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This dissertation studies the extraction of signals that have smaller magnitudes—

typically one order of magnitude or more—than the dominating signals, or the ex-

traction of signals that have a smaller topological scale than what conventional

algorithms resolve. We name such a problem the micro signal extraction problem.

The micro signal extraction problem is challenging due to the relatively low

signal strength. In terms of relative magnitude, the micro signal of interest may

very well be considered as one signal within a group of many types of tiny, nuisance

signals, such as sensor noise and quantization noise. This group of nuisance signals

is usually considered as the “noisy,” unwanted component in contrast to the “signal”

component dominating the multimedia content. To extract the micro signal that has

much smaller magnitude than the dominating signal and simultaneously to protect

it from being corrupted by other nuisance signals, one usually has to tackle the

problem with extra caution: the modeling assumptions behind a proposed extraction

algorithm needs to be closely calibrated with the behavior of the multimedia data. In

this dissertation, we tackle three micro signal extraction problems by synergistically

applying and adapting signal processing theories and techniques.



In the first part of the dissertation, we use mobile imaging to extract a collec-

tion of directions of microscopic surfaces as a unique identifier for authentication and

counterfeit detection purposes. This is the first work showing that the 3-D structure

at the microscopic level can be precisely estimated using techniques related to the

photometric stereo. By enabling the mobile imaging paradigm, we have significantly

reduced the barriers for extending the counterfeit detection system to end users.

In the second part of the dissertation, we explore the possibility of extracting

the Electric Network Frequency (ENF) signal from a single image. This problem is

much more challenging compared to its audio and video counterparts, as the duration

and the magnitude of the embedded signal are both very small. We investigate and

show how the detectability of the ENF signal changes as a function of the magnitude

of the embedded ENF signal.

In the last part of the dissertation, we study the problem of heart-rate from

fitness exercise videos, which is challenging due to the existence of fitness motions.

We show that a highly precise motion compensation scheme is the key to a reliable

heart-rate extraction system.
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1

Introduction

This dissertation studies the extraction of signals that have smaller magnitudes—

typically one order of magnitude or more—than the dominating signals, or the

extraction of signals that have a smaller topological scale than what conventional

algorithms resolve. We name such a problem the micro signal extraction problem.

The micro signal extraction problem is challenging due to the relatively low

signal strength. In terms of relative magnitude, the micro signal of interest may

very well be considered as one signal within a group of many types of tiny, nuisance

signals, such as sensor noise and quantization noise. This group of nuisance signals

is usually considered as the “noisy,” unwanted component in contrast to the “signal”

component dominating the multimedia content. To extract the micro signal that has

much smaller magnitude than the dominating signal and simultaneously to protect

it from being corrupted by other nuisance signals, one usually has to tackle the

problem with extra caution: the modeling assumptions behind a proposed extraction

algorithm needs to be closely calibrated with the behavior of the multimedia data.
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Table 1.1: Strategies of micro signal extraction for various scenarios

Strategy Scenarios

Residue based intrinsic surface feature for authentication [Ch. 2],

heart rate from video [Ch. 5], ENF from video [1,2]
–

Property based ENF from image [Ch. 4], ENF from audio [3, 4]

Source separation ENF from image (limited performance) [Ch. 4]

Directly applying off-the-shelf algorithms would often fail. Instead, a synergistic

combination of the ideas behind the algorithms with insightful adaptation may lead

to promising results. We summarize in Table 1.1 three strategies toward micro signal

extraction, accompanied by scenarios that appeared in literature and in the later

parts of the dissertation.

Micro signal extraction is a fundamental enabler for digital/information foren-

sics that is “concerned with determining the authenticity, processing history, and

origin of digital multimedia content with no or minimal reliance on side channels

other than the digital content itself.” [5] In many such applications, forensic inves-

tigators heavily depend on the imperceptible or subtle traces buried, namely, the

micro signals, in the multimedia content.
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1.1 Main Contributions

In this dissertation, we explore micro signal extraction with a focus on the visual

aspect using mobile devices. We study two applications in forensics [Ch. 2–4] and one

application in noninvasive healthcare monitoring [Ch. 5]. All strategies in Table 1.1

for micro signal extraction are explored.

First, we use mobile imaging to extract a collection of directions of microscopic

surfaces as a unique identifier for authentication and counterfeit detection purpose.

This is the first work showing that the 3-D structure at the microscopic level can

be precisely estimated using techniques related to the photometric stereo [6]. By

enabling the mobile imaging paradigm, we have significantly reduced the barrier to

extending the counterfeit detection system to end users.

Second, we explore the possibility of extracting the Electric Network Frequency

(ENF) signal from a single image. This problem is much more challenging compared

to its audio counterpart [3, 4] and video counterpart [1, 2], as the duration and the

magnitude of the embedded signal are both very small. We investigate and show

how the detectability of the ENF signal changes as a function of the magnitude of

the embedded ENF signal.

Third, we study the problem of heart-rate from fitness exercise videos, which

is challenging due to the existence of fitness motions. We show that a highly precise

motion compensation scheme is the key to a reliable heart-rate extraction system.

From the perspective of the Internet of Things (IoT) [7–10], this dissertation

also contributes to the design of smart nodes/sensors. The IoT has an increasing
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impact on our everyday life with the technological advancement of smart nodes.

Mobile devices with audio-visual sensing capabilities are ubiquitous, and their pow-

erful computing capabilities make them great candidates for smart nodes of the IoT.

This dissertation focuses on the extraction of “micro signals” buried in image and

video data that effectively converts mobile devices into smart nodes that sense mi-

cro signals in the form of physical [Ch. 2], environmental [Ch. 4], and physiological

signals [Ch. 5].

Below, we detail the key contributions of this dissertation research.

1.1.1 Image Authentication Using Unclonable Feature of Surfaces

We study the authentication problem of specific pieces of paper by using micro sig-

nals extracted from paper surfaces via mobile imaging. Prior work showed high

matching accuracy used the normal vector field, a unique, microscopic, physically

unclonable feature of paper surfaces, estimated by consumer grade scanners. Indus-

trial cameras were also used to capture the appearance of the surface rendered after

the normal vector field per the law of optics under a semi-controlled lighting condi-

tion. In comparison, past explorations based on mobile cameras were very limited

and have not had substantial success in obtaining consistent appearance images due

to the uncontrolled nature of the ambient light. We show in this dissertation that

images captured by mobile cameras are good for authentication when the camera

flashlight is exploited for creating a semi-controlled lighting condition. We propose

new algorithms to demonstrate that the normal vector field of a paper surface can
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be estimated by using multiple camera-captured images of different viewpoints. Per-

turbation analysis shows that the proposed method is robust to inaccurate estimates

of camera locations, and a matching accuracy of 10−4 in equal error rate (EER) can

be achieved using 6 to 8 images under a lab-controlled ambient light environment.

Our findings can relax the restricted imaging setups to enable paper authentica-

tion under a more casual, ubiquitous setting with a mobile imaging device, which

may facilitate duplicate detection of paper documents and counterfeit mitigation of

merchandise packaging.

1.1.2 Invisible Geo-Location Signature in a Single Image

Geo-tagging images of interest is of increasing importance to law enforcement, na-

tional security, and journalism. Many images today do not carry location tags that

are trustworthy and resilient to tampering; and the landmark-based visual clues

may not be readily present in every image, especially in those taken indoors. In this

dissertation, we exploit an invisible signature from the power grid, the ENF signal,

which can be inherently recorded in a sensing stream at the time of capturing and

carries useful location information. It is, however, very challenging to extract an

ENF signal from a single image due to the low magnitude of the embedded signal,

as compared to the recent art of extracting ENF traces from audio and video. This

dissertation presents novel investigations toward this challenge, by synergistically

exploring the rolling shutter effect of CMOS imaging sensors, the blind source sepa-

ration from statistical signal processing, as well as entropy differences of composite
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signals. We study quantitatively the relation between the strength of the micro sig-

nal and its detectability from a single image, and bring out a unique machine vision

capability of invisible traces that shine light on an image’s capturing location.

1.1.3 Fitness Heart Rate Measurement Using Face Videos

Recent studies showed that subtle changes in human’s face color due to their heart-

beat can be captured by digital video recorders. Most work on extracting such

micro signals focused on still/rest cases or those with relatively small motions. In

this dissertation, we propose a heart-rate monitoring method for fitness exercise

videos. We focus on building a highly precise motion compensation scheme with the

help of the optical flow, and use motion information as a cue to adaptively remove

ambiguous frequency components for improving the heart rate estimates. Experi-

mental results show that our proposed method can achieve highly precise estimation

with an average error of 1.1 beats per minute (BPM) or 0.58% in relative error.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we first examine

the authentication performances using the intrinsic feature of paper surfaces when

restricted imaging setups are used, which serve as a performance baseline. We pro-

pose methods working under a more flexible setup—mobile cameras with built-in

flashlights, and compare the performances with prior work. We conduct perturba-

tion analysis to demonstrate the practicality of the proposed mobile cameras-based

6



authentication method. We then use confocal microscopic data from a physics as-

pect to elucidate a deeper understanding of the proposed work, and also address

some practical issues. In Chapter 3, we study a related authentication problem

using extrinsic features of surfaces.

In Chapter 4, we first review the background information on the ENF signature

and the image capturing operations that allow it to be present in images of interest.

We then present our proposed approaches for extracting the ENF signature from a

single image. We show the experiments we conducted and the results obtained.

In Chapter 5, we propose our video-based heart-rate monitoring method spe-

cially designed for fitness exercises. We present the experimental results with com-

parisons if some modules were otherwise replaced or turned off.

Finally, in Chapter 6, we conclude this dissertation and outline research issues

for future explorations.

7



2

Intrinsic Feature of Surfaces for

Authentication

2.1 Chapter Introduction

Merchandise packaging and valuable documents such as tickets and IDs are com-

mon targets for counterfeiting. Low-cost surface structures have been exploited for

counterfeit detection by using their optical features. The randomness of the surface

makes the structures physically unclonable or difficult to clone to deter duplications.

Such surface structures can be extrinsic by adding ingredients such as fiber [11,12],

small plastic dots [11], air bubble [11], powders/glitters [13] that are foreign to the

surface; and the surface structures can also be intrinsic by exploring the optical

effect of the microscopic roughness of the surface, such as the paper surface formed

by inter-twisted wood fibers [13–17]. The inherent randomness of the microscopic

roughness quantified using the normal vector field has been used as a feature for the
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unique identification of a particular patch of a surface in [13,14].

In this chapter, we focus on the intrinsic property of the paper surface for coun-

terfeit detection and deterrence, and seek to find a more casual, ubiquitous imaging

setup using consumer grade mobile cameras under commonly available lighting con-

ditions. The previous work in [13–15] shows that the microscopic roughness of the

paper surface can be optically captured by consumer grade scanners and industrial

cameras, both under controlled lighting conditions in the form of image appearance

rendered according to the physical law of light reflection at the paper surface. The

appearance images, and the subsequent normal vector field of the surface estimated

from the appearance images, can achieve satisfactory authentication results. How-

ever, recent work in [13, 17] also showed that if the ambient lighting is not well

controlled, the image appearance alone has not achieved satisfactory authentication

results. Instead, features based on intensity gradient of visually observable dots are

less sensitive to the change of lighting and may be used for authentication at the

cost of higher algorithm complexity and moderate discrimination capabilities [17].

Satisfying two requirements may facilitate paper authentication via mobile

cameras. First, the mobile captured images should be comparable in resolution and

contrast to those captured by scanners. Second, lighting should be controlled to

render a desirable appearance of the paper. The first requirement can be qualita-

tively checked by comparing the acquired images from scanners and mobile cameras.

Images acquired in both ways do have similar, detailed intensity fluctuations when

zoomed in. The second requirement can be fulfilled by activating the flashlight next

to the camera lens on mobile devices. The desirable appearance of the surface can
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be reasonably expected from the geometric arrangement between the camera and

the surface.

As we shall show in this chapter, camera flashlights exploited for creating semi-

controlled lighting conditions can significantly improve the performance of using

appearance images as the authentication feature. More importantly, by exploiting

the underlying rendering principle of the appearance of the surface, i.e., the fully

diffuse reflection model [14, 18], one can estimate the normal vector field of the

surface without resorting to more restricted acquisition conditions. To the best of

our knowledge, this work together with its preliminary version [19] is the first set

of work using mobile cameras to obtain an effective estimate of the normal vector

field of the paper surface for authentication. In this journal version, additional

experimental results are presented for more practical capturing scenarios. Extended

perturbation analyses of discrimination power on two factors, namely, the inaccuracy

of estimated camera locations and the number of images used for normal vector

field estimation, are conducted and explained using statistical methods. “Ground-

truth” 3-D structure of paper surface is obtained with confocal microscopy in order

to quantitatively examine the linkage between the appearance and the physical

structure of the paper surface.

This chapter is organized as follows. In Chapter 2.2, we review light reflec-

tion models, the method for paper surface registration, and the method for paper

authentication. In Chapter 2.3, we examine the authentication performances when

restricted imaging setups are used, which serve as a performance baseline. In Chap-

ters 2.4 and 2.5, we propose methods working under the a more flexible setup—

10



mobile cameras with built-in flashlights, and compare the performances with prior

work. In Chapter 2.6, we conduct perturbation analysis to demonstrate the practi-

cality of the proposed mobile cameras based authentication method. In Chapter 2.7,

we use confocal microscopic data from a physics aspect to elucidate a deeper un-

derstanding in the proposed work, and also address some practical issues. In Chap-

ter 2.8, we conclude the chapter.

2.2 Background and Preliminaries

2.2.1 Optical Imaging of Paper and Light Reflection Models

Seemingly smooth paper surfaces contain inherent microscopic 3-D structure due

to overlapped and inter-twisted wood fibers. This microscopic structure is different

from one paper to another and even one location to another on the same paper, and

therefore can serve as a unique identifier or fingerprint. One quantitative feature

of such 3-D structure, the surface direction, has been successfully exploited for

authentication in [13–15].

Fig. 2.1(a) shows a topographic map of a 1 mm-by-1 mm region of a paper

surface estimated from images captured by a confocal microscope [20]. The micro-

scopic roughness due to fibers is clearly shown. The visual appearance of the surface

follows the law of optics.

Geometrical light reflection models such as specular model and diffuse model

have been widely used in computer vision/graphics applications, due to their good

approximations to the law of optics and relatively simple analytical forms [6,18,21].
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Figure 2.1: (a) A topographic map of a 1mm-by-1mm region of a paper surface captured

by a confocal microscope, reproduced from [20]. The pseudo-color represents

the elevation of fibers in the z-direction. (b) Microscopic view of a particular

spot on paper surface. Note that ϕ and θ are not co-planar in most cases.

All vectors are unit vectors.

Under the specular reflection model, the perceived intensity is dependent on the

direction of the reflected light and the direction of eye/sensor. Under the diffuse

reflection model, the perceived intensity is dependent on the direction of incident

light and normal direction of the microscopic surface. The appearances of most

surfaces contain both reflection components.

Previous authentication work [13, 14] treating paper as a fully diffuse surface

has led to satisfactory results. We follow fully diffuse modeling assumption, and

provide an experimental justification in the discussion section that the strengths of

diffuse component versus the specular component is about six to one.

Fig. 2.1(b) shows the microscopic surface normal direction, n, of a particular

spot p in a microscopic view (which is often different from the macroscopic surface

12



direction, n0), and an incident light direction, v. The perceived reflected intensity

lr of the fully diffuse reflectance model [14,18] is

lr(p) = λ · l(p) · n(p)Tv(p)︸ ︷︷ ︸
=cosϕ(p)

, (2.1)

which depends on the angle ϕ(p) between normal direction of the surface at the

microscopic level, n = (nx, ny, nz), and the direction where the incident light is

coming from, v = (vx, vy, vz); the strength of the light at the current spot, l(p); and

the albedo, λ, characterizing the physical capability of reflecting the light [6,21]. In

our work, the assumption of λ being constant over the whole paper patch is found

to hold well for the purpose of authentication.

For an ideal point light source, the light strength l(p) over a spatial field

is modeled by considering the effect of energy fall-off due to travel distance of the

light [6]. In practice, a camera flashlight is not a perfect point source but has a finite

dimension, e.g., in a disc-like shape. When the flashlight is not perfectly oriented

towards the paper surface, it can lead to a foreshortening effect reducing the strength

of the light arriving at the projected point of the light on paper. Therefore, it is

practically difficult to model l(p) with a high precision for nonideal point sources.

Instead, we estimate l(p) by exploiting its spatial smoothness property. With the

values of l(p), the microscopic structure can then be determined in terms of normal

vectors, n(p).
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Figure 2.2: (a) Four camera shots are needed for capturing 49 square patches located on

a piece of paper. (b) Image captured at position#1 under ambient (fluores-

cent) light without flash (database 505), and (c) with flash (database 501).

Capturing device: iPhone 6.

2.2.2 Paper Patch Registration

We use a simple square-shaped registration container from our recent work [13] as

shown in Fig. 2.2(b), and a tri-patch extension as shown in Fig. 2.6(b), to facilitate

the precise registration in our experiments. Considering a printing resolution of 600

pixels per inch, each square container of size 2
3
-by-2

3
inch2 (1.69-by-1.69 cm2) corre-

sponds to a box of 400-by-400 in pixel at a line width of 5 pixels, and there are four

circles at corners of each square. A preliminary alignment based on four boundaries

can be achieved using a Hough transform, and subpixel resolution refinement with

perspective transform compensation is then carried out based on the circle markers.

Lens location relative to the surface in the world coordinate system can be readily
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calculated from the estimated perspective transform matrix, and then the direction

of incident light at every pixel location is known. Note that the world coordinate

system is naturally defined to have the xy-plane located at the bottom plane of the

paper surface and the z-axis pointed upwards. All camera captured images were

unwarped to remove the effect of lens distortion before being used if they were cap-

tured by camera. This step improves the matching performance on average by 0.04

in terms of correlation value in our experiments.

2.2.3 Authentication via Hypothesis Testing

We approach the patch verification problem as a binary hypothesis testing prob-

lem [22] using discriminative features derived from images of the paper. The null

hypothesis H0 is that the test/query patch does not match with the patch from

the reference database, whereas the alternative hypothesis H1 is that the test/query

patch matches with the reference patch. To quantify the degree of match, we use

the normalized sample correlation ρ̂ on the pair of extracted features, e.g., pixel

intensity in Chapter 2.4 and surface normal vector in Chapter 2.5. We estimate the

probability density functions (PDFs) fρ̂|H0(ρ̂) and fρ̂|H1(ρ̂) that have very distinct

mean values under unmatched and matched cases, and make a decision using the

simple thresholding rule on an observed value of the random variable ρ̂.

Under the simple thresholding rule with threshold τ , the detection rate is

defined to be PD(τ) =
∫∞
τ
fρ̂|H1(ξ) dξ [or its complement, the miss rate, PM(τ) = 1−

PD(τ)] and the false-alarm rate is defined to be PF (τ) =
∫∞
τ
fρ̂|H0(ξ) dξ. The receiver
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operating characteristic (ROC) curve
(
PF (τ), PD(τ)

)
can be drawn by varying the

value of τ to reveal the discrimination capability of the system. Alternatively, the

equal error rate (EER), {PEE |PEE = PF (τ) = PM(τ), τ ∈ R}, can be used as a

compact, one-score indicator for the discrimination capability. For Gaussian and

Laplacian distributions, it is not difficult to derive the analytical forms of EER

to be Φ
(
µ0−µ1
σ0+σ1

)
and 1

2
exp

[
λ0λ1
λ0+λ1

(µ0 − µ1)
]
, respectively [22, 23], where Φ(·) is the

cumulative density function for the standard Gaussian distribution. The theoretical

quantities, including the mean µi, standard deviation σi, and rate λi, can be replaced

by their estimates from the real data. In this way, EER can be estimated even when

there are a relatively limited number of data points and/or the PDFs are widely

separated in which the true tails of the PDFs may not be adequately revealed by

simulated data. More discussions on using practical data for the theoretical model

described above can be found in Chapter 2.7.5.

2.3 Paper Authentication Using Scanners and Cameras

2.3.1 Norm Maps by Scanners

The norm map as a physical feature of a paper surface has been found to have strong

discrimination power. Clarkson et al. [14] used the fully diffuse reflectance model as

described in Eq. (2.1) to estimate the projected normal directions at all integer-pixel

locations of the surface. We refer to the collection of normal vectors for all pixels

as the normal vector field (containing x-, y-, and z-components), and its projection

onto surface plane as the norm map (containing x- and y-components only). A
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norm map can be estimated using images scanned from four different orientations

of the paper: 0◦, 90◦, 180◦, and 270◦. Without knowing the exact direction of an

incident light, an estimate of one component of the norm map can be obtained as

the difference between two scans in exactly opposite directions, canceling the effect

of the unknown incident direction of the scanner light. The norm map containing

randomly distributed vectors has been used as a feature for the unique identification

of a particular patch of a surface in [13, 14]. In [14], a seeded hash is computed by

random projection, and the Hamming distance of two hashes is used as the decision

statistic. The sample statistics such as mean and variance measured from Fig. 8

of [14] reveal the EER to be between 10−130 and 10−15 (see Table 2.6 for comparison)

per our discussion on estimating the EER in Chapter 2.2.3.

In order to provide more accurate norm map estimates as the reference data

for our proposed method in Chapter 2.5, we improve the norm map estimation

algorithm over those in [13,14] by removing the global bias for x- and y-components

of the estimated norm map. Below we carry out experiments using the improved

norm map estimator to provide a baseline for comparisons in later sections.

We estimated norm maps for 49 distinct square-shaped patches located on a

piece of paper. The acquisition procedure was repeated using two Epson scanners:

Perfection 2450 and GT-2500. Sample patches for scanner 2450 and the resulting

norm map estimate of 1/100 of the patch size are shown in Fig. 2.3. Authenti-

cation using the hypothesis testing described in Chapter 2.2.3 was carried out by

correlating the test feature with the reference feature. Three features, namely, the

normal vector’s length, x- and y-components, were tested and the results are shown
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Figure 2.3: Scanned images from four perpendicular orientations of a piece of 2
3 -by-

2
3 inch2 (1.69-by-1.69 cm2) paper, and the resulting estimated norm map

covering 1/100 area of that paper.

in the three columns of Fig. 2.4, respectively. Each plot contains two estimated

PDFs of sample correlation coefficient ρ̂: one for matched cases (H1), and the other

for unmatched cases (H0). All six plots reveal that the distributions for the two

hypotheses are far apart and have no overlap, thus a threshold can be set to have

no false alarm and no miss detection, suggesting an excellent authentication per-

formance. In addition, the performance for the intra-scanner case (i.e., both test

and reference data were obtained using the same scanner) shown in the first row of

Fig. 2.4 is slightly better than that for the inter-scanner case (i.e., test and reference

data were obtained using different scanners) shown in the second row. They reveal

that different acquisition devices can give slightly inconsistent norm map estimates

but the inconsistency is not strong.
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Figure 2.4: Estimated PDFs of sample correlation coefficient ρ̂ for unmatched (H0) and

matched (H1) cases. First row (intra-scanner): Datasets #2–3 (test) vs. #1

(ref.) of scanner 2450, and second row (inter-scanner): Datasets #1–3 (test)

of scanner GT vs. #1 (ref.) of scanner 2450. Features: length (column

1), x-component of normal vector (column 2), and y-component of normal

vector (column 3).

2.3.2 Appearance Images by Cameras

Instead of using scanners to capture images with directional linear light and closely

placed imaging sensors, Voloshynovskiy et al. [15,16] examined the imaging setup of

using two industrial cameras with a semi-controlled lighting condition—a fixed, ring-

shaped light source. The resulting images have similar appearances during multiple

capturing instances due to the semi-controlled lighting conditions. The ROC curves

from [15] reveal that the EER is around 10−4.

Mobile cameras were used to test the authentication performance under un-

controlled ambient light in [13]. The uncontrolled light can lead to unpredictable
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surface appearances per the light reflection model in Eq. (2.1). Even using newer

mobile cameras such as the iPhone 6 with improved acquisition quality over the

older mobile devices, the authentication performances under uncontrolled ambient

light are still limited, as revealed by Fig. 3 of [13]. One way to improve the authen-

tication performance as shown by Diephuis et al. [17] is to use the intensity gradient

based features, e.g., scale-invariant feature transform (SIFT), of high contrast spots

that are less sensitive to the change of lighting, at the cost of increasing the design

complexity of the authentication system. Extrapolating data points from Table 2

of [17] into the ROC plot of Fig. 8 of [17], we estimate the performance of the pro-

posed SIFT-based method to be around 10−2 in terms of EER (see Table 2.6 for

comparison).

2.4 Proposed Image Appearance Based Authentication with Camera

Flash

Inspired by the success of the approaches discussed in Chapter 2.3 in which lightings

for image acquisition are well controlled, we explore a semi-controlled lighting con-

dition with the help of the built-in flashlight of mobile cameras for authentication.

We achieve the semi-controlled lighting condition by exploiting the fact that relative

positions among the light source, the lens, and the paper patch are known or can

be estimated from a captured image.

The simplest case, presented in Chapter 2.4 (this section), is to use the ap-

pearance of the patches when cameras are positioned at the same location relative to
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Table 2.1: Capturing Conditions for Various Databases

Database ID 502 503 506 508 509 510 501 511 505

Lighting flash only flash + ambient light ambient light only

Device iPhone 6 iPhone 5s iPhone 5 iPhone 6 Canon SX230HS iPhone 6

Room Size small large small large small large

the physical patch so that the effect of lighting is the same for instances of capturing

test and reference images. A more sophisticated case, presented in Chapter 2.5 (the

next section), is to exploit the physics of lighting and to use multiple images for

estimating the normal vector field as the feature for authentication.

2.4.1 Capturing Conditions and Proposed Method

Patches were acquired by the built-in cameras of three mobile devices, iPhone 6,

iPhone 5s, and iPhone 5, with and without a flash. The capturing process was

done in a large room with 12 overhead fluorescent light arrays, and in a small room

with 2 overhead fluorescent light arrays, respectively. The device were held by hand

approximately in parallel with the surface of a piece of paper and at a height about

z = 15.5 cm. Detailed capturing conditions and the corresponding database ID that

will be referred to in the remaining part of this section are shown in Table 2.1.

We use a total of 49 distinct square-shaped paper patches for the experiment.

To acquire a database of a particular capturing condition, we captured three images

for every patch, with slight camera rotation and panning among different capturing

instances. Within each database, we refer to the 49 patches for the ith capturing
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Figure 2.5: First row: authentication performances of 4 test databases vs. reference

database #505 (ambient light only). Second row: performances of 4 test

databases vs. reference database #501 (flash + ambient light, proposed).

Capturing device: iPhone 6.

instance as Dataset #i, for i = 1, 2, 3. To speed up the capturing process, patches

were acquired together with neighboring patches located on the same piece of paper.

A total of four shots were needed to capture the whole region containing the patches,

and the camera positions relative to the paper are shown on Fig. 2.2(a). Boundaries

among different shots are separated by the thick lines. Figs. 2.2(b) and (c) containing

luminance non-uniformity were acquired without and with flashlight for the top-left

20 patches on the layout of the paper.

The way of capturing the whole database of patches as laid out above ensures

that any pair of matched test and reference images are captured at the same lo-

cation relative to the physical patch. That is, the incident light for the test and

reference images are the same, effectively controlling the acquisition conditions. In

this way, the perceived intensities of patches are similar across different capturing

instances per the fully diffuse light reflection model in Eq. (2.1). We shall examine
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in Chapter 2.5 how an authentication scheme should be designed when we do not

constrain the relative locations of the cameras to the physical patches.

Each patch in the captured image was extracted, warped, and registered to a

grid of 200-by-200 pixels using the registration procedure outlined in Chapter 2.2.2.

In this experiment, images captured at the height of about z = 15.5 cm contain

around 300 pixels along the edge/side for each patch in raw images, which are of

enough resolution (1.25× more pixels than necessary) to generate the registered

images. The collection of the 200× 200 pixel values of the registered image is then

considered as a feature for the paper patch, and normalized sample correlation ρ̂

between features from test and reference patches can be calculated for authentication

using the hypothesis testing described in Chapter 2.2.3. In this experiment, Datasets

#2 and #3 of a database is considered as the test data, and Dataset #1 of the same

or a different database is considered as the reference data.

2.4.2 Experimental Results

The contrast of the PDF plots between the first row and second row in Fig. 2.5 shows

a significant improvement due to the use of the camera flash. The plots in the first

row of Fig. 2.5 reveal that when the test patches with a flash are matched against

reference patches without a flash, the authentication performances are limited. A

representative plot such as Fig. 2.5(b) has an EER of around 10−1. The plots in

the second row of Fig. 2.5 reveal that when both test and reference patches are

captured under camera flash as we proposed, the authentication performances are
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Table 2.2: Modes of estimated PDFs of correlation1 for matched cases (H1). Contrasting

conditions: using flash or not, and small vs. large room size.

Ref 

Test 

With Camera's Built-in Flash No flash 

Small Room Large Room 

501 502 503 506 505 

501 0.48 0.44 0.43 0.40 0.21 

502 0.45 0.45 0.47 0.40 0.22 

503 0.43 0.47 0.48 0.41 0.19 

506 0.42 0.45 0.42 0.43 0.21 

507 0.40 0.41 0.40 0.40 0.23 

505 0.21 0.24 0.24 0.24 0.32 

1 The italic numbers in this table and Table 2.3 correspond to the scenarios that estimated PDFs

for matched (H1) and unmatched (H0) cases can be perfectly separated.

good and the ambient lighting conditions do not have a major negative effect on the

performances. A representative plot such as Fig. 2.5(f) has an EER of around 10−5

to 10−3 (see Table 2.6 for comparison) per our discussion on estimating the EER

with different probabilistic models in Chapter 2.2.3.

Tables 2.2–2.3 present the comprehensive results of various combinations of

test and reference databases. Table 2.2 reveals that the flash is the dominating

factor to the authentication performance whereas the condition of the ambient light

is not an important factor. Table 2.3 reveals that good authentication performance

can be achieved across devices of similar imaging modules. The slightly lowered

performances for the combinations of iPhone and Canon cameras can be attributed

to the different imaging configurations for the two brands of cameras, such as the

pattern of the flashlight, and the relative position of the flash module to the lens.
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Table 2.3: Modes of estimated PDFs of correlation under for matched cases (H1). Con-

trasting condition: camera model.

 

Ref 

Test  

iPhone 6 iPhone 5s iPhone 5 
Canon 

SX230 

503 506 508 509 510 511 

503 0.48 0.41 0.47 0.44 0.36 0.31 

506 0.42 0.43 0.44 0.42 0.36 0.29 

508 0.46 0.42 0.52 0.47 0.38 0.33 

509 0.44 0.41 0.47 0.50 0.37 0.32 

510 0.37 0.35 0.38 0.37 0.35 0.24 

511 0.28 0.26 0.32 0.30 0.23 0.26 

 

 2.5 Proposed Surface Norm Based Authentication Using Mobile Cam-

eras

Although the authentication scheme using flashlight proposed in Chapter 2.4 out-

performs schemes that flashlight are not used, the requirement that the test and

reference images must be captured at the same position relative to the physical

patch is not practical. As mobile cameras have ever increasing acquisition quality,

we ask a research question: Is it possible to use mobile cameras to estimate the phys-

ical feature of the paper—the normal vector field—by using multiple images, while

solving the issues of camera geometry and lighting? Photometric stereo approaches

have long been used to reconstruct 3-D surfaces using photos of surfaces [6]. How-

ever, the challenge here is that the scale of interested surface in our problem here is

much smaller. We therefore need to carefully examine the physics of light reflection

and arrive at a light reflection model with a proper level of sophistication, in order

to obtain meaningful estimates of the normal vector field.
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2.5.1 Macroscopic Intensity Due to Flashlight

Examining the images captured under the flash in Fig. 2.2 (c), one can observe

that there exists a mild spatial intensity change across the image. Examining the

reflective intensity of a small region under a strong light both by human eyes and

from the digital image, one can observe a high spatial frequency fluctuation in ad-

dition to the mild intensity change. Given that the light intensity arriving at the

paper slowly varies spatially, this fluctuation of the reflective intensity is therefore

attributed mainly to the inconsistent orientations of the paper surface at the mi-

croscopic level. To reveal the intensity change in fine details, the mild change at

the macroscopic level should be first removed. We define the image intensity at the

macroscopic level as the macroscopic intensity, lmacro.

It can be shown as follows that the macroscopic intensity lmacro is proportional

to the light strength arriving at the surface, l, and cosine of the incident angle, θ.

We approximate the macroscopic intensity by the averaged perceived intensity lr of
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background pixels over a small neighborhood N around a pixel location p:

lmacro(p) ≈ lr(p) (2.2a)

=
1

|N (p)|
∑

k∈N (p)

λ · l(k) · n(k)Tv(k) (2.2b)

(a)
≈ λ · l(p) ·

[
1

|N (p)|

∑
n(k)

]T
v(p) (2.2c)

(b)
≈ λ · l(p) · E [n(p)]T v(p) (2.2d)

(c)
= λ · l(p) · [0, 0, µnz ] v(p) (2.2e)

= λ · l(p) · µnz · vz(p)︸ ︷︷ ︸
cos θ at p

(2.2f)

where |N (p)| is the number of pixels in the small neighborhood of p; step-a follows

from the fact that l(k) and v(k) are approximately constant over the small neigh-

borhood; step-b follows from ergodicity; and step-c follows from the assumption

that the normal vectors in the world coordinate system defined in Chapter 2.2.2 are

on average pointing straight up, i.e., E[nx] = E[ny] = 0 and E[nz] = µnz , where µnz

is a modeling constant between 0 and 1.

The smooth nature of the macroscopic intensity lmacro over the spatial coordi-

nates makes parametric surfaces promising candidate estimators. In this work, we

fit a high-order polynomial surface directly to an image captured under flashlight us-

ing an iteratively reweighted least-squares method. The bisquare weights [24] were

used to gradually lower the impact of outliers as iteration goes on. The original

image and its parametrically fitted version are shown in Figs. 2.6 (b) and (c). As

our objective is to obtain the macroscopic intensity due to the flashlight, the image

pixels belonging to the registration container and the QR code are considered to
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be outliers for the surface fitting purpose. The fitting was excellent with almost no

bias. The sample standard deviation, about 2 out of 256 shades of gray, quantifies

the magnitude of the fine details of the image appearance of the paper. Fig. 2.6 (d)

shows a representative row of pixels (with outliers) and its fitted curve.

One should note that even though a detrended patch image can be obtained by

pixel-wise division of macroscopic intensity lmacro, the detrended patch image is not

suitable directly for authentication via correlating with some reference image. After

detrending, images for the same patch captured with flashlight/camera located at

different relative locations to the physical patch can have different visual appearances

at a small scale. This is caused by the different incident light directions with respect

to the microscopic surfaces. Fig. 2.6(e) shows four such detrended patch images

when camera locations were at the four corners to the patch. They appear similar

at a large scale after detrending, but are very different at a small scale due to

different incident light directions.

Fig. 2.7 shows the averaged correlations among the detrended patches as a

function of the horizontal and vertical differences in patch locations (∆Np
x ,∆N

p
y ),

or equivalent in camera capturing locations (∆Nx,∆Ny). The figure reveals that

the farther the capturing distances of cameras for two patches is, the lower the

correlation can be for the detrended patch images. This is reasonable as more change

in the direction of the incident light leads to more change in microscopic appearance

of the paper surface. This implies that without the proper constraints of the relative

position between the camera and the patch, it may not be sensible to verify a paper

surface using its detrended image, as the correlation value can be unpredictable and
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Figure 2.6: (a) A total of M = 20 indexed locations for captured patches in images, (b)

a paper patch at location #6 of Session 6, paper #920, (c) its estimated

macroscopic intensity image lmacro obtained by fitting an order-(5, 5) poly-

nomial surface, (d) a row of intensity values from the middle of the image in

(b) and the fitted curve, and (e) detrended images (with contrast enhance-

ment) of Session 6 for the paper patch #920 at locations #1, #17, #20, and

#4, respectively, shown clockwise.
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Figure 2.7: Averaged correlation values of detrended images as a function of the distance

between camera capturing locations, namely, (∆Nx,∆Ny).

not a single threshold can be selected to determine the authenticity. This observation

further justifies the need of using normal vectors for authentication instead of using

images directly.

2.5.2 Estimating the Normal Vector Field

In order to solve for the normal vectors n(p), we combine Eq. (2.1) characterizing

the pixel-wise intensity and Eq. (4.1) characterizing the macroscopic intensity via

canceling their common term λ · l(p). One can arrive at the following equality by

grouping constants and known terms to the left-hand side:

ζ(p) ≈ n(p)Tv(p) (2.3)

where ζ(p) = µnzvz(p) · lr(p) / lmacro(p) is defined as the normalized intensity and

contains the unknown modeling constant µnz , the image acquired under flashlight

lr, and the already estimated terms lmacro and vz. On the right-hand side, normal

30



vectors n(p) is yet to be solved, and incident light direction v(p) is known from

previous estimation. The inference problem of normal vector field can therefore be

restructured into a linear regression problem when Eq. (2.3) is overdetermined.

More specifically, we estimate the normal vectors independently at every pixel

location for a total of 200× 200 pixels. For each pixel location p, we setup a system

of linear equations using M = 20 acquired images, where M is far greater than 4,

the number of unknowns:

ζ1

ζ2

...

ζM


︸ ︷︷ ︸

ζ

=



vT1 1

vT2 1

...
...

vTM 1


︸ ︷︷ ︸

X



nx

ny

nz

b


︸ ︷︷ ︸

β

+



e1

e2

...

eM


︸ ︷︷ ︸

e

. (2.4)

The unknown parameter β contains the normal vector and an intercept b capturing

any offset at location p such as the one indirectly due to ambient light. The observa-

tion vector ζ consists of normalized intensity values at the collocated position p from

images #1 to #M . The data matrix X is composed of vectors of incident directions,

and the noise from measurement and/or modeling is modeled by a zero-mean error

vector e.

2.5.3 Proposed Method

Fig. 2.8 is a block diagram for the proposed authentication system. To authenticate

a given test surface patch, M > 4 photos should be taken under flashlight. Each

photo is processed to extract, warp, and register the captured patch to a grid of
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Figure 2.8: (a) Block diagram for the proposed authentication system using mobile cam-

era “captured” surface normal vectors. (b) Sub-diagram for the normal vec-

tors estimator in (a).

200-by-200 pixels using the registration procedure outlined in Chapter 2.2.2. The

resulting M registered patches with luminance nonuniformity are then processed

by the diffuse reflection-based estimator proposed in Chapter 2.5.2. An estimated

normal vector field is therefore obtained, and is used as an authentication feature

for the surface patch. Its x- or y-component can be correlated with a reference to

determine the authenticity using the hypothesis testing described in Chapter 2.2.3.

We treat the estimated norm maps from scanners as the reference, since they

are reliable as discussed in Chapter 2.3.1 and relatively easy to obtain. More precise

estimates of the norm maps can be obtained using microscopes. However, the benefit

brought by the microscope with a much more controlled acquisition condition is

marginal, and we will keep using norm maps from scanners as a reference.
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Figure 2.9: Setup for experiments conducted in Chapter 2.5.

2.5.4 Experimental Conditions and Results

Fig. 2.9 illustrates the experimental setup for capturing paper patches for estimating

normal vector field using a mobile device. The mobile device was placed on a tripod

and adjusted to be in parallel with the surface. The photos captured at the height

of about z = 11.4 cm contain around 500 pixels along the edge/side for each patch

in raw images, which are of enough resolution (5.25× more pixels than necessary)

to generate the registered images of size 200-by-200. Detailed lighting conditions

and models of mobile cameras are described individually for each capturing session.

One should note that the exact parallel configuration is not a required con-

dition for our proposed method, and in this exploratory work, the parallel config-

uration was designed to avoid complications due to camera perspective. We later

conducted additional experiments in which mobile cameras were held by hand and

not exactly in parallel with the surface, and the results showed no degradation in

authentication performance.
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Table 2.4: Statistics for correlation values of matched cases (H1) for images captured in

a totally dark environment (Exp. 1).

Norm Vector 
session 4 session 5 

𝝁̂ 𝝈̂ 𝝁̂ 𝝈̂ 
x-component 0.534 0.011 0.554 0.013 

y-component 0.523 0.012 0.493 0.015 

2.5.4.1 Totally Dark Environment

Two sessions, namely, Session 4 and Session 5 (aka Exp. 1), were independently

captured using iPhone 6 at the same paper patch in a totally dark environment.

Each session contains 20 camera captured images for the paper patch at 20 different

locations indexed in Fig. 2.6(a).

For each norm map component and each session, we correlate the estimate

from the mobile camera with the six estimates from two scanners (three slightly

different norm maps for each scanner), and a set of six scores are obtained. A t-test

is carried out over the group of scores to check if the correlation is significantly

greater than 0.

The results in terms of the sample mean and sample standard deviation are

shown in Table 2.4. It is revealed that either x- or y-component of Sessions 4 and 5

has a correlation around 0.5, and the t-tests show that all correlation values obtained

are statistically significantly (p-value < 10−9).

34



2.5.4.2 Environment with Ambient Light

We relax the totally dark assumption by investigating more realistic scenarios with

the addition of the ambient light. Sessions 6–10 (aka Exp. 2) and Sessions 11–15

(aka Exp. 3) and were captured in a low-strength diffuse ambient light environment

using iPhone 6 and iPhone 6s, respectively. Further, Sessions 21–25 (aka Exp. 4)

were captured in an environment with ambient light at the strength of indoor offices

using iPhone 6s.

In addition to the result obtained in Exp. 1 that the correlation achieved

using norm maps from mobile camera is significantly greater than 0, we would like

to further measure quantitatively the discrimination capability that can be achieved

in terms of the ROC curve
(
PF (τ), PM(τ)

)
and/or more compactly, the equal error

rate (EER), as outlined in Chapter 2.2.3.

For the rest of this chapter, each session will generate only one correlation

value in each normal vector component, and the value is calculated by averaging

over the six scores that can be computed from correlating with the slightly different

versions of the reference norm maps. This approach is an effort towards reducing

the effect of the inaccurate norm map estimates used as references at the service

provider side, without adding burden to users during the verification process.

Fig. 2.10(a) shows the estimated PDFs for the matched (H1) and unmatched

(H0) cases for Exp. 2. Under the acquisition condition for Exp. 2, the correlation

values do not contain outliers and are distributed around a certain value. We there-

fore can consider they are sample points drawn from some probability distribution,
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Table 2.5: Discrimination capability in EERs and corresponding statistics for images

captured in environments with ambient light.

Match (H1) No match (H0) EER 

𝝁̂𝟏 𝝈̂𝟏 𝝀̂𝟏 𝝁̂𝟎 𝝈̂𝟎 𝝀̂𝟎 Gau. Lap. 

EXP. 2 0.557 0.011 122.8 −0.002 0.010 129.5 10−156 10−16

EXP. 3 0.532 0.015 97.4 −0.004 0.011 113.4 10−94 10−13

EXP. 4 0.528 0.012 106.4 −0.004 0.012 103.9 10−109 10−13

and we use this modeling assumption to help extrapolate the tails of PDFs and ROC

curve. We select Gaussian and Laplace distributions to model the cases that the

true distribution has light versus heavy tails, respectively. Detailed discussion on

this modeling can be found in Chapter 2.7.5. Using the simple thresholding rule, we

draw the ROC curves in Figs. 2.10(b) and (c). The discrimination capability mea-

sured in EER is 10−156 by assuming correlation is Gaussian distributed and 10−16

by assuming correlation is Laplacian distributed.

We list in Table 2.5 the discrimination capability for Exp. 2–Exp. 4 measured

in EERs, and the detailed statistics that the EERs are calculated from, namely,

the sample mean, µ̂i, the sample standard deviation, σ̂i, the maximum-likelihood

estimates for the rate parameter of the Laplacian distribution, λ̂i. As revealed by

Table 2.5, the authentication performances are similar with different strength levels

in ambient lighting and with different capturing devices (iPhones 6 and 6s). The

high authentication accuracy and the flexible image acquisition procedure make the

proposed method a promising technology to be deployed in a practical working en-

vironment. In addition to the above authentication performances that are measured
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Figure 2.10: (a) Estimated PDFs of correlation for Exp. 2 (Sessions 6–10 & iPhone 6),

(b) ROC curve by assuming correlation is Gaussian distributed, (c) ROC

curve by assuming correlation is Laplace distributed.

for one acquisition condition per experiment, it is also beneficial in future work to

measure the performance in a single experiment containing a variety of practical

acquisition conditions.
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2.5.4.3 Mobile Cameras of Other Brands

The investigation in this section has mainly used the cameras of the iPhone series for

exploring the possibility of estimating the normal vector field of paper surface. We

also carried out experiments using mobile cameras of other brands such as Samsung

Galaxy Alpha. After obtaining the estimated normal vector field, we correlated

the x- or y-component with the reference norm maps provided by scanners. The

sample mean of correlation for matched cases (H1) is around 0.23 with similar sample

variance as in the experiments for iPhones. The smaller mean value compared to that

of the iPhone cameras, 0.53, may be due to the fact that the flashlight of Samsung

Galaxy Alpha is not so bright as those of iPhone cameras. The authentication

performance measured in EER ranges from 10−22 to 10−6. The EER results suggest

satisfactory performances by the proposed method, and an effective decision strategy

is to adjust the decision thresholds differently for Samsung Galaxy Alpha and for

iPhone cameras considering their different PDFs of correlation under H1.

2.5.5 Comparison with Prior Work

In Table 2.6, we summarize the performances of the proposed methods and prior

art as discussed in the previous sections of the chapter. Our proposed image based

method using mobile camera with flash has similar performance as the work in [15]

that uses industrial camera and a semi-controlled light, as we created a semi-

controlled light using flashlight and captured the test and reference images at the

same position relative to the physical patch. The proposed image based method
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Table 2.6: Authentication Performances of the Proposed Methods and Prior Art

Feature

Modality Lighting Flexibility

Performance

Type Detail EER

Image

pixel value Industrial camera, Voloshynovskiy et al. [15] semi-controlled no 10−4

SIFT descriptor Mobile camera, Diephuis et al. [17] uncontrolled yes 10−2

pixel value Mobile camera (proposed in Chapter 2.4) semi-controlled no 10−5 to 10−3

Norm

map

seeded hash Scanner, Clarkson et al. [14] fully controlled no 10−130 to 10−15

surface normal direction Mobile camera (proposed Chapter 2.5) semi-controlled yes 10−109 to 10−13

outperforms the method in [17] that uses robust point features, suggesting that a

favorable lighting condition is a more important factor than a robust image process-

ing technique.

Inspired by the success of various methods designed to use controlled lighting

(such as the method proposed in Chapter 2.4 and the work in [15]) or inherently

used controlled lighting [14], we have explored a semi-controlled lighting condition

with the help of the flashlight of mobile cameras. The proposed norm map based

method significantly outperforms all image appearance based methods. Although it

performs slightly worse than the case using scanner as the acquisition device [14], the

flexibility of the mobile device modality makes the proposed method more practical

for ubiquitous deployment such as counterfeiting detection by end consumers.

2.6 Perturbation Analysis on Discriminability

This section analyzes the performance of the method proposed in the previous sec-

tion under perturbations. We do not consider controllable factors that can poten-

39



tially be taken care of at the service provider side, such as the number of norm maps

used as references, and whether or not lens distortion should be compensated on the

query images. Instead, we focus on the factors that are uncontrollable, such as the

inaccuracy of the estimated camera locations, and the factors that may increase the

burden to the users in the verification process, such as the number of flash images

that users need to shoot in each session of verification.

2.6.1 Precision of Estimated Lens Location

The incident light direction vi in Eq. (2.4) is an essential quantity for estimating

the normal vector field. Its value is directly related to the camera location that

may be imprecisely estimated. In this part, we first quantify the inaccuracy of the

camera location estimate, and then perturb the camera location when calculating

vi to examine how the authentication performance will be affected.

Inaccurate Camera Location The standard deviation of location offset indi-

cates how far away the estimated camera locations are from the true locations in

a statistical sense. The true locations of the camera/lens were manually recorded

while Sessions 4–10 were captured, each containing 20 images. Together with esti-

mated locations calculated from the projection matrix (connecting the world and

image coordinate systems), the 3-D location offset was obtained. For each image,

the location offset is a vector containing quantities in x-, y-, and z-directions. The

standard deviation for x-, y-, and z-directions were 1.86 mm, 2.16 mm, and 0.84 mm,

respectively, when the camera was placed at the height of about z = 11.4 cm.
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Performance Drop Under Perturbation With the knowledge of the amount

of inaccuracy of camera location estimates, we can examine how authentication

performance will be affected by adding a reasonable amount of perturbation. We

chose σx = 2 mm, σy = 2 mm, and σz = 0.9 mm as the unit standard deviation in

each direction, and scaled them by a list of scalars [0, 0.5, 1, 1.5, 2, 2.5, 3], in which

“1” corresponds to the nominal strength we obtained above. The larger the scalar

is, the stronger the perturbation will be added.

For each perturbation level, a self-contained sub-experiment was carried out.

The sub-experiment was carried out using the images from Sessions 6–10. For each

session, the estimated camera location would be biased for 20 times by different

location offset vectors that were independently drawn from the distribution of the

current perturbation level. The resulting 5 × 20 correlation values are expected to

have an increased variance due to the additional perturbation.

We analyzed the results of the sub-experiments using a random effect model

[25] in order to reveal quantitatively the effect on the correlation value due to the

additional perturbation and different sessions. The correlation rij obtained in the jth

random trial of the ith session of the sub-experiment is assumed to be a summation

of the mean correlation value µ (an unknown but fixed parameter), the zero-mean

random effect ai of the ith session, and the remaining error eij at the perturbation

strength level of the current sub-experiment:

rij = µ+ ai + eij, i = 6, · · · , 10,

j = 1, · · · , 20,

(2.5)

where ai ∼ N(0, σ2
a) and eij ∼ N(0, σ2

e), and they are assumed to be jointly inde-
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Figure 2.11: (a) Estimated standard deviation of the correlation σ̂r and its decompo-

sition σ̂a and σ̂e for correct matches as a function of inaccuracy of lens

location estimate, and (b) estimated mean correlation with two-sigma wide

performance region, (µ̂− σ̂r, µ̂+ σ̂r).

pendent. Note that the variance of rij is composed of those of ai and eij, namely,

σ2
r = σ2

a + σ2
e . We are interested in the values of the modeling parameters µ, σa,

and σe, and the analytical expressions of the maximum-likelihood estimators are

discussed in textbooks on the random effect model [25].

We obtained a distinct set of parameter estimates for each sub-experiment

corresponding to a certain perturbation level, and plotted them with respect to the

perturbation level accordingly. Fig. 2.11(a) shows a near-constant effect (quantified

by σ̂a) for session, and an increased effect of perturbation (quantified by σ̂e) as

the perturbation level increases. Fig. 2.11(b) shows the mean correlation against

the perturbation level with two-sigma wide performance region. Both figures reveal

that the resulting increase of perturbation is small compared to the mean correlation
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value, with σ̂r < 0.014 when the perturbation strength is at the nominal level, and

σ̂r < 0.024 even when the perturbation strength is 3 times of the nominal level.

2.6.2 Number of Images for Normal Vector Field Estimation

We now consider the effect of the number of available images on the estimation

of the normal vector. Recall in the main experiment, we used M = 20 images to

estimate the normal vector field, which may not be very user friendly with a large

number of light flashes in a short period of time. We varied the number of images

from M = 20 down to M = 4, and carried out a self-contained sub-experiment

similar to those in the last subsection using the images from Sessions 6–10. For each

session, 20 subsets of the available images were selected and their correlation values

are examined at the current perturbation level. The resulting 5 × 20 correlation

values are expected to have an increased variance due to fewer images used.

Regarding the selection of the subsets of images, one should identify whether

the available image set contains extremely “bad” ones towards the estimation of the

normal vector and correlation, which should be carefully handled in the selection

process. We tried to identify “bad” images using the following two criteria: i) the

fitting error in the model of Eq. (2.4), and ii) the correlation improvement of when

excluding an image. No “bad” image was identified out of the 20 available images,

and we therefore constructed subsets of images by uniformly random selections from

the indices 1, · · · , 20.

We analyzed the results of the sub-experiments using the same random effect
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Figure 2.12: (a) Estimated standard deviation of the correlation σ̂r and its decomposi-

tion σ̂a and σ̂e for correct matches as a function of number of images for

norm map estimation, and (b) estimated mean correlation with two-sigma

wide performance region, (µ̂− σ̂r, µ̂+ σ̂r).

model as in the last subsection to reveal quantitatively the effect of having fewer

images for the normal field estimation. We obtained a distinct set of parameter

estimates for each sub-experiment corresponding to a certain number of images,

and plotted them accordingly. Fig. 2.12 (a) shows, as expected, a constant effect

for session, and an increased effect of perturbation as fewer images were used. The

value of σ̂r reaches almost 0.1 when the number of images used is reduced to 4.

Fig. 2.12(b) shows that the mean correlation can drop to below 0.2 and the rate

of the drop accelerates as the number of images reduces. Both figures reveal that

the number of images used for norm map estimation can significantly affects the

correlation.
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2.6.3 Perturbation Factors Combined

The perturbation analyses in the above two subsections reveal that the number of

images used for norm map estimation dominates the correlation value, compared to

other factors such as the capturing session setup and the accuracy of the estimated

camera location.

We now evaluate the discrimination capability in terms of EER by considering

all possible factors investigated above. The EER will be plotted against the dom-

inant factor, namely, the number of images. Such other remaining factors as the

session setup, and the inaccuracy of the estimated camera location will be taken into

consideration by boosting the overall variance in their respective amount estimated

earlier in this chapter.

The two plots in Fig. 2.13 show the EER as decreasing functions of the number

of images under Gaussian and Laplacian models, respectively. The results show that

in order to obtain an EER of 10−4, one should on average acquire at least 6 flash

images if the correlation follows a light-tailed Gaussian distribution. In contrast, if

the correlation follows a heavy-tailed Laplacian distribution, one should on average

acquire at least 8 flash images. More discussions on modeling the PDFs of correlation

using the Gaussian versus the Laplacian can be found in Chapter 2.7.5.
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Figure 2.13: Discrimination capability in terms of EER taken into consideration of all

factors as a function of number of images for (a) Gaussian, and (b) Lapla-

cian distributed correlation values.

2.7 Discussions

2.7.1 Interpretation of Norm Map From Low Resolution Images

When camera’s capturing resolution is high enough, the area covered by each pixel

is relatively flat, and the normal vector assigned to the pixel represents the physical

surface direction of the area. The collection of the normal vectors therefore serves

as a fingerprint for the paper surface.

When the resolution is lower than the aforementioned scenario, however, is

the normal vector still a meaningful quantity? Let us relate a high resolution image

and its low resolution version by a virtual 2-D low-pass filter with coefficients {wi >

0 |
∑N

i=1wi = 1}, where i is a location index linearized from a 2-D index pair and N

is the number of pixels covered by the filter. A pixel value u in the low resolution
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image is therefore the weighted sum of N pixels each with intensity nTi vi of the

high-resolution image, where vi and ni are the directions of the incident light and

normal vector at location with index i, respectively. Hence,

u =
N∑
i=1

wi · nTi vi ≈

(
N∑
i=1

wini

)T

v = n̄Tv (2.6)

where v is the direction of the incident light for the pixel in the low resolution

image. The approximation can be justified because in a small neighborhood, the

direction of incident light is almost constant, i.e., v ≈ vi. The term enclosed in the

parentheses immediately on the RHS of the approximation sign can be regarded as

the reflected intensity in a larger area with an averaged direction n̄ =
∑N

i=1 wini.

That is, the norm maps estimated from low resolution images can be considered as

a downsampled norm map using the virtual filter {wi} that relates the high and low

resolution images.

2.7.2 Effect of Motion Blur

Slight panning motion during the capturing process often results in blurred images.

The effect of the panning motion can be modeled by a linear-spatial invariant filter.

In a special case that the motion blur is the same for all images captured, the normal

vector field will be blurred by the same filter of the motion blur per the propagation

property discussed above in Chapter 2.7.1. A blurred normal vector field may lead to

a lower verification rate. It would be interesting to study how fast the authentication

performance will drop as the strength of the motion blur increases. In a general case

that the motion blur is not consistent for all images captured, the lowpass filtering
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effect does not directly propagate to the normal vector field. In this case, a study

on how the motion blur will change the normal vector field and its ultimate impact

can be carried out. If motion blur turns out to be a major factor for lowering the

authentication performance, one can consider applying blind deconvolution in the

first place for deblurring the image before using them for authentication purpose.

2.7.3 Understanding the Physics of Paper Surface Reflection

In this subsection, we use a confocal microscope to obtain the 3-D structure of a

paper surface as a topographic map. This “ground-truth” map helps us examine

the linkage between the reflected image appearance and the physical structure of

the paper surface.

Normal Vectors From Confocal Microscope We use a Leica confocal mi-

croscope (under the reflection imaging mode using 488 nm laser light) to obtain a

topographic map with a per-sample resolution of 3µm, 3µm, and 5.7µm in x-, y-

and z-directions, respectively. For the square surface patches of edge length 2/3 inch

digitized to 200 pixels (aka working pixels), the area covered by each pixel contains

about 796 pixels in the topographic map (aka confocal pixels).

We estimate the normal direction for each working pixel described as follows.

Fig. 2.14 is a sample collection of topographic blocks with each showing the area

covered by one working pixel. Our examination over the whole set reveals that

most blocks were not flat because the scale of fibers is smaller than the area of a

working pixel. Using the result from Chapter 2.7.1, we calculate a surface direction
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Figure 2.14: Sample collection of topographic blocks from copy paper of size 85µm-by-

85µm by confocal microscope. The depth unit on color bar is also µm.

for each working pixel area by weighted averaging over the directions of all confocal

pixels. Alternatively, we fit a plane to all confocal pixel locations and use the

direction of the plane as an alternative estimate. These two estimates for the surface

direction agree with each other with a correlation of 0.98, implying that the physical

normal vectors are not sensitive to different definitions of direction and estimation

algorithms, and are therefore reliable. Hence, the plane estimates are sufficiently

good estimates for normal directions, and are considered as the physical ground

truth in the experiments followed.

We examine the correlation of norm maps obtained from mobile camera and
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Table 2.7: Correlation of Norm Maps with Ground Truth

Pair of Quantities Correlation

Mobile camera vs. confocal (ground truth) 0.19

Scanner vs. confocal (ground truth) 0.28

[Reference]: Mobile camera vs. scanner 0.59

scanner with respect to the ground truth. The results are shown in Table 2.7.

The non-zero correlation values imply that norm maps estimated by the scanner

and mobile camera are indeed related to the ground truth, i.e., the physical norm

map obtained by the confocal microscope. However, the correlation values with the

ground truth are low, around 0.2–0.3. This suggests that although the fully diffuse

reflection model provides a surface norm estimation that is sufficiently discriminative

for authentication purposes, the estimation may not be highly precise at the accuracy

level of confocal microscopes.

Dominant Reflection Type In this part, we study the relative contributions

of diffuse and specular components, with the help of the physical normal vec-

tors from a confocal microscope. We first calculate a synthesized diffuse image

Imd(p) = max{0,n(p)Tvi(p)} and specular image Ims(p) = max{0,vTc vr} us-

ing known quantities, without including the common effect of the light strength

at location p. Here, n is the surface normal vector, vi is the incident light vec-

tor, vc is the camera direction vector, and vr is the specular reflection vector

that can be represented as vr = (2nnT − I)vi. We then regress 20 camera cap-
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tured images lr(p) against the diffuse image and specular image, in order to obtain

non-negative weights for diffuse and specular images scaled by the light strength,

{wd · l(k)(p), k = 1, · · · , 20, ∀p} and {ws · l(k)(p), k = 1, · · · , 20, ∀p}, respectively.

Using non-negative matrix factorization with rank 1, we obtain estimates for wd and

ws up to a multiplicative scalar. The ratio between the contributions of diffuse and

specular components, wd/ws, is 5.82. This high ratio of nearly six-to-one reaffirms

the diffuse reflection model in this chapter, and explains the excellent authentication

performance in prior work [13,14].

Generative Modeling Using the relative weights of diffuse and specular compo-

nents in the reflection model of paper, we synthesize reflection images and examine

their relationship with the camera captured images. We again use correlation as the

similarity measure, and carefully remove the macroscopic trend of spatial intensity

in order to avoid correlation inflation.

For 20 pairs of synthetic and camera captured images, we observe a statistically

significant correlation of 0.13. This result from a generative modeling and the result

of Table 2.7 from a discriminative modeling show that it is possible to connect the

physical normal vectors to the surface appearance. Possible future directions to

improve such connection include examining the role of diffraction, as well as the

roles of transmitted and re-emitted light, as paper is not always fully opaque.
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2.7.4 Robustness of the Norm Map

Practical deployment of the proposed scheme requires understanding on the robust-

ness of the norm map under various conditions, and designing adaptive authentica-

tion algorithms when necessary. Clarkson et al. [14] conducted tests on scribbling

with a pen and printing single-spaced text on around 10% of the test regions. They

also tested the water treatment by using paper dried and ironed after being sub-

merged. Their experiments demonstrated that the norm map is a robust feature

under these conditions.

More investigations should be carried out on the resilience against tampering

of the paper surface, such as scratching, folding, crumpling, and on the reliability

of the physical structure over the time. Large scale tests for papers from different

manufactures are beneficial to understand issues may arise in the deployment of the

proposed technology. Below we discuss how to achieve resilience against the folding

operation.

Resilience Against Folding Paper can be easily folded, resulting in a change

of directions of those surfaces around the fold lines. In order to maintain a high cor-

relation for true matches, the following strategies can be applied. The first strategy

masks in correlation calculation those pixels whose surface directions are affected

by folding. This method is intuitive but relies on the detection and segmentation of

folded regions. As the distortion to the norm map field due to folding can be viewed

as the addition of a slowly spatially varying trending surface, the second strategy
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is to apply detrending methods before calculating the correlation. For example,

highpass filtering can be applied to remove the global trend. Such a highpass fil-

ter should be designed to properly reject the frequency components of the trending

surface. Alternatively, parametric surfaces can be fitted to estimate the trending

surface, and the resulting residue can be used to perform correlation. A practi-

cal challenge lies in the selection of a parametric surface that neither overfits nor

underfits.

2.7.5 Considerations for Using Statistical Methods for Inference

In practice, the theoretical PDFs, fρ̂|H0(ρ̂) and fρ̂|H1(ρ̂), as well as the performance

metrics, PD(τ), PF (τ), ROC, and EER derived from them, are not known a priori,

and need to be estimated from the practical data obtained from experiments. One

can construct normalized histograms or empirical probability mass functions (PMFs)

for H0 and H1 as estimates for the true PDFs, and use the resulting PMFs to

calculate the performance metrics. This approach using the real data can give

estimates that are close to the true PDFs especially when the sample size is large.

However, using PMFs as the estimates for PDFs leads to piecewise ROC curves and

imprecise EER estimates, and the lack of distribution data in tails requires extremely

large sample size to reveal the true performances around the two tail regions of the

ROC curve. For example, for a 50-image dataset containing
(

50
2

)
= 1, 225 possible

pairs of images for verification, the smallest possible estimates for PM and PF are

1/50 and 1/1225, respectively, which may not precisely reflect the performance of
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system if the achievable rates are much smaller than 1/1225.

To alleviate the limitations of using the empirical PMFs for inferences, we can

incorporate more modeling flavors by assuming the theoretical PDFs fρ̂|H0(ρ̂) and

fρ̂|H1(ρ̂) follow some commonly seen distributions such as Gaussian and Laplacian.

Adding this additional assumption has the advantage that the tails of PDFs and

ROC can be better extrapolated, and EER can be calculated as a deterministic

function of moments such as the mean and the variance. One should note that the

accuracy of the extrapolated tails depends heavily on the assumption that the data

would match with the assumed distribution. As sample points for tails are usually

lacking for samples of a small size, it is reasonable to try a heavy-tailed distribution

(such as Laplacian) to infer the lower performance bound, and to try a light-tailed

distribution (such as Gaussian) to infer the upper performance bound. As can be

recalled, we have calculated in Chapter 2.5.4 such performance bounds for both

ROC curves and EERs.

2.8 Chapter Summary

In this chapter, we have investigated intrinsic microscopic features of the paper

surface for authentication purposes. We have shown that it is possible to use the

cameras and built-in flashlights of mobile devices to estimate the normal vector

field of paper surfaces. Perturbation analysis shows that the proposed method is

robust against inaccurate estimates of camera locations, and using 6 to 8 images can

achieve a matching accuracy of 10−4 in EER under a lab-controlled ambient light
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environment. This finding can relax the restricted imaging setup in prior art, and

enable paper authentication under a more casual, ubiquitous setting with a mobile

imaging device. The proposed technique may facilitate duplicate detection of im-

portant and/or valuable documents such as IDs, and facilitate counterfeit mitigation

of merchandise via detection of duplicated labels and packages.
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3

High-Contrast, Extrinsic Features of

Surfaces for Authentication

3.1 Chapter Introduction

In Chapter 2, we have studied using the norm map, a collection of directions of

microscopic surfaces, as the intrinsic feature for authentication and counterfeit de-

tection purposes. The choice of the norm map was to make the authentication more

resilient to light conditions that can heavily affect the low-contrast visual features

of the surface.

Another approach toward robust authentication is to consider using surfaces

with high-contrast visual features. High-contrast features are optically distinct that

light conditions such as flashlight and shadow do not change their visual represen-

tation significantly. Existing extrinsic features include: FiberTag [11] and Kinde

Labels [12], which randomly distributes visible fibers on surfaces to make each
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patch unique; Ramdot [11], which uses randomly positioned color dots; and Bub-

bleTag [11], which contains inherently randomly positioned bubbles in polymer.

The focus of this chapter is to understand for those high-contrast surfaces,

how the authentication performance can be affected by inaccuracies within the ver-

ification algorithms, and by the design parameters of the features such as the size,

shape, and density. To this end, we build physical high-contrast patches containing

powder particles randomly distributed on paper surfaces and sealed under tapes.

These lab-produced patches provide an initial and practical understanding of how

a high-contrast feature based authentication system works, and reveal the priorities

for subsequent explorations. We then use computer simulated surface patches to

understand quantitatively how the design parameters and algorithm inaccuracies

interact. We also propose a generative model of the high-contrast feature based

authentication system to gain insights into the problem. The proposed generative

model can predict the authentication performance of a candidate system with min-

imum simulation.

3.2 Background and Preliminaries

We use the same squared-shaped registration container and alignment algorithm

discussed in Chapter 2.2 for the high-contrast patches.

The hypothesis testing framework discussed in Chapter 2.2 is used for authen-

tication. Besides using the intensity of patch as a feature, we also use handcrafted

features such as the spatial descriptors characterizing the locations of foreground
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objects in Chapter 3.4.3. Other features, such as random projections (RPs) [15],

binarized RPs [15], and SIFT descriptors [16, 17], can be chosen to represent the

surfaces. We leave the study of these features to future work.

Artifacts such as imprecise alignment, non-uniform lighting and glare due to

light reflection are usually not accounted by the assumptions of theoretical models

of the hypothesis. We remove these artifacts in the preprocessing stage to improve

the coherence between the data and the modeling assumptions.

3.3 Comparative Study on Using Low-Contrast Feature

In this section, we show the limitation of using images of paper surfaces as the

authentication feature. The visual appearance or the resulting digital image of a

paper surface is an optical rendering of the 3-D microscopic structure created by

inter-twisted fibers. The optical rendering follows the diffuse light reflection model

in which the direction of the incident light plays an important role. An intensity

gradient pattern in one image of the surface patch, e.g., a darker-colored blob, may

not be visible in another image of the same patch under a different lighting condition.

We examine in this section how the images of surface patches comprised of these

low-contrast patterns performance in authentication tasks.

Prior Work Voloshynovskiy et al. [15,16] examined the imaging setup of using

industrial cameras with a semi-controlled lighting condition—an overhead circular

ring-shaped light source. The resulting images have consistent appearances due to

the controlled lighting conditions, and as expected, achieved good authentication
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performance.

Mobile cameras were tested under uncontrolled ambient light [17], whereby

the performance was considerably worse than the setup with semi-controlled light.

One way to improve the authentication performance at the cost of increasing the

design complexity of the authentication algorithm [17], is to identify for a test image

all intensity gradient patterns whose strengths are above a certain threshold, and

try to match as many patterns as possible with those in the reference image. As the

acquisition conditions for the test and reference images are usually different, a high

percentage of pattern matching between the two images is not guaranteed. This can

lead to a lower authentication performance.

Our Experiments We take photos of our lab-produced paper surfaces [Chap-

ter 2.2.2] using mobile cameras, and apply our precise alignment algorithm [Chap-

ter 2.2.2] to extract pixels values within the square-shaped registration containers.

The aligned patches captured using different acquisition devices are shown in Fig. 3.1

with non-uniform lighting and glare removed. Although a general similarity exists

among the patches, small details differ a lot.

Experimental results show that for one patch surface, correlation values be-

tween images captured by different mobile cameras are not high: mean values are

only around 0.2 to 0.4 for various combinations of acquisition devices for test and

reference patches. We show in Fig. 3.2 the estimated PDFs, sample PMFs under H0

and their bounds, and the resulting ROC bounds for the case that test and reference

datasets are obtained using iPhone 6.
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Figure 3.1: Images of a paper surface captured by scanner, iPhone 6, and Pantech Tablet,

respectively. Contrast of the images are adjusted for display.
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Figure 3.2: (a)(c) Estimated PDFs of ρ̂, (b)(d) sample PMF under H0 and its bounds

(Gaussian and exponential distributions), and (c)(e) resulting ROC bounds.

(a-c) for commonly found copy paper, (d-f) for light green card stock. At

Pf = 10−3, the miss rate Pm ranges from 10−4 to 10−3. Both test and

reference datasets are obtained using iPhone 6.
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In Figs. 3.2 (b) and (d), we show the bounds for the data using two parametric

distributions: Gaussian with light tails, and asymmetric exponential with heavy

tails. The latter has the PDF of f(x;λ1, λ2) = λ1e
λ1x I[x < 0] + λ2e

−λ2x I[x ≥ 0].

The well-fitted data in Figs. 3.2 (b) and (d) show that the sample PMFs are lower

bounded by the Gaussian PDFs and are uppper bounded by the exponential PDFs.

Using these two parametric distributions, we draw the performance regions in the

ROC space as shown in Figs. 3.2 (c) and (e).

We estimate the PDFs with the following procedures. For the null hypothesis

(unmatched cases), we fit both Gaussian and asymmetric exponential. For Gaussian,

we assume zero mean and estimate the variance. For the asymmetric exponential

distribution, we conduct parameter estimation for the positive part and negative

part separately. For each part, we use an altered version of the method of moments

to estimate the rate parameter λ. We note the exponential distribution has the

following properties: µ = λ−1, σ2 = λ−2, and median = λ−1 ln(2). We equate

these theoretical quantities to their corresponding sample statistics, and obtain three

candidate estimates for λ. We then take the smallest one of the three as the final

estimate, as it corresponds to the PDF that cover the largest amount of points in

Figs. 3.2 (b) and (d). The resulting tails of the estimated exponential PDFs upbound

sample PMFs well. For the alternative hypothesis (matched cases), we simply fit a

Gaussian as the number of data points is far from adequate (fewer than the data

points for the null hypothesis) to sensibly distinguish two distribution types.

The performance regions in the ROC plots of Figs. 3.2 (c) and (e) show that

at 10−3 false-alarm rate, the miss detection rate ranges from 10−4 to 10−3. This is
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barely acceptable in practical large-scale counterfeit detection applications. We see

that even using newer mobile cameras such as iPhone 6 with improved acquisition

quality, the authentication performance using the low-contrast visual appearance as

a feature is limited.

3.4 Authentication Using High-Contrast Extrinsic Features

In this Chapter, we consider using surfaces with high-contrast visual features that

are optically distinct that lighting conditions such as flashlight and shadow do not

change their visual representation significantly.

3.4.1 Lab Produced Low-Cost Sealed Powder Patch

We create an experimental paper surface with dark flocking powder from craft stores

as the foreground, to understand the performances of such surface with the randomly

distributed visible fiber. The powder is randomly dropped on the paper surface to

form a unique pattern, and the pattern is sealed by transparent adhesive tape.

Each piece of flocking powder is short-bar–shaped. The design parameters of this

powder surface include the density of the powder, and the spatial distribution. This

lab produced surface [examples in Fig. 3.3] helps us understand the authentication

performance of the surfaces as a function of design parameters.
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Figure 3.3: Images of a lab-produced powder surface captured by scanner, iPhone 6, and

a Tablet, respectively. Contrast of the images were adjusted for display.

3.4.2 Performance Achieved Directly Using Images

Fig. 3.4 shows that once high resolution registration is achieved, the authentication

performances for sealed powder surfaces are very good. We observe from experi-

ments that better camera and higher powder density lead to larger margin between

the densities of H0 and H1.

3.4.3 Performance Achieved Using Spatial Descriptors

In this part, we extract four spatial features, design distance measures, and construct

statistics. We found that using merely a single feature—the locations of bars—can

give good discrimination capability.

Feature Extraction The feature extraction algorithm is consist of i) combinations

of morphological operators, ii) adaptive thresholding, iii) connected region search

(breadth/depth first search, linear time of total number of image pixels), and iv)

denoising using bilateral filter. The bilateral filter is used because it is capable of

63



 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

 

 

True patches, mode = 0.97
Other patches, mode = -0.01

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18

 

 
True patches, mode = 0.88
Other patches, mode = -0.00

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18

 

 
True patches, mode = 0.84
Other patches, mode = -0.00

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

 

 
True patches, mode = 0.95
Other patches, mode = 0.00

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

 

 

True patches, mode = 0.91
Other patches, mode = -0.00

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18

20

 

 

True patches, mode = 0.92
Other patches, mode = -0.00

Figure 3.4: PDFs of ρ̂ under H0 (blue, thick lines) and H1 (red, thin lines). 1st row:

sparse powder, 2nd row: dense powder. Columns from left to right: scanner

(test) vs. scanner (ref), iPhone 6 (test) vs. scanner (ref), and Pantech Tablet

(test) vs. scanner (ref).

removing noise while preserving the foreground objects, especially those foreground

objects that are slightly above the noise level.

The following information of each visual blob (most likely to be a short bar)

is obtained for constructing a descriptor with four features: i) blob location, ii) blob

area in pixel count, iii) length of major axis of a fitted ellipse, and iv) orientation of

the fitted ellipse.

Fig. 3.5 shows annotated descriptors overlaid with the acquired images. Each

detected blob is annotated with a dot showing the estimated center, and a line seg-

ment showing the major axis of a fitted ellipse. We observe that for high resolution

acquisition devices like the scanner and iPhone 6, most blobs are correctly detected.
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Pantech Tablet performs a little worse, but iPhone 3Gs give very bad results due to

large background noise.

Distance Measure for Descriptor We design a distance measure that uses the

blob location. We leave other information such as blob area, length of major axis,

and orientation to future work.

Suppose there are N detected blobs in the reference patch. For each detected

blob in the reference patch, we examine at the test patch if there are blobs falling

within the range of a ball of radius R pixels. In our experiment, we set R to 3. We

set up three counters as follows:

• if no blob in the ball, then no match flag flagMiss++;

• if one blob, then correct flag flagMatch++;

• if more than one blob, then over match flag flagOverMatch++.

The sum of these three counters equals N . We define three reference patch based

statistics:

1. flagMissRatio = flagMiss/N,

2. flagMatchRatio = flagMatch/N,

3. flagOverMatchRatio = flagOverMatch/N.

We also define a test patch based statistics, unmatchedIndicesRatio, the percent-

age that the detected blobs in the test patch that do not find matches in the reference

patch.
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(a) (b) 

(c) (d) 

Figure 3.5: Annotated Img#1 of db1, page 1 with descriptors. Each detected blob is

annotated with a dot showing the estimated center, and a line segment

showing the major axis of a fitted ellipse. Acquisition device: (a) scanner,

(b) iPhone 6, (c) iPhone 3Gs, and (d) Pantech Tablet.
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Experimental Results We apply every test statistic for authentication using im-

ages captured from four different mobile cameras. We found that among all proposed

statistics, three have great discrimination capabilities, namely, flagMissRatio,

flagMatchRatio, and unmatchedIndicesRatio. The PDF plots for the three statis-

tics and four acquisition devices are shown in Fig. 3.6. The clear separation of the

PDFs under two hypothesis reveals that the proposed statistics based on the blob

location feature is powerful.

3.5 Perturbation Analysis

3.5.1 Analysis Using Real Images

We now investigate how the inaccurate alignment affects the discrimination capa-

bility when the image intensity is used as the authentication feature.

We introduce spatial perturbation before correlation of two aligned images is

calculated. More specifically, a random perturbation vector ∆p is added to the

maker positions of aligned test images, whereas the marker positions of reference

images are not changed. The distributions of the perturbation, e.g., constant-value

(aka fixed), constant-variance (aka random), and uniform (aka random), do not

significantly affect the performance. We therefore report the results due to the

constant-value perturbation. The corresponding ∆p′ added to the marker positions

of unaligned test images are obtained using image registration algorithm described

in Chapter 2.2.2.

The direction of ∆p does not have an affect on the discrimination capabil-
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Figure 3.6: PDFs of ρ̂ for matched (red, thin lines) and unmatched cases (blue, thick

lines) for the three spatial features. Results are presented for four different

acquisition devices.
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Figure 3.7: PDFs of ρ̂ under H0 (blue, thick lines) and H1 (red, thin lines) for added

alignment error ranges from 0 to 1 with stepsize 0.1. Error vector directions

are up in (a) and right in (b). PDF under H1 (red) moves to the left as

the strength of perturbation increases. Data: iPhone 6 (dataset#1–3) vs.

scanner (dataset#1), page 1.

ity, according to our experimental results on six directions (horizontal, vertical, up,

down, diagonal, and anti-diagonal). This is expected because orientations of fore-

ground objects are uniformly distributed. We show two results in Figs. 3.7 (a) and

3.7 (b) when the direction of the perturbations are up and right, respectively. In

the following experiments, we assume that the perturbation vectors are pointing to

the right.

We show the error bar plot in Fig. 3.8 to visualize how the statistical perfor-

mance changes as the alignment error increases. The horizontal axis is the level of

perturbation in the unit of pixel we added before calculating the correlation. The

red curves show the correlation for the matched cases (H1), whereas the blue curves
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Figure 3.8: Error plots for average values of ρ̂ under H0 (blue, thin lines) and H1 (red,

thick lines) as a function of the strength of alignment error. (a) with a range

of 0 to 1 pixels is a zoomed-in version of (b) with a range of 0 to 5 pixels.

show the correlation for unmatched cases (H0).

It is observed that the distributions of unmatched cases is not affected by the

perturbation, whereas the distributions of matched cases move to the left as the

strength of the perturbation increases. This implies that the discrimination capa-

bility drops as perturbation increases. According to our data, the perfect separation

of distributions ends as constant perturbation strength ‖∆p‖ increases to 3.2 pixels.

3.5.2 Analysis Using Synthetic Images

The 2-D appearance of BubbleTag [11] can be modeled as open circles. Gray scale

version of Ramdots [11] can be modeled as filled circles/discs. We simulate Bub-

bleTag and Ramdot surfaces by a set of foreground circles with different boundary

widths. Foreground circles with random positions are drawn 600 ppi digitally, and
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Figure 3.9: Simulated BubbleTags in 2D view with design parameters rout = 10 and

rin = 9, 7, 5, 0.

then “recaptured” via antialiasing and downsampling to 300 ppi. Printing and

scanning noise is assumed to be negligible. Misalignment is added in the form of

constant-value perturbation.

Fig. 3.9 shows circles with same outer radius 10 and different inner radix 0, 5,

7, and 9; each patch has 30 circles. Our perturbation result shown in Fig. 3.10 (a)

reveals that filled circles as foreground objects are less sensitive to alignment impre-

cision than unfilled ones, and circles with thicker boundaries are less sensitive than

thinner ones. For a patch with circles of boundary width d, the convexity of the

curve for averaged correlation under H1 w.r.t. perturbation starts to change around

perturbation level d.

Fig. 3.10 (a) shows that it is possible to have poor authentication performance

when alignment is imprecise. Specifically, at perturbation strength equals 1, patches

with circles of the thinnest boundary, i.e., rinner = 9, can have less than 0.5 correla-

tion on average.

As alignment algorithms are usually capable of achieving subpixel precision,

we consider the scenario that the length of displacement vector is uniformly dis-
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Figure 3.10: (a) Error bar plot of PDFs of ρ̂ under H1 for rout = 10 and different rin’s.

The PDF under H0 with the maximum std range is displayed as the worst

case. (b) ROC curves for different number of foreground circles, N .

tributed between 0 and 0.5, and carry out experiments to understand the factors to

authentication performance. We build on the case of circle inner radius = 7 [second

patch in Fig. 3.9]: we fix the circle size, and change the density by changing number

of circles for the surface. The result in Fig. 3.10 (b) shows a better performance for

higher density.

3.6 Generative Model of High-Contrast Images

The experiments and simulations in the previous sections show that authentication

performance depends on several factors, including alignment precision, and shape

and density of appearance features. In order to go from qualitative understand-

ings on factors affecting the authentication performance of surfaces to quantitative
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knowledge, it is beneficial to model the problem into several subproblems which can

be solved analytically or numerically. This divide-and-conquer strategy give a better

understanding in the the structure of the problem and the computation is minimal

comparing to experimental and simulation approaches. We now briefly summarize

how we approach the problem as follows.

We focus on a class of surfaces with isotropic foreground appearance features.

To assess the authentication performance, the distributions of the test statistic—

sample correlation coefficient ρ̂—should be known under the null and alternative

hypotheses. It is relatively easier to first approach the problem analytically by

assuming the images of surfaces are binary. We also assume that the level of acqui-

sition noise is not strong enough to flip any of the binary pixels. We further assume

that the perspective matching error only happens in form of a global displacement.

Hence, the description of the hypotheses are refined as:

H0 (unmatched case): The acquired patch is a random patch, with the same

design parameter Γ, e.g., number of foreground objects and they are of the

same shape, as the those in the reference patch.

H1 (matched case): The acquired patch is identical to the reference patch,

with global matching imprecision quantified by a random displacement vec-

tor.

The randomness of ρ̂ under H0 comes from the randomly distributed foreground
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objects, whereas the randomness of ρ under H1 comes from the random matching

imprecision.

The authentication performance under different choices of parameter values

can be revealed using ROC curves for a general understanding of the performance, or

using detection rate PD for a specific α-level design constraint. A design parameter

that maximized the performance can then be selected.

The correlation in both hypotheses are related deterministically to the number

of black-to-white pixel flips, denoted as δ0→1 or δm, and the number of white-to-

black pixel flips, denoted as δ1→0 or δn. Under the matched case H1, we have

δ = δ0→1 = δ1→0 due to isotropicity, where δ is related to the displacement vector

quantifying the alignment imprecision. Under the unmatched case H0, the joint

distribution of (δ0→1, δ1→0) conditioned on one of a series of combinatoric cases can

be analyzed and results can be obtained numerically. Simulated data are used to

confirm the effectiveness of the model.

3.6.1 Decision Statistics as a function of (δm, δn)

When a binary test image is correlated to a binary reference image, the resulting

sample correlation coefficient is a function of the number of foreground and back-

ground pixels M and N , and number of 0→ 1 flips, δm, and number of 1→ 0 flips,

δn, needed for converting the reference image into the test image. Fig. 3.11 illustrates

an example of pixel correspondences between two binary images and annotates the

four variables defined above. It is not difficult to derive that the correlation as
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0 … 0  0 … 0   1 … 1  1 … 1 

0 … 0  1 … 1  1 … 1  0 … 0 

M zeros N ones 

δm 0→1 flips δn 1→0 flips 

Image A (pixel values reordered 

into 0- and 1-blocks 

Image B (pixel values reordered 

according to the ordering of Image A) 

Figure 3.11: Example of pixel correspondences between two binary images with anno-

tated counts

follows:

ρ̂(δm, δn;M,N) =
MN − (Mδn +Nδm)√

MN(M − δm + δn)(N − δn + δm)

0 ≤ δm ≤M, 0 ≤ δn ≤ N

(3.1)

where ρ̂ = 1 if and only if δm = δn = 0, i.e., two images are identical.

The symbols 0 and 1 representing the two binary pixel levels are not special of

each other. For easy presentation, we name symbol 0’s as foreground black pixels,

and symbol 1’s as background white pixels, to mimic scenarios that black dots lay

on white paper.

Figs. 3.12 (a)-(b) reveal that, when the number of foreground pixels is the

same as the number of background pixels (aka the balanced case), i.e., M = N ,

the sample correlation drops almost linearly w.r.t. number of flips in black/white

pixels. However, when the number of foreground pixels is less than the number of

background pixels (aka the unbalanced case), i.e., M < N , the sample correlation

drops faster when white pixel flips. The same data (used above to draw the surfaces)

are visualized in 1D parametric form, as shown in Figs. 3.12 (c)-(d). Again for the
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Figure 3.12: Sample correlation ρ̂ as a function of δm and δn, with foreground-to-

background ratio M/N (a)(c) 1 : 1, and (b)(d) 1 : 9

balanced case, we see the drop of correlation is almost linear w.r.t. number of flips

of black and white pixels. For the unbalanced case, the drop of correlation is almost

linear w.r.t. number of flips of black pixels (δm), but highly the drop is nonlinear

w.r.t. number of flips of white pixels (δn, across the series of curves).

When two identical binary images are aligned off by a certain displacement

vector (assume no foreground pixels are at boundaries), the number of flipped fore-

ground pixels and the number of flipped background pixels are the same, i.e.,
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Figure 3.13: ρ̂ of two identical images, i.e., the autocorrelation, vs. the number of flipped

pixels ∆.

δm = δn. Define the number of flips as ∆, the correlation of Eq. (3.1) is actu-

ally the autocorrelation of the binary images, and Eq. (3.1) is simplified to a linear

function of ∆:

ρ̂(∆) = 1− M +N

MN
∆, 0 ≤ ∆ ≤ min(M,N). (3.2)

Hence, we can condense the above figures into autocorrelation versus number of flips

∆ parameterized by density [(M,N) pair represents the density: the small M is,

the less density the binary image is], as shown in Fig. 3.13 (a). It is revealed that

at a fixed alignment precision (e.g., for now consider fixed ∆), the autocorrelation

is better if the binary image is more balanced.

One note is that for the same level of mis-alignment, the number of flipped

pixels can be different at the same density level: if all foreground pixels are sin-

gular, the number of flip reaches the maximum; if all foreground pixel form one
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Figure 3.14: 8-by-8 binary images with 13 foreground pixels. The displacement vector

(1,0) is pointing to the right. (a) δm = δn = 6, and (b) δm = δn = 13.

cluster, the flips only happen at the boundary pixels perpendicular to the direction

of displacement vector so number of flips should be relatively low. The contrast

of Figs. 3.14 (a) and (b) is such an example. This observation suggests that, less

clusters can result in less flipped pixels.

To summarize, in order to obtain high autocorrelation for correct matches

when only mis-alignment exists, one should design the patch so that the amount of

foreground and background pixels should be similar, and foreground objects should

form as less clusters as possible.

Note that the above is strategy is to enhance the correlation for correctly

matched binary images/patches. However, the correlation of incorrectly matched

patches will increase in very extreme cases, for example, there is only one fore-

ground cluster. This scenario can be avoided in ad hoc by restricting the number

of foreground clusters to be greater than a certain value, say, 10. The single-cluster

patch is a highly atypical patch, and the number of atypical patches is negligibly

small among all possible patches, and the restriction imposed should be able to gen-

erate typical ones that result in zero correlation for the incorrectly matched cases.
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3.6.2 Derivation for Joint Distribution f∆m,∆n|H0
(δm, δn) Using Isotropic

Foreground Objects

3.6.2.1 Matched Case, H1

Equation (3.2) linearly relates the correlation ρ̂ with the number of flips ∆ (or

flipped area for an image in a continuous spatial domain), and the remaining task

is to relate flipped area with the alignment imprecision.

When the alignment imprecision is restricted to merely the global displacement

d and the foreground object is isotropic, the flipped area is a deterministic function

of the distance between the two objects, x = ‖d‖. For a disc of radius r as shown

in Fig. 3.15 (a), by applying geometry it is not difficult to obtain the flipped area

as a function of the distance of the two centers, x:

∆(x) =

{
1−

[
2

π
cos−1

( x
2r

)
− x

πr

√
1−

( x
2r

)2
]}

πr2, 0 ≤ x ≤ 2r. (3.3)

The relationship is shown in Fig. 3.15 (b). It is observed that when the distance x is

relatively small compared to the radius r, the relationship is approximately linear.

When a particular alignment algorithm is used, the alignment imprecision can

be profiled using synthetic data into an empirical probability distribution for the

length of displacement vector x. For the 1/3 -pixel precision alignment algorithm we

used in the experiments, the alignment imprecision can be assumed to be uniformly

distributed between 0 and 1/3 .
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Figure 3.15: (a) Two identical discs with radius r separated by distance x has two

pieces of non-overlapping area δm and δn, where δm = δn = ∆. (b) The

deterministic relationship between ∆ and x.

3.6.2.2 Unmatched Case, H0

A randomly generated test patch with the same design parameter Γ as the reference

patch, is almost surely to be different from the reference patch. In this case, the

number of 0-to-1 flips δm does not equal to the number of 1-to-0 flips δn, hence

the more general relationship described in Eq. (3.1) should be used. With the

deterministic relationship between ρ̂ and (δm, δn), we derive the joint distribution

f∆m,∆n|H0(δm, δn) for evaluating the distribution of ρ̂ under H0.

A randomly positioned test circle can have overlap with a reference circle only

if the test circle is within 2r range of the reference circle as depicted in Fig. 3.16 (a).

Then, the various subcases of matching a random test surface image with n circles to

a reference image with same number of circles can be combined to dropping n points

into n + 1 holes: n of which are circular regions of radius 2r, and the remaining of

which is the surface container region with no 2r circular regions. We impose a few
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geometric constraints to ease the modeling procedure as illustrated in Fig. 3.16 (b):

i) circles in the reference image are at least 3r away from the boundaries of surface

containers to avoid the test circles being fully/partly outside the container when

they overlap with a reference circle, and ii) circles in the reference image are at

least 6r away from each other to avoid the overlap of two test circles when they

overlap with two different reference circles respectively. Hence, the probability of

overlapping with one circle is p = π(2r)2

a2
, and the probability of not overlapping with

any circle is (1− np), which can be modeled as a conceptual ball-and-urn problem,

as shown in Fig. 3.16 (c).

It is intuitive to use multinomial distribution to model the current scenario of

throwing n dots into n+ 1 holes with the following closed-form PMF:

pK,R(k, r) =
n!

k1! · · · kn!
pk1 · · · pkn(1− np)r,

k1 + · · ·+ kn + r = n

(3.4)

where k = (k1, . . . , kn), ki is number of dots fallen in ith hole, and r is number of

dots fallen outside all holes. Conditioned on a particular realization of the (n+ 1)-

tuple (k1, . . . , kn; r), the joint distribution (∆m,∆n) can be approached analytically

or numerically.

However, using the multinomial distribution as the prior does not lead the

modeling too far. Different cases given by the multinomial prior can correspond to
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Figure 3.16: Auxiliary schematic for understanding how randomly positioned test cir-

cles overlaps with deterministically positioned reference circles: (a) possible

range for center of test circles given the position of reference circle, (b) ge-

ometric constraints imposed on the locations of reference circles to ease

the modeling procedure, and (c) circle matching problem simplified to a

conceptual ball-and-urn problem.

a same case that we are interested in to analyze, e.g., multinomial cases

(1, 0, 0, · · · , 0;n− 1), (3.5a)

(0, 1, 0, · · · , 0;n− 1), (3.5b)

(0, 0, 1, · · · , 0;n− 1), etc. (3.5c)
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correspond to a single analytical cases that there is only one circle in the test image

overlap with one circle in the reference image, no matter on which reference circle

the overlap happens. Hence, a better prior treating the above cases together should

be constructed.

The problem is more tractable by focusing on cases that there are a number

of test circles, k, overlapping with a most n reference circles, i.e., k1 + · · ·+ kn = k.

Formally, we define an event Ak = {k circles from the test image overlap circles in

the reference image, and (n− k) circles do not.}, and the PMF is

P(Ak) =

(
n

k

)
(np)k(1− np)n−k, k = 0, · · · , n. (3.6)

The problem of k test circles overlapping with any number of n reference circles can

be viewed as the classic problem of k points in n holes, i.e.,

k1 + · · ·+ kn = k, 0 ≤ ki ≤ k, i = 0, · · · , n. (3.7)

The total number of possible (k1, . . . , kn)’s (formally called “compositions” in com-

binatorics) is well known to be
(
k+n−1
n−1

)
. We are interested in grouping all compo-

sitions with same elements together, and then calculating the probability of each

group (formally called “partition”), since the partition is the largest unit that the

joint distribution (∆m,∆n) takes the same form.

Table 3.1 enumerates all partitions for k = 4. The number of compositions

in jth partition B
(k)
j , k = 4 are also shown, and the total number of composition

is verified. The probability of each partition can be therefore calculated, and the

PMF P(B
(k)
j ), j = 1, · · · , J(k) is obtained for k = 4 dots and n holes, in which J(k)

is the number of distinct symbols (partition) of the PMF. The function J(k) does
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Table 3.1: Possible partitions and number of compositions for each partition when there

are k = 4 ball and n holes

Partition Subgroup size #Covered holes #Compositions

B
(4)
1 = {1, 3} 1, 1 2

(
n

1,1,n−2

)
B

(4)
2 = {1, 1, 2} 2, 1 3

(
n

2,1,n−3

)
B

(4)
3 = {1, 1, 1, 1} 4 4

(
n

4,n−4

)
B

(4)
4 = {2, 2} 2 2

(
n

2,n−2

)
B

(4)
5 = {4} 1 1

(
n

1,n−1

)
total:

(
n+3
n−1

)
not have an analytical form. It is called the partition function which increases fast

as k increases.

When a surface uses n circles, PMFs for all k = 0, · · · , n are needed for

analytical modeling. In our work, we use the best known integer partition algorithm

to enumerate all partitions and then calculate all PMFs needed.

Under H0, the joint distribution can be decomposed as

f∆m,∆n(δm, δn) =
n∑
k=0

J(k)∑
j=1

f
∆m,∆n|B(k)

j ,Ak
(δm, δn)·

P(B
(k)
j |Ak) · P(Ak)

(3.8)

where it is understood that all probability measures are underH0, and f
∆m,∆n|B(k)

j ,Ak
(δm, δn)

describes the joint distribution of area of 0-to-1 flips and area of 1-to-0 flips when k

test circles are thrown into holes of reference circles resulting an allocation pattern

described by the jth partition.
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The conditional joint distribution f
∆m,∆n|B(k)

j ,Ak
(δm, δn) is analytically intractable

for k ≥ 3. However, simulation for a partition B
(k)
j for each pair of (j, k) is doable

and takes much less memory and time than simulation for a whole patch.

Take B
(4)
2 listed in Table 3.1 as an example. Four balls are put into three

“covered holes” with 1, 1, 2 balls for hole 1, hole 2, and hole 3, respectively. We

denoted the number of covered holes by #ch. Then, the size of two types of flipped

regions can be aggregated from the contributions from each covered hole:
δm =

∑#ch
`=1 δ

(`)
m + (n− k)πr2,

δn =
∑#ch

`=1 δ
(`)
n + (n−#ch)πr2.

(3.9)

Using simulation, we can easily obtain a large number of the sets {(δ(`)
m , δ

(`)
n )}#ch

`=1 ,

say, 1000. We aggregate them using Eq. (3.9) and obtain 1000 pairs of (δm, δn),

which can be considered as a reasonably large sample drawn from the population

f
∆m,∆n|B(4)

2 ,A4
(δm, δn). Passing the sample through the deterministic correlation func-

tion of Eq. (3.1) leads to a sample of size 1000 of the random variable ρ̂. Proper

methods for estimating the distribution for ρ̂ can be subsequently applied.

3.6.3 Model Validation

The model minimizes the use of simulation by decomposing the big simulation prob-

lem into three levels, and simulates at the lowest level only. It has the advantage of

using less memory and low computational complexity.

In this section, we compare the PDF under H0 obtained via modeling and via

simulation. As the mean correlation under H0 is zero, we compare the standard

85



Table 3.2: Standard deviation of PDF under H0 evaluated from model vs. from simu-

lated patches (patch size: 200)

Radius 1 2 3 4 5 6 7 8 9 10

Simulated 0.008 0.014 0.020 0.026 0.032 0.038 0.043 0.050 0.056 0.062

Model 0.006 0.012 0.018 0.024 0.029 0.035 0.041 0.046 0.051 0.055

deviation obtained from the two methods. Table 3.2 reveals that the modeling

results are close to the simulated results that serve as the anchor. This confirms the

correctness of the proposed generative model.

The proposed generative model allows us to examine the authentication per-

formance under different choices of parameters, such as the shape, size, and number

of foreground objects. The findings will lead to a systematic understanding of the

class of extrinsic paper surfaces, and will facilitate the design of surfaces in practical

counterfeit detection scenarios.
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4

Invisible Geo-Location Signature in a

Single Image

4.1 Chapter Introduction

The digital era in which we are living today has seen an unprecedented amount

of digital audio, image and video being generated every day. Not only have these

digital multimedia significantly changed the way we live and work, the information

they carry about the location origin where the media files was captured is valuable

for law enforcement, national security, and journalism applications. In this chapter,

we focus on the problem of deriving information from a single image regarding the

location where it was captured, especially in challenging scenarios for which existing

technologies cannot sufficiently address.

A number of new generations of digital cameras today, including many cell-

phone cameras, are capable of associating the built-in GPS input with the images
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and videos produced by the camera in the metadata field regarding the location in

which these images/videos were captured. These metadata, however, are not always

available, and they can be tampered with in a relatively easy way.

Recent advances, notably through the FINDER program by the U.S. Intelli-

gence Advanced Research Project Activity (IARPA) agency [26], utilized computer

vision techniques and a big data paradigm to exploit visible terrains and landmarks

appearing in an image and match them with a variety of geospatial data to identify

the image’s geographic location. These technologies would still face considerable

challenges in cases of absence of visible landmarks, such as when the background

of outdoor images does not have differentiating features, or when an image is cap-

tured indoors. The latter scenarios are common in such global efforts as fighting

crime on child exploitations [27–29], where a significant portion of images of child

pornography and the related abuse have been taken indoors in private locations by

perpetrators, and the Internet has eliminated the national borders on such crime

and increased the difficulty in tracking down the perpetrators. Having new tech-

nologies to locate where such images were taken, even on a coarse level, will provide

an unprecedented tool to aid the global investigation, allowing law enforcement at

appropriate jurisdictions.

In this chapter, we explore a nearly invisible signature about location that

is inherently captured in an image. This invisible signature comes from the power

distribution network whose varying frequency properties over time are known as the

Electric Network Frequency (ENF) signal. There is a growing amount of multimedia

forensics research recently on the ENF signal, as the ENF signature over time in a
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multimedia file reflects the behavior of the power grid at the time and the location

where the media signal is recorded. Such a relation enabled the estimation of the

time, location and integrity of the corresponding multimedia signals [30–34].

Due to the temporally varying nature of the ENF signature that plays a critical

role in its ability to relate with time and location, ENF extraction in the literature

thus far requires the hosting signal to have the temporal nature as well, for example,

an audio or a video. Two intriguing questions to push the boundary of ENFs local-

ization capability are: Can ENF traces be found in a single image? And can such

a basic attribute as the nominal ENF value be extracted at a reasonable accuracy

from a single image? This chapter aims at answering these questions where by nar-

rowing down whether an image under question comes from a 50Hz or 60Hz country

would provide a valuable clue to law enforcement investigations and shine a light

on the jurisdiction in charge. To the best of our knowledge, this is the first work

toward developing a unique machine vision capability to address the challenging

geo-location scenarios for individual images that do not have a visible landmark or

GPS tag, especially those captured indoors. Given the devastatingly high estimates

by the U.S. and United Nation authorities that over 300,000 U.S. children are sex-

ually exploited every year and about a million children every year are forced into

prostitution in some form worldwide [27], the societal impact of any new technol-

ogy breakthrough from computer vision would be tremendous. The investigations

presented in this chapter form an important first step toward this.

The rest of this chapter is organized as follows. Chapter 4.2 reviews the

background information on the ENF signature and the image capturing operations
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that allow it to be present in images of interest. Chapter 4.3 presents our proposed

approaches for extracting the ENF signature from a single image. Chapter 4.4 shows

the experiments we conducted and the results obtained. Chapter 4.5 provides further

discussions and Chapter 4.6 concludes the chapter.

4.2 Background and Preliminaries

4.2.1 Electric Network Frequency

The Electric Network Frequency (ENF) of power distribution networks has a nom-

inal value of 60Hz in most of the Americas, and 50Hz in most of the rest of the

world. The instantaneous frequency of the sinusoidal variation in power networks

does not stay at this nominal value. Rather, it fluctuates around the nominal value

due to load changes across the power grid. The trends in the ENF variations tend

to be very similar at different points in the same grid. The changing instantaneous

value of the ENF over time is what we define as the ENF signal.

The ENF signal has been a growing subject of multimedia forensics research in

recent years due to its presence in media sensing signals. If an audio or video record-

ing is made in an area where there is electrical activity, it is likely that this recording

will capture the ENF variations at the time of recording. In audio recordings, this

has been attributed to the acoustic mains hum emitted from devices connected to the

power mains [35]. In video recordings, this comes from the near-invisible flickering

of electric lighting [3].

In this chapter, we show that it is possible to find ENF traces captured in single
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images as well when they are taken in electrically lighted settings. In particular,

ENF traces can be extracted from images taken by the widely used cameras with

complementary metal-oxide semiconductor (CMOS) image sensors that employ a

rolling shutter.

4.2.2 Rolling Shutter and Read-Out Time

Unlike cameras that employ a global shutter that acquires the pixels of an image

frame all at the same time, a camera employing rolling shutter acquires an image

frame one row at a time. Although traditionally regarded as the cause of negative

artifacts in images/videos, the rolling shutter has been exploited in beneficial ways

for computational photography applications [36, 37]. In this chapter, we shall see

that this sequential read-out time mechanism of the rolling shutter while capturing

a single image allows the resulting image to capture samples of an incoming electric

light signal at slightly different points in time, and thus obtain a short segment of

ENF traces.

With rolling shutter, each row of the frame is sequentially exposed to incoming

light. The amount of time during which a camera acquires the rows of an image

frame, which we denote by the read-out time Tro, is specific to the camera’s model

line and is a value that is not typically given in its user manual or specifications list.

In order to extract ENF information found in a single image, it is important

to know the read-out time Tro value of the camera that had produced the image

under question. In our work, we have made use of a protocol inspired by the one
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Table 4.1: Estimated parameters for rolling-shutter images.

iPhone 6s iPhone 6 iPhone 5

Tro (ms) 19.8 30.9 22.6

number of rows, L 3024 2448 2448

frow (kHz) 152.7 117.1 108.3

proposed in [38] to compute the Tro value of a camera at hand. Table 4.1 lists the

estimated values we computed for the cameras on the backsides of different models

of iPhone devices that are used in this chapter.

4.2.3 ENF Signal Embedding in a Single Image

The rolling shutter mechanism equivalently turns rows of images of CMOS cameras

into high frequency samplers across rows. The sampling frequency of a row can be

expressed by frow = L×T−1
ro , where L is the number of rows of the image. A CMOS

camera captures ENF traces by recording the electric light signal. The electric light

intensity embedded in the resulting image relates to the supplied electric current

via a power law thus making its nominal frequency twice the nominal ENF value,

i.e., 120Hz in most of the Americas and 100Hz in most other parts of the world.

We can express the ENF signal captured in an image as a function of the row index

i by considering the acquisition at different row indices to be a sampling of the
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ENF-containing light signal as follows:

e[i] = cos (2πfENF · (iTrow) + φ0) (4.1a)

= cos

(
2π
fENF

frow

· i+ φ0

)
, (4.1b)

where fENF is the fluctuation frequency of the light intensity, j is the row index of

the image ranges from 0 to L−1, Trow is the portion of the read-out time assigned to

each row, and φ0 is the initial phase of ENF signal at time the first row is acquired.

When an image is taken through the rolling shutter mechanism, the light

intensity signal is modulated with a native image m0[i, j]. Although this modulation

can be nonlinear, but a large part can be considered as an additive component e[j] to

the native image content. Hence, the ENF-containing image can be approximately

modeled by adding a parametric surface to the native image content as follow:

m[i, j] = m0[i, j] + e[j], i = 1, · · · , L,

j = 1, · · · ,W,
(4.2)

where m is the ENF containing image, and W is the number of columns of the

image.

4.3 Proposed Framework and Approaches

4.3.1 Formulation and Framework

In this section, we address the following research question: given an image with an

inherently captured ENF signal that is generally very weak, is it possible to determine

whether the nominal ENF value f of the embedded ENF signal is 100Hz or 120Hz?
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It is helpful to note that the instantaneous ENF frequency during a stable

operation of most well managed grid has only a small deviation from the nominal

value: typically within ±0.5Hz, and generally well within ±0.1Hz in the U.S. grids.

An intuitive way to address the research question would be to formulate this as a

general parameter estimation problem for the frequency parameter f . After obtain-

ing the estimated frequency in the unit of Hz, one can then make a binary decision

between 100Hz and 120Hz based on distances from the estimate to the two nom-

inal values. Alternatively, one may bypass an explicit frequency estimation from

analyzing the image and carry out a more direct classification by enforcing strong

prior knowledge. The challenge for either approach is that the ENF traces can be

very weak, nearly invisible. As such, developing a framework to tackle this problem

would benefit from gaining insights on how this problem would be approached from

a human vision point of view.

We have created a dataset to facilitate the research. We use multiple smart-

phone cameras to take images in primarily indoor environments from countries with

nominal ENF values of 60Hz and 50Hz, respectively. For each scene, different levels

of exposure bias were set on the camera using each camera’s built-in functional-

ity to control the exposure time of the captured images. A less negative exposure

bias corresponds to a longer exposure time and a brighter image, and vice versa.

Fig. 4.1 shows four scenes from this ENF image dataset taken in Country A where

the nominal ENF value is 60Hz, or equivalently, 120Hz for the brightness variations

of electric lighting; for each scene, four levels of exposure bias were used and the

resulting image shown. As we can see, a short exposure time can quite clearly cap-
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Figure 4.1: Four scenes from an images dataset took in Country A with ENF frequency

at 60Hz using iPhone 6s. Each column corresponds to a different scene.

From the top row to the bottom row, the exposure biases are set to 0, −1,

−2, and −3, respectively, when taking the images. The more negative the

exposure bias is, the stronger the ENF traces can be observed.

ture the fluctuation of the ENF light signal. As the exposure time increases, the

amplitude of the fluctuation of the captured signal decreases due to an effective

convolution of a rectangular window with the electric light signal.

If the task of determining the nominal ENF values would be given to a human

observer, he/she is capable of using visible clues and can thus guess the parameters

of the sinusoid surface fluctuating along the rows, namely, the frequency f , the
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magnitude A, and the initial phase φ0. It is understandable that the guess is easier

and can be more accurate for those images with stronger ENF traces, such as those

from the two lower rows of Fig. 4.1.

One of the key challenge to extract an ENF from an image and estimate or

classify the nominal ENF value is to differentiate the highly structured sinusoid

pattern from its combination with the image content. We can draw insights from

the intuitions of a human observer to inspire the design of effective computer vision

algorithms.

First, a human observer would understand that the sinusoid induced by the

power source is rather distinctive and independent from the native image content.

By exploiting the regularity of the sinusoid signal as well as that of the native image

content, one may obtain a reasonable separation. We take advantage of this insight

of signal independence through the ICA-based method proposed in Chapter 4.3.2.

Second, a human observer may detect ENF traces by exploiting the recurring

sinusoid patterns shown in different, even disconnected regions of an image. This

insight of recurring sinusoid patterns is formalized by the parametric model proposed

in Chapter 4.3.3.

Third, a human’s confidence of a good separation is dependent on the structure

of the native image content. The extraction of the sinusoid signal is easier over

smooth regions than over “busy” regions such as those with textures. Even if the

sinusoid signal spans across two smooth regions separated by an edge, the gradual

change due to the sinusoidal ENF signal in the individually smooth regions can still

reveal a good amount of clue as compared to the case of the sinusoid signal being
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added to a smooth region. The entropy-based method proposed in Chapter 4.3.3

leverages this insight.

Meanwhile, computer vision has the advantage over human vision in discov-

ering weak signals and changes that are below the visibility threshold of human

observers. By employing suitable mathematical tools, we have the potential to

overcome the limitation of human vision, and therefore push forward the limit of

the identification capability in terms of pixel intensity. Next, we present the two

algorithms to tackle the ENF classification problem from image.

4.3.2 Independent Component Analysis Based Signal Separation

The independent component analysis (ICA) is a power source separation tool to

recover independent random variables from a collection of observed random variables

that are linear combinations of them [39]. Denote a collection of three independent

random variables as s = [s1, s2, s3]T , and the operations of the linear combinations by

a 3-by-3 nondegenerated mixing matrix M, the generative process for the observed

random variables x = [x1, x2, x3]T is defined as

x = M s. (4.3)

The ICA seeks to simultaneously solve for the independent random variables

s and the mixing matrix M. It is equivalent to writing the estimate ŝ in terms of x

and M and finding best ŝ and M such that the joint distribution of ŝ factors into

marginal distributions, i.e.,

p(ŝ1, ŝ2, ŝ3) = p(ŝ1) · p(ŝ2) · p(ŝ3), (4.4)

97



where p(·)’s are corresponding probability distributions. The solution of the ICA

usually does not have a closed form, so one has to resort to optimization. Objective

functions that can quantitatively measure the degree of independence among ŝi’s

is needed. One such function, deeply rooted in the information theory [40], is the

Kullback–Leibler (KL) divergence. The “distance” from p(ŝ1, ŝ2, ŝ3) to
∏3

i=1 p(ŝi)

can be mapped to the range of [0, 1] to quantify the degree of independence.

In the problem of separating the sinusoid signal from the image, the indepen-

dence of the foreign sinusoid signal and the native image content allows the direct

application of the ICA. Consider one column from the image as an example. The

column of image data is composed of three vectors corresponding to three different

color channels. They are considered as the realizations for three observed random

variables, in which each row is one realization. After a 3-by-3 demixing process,

realizations of three underlying independent random variables are obtained. One

of them should correspond to the native image content, and another should corre-

spond to the sinusoid signal. Frequency estimation can be applied to the sinusoid

component to obtain a frequency estimate for deciding between 100Hz and 120Hz.

We can repeatedly apply the ICA toD different columns of the image, and then

fuse the frequency estimates from different columns into the final one. However, the

resulting recovered components for different columns are not aligned. For example,

sinusoid signals may be found in the first recovered component of dth column, ŝ
(d)
1 ,

and in the second recovered component of (d+1)st column, ŝ
(d+1)
2 . This inconsistency

in the index of the recovered component can be addressed by the independent vector

analysis (IVA) [41], an extension of ICA by considering correlations among different
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groups, or columns, in our example. The key change in the modeling assumption is

to replace each random variable appeared in Eq. (4.4) by the collection of correlated

random variables from D groups, i.e., ŝi ← ŝi = [ŝ
(1)
i , ŝ

(2)
i , · · · , ŝ(D)

i ]T , i = 1, 2, 3.

The pseudo code for the proposed ICA-based method is shown in Algorithm 1.

4.3.3 Entropy Minimization for Parametric-Surface–Removed Images

The ICA-based method does not fully utilize the prior knowledge that one of the

two signals to be separated is a sinusoid signal, which can potentially limit its

performance. In this section, we propose a method that explicitly exploits the

parametric property of the ENF signal, and that exploits the change of a statistical

property before and after ENF embedding.

One observation for constant signals corrupted by sinusoid signals is that,

their histograms after corruption become more spread. That is, the sole bin of the

histogram before corruption starts to split into multiple bins due to the positive

and negative additive values contributed by the sinusoid signal. This spreadness

of the histogram corresponds to the randomness of a random source/variable that

can be constructed from the histogram, and one measure for such randomness is the

entropy. Intuitively, before the corruption, the histogram is an impulse and therefore

with 0 entropy; after the corruption, the histogram spreads and therefore with an

entropy greater than 0. It is straightforward to establish a rigorous mathematical

result that adding a real-valued sinusoid signal with uniformly random initial phase

will increase the entropy of a constant signal. Simulation result in Fig. 4.2(a) reveals
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that 99% of all columns of an image have an increase in entropy after being corrupted

by sinusoid signals. From an image compression point of view, a constant region

is much easier to encode and therefore has lower entropy than a sinusoid-corrupted

region.

With the result of entropy change due to addictive sinusoid signal, we define an

objective function as the average of the entropy of columns of the sinusoid-surface–

removed image with three parameters: frequency f , amplitude A, and initial phase

φ0. Ideally, if the task is to estimate f , one needs the objective function to be jointly

convex over (f, A, φ0). However, the task is to differentiate images captured in 50Hz

countries from those captured in 60Hz countries, and therefore only two possible

choices of f exist. Incorporating this special structure of the problem can relax the

stringent joint convexity constraint to require the objective function merely convex

over (A, φ0). Fig. 4.2(b) of error surfaces for 25 columns of an image supports that,

when the frequency is a correct guess, the objective function are generally convex

in (A, φ0).

We now verify if the frequency decision task can be solved with the two prop-

erties mentioned above. Given an image corrupted by one of the two possible ENF

signals. We estimate (A, φ0) separately for f = 100Hz and f = 120Hz. When the

estimation is carried out for the correct frequency, the residue is roughly the native

image content per the convexity property; when the estimation is carried out for in-

correct frequency, the residue is a combination of the native image content, and the

sum of two sinusoid signals with different frequencies. Given that the native image

content has lower entropy than the content with additional sinusoid components,
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we choose the candidate frequency leading to the lower entropy as our decided fre-

quency. The pseudo code for the proposed entropy minimization method is shown

in Algorithm 2.

4.4 Experimental Results

In this section, we show the performances of our proposed methods. We first test

the two methods using synthetic data, which reveals that the entropy minimization

method provides better differentiation of the nominal ENF value than the ICA-

based method at weak ENF amplitudes. We then carry out and analyze an in-depth

experiment on the entropy minimization method with a real-world image dataset.

4.4.1 Results of Independent Component Analysis Based Method

We use six images that do not contain ENF traces as native images to synthesize

test images captured in 50Hz and 60Hz regions. Sinusoid signals with random initial

phases and a list of decreasing amplitude levels, [16, 14, 12, 10, 8, 4, 2, 1, 0.5] in the

same unit of pixel intensity with 256-level shades of gray were added to the native

images to generate a total of 108 (= 6×2×9) images. For each image, the proposed

algorithm of stochastic nature was applied ten times to better reveal performance

of the algorithm on the particular image. Performances for 50Hz and 60Hz images

were assessed separately.

The estimated probability of success decision, p̂ (aka the estimated success

rate), and its standard deviation quantifying the confidence of the estimate were
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shown in Fig. 4.3 as a function of decreasing ENF amplitude. The curve for 50Hz

images is always above 0.8 success rate, whereas for 60Hz images the performance

drops to random guesses when the amplitude is reduced to around 5. Taking im-

ages with both frequency values into consideration, we conclude that the proposed

method performs better than random guesses when the amplitude the sinusoid signal

is greater than 5.

As we examine the intermediate data of the method for the low amplitude

cases, we can see that the peaks of the power spectrum are often biased toward the

low frequency. This is because when the amplitude of the ENF signal decreases,

the power spectrum becomes increasingly dominated by the image contents that

contain slowly-changing, low-frequency signals. Therefore, at low ENF amplitude,

the frequency estimates by the ICA-based method are intrinsically biased toward low

frequency. Hence, the success rate curve for the candidate of the higher frequency,

i.e., 60Hz, better reflects the true performance of the proposed method.

4.4.2 Results of Entropy Minimization Method

4.4.2.1 Images with Synthetic ENF Traces

We use the six images as in Chapter 4.4.1 to synthesize test images captured in

50Hz and 60Hz regions. Sinusoid signals with random initial phases and a list of

decreasing amplitude levels, [16, 8, 4, 2, 1, 0.5], were added to the native images to

generate a total of 72 (= 6× 2× 6) images. For each image and each tested number

of columns used, the proposed algorithm of stochastic nature was applied five times.
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The estimated success rate as a function of decreasing ENF amplitude under

the different values of number of columns used (aka #cols) were shown in Fig. 4.4 for

50Hz and 60Hz images, respectively. It is revealed that the success rate for both cases

can be as high as 0.9 for ENF amplitude equals to 4. As the amplitude decreases

further, the success rate drops to random guesses when amplitude is around 0.5 for

50Hz images, and is between 0.5 and 1 for 60Hz images.

Examining the accuracy of the estimators for the nuisance parameters A and

φ0 can hint on the reliability of the proposed entropy minimization method. For

example, Fig. 4.5 shows that as the number of columns used increases, the mean

absolute error (MAE) generally decreases. Interestingly, both plots for 50Hz and

60Hz images show that increasing from one column to two columns leads to the

largest improvement in accuracy, and further increase in number of columns used

leads to marginal improvement.

4.4.2.2 Real Rolling Shutter Images with ENF Traces

When collecting real-world camera images, we do not have a direct control on the

amplitude of the embedded ENF signal. However, we can indirectly affect the

amplitude by changing the exposure bias parameter related to the exposure time of

each row. Fig. 4.1 shows four scenes captured under 120Hz lighting with different

exposure bias values. The amplitude of ENF with the same exposure bias across

different scenes does not seem to vary significantly. We acquired in Country A a

dataset with 60Hz ENF signal containing six scenes, each scene with exposure bias
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of [0,−1,−2,−3]; and in Country B a dataset with 50Hz ENF signal containing five

scenes, each scene with exposure bias of [0,−1.5,−1.8,−2.1,−2.4,−3].

Fig. 4.6 shows the performance of the proposed entropy minimization on real-

world camera images captured in a 60Hz ENF country. One can observe that com-

pared to using two columns to obtain a strong detection performance as in the

synthetic case of Chapter 4.4.2.1, 16 columns are needed in the real-world camera

image case. It is also revealed that as the level of exposure bias reduces from −2

to −1, the method breaks as the success rate becomes dominated by being biased

toward deciding 50Hz. Fig. 4.7 shows the estimates for the nuisance parameters

(A, φ0). It is revealed that the range of amplitude under exposure bias of −2 is

from 10 to 20, and that under exposure bias of −1 is below 10. Combining the two

aspects of the results, we anticipate that the current algorithm may start to fail on

real-world camera images when the amplitude is below 10.

Fig. 4.8 for real-world camera images captured in a 50Hz country similarly

shows that as the number of columns used increase, the success rate and estimation

accuracy improves. One interesting observation, as has been discussed when being

observed in Fig. 4.3, is that no matter how weak the ENF signal is, the success rate

for 50Hz images is never below random guesses. This suggests that even though the

proposed entropy minimization method does not explicitly estimate the frequency

that results in biasing toward low frequency, and the experimental results for images

with synthetic ENF traces do not show such bias, the bias does exist when the

entropy minimization method is applied on the real-world camera images. Further

investigations can be carried out to examine the impact of the modeling mismatch,
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e.g., when the ENF signal captured in the image is not a perfect sinusoid.

4.5 Discussions

It is important to recall the significant challenge in extracting ENF traces from a sin-

gle image, as it is extremely difficult to overcome the dominating visual content and

reveal the weak ENF traces from just one image. In contrast, the ENF extraction

from video [1,3] can take advantage of multiple frames to estimate the native visual

content and separate the ENF from the visual content. Despite the difficulty, the

results in Chapter 4.4 have shown promising capability by our proposed algorithms

as the first attempt to tackle the challenge.

The ICA and other source separation methods have been widely used in

biomedical signal processing applications for recovering independent signals from

mixed observations. In recent work on heart-rate signal extraction, ICA and other

source separation methods have been found effective extracting sinusoid signal-like

heart-rate signal from the periodic change of color in human faces [42, 43]. Our

proposed ICA-based decision method was partly inspired from such successes. As

the experimental results have shown, its performance is not as good as the entropy

minimization method that is specially designed from the problem of ENF signal

decision by making use the parametric signal form. Furthermore, the ICA-based

method assumes probabilistic sources and i.i.d. realizations, which is not true for

the ENF signal as the sinusoid is deterministic and sample points are dependent.

This violation of modeling assumption can contribute to its limited capability of
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signal separation, as hinted by the experimental results.

4.6 Chapter Summary

In this chapter, we explored the use of an invisible power signature, the ENF signal,

that may be embedded in images taken by CMOS cameras for geo-tagging purposes.

Specifically, we addressed the research question of whether the basic attributes of

an embedded ENF signal can be correctly identified. We proposed two algorithms,

the ICA-based method and the entropy minimization method. Experimental results

show that both methods are able to make high accuracy decisions when the ENF

traces are strong, whereas the entropy minimization method outperforms the ICA-

based method as ENF traces become weaker. In this proof-of-concept work, we have

demonstrated a unique computer vision capability of extracting invisible traces to

help narrow down the capturing geographic region of an image. The next step

would be to examine and improve the performance on a larger scale investigation

with more cameras and images, and explore additional location information that

can be inferred from the ENF traces in an image.
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Algorithm 1: The proposed ICA-based decision method for images with em-

bedded ENF traces.
input : An RGB image with embedded an ENF signal at fENF ∈ {100, 120} Hz

output: f̂ENF ∈ {100, 120} Hz

Step 1. Initialization

1 Randomly select D columns, each comprised of three color channels, as the

realizations for observed random variables {x(1)
c }3c=1, · · · , {x

(D)
c }3c=1

Step 2. Source Separation

2 Apply IVA to obtain realizations of independent random variables

{s(1)
c }3c=1, · · · , {s

(D)
c }3c=1

Step 3. Frequency Estimation

3 for c← 1 to 3 do

4 for d← 1 to D do

5 s← realizations of s
(d)
c

6 [F̂(c, d), P̂(c, d)]← PeakFreq&Spec(s)

end

7 µ̂f (c)← RobustMean(F̂(c, :), P̂(c, :))

end

Step 4. Decision

8 Decide f̂ENF between 100Hz and 120Hz based on the closest distance of µ̂f to these

two values.
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Figure 4.2: (a) Histogram for entropy increase for all columns of an image with em-

bedded ENF signals at 50 and 60 Hz with ten random phases. (b) 2-D

sample error surfaces as a function of amplitude A and initial phase φ0 for

25 equally-spaced columns of an image. Legend: More bluish or darker colors

mean lower error. (Figure is best viewed in color.)
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Algorithm 2: The proposed entropy minimization decision method for images

with embedded ENF traces.
input : An RGB image with embedded an ENF signal at fENF ∈ {100, 120} Hz

output: f̂ENF ∈ {100, 120} Hz

Step 1. Initialization

1 Convert the image to gray-scale

2 Remove the trend of overall intensity by RANSAC-based detrending

3 Randomly select D gray-level columns, as the realizations for observed random

variables: x(1), · · · , x(D)

Step 2. Optimization

4 farr ← [100, 120]

5 X(:, d)← realizations of x(d), ∀d

6 for k ← 1 to 2 do

7 br(k)← minA,φ0 objFunc (X, farr(k), A, φ0)

end

Step 3. Decision

8 Deicide f̂ENF between 100Hz and 120Hz based on the one gives a smaller bitrate br

Subroutine bitrate ← objFunc (X, f, A, φ0)

1 e(i)← A cos(2π f
frow
· i+ φ0), ∀i

2 X̂(i, j)← X(i, j)− e(i), ∀(i, j)

3 bitratearr(j)← calcEntropy(X̂(:, j)), ∀j

4 return mean(bitratearr)
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Figure 4.3: Success rate of using joint blind source separation to decide embedded ENF

signal at 50Hz and 60Hz. As the amplitude of the synthetic ENF reduces,

decisions for images with 60Hz ENF become worse; decisions for images

with 50Hz ENF does not drop significantly due to the bias contributed by

low spatial frequency image contents.
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Figure 4.4: Success rate for deciding images with (a) 50Hz ENF traces, and (b) 60Hz

ENF as a function of the ENF amplitude, and the number of columns used.
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Figure 4.5: MAE for the amplitude estimator for (a) 50Hz images, and (b) 60Hz images.
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Figure 4.6: (a) Success rate for deciding images with 60Hz ENF traces as a function

of the ENF strength and the number of columns used in constructing the

objective function. (b) MAE for the amplitude estimator.
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Figure 4.7: Estimates of nuisance parameters for images (one color per image) captured

in Country A (60Hz) with different levels of exposure bias. Circles “◦” and

star “*” correspond to an estimate leading to a correct and incorrect decision,

respectively.
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Figure 4.8: (a) Success rate for deciding images with 50Hz ENF traces as a function

of the ENF strength and the number of columns used in constructing the

objective function. (b) MAE for the amplitude estimator.
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5

Fitness Heart Rate Measurement Using

Face Videos

5.1 Chapter Introduction

Contact-free monitoring of the heart rate using videos of human faces is a user-

friendly approach compared to conventional contact based ones such as electrodes,

chest belts, and finger clips. Such monitoring system extracts from a face video a

1-D sinusoid-like face color signal that has the same frequency as the heartbeat. The

ability to measure heart rate without touch-based sensors is attractive and gives it

potentials in such applications as smart health and sports medicine.

Heart rate from videos was first demonstrated feasible in [44], and since then

most work [45–55] has been focusing on still/rest cases or those with relatively small

body motions. In contrast, less work [56–58] has been on large motion scenarios such

as fitness exercises. In [56], the authors did a proof-of-concept study showing that
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after using block-based motion estimation for a cycling exercise video, a periodic

signal can be extracted from the color in the face area. However, it was not verified

against a reference signal and the accuracy of the estimated heart rate was not

quantitatively examined. In [51, 57, 58], the authors built resilience against the

motion induced illumination changes by finding a particular direction in the 3-D

space of the RGB channels that was the least affected. They exploited the fact

that illumination changes due to the face motion and the heartbeat have different

causes, and analyzed using light reflection characteristics and face-camera geometry.

However, their use of the Viola–Jones face detector [59] and/or face-level affine

transform did not precisely align faces at the pixel level, which could add noise to

the extracted face color signals.

In this chapter, we aim to examine the best possible performance for fitness

exercise videos when the registration error is minimized for the color-based heart-

rate monitoring method. A block diagram of our proposed method is shown in

Fig. 5.1. We minimize the registration error using pixel-level optical flow based

motion compensation [60, 61] that is capable of generating almost “frozen” videos

for best extracting the face color signals. We use the RGB weights proposed in [57]

to resist unwanted illumination changes due to motion. We focus on the fitness

scenarios that heart rate often wildly vary at different stages of fitness exercises, and

present our results in widely adopted metrics [49,55,62] for comparison purpose.

The rest of the chapter is organized as follows. In Chapter 5.2, we propose our

video-based heart-rate monitoring method specially designed for fitness exercises. In

Chapter 5.3, we present the experimental results with comparisons if some modules

117



Face 
detection

Input Video

Stage 1: Registration

Motion 
estimation 
(opt. flow)

Cheek 
regions 

selection

Face color 
signal

Detrending 
& temporal 

filtering

Motion 
frequency 
notching

Spectrogram 
based 

frequency 
estimationHeart rate

estimate

Stage 2: Estimation

Spatial 
averaging

selected regions 
on aligned faces

21

Figure 5.1: Flowchart for the proposed heart rate monitoring method for fitness exercise

videos.

were otherwise replaced or turned off. Finally, Chapter 5.4 concludes the chapter.

5.2 Proposed Method

Fitness exercise videos may contain large and periodic motions. Our proposed

method focuses on a highly precise motion compensation scheme to allow gener-

ating a clean face color signal to facilitate the latter analysis steps, and uses the

resulting motion cue as the guide to adaptively remove ambiguous frequency com-

ponents that can be very close to the heart rate.

5.2.1 Precise Face Registration

A highly precise pixel-level motion compensation is a crucial step toward generating

a clean face color signal. We use an optical flow algorithm to find correspondences
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of all points on the faces between two frames. Optical flow uses gradient information

to iteratively refine the estimated motion vector field [60]. To avoid being trapped

in local optima, we introduce a prealignment stage to bring the face images roughly

aligned before conducting a fine-grain alignment using optical flow.

We use the Viola–Jones face detector [59] to obtain rough estimates of the

location and size of the face. We clip and resize the face region of each frame to 180

pixels in height, effectively generating a prealigned video for the face region.

The prealignment significantly reduces the lengths of motion vectors, which

in turn makes results of optical flow more reliable. In our problem, two face images

are likely have a global color difference due to the heartbeat. In order to conduct

a precise face alignment, instead of using the illumination consistency assumption

that is widely used, we assume more generally that the intensity I of a point in two

frames are related by an affine model, namely,

I(x+ ∆x, y + ∆y, t+ 1) = (1− ε) I(x, y, t) + b (5.1)

where ε and b control the scaling and bias of the intensities between two frames.

Both of them are usually small. Traditional techniques tackling the illumination

consistency cases such as Taylor expansion and regularization can be similarly ap-

plied. Our mathematical analysis showed that omitting the illumination change due

to the heartbeat, and applying a standard optical flow method leads to a bias term

that is at the same order magnitude compared to the intrinsic error (in terms of

standard deviation) of the optical flow system. We therefore use Liu’s optical flow

implementation [61] in our work.
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Figure 5.2: Face images from a same video segment before and after optical flow based

motion compensation using the same reference face.

We divide each video into small temporal segments with one frame overlap-

ing for successive segments. We use the frame in the middle of the segment as

the reference for optical flow based motion compensation. This would ensure two

frames being aligned do not have significant occlusion due to long separation in

time. Fig. 5.2 shows a couple of face images from a same segment before and after

optical flow based motion compensation using the same reference.

5.2.2 Segment Continuity and Cheek Regions Selection

With the precisely aligned face videos in short segments, we can estimate the face

color for each frame by taking a spatial average over pixels of the cheek for R, G,

and B channels, respectively. We call the three resulting 1-D time signals the face

color signals.

When concatenating segments into color signals, the last point of the current

segment and the first point of the next segment may have different intensities because

they correspond to the same frame whose motion compensation were conducted with

respect to two different references. To address this problem, the difference of the

intensity between the two points is calculated and the resulting value is used to bias
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the signal of the next segment in order to maintain the continuity.

The face color signals contain color change due to the heartbeat, and illumina-

tion change due to face motions such as tilting. The green channel was used because

it corresponds to the absorption peak of (oxy-) hemoglobin [44] that changes peri-

odically as the heartbeat, and source separation methods such as the independent

component analysis (ICA) were also used to separate the heartbeat component [46].

In [57], the authors proposed using the fixed linear weights (−1, 2,−1) for R, G,

B channels to best retain the heartbeat component while compensating the motion

induced illumination change. In our experiments, we found that the fixed weights

approach outperforms all other approaches, and we therefore adopt it in our pro-

posed method.

To determine the cheek regions for conducting spatial averaging, we construct

two conservative regions that do not contain facial structures and are most upfront

in order to avoid strong motion-induced specular illumination changes. We use facial

landmarks identified by the method proposed in [63] to facilitate the construction

of the cheek regions. Each cheek region is constructed to be a polygon that has a

safe margin to the facial structures protected by the landmarks. One example for

such selected cheek regions and corresponding face landmarks is shown on the face

in Fig. 5.1.
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5.2.3 Detrending and Temporal Filtering

Illumination variation caused by passersby and/or the gradual change of sun light

can cause the face color signal to drift, which is problematic for Fourier-based analy-

sis. Such slowly-varying trend can be estimated and then subtracted from a raw face

color signal, xraw ∈ RL, where L is the length of the signal. The trend is assumed to

be a clean, unknown version of xraw with a property that its accumulated convexity

measured for every point on the signal is as small as possible, namely,

x̂trend = argmin
x
||xraw − x||2 + λ||D2x||2 (5.2)

where λ is a regularization parameter controlling the smoothness of the estimated

trend, and D2 ∈ RL×L is a spare toeplitz second-order difference matrix. The

closed-form solution is x̂trend = (I + λDT
2 D2)−1xraw. Hence, the detrended signal is

xraw − x̂trend.

After detrending, we use a bandpass filter to reject the frequency components

that are outside a normal range of human heart rate. The filter of choice is an IIR

Butterworth with a passband from 40 to 240 bpm.

5.2.4 Motion Frequency Notching

In previous stages, we have designed our method to best remove the impact of

face motions: optical flow was used to precisely align the faces, and a color weight

vector that is least susceptible to motion was used to reduce impact of the periodic

illumination change due to the face tilting. In this part, we further apply a notching
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operation to remove any remaining trace. We combine motion information from the

face tracker and the optical flow to generate two time signals, one for the x-direction

and the other for the y-direction. For each time bin on the spectrogram, we conduct

two notch operations based on the dominating frequency estimated from the x- and

y- motion components.

Spectrograms in the first column of Fig. 5.4 show that motion traces exist

before notching, as highlighted by the arrows. We notice that the motion artifacts

can be even stronger than the heart rate (HR) traces. Spectrograms in the second

column of Fig. 5.4 show that the frequency notching method is effective and the HR

traces dominate after notching.

5.2.5 Robust Frequency Estimation

We design a robust frequency estimator for noisy face color signals from fitness

exercises. Instead of directly finding the peak (the mode) of the power spectrum for

every time bin that may result in a discontinuous estimated heart-rate signal, we

construct a two-step process to ensure the estimated signal is smooth.

We first find a single most probable strap from the spectrogram. We binarize

each time bin of the spectrogram image per the 95th percentile of the power spectrum

of that bin. We then dilate and erode the image in order to connect the broken strap.

We find the largest connected region using such standard traverse algorithm as the

breadth-first search and consider it as the most probable strap. A spectrogram and

the results of successive steps are shown in Fig. 5.3.
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We finally use a weighted frequency [64] within the the frequency range spec-

ified by the strap, Fi, as the frequency estimate for ith time bin. Denoting the

frequency estimate as f̂HR(i), we have

f̂HR(i) =
∑
f∈Fi

wi,f · f (5.3)

where wi,f = |S(i, f)| /
∑

f∈Fi
|S(i, f)|, and S(i, :) is the power spectrum at the ith

bin.

5.3 Experimental Results

Our proposed method was evaluated on a self-collected fitness exercise dataset to

demonstrate the efficacy on dealing with fitness motions, and results were presented

in widely adopted metrics [49,55,62] in the field of heart rate monitoring from videos.

The fitness exercise dataset has 9 videos in which 6 contain human motions

on an elliptical machine and the other 3 contain motions on a treadmill. Each video

is about 3 minutes long in order to cover various stages of a fitness exercise. Each

video was captured in front of the face by a commodity mobile camera (iPhone 6s)

affixed on a tripod or held by the hands of a person other than the test subject. The

gym was well-lit with several over-the-top florescent lights and with diffuse daylight

passing into the gym through glass walls. The heart rate of the test subject was

simultaneously monitored by an electrocardiogram (ECG)-based chest belt (Polar

H7) for reference.

Each video was divided into segments of 1.5 secs in order to guarantee small

scene changes within each segment for optical flow’s best performance. The regu-
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(a)

(b)

Figure 5.3: (a) A spectrogram with weakly connected frequency strap. (b) Results af-

ter the following operations (from top to bottom): binarization using 95th

percentile, dilation and erosion, and small regions removal.

larization parameter for the detrending on the face color signal was set to λ = 20

for 30Hz videos used in this experiment. The window length for spectrogram was

set to 10 secs with 98% overlap.

Representative results from two videos are shown in Fig. 5.4. Row 1 and row

2 show the spectrograms for the detrended and filtered face color signal before and
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Figure 5.4: Contrast of spectrograms before (row 1) and after (row 2) notching the

frequencies of fitness motions. Row 3: Heart rate estimates when compared

to the ECG-based reference measurement using Polar H7 chest belt. Left

column: from elliptical machine, URL: http://goo.gl/e0WCnc; Right column:

from treadmill, URL: http://goo.gl/8GLoLB.

after motion information guided notching. Row 3 shows the HR estimates obtained

using the robust frequency estimation algorithm. We plotted the HR estimates

with the reference HR, and found that the estimates are almost unbiased and are
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Table 5.1: Performance (in terms of mean and standard deviation in parentheses) of

proposed method and cases when some modules were otherwise replaced or

turned off.

Module combinations RMSE in bpm MeRate

tracker + JBSS (no op) 7.6 (5.7) 3.60% (2.87%)

tracker + fixed (no op) 5.6 (3.4) 2.61% (1.45%)

tracker + op + JBSS 1.3 (0.7) 0.65% (0.30%)

tracker + op + fixed (proposed) 1.1 (0.6) 0.58% (0.33%)

fluctuating around the reference. The relative error (MeRate) are as low as 0.29%

and 0.60% for the two videos, respectively. We included two demos, each of which

contains a raw video, a motion compensated video, and a synchronized HR estimate

and a reference HR.

We summarize the mean and standard deviation of the error measures for

all of our videos and the results are listed in Table 5.1. The averaged error for

the proposed method is 1.1 bpm in root mean-squared error (RMSE) and 0.58%

in relative error. The performance is slightly reduced if a more complicated joint

blind-source separation (JBSS) approach is used to search for the weights for R, G, B

channels, instead of using the more theoretically grounded fixed weights (−1, 2,−1).

We conducted additional experiments to check the impact when the optical

flow algorithm was disabled. In this case, the face images were roughly aligned

using the face tracker. The reported errors in Table 5.1 show significant performance
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reduction from 1.1 bpm to 5.6 bpm or from 0.58% to 2.61%. The estimation error

has increased about four times, which shows that a precise alignment is a crucial

step for the video-based heart-rate monitoring method for fitness scenarios.

5.4 Chapter Summary

In this chapter, we proposed a heart rate monitoring method for fitness exercise

videos. We focused on building a highly precise motion compensation scheme with

the help of the optical flow, and used motion information as a cue to adaptively

remove ambiguous frequency components for improving the heart rates estimates.

Experimental results show that our proposed method can give precise estimates at

an average error of 1.1 bpm in RMSE or 0.58% in relative error.
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6

Conclusions and Future Perspectives

In this dissertation, we have explored micro signal extraction with a focus on the

visual aspect using mobile devices. We have tackled three micro signal extraction

problems, whose challenge lies either in the relative magnitude or in the topolog-

ical scale, by synergistically applying and adapting signal processing theories and

techniques.

For micro signal extraction in forensics applications, we have investigated in-

trinsic microscopic feature of the paper surface for authentication purpose. We have

shown that it is possible to use the cameras and built-in flashlights of mobile devices

to estimate the normal vector field of paper surfaces. Perturbation analysis shows

that the proposed method is robust to inaccurate estimates of camera locations,

and using 6 to 8 images can achieve a matching accuracy of 10−4 in EER under

a lab-controlled ambient light environment. This finding can relax the restricted

imaging setup in prior art, and enable paper authentication under a more casual,

ubiquitous setting with a mobile imaging device. The proposed technique may facil-
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itate duplicate detection of important and/or valuable documents such as IDs, and

facilitate counterfeit mitigation of merchandise via detection of duplicated labels

and packages.

Our results from fitted probability density functions show that the uniqueness

of the surfaces is satisfactory in term of ROCs measure for practical identification

applications. It is yet of theoretical interest to understand how much inherent

randomness there exists in the normal vector field. The entropy widely used in the

fingerprint community can be one candidate measure. It can be beneficial to model

the normal vector field using a generative random field to gain further understanding.

The proposed identification method is based on flat surfaces, and it can be

of practical interest to extend the method to non-flat, but parametrically shaped

surfaces. Investigation in this scenario will not only allow the proposed method

work on flat surfaces such as papers and boxes, but also on wine bottles and other

parametrically shaped products. The current assumption of perspective distortion

can be generalized to compensate higher order geometric distortions.

The proposed authentication method is made possible by using a flashlight for

multiple images. The flashlight can be visually unpleasant for some users, and may

not be permitted in certain scenarios. If one can estimate the ambient light, and use

the estimated ambient light for normal vector field estimation, the user-friendliness

of the authentication method can be improved.

We have also explored the use of an invisible power signature, the ENF signal,

that may be embedded in images taken by CMOS cameras for geo-tagging purposes.

Specifically, we addressed the research question of whether the basic attributes of
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an embedded ENF signal can be correctly identified. We proposed two algorithms,

the ICA-based method and the entropy minimization method. Experimental results

show that both methods enable making highly accurate decisions when the ENF

traces are strong, whereas the entropy minimization method outperforms the ICA-

based method as ENF traces become weaker. In this proof-of-concept work, we have

demonstrated a unique computer vision capability of extracting invisible traces to

help narrow the capturing geographic region of an image.

The next step would be to examine and improve the performance on a larger

scale investigation with more cameras and images, and explore additional location

information that can be inferred from the ENF traces in an image. A more challeng-

ing problem is to estimate the exact value of the ENF frequency, instead of merely

deciding between 50Hz and 60Hz. A precise estimator can benefit the time-location

search with the presence of the reference ENF signals from various power grids.

For micro signal extraction in healthcare monitoring applications, we have

proposed a heart rate monitoring method using fitness exercise videos. We focused

on building a highly precise motion compensation scheme with the help of the op-

tical flow, and used motion information as a cue to adaptively remove ambiguous

frequency components for improving the heart rate estimates. Experimental results

show that our proposed method can give precise estimates with an average error of

1.1 bpm in RMSE or 0.58% in relative error.

It would be interesting to explore the possibility of recovering some features of

the ECG signal from the sinusoid-like heart-rate signal extracted from the face. Both

ECG and the heart-rate signal from the face result from the heartbeat, with ECG
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containing much more diagnostic information. It is beneficial to collect simultaneous

measurement of the ECG signal and the face color change signal in order to reveal

a possible relationship between the two.
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