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Insects are capable of agile pursuit of small targets while flying in complex

cluttered environments. Additionally, insects are able to discern a moving back-

ground from smaller targets by combining their lightweight and fast vision system

with efficient algorithms occurring in their neurons. On the other hand, engineer-

ing systems lack such capabilities since they either require large sensors, complex

computations, or both. Bio-inspired small-field perception mechanisms have the

potential to enhance the navigation of small unmanned aircraft systems in clut-

tered unknown environments. In this dissertation, we propose and investigate three

methods to extract information about small-field objects from optic flow. The first

method, flow of flow, is analogous to processes taking place at the medulla level of

the fruit-fly visuomotor system. The two other methods proposed are engineering

approaches analogous to the figure-detection sensitive neurons at the lobula. All

three methods employed demonstrated effective small-field information extraction

from optic flow.



The methods extract relative distance and azimuth location to the obstacles

from an optic flow model. This optic flow model is based on parameterization of an

environment containing small and wide-field obstacles. The three methodologies ex-

tract the high spatial frequency content of the optic flow by means of an elementary

motion detector, Fourier series, and wavelet transforms, respectively. This extracted

signal will contain the information about the small-field obstacles.

The three methods were implemented on-board both a ground vehicle and an

aerial vehicle to demonstrate and validate obstacle avoidance navigation in cluttered

environments.

Lastly, a localization framework based on wide field integration of nearness

information (inverse of depth) is used for estimating vehicle navigation states in an

unknown environment. Simulation of the localization framework demonstrates the

ability to navigate to a target position using only nearness information.
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Chapter 1: Introduction

1.1 Motivation

The use of small unmanned aircraft systems (sUAS) for accomplishing sim-

ple tasks is becoming more and more common. Every day new applications arise

like aerial photography, crop growth control, package delivery, traffic monitoring,

among other fields. The general flight profile for some applications uses GPS way-

point navigation (or global navigation) assuming high altitudes to avoid any kind

of obstacles. But when the application requires the sUAS to fly much closer to

the ground it must rely on local navigation, such as reflexive navigation in GPS

denied environments. In order to achieve a safe autonomous navigation in such

environments, the sUAS should be agile and able to gather information about its

surroundings at a high-bandwidth. To attain such agility in the limited payload and

processing power available in sUAS, fast and small sensors together with computa-

tionally efficient algorithms are needed in order to reduce latency and increase the

loop closure rate. There have been extensive advances in navigation with micro-scale

inertial sensors such as accelerometers and gyros [1–3] for attitude stabilization, but

the development of sensors and algorithms for environment perception has fallen

behind. Perception, for this research refers to the ability to identify and interpret
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sensory information to reflect an environment [4]. In the area of perception, signifi-

cant progress has been made but at the cost of increase of weight, size, and power

of the sensors [5–7]. On the other hand, solutions using small light weight vision

sensors make use of computationally expensive algorithms [8–12].

Furthermore, nature has provided numerous examples of navigation with lim-

ited payload, efficient processing, and high loop closure rates as small flying insects

are capable of performing a wide variety of maneuvers, including obstacle avoidance

in cluttered environments. Insects perform visual-based navigation [13] and percep-

tion of their environment, relying primarily on optic flow [14], which is the pattern

of relative motion of the environment due to their egomotion within it. Thus, optic

flow encodes rich information about relative speed and proximity to external objects

in the environment [15].

Several flying insects have specialized neurons called lobula plate tangential

cells (LPTC) [16–18]. The tangential cells reside in the visuomotor system of the

flying insect. These neurons process large amounts of optic flow estimates to output

cues used for navigation [17,18]. Effectively, the output is a correlation between the

cells spatial sensitivity pattern and the visual stimulus. The LPTC are sensitive to

wide-field patterns (large obstacles) [14,19–21].

In previous work, engineering analogues of optic flow pattern sensitive neurons

in the wide-field visual processing pathway of insects were employed to demonstrate

navigation in environments with large obstacles of varied structure [22, 23]. In this

approach, wide field integration (WFI) acts as the neural analogue of the LPTC

to extract relative proximity and relative velocity information which is applied as
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feedback [24–26]. This can either be utilized in a reflexive inner-loop mode or can

run underneath a higher level guidance loop or planner to achieve local unmapped

obstacle avoidance.

One limitation of WFI is related to the size of the objects that are inducing the

optic flow on the imaging surface. Large objects, such as walls, generate patterns

with low spatial frequencies that persist across the imaging surface. Conversely,

small objects generate localized high spatial frequency content in the imager. This

can pose a problem since the primary computation in WFI extraction of proximity

is a projection, similar to a Fourier series decomposition and thus smaller objects

are not detected.

Therefore the main goal of this thesis is to develop biologically inspired al-

gorithms to extract information about the small-field obstacles to provide a safer

reflexive navigation scheme in unknown cluttered environments. Three methodolo-

gies are proposed and are based on the visual system of the fly.

1.2 Insect Visuomotor System

The visual system of the fruit fly Drosophila melanogaster is shown in Fig-

ure 1.1. The vision process starts at the ommatidia which contain thousands of

photoreceptors. These photoreceptors capture patterns of luminance from the vi-

sual environment. The signal of the photoreceptors is then conditioned through the

Lamina. The output of the Lamina is the input to the medulla, but this intercon-

nection is still under debate among biologists [27–29]. This interconnection is as-
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sumed to happen at the medulla, and several complex models have been presented

involving different spatial filtering and interdependence mechanism [30–34]. The

simplest model that has been proposed is the elementary motion detector (EMD),

later known as the Hassenstein-Reichardt detector (HRD) [35,36]. The medulla out-

puts large patterns of signals analogous to optic flow estimates. Finally the lobula

plate receives direct information from the medulla, where the optic flow is processed.

Figure 1.1: Description of insect visuomotor system.

Focusing on the lobula plate process, and specifically on research on the tan-

gential cells of insects, indicates they are able to discern background from ob-

jects [37–40]. Three neuron types from the horizontal tangential cells play an im-

portant roll in the detection of small-field objects. The horizontal system (HS) cells

connect directly to the medulla and detect motion. Then, the centrifugal horizontal

(CH) cells receive visual input indirectly through a few dendritic couplings of the

HS cells. That is, the connectivity between HS and CH cells makes a spatial blur

or smoothing of the motion image [41]. The last cell involved in the small-field
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selectivity is the figure-detection (FD) cell [42,43], which is also believed to respond

to moving objects for target tracking [34,44].

The FD cells receive input from the CH cells and also receive direct input from

the medulla through EMDs. Finally the FD cells perform inhibition (or subtraction)

of the two inputs to generate an enhanced signal, sensitive to the small-field objects.

In other words, the FD cells generate the physiological process by which the fly

extracts the high spatial frequency content of the signal by removing the low spatial

frequency content. This separation of spatial frequency content motivates two of

the proposed solutions in this thesis.

Other studies on the male and female [45,46] hoverflies, Eristalis tenax, show

that these insects have neurons that respond selectively to small objects, even if

the background is moving at the same relative speed [47]. This fact suggests that

some insects do not use the inhibition technique but instead use a second post-

synaptic spatial inhibitory stage [45, 48]. Several secondary complex stages have

been proposed [31, 49]. In this thesis, the last method proposed for small-field

extraction is a second stage at the medulla, consisting of a second layer of EMDs.

The EMD was originally proposed for calculating optic flow [50], and it was shown

that the EMD’s can be tuned to different spatial frequencies [51,52]. This tuning is

assumed to be used for the detection of different sizes of obstacles.
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1.3 Vision-Based Navigation

Pioneering work on the honeybee by Srinivasan et al. [53] led to the discovery

of simple navigational heuristics observed in behavioral experiments with these in-

sects. This has created several biologically inspired approaches for sUAS navigation.

Recent efforts include centering strategies [23,54,55], collision avoidance [56–58], and

terrain following [59].

Applying wide-field integration (WFI) to instantaneous patterns of optic flow

enables the extraction of estimates of proximity and speed. These estimates can be

used for navigation that replicate the observed heuristics [23, 25, 60]. Using WFI,

navigation was possible in both structured and less structured environments [22,61].

As its name indicates, the WFI method of navigation is able to detect large obstacles,

like walls, but is less effective when small objects or openings are introduced.

Non bio-inspired approaches for detection of small-field obstacles have focused

on two methodologies, utilizing either large, accurate sensors or relatively intense

computational power. The relatively larger though more accurate sensors, such as

active range finders like LIDAR, required by the former methodology are not suit-

able for sUAS that have size, weight, and power (SWaP) constraints. [5, 6, 62, 63].

In the latter of theses methodologies, increased computational power, which is not

available on SWaP-constrained sUAS, is needed to maintain high speed loop clo-

sure requirements, as in stereo vision strategies [62, 64]. Utilizing more simplified

sensors, like monocular cameras, the processing requirement increases as more com-

plex algorithms are required for feature tracking [11,12,65], machine learning algo-
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rithms [66], or occupancy grid techniques [7]. The methods proposed in this thesis

take advantage of light weight hardware and at the same time use fast algorithms

to increase loop closure rates while satisfying SWaP constraints. Another emerging

technology is the use of red, green, and blue images together with a distance sensor

(RGB-D) [67–69], which is still heavy and requires a lot of computational power

since large amounts of data need to be processed. Small obstacles identified by the

RGB-D sensor could also be classified using machine learning algorithms [70].

1.4 Localization

The problem of localization consists of determining a vehicle pose relative to

its environment. The pose refers to the x and y coordinates and heading ψ of a

vehicle in an inertial coordinate system. The localization of a vehicle has been

solved by different methods of scan-matching [71]. A scan consists of obtaining

several measurements of the relative distance to the environment at a given time.

Therefore, scan-matching compares two successive scans to determine the pose that

generated the later one.

The scan-matching problem has been addressed extensively. The most com-

mon method uses the correlation between scans to find shifts in x, y, and ψ [72,73].

The second most common method relies on the iterative closest point (ICP) which

consists of minimizing the mean square error or other metric between the two scans

but it does not take into account the rotation, therefore several modifications have

emerged [74–76]. Other methods concentrate on the relationships of single points or
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overlapping points between scans but it requires the determination of the group of

points to pick [77,78]. More complex methods make use of the Kalman filter to fuse

previous scans or to fuse inertial measurement units (IMU) into the estimates of the

state but this makes them computationally expensive and the power requirements

increase [79–81].

The proposed method in this thesis is similar to the correlation method in

that it relates an operation for each of the three different states. This method uses

nearness instead of distance, which visually is more intuitive. Furthermore, the

method is based on WFI and is used to extract the different states while reducing

noise using weighted summations.

1.5 Thesis Contributions and Organization

The main contributions of this thesis are listed below:

• Biologically plausible engineering analogues for two hypothesized small-field

object detection pathways in the insect visuomotor system were developed:

flow of flow in the medulla and feature detection (FD) cells in lobula plate,

respectively.

• An analytical model of optic flow was extended to include an explicit param-

eterization of small-field objects in a two-dimensional environment. Subse-

quently this model was used to provide the first proof of feasibility of obtaining

small field information from the flow of flow approach.

• A wavelet version of the feature detection (FD) cell approach was developed,
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and successful small object detection was demonstrated in simulation and

hardware implementation for all three approaches (flow of flow, FD cell and

wavelet).

• A method for localization in arbitrary environments based on wide-field inte-

gration was developed. This method provides an estimate a vehicle’s position

and orientation, and the resulting algorithm generates control inputs to ma-

neuver a vehicle to a desired target position.

• Navigation in cluttered environments including small-field and wide-field ob-

stacles was demonstrated and validated on both a ground vehicle and a sUAS

using the proposed bio-inspired small-field extraction methods.

The thesis organization is as follows. Chapter 2 describes the mathematical

formulation of 1-D and 2-D optic flow. It also presents the modeling of optic flow

caused by small-field and wide-field obstacles. Chapter 3 describes the bio-inspired

methods for small-field information extraction. Chapter 4 details the vehicle dynam-

ics and controller design used for obstacle avoidance. Also a quantitative comparison

of the three detection methods is simulated in this section. Chapter 5 analyzes the

localization strategy used to estimate the vehicle states and at the same time guide

it to the desired target position. Chapter 6 details the hardware and embedded

firmware used for implementation. It includes results of navigating in different clut-

tered unknown environments. Chapter 7 summarizes the key results of this work,

draws conclusions, and describes future work.
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Chapter 2: Optic Flow Models for Heterogeneous Environments

For perception of their environment insects rely primarily on optic flow. Optic

flow is the directional change of intensity projected on the spherical retina caused

by relative motion between the insect and the scene. Using their vision, insects are

able to maneuver and navigate in complex environments as well as track and pursue

other insects. This behavior demonstrates that they are able to extract information

of small and wide-field obstacles from optic flow. A mathematical formulation of

the optic flow is presented in this chapter. Also the the simplification for 1D optic

flow is presented. Last, the modeling of wide-field environments like walls, as well

as small-field objects characterized as cylinders is presented. The mathematical

formulation of optic flow will be used to determine the output of the algorithms

presented in Chapter 3.

2.1 Spherical Optic Flow

The mathematical set of equations describing true optic flow are shown in

Eq. (2.1). True optic flow refers to the velocity field induced by the motion of the

projected image over the surface of the spherical retina, as shown in Figure 2.1.

This velocity field is a function of the retinal surface geometry, the self induced
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motion of the observer, and the spatial distribution and motion of objects in the

scene. For simplicity, it will be assumed that the objects are stationary and only the

observer is moving. Optic flow encodes information of the observers translational

and rotational velocities, together with relative proximity and velocity with respect

to objects in the scene.

Figure 2.1: Spherical optic flow geometry. Optic flow is the projected relative

velocity of the scene into the tangent space TrS
2 of the spherical retina

Given the angular velocity ω and velocity v of a given point r of the imaging

surface and the nearness µ (which is the distribution of objects in the scene), the

optic flow field Q̇ on the spherical surface S2 can be written as [15]:

Q̇ = −ω × r− µ[v − 〈v, r〉r] (2.1)

If the imaging surface point is given in polar coordinates as r(γ, β), with γ and

β being the azimuth and elevation angles respectively, and assuming the trans-
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lational velocity and angular velocity are given in body frame coordinate system

(B = {êxb , êyb , êzb}) as ω = (p, q, r) and v = (u, v, w) then the optic flow can be

expressed in its azimuthal and elevation components as follows

Q̇γ = p cos β cos γ + q cos β sin γ − r sin β + µ(u sin γ − v cos γ)

Q̇β = p sin γ − q cos γ + µ(−u cos β cos γ − v cos β sin γ + w sin β) (2.2)

The previous equations are useful when a complete spherical surface is available for

measurement for use with a 6DOF vehicle. The spherical optic flow representation

is shown in Figure 2.2.

Figure 2.2: Optic flow representations. a)Body frame coordinate system. b) 3D

representation of optic flow on a sphere. c) 2D representation of optic flow.
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2.2 Planar Optic Flow

If the motion is restricted to a plane, then Eq. (2.2) is reduced to planar 1D

optic flow by assuming β = π
2
. This gives a yaw ring optic flow that is aligned with

the body axis of the vehicle described by

Q̇γ = −r + µ(u sin γ − v cos γ) (2.3)

This planar optic flow is a function of the yaw rate r, the body velocities u and v,

the nearness function µ, and the azimuth angle γ. Figure 2.3 shows the optic flow

ring and the planar representation.

Figure 2.3: 1D optic flow representation

The 1D representation of optic flow will be used through the rest of this work

since the motion of the vehicles used will be restricted to be planar.

2.3 Wide-Field Environment

To parametrize the environment a simple scene is considered. It is assumed

that the vehicle is in a corridor and the nearness µ (inverse of radial distance) could
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be written as

µWF (γ,x) =


sin(γ+ψ)
a−y 0 ≤ γ + ψ ≤ π

− sin(γ+ψ)
a+y

π ≤ γ + ψ ≤ 2π

(2.4)

The nearness µ is a function of the heading angle ψ, the position y from the centerline

of a corridor with halfwidth a, and the azimuth angle γ, as shown in Figure 2.4.

Figure 2.4: Nearness from planar tunnel geometry

Using the nearness Eq. (2.4) and the optic flow Eq. (2.3), it is possible to

specify an optic flow profile as shown in Figure 2.5(a). The nearness function in

Figure 2.5(b) shows two humps, one per wall, where the larger hump represents the

wall closest to the vehicle as shown in Figure 2.4.
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(a) (b)

Figure 2.5: Optic flow and nearness function of a tunnel. a) Optic flow generated

by translating on the tunnel. b) Nearness function representing two sides of the

tunnel.

2.4 Small-Field Environment

The small-field environment refers to obstacles in the scene that may or may

not have a structure and occupy a small portion of the field of view of the observer.

Figure 2.6 shows a typical scenario where a cylinder of a specified radius is in the field

of view. This obstacle is considered to be an addition to the wide-field environment.

Cylinders of small radius will be used to characterize the small field obstacles.
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Figure 2.6: Small-field obstacle representation

The distance to the perimeter of the cylinder seen by the observer can be

obtained from the geometry shown in Figure 2.7 as

d(γ) = cos(γ − arctan c
b
)
√
b2 + c2 −

√
r2 − sin2(γ − arctan c

b
)(b2 + c2) (2.5)

Eq. (2.5) is only valid for γ ≤ arcsin r
r+
√
b2+c2

+arctan c
d
. Even though it is possible to

get an analytic equation from the geometry of Figure 2.7 for the distance, it requires

knowledge of the position of the obstacle with respect to the vehicle. Usually only

velocity information is available from sensors and therefore another approach was

taken.
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Figure 2.7: Distance from geometry of small-field obstacle. The angle θo is the

viewing angle or width of the obstacle as seen from the observer.

The Autonomous Vehicle Laboratory simulation (AVLSim) environment was

considered to obtain a numerical approach. It provides visualization as well as

the ability to compute optic flow from this simulated environment. Each vehicle

simulated has 12 cameras attached to its body, each with a 90 × 90 deg field of

view and a resolution of 128 × 128 pixels. The cameras cover the 360o azimuth

angle. These 12 images are combined to compute a ring of optic flow using the

Lucas-Kanade algorithm.

A virtual environment loaded into AVLSim is shown in Figure 2.8. The vehicle

in the simulation was commanded to move in a straight line at a specified velocity.

The true nearness at every time step is available, a snapshot at a single instant is

depicted in Figure 2.9. The big humps are typical of the tunnel nearness while the
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spikes are due to smaller obstacles (cylinders) in the scene.

Figure 2.8: Virtual environment developed by AVL

Figure 2.9: Nearness function showing wide-field (wall) and small-field (cylinders)

objects

The optic flow generated by the scene of Figure 2.8 is shown in Figure 2.10.
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In that figure, it is clear that the small-field (cylinders) optic flow is a superposition

with that of the wide-field (wall) therefore the optic flow can be split into the wide

and small field components.

Figure 2.10: Wide-field and small-field optic flow. The blue line represents the

computed optic flow using Lucas-Kanade. The green line shows the optic flow

computed using the tunnel equation.

Since the small-field objects show as spikes or small perturbations over the

wide-field optic flow, is natural that a Gaussian wavelet function could be used

to approximate the small-field objects. The Gaussian wavelet allows for change of

width, height, and location of the peak independently. These properties make it per-

fect for relating the width of obstacle (θo) to the standard deviation of the Gaussian

function; distance to obstacle (do ∝ 1/µo) to the amplitude of the Gaussian, and

azimuth angle to the small-field obstacle (γo) to the mean of the Gaussian. These
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properties are shown in Figure 2.11 and correspond to the following equation:

µ(θo, µo, γo) = A1 exp
(γ − γo)2

2θ2o
(2.6)

Figure 2.11: Gauss wavelet for representing the small-field nearness

As the vehicle moves forward, the maximum value of the Gauss wavelet changes

over time, so first this amplitude is curve fitted. The vehicle is moving from point 1 to

point 2 at a prescribed constant velocity, as shown in Figure 2.12(a). Figure 2.12(b)

shows the evolution of the nearness starting at point 1 and ending in point 2.
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Figure 2.12: Evolution of nearness when the vehicle moves from position 1 to 2. a)

Trajectory followed by vehicle. b) Nearness evolution over time.

Using the maximum value of the true nearness (shown in Figure 2.13) of the

small-field object, from Figure 2.12(b), over a period of time to do a curve fitting of

the amplitude produced the following equation

A1 = A sin(B × ut+ C) +D (2.7)

In Eq. 2.7, the body velocity u is used, but it could be replaced with the magnitude

of velocity for the more general case.
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Figure 2.13: Maximum nearness of small-field object over time curve-fitted to a sine

wave function.

The values of Eq. (2.7) are shown in Table 2.1.

Table 2.1: Parameters used for fitting a sine wave to the nearness

Parameter Value

A 0.03685

B 0.4888

C -0.5492

D 0.1475

The sine function of Eq. (2.7) only relates the maximum value of the nearness

with time and velocity but does not relates it to a specific azimuth angle. The correct

azimuth angle for the corresponding nearness function is obtained by manipulating

the mean of the Gaussian function as follows
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µSF (γ, t) = A1 exp
(γ − γ0 + µ0ut)

2

2θ2o

= [A sin(B × ut+ C) +D] exp
(γ − γ0 + µ0ut)

2

2θ2o
(2.8)

where γ0, µ0, and θ0 are initial conditions of azimuth angle, nearness, and viewing

angle of the obstacle, respectively. The viewing angle can be obtained from the

geometry of Figure 2.7 as

θo(t) = arcsin(
r

1/µ(t) + r
) (2.9)

The viewing angle is time dependant but it does not vary much over time, as

shown in Figure 2.14, therefore it could be chosen to be constant.
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Figure 2.14: Time progression of the viewing angle as seen by an observer moving

at a constant velocity.
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2.5 Combined Optic Flow

The combined analytic optic flow is the summation of the wide-field (tunnel)

and the small-field (cylinder) optic flow as shown in Eq. 2.10.

Q̇C = Q̇WF + Q̇SF

= −r + (µWF + µSF )(u sin γ − v cos γ) (2.10)

In Figure 2.15 the simulated optic flow computed using the Lucas-Kanade

algorithm is compared to the analytic version. The analytic version of optic flow

resembles very close that of the computed using imagery.
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Figure 2.15: True optic flow (blue) compared to analytic optic flow (red)

It is important to note that the wide-field scene shows up as a low spatial

frequency signal (sine wave) in the optic flow, while the small-field objects appear

as a localized high spatial frequency signal. Therefore this analysis of wide and
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small-field optic flow is consistent with what has been confirmed in insect vision and

their ability to separate the high spatial frequency from the low spatial frequency

to detect smaller obstacles.
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Chapter 3: Small Field Visual Motion Extraction

This chapter presents the three different methods proposed to separate the spa-

tial frequency content of the optic flow in order to discern between the wide-field and

small-field obstacles. The first two methods are inspired from the inhibition method

observed in the neurons of the lobula of fruit flies. The inhibition method consists

of first spatially smoothing or low pass filtering the signal followed by subtraction of

this smoothed signal from the original to obtain the high spatial frequency content.

The third method is a proposed second stage of processing at the medulla level as

seen in hoverflies.

The high spatial frequency content of the optic flow is of interest as it was

shown in Chapter 2 in that it contains information about the small-field. Further-

more, the noise properties of each method, when no obstacle is present, are analyzed.

The first method is based on Fourier series, the second on wavelets, and the

last on the elementary motion detector (EMD). After extracting the high spatial

frequency content from the optic flow, an obstacle detection algorithm is presented.
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3.1 Feature Detection Cell Method

This approach is analogous to the process happening at the lobula of the fruit-

flies [43]. The process consists of a dendrictic coupling between the HS and CH cells,

which causes a spatial smoothing. Then an inhibition process (subtraction) occurs

between the FD and CH cells that causes the removal of the low spacial frequency

content of the optic flow. The engineering approach chosen here resembles the

inhibition method seen in the fruit flies since it smoothes out the optic flow signal

by reconstructing it using the first few Fourier coefficients and then subtracting it

to obtain the high spatial frequency signal.

It is assumed that the combined optic flow Q̇C is spatially periodic and inte-

grable over a finite azimuth angle. Since it is a yaw ring, it is also assumed that

Q̇C ∈ L2[0, 2π]. Therefore, the combined optic flow Q̇C may be decomposed into

the sum of sines and cosines. As seen in Chapter 2, the baseline optic flow, Q̇WF ,

generated by moving in a corridor-like environment has the approximate shape of a

sine wave. Thus, the reconstructed optic flow Q̇Fourier using the first N Fourier coef-

ficients represents the low frequency content of the optic flow, i.e. an approximation

of the wide-field optic flow. The Fourier approximation is presented in Eq. (3.1)

together with the Fourier coefficients in Eq. (3.2).

Q̇Fourier ≈
a0
2

+
N∑
n=1

(
an cos

2πnγ

P
+ bn sin

2πnγ

P

)
Q̇Fourier ≈ Q̇WF (3.1)
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an =
2

P

∫ P

0
Q̇C · cos

2πnγ

P
dγ

bn =
2

P

∫ P

0
Q̇C · sin

2πnγ

P
dγ (3.2)

The reconstructed Q̇Fourier is shown in Figure 3.1 together with the true combined

optic flow.
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Figure 3.1: Optic flow approximation. The low spatial frequency optic flow is ap-

proximated with Fourier series (red) and compared to the combined optic flow (blue).

Now that the reconstructed optic flow Q̇Fourier is available it may be subtracted

from the measured combined optic flow Q̇C , resulting in the feature detection (FD)

signal containing the high spatial frequency content, Q̇FD shown in Eq. (3.3).

Q̇FD = Q̇C − Q̇Fourier

= (Q̇SF + Q̇WF )− Q̇Fourier

= Q̇SF +H.O.T.

Q̇FD ≈ Q̇SF

(3.3)
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The absolute value of the residual Q̇FD is shown in Figure 3.2. The maximum

value shown corresponds to the location of the small-field obstacle. The humps on

the sides correspond to the error in approximating the wide-field optic flow through

the Fourier series.
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Figure 3.2: High spatial frequency optic flow obtained from the subtraction of optic

flow and the Fourier series approximation. Spike corresponds to the location of the

small-field obstacle.

The number of coefficients determines the fidelity of the FD signal when a

small object is present. In the previous images N = 2. By increasing the number of

Fourier coefficients to N = 4 the error in the approximation of the wide-field optic

flow is reduced, as seen in Figure 3.3 and at the same time the Q̇FD has a lower noise

level as shown in Figure 3.4. There is a trade-off, when the number of coefficients

is increased, between reducing the approximation error or completely removing the
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small-field information since as N →∞⇒ Q̇Fourier → Q̇C and therefore Q̇FD −→ 0.
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Figure 3.3: Approximation of low spatial frequency optic flow using 4 Fourier coef-

ficients.
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Figure 3.4: High spatial frequency signal (or residual) with 4 Fourier coefficients.
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The downside of using more coefficients is that more sine and cosine operations

are needed making the process computationally expensive. A trade-off between noise

reduction and processing time should be taken into account for implementation

purposes. Finally, the same procedure of obtaining the high spatial frequency signal

from optic flow was applied to the analytic optic flow of Eq. 2.10 to confirm that the

equation generates the same result. Both residuals of the analytic and true optic

flow are shown in Figure 3.5.
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Figure 3.5: True optic flow residual (blue) vs analytic optic flow residual (red).

The analytic residual has less noise since it was generated using Eq. 2.10 while

the true residual comes from optic flow computed using imagery, which introduces

noise.

The noise characteristics can be obtained by running the simulation in a tunnel

without any small-field obstacles. The FD signal Q̇FD obtained when no obstacles
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are present is shown in Figure 3.6 and represents the noise. In this case, the noise

includes also the approximation error between the original wide-field optic flow and

the Fourier series based.
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Figure 3.6: Noise in the FD signal caused by the estimation error between the optic

flow of a tunel and its Fourier approximation using N = 2.

In the previous figure, the noise ν, seems to be driven more by the low fre-

quency signal Fourier estimation error than by the noise itself since the noise seems

to be periodic. The mean of the noise E[ν] = 1.16e− 08 with a standard deviation

of σν = 0.15. The histogram and normal probability plots, in Figures 3.7 and 3.8,

are used to assess if the noise could be considered as Gaussian.
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Figure 3.7: Histogram of noise showing it does not have a normal distribution.

The histogram shows that the distribution is not normal but resembles a bi-

modal distribution. The normal probability plot, in Figure 3.8, shows that the

distribution is mostly linear but fails close to the tails confirming that is not nor-

mal.
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Figure 3.8: Normal probability plot of the FD noise when N = 2. Outliers are

shown in the tails of the distribution.

In contrast when N = 4 the mean of the noise is E[ν] = 1.54e − 08 with

σν = 0.013, showing it is smaller than when N = 2, as expected. This means it

contains less approximation error as presented in Figure 3.9. It can be seen that the

noise is no longer periodic.
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Figure 3.9: FD noise using N = 4 in the Fourier series.

The histogram now shows a clear normal distribution (in Figure 3.10) as well

as a linear relationship in the normal probability plot (in Figure 3.11) confirming

that the noise is Gaussian.

35



-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

5

10

15

20

25

30

35

40
FD Normal Plot

Figure 3.10: Histogram plot of the error showing a normal distribution.
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Figure 3.11: Normal probability plot of the FD noise when N = 4. It shows a linear

trend meaning the distribution is normal.
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3.2 Wavelets Method

The second methodology is based on the wavelet transform. This is an engi-

neering approach to achieve the spatial frequency separation. The wavelet transform

acts as a band pass filter removing the low spatial frequency signal and also remov-

ing very high frequency noise. The use of wavelets as a method for detecting small

obstacles becomes clear as the mathematical model for the small-field optic flow was

a Gaussian wavelet, thus it will be easier to identify a wavelet using wavelets.

Wavelets transforms are forms of time and frequency representations of a con-

tinuous function. Wavelets are like Fourier transforms in the sense that both can

identify the frequency content of a signal but wavelets have the advantage of iden-

tifying the time instant at which a specific frequency happened. Several different

mother wavelets are shown in Figure 3.12. The mother wavelet is used together

with Eq. (3.4) to integrate a function while sliding the mother wavelet in time and

frequency, specifically in what is called the scale and shift, respectively. In this

specific case, time is replaced by azimuth angle since the azimuthal location of the

small-field obstacle is needed.
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Figure 3.12: Common mother wavelets. Top left: Meyer. Top right: Morlet. Bottom

left: Mexican hat. Bottom right: Gauss Wavelet order 8.

The choice of the mother wavelet depends on the similarity to the signal that

needs to be identified and also the performance of identifying it. All mother wavelets

from Figure 3.12 were tested but the Morlet wavelet gave the best results.

The procedure is as follows: first a wavelet transform is applied to the com-

posite optic flow Q̇C to obtain the coefficients corresponding to each scale and shift

(azimuth), as shown in Figure 3.13 and using Eq. (3.4), where φ is the Morlet mother

wavelet used.

Ψ(τ, s) =
1√
s

∫
Q̇C · φ∗

(
γ − τ
s

)
dγ (3.4)
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Figure 3.13: All wavelet coefficients obtained from the composite optic flow signal.

The scales are inversely proportional to the spatial frequency content of the

signal, therefore coefficients with high magnitudes (red) at a high scale indicates the

presence of low spatial frequency content of optic flow and the low magnitude coef-

ficients (blue) at specific scales indicates the absence of that frequency, as presented

in Figure 3.13.

A range of coefficients can be selected, by removing the higher scales (wide-

field or low spatial frequency) and also removing the lowest scales (high spatial

frequency noise). In Figure 3.14, the band of coefficients from 0 − 50 was removed

since it corresponds to the high frequency noise, while the band from 220 − 300

corresponds to the low frequency signals. The band between 50 − 220 contains

information about the small-field. The magnitude of the coefficients indicates how

strong the presence of a spatial frequency is. Figure 3.14 shows a maximum (in
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red) in the bands of 50− 150 in scale and at about −45o in azimuth, indicating the

presence of an obstacle at that location.

Once the desired scales are selected, the signal can be reconstructed using

Eq. (3.5)

Q̇Wavelet =
1

C2
φ

∫
s

∫
τ

Ψ(τ, s)
1

s2
φ
(
t− τ
s

)
dτds (3.5)

where cφ is the admissibility constant.
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Figure 3.14: Range of wavelet coefficients selected for filtering the compound optic

flow to have only the small-field. High magnitude of scales (red) indicates the

presence of a specific frequency at the corresponding azimuth angle.

Figure 3.15 shows the wavelet transform coefficients of the optic flow plotted in

the complex plane. Another way to select the coefficients is to select circles of specific

radius in the complex plane and select the ones inside that specific circle. The

coefficients shown in red represent the coefficients selected for the reconstruction. In
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any case, an optimal range of coefficients should be chosen in order to reconstruct the

signal containing high frequencies and at the same time reject very high frequency

noise.

Figure 3.15: Wavelet transform coefficients. The coefficients present in the signal

are shown in blue while the selected ones for reconstruction are shown in red. Small

magnitude coefficients are not included for reconstruction but are not visible.

The reconstructed signal Q̇Wavelet is shown in Figure 3.16 and the maximum

shows the azimuthal location of the small-field object. Figure 3.17 shows the com-

parison of using the true optic flow vs the analytic version of optic flow. Both signals

are similar to each but differ from each other in that the true one has more noise,

introduced by the imagery in the simulation.
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Figure 3.16: Filtered optic flow showing the high spatial frequency Q̇Wavelet (small-

field), the maximum value indicates the azimuthal location of the object.
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Figure 3.17: Comparison of analytic vs true optic flow high spatial frequency content

signal.
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To determine the residual noise after the wavelet transform, the vehicle was

again commanded to move in an scene without small-field and only walls present.

The noise ν obtained is shown in Figure 3.18.
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Figure 3.18: Residual noise after removing low spatial frequency content using

wavelets.

The noise has a mean of E[ν] = 0.14 and a standard deviation of σν = 0.03.

To determine if the noise corresponds to a normal distribution, the histogram and

normal distribution plot are presented in Figures 3.19 and 3.20
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Figure 3.19: Normal distribution of noise obtained using wavelets.
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Figure 3.20: Normal probability plot of the noise obtained using wavelets. The

closer to being linear indicates closer to a normal distribution.
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3.3 Flow of Flow Method

The third method is assumed to happen at the medulla level. There is still

uncertainty about the actual process happening in the the medulla of the flies and

many approaches have been proposed. These approaches suggested a two stage pro-

cess where the first process is the EMD or Reichardt detector, shown in Figure 3.21.

The second stages that have been proposed are often complex and require several

filters and spatial interconnections [30, 31,48]. In contrast with what has been pro-

posed in the past, here we present a simple second stage consisting of another set

of EMD’s. The input to this second stage is the output of the first stage, i.e, a

rudimentary version of optic flow, hence it’s name flow of flow.

Figure 3.21: Reichardt detector with biology notation

The Reichardt detector shown in Figure 3.21 is used to accomplish the spatial

frequency separation to obtain the small-field objects. As mentioned before, the
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direct input to this detector will be the optic flow at two adjacent azimuthal locations

γ1 and γ2. The detector performs low-pass filtering and for simplicity it will be

approximated as a time delay on the signal. The filtered value is multiplied with a

spatially adjacent, unfiltered signal value. A graphical representation of the process

from the input to the output of the Reichardt detector is shown in Figure 3.22(a).

(a) Reichardt detector, engineering

notation.

1

2

1
F

2
F

2*1
F

1*2
F

R

(b) Description of process of Gaussian

signal.

Figure 3.22: Elementary motion detector, graphical description of process. The

subscript F indicates the filtered or delayed signal.
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The output equation is shown in Eq. (3.6) below

RFoF = Q̇SF (γ1, t− τ)Q̇SF (γ2, t)− Q̇SF (γ1, t)Q̇SF (γ2, t− τ) (3.6)

were Q̇SF (γ1, t) is the optic flow at azimuth angle γ1 and time t. Q̇SF (γ1, t − τ)

represents the delayed optic flow but it could also be replaced by a low-pass time

filtered optic flow.

As seen in Figure 3.22(b), the input to the EMD is Q̇SF (γ1, t)and Q̇SF (γ2, t).

The output is shown in Eq. (3.6) and is non-linear. It is assumed that γ2 = γ1 + ∆γ

with ∆γ small so Q̇SF (γ2, t) may be approximated with a Taylor series as

Q̇SF (γ2, t) = Q̇SF (γ1 + ∆γ, t)

≈ Q̇SF (γ1, t) +
δ

δγ
Q̇SF (γ1, t)∆γ (3.7)

Now plugging in Eq. (3.7) into Eq. (3.6) gives

RFoF = Q̇SF (γ1, t− τ)Q̇SF (γ2, t)− Q̇SF (γ1, t)Q̇SF (γ2, t− τ)

≈ Q̇SF (γ1, t− τ)

[
Q̇SF (γ1, t) +

δ

δγ
Q̇SF (γ1, t)∆γ

]

−Q̇SF (γ1, t)

[
Q̇SF (γ1, t− τ) +

δ

δγ
Q̇SF (γ1, t− τ)∆γ

]

≈ Q̇SF (γ1, t− τ)
δ

δγ
Q̇SF (γ1, t)∆γ − Q̇SF (γ1, t)

δ

δγ
Q̇SF (γ1, t− τ)∆γ(3.8)

Since t− τ is also assumed to be small, then the the Taylor series around t can be

computed as

Q̇SF (γ1, t− τ) ≈ Q̇SF (γ1, t)−
δ

δt
Q̇SF (γ1, t)τ (3.9)

And finally plugging Eq. (3.9) into Eq. (3.8) provides

RFoF ≈
[
Q̇SF (γ1, t)−

δ

δt
Q̇SF (γ1, t)τ

]
δ

δγ
Q̇SF (γ1, t)∆γ
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−Q̇SF (γ1, t)
δ

δγ

[
Q̇SF (γ1, t)−

δ

δt
Q̇SF (γ1, t)τ

]
∆γ

≈ −τ∆γ

[
δ

δt
Q̇SF (γ1, t)

δ

δγ
Q̇SF (γ1, t)− Q̇SF (γ1, t)

δ

δγ

δ

δt
Q̇SF (γ1, t)

]
(3.10)

Applying Eq. (3.10) to the composite optic flow from Eq. (2.10) provides the fol-

lowing approximation to the flow of flow

RFoF ≈
µ0τ∆γu

θ2
exp

[
(γ − γ0 + µ0tu)2

θ2

]
Q̇2
SF +H.O.T. (3.11)

The previous result of Eq. (3.11) indicates that the output will be the small-field

optic flow signal squared and at the same time multiplied by a scaling factor. The

wide-field optic flow fades away by being multiplied by the Gaussian wavelet since

outside of the peak the signal is mostly zero. Using the true optic flow as input

to the Reichardt detector, the output flow of flow (FoF) was obtained, as shown in

Figure 3.23.
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Figure 3.23: Flow of flow. Output of the Reichardt detector when the input is the

composite optic flow.

Comparing and using as input the analytic and true optic flow, the outputs of

the Reichardt detectors are shown in Figure 3.24.
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Figure 3.24: Comparison of output of Reichardt detector using as input either the

true optic flow or the analytic optic flow.

This method returns a small-field optic flow signal that is easy to implement

and does not require much computational power. Moreover, the signal has low

noise which makes the detection more reliable. The noise profile when no small-field

obstacle is present is shown in Figure 3.25. The noise ν has a mean of E[ν] =

1.23e− 06 and a standard deviation of σν = 0.0001.

50



−200 −100 0 100 200
−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Azimuth (deg)

F
lo

w
 o

f f
lo

w
 (

ra
d/

s)
2

 

 

FoF Noise

Figure 3.25: Noise profile obtained using the flow of flow method when no small-field

obstacles are present.

The histogram of the noise obtained with flow of flow is shown in Figure 3.26

and it presents a normal distribution.
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Figure 3.26: Normal distribution obtained using FoF method.

.

The normal probability test, in Figure 3.27, shows that the probability deviates

from being linear at the tails but it can still be considered a normal distribution.
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Figure 3.27: Normal probability test with tails deviating.

3.4 Detection

The previous sections described three methods to extract the small-field infor-

mation. This extracted signal contains both noise and information about the small

obstacles. This section presents a thresholding mechanism to determine or detect

the presence or absence of a small object in the extracted signal.

Once either Q̇FD, Q̇Wavelet, or RFoF are obtained and knowing the noise level

when no obstacle is present, in Table 3.1, a threshold detection algorithm was im-

plemented. The high spatial frequency content signal was shown to be a normal

distribution when no small-field obstacle was present. Therefore, when a small-field

obstacle is present, the signal overcomes this noise level.

The spatial standard deviation σSF of Q̇FD, Q̇Wavelet, or RFoF is calculated at
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every time step. Then the value of 3σSF was chosen as a threshold since everything

outside that value would be considered as perturbation to the noise, showing an

obstacle is present. The value of 3σSF also has to be greater than the noise level

of Table 3.1. When an obstacle is present, the magnitude of the signal is higher at

that azimuth angle. This increase in magnitude will overcome the threshold and

will indicate the azimuthal position of the obstacle. The magnitude of the signal is

inversely proportional to the distance at which the obstacle is from the vehicle. The

threshold and noise level are illustrated in Figure 3.28.

Figure 3.28: Detection Explanation

The detection threshold can be adjusted so that closer or farther obstacles are

detected, but this could also cause obstacles to not be detected or result in noise

being detected as obstacles. Table 3.1 shows the flow of flow method has the lowest

noise level followed by the FD method (N = 4) and last the wavelets. Having a

smaller noise level makes it easier to identify when obstacles are present.
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Table 3.1: Comparison of noise from different extraction methods to obtain small-

field optic flow.

std (σν) mean (E[ν]) Units

FD (N = 2) 0.15 1.16e-08 rad/s

FD (N = 4) 0.01 1.54e-08 rad/s

Wavelets 0.03 0.14 rad/s

FoF 0.0001 1.23e-06 (rad/s)2
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Chapter 4: Navigation Control Methodology and Simulation

This chapter presents the vehicle dynamics for the unicycle ground vehicle as

well as the linearized uncoupled dynamics for an aerial vehicle. It also develops

the control strategies used for the obstacle avoidance as well as the quantitative

comparison of the detection methods. Lastly, the navigation scheme used for the

localization is presented followed by the analysis of convergence of the trajectory.

4.1 Vehicle Dynamics

Two vehicles were used for simulation and implementation. One being a

ground robot modeled as a unicycle and the other one a quadrotor. The unicy-

cle kinematics are

ẋ = u cosψ

ẏ = u sinψ

ψ̇ = ω (4.1)

where x and y are the inertial position coordinates in the scene, u is the forward

velocity, ψ is the heading, and ω is the control input.

For the quadrotor, the reduced order vehicle dynamics considering the inner-
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loop dynamics in the inertial reference frame are [26]

ẍ = −Xuẋ+ gθr

ÿ = −Yuẏ + gφr

ψ̈ = −(Nr +Kr)ψ̇ +Nµyrr (4.2)

where x and y are the longitudinal and lateral positions in the scene, ψ is the heading,

Xu and Yv are the aerodynamic damping derivatives. Here g is the gravity, Nr is the

yaw damping, Kr is the internal yaw gain, and finally Nµy is the control sensitivity.

The control inputs for this system are θr, φr, and rr that are the commanded roll

angle, pitch angle, and yaw rate. The coordinate frame used is shown in Figure 4.1.

Figure 4.1: Vehicle Coordinate Frame

4.2 Obstacle Avoidance Controller Design

The three detection algorithms presented in Chapter 3 provide polar infor-

mation about the location of the obstacles relative to the vehicle, i.e. azimuth and
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nearness of the obstacles. This information can be used to steer away from obstacles

that are close to the vehicle, with a reaction inversely proportional to the angle of

the obstacle relative to the front of the vehicle and to its distance. The control law

computes a potential field using information of the relative heading and distance to

the obstacle to steer away from obstacles as in [82] and uses this potential to control

the angular acceleration.

The resultant model of angular acceleration consists of two terms: a damping

term and one or more obstacle potentials, as presented in Eq. (4.3). The obstacle

potential consists of a function dependent of heading to the obstacle and relative

distance to the obstacle, shown in Eq. 4.4. This function resembles a mountain

centered at the obstacle’s heading and its influence is bigger when the headings are

aligned, i.e. γo = 0, shown in Figure 4.2. The obstacle potential term could also

be used to control the forward velocity. The output of this dynamical model is the

instantaneous desired heading and velocity which is used in the original Eq. (4.1).

ψ̈ = −bdψ̇ +
dIo
dψ

(4.3)

Io =
ko
c2ψ

(cψ|ψ − ψo|+ 1)e−cψ |ψ−ψo|)(e−cddo) (4.4)
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Figure 4.2: Obstacle Potential: Shows a maximum when distance and heading to

obstacle are zero

When implementing the potential on the ground robot, a modification was

made to account for the sign of the control as

dIo
dψ

= kosgn(ψ − ψo)(e−cψ |ψ−ψo|)(e−cddo) (4.5)

It is important to note that ψ − ψo = γo and do ∝ 1/γo come directly from

the azimuth location and nearness of the small-field detection of Chapter 3. When

the derivative of the potential is plotted against the relative distance to the obstacle

and its azimuth angle, it shows negative values for angles less than zero and positive

values for angles greater than zero. This is to account for obstacles to either the left

or right of the ground vehicle. This behavior is shown in Figure 4.3.
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Figure 4.3: Derivative of potential to include sign change to account for obstacles

to the right or left of the vehicle.

For the quadrotor, the pitch input θr is set to a constant value to generate a

forward flight velocity. The inputs for roll φr and yaw rate rr were calculated using

similar potential functions as follow

rr = Krsgn(γo)e
−cψ |γo| (4.6)

θr = Kθsgn(γo)e
−cddo (4.7)

The response of the roll control input is shown in Figure 4.4 and the heading input

in Figure 4.5.
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Figure 4.4: Response of roll control to distance and azimuth to obstacle.
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Figure 4.5: Control input response to azimuth location of small-field object.

The control inputs have greater weights when the obstacles are either close to

the vehicle or straight ahead at an azimuth angle of zero. In the previous potentials
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and controls cd determines the rate at which the control will decay due to the

distance to the obstacle, cψ determines the rate of decay with the obstacle azimuth,

ko, Kr and Kθ determine the maximum control authority. This variables can be

tuned to make the control more or less responsive to the presence of obstacles.

The control law was tested in a simplified environment with known location of

the obstacles. The simulation, in Figure 4.6, shows that the obstacles are avoided.

The constants b, ko, cψ and cd in the control law are used to adjust the aggressiveness

of the response of the vehicle due to the distance and angle of an obstacle. An

increase of these constants generates a different path as seen in Figure 4.7. The

paths taken are depicted in blue lines while the obstacles are represented by red

circles. The end point of the trajectory is marked with a green diamond. When

the potential function are implemented on-board the vehicles, the constants play an

important role on the behavior and reaction time to obstacles.
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Figure 4.6: Obstacle avoidance simulation using steering potential functions with

small gains.
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Figure 4.7: Obstacle avoidance simulation using steering potential functions with

large gains.
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4.3 Quantitative Comparison of Detection Methods

With the detection methods presented in Chapter 3 and the controller from

Section 4.2, it is possible to close the loop and navigate in an unknown environment

with obstacle avoidance capabilities. This section presents the simulation and a

quantitative comparison of the detection methods of Chapter3. The scene used was

an obstacle field with different sizes as shown in Figure 4.8.

FRAME:90

Figure 4.8: Virtual obstacle field.

With the threshold algorithm implemented it is possible to identify obstacles

and at the same time the simulation provides the true position of the obstacles so

that the following metrics can be computed:

• Correctly identified obstacle when present (true positive TP)

• Incorrectly identified obstacle when there is none (false positive FP)

• Correctly rejected indicating no obstacle present (true negative TN) or
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• Incorrectly rejected, obstacle present but missed (false negative FN)

For the visual description of the statistical measures of performance, the snapshot

scene in Figure 4.9 was used. The scene shows three obstacles together with its

azimuthal location and respective nearness.

FRAME:90

−200 −150 −100 −50 0 50 100 150 200
0

0.05

0.1

0.15

0.2

Azimuth Angle γ (deg)

N
ea

rn
es

s 
(1

/m
)

a)

 

 
True Nearness

Figure 4.9: Snapshot of three obstacles in seen at the corresponding instant together

with the nearness produced.

The true nearness of Figure 4.9 was used to obtain the statistical measures of

performance that are depicted in Figures 4.10, 4.11, 4.12, and 4.13. For instance

Figure 4.10 shows three true obstacles in the top graph but the signal RFoF (in the

middle) is showing only two obstacles, therefore the bottom graph shows in dotted

red the missed obstacle or false negative (FN).
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Figure 4.10: Statistical measures of performance for an occurrence of RFoF .

The true positives (TP) or correctly identified obstacles are shown in green in

the bottom graph of Figure 4.10. In this particular case, the RFoF signal identified

only 2 obstacles or TP. For the case where Q̇FD is used with N = 2 for the Fourier

coefficients, all obstacles are correctly identified, as shown in Figure 4.11.
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Figure 4.11: Statistical measures of performance for an occurrence of Q̇FD with

N = 2.

When Q̇Wavelets is used, three true positives are identified or TP but also one

obstacle is identified that is not actually present (or FP). This false positive is shown

dotted green in the bottom of Figure 4.12. When using Q̇FD with N = 2, 3 TP are

identified, shown in Figure 4.13.
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Figure 4.12: Statistical measures of performance for an occurrence of Q̇Wavelet.
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Figure 4.13: Statistical measures of performance for an occurrence of Q̇FD with

N = 4.
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Once the metrics of TP, FN, FP, and TN are obtained, it is also possible to

compute:

• Sensitivity or True Positive Rate (TPR) which is the rate between obstacles

identified and the total number of actual obstacles.

• Precision or Positive Predictive Value (PPV) tells how good the test is in

positive detection.

• Negative Predictive Value (NPV) tells how good the test is in negative

detection.

• Specificity or True Negative Rate (TNR) is the proportion of obstacles re-

jected where there was no obstacle.

• Accuracy gives the percentage of true positives and true negatives over the

entire population.

• False Positive Rate (FPR is the complement of the Specificity.

• False Negative Rate (FNR) is the complement of the Sensitivity.

All these metrics give a statistical measure of performance. To calculate these

performance parameters, a simulated vehicle was moved in the obstacle field for

half a second. These parameters are better understood on a table as introduced on

Table 4.1.
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Table 4.1: Statistical performance parameters for detection using RFoF and T =

2.5σSF as threshold.

Condition Condition

Positive Negative

Algorithm Outcome True Positive False Positive Precision

Positive 84 0 100

Algorithm Outcome False Negative True Negative NPV

Negative 15 132 89.80

Sensitivity Specificity Accuracy

84.85 100 93.50

To understand the following tables, values should be interpreted horizontally

or vertically, where the horizontal results relate to the effectiveness of the algorithm

itself while the vertical correspond to the condition of an obstacle present or not

present. For example, in Table 4.1 and reading horizontally, the precision has a

value of 100% indicating that once an obstacle is detected it can be considered

to be a true obstacle. But on the other hand, the NPV is 89.9% indicating that

it is only that percent certain that there is no obstacle. Now reading the table

vertically, the sensitivity shows a value of 84.85% which indicates the percentage of

positively identifying an obstacle. The specificity shows a value of 100% indicating

the percentage of testing negative (or no obstacle) when there is none. Ideally is

good to have a high sensitivity (to have few false negatives) and also a high specificity

(to have few false positives). Now comparing the values of Table 4.1 with those of

Tables 4.2, and 4.3 it can be seen that the method of FoF using RFoF has higher
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values of sensitivity and NPV than when using the FD method Q̇FD with N = 2

or N = 4 at a threshold of T = 2.5σSF , indicating it performs better. The best

and highest values are obtained by the wavelet signal Q̇Wavelets for the detection as

shown in Table 4.4, with sensitivity of 94.95% and NPV = 96.35%. The fact that

the wavelet method has the best statistics is due to the fact that through the wavelet

decomposition is is possible to remove some of the noise present in the signal.

It is also important to note that these tables are for a specific threshold of T =

2.5σSF and choosing a different threshold affects the performance of the detection

methods.

Table 4.2: Statistical performance parameters for detection using Q̇FD and T =

2.5σSF as threshold for N = 2.

Condition Condition

Positive Negative

Algorithm Outcome True Positive False Positive Precision

Positive 82 0 100

Algorithm Outcome False Negative True Negative NPV

Negative 17 132 88.59

Sensitivity Specificity Accuracy

82.83 100 92.64
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Table 4.3: Statistical performance parameters for detection using Q̇FD and T =

2.5σSF as threshold for N = 4.

Condition Condition

Positive Negative

Algorithm Outcome True Positive False Positive Precision

Positive 67 0 100

Algorithm Outcome False Negative True Negative NPV

Negative 32 132 80.49

Sensitivity Specificity Accuracy

67.68 100 86.14

Table 4.4: Statistical performance parameters for detection using Q̇Wavelet and T =

2.5σSF as threshold.

Condition Condition

Positive Negative

Algorithm Outcome True Positive False Positive Precision

Positive 94 0 100

Algorithm Outcome False Negative True Negative NPV

Negative 5 132 96.35

Sensitivity Specificity Accuracy

94.95 100 97.84

If for now the detection threshold is set to T = 1.5σSF then the sensitivity

and the NPV values increase, since it is possible to identify more TP, and therefore
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less FN will be present, as seen in Tables 4.5, 4.6,4.7, and 4.8. At the same time

the specificity and precision for Q̇FD with N = 4 and Q̇Wavelets reduces since more

FP are being detected. The increase in the FP, in Table 4.8 and Table 4.7, is due

to noise being detected as obstacles caused by the threshold reduction. Therefore

in order to choose a threshold, there should be a tradeoff between sensitivity and

precision.

For the case where T = 1.5σSF , the detection method of Q̇FD with N = 2

gives the highest performance parameters as illustrated in Table 4.6.

Table 4.5: Statistical performance parameters for detection using RFoF and T =

1.5σSF as threshold.

Condition Condition

Positive Negative

Algorithm Outcome True Positive False Positive Precision

Positive 95 0 100

Algorithm Outcome False Negative True Negative NPV

Negative 5 133 96.38

Sensitivity Specificity Accuracy

95.00 100 97.85
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Table 4.6: Statistical performance parameters for detection using Q̇FD and T =

1.5σSF as threshold for N = 2.

Condition Condition

Positive Negative

Algorithm Outcome True Positive False Positive Precision

Positive 99 0 100

Algorithm Outcome False Negative True Negative NPV

Negative 1 133 99.25

Sensitivity Specificity Accuracy

99.00 100 99.57

Table 4.7: Statistical performance parameters for detection using Q̇FD and T =

1.5σSF as threshold for N = 4.

Condition Condition

Positive Negative

Algorithm Outcome True Positive False Positive Precision

Positive 99 13 88.39

Algorithm Outcome False Negative True Negative NPV

Negative 1 136 99.27

Sensitivity Specificity Accuracy

99.00 91.23 94.38
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Table 4.8: Statistical performance parameters for detection using Q̇Wavelet and T =

1.5σSF as threshold.

Condition Condition

Positive Negative

Algorithm Outcome True Positive False Positive Precision

Positive 99 27 78.57

Algorithm Outcome False Negative True Negative NPV

Negative 1 141 99.30

Sensitivity Specificity Accuracy

99.00 83.93 89.55

To determine an optimal value for the threshold, the sensitivity, specificity,

precision, NPV, and accuracy were calculated for different threshold values as shown

in Tables 4.9, 4.10, 4.11, and 4.12. The performance parameters were plotted as

functions of the threshold for each of the different detection methods. For the FoF

method, Table 4.9 and Figure 4.14 show that the sensitivity, NPV, and accuracy

decaying as the threshold is increased. On the other hand, precision and specificity

increase as the threshold is increased. A middle point or trade-off could be seen for

a threshold between 1σSF − 1.5σSF .
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Table 4.9: Statistical performance parameters using RFoF and varying the threshold

T = nσ

n 2.5 2 1.5 1

Sensitivity 84.85 90.91 95 98

Precision 100 100 100 98

NPV 89.8 93.62 96.38 98.54

Specificity 100 100 100 98.54

Accuracy 93.5 96.1 97.85 98.31
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Figure 4.14: Statistical performance parameters of RFoF as functions of the thresh-

old T = nσSF .

For the FD method using Fourier series with N = 2 and Q̇FD, Figure 4.15

shows both the sensitivity and NPV decaying as the threshold is increased, whereas
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precision and specificity increase. The accuracy parameter has a quadratic behavior

with a maximum at a threshold of T = 2σSF . A trade-off value for the threshold is

T = 1.5σSF where the parameters cross each other.

Table 4.10: Statistical performance parameters using Q̇FD with N = 2 and varying

the threshold T = nσ.

n 2.5 2 1.5 1

Sensitivity 82.83 93.94 99 99

Precision 100 100 100 74.44

NPV 88.59 95.65 99.25 99.38

Specificity 100 100 100 82.38

Accuracy 92.64 97.4 89.55 88.05

1 1.5 2 2.5 3
70

75

80

85

90

95

100

105

Threshold T=nσ

P
e
r
c
e
n
t
a
g
e

FD Statistics N=2

 

 

Sensitivity
Precision
NPV
Specificity
Accuracy

Figure 4.15: Statistical performance parameters of Q̇FD(N = 2) as functions of the

threshold T = nσSF .
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When the signal Q̇FD is used with N = 4 the behavior of the statistical

parameters is similar as with N = 2. The decay in sensitivity and NPV when

the threshold is increased, is sharper than before. Also the specificity and precision

increase at a faster rate when the threshold is increased. This faster decay or increase

shows that the parameters are more susceptible to changes in the threshold. The

accuracy has a maximum at about T = 2σSF and coincides with the crossing of all

the signals, indicating that the trade-off point should be there. This is shown in

Figure 4.16.

Table 4.11: Statistical performance parameters using Q̇FD with N = 4 and varying

the threshold T = nσ.

n 2.5 2 1.5 1

Sensitivity 67.68 95.96 99 99

Precision 100 100 88.39 73.88

NPV 80.49 97.06 99.27 99.36

Specificity 100 100 91.28 81.68

Accuracy 86.15 98.27 94.38 87.63
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Figure 4.16: Statistical performance parameters of Q̇FD(N = 4) as functions of the

threshold T = nσSF .

Finally, Figure 4.17 and Table4.12 show the results of the statistical perfor-

mance parameters for Q̇Wavelet. The behavior of the parameters is the same as

described before. Both sensitivity and NPV decrease as the threshold is increased

but at a very slow rate, indicating this method is less sensitive to threshold changes.

The accuracy, precision and specificity increase as the threshold is increased. The

trade-off point is located at T = 2σSF .
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Table 4.12: Statistical performance parameters using Q̇Wavelet and varying the

threshold T = nσ

n 2.5 2 1.5 1

Sensitivity 94.95 98.99 99 99

Precision 100 100 78.57 50.51

NPV 96.35 99.25 99.3 99.41

Specificity 100 100 83.93 63.4

Accuracy 97.84 99.56 89.55 73.15
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Figure 4.17: Statistical performance parameters of Q̇Wavelet as functions of the

threshold T = nσSF .

In conclusion, from all the previous tables it can be seen that if the threshold is

kept low, the methods detect more obstacles but more false positives are obtained.
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When the threshold is increased, the detection decision can be trusted more as

shown by the precision value. If the threshold is low, the precision value decreases

since noise could be detected as an obstacle. Therefore, the threshold could be used

to tune the PPV and NPV values in order to reduce uncertainty on the prediction

of the presence or absence of the detected obstacles.
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Chapter 5: Localization Methodology

Localization refers to the ability to estimate a vehicle’s position and orientation

while navigating to a desired location in an unknown environment. First the state

estimation using WFI is introduced and then the methods for navigating to a desired

location are presented.

5.1 Nearness of Rectangular Room Environment

The baseline environment that will be used to derive the WFI based localiza-

tion method is a rectangular room. The nearness can be derived from geometry as

seen in Figure 5.1.
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Figure 5.1: Nearness from geometry of rectangular room.

The nearness is a function of the pose x = [x y ψ]T , the azimuth angle γ, and

the room geometry as shown in Eq. (5.1)

µroom(x, γ) =



sin(γ+ψ)
a−y W1

− cos(γ+ψ)
b+x

W2

− sin(γ+ψ)
a+y

W3

cos(γ+ψ)
b−x W4

(5.1)
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with the following W limits

W1 = tan−1(a−y
b−x ) ≤ γ + ψ < π − tan−1(a−y

b+x
)

W2 = π − tan−1(a−y
b+x

) ≤ γ + ψ < tan−1(a+y
b+x

) + π

W3 = tan−1(a+y
b+x

) + π ≤ γ + ψ < 2π − tan−1(a+y
b−x )

W4 = 2π − tan−1(a+y
b−x ) ≤ γ + ψ < tan−1(a−y

b−x )

(5.2)

Graphically, the room nearness consists of four humps, one for each wall. The

higher the hump the closer the vehicle is to the wall. An example of the nearness

when the vehicle is at the origin of the room is shown in Figure 5.2.

−200 −150 −100 −50 0 50 100 150 200
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Azimuth angle γ (deg)

N
ea

rn
es

s 
µ 

(m
−1

)

 

 

Back Wall

Left Wall Right Wall

Front Wall

Figure 5.2: Nearness as seen from the observer located at the center of the rectan-

gular room.

If the position and orientation of the vehicle changes, as shown in Figure 5.4,

the height of the humps change and a shift in the nearness is introduced, as the

corresponding nearness in Figure 5.3 presents.
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Figure 5.3: Nearness as seen from observer located at the top right corner and 45o

of heading.
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Figure 5.4: Vehicle located at the top right corner and 45o of heading.
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5.2 State Estimation using WFI

The idea behind this method is to integrate many measurements to extract

rich information about the environment and at the same time reduce the estimate

noise. The method presented here is analogous to the WFI in which information

about the environment was extracted using basis functions, but instead of using

optic flow, here the nearness function is used.

Assuming the nearness function for a rectangular room is available as presented

in the previous section, where µ(x, γ) ∈ L2[0, 2π] and using the basis functions,

F (γ) = {cos γ} ∪ {sin γ} ∪ {sin 2γ} shown in Figure 5.5 it is possible to extract

vehicle states x, presented in Eq (4.1), by doing an inner product in a function

space

y = 〈µroom(x, γ), F (γ)〉

=
1

π

∫ 2π

0
µroom(x, γ) · F (γ)dγ (5.3)

which generates the following coefficients

a1 = 1
π

∫ 2π
0 µroom(x, γ) · cos γdγ

b1 = 1
π

∫ 2π
0 µroom(x, γ) · sin γdγ

b2 = 1
π

∫ 2π
0 µroom(x, γ) · sin 2γdγ

(5.4)
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Figure 5.5: Basis functions F (γ) used to extract vehicle states out of nearness

function.

The output of the inner product between the nearness and each of the weight-

ing functions generates a highly nonlinear output that relates to each of the states

of the vehicle (x, y, ψ). For instance, the spatial Fourier coefficients are

a1 = 1
π

∫ 2π
0 µroom(x, γ) · cos γdγ

=
−2 sin(ψ)(tan−1(b−x,a−y)+tan−1(b+x,a−y))+cos(2 tan−1(b−x,a−y)+ψ)−cos(ψ−2 tan−1(b+x,a−y))+2π sin(ψ)

4(a−y)

+
sin(ψ−2 tan−1(b+x,a−y))−sin(2 tan−1(b+x,a+y)+ψ)−2 cos(ψ)(tan−1(b+x,a−y)+tan−1(b+x,a+y))

4(b+x)

+
2 sin(ψ)(tan−1(b−x,a+y)+tan−1(b+x,a+y)−π)+cos(ψ−2 tan−1(b−x,a+y))−cos(2 tan−1(b+x,a+y)+ψ)

4(a+y)

+
− sin(ψ−2 tan−1(b−x,a+y))+2 cos(ψ) tan−1(b−x,a+y)+sin(ψ)

4b−4x

+
sin(2 tan−1(b−x,a−y)+ψ)+2 cos(ψ) tan−1(b−x,a−y)−sin(ψ)

4b−4x

(5.5)
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b1 = 1
π

∫ 2π
0 µroom(x, γ) · sin γdγ

=
− sin(ψ−2 tan−1(b−x,a−y))+sin(2 tan−1(b+x,a−y)+ψ)−2 cos(ψ)(tan−1(b−x,a−y)+tan−1(b+x,a−y))+2π cos(ψ)

4(a−y)

+
2 sin(ψ)(tan−1(b+x,a−y)+tan−1(b+x,a+y))−cos(2 tan−1(b+x,a−y)+ψ)+cos(ψ−2 tan−1(b+x,a+y))

4(b+x)

+
− sin(2 tan−1(b−x,a+y)+ψ)+sin(ψ−2 tan−1(b+x,a+y))+2 cos(ψ)(tan−1(b−x,a+y)+tan−1(b+x,a+y))−2π cos(ψ)

4(a+y)

+
−2 sin(ψ) tan−1(b−x,a+y)+cos(2 tan−1(b−x,a+y)+ψ)−cos(ψ)

4(b−x)

+
−2 sin(ψ) tan−1(b−x,a−y)−cos(ψ−2 tan−1(b−x,a−y))+cos(ψ)

4b−4x

(5.6)

b2 = 1
π

∫ 2π
0 µroom(x, γ) · sin 2γdγ

= − sin(2ψ−3 tan−1(a−yb−x ))−3(sin(2ψ−tan−1(a−yb−x ))+sin(tan−1(a−yb+x )+2ψ))+sin(3 tan−1(a−yb+x )+2ψ)
6(a−y)

+
3 cos(tan−1(a−yb+x )+2ψ)+cos(3 tan−1(a−yb+x )+2ψ)−3 cos(2ψ−tan−1(a+yb+x ))−cos(2ψ−3 tan−1(a+yb+x ))

6(b+x)

−−3 sin(tan
−1(a+yb−x )+2ψ)+sin(3 tan−1(a+yb−x )+2ψ)−3 sin(2ψ−tan−1(a+yb+x ))+sin(2ψ−3 tan−1(a+yb+x ))

6(a+y)

+
3 cos(tan−1(a+yb−x )+2ψ)+cos(3 tan−1(a+yb−x )+2ψ)−4 cos(2ψ)

6(b−x)

−3 cos(2ψ−tan−1(a−yb−x ))+cos(2ψ−3 tan−1(a−yb−x ))−4 cos(2ψ)
6(b−x)

(5.7)

To obtain the required relationship between each of the coefficients and it’s

corresponding state, a numerical evaluation was done by sweeping values of x and y

and fixing the values for the width a and height b of the room. The a1 coefficient is

represented graphically in Figure 5.6. This coefficient gets minimal effect by changes

in y and has a linear region for when x changes as seen on Figure 5.6(a).
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(b) a1 Coefficients x and y relationship.

Figure 5.6: a1 showing relationship to the longitudinal state x.

Figure 5.7 shows the opposite effect on the b1 coefficient. Changes in x do not

affect the coefficient while changes in y do. The b1 coefficient also has a linear region

of operation.
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Figure 5.7: b1 showing relationship to the longitudinal state x.

The b2 coefficient relates to the heading angle as shown in Figure 5.8. It also

shows a linear region between ±45o.
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Figure 5.8: Relationship between b2 coefficient and heading angle psi.

By obtaining the gradients of the coefficients around the linear region, the

coefficients were related to their corresponding states as

y = Cx

a1

b1

b2


=



−0.0056 0 0

0 −0.0125 0

0 0 16.1031





x

y

ψ


(5.8)

and C was obtained by getting the gradients as:

C =



∂a1
∂x

∂a1
∂y

∂a1
∂ψ

∂b1
∂x

∂b1
∂y

∂b1
∂ψ

∂b2
∂x

∂b2
∂y

∂b2
∂ψ


(5.9)
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Finally, to obtained the estimates, a least squares solution could be implemented

x̂ = (CTC)−1CTy (5.10)

In this case, the C matrix is a square invertible matrix since the coefficients

assumed a given length a and width b of the rectangular room but a more complex

C matrix could be implemented to include estimates of these parameters.

5.3 Localization Methodology using WFI

This section shows the analysis of the methodology used to navigate from

a current position to a target position. The methodology uses only the current

nearness and the reference nearness to generate a control strategy to navigate to the

desired location. At the same time, pose estimation is done.

An example of the reference nearness and the current nearness are shown in

Figure 5.9. The Fourier coefficients of each nearness function, described in Sec-

tion 5.2, relate to the vehicle reference and current state, respectively. Therefore,

they could be used for closed loop control of the vehicle velocities, while trying to

reach a reference position that generates a1,ref , b1,ref , and b2,ref as reference coeffi-

cients as introduced in Eq. 5.11.

uc = Ku(a1,ref − a1)

vc = Kv(b1,ref − b1)

ωc = Kω(b2,ref − b2)

(5.11)
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Figure 5.9: Example of reference and current nearness functions. The reference

position is (0, 0) while the current position is at (5, 5).

For a rectangular room with no other obstacles present, the control strategy

takes the vehicle from any initial condition to the target position, as shown in

Figure 5.10. With this environment, there is ambiguity in the heading since for

instance a 90o would have a similar nearness as at 270o, which is due to the symmetry

of the environment. In this environment, the state estimates converge to the actual

values, within the first 5 seconds, as shown by the estimate error plots of Figure 5.11.

92



−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

X
 c

oo
rd

in
at

e 
(m

)

Y coordinate (m)

Frame 150

Figure 5.10: Localization of vehicle in a rectangular environment. The target posi-

tion is shown in blue, the current position in red and the estimated in green.
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Figure 5.11: Estimation error plots for rectangular room.
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When the environment is changed to include obstacles at different locations,

the control strategy still responds adequately but the state estimation takes longer

to converge as it was designed and linearized about a rectangular room. Also, both

the control and the estimation will converge locally since the environment could

generate several minima. The estimated trajectory can be seen to start off and

then matches the actual trajectory, in Figure 5.12. The estimated state converges

withing 20 seconds, which is slower that when no obstacles where present. The

estimate error plots for this environment are shown in Figure 5.13
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Figure 5.12: Localization of vehicle in a random environment. The estimated posi-

tion, in green, converges to the true position as the vehicle gets closer to the target.

94



0 5 10 15 20 25 30
−15

−10

−5

0

5

X−X
hat

X
 E

rr
or

 (
m

)

0 5 10 15 20 25 30
−5

0

5
Y

 E
rr

or
 (

m
)

0 5 10 15 20 25 30
−100

−50

0

50

100

H
ea

di
ng

 E
rr

or
 (

de
g)

Time(s)

Figure 5.13: Estimation error plots for room with random obstacles.

This control strategy is robust to noise in the reference and measured near-

ness and also works with a reduced number of samples if the initial conditions are

adequate, as presented in Figure 5.14. Some initial conditions make the vehicle

deviate from the target and this behavior is due to the similarity of different parts

of each environment. Adding noise to the measurements will increase the noise in

the estimates as well, and it will also increase the convergence time.
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ment
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Figure 5.14: Control strategy robust to noise in measurement and reference nearness.

A draw back with this control strategy is that the converge to the target posi-

tion is not guaranteed as there are initial conditions that would make the trajectory

to diverge. An analysis of the heading error obtained according to the initial position

is shown in Figure 5.15. It shows that starting closer to obstacles will generate large

heading error. Figure 5.16 shows the regions of convergence, by using J = u2c + v2c ,

indicating that initial conditions starting closer to the walls will converge to the

middle of the room but not specifically to the origin. This is because Figure 5.16

does not provide a global minimum but instead a region to which the vehicle could

converge locally, and possibly still being away from the target position. Ideally, the
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convergence plot should show a minimum at the origin since the position target is

located there. A different approach is taken in the following section to try to address

the minimum problem.

Figure 5.15: Heading error depending on initial condition. Red indicates a high

error while blue is low.
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Figure 5.16: Convergence regions using the controls u2c + v2c . Dark blue represents

an area of convergence but is not a confined minimum.

5.4 Localization Minimizing RMS

The localization method using WFI could only determine if the vehicle was

getting closer to the target by comparing the current performance index with the

previous one, where Jk < Jk−1 has to be satisfied in order to get to the target. But if

a step was taken where Jk > Jk−1 the trajectory would start to diverge. Therefore,

the following method introduces a propagation forward in time of the nearness in

order to evaluate future steps and avoid the divergence. The RMS error between

the current and target nearness is used as performance index. Furthermore, the

following method does not have the constraint of having to navigate in environments

that resemble a rectangular room since it will be derived for arbitrary unknown
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environments.

For the derivation, it is assumed that an arbitrary reference nearness µref =

1/dref and a current measured nearness µm are available, as shown in Figure 5.17.

In this method, it will be of interest to determine the values of δx1 and δy1 that

will minimize the RMS value of µ̂m − µref , where µ̂m is a nearness in the vicinity

of µm. First, from Figure 5.17 it can be derived that

dm1 =
√

(xref1 − dx0)2 + (yref1 − dy0)2 (5.12)

d̂m1 =
√

(xm1 − dx1)2 + (ym1 − dy1)2 (5.13)

and if the Eq. (5.12) and Eq. (5.13) are combined

d̂m1 = [(xref1 − dx0 − δx1)2 + (yref1 − dy0 − δy1)2]
1/2

=
[
x2ref1 + (dx0 + δx1)

2 + y2ref1 + (dy0 + δy1)
2

−2(xref1(dx0 + δx1) + yref1(dy0 + δy1)]
1/2

= (x2ref1 + y2ref1)
1/2

[
1 +

(dx0+δx1)(dx0+δx1−2xref1 )+(dy0+δy1)(dy0+δy1−2yref1 )
x2
ref1

+y2
ref1

]1/2
(5.14)

so that each element of µ̂m is

µ̂m1 = µref1

[
1 +

(dx0+δx1)(dx0+δx1−2xref1 )+(dy0+δy1)(dy0+δy1−2yref1 )
x2
ref1

+y2
ref1

]−1/2
≈ µref1

[
1− (dx0+δx1)(dx0+δx1−2xref1 )+(dy0+δy1)(dy0+δy1−2yref1 )

2(x2
ref1

+y2
ref1

)

] (5.15)

The approximation done in the last step, is generated by using the negative inverse

binomial series expansion as follows

(1 + x)−n = 1− nx+ 1
2
n(n+ 1)x2 − 1

6
n(n+ 1)(n+ 2)x3 + . . . (5.16)

where |x| < 1 needs to be satisfied for the series to converge.
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In vector form the approximated nearness at each azimuth angle can be de-

termined as

µ̂m =



µref1

(
1− (dx0+δx1)(dx0+δx1−2xref1 )+(dy0+δy1)(dy0+δy1−2yref1 )

2(x2
ref1

+y2
ref1

)

)
...

µrefn

(
1− (dx0+δx1)(dx0+δx1−2xrefn )+(dy0+δy1)(dy0+δy1−2yrefn )

2(x2
refn

+y2
refn

)

)


(5.17)

Lastly, the RMS value used as the performance index can be computed as

J =
√

(µ̂m − µref )T (µ̂m − µref )/n (5.18)

Figure 5.17: Localization diagram. The diagram shows the initial reference position

and indicates the current position (transparent) with future possible positions (dots).

The method for localization will still use the b2 coefficient to find the heading

error and will use RMS approach for the x and y errors. It is a hybrid between
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the WFI method together with ICP. It also resembles a Monte Carlo analysis since

it will propagate the nearness around random δx and δy. Directly, the initial and

reference nearness are given, µm1 and µref1 respectively.

Figure 5.18 shows the true nearness at a particular δx and δy and the corre-

sponding approximation, using Eq. (5.15). It can be seen that the approximation

resembles the actual value. This approximation was calculated for p pairs of (δx, δy)

around the vicinity of the initial point generating p RMS values of µ̂m −µref . The

pair (δx, δy) that generated the minimum RMS value was chosen to be the control

direction as

uc = Kxδx

vc = Kyδy

(5.19)

Then the vehicle dynamics are propagated and at every time step the p RMS values

are recalculated choosing the minimum at each time. This enables the prediction of

the next step that will bring the vehicle closer to the target.
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Figure 5.18: Nearness approximation using the inverse binomial series. The approx-

imation is shown in red. Cyan dots represent points where the binomial |x| < 1

condition is not met.

Figure 5.19 shows the trajectory followed by the vehicle using the RMS min-

imum value. The cyan cloud constitute the p = 1000 points used to determine the

minimum RMS value. The black dot on the cloud represents the (δx, δy) that pro-

duced the minimum RMS value. The plot of the RMS error over a period of time

is shown in Figure 5.20.
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Figure 5.19: Trajectory generated by using the RMS minimization method. The

cyan cloud represents the points in the vicinity of the initial position used for de-

termining the minimum RMS value.

Analyzing the error squared for a single point gives

(µ̂m1 − µref1)2 = µ2
ref1

[
(dx0+δx1)(dx0+δx1−2xref1 )+(dy0+δy1)(dy0+δy1−2yref1 )

2(x2
ref1

+y2
ref1

)

]2
=

[
(dx0+δx1)(dx0+δx1−2xref1 )+(dy0+δy1)(dy0+δy1−2yref1 )

2(x2
ref1

+y2
ref1

)3/2

]2 (5.20)

so that the RMS error is

J =
√

(µ̂m1 − µref1)2 + . . .+ (µ̂mn − µrefn)2

=

√√√√√√√√√√√√√

[
(dx0+δx1)(dx0+δx1−2xref1 )+(dy0+δy1)(dy0+δy1−2yref1 )

2(x2
ref1

+y2
ref1

)3/2

]2
...

+
[
(dx0+δx1)(dx0+δx1−2xrefn )+(dy0+δy1)(dy0+δy1−2yrefn )

2(x2
refn

+y2
refn

)3/2

]2
(5.21)

The RMS error corresponding to the trajectory of Figure 5.19 is plotted in Fig-
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ure 5.20. The RMS error vs time shows to be monotonically decreasing most of the

time. Therefore as long as the RMS decays over a period of time, the trajectory

is guaranteed to converge to a local minimum. This means that at every step the

performance index J should have a minimum and it is required to be monotonically

decreasing at every certain number of steps, as Jk ≥ Jk+1 ≥ · · · Jn ≥ 0, where

n should be the number of steps it takes to converge to the target position, and

Jk = min
δx,δy

Jk(δx, δy,µm,µref ).
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Figure 5.20: RMS error plot over a period of time. A decaying plot indicates the

trajectory is converging.

Figure 5.21 shows the RMS error plot obtained at each position and it can

be seen that there is a minimum located at the target position (0, 0). The position

of the minimum depends on the target position, but for simplicity it was chosen at

the origin. Since the environment is unknown, as long as the performance index
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decreases over time, the convergence to a local minimum is guaranteed. The conver-

gence will also depend on environment and the target position, since more complex

environments can give rise to several local minima, as shown in Figure 5.22. The

advantage of this method over the WFI proposed on the previous section is that

this method evaluates the error that would emerge by moving in different directions

before actually taking the step in that direction. As more complex environments

are encounter, the possibility of having more minima increases. This is inevitable

since the environments are assumed to be unknown and the nearness function at

one point could looking similar to another nearness function at a different position.

Figure 5.21: Convergence plot indicating a minimum at the target location.
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Figure 5.22: More complex environment. Convergence plot indicating a minimum

at the target location but also other minima start to appear.
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Chapter 6: Experimental Validation

This chapter details the hardware used for the implementation and validation

of the small-field information extraction methods on a ground vehicle and an aerial

vehicle. It is followed by a description of the on-board embedded firmware. Lastly,

the results of navigating in cluttered environments is presented. The navigation

tests were done with both vehicles and include environments with small-field and

wide-field obstacles.

6.1 Description of Hardware - Ground Vehicle

The ground rover used is built from the commercially available Dr. Robot R©X80SV,

shown in Figure 6.1(a). The rover includes two 12V drive wheels, which send and

receive information through serial communication. To this frame, a vertically ori-

ented Firefly MV camera was added. This points towards a parabolic mirror that

is mounted above the camera and is centered with the camera lens as shown in

Figure 6.1(b). The reflection of the parabolic mirror gives the camera a 360o field of

view around the ground vehicle. The rover wheels and camera are controlled by a

motherboard attached to the rover’s frame. The motherboard has a 1.4 GHz AMD

Quad-core processor and is powered by a 14.8V Lipo battery. Both drive wheels are
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powered by a separate 12V battery.

(a) Dr. Robot Platform (b) Parabolic Mirror

Figure 6.1: Test Platform

6.2 Description of Hardware - Flying Vehicle

The DJI Flame Wheel 330 quadrotor was chosen because of its light weight

150g frame and at the same time it has a high payload capability of up to 1200g of

takeoff weight. The attitude control of the quadrotor is done by the commercially

available ArduPilotMega 2.5, shown at the center of the quadrotor in Figure 6.2.

108



Figure 6.2: FlameWheel 330 commercial quadrotor with Ardupilot attitude control

board.

To reduce the SWaP, the Raspberry Pi microcomputer was chosen as the main

processor for implementing the obstacle detection algorithms. The Raspberry Pi is

a microcomputer that is capable of running Linux and OpenCV. The later will be

used for all the image processing tasks as well as for the implementation of the

small-field object detection algorithm. The Raspberry Pi characteristics are shown

in Table 6.1.

Table 6.1: Raspberry Pi technical specifications.

Characteristic Description

Speed 700MHz

Ram 512MB

Memory Variable SD card

Size 3.37x2.13x0.67 in

Weight 1.59oz

Supply 700mA @ 5V
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Besides its small size and light weight, the Raspberry Pi is able to read a

camera at fast frame rates. Increasing the frame rate will help increase the ability

to navigate at higher speeds. The available configurations for the camera are 2592 x

1944 pixel static images, and 1080p30, 720p60 and 640x480p60/90 video. The plug-

in camera module needs 250mA and weights 3.6 grams. The camera was mounted

pointing upwards to a parabolic mirror to obtain the complete 360o azimuth view,

as shown in Figure 6.3.

Figure 6.3: Raspberry Pi, camera, and parabolic mirror integration.

The complete hardware integration on the quadrotor is shown in Figure6.4.

This includes the ArduPilot for attitude control, the Rasberry Pi for the image

processing, and the camera with the parabolic mirror.
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Figure 6.4: Flying vehicle hardware integration.

The interconnection of all the hardware in the system is shown in Figure 6.5.

The Raspberry Pi firmware is activated through a remote desktop connection (RDC).

The firmware on the Raspberry Pi will detect obstacles. Then it will send roll and

yaw commands to the Ardupilot attitude control through the UART port. Also

a manual mode control is possible through joysticks controlled using LabView and

sent to the quadrotor through an RC remote controller.

Figure 6.5: System interconnection diagram.

111



6.3 Embedded Firmware Development

The embedded firmware for both the ground and aerial vehicle was written in

C++. The ground vehicle runs Windows XP while the Rasberry Pi runs Raspbian,

which is a version of a Lixus based OS. A pseudo-code describing the main loop is

shown below.

Initialize Capture initial image

Main loop()

1. Capture image

2. Crop image

3. Compress image

4. Compute optic flow

-Extract rings of OF

-Average OF rings

5. Compute small-field detection

6. Compute control commands

7. Send commands to serial port

Repeat

Steps 1 through 3 are depicted in Figure 6.6.
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Figure 6.6: Image processing before computing OF. Step 1 shows the capture of an

image. Step 2 shows the cropped image. Step 3 shows the compressed image by

average of near pixels.

The first step of the pseudo-code is to capture an image. This image is then

cropped to cover the field of view of the parabolic mirror. Once the image is cropped,

it is possible to compress it by different factors. By doing the compression, the speed

of computation of optic flow is increased and therefore it is possible to close the loop

at at higher frames per second. Depending on the compression factor, the frame

rate could be changed between 30 to 83fps for the aerial vehicle and 20-30fps for the

ground vehicle. With the compressed images, it is possible to compute optic flow

from a sequence of compressed images. Step 5, the small-field detection, is obtained

with the detection methods of Chapter 3 and step 6 with the results of the controller

in Chapter 4.

For the optic flow computation, the Farnebäck algorithm was used on both

the ground and the aerial vehicle through OpenCV, which is an image processing

library available for C, C++, Java, or Python [83]. The Farnebäck function from this

library accepts two images and returns a two-channel matrix with x and y velocity
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components for each pixel, calculated with the Farnebäck algorithm. Originally, the

optic flow was being calculated for a resolution of 240x240 pixels for the ground

vehicle and 160x120 for the aerial vehicle but the loop would run only at 20fps or

less. To increase the speed of the function, the images were compressed by averaging

all the pixel intensities in a square block of pixels on an original image. Thus, the

flow field for, say a 240x240 images could be calculated with a reduced density on

lower resolution images of 120x120, 80x80, 60x60, etc. Each reduction in the number

of pixels significantly increased the frame rate, but also decreased the accuracy of

the flow field around the moving portion of an image.

The desired optic flow signal is the component tangential to the rings shown

Figure 6.7 for the ground vehicle and Figure 6.8 for the aerial vehicle. These rings

correspond to the 0 − 360o in azimuth of the vehicle. The final optic flow signal is

obtained by averaging the four tangential pixel velocity components for the points

on each ring at a given angle.

This averaged optic flow is the input for each of the different small-field detec-

tion methods presented in Chapter 3 which when implemented generated a signal

with small object information.
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Figure 6.7: Locations of selected optic flow vectors plotted over the ground vehicle

camera image of the parabolic mirror

Frame 241

Figure 6.8: Locations of selected optic flow vectors plotted over the ground vehicle

camera image of the parabolic mirror
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6.4 Results

This section presents the results of the closed loop solution using the FD,

wavelets, and flow of flow methods. It is determined that the behavior of the vehicle

towards the obstacles is very similar independent of the method used. It is also

shown how the trajectories followed by the vehicle are repeatable and dependent on

the initial conditions.

6.4.1 Response of Methods to Obstacle Field

To test and compare the three different detection methods, the environment

shown in Figure 6.9 was used for the ground vehicle. The obstacles vary in diameter

from 2in to 4in. Even though the algorithms work without the presence of walls, they

were added here to comply with the compound optic flow described in Chapter 2.
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Figure 6.9: Environment used for comparing three detection methods implemented

on the ground vehicle.

Figure 6.10 shows the trajectories followed by the ground vehicle using the FD

signal Q̇FD, together with the wavelet signal Q̇Wavelet, and with RFoF . In all three

cases the algorithms were able to detect and avoid the obstacles in a similar manner.

In Figure 6.10, the trajectories are shown in dotted lines, the walls are shown in

black and the obstacles in red circles corresponding to their actual diameter. The

green circle indicates the end of the trajectory which was manually activated. The

green circle also indicates the actual diameter of the ground vehicle.
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Figure 6.10: Trajectories followed by ground vehicle in the presence of small-field

obstacles. The trajectories correspond to the three different methods proposed.

Even though the trajectories seem similar, there are few few differences be-

tween these methods that emerged when they were implemented. Some of these

differences are indicated in Table 6.2. One of these differences is execution time,

showing that the flow of flow method has the smallest average execution time fol-

lowed by the FD method. Also the noise level of the flow of flow is three orders of

magnitude less than that of the FD, just as found in the simulations. The smallest

the noise level, the easier it will be to discern the presence of obstacles, as described

in Chapter 4.
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Table 6.2: Comparison of Methods of Detection

Flow of flow FD Wavelet

Avg Exec. time (µs) 7.5 75 1600

Noise level (rad/s) 1× 10−6 1× 10−3 1× 10−2

Operations Algebraic Trigonometric FFT

Edge Detection yes no no

Table 6.2 also shows the mathematical operation implicated in the implemen-

tation of each method. It is believed that the wavelets method is easier and faster to

implement on analog VLSI but this will not be discussed here and will be suggested

as future work.

Figure 6.11 shows information computed on-board the ground vehicle when

the detection was done using Q̇FD with N = 2. The environment shown in the top

left presents the instant when the vehicle is surrounded by three obstacles. The

detection, in the bottom left, shows a plot of the detection in 2D with the x axis

as the azimuth angle, three obstacles were correctly detected and identified shown

in red. Is important to note the high noise level. The top right images shows a

polar plot superimposed with the image taken with the parabolic mirror, showing

the three obstacles in their corresponding positions at about −50o, 50o, and 110o.

The on-board test results for the implementation of Q̇Wavelet is depicted in

Figure 6.12. Looking at the lower left image of Figure 6.12 it can be seen that even

though the noise level was higher than that of other methods, when compared to

the signal containing the small-field it is still much lower making it easy to identify
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the obstacles. Also the width of the detected obstacle is closer to their actual width

as seen on the polar plot. In this case, only two out of the three obstacles in the

field of view were detected.

The last test for the same environment but using RFoF as the detection mech-

anism is shown in Figure 6.11. The lower left image shows three obstacles detected

but two (right side) are the same obstacle. As it was shown by the simulation,

the flow of flow signal shows two peaks per detected obstacle, i.e., it detects the

beginning and end edges of an obstacle, when the obstacles are farther away. Also

it shows a small peak at about 50o which was not detected since the threshold was

set high. The detection signal appears to be noisier around the obstacles detected

making it difficult to differentiate between possible obstacles that could be next to

each other. The noise level when away from the obstacles is also shown to be very

low.
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Figure 6.11: Real time implementatioin of small-field detection using Q̇FD.
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Figure 6.12: Real time implementatioin of small-field detection using Q̇Wavelet.
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Figure 6.13: Real time implementatioin of small-field detection using RFoF .
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Similar results are obtained the when aerial vehicle is flown in the environment

depicted in Figure 6.14. On-board data could not be recorded at the original 60-

80fps. Therefore the frame rate needed to be slowed down to 30fps in order to record

images and data. This decrease in loop closure also required the decrease in forward

speed velocity in order to be able to detect the obstacles.

Figure 6.14: Aerial vehicle navigating in obstacle field.

For the aerial vehicle, only the Fourier based FD method Q̇FD and the RFoF

method were implemented since they can run at faster rates. The optic flow obtained

from the on-board calculations is shown in Figure 6.15. It is noisier than that

obtained from the ground vehicle but is still good enough to extract small-field

information.
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Figure 6.15: Optic flow generated on-board the aerial vehicle. The noise is due to

the vibration of the vehicle.

The FD method using Fourier series was applied to the on-board calculated

optic to obtain Q̇FD and similar behavior as in the ground robot is shown in Fig-

ure 6.16. There are two obstacles detected, one at about −80o and the other one at

100o. The polar plot shows the obstacles identified correctly. Figure 6.17 shows the

detection being done with the flow of flow method. The result shows a smaller noise

than that of the FD method and also the peaks are easily identifiable. Two obstacles

were detected at the same locations. The peaks of the flow of flow detection are

thinner than that of the FD method.
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Figure 6.16: On-board small-field detection using Q̇FD

−180 −135 −90 −45 0   45  90  135 180 
0

2

4

6

8

10

12
Flow of flow

Azimuth (deg)

F
oF

 (
ra

d/
s)

2

 

 
Q

res

Threshold
Detection

(a) Detection using RFoF

Onboard Detection

(b) Polar plot of obstacles detected

Figure 6.17: On-board small-field detection using RFoF

6.4.2 Obstacle Fields Without Walls

Three different scenarios for the ground vehicle and three for the aerial vehicle

were tested and the trajectories plotted. The trajectories were recorded using the

Vicon tracking system. Trajectories are plotted in blue, the final position of the
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vehicles are depicted as a green circles, and the obstacles are shown as red circles.

The method for detection used is the flow of flow. This method was chosen since

it is considered a more extreme case due to the noise present around the detected

obstacles and the irregular shape (two peaks) of the detected objects.

First the tests done with the ground vehicle will be analyzed. The scene in

Figure 6.18 has the poles placed randomly. Trajectories starting on the left side

ended on the right side, and trajectories starting on the right side ended on the left.

This is because the first obstacle the vehicle encounters is on the left or right side

of the vehicle, respectively, forcing the vehicle to turn in the opposite direction.
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Figure 6.18: Ground vehicle test 1: ramdomly placed obstacles.

The poles in Figure 6.19 were placed in a #5 dice pattern, and a similar

behavior as described before was observed.
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Figure 6.19: Ground vehicle test 2: #5 Dice Figure

On the scene of Figure 6.20, the front two poles are placed closer to each other

while the back poles are positioned farther; still the trajectories are repeated. It is

important to clarify that there is no path planning or trajectory generation algorithm

implemented and the repeated trajectories are caused only by the reaction of the

vehicle to its static environment.

128



−1.5 −1 −0.5 0 0.5

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x Axis (m)

y 
A

xi
s 

(m
)

Figure 6.20: Ground vehicle test 3: modified dice environment.

The trajectories followed by the aerial vehicle will be shown next. For these

scenarios, the obstacles were placed randomly and without any specific pattern.

Besides the obstacles with diameter of 2in to 4in, also a 12in cylinder was placed on

some of the scenes. Figure 6.21 presents the first test for the aerial vehicle, were it

was able to navigate around the obstacle field. Figure 6.22 shows a more cluttered

environment. The vehicle is able to navigate through the environment and at the

same time it replicates several of the trajectories. Lastly, Figure 6.23 shows the most

cluttered environment of the three tests. The vehicle is able to navigate even when

the obstacles are very close to each other. It also replicates some of the trajectories.

All the above tests prove that the obstacle detection methodology works for cluttered

environments which could include wide-field or small-field obstacles. The control law

also responds as expected and therefore avoiding the collision with the obstacles.
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Figure 6.21: Aerial vehicle test 1: random environment.
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Figure 6.22: Aerial vehicle test 2: random environment with larger obstacle.
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Figure 6.23: Aerial vehicle test 3: random environment with larger obstacle.
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Chapter 7: Conclusions and Future Work

This chapter outlines the results and contributions of the current work. Areas

to expand the current work are also identified.

7.1 Conclusions

This dissertation focuses on small-field perception mechanisms to enhance the

navigation of small unmanned aircraft systems in cluttered unknown environments.

The source of inspiration for these perception mechanisms were the biological pro-

cesses happening at different levels of the fruit fly visual system. These insect-

inspired computationally efficient mechanisms enabled safe reflexive obstacle avoid-

ance navigation through the use of optic flow. The analysis underlying the physical

functions of these biological perception mechanism facilitated the development of

the proposed methods. The methodologies adopted take advantage of the noise re-

duction, enhanced information extraction, and efficient processing achieved by the

insects.

The main contribution of this dissertation is the development of three bio-

inspired methods for small-field information extraction that rely on optic flow and

their ability separate the high spatial frequency content from the low spatial fre-
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quency. The methods are supported by analytic, simulation, and implementation

results, that provide sufficient information for conducting obstacle avoidance navi-

gation in cluttered environments.

The main contributions of this work are listed below:

• Biologically plausible engineering analogues for two hypothesized small-field

object detection pathways in the insect visuomotor system were developed:

flow of flow in the medulla and feature detection (FD) cells in lobula plate,

respectively.

• An analytical model of optic flow was extended to include an explicit param-

eterization of small-field objects in a two-dimensional environment. Subse-

quently this model was used to provide the first proof of feasibility of obtaining

small field information from the flow of flow approach.

• A wavelet version of the feature detection (FD) cell approach was developed,

and successful small object detection was demonstrated in simulation and

hardware implementation for all three approaches (flow of flow, FD cell and

wavelet).

• A method for localization in arbitrary environments based on wide-field inte-

gration was developed. This method provides an estimate a vehicle’s position

and orientation, and the resulting algorithm generates control inputs to ma-

neuver a vehicle to a desired target position.

• Navigation in cluttered environments including small-field and wide-field ob-
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stacles was demonstrated and validated on both a ground vehicle and a sUAS

using the proposed bio-inspired small-field extraction methods.

In more detail, the optic flow was modeled as the addition of the optic flow

generated by wide-field and small-field obstacles in an environment. It was demon-

strated that a Gaussian wavelet model is able to incorporate information about the

small-field obstacle, such as its azimuth location, the nearness to the obstacle, and

its width. It was shown that the wide-field optic flow encodes low spatial frequency

information and therefore the small-field information should be present in the high

spatial frequency content. The simulation result with AVLSim was used to validate

the small-field optic flow model.

The first method for small-field perception, named flow of flow, based on insect

vision pathways showed that the use of two cascaded EMDs is sufficient to extract

the high spatial-frequency content of the optic flow. The model of optic flow was

used to prove analytically, that the output of the flow of flow method contains only

information about the small-field obstacles. Simulation and implementation of these

method showed efficient extraction of information while keeping the noise level low.

The second method for small-field perception was an engineering approach

that mimics the process happening at the lobula of the insects, i.e. FD cells. This

method was capable of extracting information of optic flow by means of inhibiting

or removing the low spatial frequency content generated by the reconstructed sig-

nal from its Fourier series. A trade-off should be done between reducing noise, or

reducing the small-field content by choosing the number of coefficients used for the
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reconstruction.

The third and last method for small-field perception used wavelet decompo-

sition as a way of filtering the optic flow signal, to extract the Gaussian wavelet

that represented the small-field obstacle. The use of wavelets enabled the removal

of very high spatial-frequency noise as well as low spatial-frequency containing the

wide field information.

The implementation of the three methods showed a similar behavior since all

methods were able to detect and avoid obstacles ranging from 2” to 4” in diameter.

In terms of practical implementation, the flow of flow demonstrated to be faster

since it only depends on algebraic operations, followed by the FD method relying

on trigonometric functions, and the slowest is the wavelet method that uses FFT.

The flow of flow signal showed several peaks near the actual obstacle while the

other two methods identify a unique peak per obstacle. If clustering of the peaks

is not done, the flow of flow method could mislead in identifying several obstacles

when there is only one. The lowest noise level, when no obstacle is present, was

observed in the flow of flow signal, being three orders of magnitude smaller than

FD, and four smaller than that of the wavelets. Having low noise level improved the

detection of small-field objects. To predict the presence or absence of the small-field

obstacles, a threshold mechanism was implemented. The threshold is dynamic since

it is obtained at every time step. It consists of the standard deviation of the small-

field signal multiplied by a factor. The threshold factor selected could was used to

tune the PPV and NPV to reduce uncertainty on the prediction.

Lastly, a localization framework for determining a vehicle’s position and ori-
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entation in a 2D environment was presented. The localization method extracts

information through the use of WFI. WFI integrates measurements to extract infor-

mation and reduce noise. A control strategy based on this method was introduced to

navigate, from an initial position to a target position, using only nearness functions

and at the same time estimates the vehicle’s pose are generated. The method does

not guarantee convergence to the target position and therefore it was modified to

include a check to determine if the solution is, at most getting closer to the target.

Global convergence cannot be guaranteed, but only convergence to local minima,

since similarities between different points of the unknown environment will generate

several minima in the RMS performance index.

The technical conclusions of the small-field extraction methods are:

• The execution time of the flow of flow method is the lowest with 7.5µs, followed

by the FD method with 75µs, and being the slowest the wavelet method with

1600µs.

• In simulation, the flow of flow method is less sensitive to changes in the de-

tection threshold since its performance parameters (sensitivity, precision, ac-

curacy and NPV) are above 90% for 1σSF < T < 2.5σSF , while the FD cell

methods shows good performance parameters for a reduced range of 1.5σSF <

T < 2σSF , and the wavelets only for larger thresholds of T > 2σSF .

• Decreasing the detection threshold will increase the sensitivity (more obstacles

detected) but at the same time the precision decreases (noise identified as

obstacles). Therefore, the threshold can be used to tune the sensitivity and
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precision required.

• The FD cell method was able to detect up to three obstacles at a time, while

the flow of flow and wavelets only 2.

• When no obstacles are present, the flow of flow method shows the lowest level

of noise σν = 0.0001, while FD shows σν = 0.01, and the wavelets σν = 0.03.

7.2 Future Work

Since the small-field perception methods presented extract a sense of relative

position and azimuth angle to the obstacles, a potential direction to extend this work

would be to include odometry to the system. This would enable the generation of a

map, and navigation with deliberate path planning would become possible.

A more probabilistic approach to the detection of obstacles should be investi-

gated. A statistical hypothesis testing method such as the Bayesian testing would be

able to test if a signal contains an obstacle based on the available noise properties.

This could also give more insight into the performance of the methods.

Additionally, these methods make use of 1D optic flow, and incorporating 2D

optic flow could allow the identification of obstacles in the 2D space. The use of 2D

optic flow could potentially remove the vehicle’s frontal blind spot. The small-field

information extraction methods could be implemented on analog VLSI to reduce the

processing time as well as size and power needed, which could be beneficial towards

implementations on smaller platforms.

The localization methodology could be completed by combining it with the
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small-field extraction methods. The output of the small-field methods could be

treated as nearness estimates, which would constitute the input into the localization

framework.

Finally, an analysis on perturbations to the rectangular room should give rise

to a better static estimation approach since it would be able to determine the linear

relationships between x, y, and φ and the Fourier coefficients of the nearness.
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