots

correspond to the experimental data of [1]. Top: simulation of the model (4.1).

Bottom: a dashed line simulation of the model (3.1) of [1] and a solid line simulation

of (3.2)-(3.4).
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Figure 4.5: Fractions of resistant cells over time assuming a 1:1 initial ratio. Dots

correspond to the experimental data of [1]. Top: simulation of the model (4.1).

Bottom: a dashed line simulation of the model (3.1) of [1] and a solid line simulation

of (3.2)-(3.4).
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Table 4.2: Parameters values used in simulations with Dv 6= Dw.

Parameter Nz dt dz Du Dv Dw Dc

Value 101 1 0.5 0.05 0.0592 0.0585 1

Parameter ε av aw du dv dw γ

Value 0.5 0.85 0.85 0.85 0.2 0.2 0.4

Parameter λu λv λw ku kw

Value 0.5 0.05 0.05 0.1150 0.0757

resistant cells, the dominant growth term of the sensitive cells still allows them

to win over the resistant cells. This is further seen in Figure 4.7, which shows

the system after two months. As with the case with no temporary resistance, the

supermajority of cells are sensitive.

We showed that in the case of no P-gp transfer the sensitive cells dominate and

now, with fully optimized parameters capturing the experimental data, we see that

the transfer of resistance cannot affect the system enough to overcome the inherent

competitive advantage of the sensitive cells. In the next section we incorporate a

drug in order to study the effects of chemotherapy on sensitive cells, resistant cells,

and the tumor as a whole.
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Figure 4.6: Simulation of (4.7) over 100 hours. Densities of sensitive (left), resistant

(middle), and temporarily resistant (right) cells are plotted over time. Top: t=10

hours. Middle: t=50 hours. Bottom: t=100 hours.
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Figure 4.7: Simulation of (4.7) over two months. Densities of sensitive (left), resis-

tant (middle), and temporarily resistant (right) cells are plotted over time.

55



4.3 Drug Treatment

We now take a sideways step and remove the temporarily resistant cells in

order to study how a cytotoxic drug affects the system with solely sensitive and

resistant cells. We allow the drug to affect both sensitive and resistant cells, as the

overexpression of P-gp does not make a cell immune to the drug. The new model is

written as:

∂ u

∂ t
= Du∆u+ u(1− u− v)− duuc, (4.8a)

∂ v

∂ t
= Dv∆ v + av(1− u− v)− dvvc, (4.8b)

∂ c

∂ t
= ∇ · (D(v)∇ c)− c(γ + λuu+ λvv). (4.8c)

The drug, c, shrinks both the sensitive and resistant cell populations through

a mass action term, where du >> dv to represent the inherent resistance in v. The

diffusion of the drug is affected by the term D(v). The overexpression of P-gp in

the resistant cells expels the drug so we will have ∂ D
∂ v

> 0, signifying an increase in

diffusion when the drug is in the presence of resistant cells. In this section we set

D(u, v) = 1 + ε v2 for a small ε > 0. The final term represents the accumulation of

decay and uptake loss of the drug. γ < 1 is the fraction of the drug that decays

at each time step. λu and λv are parameters that mediate the amount of drug that

is ingested by sensitive and resistant cells, respectively. Since the overexpression of

P-gp pumps allows resistant cells to push the drug back out, λv < λu.
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4.3.1 Simulations of The Drug Treatment Model (4.8)

We begin with two simulations of the system (4.8) under constant infusion of

the drug. c = 5 is the continuous boundary condition in Figures 4.8 & 4.9. Both

figures show the development of sensitive and resistant cells over a time scale of

500 hours. Now that we are using the optimal parameters we study the effects of

a drug past several days. We see that the number of sensitive cells is dramatically

reduced, understandably so with du = 0.85 and dv = 0.2. We do not allow resistant

cells to be completely resistant, allowing some of the drug to get past the volume

of P-gp pumps. It is clear that continuing this further will result in the resistant

cells completely taking over, rendering chemotherapy ineffective. Figure 4.8 shows

the results of initial 1:1 ratio in the same location in the center of the domain, while

Figure 4.9 shows the dynamics if the tumor were split into two distinct regions, one

filled with sensitive cells and the other solely resistant. The results after 500 hours

are almost indistinguishable, suggesting the physical makeup of the tumor does not

play a role in the overtaking by the resistant cells.

Figure 4.10 shows the same development of the system but under a significantly

smaller drug dose. In this case c = 0.1 on the boundary and so the effects of the drug

are notably slowed. The middle two plots, showing the system after 100 hours, or

approximately 3 days, demonstrates that the competitive advantage of the sensitive

cells is still active in the middle region. The drug has not yet managed to penetrate

deep into the tumor and so there are more sensitive cells there. Meanwhile near the

boundary, the sensitive cells have been eliminated and that is where the resistant
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Figure 4.8: Simulation of (4.8). Initial centered 1:1 ratio. Densities of sensitive (left)

and resistant (right) cells are shown over time under constant drug infusion (c=5).

Top: t=20 hours. Middle: t=100 hours. Bottom: t=500 hours.
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Figure 4.9: Simulation of (4.8). Initial 1:1 ratio, separated into distinct sections

of only sensitive and only resistant cells. Densities of sensitive (left) and resistant

(right) cells are shown over time under constant drug infusion (c=5). Top: t=20

hours. Middle: t=100 hours. Bottom: t=500 hours.
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cells are growing more rapidly.

The most important result is shown in Figures 4.11 and 4.12. Under uniform

constant infusion of a drug on the boundary, we are unable to prevent the tumor

from growing. As seen in Figures 4.8 and 4.9, constant infusion eradicates the

sensitive cells and leaves a resistant tumor growing with little inhibition. Even in

the case of a small dose, the resistant population will eventually take over and the

therapy will be unsuccessful.

4.4 The Full Model

We combine all ingredients together in our full model. This model incorporates

the transfer of P-gp pumps as well as a chemotherapeutic agent. All populations:

sensitive (4.9a), resistant (4.9b, and temporarily resistant (4.9c), have now has a

mass action death term due to interaction with the drug. A new uptake term

λww is included in the equation for the drug. The diffusion coefficient D(v) is now

D(v, w), with ∂ D
∂ v

> 0 and ∂ D
∂ w

> 0, and we take it to be D(v, w) = 1 + ε(v + w)2.

The resulting system is:

∂ u

∂ t
= Du∆u+ u(1− u− v − w)− kuuv + kww − duuc, (4.9a)

∂ v

∂ t
= Dv∆ v + avv(1− u− v − w)− dvvc, (4.9b)

∂ w

∂ t
= Dw∆w + aww(1− u− v − w) + kuuv − kww − dwwc, (4.9c)

∂ c

∂ t
= ∇ · (D(v, w)∇ c)− c(γ + λuu+ λvv + λww). (4.9d)
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Figure 4.10: Simulation of (4.8). Densities of sensitive (left) and resistant (right)

cells are shown over time under constant drug infusion (c=0.1). Top: t=20 hours.

Middle: t=100 hours. Bottom: t=500 hours.
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Figure 4.11: Simulation of (4.8). Overall tumor density is shown over a period of

100 hours under constant drug infusion (c=5). Left: t=20 hours. Middle: t=100

hours. Right: t=500 hours.
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Figure 4.12: Simulation of (4.8). Overall tumor density is shown over a period of

100 hours under constant drug infusion (c=5). Left: t=20 hours. Middle: t=100

hours. Right: t=500 hours.
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We use the complete model to study the effects of varying therapy protocols.

We run simulations for constant infusion, intermittent infusions, and a combination

of the two. We also find drug protocols that minimize overall tumor size and also

total density of resistant cells.

4.4.1 Constant Infusion

We previously saw that a constant infusion of the drug would force the sensitive

population to contract until the system is dominated by resistant cells. Since the

only change is a new mechanism (transfer of resistance) that diminishes the sensitive

cell population, it makes sense that the full model will induce similar dynamics. In

this case not only is the drug coming in from the boundary harming the sensitive cells

but so does the interaction with the initial resistant cells in the center. This is shown

in Figure 4.13, with c = 5 on the boundary. The temporarily resistant cells emerge in

the center of the domain, where there is an overlap between resistant and sensitive

cells. This population continues to grow until the population of sensitive cells is

so small that there are not enough cells left to sustain the size of the temporarily

resistant population. Figure 4.14 shows the same time frame but with a smaller

dose (c = 0.1) along the boundary. Again, the resistant cell population grows faster

near the boundary while the sensitive population decreases in the center due to the

transfer of P-gp pumps. Both cases show what we have previously seen: a constant

infusion of a drug does very little to limit the growth of the resistant cell population.
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Figure 4.13: Simulation of (4.9) with initial 1:1 ratio. Densities of sensitive (left),

resistant (middle), and temporarily resistant (right) cells are shown over time under

constant drug infusion (c=5). Top: t=20 hours. Middle: t=100 hours. Bottom:

t=500 hours.
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Figure 4.14: Simulation of (4.9) with initial 1:1 ratio. Densities of sensitive (left),

resistant (middle), and temporarily resistant (right) cells are shown over time under

constant drug infusion (c=0.1). Top: t=20 hours. Middle: t=100 hours. Bottom:

t=500 hours.
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4.4.2 On-Off Therapy

Since constant drug infusion will eliminate all sensitive cells and lead to a

drug resistant tumor, we consider other treatment protocols. We need to maintain

a robust sensitive cell population since that is the only mechanism for controlling

the resistant population. We study this scenario in a series of simulations. In each

simulation we administer the drug for 8 hours at a time and then turn it off for

varying lengths of time. Figures 4.15 and 4.16 show the results over 500 hours of

implementing the treatment every 24 hours. In this case it is 8 hours on and 16 hours

off. Figure 4.15 is for the higher dose, c = 5, while Figure 4.16 shows the effects

of the lower does, c = 0.1. We see in Figure 4.15 that we still have a significant

upswell in the resistant population and a resistant cell-dominated tumor develops

within days. The smaller dose, on the other hand, allows the sensitive population

to control the growth of resistant cells.

Figures 4.17 & 4.18 show the same two scenarios but with the drug adminis-

tered once every 96 hours rather than once a day. We see again that the lower dose

allows the sensitive cells to sustain themselves. In between doses, the sensitive cells

grow along the boundary where resistant cells are at their lowest levels.

With the simulations as a guide we consider optimizing therapy protocols to

minimize the overall size of the tumor and separately to minimize the number of

resistant cells present.
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Figure 4.15: Simulation of (4.9) with initial 1:1 ratio. Densities of sensitive (left),

resistant (middle), and temporarily resistant (right) cells are shown over time under

on/off therapy (c=5). The drug is pumped for 8 hours at a time every 24 hours.

Top: t=20 hours. Middle: t=100 hours. Bottom: t=500 hours.
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Figure 4.16: Simulation of (4.9) with initial 1:1 ratio. Densities of sensitive (left),

resistant (middle), and temporarily resistant (right) cells are shown over time under

on/off therapy (c=0.1). The drug is pumped for 8 hours at a time every 24 hours.

Top: t=20 hours. Middle: t=100 hours. Bottom: t=500 hours.
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Figure 4.17: Simulation of (4.9) with initial 1:1 ratio. Densities of sensitive (left),

resistant (middle), and temporarily resistant (right) cells are shown over time under

on/off therapy (c=5). The drug is pumped for 8 hours at a time every 96 hours.

Top: t=20 hours. Middle: t=100 hours. Bottom: t=500 hours.
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Figure 4.18: Simulation of (4.9) with initial 1:1 ratio. Densities of sensitive (left),

resistant (middle), and temporarily resistant (right) cells are shown over time under

on/off therapy (c=0.1). The drug is pumped for 8 hours at a time every 96 hours.

Top: t=20 hours. Middle: t=100 hours. Bottom: t=500 hours.
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4.4.3 Optimal Therapies

In order to find an optimal treatment plan we first consider minimizing the

size of the tumor. We do this in two separate ways. First, we look at the functional

J =

∫ tend

0

(um + vm + wm) dt, (4.10)

where J(u, v, w, c, t) is the total volume of the tumor over the entire simulation,

and m is either 1 or 2, for linear or quadratic control. We also consider K =

u(tend) + v(tend) + w(tend) for a measure of the size of the tumor at the end of the

simulation. Since we do not need to look at every single possible treatment plan, we

pick 11 protocols, ranging from constant infusion to infusion once every three weeks.

We also allow for 8 different sizes of the dose, ranging from no drug, c=0, to c=100.

In finding the optimal treatment plan for these options we see that the treatment

that minimizes the total volume of the tumor J is the same as the treatment that

minimizes the final volume of the tumor K. Unfortunately, this optimal result is

constant infusion with the highest dose possible. We have already seen that constant

infusion leads to a sharp increase in the proportion of resistant cells and allows them

to eventually take over and dominate.

With that result we then look at what treatment plan will minimize the amount

of resistant cells in the tumor. As long as we can keep the resistant cell population

low then there is an opportunity for chemotherapy to work. We optimize over the

same set and the result is the opposite approach from the one we found above. As

the previous simulations suggested, the lower the drug dose, the better the chance
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that the sensitive cells would control the resistant population. We find that the

way to minimize resistant cells is, in fact, to deliver no drug at all. This makes

sense in our model since, with dv and dw so small, the one truly effective mechanism

for keeping the resistant cell population down is the competitive advantage of the

sensitive cells. Any drug input decreases their number significantly and so the

optimal way to control the resistant population is to leave the sensitive population

uninhibited, meaning no chemotherapy at all.

4.5 Discussion

In this chapter we presented a model of P-gp transfer in a two-dimensional

space. We began with a simple reaction-diffusion system and incorporated the trans-

fer of resistance as well as chemotherapeutic agent. When a < 1, the competitive

advantage allows the sensitive cells allows them to grow at the expense of the re-

sistant population. While the spread of temporary resistance through the transfer

of P-gp pumps does not have a strong enough effect to overcome this trend on its

own, the inclusion of a drug may result with a significant growth of the resistant

population.

In looking for optimal treatment protocols we run into a conundrum. The

resistant population is minimized when no drug is applied, yet this leads to the

maximum tumor size. The tumor size is minimized when treated with a constant

infusion of a large dose, yet this leads to an almost fully resistant tumor. Higher

amounts of drug result with smaller tumors. Unfortunately, this correlates with the
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emergence of more resistant tumors. Within the confines of this model we cannot

achieve a treatment protocol that slows down tumor growth while also assuring that

tumor does not become resistant over time.

73



Chapter 5: A Model for Drug Resistance as a Continuous Variable

5.1 Introduction

In this chapter we extend the work by Pasquier et. al. [44], and the latest

paper, Magal et. al. [3], from the same group. These studies treat resistance as a

continuous variable. Magal et. al. [3] consider a PDE model with a Boltzmann type

integral describing the transfer of P-gp under multiple transfer rules:

∂ u(t, x)

∂ t
= 2τ [T (u(t, ·))(x)− u(t, x)], for x ∈ R (5.1a)

u(0, ·) = u0 ∈ L1
+(R). (5.1b)

Here u(t, x) is the density of cancer cells at time t with resistance level x, defined

between 0 and 1. The transfer operator T , is defined as:

T (u)(x) =


T̂ (u)(x)∫
R u(r)dr

if
∫
R u(r)dr 6= 0,

0 otherwise,

(5.2)

where

T̂ (u)(x) :=
∫
R π1(p)u(x+ f1(p)p)u(x− (1− f1(p)p)dp

+
∫
R π2(p)u(x+ f2(p)p)u(x− (1− f2(p)p)dp.

(5.3)

The model exhibits an intrinsic death term along with T , a growth rate due

to a transfer of P-gp between individual cells. The probability that a pair of cells
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Figure 5.1: The possible transfers under each transfer efficiency f1 and f2. yold

and zold are the transferrable quantities of P-gp expression. yold > zold in all four

scenarios. Figure adapted from [3].
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is involved in a transfer is chosen randomly and is independent of resistance levels.

τ represents the transfer rate where the time between transfers is modeled by an

exponential law with mean τ−1. f(p) is the transfer efficiency and each cell has an

intrinsic p value and those with higher p values lose f(p) times the difference of the

p values of the two cells involved in the transfer. In [44] only one transfer efficiency

function f(p) is used, while in [3] two different efficiency functions, f1 and f2, are

considered with the probability of each written as:

π1(p) =
[1
2
− f2(p)]

[1− (f1 + f2)(p)]
and π2(p) =

[1
2
− f1(p)]

[1− (f1 + f2)(p)]
. (5.4)

Figure 5.1 shows the four different types of transfer functions with efficiencies

f1(p) and f2(p). There are four possible transfers resulting in resistance level ynew

and four corresponding transfers resulting in znew. The new resistance level ynew

can come from yold giving away f1(p)p or f2(p)p of its resistance level to lower it

to ynew as seen in Figure 5.1(a) and 5.1(b). Alternately, ynew can come from zold

gaining either f1(p)p or f2(p)p to increase its resistance level.

We extend this idea to include cellular proliferation as well as a new spatial

dimension. In Section 5.2 we introduce our model with a single transfer rule and

discuss simulations and results. In Section 5.3 we add a cytotoxic drug and study its

effect on the distribution of resistance levels. In Section 5.4 we extend the work to

include two transfer rules f1 and f2. Concluding remarks are provided in Section 5.5.
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5.2 The First Model

We incorporate the idea of continuous resistance into a reaction-diffusion

model. We develop a model that includes the transfer of resistance alongside dif-

fusion and density inhibited population growth. We denote p as the continuous

resistance variable, and x as the 2-dimensional space variable. Each cell occupies a

location (i, j) in the 2-d domain. We keep the assumptions on P-gp transfer from [3].

The addition in the transfer term is the stipulation that cells must be within a small

neighborhood of each other to be able to transfer P-gp. The model is shown below:

∂u(x, p, t)

∂t
= D∆u+ au(1− u) + 2τ

[ ∫
B(x)

T (u)(p) dx− u
]

(5.5a)

u(·, ·, 0) = u0 ∈ L1
+(R). (5.5b)

We set Dirichlet boundary conditions with u(0, ·, ·) = u(X, ·, ·) = 0. D is the

diffusion coefficient and a controls the speed of cellular growth. 2τ
∫
B(x)

T (u)(p) dx

describes all the cells that have resistance level p after a successful transfer. −2τu is

the flux representing cells that had resistance level p but have successfully transferred

P-gp. τ is the rate of P-gp transfer per unit of time.

We develop a transfer term with a single transfer rule based on [80]. We inte-

grate over a small neighborhood allowing the cancer cells to only transfer resistance
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to others nearby. The transfer term T (u)(p) is written as:

T (u)(p) =



T̂ (u)(p)∫
R
u(x)dx

if

∫
R
u(x)dx 6= 0,

0 otherwise.

(5.6)

T̂ (u)(p) follows the scenarios in Figure 5.2 and is of the form:

T̂ (u)(p) :=

∫
u

(
p− p2f

1− f

)
u(p2)dp2 +

∫
u

(
p− (1− f)p2

f

)
u(p2)dp2. (5.7)

Here, f(p) ≡ f is the transfer efficiency, defined as a constant. We incorporate the

idea from [3] that interaction between cells with a large and a small difference in

resistance level should not yield large changes. We define f as follows:

f(p1 − p2) =


f if (p1 − p2) ∈ (δmin, δmax),

εf f otherwise.

(5.8)

Here, f is a function of the difference in resistance levels p1 and p2. If the resistance

levels of the two interacting cells are within a threshold then the transfer efficiency

is f . If they are too small or too large, the transfer efficiency becomes εf f , for a

small εf > 0. The amount of P-gp transferred is determined by multiplying the

densities of the two transferring entities. The explanation for the terms inside the

integrals follows below.

Figure 5.2 shows the four possible scenarios in which a cell results in resistance

level p after a transfer. Assume two cells have resistance levels p1 and p2. If p1 ≤ p2

then their interaction will lead to p2 transferring a certain amount of resistance

to p1. There are two ways that can end in a cell with resistance level p. (i): if
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Figure 5.2: The four possible transfers resulting in a cell having P-gp expression level

p with one predecessor having P-gp expression level p2. Figure adapted from [80].
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p = p1 + f ∗ (p2−p1) then we solve for p1 so p1 = p−fp2
1−f . (ii): if p = p2− f ∗ (p2−p1)

then we solve for p1 so p1 = p−(1−f)p2
f

. Now, if p2 ≤ p1 we have the two scenarios

but with the two cells in the opposite position: (i): if p = p1 − f ∗ (p1 − p2) then

we solve for p1 so p1 = p−fp2
1−f . (ii): if p = p2 + f ∗ (p1 − p2) then we solve for p1

so p1 = p−(1−f)p2
f

. Despite having four scenarios there is overlap so we only have

two distinct values for p1 in terms of the desired resistance level p and any other

resistance level p2. This gives us the two integral terms in (5.7).

The continuous model has two qualitative changes from the model in Chap-

ter 4. In this setting we do not consider temporary levels of resistance. Each transfer

is considered a permanent change. We also assume that resistance cells lose a por-

tion of their resistance during each transfer, unlike (4.9). In Chapter 4 P-gp transfer

is assumed to affect only sensitive cells.

5.2.1 Numerical Methods

We discretize our model (5.5)-(5.8) in a similar manner to section 4.1.1. We

use a semi-explicit method of updating each component, with explicit Euler dis-

cretization in time, and our implicit 5-point stencil in space. We repeat the specifics

below, with the addition of an extra dimension p.

We use n for each time step and i and j for the two spatial dimensions. The

time derivatives are discretized via the forward, or explicit, Euler method, with

k = ∆t:

∂u

∂t
|t=n ≈

un+1
i,j,p − uni,j,p

k
. (5.9)
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We use an implicit 5-point stencil for the finite difference approximations. In

this case the (i, j) component of the Laplacian at time step n is written as

∆u ≈
un+1
i+1,j,p + un+1

i−1,j,p + un+1
i,j+1,p + un+1

i,j−1,p − 4un+1
i,j,p

h2
, (5.10)

where h = ∆x. For each un+1
i,j,p , we have:

un+1
i,j,p ≈ Duλ (un+1

i+1,j,p + un+1
i−1,j,p + un+1

i,j+1,p + un+1
i,j−1,p − 4un+1

i,j,p)

+auni,j,p(1− uni,j,p)k + 2τ(F − uni,j,p)k + uni,j,p,

(5.11)

with F defined in (5.12) and λ = k
h2

. We solve the linear system (5.11) in Matlab

utilizing the efficiency of sparse matrices. The simulations of the extensions of this

model used in the upcoming sections all use a similar discretization.

Our spatial grid is coarse enough that we allow cancer cells to transfer P-gp

to others within the same grid space. If both cells are of the form u(i, j, :) they have

an interaction and transfer the protein between each other. F is the discretization

at time t = n of the transfer term (5.6)-(5.7).

F =

Np∑
P=1

u(i,j, p−Pf
1−f )u(i,j,p)∆ p+

Np∑
P=1

u
(i,j,

p−(1−f)P
f

)
u(i,j,p)∆ p

N∑
i=1

N∑
j=1

Nm∑
m=1

ui,j,p∆ p ∗ h2

(5.12)

The parameters used in the simulations are shown in Table 5.1. We use pa-

rameter values from the PDE model in Chapter 4 along with τ and f from [3].

Table 5.2 shows the values used in our simulations.

81



Table 5.1: Parameter Values & Descriptions

Parameter Range Description Reference

tend [0,1460] (hours) Length of Time Interval Table 4.1

Nz [10, 1000] Length of one side of square domain Table 4.1

dt [0.1,10] (hours) Length of discretized time step Table 4.1

dz [0.1,10] Length of spatial step Table 4.1

D [0.05,5] Diffusion coefficient for cancer cells Table 4.1

a [0.5, 5] Growth parameter for cancer cells Table 4.1

τ [0,1] Transfer rate of P-gp between cancer cells [3]

f [0,1] Efficiency of transfer of P-gp expression [3]

Table 5.2: Parameters values used in simulations of (5.5)-(5.7) and (5.13).

Parameter Nz Nm dt dz D Dc

Value 100 100 1 0.5 0.05 1

Parameter τ f εf ε a γ

Value 0.9 0.1 0.01 0.5 0.85 0.4
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5.2.2 Simulations

We begin by studying the overall growth of the tumor. Since there is no drug

and the transfer of resistance should not affect full tumor growth we expect the

simulation to show uninhibited growth up to the carrying capacity.
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Figure 5.3: Simulation of (5.5)-(5.7). Overall tumor density is shown over a period

of 100 hours. Left: t=10 hours. Middle: t=50 hours. Right: t=100 hours.

We see in Figure 5.3 that the tumor grows as expected. We next study the

changes in resistance levels. [3] showed that when starting with high amounts of

very sensitive and very resistant cells, over a period of 7 days the transfers led to

a much more even distribution. To study this setting, we begin with a prescribed

initial density for resistance levels between [0, 0.1] and [0.9, 1]. We let the density for

the population in between be one half of the initial density on each end. Figure 5.4

shows our initial result for a simulation of 100 hours.

We see that very little transfer has taken place. We address this by raising

the speed of transfer and simulating for a full week. We see in Figure 5.5 a similarly

high level of volatility that was also found in [3]. We also see that after 7 days

the resistance level has spread and become more even. This becomes more obvious
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Figure 5.4: Simulation of (5.5)-(5.7) over 100 hours. Density of tumor cells at each

level of P-gp expression.

when we zoom out of the far right figure in Figure 5.5, as shown in Figure 5.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P-gp Expression

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

D
e
n
s
it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P-gp Expression

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

D
e
n
s
it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P-gp Expression

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

D
e
n
s
it
y

Figure 5.5: Simulation of (5.5)-(5.7). Density of tumor cells at each level of P-gp

expression with raised speed of transfer. Left: t=24 hours. Middle: t=96 hours.

Right: t=168 hours.

5.3 Incorporating a Drug

We now proceed by including a cytotoxic drug term. We postulate that the

drug does not affect the transfer of P-gp so T (u)(p) and T̂ (u)(p) remain as in (5.6)
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Figure 5.6: Simulation of (5.5)-(5.7) over 168 hours. Density of tumor cells at each

level of P-gp expression. Resistance is nearly uniformly distributed in this range.

and (5.7). Our new system is written as:

∂u(p, x, t)

∂t
= D∆u+ a(p)u(1− u) + 2τ

[ ∫
B(x)

T (u)(p) dx− u
]
− d(p)cu, (5.13a)

∂ c(x, t)

∂ t
= ∇ · (Dc(u)∇ c)− c(γ + λu(p)u). (5.13b)

We now set a = a(p) and allow the growth rate of sensitive cells to be

marginally faster than those of resistant cells by forcing ∂ a
∂ p

< 0. The drug c(x, t) has

a similar setup to (4.8c): It has a natural decay rate γ and its uptake is described

by a function λu(p), allowing for the cells with lower resistance level to absorb more

of the drug. The presence of cells with high expressions of P-gp will, as in (4.8c),

expel the drug making diffusion slightly faster, thus ∂ Dc
∂ p

> 0. The new term for

u(p, x, t) is −d(p)cu, a mass action death term due to interaction with the drug.

We define d(p) such that ∂ d
∂ p

< 0 so that cells with higher resistance level are less
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affected by the drug. We set d(p) > 0,∀p, since even high levels of P-gp expression

don’t necessarily lead to full MDR.

5.3.1 Simulations of The Drug Treatment Model (5.13)

For each expressed resistance level p we define a(p),d(p), and λu(p) as follows:

a(p) = 0.85 + 0.15(1− p), (5.14a)

d(p) = 0.2 + 0.6(1− p), (5.14b)

λu(p) = 0.05 + 0.45(1− p). (5.14c)

Both (5.14a) and (5.14b) are extensions of the values of parameters in (4.8). Maxi-

mal resistance corresponds to a death term of d = 0.2 and minimal resistance with

d = 0.8. As in (4.8), the minimal growth term is a = 0.85 and fully sensitive cells

exhibit growth with a = 1. We define Dc(u) = 1 + ε u for cells with resistance level

0.5 or higher. Dc(u) = Dc = 1 for interaction with cells with resistance level lower

than 0.5.

We begin by considering the results of the new definition of a(p) when no drug

is present. We use the same initial condition as in Section 5.2.2: a prescribed initial

amount of cells with P-gp expression between [0, 0.1] and [0.9, 1] and keep c = 0

throughout. We see in Figure 5.7 (left) that the tumor grows to its carrying capacity.

More interestingly, Figure 5.7 (right) confirms the dominance of the sensitive cells.

Figure 5.8 shows the results of simulations with varying intensities of a constant

drug infusion. The figures on the left show the overall tumor size while the figures

on the right show the distribution of resistance levels. We see that as the amount
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Figure 5.7: Simulation of (5.13) over 100 hours. Left: Overall tumor density. Right:

Density of tumor cells at each level of P-gp expression.

of drug is increased, the size of the resistant population grows. The competitive

advantage of the cells with less P-gp expression turns out to be strong enough to

allow those with the lowest resistance levels to continue to grow despite the presence

of the drug. We see this clearer in Figure 5.9 with the spatial layout of the most

sensitive and most resistant cells. The left figure shows that the most sensitive cells

(p = 0.01) are still able to grow near the center of the tumor, while the right figure

shows that the most resistant cells (p = 0.99) are growing closer to the boundary.

If we allow our initial condition to be an equal amount of cells with each

resistance level then we can study the effect of a constant infusion. As seen in

Chapter 4, constant infusion should lead to high resistance levels. Figures 5.10

and 5.11 show results of simulations with equal amounts of all resistance levels.

Figure 5.10 shows the overall tumor size alongside the distribution along resistance

levels. Figure 5.10 (right) is reminiscent of the results in [59], where a constant

cytotoxic agent leads to a distribution approaching a delta function centered close

to full resistance. We see that the competitive advantage of the most sensitive cells
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Figure 5.8: Simulation of (5.13) over 100 hours with constant drug doses and high

initial values of very resistant and very sensitive cells. Left: Overall tumor density.

Right: Density of tumor cells at each level of P-gp expression. Top: c=5. Middle:

c=50. Bottom: c=500.
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Figure 5.9: Simulation of (5.13) over 100 hours with constant drug dose c=50. Left:

Density of tumor cells with resistance level p = 0.01. Right: Density of tumor cells

with resistance level 0.99.
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Figure 5.10: Simulation of (5.13) over 100 hours with constant drug dose c=50 and

equal initial amounts of every resistance level. Left: Overall tumor density. Right:

Density of tumor cells at each level of P-gp expression.
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Figure 5.11: Simulation of (5.13) over 100 hours with constant drug dose c=50 and

equal initial amounts of every resistance level. Left: Density of tumor cells with

resistance level p = 0.01. Right: Density of tumor cells with resistance level 0.99.

is still allowing for some growth and that is explained further in Figure 5.11, where

we see the distribution of the most sensitive cells in the domain. The drug does not

have as much effect in the center of the tumor where the sensitive cells may continue

to grow. The most resistant cells cannot compete with the sensitive cells but they

grow near the boundary where the most sensitive cells have all been killed by the

drug.

We are interested in the most effective therapy for eradicating, or at least

controlling, the tumor. In the following section we explore treatment protocols and

find the optimal solutions.

5.3.2 Optimal Therapies

As in Section 4.4.3, we study treatment protocols and objectives. Recall-

ing (4.10), we set:

J =

∫ tend

0

um dt. (5.15)
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Again, m = 1 for linear control and m = 2 for quadratic control. We state u as
N∑
i=1

N∑
j=1

Nm∑
m=1

u(i, j, p), the total amount of cancer cells in our domain at each time

step.

As in Section 4.4.3 we do not need to optimize over every possible drug treat-

ment protocol. Instead, we optimize over the same set of reasonable drug doses

and time frames. We allow for constant infusion as well as on/off infusion with 8

hours on delivered every 12 hours as well as every 24, 36, and up to one month.

We use Matlab to find not only the minimum J but also what protocol minimizes

the tumor size at the end of the simulation, u(:, :, tend). In addition, we also use the

same process to minimize:

Jd =

∫ tend

0

δuu
m + δcc

m dt. (5.16)

This functional measures not only the overall tumor size but also the total

amount of drug. We do not include healthy cells in this study but it is known that

large doses of chemotherapy have unwanted negative effects on healthy cells so we

want to minimize not only the size of the tumor but also the total amount of drugs

administered.

We achieve a similar result as in Section 4.4.3: The best way to control the

tumor size under the effects of a cytotoxic drug is either to administer a maximal

continuous dose or to administer no drug at all. Administration of no drug allows

the more sensitive cells to exhibit a control over the more resistant cells will keep

the resistant cells from taking over. If large amounts of the drug are infused then

the resistant cells will take over and then the drug is unable to stop the tumor from
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growing.

Once again, we showed that in a spatial model exhibiting heterogeneity in

P-gp expression levels we cannot achieve a positive result as a function of treatment

with a cytotoxic agent alone. Changing from a discrete model of P-gp expression to

a continuous variable does not change the final outcome.

5.4 Extension to Two Transfer Rules

We conclude with a brief study of multiple transfer rules. We now incorporate

two different types of P-gp transfer (as in [3]). In this case our equation for u(p, x, t)

is still (5.5) but we now allow for f = f1 or f = f2. Following [3], we keep the

probabilities π1 and π2 as defined in (5.4). We now write T̂ (u)(p) as:

T̂ (u)(p) :=

∫
π1u

(
p− p2f1

1− f1

)
u(p2)dp2 +

∫
π1u

(
p− (1− f1)p2

f1

)
u(p2)dp2

+

∫
π2u

(
p− p2f2

1− f2

)
u(p2)dp2 +

∫
π2u

(
p− (1− f2)p2

f2

)
u(p2)dp2.

(5.17)

5.4.1 Simulations of the Two Transfer Rule Model (5.17)

Table 5.3 shows the parameters used in simulations with the new transfer

rule (5.17). We set f1 = 0.48 and f2 = 0.07. These parameter values come from [3]

and we run simulations with them to see if they result in a qualitative difference in

our model.

Figure 5.12 shows the result of our first simulation. We use a(p) = a, a
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Table 5.3: Parameters values used in simulations of (5.5), (5.6), and (5.17) with two

transfer efficiency rates.

Parameter Nz Nm dt dz D Dc

Value 100 100 1 0.5 0.05 1

Parameter τ f1 f2 εf ε a γ

Value 0.9 0.48 0.07 0.01 0.5 0.85 0.4
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Figure 5.12: Simulation of (5.5), (5.6), and (5.17) over 100 hours with high initial

amounts of very sensitive and very resistant cells. Left: Overall tumor density.

Right: Density of tumor cells at each level of P-gp expression.
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constant. Both figures closely resemble Figure 5.4. There is a slight difference

around resistance levels 0.1, 0.5, and 0.9, but the overall pattern is almost identical.

Figure 5.13 shows the same simulation but with a(p) = 0.85 + 0.15(1 − p). Again

we see a very similar result to Figure 5.7. It is a smoother curve but the qualitative

behavior remains the same.

We conclude that the model with a single transfer rule is sufficient for studying

the case of the inclusion of a cytotoxic drug.
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Figure 5.13: Simulation of (5.5), (5.6), and (5.17) over 100 hours with equal initial

amounts of every resistance level. Left: Overall tumor density. Right: Density of

tumor cells at each level of P-gp expression.

5.5 Discussion

In Chapter 5 we integrated our approach from Chapter 4 with the work of

Magal, Pasquier, et. al [3, 44]. Using a continuous variable for P-gp expression, we

wrote a PDE model with a Boltzmann type integral describing transfer of resistance

levels. We simulated and analyzed our output to compare it to the previous results.

Without data to optimize parameters we used a combination of already optimized
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parameters from Chapter 4 alongside given values for new parameters. We showed

that our model can capture the qualitative behavior shown previously. We briefly

considered the role of multiple transfer rules. Our simulations showed almost no

changes compared with a single rule.

We extended this model to include a cytotoxic drug that acts on the tumor

cells through a mass action term. We showed that constant infusion leads to a

marked increase in resistant cells, and that a cytotoxic agent alone cannot control

the overall tumor growth. Future work will include the addition of combination

therapies and a study of their efficacy in controlling (and potentially) eradicating

the tumor.
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Chapter 6: Conclusion

Cancer is the second leading cause of death in the United States, with over 1.5

million new cases each year [4]. The probability of diagnosis with any invasive cancer

is right around 40% [4]. Detection, treatments, and therapies are all continuing to

improve and several cancers have high 5-year survival rates when found early enough.

Resistance to anti-cancer drugs continues to be an important obstacle to over-

come. There are several genetic factors that lead to drug resistance along with

natural selection as drugs are administered. P-glycoprotein is an ABC transporter

shown to confer resistance to chemotherapy [40–43]. Its overexpression can lead to

resistance levels one hundred times higher than normal tumor cells [46].

Applied mathematicians have not widely studied the transfer of P-gp. The

purpose of this dissertation was to research the current mathematical models of

P-gp and provide novel ideas to extend this field. In this dissertation we presented

three new mathematical models of the transfer of the protein pump P-Glycoprotein

and its effect on drug resistance.

Our first model provided an extension of the ODE models of [1]. In [1] the

authors wrote an system of ordinary differential equations describing the changes

in sensitive tumor cells, resistant tumor cells, and temporarily resistant tumor cells.
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They incorporated temporary resistance in their model by allowing sensitive cells

to become temporarily resistant after interaction with resistant cells. Those tem-

porarily resistant cells then stay in that phenotype for a prescribed amount of time

before they turn back into sensitive cells. This representation is driven by the fact

that this high P-gp level is a phenotypic and not genotypic change, thereby meaning

that after a few generations the progeny will be back to fully sensitive.

Our approach was to consider a cell-cycle model. We modeled three compart-

ments: quiescent, proliferating, and apoptotic. We allowed cells in the quiescent

stage to be either resistant or sensitive and modeled that switch to temporary resis-

tance during the shift from quiescence to proliferative stage. The proliferating cells

were broken up into three types: sensitive, resistant, and fully resistant. In keeping

with the understanding that those temporarily resistant cells do not keep their re-

sistance for very long, we stated that all progeny of temporarily resistant cells were

sensitive. We did not distinguish between the phenotypes in the apoptotic stage.

Once cells entered that stage they did not interact with others until dying off and

leaving the system completely. We showed that our model provided a better fit for

the dynamics of the experimental data in [1].

Our second model incorporated the idea of a discrete representation for P-gp-

based drug resistance into a 2-dimensional spatial domain. We again extended the

work of [1] but this time into space rather than the cell cycle. We started with a

reaction diffusion system of two equations, one for sensitive cells u(x, t), and one for

resistant cells v(x, t). The density-inhibited proliferation allowed us to show that

the addition of the two equations led to a single Fisher-KPP equation with steady
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states at 0 and at full carrying capacity. In this case the tumor continued growing

toward the stable carrying capacity steady state.

We extended this approach with the addition of a temporarily resistant phe-

notype. We used this model to study the experimental data of [1]. We optimized

parameters and showed an improved fit to the experimental data compared with our

first model. Separately we added a cytotoxic drug to the model with only sensitive

and resistant cells. We showed that a constant drug infusion led to an almost fully

resistant tumor. We completed Chapter 4 by tying the two ideas together and writ-

ing a PDE system with four equations for sensitive cells, resistant cells, temporarily

resistant cells, and the drug. We then studied protocols of constant drug infusion

and on/off treatment protocols. We saught an optimal therapy and discovered that

the treatment protocol that minimizes the overall tumor size is a constant infusion

of a maximal drug dosage. This, however, led to a small tumor dominated by resis-

tant cancer cells. The treatment protocol that minimizes resistant cells was to not

treat the tumor at all, letting the sensitive cells control the resistant cell population.

With these results we have demonstrated that there is no optimal treatment that

can control the growth of the tumor while also controlling the resistant phenotype.

Our final model extended the integro-differential equation of Magal et. al [3],

in which tumor cells u(x, t) were assumed to have a continuous variable x describing

P-gp expression. The model included a Boltzmann type integral term describing

the transfer of P-gp between two cells. The integral contains two transfer rules,

describing two different efficiencies of transfer. In each transfer the cell with higher

resistance level transfers to the cell with lower resistance a portion that is a function
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of the difference in resistance levels.

We extended it by incorporating density-inhibited proliferation along with the

inclusion of a two dimensional spatial domain. We wrote our model as a single

partial differential equation with resistance variable p, 2-dimensional space variable

x, and time t. We first showed that our model is consistent with the results of [3]

in showing that the transfer of resistance leads to equal tumor cell density at each

level of resistance. We then incorporated a cytotoxic drug and studied its effects on

tumor heterogeneity. Under the assumption that more sensitive cells grow slightly

faster we saw that when no drug is present there is a supermajority of sensitive cells.

Once the drug is administered, however, the most resistant cells began to grow and

dominate. The makeup of the tumor changes, with the most sensitive cells in the

center surrounded by very resistant cells. We searched for optimal therapies and,

just as in our second model, we were able to show that there is no therapy that will

eradicate, or even control, the tumor growth when such resistant cells are present.

Continued work would first rely on access to more experimental data. We

were limited in our approaches by the lack of available data concerning P-gp and its

transfer between cells. In our cell cycle model we have not yet included any type of

drug, and our two PDE models only include a cytotoxic drug. Moving forward could

include combination therapies, with the inclusion of immunotherapy and cytostatic

drugs.

This work integrated mathematics and cancer biology. Mathematical oncol-

ogy is an exciting field continuing to grow and the work of mathematicians has

been invaluable to the medical community. The future discoveries and models by

99



mathematicians will continue to be on the frontier of the fight to eradicate cancer.
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