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Abstract

The precise probability of a compound event (e.g. €1 V e2,e1 A e2) depends upon the known
relationships (e.g. independence, mutual exclusion, ignorance of any relationship, etc.) between
the primitive events that constitute the compound event. To date, most research on probabilistic
logic programming [20, 19, 22, 23, 24] has assumed that we are ignorant of the relationship between
primitive events. Likewise, most research in Al (e.g. Bayesian approaches) have assumed that
primitive events are independent. In this paper, we propose a hybrid probabilistic logic program-
ming language in which the user can explicitly associate, with any given probabilistic strategy, a
conjunction and disjunction operator, and then write programs using these operators. We describe
the syntax of hybrid probabilistic programs, and develop a model theory and fixpoint theory for
such programs. Last, but not least, we develop three alternative procedures to answer queries, each
of which is guaranteed to be sound and complete.

1 Introduction

Though there has now been considerable work in the area of guantitative logic programming 1,12, 27, 31,
17], there has been relatively little work in the area of probabilistic logic programming [20, 19, 22, 23, 24].
The reason for this is that while connectives in multivalued logics can be interpreted in terms of the
lattice’s LUB (for disjunction) and GLB (for conjunction) operators, the same is not true in the case
of probabilities. In particular, there is no single “formula” for computing the probability of a complex

event (e; A es) where €1, eq are primitive events. For instance:

1. If e, €2 are independent, then Prob(e; A e3) = Prob(e;) x Prob(es).

2. If we are ignorant about the relationship between ey, 3, then all we can say[22] is that Prob(e; A

ez) lies in the interval:

[max(0, Prob(e;) + Prob(ez) — 1), min(Prob(e; ), Prob(es))]

3. If we know that ey, es are mutually exclusive, then Prob(e; A e3) = 0.

4. If we know that event e; implies event e (called positive correlation), then Prob(e; A e3) =

Prob(e;).
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The above list represents a small fraction of relationships between events, each leading to different
possible probabilities for complex events such as (e; A es). The same holds for disjunctive events as

well.

In previous efforts, probabilistic logic programming has assumed a fixed probabilistic strategy[20,
19, 22, 23, 24], such as (i) ignorance of the dependencies between events, or (ii) independence between
events. However, an end user writing a probabilistic logic program should have the flexibility to write
rules that reflect his/her specific knowledge about dependencies between events. For instance, the user
should be able to express statements such as the two given below, that allow the user to explicitly

articulate the probabilistic dependencies between events.

e “If the chairman of company C sells his stock and the chairman retires, and we are ignorant of
the dependencies between these two events, then conclude that the stock in company C will drop,
with probability between 40-90%.”

e “If the chairman of company C sells his stock and the chairman retires, and the retirement implies
sale of stock (e.g. in an employee owned company), then conclude that the stock in company C
will drop, with probability between 5-20%.”

Both rules above refer to the same two events, viz. sale of stock by the chairman, and retirement of
the chairman. However, the first rules specifies what to conclude if we are ignorant of the relationship
between these two events, while the second explicitly encodes specific knowledge about the dependencies

between events. The rules lead to very different conclusions.

In this paper, we make the following contributions:

1. First, we define a general axiomatic notion of a probabilistic strategy. We show how a number of

well known probabilistic strategies are special cases of our definition.

2. We then define the concept of a hybrid probabilistic program (hp-program, for short). If the user
selects a set of probabilistic strategies ¢y, ..., for use in an hp-program (s/he may select these
in any way, as long as these selections satisfy the axioms defining probabilistic strategies), then

this automatically defines a set of conjunction and disjunction connectives.

3. Subsequently, we define a fixpoint semantics for hp-programs, a model theoretic semantics for
hp-programs, and a proof procedure, and prove that the fixpoint theory, model theory, and proof
theory all lead to equivalent characterizations. This applies to any selection of probabilistic
strategies made by the user, as long as these selections satisfy the axioms defining probabilistic

strategies.

2 Probabilistic Strategies (p-strategies)

In this section, we provide an axiomatic definition of probabilistic strategies (p-strategies). As we have
already seen in the Introduction (cf. the ignorance strategy), the probability of a compound event
may be an interval, rather than a point, even if point probabilities are known for the primitive events
involved. This was first shown by Boole[4] in 1854. Thus, p-strategies will be defined on intervals —

points, in any case, are special cases of intervals.
Let C[0, 1] denote the set of all closed intervals of [0, 1]. Let PC[0, 1] denote the powerset of C[0, 1].
If [a, b] € C[0, 1], [¢, d] € C[0, 1] then we write [a,b] <; [¢,d] if a < ¢ and b < d. A probabilistic strategy,

defined below, is a pair of functions that satisfy certain properties.



Definition 1 A probabilistic strategy (p-strategy) is a pair of functions: i =< c¢,d >, such that:

1. ¢:C[0,1] xC[0, 1] — C[0, 1] is called a probabilistic composition function salisfying the following
arioms:
(a) Commutativity : c([a1, b1], [a2, b2]) = ¢([az, b2], [a1, b1])
(b) Associativity : c(c([a1, b1], [az, b2]), [as, b3]) = ¢([a1, b1], ¢([az, ba], [as, b3]))
(¢) Monotonicity : ¢([a1, b1], [az, b2]) C e([as, bs], [az, b2]) if
[a1,b1] C [as, bs]

2.d:C[0,1] — 2C[0.1IxCI01] 45 cqlled a probabilistic decomposition function.

The function ¢ above 1s a composition function that generates a new interval from two input intervals.
In contrast, the decomposition function d takes an interval, as input, and returns as output, a set of
pairs of intervals. For now, there is no “connection” that ties ¢ and d together: this will be made later
through the concept of coherence (Definition 3). P-strategies are of two types, depending upon whether

they satisfy certain extra axioms.
Definition 2 Conjunctive and Disjunctive p-strategies

e A p-strategy < c,d > is called a conjunctive p-strategy if it satisfies the following axioms:

1. Bottomline : It is always the case that

c([ag, b1], [az, b2]) <t [min(ay, az), min(by, ba)]
2. ldentity : ¢([a, b],[1,1]) = [a, b]
3. Annihilator :¢([a, b],[0,0]) = [0, 0]

e A p-strategy < c,d > is called a disjunctive p-strategy if ¢ satisfies the following axioms:

1. Bottomline : [maxz(ay, az), max(by, b2)] < (a1, b1], [az, b2])
2. ldentity : ¢([a, b],[0,0]) = [a, b]
3. Annihilator : ¢([a, 8], [1,1]) = [1,1]

Intuitively, a composition function determines, given the probability ranges of two events, the probability
range of their (either and- or or-composition). A decomposition function may be thought of as the inverse
of composition: given the probability range of the result (and/or-composition of two events) it returns
the set of all possible pairs of initial probabilistic ranges for the two events. To ensure that this holds

we need the following definition:

Definition 3 A p-strategy < ¢,d > is called coherent if
(V[aa b] € C[Oa 1])(([&1, bl]a [Clz, b2]) € d([aa b]) iff c([ala bl]a [aZa b2]) = [aa b]

Throughout the rest of this paper, we will use the expression p-strategy to refer to coherent p-strategies,
1.e. only coherent p-strategies will be considered. Before investigating the properties of p-strategies, we

present some simple examples below.

2.1 Examples of P-strategies

In this section, we will present examples of various probabilistic assumptions that have been used
extensively in reasoning with uncertainty. In particular, we show how the definition of a p-strategy is

rich enough to capture these assumptions.



2.2 Independence

The strategy of independence may be described as the conjunctive p-strategy inc =< c¢ipne, dine. > and

the disjunctive p-strategy ind =< ¢;pq, ding >, where:

e The conjunctive p-strategy inc =< ¢;pe, dine > 18 given by:

Cmc([a1,b1], [az,bz]) = [a1az,b1bz]~
dinc(a,b) = {< a1, b1],[az, b2] > [(a1a2 = a and b1bs = b)}.

e The disjunctive p-strategy ind =< ¢jnq, ding > 18 given by:
eind([a1, b1], [az, b2]) = [min(1, a1 + a2 — ajaz), min(1, by + bz — b1b3)]
dina([a, b]) contains < [ay, b1], [az, bs] >€ C[0, 1] x C[0, 1]
iff
if a =1thena; +as—ajas > 1
ifa<1lthena; +as—ajas =a
if b =1thenby +by —biby > 1
if b=1then by +by—bibs =0

2.3 Ignorance

When nothing is known about the relationship between the events we are forced to use p-strategies
that reflect ignorance[22]. ige =< ¢jge, dige > below is a conjunctive ignorance strategy, while igd =<

Cigd, digq > 1s a disjunctive ignorance strategy.

o Conjunctive ignorance p-strategy

tgc =< Cige, dige >, Where
Cige(lat, 1], [az, b2]) = max(0, a1 4+ a» — 1), min(by, b2)]
dige([a, b]) contains < [aq, b1], [as, ba] >
iff
ifa=0thena; +ay <1
ifa>0thena; +as—1=a
(b=10y and by > b1) or (b= by and by > ba)
e Disjunctive ignorance p-strategy
tgd =< ¢jqa, diga >, where
ciga([ar, b1], [as, b2]) = [max(ay, az), min(1, by + b2)]
diga([a, b]) contains < [a1, b1], [as, ba] >
iff
(a = aj; and as < aj) or (¢ = az and a; < ag)
if b=1thenb +06,>1
if b<1thenb +b,="0



2.4 Positive Correlation

Sometimes we know that the fact that event e; has happened implies that some event es also had to
happen (f.e., one would assume that “Jon rides a bus” would imply “Jon bought a ticket”). Below are

conjunctive and disjunctive strategies for thies case.

o Congunctive p-sttrategy
pee =< Cpec, dpec >, Where

cpee([ar, b1, [az, b2]) = [min(ar, as), min(by, bo)]
dpee([a, b]) = {< [a1, b1], [az, bo] >}
iff
(¢ = aj and as > ay) or (¢ = az and a; > a3)
and

(b = bl and bz Z bl) or (b = bz and bl Z bz)

e Disjunctive p-strategy
ped =< ¢ped, dpeg >, where

pec([a1, 01], [a, b2]) = [max(as, az), max(bq, bo)]
dpee([a, b]) = {< [a1, b1], [az, bo] >}
iff
(a = aj; and as < aj) or (¢ = az and a; < ag)

and

(b = bl and bz S bl) or (b = bz and bl S bz)

2.5 Negative correlation

Sometimes, the fact that event e; took place means that event e could not possibly happen. F.e. if
“Jon came by bus” did happen, then “Jon came by train” did not. In this case we know that both
events could not possibly happen together, therefore there is no conjunction p-strategy for negative
correlation. However, it does make sense to ask what i1s the probability that one of the events took

place. Below is the disjunctive p-strategy for that.
ned =< eped, dned >
, where
neal[ar, b1], [az, b2]) = [min(1, ay + az), min(1, by + b2)]
dnea(la, b]) = {< a1, b1], [a2, bo] >}

such that:
ifa=1thena; +ay>1

1fb:1thenb1—|—b221

The following result, which is immediately verifiable from the definitions, asserts that the four

p-strategies described here are all coherent.

Proposition 1 inec, ige and pec are conjunctive coherent p-strategies.  Similarly, ind, igd, ped and

ned are disjunctive coherent p-strategies.



2.6 Properties of P-Strategies

In this section, we define various aspects of p-strategies that will play a key role in the definition of our

fixpoint semantics and our model theory. First, we need the following

Claim 1 Let i =< ¢,d > be a coherent p-strategy. Then a pair < [a1,b1],[az, b2] >€ d([a,b]) iff
< [a2ab2]a [alabl] >€ d([aab])

Proof. By commutativity of composition function if e([a1, b1], [z, b2]) = [a, b] then ¢([az, b, [a1, b1]) =
[a,b]. Since i is a coherent p-strategy, both < [ay, b1], [ag, b2] > and < [as, b3], [a1,b1] > are in d[a, b]. W
<

The simple claim above merely assures us that if < [ay,b1], [az2,b2] >€ d([a,b]), then so is
[Clz, b2]a [ala bl] >.

Claim 2 Let i =< ¢;,d; > be a coherent disjunctive or conjunctive p-strategy. Then ¢;([0,1],]0,1]) =
[0,1]. More generally, ¢;([z,1],[y,1]) = [#, 1] and ([0, ], [0,y]) = [0, 2].

Given a pair [a, b], the projection set of decomposition function d w.r.t. [a,b] is the set of all [a’, b']’s

such that [a’,b] can be composed with some [a”, "] via the composition function ¢ to yield [a, b].

Definition 4 Let i =< ¢,d >. The “decomposition projection set” wD is defined to be:
7Di([a,b]) = {[a’, 8] € C[0, 1]|(3[a”, b"] € C[0, 1])(< [a’,b'], [a”, b"] >€ d([a, b]))}

Intuitively speaking, projection functions are used as follows: suppose we know that the probability
of (say) some compound event (e; A eq) lies in the interval [a,b], when A is computed w.r.t. some
conjunctive p-strategy ¢ =< ¢,d >. In this case, #D;([a,b]) specifies the set of all possible probability
intervals for e; (and likewise for es) that could have led to (e; A ez2)’s probability interval being [a, b].
In other words, in order for (e; A es)’s probability interval to be [a,b], e1’s probability interval must

have been an element in 7 D;([a, b]), but we do not know which one.

As a consequence, e1’s probability may be as low as the smallest point in U[x ylerDi([a b])[x, y], or
as large as the largest member of U[x ylerDy(la b])[x, y]. This yields an interval for e;’s probability, and

motivates the following definition.

Definition 5 Let i =< ¢,d > be a p-strategy. A “mazimal interval” md for d([a, b)) is defined as

md;([a,b]) = min a'), max b')].
(L) [[a’yb’]EDz([ayb])( )[a’yb’]EDz([ayb])( )

When computing probabilities of primitive events from known probabilities of more complex events, we
need to be able to compute “maximal intervals” efficiently. The following theorem gives us a constant

time method to compute “maximal intervals” w.r.t. conjunctive and disjunctive p-strategies.

Theorem 1 Suppose i =< c¢,d > is any conjunctive coherent p-strategy and j =< ¢, d’ > is any
disjunctive coherent p-strategy. Then:

1. (V]a,b] € C[0, 1])(md;[a, b] = [a, 1]).

2. (¥]a,b] € C[0, 1])(md;[a, b = [0, ]).

Proof.



1. Let md;([a,b]) = [a',b']. Since 7 is conjunctive strategy, ¢;([a,b],[1,1]) = |
since ¢ is coherent, [1,1] € #D;([a,b]). Since b’ = MAaX; j1erp, ([a,8] )(I;), and
b =1.
Since ¢;([a,b],[1,1]) = [a,b] and i is coherent, [a,b] € wD;([a,b]). By the bottomline axiom,
(V[a,b] € 7D;s([a,b]))(a < a). Since [a,b] € 7D;([a,b]) a = Ming j1ep, ([a b])(d), and therefore,
a=a N

a,b] (Identity), and
[1,1] € 7D;([a,b]),

2. Let md;([a,b]) = [a',b']. Since ¢ is disjunctive strategy, ¢;([a, b], [0,0]) = [a, b] (Identity), and since
iis coherent, [0,0] € 7 D;([a,b]). Therefore, since ¢’ = = Ml e b ([a,b] )( a), and [0, 0] € 7 D;([a, b]),
a' = 0.

Since ¢;([a,b],[0,0]) = [a,b] and i is coherent, [a,b] € wD;([a,b]). By the bottomline axiom,

(V[a,b] € wD;([a,b]))(b > b). Since [a,b] € 7D;([a,b]) b = MAaX(; jerD, ([a,8] b)(i)), and therefore,
b =a N

3 Syntax of hp-programs

In hybrid probabilistic programs, we assume the existence of an arbitrary, but fixed set of conjunctive
and disjunctive p-strategies. The programmer may augment this set with new strategies when s/he
needs new ones for their application. The following definition says that each strategy has an associatated

conjunction operator, and a disjunction operator.

Definition 6 Let CON' T be a finite set of conjunctive p-strategies and DIST be a finite set of dis-
Junctive p-strategies. Let 8 denote CONJ UDIST.

o Let i € CONJ. Connective A; is called an i-annotated conjunction

e Let 1 € DIST. Connective V; is called an i-annotated disjunction

Hybrid basic formulas, defined below, are either conjunctions of atoms, or disjunctions of atoms (but

not mixes of both) w.r.t. a single connective.

Definition 7 Let i be a p-strategy, and Ay, ..., Ag be atoms. Then
Ay A As LU N Ay

and

AV ALV Ay

are called hybrid basic formulas. Suppose bf;(Br) denotes the set of all ground hybrid basic formulas
for the V; and A; connectives. Let bfs(Br) = Uiesbfi(Br). Similarly, bfecoxs = Uicconsbfi(Br)
and bfprsy = Usepzsgbfi(Br).

For instance, returning to our stock example, the formulas (ch-sells-stock(C) V;, ch-retires(C)) and
(price-drop(C) Ay stable(C)) are basic formulas involving the ignorance and independence p-strategies.
In order to proceed further we have to define a notion of annotaion. Definitions 8- 10 below were
introduced in [23].

Let L be a language generated by finitely many constant and predicate symbols. We assume that L
has no ordinary function symbols, but it may contain annotation function symbols for a fixed family of

functions interpreted as follows:



Definition 8 An annotation function f of arity n is a total function f : [0, 1] — [0, 1].

Let F7[0, 1] denote the set of all annotation functions of arity n and let F[0, 1] denote UL, F"[0, 1].

We assume that each annotation function is computable, in the sense that for any annotation function
;€ F™[0,1] there exists a fixed procedure that given valid input computes the value of f on this input

in a finite amount of time.

We also assume that all variable symbols from L are partitioned into two classes. We will call one class
object variable symbols and this class will contain the regular first order logic variable symbols. Second
class of variable symbols, annotation variables will contain variable symbols that can range over the

interval [0, 1]. These variables can apprear only inside annotation items, which are defined below:

Definition 9 An annotation item p is one of the following:

e a constant in the [0, 1] interval
e an annotation vartable symbol from L

e let f be an annotation function symbol from L of arity n and let 61, ...,6, be annotation items.

Then f(é1,...,6n) is also an annotation item.

Definition 10 Let p1 and py be annotation terms. Closed interval [py, ps] is called an annotation or

an annotation term.

Following the terminology introduced in [23] if an annotation term has no annotation variables in it,

we call it a c-annotation. Otherwise it will be called a v-annotation.
Example 1 [0,1] and [0.3,0.6] are c-annotations. [V1, 1] and [0.5 % V1, V1] are v-annotations.

Let By denote the Herbrand base of L. Since L contains no first-order logic function symbols, By is
finite.

Definition 11 A hybrid probabilistic annotated basic formula (hp-annotated basic formula) is an

expression of the form B : u where B 1s a hybrid basic formula and p is an annotation .

Informally speaking, B : ¢ may be read as “The probability of B occuring lies in the interval x.” For
example, the annotated basic formula (ch-sells-stock(C) Vi, ch-retires(C)):[0.4, 0.9] may be read as: “The
probability that the chairman sells stock or the chairman retires lies in the 40-90% interval, assuming
(no knowledge) ignorance of the relationship between these two primitive events.” Hybrid rules may

now be constructed from hybrid annotated formulas as follows.

Definition 12 Let By, By, ..., By be hybrid basic formulas. Let pg,p1, ..., pup be annotations, such
that every annotation variable (if any) occurring in po also occurs in at least one of py, ... pp . A

hybrid probabilistic clause (hp-clause ) is a construction of the form:

Bo:po— Br i Ao NANBy g

Informally speaking, the above rule is read: “If the probability of By falls in the interval p; and - - - the
probability of By falls within the interval py, then the probability of By falls within the interval pg.

Notice that the definition above contains a requirement that every annotation variable that appears in
the annotation for the head of the clause also appears in one or more annotations for the body of the

hp-clause. Therefore,



Example 2 o A:[Vi,Vi] «— is not an hp-clause.

o A:[V1,Va] — (B Aing C) : [0, Vi] A D : [Va, 1] is an hp-clause.

Definition 13 A hybrid probabilistic program (hp-program ) over set S of p-strategies is a finite set

of hp-clauses nvolving only connectives from §.

For example, the following four clauses constitute a simple hp-program using the p-strategies of ignorance

and independence.

price-drop(C):[0.4, 0.9] — (ch-sells-stock(C) Viga ch-retires(C)):[0.6, 1].
price-drop(C):[0.5, 1] —— (strike(C) Vina accident(C)):[0.3,1].

buy-stock(C):[0.7,1] — (price-drop(C) Ainc stable(C)):[0.3,1].

sell-stock(C):[0.5, 1] — (price-drop(C) Ain. unstable(C)):[0.4, 1] A have-stock(C):[1,1].
stable(c):[0.8,1] —.

strike(c):[0.4, 0.5] —.

unnstable(C):[V1, V2] — stable(C):[1 — V2,1 — V1].

:[0
:[0

The program above is a very simple example of a market decision making program. The first two
rules tell us when to expect that the stock of company C will drop. According to the first rule, it will
drop with probability between 40% and 90% if the probability that CEO of the company will sell the
stock or that he will retire is more than 60%. We use ignorance assumption here, because we do not
know if there is any connection between the two events. In fact, for different companies the correlation
may range from the two being independent, to one being a consequence of the other. The Ignorance
assumption here gives us a certain “lowest common denominator” in terms of relationship between the

two events.

The second rule states that if the probability that the company’s employees will go on strike or that an
accident happens on premises of the company is over 30%, then the probability that the stock of the
company will drop is at least 40%. It is more or less safe to assume that the causes for strikes and for

accidents to occur are completely different, therefore, the two events are independent of each other.

The next two rules deal with decision-making. The third rule of the program, says that we should buy
stock of company C' if its price drops, but (and) the compnay is generally known to be stable. We
want to assume that our knowledge of the stability of company C' is independent of the price drop
under consideration, therefore, the conjunction of the two events is made under the assumption of
independence. The fourth rule provides an alternative to the third by declaring that if the price drops
and there is a high probability that the company is unstable, the stock has to be sold. For this rule to
fire, however, we need one more condition: one can sell stock of company C' only if one owns this stock.
This is why we must know for sure (i.e. with probability 100% ) that we own this stock if we want to
sell it.

Two facts that follow describe our current knowledge of situation, expressed probabilistically. The first
fact states that company ¢ is stable with probability more than 80%. The second fact states that the
probability of a strike for this company is between 40% and 50%.

Finally the last rule can be used to establish the connection between the information about the stability
of company C and its nonstability. Indeed, if we assume that each company is either stable or unstable
(a reasonable assumption for our example), then, if we know that the probability that company C is
stable is p, the probability that C' is unstable (i.e., not stable) than would have to be 1 —p. We exend this
simple observation to the notion of probabilistic intervals to obtain that if (' is stable with probability
between V1 and V2 then it is unstable with probability between 1 — V2 and 1 — V1.



4 Declarative Semantics of hp-programs

Having completed the definition of the syntax of hp-programs, we are now in a position to develop the
declarative semantics of such programs. We will first develop a fixpoint semantics of hp-programs, fol-
lowed by a model theoretic semantics, and show that the two are essentially equivalent characterizations

of hp-programs. Later, in Section b, we will provide a proof procedure for hp-programs.

4.1 Fixpoint Semantics

Asusual, suppose we have a logical language L consisting of variable symbols, constant symbols, function
symbols, and predicate symbols, and that Br denotes the Herbrand base of this language. An atomic

function, defined below, merely assigns closed intervals to ground atoms.
Definition 14 A function [ : B — C[0,1] is called an atomic function .

Intuitively, if f(4) = p, then this means that according to the atomic function f, the probability of the
ground atom A lies in the interval ;. We may impose on ordering, <, on the set of atomic functions as
follows:

fi < fiff (VA€ Br)fi(4) 2 f2(A).
Intuitively, as one “climbs up” the <-ordering, the atomic functions involved assign “sharper” proba-
bility ranges to ground atoms. Though atomic functions do not, by themselves, make assignments to

basic formulas, they may be extended to do so,

Definition 15 Let f be an atomic function. Then the function
hy :bfs(Br) — C[0,1], is defined as follows:

hy(F)=f(F),if F € By
2. hy(Fy A Fa) = ¢i(hg(F1), hy(Fs)) where i =< ¢;,d; >€ CON'T
3. hy(F1V; Fu) = ¢;j(hf(Fr), hy(Fy)) where { =< ¢;,d; >€ DISJT
is called a hybrid formula function (based on the atomic function f).

Suppose HFF denotes the set of all hybrid formula functions. The <-ordering on atomic functions
may be extended to basic formulas in the obvious way: hy < ko iff (YF € bfs(Br))h1(F) D ha(F).

Lemma 1 1. If f, g are atomic functions such that f <g, then hy < hy.

2. < HFF,<> 1s a complete lattice.
Proof

1. Induction on the structure of formula F.

e Base Case. F'1s atom. Then by definition:
By (F) = F(F) 2 g(F) = hy(F) since f < g.

o Induction Step Let hy(F1) D hy(F1) and hf(F2) D hy(Fs). Let *; denote any conncetive of
aform A;,i € CONJ or V;,i € DIST. Let also (Fy *; F2) € bfs(Br).
In this case, by def. hy(Fy #; Fo) = ¢;(hp(F1), hy(F2)) and hy(F1 #; Fo) = ¢;(hy(F1), hy(F2)).

By monotonicity property of composition function,

hy(Frxi o) = ci(hyp (F1), by (F2)) 2 ci(hy (F1), hy(F2)) 2 ci(hg(F1), hy(F2)) = hy(F1 #; )
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2. Let H CHFF. We define least upper bound of H to be:
L(H)(F) = n{p|h(F) = pu,h € H} and greatest lower bound of H as:
N(H)(F) = closure(U{pu|h(F) = p, h € H}).
The top element of HFF is the function T such that VF € bfs(Br) h(F) = 0. The bottom
element is the function L such that VF € bfs(Br) h(F)=1[0,1]. A

Given any hp-program P, we wish to associate with P, an operator Tp that maps hybrid formula
functions to hybrid formula functions. We do this by first defining a (similar) intermediate operator Sp

that is used subsequently to define Tp.

Definition 16 Let P be a hybrid probabilistic program. Operator Sp : HFF — HFF is defined as

follows (where F is a basic formula):
Sp(h)(F) = NM where

M=Apo|F:p—Fr i N...ANFp:pn

is a ground instance of some clause in P ;0 is a ground substitution of annotation variables and

(V) < m)h(F}) C o} if M =0 Sp(h)(F) = [0,1].

The operator Sp is very simple. Given h € HFF and a basic formula F', it proceeds as follows: (i)
First, it finds all ground instances of rules in P such that the head of the rule instance is of the form
F : pand such that for each F; : p; in the body, h(F;) C py, i.e. h says that F;’s probability does in fact
lie within the interval p;. (i) It then takes the intersection of the intervals associated with the heads of
all rules identified in the preceding step. Note that in the above definition, it is entirely possible that
Sp(R)(F) could be the empty set. In this case, there is an intuitive inconsistency, because the formula
function Sp(h) is saying that F’s probability lies in the empty set. However, this is absurd, as the

empty set cannot contain anything. This will be discussed in further detail in Section 4.2.

Example 3 Consider our stock example. Let h assign the following values to the atoms:
h(ch-sells-stock(c)) = [0.8,0.8]
h(ch-retires(c)) =[0.1,0.1]
h(strike(c)) = [0.4,0.5]
h(price-drop(c)) = [0.7,0.9]
h(stable(c)) = [0.5,0.6]
Assume that for all other ground atoms A, A(A) = [0, 1].

Now, suppose we want to compute Sp(h)(price-drop(c)). There are two ground rule instances with

price-drop(c) as their head in the set of all groundizations of rules in P:
price-drop(c):[0.4,0.9] — (ch-sells-stock(c) V;4q ch-retires(c)):[0.6,1].
price-drop(c):[0.5, 1] — (strike(c) Ving accident(c)):[0.3, 1].

First we compute

o h((strike(c) Ving accident(c)) = e;na(h(strike(c)),accident(c)) = ¢;ng([0.4,0.5], [0, 1]) = [min(1, 0.4+
0 — 0.4+ 0), min(1,0.5+ 1 — 0.5+ 1)] = [0.4,1] C [0.3, 1]..

11



o h((ch-sells-stock(c) Vizq ch-retires(c))) = ¢;ga(ch-sells-stock(c),ch-retires(c))= ¢;44([0.8,0.8],{0.1,0.1]) =
[maz(0.8,0.1), min(1,0.84 0.9)] = [0.8,0.9] C [0.6, 1].

Since both rules will fire, M = {[0.4,0.9],[0.5,1]} and therefore, Sp(h)(price-drop(c)) = [0.4,0.9] N
[0.5,1] = [0.5,0.9].

However, the Sp operator is not quite “right.” The reason is that in order to determine F'’s
probability, it is not enough to merely look for rule instances whose head is identical to F'. For instance,
F might be (p Aig q). The probability of (p Aig ¢) may certainly be influenced by rules with head p : y/
because such rules may impose lower bounds on p’s probability — and hence on (p Ay ¢)’s probability.
Thus, Sp, by itself, does not allow us to accurately infer the probability associated with a formula F'.
Sp needs to be augmented appropriately in order to do so. However, before defining Tp, we present a
simple monotonicity property of Sp. Note that Sp is monotonic regardless of what p-strategies appear
in P.

Lemma 2 Sp is monotonic, i.e., if hy, hy are two formula functions and

h1 S h2 then, Sp(hl) S Sp(hz)

Proof.
Let F' be a hybrid basic formula. We have hy(F) < hy(F). By def. of Sp,
Sp(h1)(F) =NM;
My ={p|F p—Fy i A AFy g
is a ground instance of some clause in P ; (Vj < n)hi(F;) C p;}

Since hq(F;) C p; can be rewritten as p; < hy(F}), using transitivity of <, we obtain that for any
ground instance F': g —— Fy :pg A . A Fy oy of a rule of program P, such that p € My, p € My,
where

Mo ={p|lF :p—Fy i A AFy g
is a ground instance of some clause in P ; (Vj < n)ho(F;) C pj}

and therefore, My C M. Therefore, Sp(ho)(F) = "My = (NM1) N (My — My) = Sp(hy)(F) N (M3 —
M) C Sp(h1)(F)i.e., Sp(h)(F) < Sp(ha)(F). N

Let us now define the Tp operator.

Definition 17 Let F = Fi ;... %; Fp, G =G % .. .%; Gy, H = Hy *; ... %; Hp, where x € {A\,V}. We
will write G H = F iff:

1. {Gy,...,Gx} C{F1,..., Fp} and
{Hl,...,Hm}C{Fl,...,Fn} and

2. {Gy,..., Gy U{Hy, ..., Hy} ={F1,..., F,} and
3. {Gl,...,Gk}ﬁ{Hl,...,Hm}:@ and

J. G#F H%F.
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The definition above provides a convenient notation for expressing the fact that formula F' can be

partitioned into subformulas G and H exactly.

Definition 18 Let P be a hybrid probabilistic program. We inductively define operator Tp : HF F —
HFF as follows:

1. Let F' be an atomic formula.

o if Sp(h)(F) =
o if Sp(h)(F) £, then let

M={{po, ) (F* G)p—Fr:pr Ao APy iy

where * € {V,A} and o is a ground substitution of the annotation varables and i € S and (¥Vj <
n)h(F;) C pjo}. We define

Tp(h)(F) = (N{mdi(po)|(uo, i) € M}) N .Sp(h)(F)

2. (F not atomic) Let FF'= Fy *; ... %; Fyy.
Let M = {{puo, )| Di#;.. %Dy g «— E1: pu A .. Epy ¢ fim € ground(P); (Y1 < j <m)h(E;) C
i {F, .. Fot CH{D1,...Dr}n <k}
Then:

Tp(h)(F) = Sp(h)(F) 0 (N{ei(Tp(h)(G), Tp()(H))|G & H = F}) N (N{md;(po)|{po, i) € M'})

The Tp operator may be justified as follows: (i) Consider an atomic formula A: if Sp(h)(F) = 0,
then this means that an inconsistency (to be made more formal in Section 4.2) has occurred. For
instance, if we have an hp-program containing two facts a : [0,0] and a : [1, 1], then whatever h we pick,
Sp(h)(a) = 0, reflecting the (in this case flagrant) inconsistency in P. Thus, Tp(h) must also assign
0 to F. If Sp(h)(F) # 0, then it may be case that Sp(h) has assigned too “wide” an interval to F,
because it ignores rules that are “associated” with F'. As F' is atomic, there might be rules whose bodies
are satisfied by h, which include F' in its head. We must find all such rules, and “split” the rule head
into its I’ part, and the non-F part, say GG. Clearly, the rule head must be of the form (F' #; ) where
* is either A or V. As the rule’s body is satisfied by h, it means that the head of this rule, viz. (F *; G)
has probability in the interval x. The rule in question thus allows us to conclude that F’s probability
ranges anywhere in md(p) which is the “maximal interval” associated with F' w.r.t. the connection ;.
We repeat this for each rule with F' as part of the head.

(i) When F is not a ground atom, there can be three sources of bounds on F’s probability interval.
First source, taken care by Sp operator are the rules with F' as their head. Second source is information
that can be inductively obtained by computing Tp for every pair G, H of formulas such that G H = F
(notice that we require both G and H to be non-empty), and using ¢; to combine these values. Finally,
some rules of the program may contain F' as the proper subset. The probability range of F' from each
of such rules is determined by the md; function. Combining (intersecting) the ranges obtained from all

three sources we obtain the final value of Tp operator.

The following example demonstrates how Tp is computed.

Example 4 Let us consider the stock program P and the formula function h from the previous example.
Suppose we want to compute Tp(h)(price-drop(c)Ap..buy-stock(c)) (i.e., the probability of the fact that

the drop in price of stocks will result in purchases of new stock of company c).

13



It is easy to see that Tp(h)(price-drop(c)Apc.buy-stock(c)= cp..(Tp(h)(price-drop(c)), Tp (h)(buy-stock(c)),

as the heads of all rules in P are atomic.

Tp(h)(price-drop(c)) = Sp(h)(price-drop(c)) = [0.5,0.9] (see Example 3). Tp(h)(buy-stock(c)) =
Sp(h)(buy-stock(c)). To find the latter we consider the following ground rule in P :

buy-stock(¢):[0.7, 1] «— (price-drop(c) Asn. stable(c)):[0.3,1].

Recall from Example 3 that h(price-drop(c)) = [0.7,0.9] and h(stable(c)) = [0.5,0.6]. Then, A((price-
drop(c)  Asme stable(c))) = einc(h(price-drop(c)), h(stable(c))) = ¢;ne([0.7,0.9],[0.5,0.6]) = [0.7 =
0.5,0.9% 0.6] = [0.35,0.54] C [0.3, 1], which entails that Sp(h)(buy-stock(c))) = [0.7,1]

Finally, Tp(h)(price-drop(c)Ap..buy-stock(c)= ¢pe.(Tp(h)(price-drop(c)), Tp(h)(buy-stock(c)) =
epee([0.5,0.9], [0.7, 1]) = [min(0.5,0.7), min(0.9, 1)] = [0.5,0.7].M

It follows immediately from the definition of the Tp operator that, for any program P, formula function
h and formula F', Tp(h)(F) C Sp(h)(F). The following result says that regardless of which p-strategies

are considered in P, the Tp operator is guaranteed to be monotonic.

Theorem 2 Tp is monotonic,i.e., if hy, hy are two formula functions and hy < hy then, Tp(hy) <
Tp(hs).

Proof.
Let F' be a hybrid basic formula. We proceed by induction on rank(F).

e F is an atomic formula. We have hi(F) < ho(F). Let us assume that both Sp(hy)
Sp(h2)(F) are non-empty. (Otherwise, we must have Sp(h2)(F) = 0 which implies Tp(hs ]
and therefore, it must be the case that Tp(h2)(F) C Tp(h1)(F) ). By lemma Sp(hi)(F) <
Sp(ha)(F). Let us consider

My ={pu|(FxG)ipp— Fripn Ao A Fy t g
where * € {V, A} and i € § and (Vj < n)hi1(F;) C p;}

Since hq(F;) C pj can be rewritten as p; < hi(F}), using transitivity of <, we obtain that for
any ground instance F':p«—— Fy :pg Ao A Fy ¢ py of a rule of program P, such that p € My,
1 € My, where

Mo ={pu|(Fx; G):pp— Fripn Ao A Fy s piy

is a ground instance of some clause in P ; (Vj < n)ho(F;) C pj}

Therefore, My C M. But this means that M] = {md(p)|p € M1} C M) = {md(p)|p € Ma}.
Then NMj5 C NM{, i.e., NM{ < NMJ.

Since Tp(hy)(F) = Sp(h)(F)N(NM7), Tp(h2)(F) = Sp(h2)(F)N(NM3), Sp(h1)(F) < Sp(h2)(F)
and NM{ < NM), we obtain that
Tp(ho)(F) < Tp(ha)(F)

e Let the theorem hold for all basic hybrid formulas of ranks less than k. Let rank(F) = k and
F=KV;. .. V; Fybor F=F N ...\; Fy.

iFrom Lemma 1 we know that Sp(h1)(F) < Sp(h2)(F).
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Let GG, H be such formulas, that G & H = F. By the induction hypothesis, (since rank(G) < k
and rank(H) < k, we have Tp(h1)(G) < Tp(h2)(G) and Tp(h1)(H) < Tp(h2)(H), therefore, by

monotonicity axiom for p-strategies (applied twice) we have:
ci(Tp(ha)(G), Tp(h2)(H)) C ci(Tp(h)(G), Tp(h1)(H))

1.e.

¢i(Tp(hi)(G), Tp(h1)(H)) < ¢;(Tp(h2)(G), Tp(h2)(H))
From this is follows that

(N{ei(Tp(h)(G), Tp(h1)(H) |G H =F}) < (M{ei(Tp(ha)(G), Tp(h)(HN)G® H = FY)

Finally, let My = {Dy# ... % Dy 1 g — Byt 1 A ... Epy @ i € ground(P)| (V1 < j <
m)hi(E;) C pj; {F1, ..., Fat C{D1,...Dp},n < k} and My = {D1 % ...% Dy : p — Eq :
1A Ep gy € ground(P)| (V1 < j < m)ha(E;) C py; {F1,...,Fot C{D1,...Dyt,n < k}
Let M{ = u|D : p «— Body € My and M} = u|D : p «—— Body € M>

since hy < hy, we can claim that if some ground instance ¢' € My, C alsois in My, i.e., M1 C M>.

Therefore (N{plp € M3}) C (N{pulp € Mi}), e, (N{plp € M{}) < (M{ulp € Ms}).

Combining the established results into one, using the formula for Tp(h)(F') we obtain the desired
To(h)(F) < Tp(hs)(F).

Again, note that the above result applies regardless of what set of p-strategies occur in program P.

It is easy to see now that we may define the iterations of Tp as:

Definition 19 1. T = hy where L is the atomic function that assigns [0,1] to all ground atoms
A.

2. 1p = Tp(Tg_l) where v 1s a successor ordinal whose predecessor is denoted by o — 1.

3. Th = U{Tg|a < v}, where v is limit ordinal.

In [7] it was established that if all clauses in P have only constant annotations then {fp(Tp) = T¥,
where [fp(Tp) is the least fixed point of Tp. This, however, turns out to not be the case when P has

clauses with variable annotations. The follwoing example is from [23].

Example 5 Consider the program

A:[0,V/2] — A:[0,V]

B :[0,0] — A :[0,0]

Since TH(A) = [0, 1], after the first iteration TH(A) = [0,0.5]. At each subsequent iteration, we will get
the interval assigned to A narrow by half. Eventually Ty will assign [0, 0] interval to A. Then ng"’l
will finally assign [0, 0] to B.

4.2 Probabilistic Model Theory

We are now ready to define a logical model theory for hp-programs. For this purpose, hybrid basic
formula functions will play the role of an “interpretation.” The key inductive definition of satisfaction

is given below.
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Definition 20 Satisfaction. Let & be hybrid basic formula function, F' € bfs(Br), p € C[0,1]. We say
that

hiEF piff h(F)Cpu.

hEF tpu A AFy oy iff (V1<j<n)h |E Fj o p;.

hiEF :p—F iy N.. . ANFyp, iff either hi=F:por h [ Fyipi Ao ANFy i lin.

hiE Q) (F:p)iff h|EF(t/2): p for some ground term t.

o hl=(Va)(F:p)iff h|EF(t/x): p for every ground term t.

A formula function h is called a model of an hp-program P (h = P)iff (¥p € P)(h = p).

As usual, we say that F': p is a consequence of P iff for every model h of P, it is the case that h(F) C p.

Recall, from Section 4.1, that we can have cases where a hybrid formula function, A, could assign
0 to some formula. When h(F) = 0, h is “saying” that F’s probability lies in the empty set. This

corresponds to an inconsistency because, by definition, nothing is in the empty set.

Definition 21 Formula function h is called fully defined ff
V(F €bfs(Br))(h(F) #0).

The following important result fully ties together, the fixpoint theory associated with hp-programs,
and the model theoretical characterization of hp-programs, regardless of which p-strategies occur in the

hp-program being considered.

Theorem 3 Let P be any hp-program. Then:

1. h is a model of P iff Tp(h) < h.
2. P has a model iff lfp(Tp) is fully defined.

3. Iflfp(Tp) is fully defined, then it is the least model of P, and F : p is a logical consequence of P
WTH(F) C g

Proof.

1. Claim 1. Tp(h) < h= h = P.
Let I' € bfs(BL).
Let P' = {p € ground(P)|p isof form F:p—Fy:py A...AFy:pnt.
Two cases are possible. If P’ = (j then P has no rules with F in the head and therefore h |= P’
by def.

Let P' £ 0.
Consider arule p’ € P/. p'isofaform F:py+—— Fy :p1 A... A Fp : ptn. Two cases are possible.

o (V 1<j<n)(yy <h(F;))In this case, we know that
hiEFypg AL AN Fy o p,. We have to show that
hiEF :pu e h(F)Cp.
By our assumption, Tp(h)(F) < h(F), i.e., h(F) C Tp(h)(F). By definition of Tp and Sp
operators, it is always the case that Tp(h)(F) C Sp(h)(F'). We now show that Sp(h)(F) C p.
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By definition, Sp(h)(F) = NF where F = {p|F : p — Fy : p1r A ... A Fy @ py is a
ground instance of a rule in P;(V 1 < j < n)(u; < h(F};))}. We know that p’ : p € F,
therefore, Sp(h)(F') C p, which implies that Tp(h)(F) C p. Combining together we obtain:
ME) CTp(h)(F)C Sp(h)(F) C u which implies h = F : u, therefore, h = p'.

e (3 1< j<n)(h(F;) € p;) in this case h [ F} : p;, therefore, h £ Fy cpn AL AFy @ i,
and therefore, h | p’.

This proves the first claim.
Claim 2. h = P = Tp(h) < h.
Let F' € bfs(Br). We prove the claim by induction on rank(F).

e Base Case. rank(F) =0, i.e., I is atomic. Let

Fopg — ...

Py — ...

(F*Z'lGl)ZI/1<—...

(F*i, Gb) iU — ...

be the list of all rules from program P that contain F'in the head, such that, h satisfies their
bodies.
By definiton of Tp, Tp(h)(F) = p1 Npa O .. O gy Nmdy, (v1) O . ooNomdy, (V).
Since h satisfies all the bodies of these rules, 2 must also satisfy all the heads, i.e., (¥ 1<
) < K)A(F) € 1) and
(V 1<) <D(h(F *;; G) Cv;). From first set of inequalities we obtain: h(F) C p1 N pa N
SN P

From second set of inequalities: h(F x;, G) = ¢;;(h(IF"), h(G)) and therefore h(F') C md;,(v;).
This leads to h(F') C md;, (r1) N ...Nmd;, (Vm), which combined with previous result gives
us desired A(F) C Tp(h)(F) i.e., Tp(h)(F) < h(F).

e Induction Step. Let our claim hold for all basic formulas rank less than k. Let rank(F) = k
and F'= Ay *; ... %; Ap.
Let

Fopg — ...

Py — ...

be all the rules with F' as the head, such that h satisfies their bodies. We must therefore,
conclude that for each of these rules A satisfies its head, i.e., A(F) C gy Npa N ... N pp =
Sp(h)(F).

Let now G and H be basic formulas such that G & H = F. By definition, rank(yg) <
and rank(H) < k, therefore, by the induction hypothesis, h(G) C Tp(h(G)) and h(H

k
) C
Tp(h(H)). Since G&H = F, G+, H = F and therefore h(F) = h(G*; H) = ¢;(h(G), h(H)) C
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ei(Tp(R)(G), Tp(h)(F) (the last inequality is due to monotonicity property of composition

function). Therefore we conclude that
h(F) C (Mei(Tp(h)(G), Tp(h)(H))|G & H = F})

Let now
(F*iD1)3V1 — ...

(F#; Dg) vy — ...

be all the ground instances of rules in P such that h satisfies thier bodies and F is a part
of their heads. Since h |E P, h = (F* Dy) :vh,....,h |E (F# D) v, e, (V1 < j <
s)(h(F #; D;) C v;). But we know that A(F *; D;) = ¢;(h(F), h(D;)) C v;. For this to be
true it must be the case that h(F) C md;(v;). Therefore, h(F) C md;(vn) N ...Omd;(vs).

Combining the three inequalities together we obtain:

h(h) C Sp(F)N(N{e;(Tp(R)(G), Tp(h)(H)|GBH = FHN(md;(v1)N...Nmd;(vs)) = Tp(h)(F)
which proves the theorem .l

2. Let Ifp(Tp) be fully defined. Since we know that Tp(Ifp(Tp)) = {fp(Tp), it is also the case that
Tp(lfp(Tp)) < lfp(Tp). According to part I of this theorem, [fp(Tp) is a model of P.

Assume now that P has a model h. By definition of a model, A is fully defined. We know
that Tp(h) < h. By construction of [fp(Tp), and because of the monotonicity of Tp operator
lfp(Tp) < Tp(h). Therefore {fp(Tp) < h. This means that for all basic formulas F', h(F) C
lfp(Tp)(F). Since h is fully-defined, {fp(Tp) has to be fully defined too. B

3. Part 3 of this theorem is a direct corollary of Part 2 and theorem 2.

The second result above links consistency of P programs with the fully defined-ness property of T%.
Of course, if there exists an integer ¢ such that either SfD or ng are not fully defined, then 7% cannot
be fully defined either, and hence, P would not have a model.

5 Proof Procedure

At this stage, we have provided a complete description of what is a logical consequence of an hp-program

P. In this section, we develop three query processing procedures.

e The first query processing procedure (Section 5.2), termed hp-resolution, builds upon previous
approaches of Ng and Subrahmanian [22] by first requiring that programs P be compiled to a
new set, C'L(P). Queries are then processed by a process akin to linear input resolution, with the
difference that clauses from C'L(P) may be considered input clauses. This process suffers from

the major flaw that usually, construction of C'L(P) is prohibitively expensive.

e The second procedure (Section 5.3), termed H Rp-refutations, is more pragmatic. Rather than
requiring a compilation step, when a query @) is posed, H Rp refutations allow relevant parts of the
CL(P) to be dynamically constructed. This has two advantages over hp-refutations. First, hp-
refutations often “lose” right at the beginning as the compilation process may take a tremendous
amount of time and space. This does not happen with H Rp-refutations. Second, H Rp-refutations

only need a small part of C'L(P), not all of it, and this small part may be constructed as needed.
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e The third procedure (Section 5.4), expands upon HRp, to use tabling, as initially introduced

in logic programming by Tamaki and Sato[29]. This procedure assumes caches (or tables) are
bounded a priori in size - a situation certainly true in practical implementations where tables
cannot grow in an unbounded fashion. Furthermore, table management in probabilistic logic
programs is much more complicated than in ordinary logic programming for many reasons. First,
a query does not merely have a set of answers. Rather, a query has associated answer substitutions,
each of which has an associated probability range. As computation proceeds, these ranges may
get refined or sharpened — something that does not happen in classical logic programm tables.
Second, caches in our framework may contain basic formulas with associated probabilities. Such
caches implicitly contain probability ranges for basic formulas implied by the cached formulas,
as well as basic formulas that imply the cached formulas. A third difference between our work
and classical logic program tabling is that there are often many ways to update a table in the
case of probabilistic logic programs. We define cache update strategies, and show several different
such strategies. We show how H Rp-refutations may be extended with arbitrary cache update

strategies.

Unlike classical resolution, when dealing with annotated conjunctions and disjunctions, unifiers may

not be unique, as noted by Ng and Subrahmanian[22]. Before proceeding to describe our different notions

of resolution, we summarize observation of [22] below as it is necessary for the further development of

our proof procedure.

5.1

Unification in HPPs

As rules of clauses in hp-programs may contain annotated basic formulas, any notion of unification

must be able to handle unification of annotated basic formulas. In this section, we recapitulate from
[22] how this may be done.

Definition 22 e O is a unifier of annotated conjunctions

Cir=Ai1 N .. NAp, and Co =B Aj .. A Ay, it i,j € CONT and i = j and {A;0]1 <k <

e O is a unifier of annotated disjunctions

Di=A1V;..ViAp and Dy =By V...V Ay, iff i,j € DIST and i = j and {4;0]1 <k <
ni} = {BrOll <k < no}

In order to proceed we need to define a notion of maximally general unifier.

Definition 23 Let U(Cq, C3) denote the set of all unifiers of €y and Cs. Let ©1,05 € U(Cy, Cy).

1.

01 < 05 iff there exists a substitution 7, such that ©; = ©5~.

. @1 E@z 1ﬂ’®1 S@z and @2 S@l

Let [0] ={©' € U(C1,(1)|© = O},
[01] < [O5] iff there exists such y that [©1] = [©27].

[01] < [0,] iff [01] < [O:] and [0] # [01].

From the above definition, it is easy to see that = is an equivalence relation on elements of U(C, C5)

and < is a partial order on {[0]|© € U(C1,C2)}. We can define a notion of maximally general unifier.
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Definition 24 © € U(C4,C5) is a maximally general unifier (max-gu) of C} and Cs iff there is no
such other unifier ® € U(C4, Cy) that [0] < [©].

Lemma 3 If two basic formulas are unifiable then they have a maz-gu (not necessarily unique).

5.2 hp-Resolution

In general, in the presence of basic formulas, just “straight” resolution is not sufficient for query process-
ing. The reason is that to establish a basic formula, e.g. (p A; ¢) : pt, we might need to separately prove
p:p1 and ¢ : po and then combine py, s using the composition function associated with p-strategy i.
There are two ways to do this: (i) allow resolution not against hp-clauses in P, but against hp-clauses
in an expanded version of P, or (ii) introduce, in addition to resolution, new rules of inference corre-
sponding the the “expansion” steps alluded above. Both cases are essentially equivalent from the point

of view of completeness. In what follows we discuss the former procedure.

First, we add to P all “tautologies”. Any formula of the form F : [0,1] is a tautology as F's
probability certainly, lies in the [0, 1] interval.

Definition 25 Let P be an hp-program. Then REDUN(P) is defined as

REDUN(P)= PU{A:[0,1] — |A € B.}.

In addition to the above tautologies, we need to “merge” rules together and/or infer “implied” rules.
For example, if one rule has Fy : py in the head, and another has F5 : ps in the head, and these are
unifiable via max-gu ©, then these two rules may jointly provide some information on the probability
of (Fy A; Fy) where { is some p-strategy. Likewise, if (F} #; Fa) : p' is in the head of some rule, then
this rule certainly provides some information about F}’s probability, and Fb’s probability. The closure

of P, defined below, expands the rules in P by performing such merges and/or inferences.
Definition 26 Let P be an hp-program. Then CL(P) (closure of P) is defined as follows
e CLY(P) = REDUN(P).

e 1. For each pair of clauses Fy : py «—— Body; and Fy : uy «—— Bodys € CLj(P), such that
their heads Py : gy and Fy : pae are unifiable via max-gu © add clause (Fy : pq N po —
Bodyy A Body2)0 to CLj+1(P).

2. For each clause FYy *; Iy : y «—— Body € cr/ (P) add the following two clauses to CLj+1(P):
— I md; (1) — Body
— Fy i md; (1) — Body

3. For each two clauses (A #; ...%; Ag) : p1 — Bodyy and (By #; ...%; B;) : pt1 — Bodya €
CLj(P), k> 1,1> 1, add the clause

(A1 *; .k A ok Bk ook Bl) : Ci(/il,/,tz) «—— Body; A Bodys
to CLITL(P).

4. if A and B are atoms, and CL/ (P) contains clauses A : pty — Body; and B : ps «—— Bodys,
add

(A#; B) :e;j(p1, p2) — Body; A Bodys
for each i € CON'J UDIST to CLITH(P).
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o CL(P) =;5, CL/(P)

The following result says that the above steps are all sound. No new rule is produced that was not

already a logical consequence of P.
Lemma 4 For every clause C' € CL(P), P = C.
Proof. Let C be a clause in CL(P). We have to consider a number of possibilities.

o Base Case.

1. C' € P. Then by definition of =, P = C.
2. C ¢ P,C € REDUN(P). In this case C is of the form A : [0,1] —, and A is a ground

instance of an atom. Let h be a formula function, such that h = P. It is always the case

that ~(C) C [0, 1], which yields h = C.

e Induction Step.
Assume that for each clause C' € CLj(P), PEC. Let C € CLj+1(P) — CLj(P).
As C € CLj+1(P) - CLj(P), C must have been inserted into CLj+1(P) by the means of one of

the cases 1 — 4 from Def. 26. We have to consider each case separately.

1. Suppose C' was inserted by the means of case 1. Then there exist such clauses C; = Fy :
i1 «—— Body, and Cy = Fy @ s «—— Bodys, such that, Cy € CLj(P),C'z € CLj(P), Fy and

Fy are unifiable via max-gu ©, and
C=(Fy:p1Npa — Bodyy A Body:)©

We need to show that P = C. Suppose h is a model of P, i.e., h = P, and Cv is a ground
instance of C, such that A |= (Body; A Body;)©v. By the induction hypothesis, h | C}
and h | Cy, therefore, h |= €10y and h = C20v. As h = Body; 0y, we conclude that
h(F105) C p;1. Likewise we can conclude that hA(F207) C ps.
But since © is a max-gu of Fy and Fy, F10y = F307, and therefore A(F107) C p1 N o, ie.
hlE F1Oy:p 0 ps.

2. Suppose (' was inserted by the means of case 2. Then there exists such a clause (] =
(Fy #; F3) : p — Body € CLj(P), that either

C = F :md;(u) — Body

or
C = Fs : md; () — Body.

We will consider the former case, the latter case is symmetric. We need to show that P = C.
Let Cv be a ground insance of ' and let h = P and h |= Bodyy. By induction hypothesis,
h | C1, and therefore, h((Fy #; F2)y) € p. By the definitions of md; and h, this yields
h(Fy) Cmd;(p), i.e., h |E Fy :mdi(p).

3. Let C be inserted by the means of case 3. In this case, CL/ (P) will contain two clauses,
Cy = (A1 # ...% Ap) : g1 < Body; and Cy = (By *; ... % By) @ jia — Bodya, such that,
k>11>1, and

C= (A1 K, .k A kg Bk oLk Bl) : Ci(/il,/,tz) «—— Body; A Bodys.
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We need to show P = C. Let Cy be a ground instance of C' and let A = P and h |
(Body, A Bodys)y. By induction hypothesis, h = C and h = Ca, and therefore, h = Ciy
and h |= Ca7y. Since h = Body,y and h |= Bodyay, we have h |= (Ay *; ... %; Ap)y : g1 and
h = (By# ...k Br)y @ po, ie., h((Ay % ... Ag)y) C pa, and A((By #; ... % B;)y) C pa. But
then,

h((A1 x5 .. *zAk *iBl k.. kg Bl)’y) = Cl(h((Al k5. .*Z'Ak)’y), h((Bl x5 .. .*Z'Bl)’y)) g Ci(/il,/,tz),

which means h = C.

4. Finally, let C' be inserted in CLj+1(P) by the means of case 4. Then, CL/ (P) will contain 2
clauses, (1 = A : u1 —— Body, and Cs = B : uy «— Bodys, such that both A and B are
atomic, and

C = (A% B) :ci(p1, p2) — Bodyy A Bodys

for some p-strategy 1.

We have to show P |= C. Let Cy be a ground instance of C' and let A |= P and h |
(Body, A Bodys)y. By induction hypothesis, h = C; and kh = Cy, therefore, h = C1y and
h = Cyy. Since h | Body;y and h | Bodyay, we obtain h = Ay : py and h |E By : o, i.e.
h(Ay) C py and h(B7y) C p2. Hence, h((A *; B)y) = ¢;(h(A7), h(B7)) C ¢;(p1, pt2), which
means that h = C'y and thefore h = C. R

We now present a refutation procedure for query processing.

Definition 27 A query is a formula of the form 3(Fy : g A A Fyy @ i), where (V1 <4< n) (F; €
bfs(Br)). Fis need not be ground.

Definition 28 Suppose C =G : A — G : M A AGy :An ECL(P)and Q= 3(Fy cpu AL AFy
Hn) is a query. Let C' and @ be standardized apart. Let also G and F; be unifiable for some 1 <i < n.
Then

(P Ac APy i pic i NG M A NG i A AFip1 i1 A A Pyt 11n)0)
is an hp-resolvent of C' and @ iff:

1. © is a max-gu of G and F;

2. A0 and x;0 are ground and A© C p,;0

If © i1s a unifier but not necessarily a max-gu, we call the resolvent an unrestricted hp-resolvent.

Definition 29 Let @ = 3(Fy : p1 A ... A Fy : py) be an initial query, and P an hp-program. An
hp-deduction of @ from P is a sequence < @1,C1,01 > ... < Q,,Cy, 0, > ... where, Q = ()1, for all
i > 1, C;is a renamed version of a clause in CL(P) and @41 is an hp-resolvent of @; and C; via
max-gu ©;.

If the ©;’s are not restricted to be max-gu’s, we call the resulting sequence an unrestricted hp-deduction.
Definition 30 Let @ = 3(Fy : py A ... A Fy : py) be an initial query, and P an hp-program. An
hp-refutation of @ from P is a finite hp-deduction < ()1,C1,01 > ... < @, C,, 0, > where, the hp-

resolvent of @), and (. via ©, is the empty query. ©; ...0, is called the computed answer substitution.

We are now in a position to state the soundness and completeness of hp-resolution.
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Theorem 4 (Soundness of hp-refutation).
Let P be an hp-program, and Q be an initial query. If there exists an hp-refutation of @ = I(F :
HI A A Fy ) from P owith the answer substitution © then P ENY((Fy:pi A . APy py)0).

Proof. Let < 1,(1,01 > ... < @Qn,Cy, 0, > be our hp-refutation. We proceed by induction on n.

Base case: n =1

In this case @1 = F1 : 1, C1 =Gy 1 vy —€ CL(P), 10, = G101 and v; C py. Let h = P. By
the previous lemma, h |= Cy. Therfore, h |= ¥(Gy : v1) and in particular h |= Y((G; : v1)01). But,
since F10; = G101 and 11 C py, we get h EV(F1 @ p1)0q).

Induction Step.

Suppose the theorem holds for any hp-refutation < @2,C5%, 02 > ... < @Q,,Cy,0, >. Consider an
hp-refutation < @1,C1,01 >, < @2,05,02 > ... < Qn,Cr,0, > Let h = P. Let Q1 = (F} :
M1 A A Fo ) and Cp = G v —— Body be (a renamed version of) a clause in CL(P), such that
for some 1 < ¢ <m, F;0; =GOy and v C y;. Then, Q2 = (Fy :pr Ao . AFi_y : 1 ABody A Fiyq
Hit1 Ao A Fpy s i )©1. By induction hypothesis, h = V(Q202...0,),ie. h EV(Fy i AL AF_1
Hic1 A Body A Figq @ pisi A oo APy 0 pm)©105...0,). Therefore, h |E V(Fy @ g1 A ... A Fioq e
Hict A g1 t piga A oo oA Pyt i )©105...0,) and h |= Y(Body©; ...0,). Since also h = C1, we
obtain h = Y((GO1...0,) : v). Since v C py, we obtain h = V((F;01...0,) 1 y;)), i.e. h = V((F; :
#:)01...0,). Combiningwith h EV(Fy : pu A AP Z1 t pic i APt piga Ao AP - i )0102...0,,)
we get the desired: h EV(Q101...0,), ie, h EV(Q:0). B

In order to prove completeness thorem we have to establish first a number of facts. The following
two lemmas can be proved by a straightforward application of mgu and lifting lemmas for classical logic

programming in Lloyd[21].

Lemma 5 (Max-gu Lemma). Let @ be a query that has an unrestricted hp-refutation from an hp-
program P. Then, Q) has an hp-refutation of the same length and if ©1,...,0,, are the unifiers form
the unresiricted hp-refutation, and ©),... O, are the maz-gu’s from the hp-refutation, then, for some

¥0;...0, =0,...,0 4.

Lemma 6 (Lifting Lemma) Let P be an hp-program, Q be a query, © be a substitution. Let QO have
an hp-refutation from P. Then @) has an hp-refutation from P of the same length. Also, if ©1,...,0,
are the maz-gu’s from the refutation of QO and O, ..., 0!

m

then, for some substitution v: ©0;...0,, = 0},...,0! 7.

are the max-gu’s from the refutation of )

Now we can prove completeness theorem.

Theorem 5 (Completeness of hp-refutation ).
Let P be a consistent hp-program and Q' be a query. Then, if P |= 3(Q') then there exists an hp-
refutation of Q' from P.

Proof.

Since P |= 3(Q'), there exists such a ground substitution © that P = Q'©. Let Q = @Q'0. We will
prove that @ has an hp-refutation from P. By Lifting Lemma, ' will also have a refutation from P.

Let Q= Fy 1y A .. A Py @ f. Since P = @, it must be the case that P = Fy :p;, 1 <7< m.

Claim 1: Let F': p and G : v be ground annotated formuals which have hp-refutations from P. Then,
so does F':y NG v .
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Proof. Let < F': p,C1,01 > ... < QF C1,0; > be the hp-refutation for F': p. Let < G : v, Dy, 1 >
< Q,?, DyT'y > be the hp-refutation for G : v. Then, as F' : y and G : v are ground, the following
will be the hp-refutation for F/: pyAG v :

<F:pAG :v,C1,0, > < QNANG v, Cy,0, > ... < QFNG v, C1,0, >, <G v, D, Ty > ... < QY, Dy, >

. l(Claim 1).
Now all we have to prove is
Claim 2:Let P |=3(F' : p). Then there exists a refutation of F' .y from P.

Proof. Since P |= F’ : p, there exists a ground substitution ¢ such that P = F' : y. Let F = F'6.
We show that F' : u has an hp-refutation from P, and by lifting lemma so will F’ : p.

Since P = F : u, by Theorem 3, T¥(F) C p. By definition of T, there exists such an o < w that
T (F) C p. Consider the smallest such integer. We now proceed by induction on .

Base Case: o = 0. By definition of 75, To(F) = [0,1]. Therefore, p = [0, 1].

If F'is atomic, then, since F' is ground, a clause
C=F:[0,1] —

isin REDUN(P), and therefore it is in CL(P). Then, < F : u,C,e > (e is the empty substitution) is
the hp-refutation for F' : pu.

Let F' = (Ay % A2 *; ... *%; Ap), where each A; is atomic. Then, a set of clauses
CZ'EA]' 1[0,1]<—

is in REDU N (P) and therefore each of these clauses is in CL°(P). By definition of CL(P) and because
for any p-strategy ¢ ¢;([0,1],[0,1]) = [0, 1], CL"(P) (and therefore CL(P)) will contain the clause

CE(Al*ZAz*Z*ZAn)[O,l]%

(In fact we can argue that the above clause will be contained in CLIOg2(")(P)).
Then the refutation for F': y will be < F': p, C e > (e is the empty substitution).

Induction Step. Assume that for any formula G : p such that Tg_l E G : p, there exists a refutation &
of G: p from P.

We prove the claim by induction on the structure of F.
Base Case. F' s atomic.

Let M’ = {y'|G : p' — Body € P;T5~" | Body, where G is unifiable with F'}. We notice that
Sp(TE)(F) = {4 € M').
Let M = {u"|(G*; H) : ' «— Body € P;Ts~' = Body, where G is unifiable with F'}.

We have, by definition of T8 (a > 0):

Tp(F) = Sp(Tp~)(F) N (0{md(u")|u" € M"}) C

Two cases are possible.

1. |[M'UM"|=1.
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Assume M’ # (). Than, there is a unique rule C' = G : y’ «— Body € P, s.t., G unifies with F
T3~ ! | Body, and Sp(TH™1)(F) = p'. (Notice that C' € P implies C' € CL(P)). Let ©’ be the
max-gu for G and F'.

By induction hypothesis, there exists an hp-refutation < Body,C1,07 > ... < @, Cy, O > for
Body. Then

< F:p,C'0 > < Body,C1,0, > ... < Q1,Cr, 01 >
is the refutation for F : .

Assume now that M # (. Then there is a unique rule ¢/ = (G*; H) : 5/ Body € P, s.t., G unifies
with F via max-gu @', T~ |= Body and TP(TI(Da—l)(F) = md;(¢). Since C' € P, C" € CL°(P)
and therfore the following clause C” = G : md;(y') — Body is in CL*(P). By the induction
hypothesis, there exists an hp-refutation for Body: < Body,C1,01 > ... < Q,Cy, O >. Then

<F:u, 0", 0 > < Body, C1,01 > ... < Qp,Ck, Of >

is the refutation for F : .

MM >

Let ¢' = {G: p' «— Body € ]—7|Tlg_1 E Body}, where (G is unifiable with F', and
M ={p|G: ¢ — Body € C'}.

Let also C" = {(D *; H) : p"" «— Body € P|T§~' = Body}, where D is unifiable with F' and
M" ={p"|(D*; H) : i — Body € C""}.

Since all clauses from €’ are in P, they are also in CL°(P). Let

G py —— Body,

G i py —— Body,

be all clauses in C’. Since they are in CLY(P), we can claim that the clause

C1 =G0 :pin...np, — Body) A...A Body,
will be in CL*(P) (actually, it will already be in CLIOg2(s)(P)) where ©' is the max-guof Gy, ..., G,
(such a substitution must exist since we know that each of G; is unifiable with F).

Let
(D1 *iy Hy): py «—— BodyY

Dy, #; H,): ! — Body!!
, H r

r

be all clauses in €. Since C" C P, every clause in " is also in CL°(P). Therefore, the following
set of clauses:
Dy : md;, () +—— Body/

D, :md;, (p)!) «—— Body,
will be a subset of CL'(P). Then, we can claim that CL”(P) (or even CLIO&(T)(P) will contain

the following clause:
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Cy = D10" :md;, (W) ...0omd;, (1)) «—— Body} A ...\ Body!
where ©” is the max-gu for Dy,...D,.
Let [ = max(r, s). Since both C} € CLI(P) and Cy € CLI(P), the following clause

C =G0 pgin...npinmd;, (p))N...Nmd; () < Bodyj A...ABody. AN Body] A...A\Body]!

(where ©f is the max-gu of 10" and D;0") will be in CLH'l(P) and therefore, in CL(P).

Notice that gf N...Oplnmd;, (p{)N...0omd; (p) = TE(F) C p. Also, by induction hypothesis,
each Body} and Body}’ has an hp-refutation, therefore by Claim 1 of the theorem, their con-
junction has an hp-refutation. Let < @1,C1,01 >,...,< Q;,(,,0, > be such an hp-refutation.
Than the following is an hp-refutation for F : p :

<F p,CT><@,01,01>,...,<Q,,C,,0, >
where T is the max-gu of F' and G10].

Induction Step. Assume that the theorem holds for every formula of size less than k and let F =

A1 x; ... x; Ap, where Ay, ... Ay are atomuc.

Let C; = {G : ' «—— Body € P|T§~" | Body, where G is unifiable with F'}, and

My = {y/|G : ' — Body € Ca}.

Let C3{(D+;E) : "' «— Body € P|T5~" |= Body, where D is unifiable with F'} and My = {y"|(D*;E) :
w1’ «—— Body € Ca}.

Gy gy — Body,

Gy py — Body,

be all clauses in C;. Since they are in CLO(P), we can claim that the clause

CF =G0 :pyin...0p, — Body, A...A Body,

will be in CL*(P) (actually, it will already be in CLIOg2(s)(P)) where ©’ is the max-gu of Gy, ..., G;

(such a substitution must exist since we know that each of G is unifiable with ).

(D1 *;, Ev) @ pff —— BodyY

By E.) :p! — Body!
, H r

r

be all clauses in Cs. Since Cs C P, every clause in Cs is also in CLO(P). Therefore, the following set of

clauses:

Dy :md;, (1Y) — Body!

D, :md;, (p)!) «—— Body!!
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will be a subset of CL'(P). Then, we can claim that CL"(P) (or even CLIO&(T)(P) will contian the

following clause:

CY¥ =D0" md;, (1)) .. .0omd;, () — Body) A ... A Body!
where ©” is the max-gu for Dy, ...D,.

Now, consider any pair of basic formulas A and I such that H# & I = F. Since F = (H #; 1),
we must conclude that T3(F) = To(H *; I) = ¢;(Tg(H),T5(I). By our assumption T5(F) C pu
therefore, ¢;(TE(H),TE(I)) C p. Let v/ = TE(H),v"” = TE(I). We can now say that 79 = H : vy and
T8 =1 : va, such that ¢;(vy,v2) C pu.

By the induction hypothesis, there exist hp-refutations for H : v’ and I : v'1. Let
<H:v cHl ol s<Qf ¢l oll > . <@f cf eFf >
and
<I:v"clel><@lclel>. <@l clel>

be these respective hp-refutations. Let us look at the clauses Cff and C{. These clauses have to be of

a (respective ) form:
CH =1 N — Body

where, A C v/, Tg_l E Body't, H! is unifiable with H, and
CI=T1: X" — Body'

where, X' C v/, T8~ = Body", I' is unifiable with I.

By definition of hp-refutation, both C# and C{ are in CL(P). Let w be the smallest integer such that
both € € CLY(P) and Cff € CLY(P). Then we can claim that CLYT!(P) will contain the following

clause:

CHI = (H' %, ') : e;( N, \'") «— Body' A Body"

Since both Body and Body” have hp-refutations, so does Body’ A Body'. In fact, we know that
< ci el > . <Qf CH 6 >isan hp-refutation for Body' (Q¥ = Body') and < Q%,C% 04 >
.< QL cl el > is an hp-refutation for Body” (Q4 = Body". Then, the following will be an hp-
refutation for (H' #; I') : ¢; (X, X'):

< (H'I') (N, M), G0 >, < Body ABody”, G5, 04 > ... < Q' ABody", G, 0] >, < Body", (5,0} > .

Let now HZ{< Hy,I1 >,... < Hyp,, I, >} be all possible pairs of basic formulas such that for each
< H,I >¢ HLT H & I = F. By applying the reasoning above we will conclude that for each pair
< Hj,I; > CL(P) contains a clause

C]' = (H]/ *g I]/) : /\]' — BOdy]'

that A; C p, (Hj #; [7) is unifiable with F" and Hj is unifiable with H} and [; is unifiable with [},
Tg_l E Body;. Let ¢ = max{q1,...¢n}, where (V1 < j < m)(C; € CL¥(P) and C; ¢ CLE~H(P)).
Then CL/T™(P) will contain the clause

C¥=FOeLf M n...0\, — (Body, A ... Body,, )0
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where OF is the max-gu of (Hy #; I1),...9H, *; Iy). Since all Bodyi, ... Body,, have hp-refutations,
so does Body, A ...Body,, (and therefore Body; A ... Body,,)0L).

Now we can combine clauses C1', CL" and C¥" together into:

ct'=rFel i/ nu" N X — Body' A Body? A Body®

where ©f is a max-gu of the heads of C{') C¥ and CI', p/,u" and X are probability ranges of
Cf, Cf and CF respectively and Body', Body® and Body® are their respective bodies. It is clear
that (i) g/ N p”’ N A C pand (ii) CF € CL(P). We also know that there exists an hp-refututation
< Body' A Body? A Body?,CP,08 > ... < QB ,CB 08 > of Body' A Body®> A Body®. Then the

following is an hp-refutation for F : pu:

< F:p,CF 0> < Body' A Body® A Body® , CE 0P > . < QP CPB oF >
, where © is a max-gu unifier of F' and the head of C'*".

B(Completeness theorem).

5.3 HRp Refutations for HP-programs

Note that the hp-refutation procedure assumes that C'L(P) has been constructed prior to processing
a query. In practice, this is an extremely expensive process, both in terms of time taken to construct
CL(P), and in terms of space requirements. Even for propositional programs, P, it is easy to see that
C'L(P) can contain exponentially many clauses. The H Rp refutation framework described here avoids
the construction of C'L(P).

In the definition below, anytime a formula (F #; G) is written it is assumed that * € {A, V} and if * = A
then : € CON'J and if + = V then : € DIST.

Definition 31 Let P be an hp-program. We define a formal system H Rp as follows:

1. Azioms of HRp include all clauses from P and all clauses of the form: A : [0,1] «— where
A€ Bgr.

2. Inference Rules. There are 5 inference rule schemes in HRp.
e A-Composition: Let Ay, As € Br,

Ay iy —— Bodyy  As i ps «— Bodys
(A1 *; A2) : ¢i(p1, p2) — Bodyy A Bodys

o F-Composition: Let Ay,... Ay, By ...By € Br,

(A1 LV 71 Ak) L — BOdyl (Bl ET R 4 Bl) Do — BOd@/z
(A1 *; .k A ok Bk ook Bl) : Ci(/il,/lz) — BOdyl A BOdyZ

L-Decomposition R-Decomposition

e Decomposition:

(F*;G):u—— Body (F*;G):p—— Body
F:md;(u)— Body G:md; (u)— Body

o (larification:
g «— Bodyy  Fs :pg —— Bodys

(F1 : pa OV o «— Body; A Body,)©
of Fy and Fy are unifiable via maz-gu ©
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o Exchange: Let Ay,... A € Br, and let By, ..., By be a permutation of Ay, ... A

(A1 #; ...%; Ag) 1 p +—— Body
(Bl *i...*in):/,L%BOdy

3. A finite sequence Cy ...C, of hp-clauses s called an H Rp-derivation iff each clause C; is either

an axiom or can be constructed from one or more previous of Cy ...Cj_1 by applying one of the

inference rule schemes to them. We call clause C'. the result of the H Rp-derivation.

4. An hp-clause C' s derivable in HRp iff there exists such an HRp-derivation Cy,...C, that
C, =C. We denote it by P+ C'.

The following theorems tell us that the system of axioms and inference rules describing H Rp pre-
cisely captures the closure, CL(P), of P.

Theorem 6 (soundness of HRp) For each hp-clause C, if P+ C then C € CL(P).

Proof. We notice first that the set of all axioms of H Rp is exactly P U REDUN(P) = CL°(P). Next
we notice that the first 4 inference rule schemes preciesely match the 4 rules used to add new hp-rules
to CL(P). Finally, the last inference rule scheme (Exchange) does not create a new basic formula, it

Jjust rearranges the order of atoms in it. H
Theorem 7 (completeness of HRp) For each hp-clause C, if C € CL(P) then P+ C.

Proof. if C' € CL(P) then there exists such an integer n that CCL"(P) and C' ¢ CL"~*(P). We prove

the theorem using induction on n.

In the base case n = 0 and we know that CLO(P) = PN REDUN(P). As it was noticed in the

previous theorem, this set is exactly the set of all axioms of H Rp, therefore, C i1s an axiom of H Rp.

On the induction step, we consider a clause ' added to CL"(P). By Def 26 C' was added to CL"(P)
by one of four rules. Since these rules match exactly the four inference rules of H Rp and by induction
hypothesis for every clause C’CL"~!(P) we know that P Fgg, C’, we can obtain the proof of C' in
HRp by application of a matching rule to the same clauses. B

Definition 32 Let @ = 3(Fy : p1 A ... AFy : py) be an initial query, and P an hp-program. An
hp-refutation via HRp of @ from P is a finite sequence < (J1,C1,01 > ... < Q,,C,, 0, > where,

e Q1=Q
e (), 1s empty
e PH(Cjforall 1 <i<r

® (Q;41 is an hp-resolvent of (); and C; with max-gu ©;, for all 1 <7 < r.
The following results tell us that hp-refutations using H Rp are both sound and complete and thus,they
constitute the first sound and complete proof procedure for probabilistic logic programs (including
those in [22]) that do not require the construction of a program closure. Here is a simple example of

H Rp-refutations.

Example 6 (HRp refutations) Consider the HP-program P given by:
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a:[1,1] — (b Ainac Ainad) : [0.25, 1] A f : [0.5,0.9].
e:[1,1] — (b Ajng € Asna d) : [0.25, 1] A f: [0.5, 1].
(f Nina g) :[0.7,0.8] — b : [1,1].

(f Vigg) :[0.7,0.9] — .

b:[1,1] — (e Asnad) : [0.3,1].

¢:[0.6,1]— .d:[05,1] —.

A refutation of the query @ = a[0.9,1]A e : [1,1] is given by:
Q1=Q =a[0.9,1]Ae:[1,1]

P5Ci=a:[1,1]]— (bAinacAingd) : [0.25,1]A f: [0.5,0.9].
Q2= (b Ning e Ninad) 1 [0.25,1]A f:[0.5,0.9]A e : [1,1]
PEHCy= (b Nind € Nind d) : [03, 1] — (C Nind d) : [03, 1]
Q3= (cNipad) 1 [0.3,1]A f:[05,09Ae:[1,1]

PFCs= (C Nind d) : [03, 1]) —

Q4= f:]0.5,09Ae:[1,1]

Pt Cy=f:]07,09] — b:[1,1].

Qs =b:[1,1]Ae:[1,1]

P3Cs=b:[1,1] — (cAmad):[0.3,1].

Qs = (¢ Ninad) : [0.3, 1] A e [1,1]

PFCs = (C Nind d) : [03, 1]) —

Q7 =€ [L 1]

P>Cr=c¢: [1, 1] — (b Nind € Nind d) : [025, 1]/\ f: [05,01]
Qs = (b Nind € Nind d) : [025, 1] Af: [05, 01]

PECg= (b Nind € Nind d) : [03, 1] — (C Nind d) : [03, 1]
Qo = (¢ Aingd) : [0.3,1]A f:[0.5,0.1].

PECy= (C Nind d) : [03, 1]) —

Q10=f:[0.5,0.1].

Pt Crof :[0.7,0.9] — b+ [1,1].

Qll =b: [1, 1]

P35Cy=b:[1,1] — (¢ Anad) : [0.3,1].

Q12 = (¢ Aina d) : [0.3,1].

PECs = (C Nind d) : [03, 1]) —

@13=0

Theorem 8 (Soundness of H Rp)-Refutations).

Let P be an hp-program, and @) be an initial query. If there exists an hp-refutation via HRp of Q =
A(FL A ANFy ) from Powith the answer substitution © then P EV((Fy AL APyt 1)),

Theorem 9 (Completeness of H Rp)-Refutations).
Let P be a consistent hp-program and @' be a query. Then, if P |= 3(Q") then there exists an hp-
refutation of Q' from P via HRp.

Both theorems above follow immediately from the soundness and completeness theorems for HP-

refutation and soundness and completeness theorems for HRp w.r.t. CL(P). Before concluding this

30



section, we briefly reiterate that HRp refutations avoid compile-time construction of C'L(P) — an

expensive and time/space consuming proce3ss.

5.4 B-Cache

We are now ready to study efficient tabled query processing techniques for HPPs. In this section,
we will first define caches and bounded caches. Intuitively, a cache contains formulas with established
probability ranges. As resolution based processing of a query occurs, we will gain information about
certain basic formulas. These will need to be “added” to the cache. For this purpose, we will define in
this section, a family of updating strategies and introduce several example strategies. Later, in Section 6,
we will show how to use these tables and table update strategies for hand in hand with the resolution

based proof procedure.

5.4.1 Definitions

Definition 33 A cache is a finite sel of annotated basic formulas. If b is an integer, a bounded b-cache

1s a finite set of annotated basic formulas containing at most b atoms each.

Basically a b-cache is a collection of hybrid probabilistic basic formulas, where each formula’s length
is bounded by a constant b. Note that a b-cache may be considered to be a hybrid probabilistic logic

program all of whose clauses are “facts”.

Definition 34 Let T be a b-cache, F' be a basic formula (not necessarily ground). By T[F] we denote
the sel of all such pairs {< p,® >}, where © is a substitution for F' and p C [0,1] is the smallest
interval such that T EV(FO : p).

Intuitively T[F] represents what the b-cache T “thinks” about the possible probability ranges of in-
stances of F'. Note that if I is ground, then {u| < p,© >€ T[F]} is a singleton set. Without loss of

generality we will abuse notation in this case and write T[F] = p.

5.4.2 B-Cache Update strategies

We fix an integer b > 0, a language L and a set S of p-strategies. Let T[b, L, S] denote the set of all
possible b-caches over bfs(Br). Whenever b, L and § are clear from the context we may use 7 instead
of T[b, L, S].

We are interested in developing a resolution-based query processing procedure that is irredundant in the
sense that it does not “re-infer” facts that it has already inferred. In the case of classical logic programs,
caches and their utilization are relatively simple: caches contain facts; when performing resolution on
an atom A in the query, we check to see if A is subsumed by the cache (Tamaki and Sato[29]). An
alternative approach is due to Warren et. al. who check the cache for variants of A [8, 6]. However, in

the case of probabilistic logic programs, b-caches are somewhat more complicated.

As the resolution triggered by a query proceeds, more and more information is being established and
any time new information is obtained, we want to insert it to our b-cache. However simple addition of
a new basic formula to 7' is not enough, because as we add new probabilistic information - we might
be able to update the probability intervals for some other basic formulas already in 7. Also, the way

such an update can be defined is not unique - in fact, there is a variety of possible “intuitive” updates.

Rather than defining a specific update procedure, we first proceed by defining a notion of an update

strategy - a function that takes a b-cache and a basic formula as input, and returns a new “improved”
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b-cache. We will establish a number of basic properties of any update strategy. Later we will define a

number of specific update strategies that are “natural” or “intuitive”.

In the definition below C'N(S), where S is a set of hp-formulas denotes the set of all logical conse-

quences of 5.

Definition 35 A function f : 7T x bfs(Br) x C[0,1] — T s called a b-cache update strategy 1iff it

satisfies the following conditions:

(VT € T)(VF € bfs(BL))(Vu € C[0, 1))ON(T) C CN(f(T, F, p)) C ON(T U {F : p})

(VT € T)(VF’G € be(BL))(VF‘aV € C[Oa 1])f(f(Ta Faﬂ)’G’V) = f(f(T’G’V)aFaﬂ)

We will use the W operator to denote b-cache update functions. When more than one update function
is considered, we will use the Wy notation and annotate F with p. (so, f(T,F,p) =T W F : p).

Clause (1) in the above definition says that an update of a b-cache (i)should not decrease the amount
of information that is contained in, or that can be deduced from the b-cache but at the same time (ii)
may not increase the content of the table “unreasonably”. Notice that b-caches, by their very definition,
automatically pose certain restrictions on how complete the update is - if the length of an updating

formula is greater than b - the formula itself cannot be stored in the b-cache.

Clause (2) of the above definition says that the order in which we apply the update operator f
should not matter. Updating a table T" with F': y first and then G : v should be the same as doing it

the other way around.

Definition 36 Let P be an hp-program and T be a b-cache. We say that T is sound w.r.t. P (P=T)
iff for each formula F:p €T, PEF : pu.

Lemma 7 (soundness of b-cache update). Let P be an hp-program, T be a b-cache and I be a basic
formula. Let f be any b-cache update strategy. Then if P =T and P = F : p then also P ET Wy {F :

p}-

Proof. Let I/ : /' € T Wy F : p. Two cases are possible.

1. F':p/ € T. In this case, since P =T, it has tobe P |= F' : p/.

2. F' ! € T. We know that TWwy F:p|= F' 1 g/, hence F' : p/ € CN(T'W;y F : ). We also know
that CN(T'W¢ F : ) C CN(T U{F : pu}), therefore, we can obtain that TU{F : u} E F' : .
But, P =T and P = F : p implies that P = T U {F : pu}. Combining the obtained results
together we get P |= F/: .

In order to simplify notation we define an update of a b-cache with a finite set of formulas as follows:

Definition 37 Let S = {Fy : p1,...,Fn : pn} be a finite sel of annotated basic formulas and u- a
b-cache update strategy. We define

Ty S=(..(TW, 1 )Wy )Wy Byt py)
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The order in which we write Fjs is irrelevant as by the second property of the b-cache update strategy
(commutativity), the result of updating a b-cache with a sequence of basic formulas does not depend
on the order of formulas. (Second property establishes it for a sequence of 2 basic formulas. Tt is easily

extended onto the case of sequences of 3 or more formulas).

As the reader may notice, there are numerous functions that satisfy the definition of an update
strategy. Some of these are intuitively “more complete” than others. The following definition captures

this informal notion.

Definition 38 Let u and w be two b-cache update strategies. We say that u is more complete than w
(denoted w > w) it (VT € TY(VF € bfs(Br))(Vp € C[0, 1)CN(T Wy F : ) CON(T Wy F o p1).
Two update strategies v and w are equivalent Hf if both u > w and w > u.

An update strategy u is mazimally complete iff (Yw)(u > w).

5.4.3 Examples of Update Strategies

In this section, we will provide examples of a number of different update strategies, and show how these

strategies are related to one another w.r.t. the “more complete” relationship.

The first kind of update strategy we consider is a relatively simple “atomic update.”

Definition 39 (Atomic Updates) Let T be a b-cache and A be an atomic (not necessarily ground)
formula. An atomic update of T by A : u, denoted T Way {A : u} is defined as follows:

1. If T has no atomic formulas thal unify with A : p, then TWa {A:p} =TU{A: p—}
2. Otherwise we proceed in a number of steps:

(a) If there is a formula A :v in T, we replace it with A pNv.

(b) For all B, such that B:v € T and A© = B for some substitution ©, we replace B : v with
B:vnp.

(¢) Let B={v|B:veT A (FO)BO = A}. We add A: pnN(Nyepi{v}) toT.

(d) For each B such that B:v € T and AO®; = BOy for some substitutions ©1 and O3 we add
AOi:pnuv toT.

(e) If no clause for A had been added to T on previous steps, we add A =y to T.

An atomic update is not a “complete” b-cache update per se, but it will be at the core of a number of
updates that we consider further. Informally, we can describe this process as follows: we check to see
if T' contains any formulas unifiable with A. If not, we just add A : p to T. Otherwise, we look for
formulas in T which have probabilities that can affect the probability of A, or vice versa (see example).

Then we update probability ranges for all such formulas.

Example 7 Suppose our b-cache T'= {p(a,Y) : [0.4,0.7],p(b,Y") : [0.6,0.9], p(X,a) : [0.5, 1]} Below we
show the results of T'Wg A for a number of given atoms (we consider variables in all the formulas to be

standardized apart).
4 [Tw, A |

p(X,Y):[0.5,0.95] | {p(a,Y):[0.5,0.7],p(b,Y) : [0.6,0.9], p(X, a) : [0.5,0.95], p(X,Y") : [0.5,0.95]}
pla,a):[0.3,0.6] {p(a,Y) :[0.4,0.7), p(6,Y) : [0.6,0.9], p( X, a) : [0.5, 1], p(a, a) : [0.4,0.6]}
p(b, 7) :10.4,0.8] {p(a,Y) :[0.4,0.7], p(6,Y) : [0.6,0.8], p(X, a) : [0.5, 1], p(b,a) : [0.5,0.8]}




Atomic updates do not update annotated basic formulas that are not atomic, and hence the cache
that results from an atomic update may not be maximally complete, i.e. it may be the case that
TU{F :put EG p,but (TWe F:p) £ Gy for a non-atomic G. An alternative update strategy

that propagates such updates is given below.

Definition 40 (Propagated Atomic Update - pat) Let T be a b-cache, F' be a basic formula. A
Propagated Atomic Update strategy (pat) is defined as follows:

1. Fas atomic. T'Wyey F'opp =T Wg Foop.

2. Let F=(Fi#4...% Fp). TWeas Fip=(...(TWa F1: md;(pt)) War ...) Wz Fry - md; (1))

The Propagated Atomic Update strategy extends atomic updates onto complex formulas. Among the
advantages of this strategy are its relative simplicity and the fact that it works for any bound b on a
b-cache. However it is a rather weak strategy in the sense that because every updating formula gets
broken into the atoms that constitute it, some information about the probability ranges of associated

formulas is lost, i.e. it is not maximally complete. The following example demonstrates this fact.

Example 8 Let T' = 0 and F = (p(a) Ninc q(a)) : [0.3,0.6]. By definition T" = T Wy F' = {q(a) :
[0.3,1],p(a) : [0.3,1]}. Now we have T'[(p(a) Ninc g(@)] = [0.3%0.3,1] = [0.09,1] D [0.3,0.6]. However,
if the bound b is greater than 1, we could try to store I itself in T", and preserve information about its

probability range.
The above example suggests how the PAT strategy can be modified to be able to be more complete.

Definition 41 (Elementary b-cache update) Let T be a b-cache, F be a basic formula. We define

an elementary b-cache update strategy (denoted Wey as follows:

1. Case 1. |F| = 1. (F is atomic). TWep {F : pu} =T Woe {F : p}
2. Case 2. 1 < |F|<b. Let F=Fy*;...% Fr,. We proceed in a number of steps.
(a) Let T =T Wpoy F 2

(b) Let {< 11,01 >,... < v, O >C T'[F] be all pairs from T'[F], s.t., v € pn. We proceed in
steps. Let T =T'. Consider T® (0 > i < k) constructed. We now construct T*+1.

o IfFO;11 :v €T wereplace it with F' : pNv and declare the new b-cache to be the resull
of an update operation, i.e. Tt = (T° — {FO;41 :v})U{FO; 1 :pNv}
o IfFO; 1 :v &1 we declare T'H = T'U{FO;y1 : uNv}.
(c) Now we declare T Wey F o pp = TF.

3. Case 3. |F|>b. Let ' = Fy*;...%; P, Lel By, Bo,...By be all subformulas of F of size b.
Then TWepy {F : pu} = (T Wpar F) Wep Br - md;i(1) Wep ... Wep By - md; (p).

It is easy to notice that
Proposition 2 (i) (Vb > 0)eb > pat (i) el = pat

Elementary updates allow us to capture more information about the updating formula, but these updates

still allow for the loss of information as is shown in the following example.
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Example 9 Let T = and F = (A Aipe B Aine C) 1 [0.4,0.6] (A,B,C are ground atoms). Let T' =
T W3 F. By definition above T" = {(A Aine B Ninc C) :[0.4,0.6],A:[0.4,1], B:[0.4,1],C : [0.4,1]}.

We notice that T'[(A Aine B)] = [0.16,1]. However, it is clear that F' |= (A Age B) 1 [0.4,1].

The following strategy is more complete than elementary b-cache updates, but is also more difficult

to compute.

Definition 42 (Full b-cache update) Let T be a b-cache, I be a basic formula.
We define a full b-cache update strategy (denoted LirJfb) as follows:

1. Case 1. |F| = 1. (F is atomic). Ty, {F:py=TWg {F : pu}

2. Case 2. Let F = Fy *;...%; Fp,, m <b. Let By,...Bg be all the subformulas of F' of size < m.
We declare TLirJfb {F:ip}=TWe F:pWep By :mdi(p) Wep ... Wep By - md;(p).

3. Case 3. |F|>b. Let F = Fy %; ...%; Iy, Let By, Bo, ... By be all subformulas of F of size < b.
Then T&Jfb {F )} = (TWpet F)Wep B - mdi(p) Wep ... Wep By @ md; ().

The following result tells us that not only is the full b-cache update strategy more complete than
the elementary b-cache update strategy, it is also maximally complete when & is taken to be the size of

the Herbrand base of our underlying logical language L.

Proposition 3 (i) (Vb > 0)fb > eb (ii) fl = el = pat
(iii) Suppose k = |Br|. Then: fk is maximally complete update strategy.

As the reader may easily notice from the definitions, implementing atomic updates is easy, however,
PAT is more efficient than the elementary b- cache strateges eb, which get less efficient as b gets larger —
and finally, implementing the full b-cache strategies is hardest of all, with the efficiency of these updates

degrading as b increases. This will become apparent from the examples shown in the next section.

6 Proof Procedure for HP-Programs with b-cache

In the previous section, we presented a query refutation procedure for hybrid probabilistic programs.
We now modify that refutation procedure for the case of query resolution from an hp-program with
b-cache.

Informally the desired resolution procedure works as follows. Initially we have query @), program P, a
b-cache update strategy w and our b-cache T is (initially) empty. On each resolution step, we select a
basic formula F' : g from current query and perform a lookup for the probability range of this formula
in our current b-cache. To do this we have to compute T[F]. Once T[F] is computed we compare it to
w. In case T[F] C u we consider current resolution step done. Otherwise, we use refutation procedure
described above to perform one resolution step. If we decide that this resolution step resulted in proving
new basic formula, we use b-cache update strategy u to update current b-cache with one or possible

more new proven formulas.

Definition 43 Let Q = 3(Fy : iy A ... A Fy @ ) be an indtial query to hp-program P.

A b-cache supported initial query Q is defined as follows: Let Fi, v opay o Py 0 p, 1s an arbilrary
permutation of Fi :p1 A...ANFp : pn. Then Q=< (Fiypi, 0), o (Fo o, 0) >

Any initial b-cache supported query s a b-cache supported query.
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It is clear from the definition above that one query to P of size n can generate n! different b-cache
supported queries.

Definition 44 We difine a b-cache supporied resolvent and a b-cache update procedure simulteneously.
Let P be an hp-program, T - a b-cache and u - a b-cache update strategy. Let Q =< (Gy:p1,51), o (G
Hms Sm) >, where for each 1 < i < m, S; is a set (possibly empty) of annotated basic formulas (not
necesserily ground). Two cases have to be considered:

1. There exists < p,® >€ T[G1], such that, p C py. Let C = G10O : p ——. Then

Q' =< (G20 : §2,520), ..., (GO : pip, Sp©) >
is a b-cache supported resolvent of Q) and C.
A b-cache update procedure ¢, for this case can be defined as follows: (;SU(Q,T, C,0)=T4,50.

2. There is no < p',0" >€ T[G1], such, that p' C py. In this case, let C = G : XA «— Fy :
M A A F, Ay, Gy ounifies with G via maz-gu © and X C py. Let Fyy @ XN, o F 0 Ay, be any
arbitrary permutation of F1 : My A ... A Fy @ Ay

We define a b-cache supported resolvent of Q,C' and T to be:

Q' =< (F;,0: X\, 0), ..., (F;,0: X, , 510U {G10}),(G20 : p13,550),....(Gm® : iy, Sm©) >

A b-cache update procedure for this case is defined as follows:
(a) Body of C'is empty .
6u(Q,T,C,0) =T, G1O : AW, 510

(b) Body of C' is not empty.
$u(Q,T,C,0) =T

Definition 45 Let P be an hp-program, Q - a query and u - a b-cache update strategy.
A b-cache supported refutation of @ from P via HRp is a finite sequence

< QlaclaelaTl > < QT,CTaG)TaTT >

, where

. Ql 15 b-cache supported initial version of Q.
o1 =10

o Qr 15 empty.

e for each 1 < ¢ <y either PFC; orl; F C;.

e for each 1 <i<r, Qz’A+1 15 a b-cache supported resolvent of QZ and C; with maz-gu ©;.

o foreachl <i<r, Ty = ¢U(Qz’,Tz’,Ci,®i)
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Example 10 (2-cache supported hp-refutation with elementary update strategy) Let us
return to the hp-program shown in Figure 6 and the query considered there. We present below, a
refutation using a 2-cache (i.e. b = 2) using the strategy €2, i.e. elementary 2-cache update. The reader
will notice that using this strategy cuts the number of steps in the resolution by 3 steps, leading to an
over 20% reduction in the length of a proof. Note that had we used a different update strategy, the

reduction may have been different.

1. Q1 =< (a:[1,1],0),(e

1,1],0) >
Ti=0;P>3C,=a:[1,1]

o
, 1] — (b Nind € Nind d) : [025, 1] NS [05, 09]

2. Q2 =< ((bNingcNinad) :[0.25,1],0),(f : [0.5,0.9], {a: [1,1]}),(e: [1,1],0) >
Ty = @; PECy= (b Nind € Nind d) : [03, 1] — (C Nind d) : [03, 1]

3. Q3 =< ((¢ Ninad) :[0.3, 1], {(b Ajna ¢ Nina d) : [0.3,1]}), (f: [0.5,0.9],{a: [1,1]}), (e : [1,1],0) >
T3 =0;PF C3= (e Nina d) :[0.3,1]) «—

4. Qa=<(f:0.5,09],{a:[1,1]}), (e: [1,1],0) >
Ty = (T3 Wae (¢ Aing d) = [0.3,1])) Wae (b Agng ¢ Aina d) = [0.3,1] = {c : [0.3,1],d : [0.3,1],b :
[03, 1], (C/\ind d) : [03, 1], (b Nind C) : [03, 1], (b Nind d) : [03, 1]}
PrCy=f:[0.7,0.9] — b:[1, 1.

5. Qs =< (b:[1,1,{f:[0.7,0.9],a:[1,1]}), (e: [1,1],0) >
Ts = Ty; T[b) = [0.3,1] € [1,1];
P>35Cs=%b: [1, 1] — (C Nind d) : [03, 1]

—

6. Qs =< ((¢ Ninad) :[0.3,1],{b: [1,1], f: [0.7,0.9],a: [1, 1]}, (e: [1,1],0) >
T6 = T5 = T4;T6[(C /\ind d)] = [03, 1] g [03, 1]

7. Q7 =< (e:[1,1],0) >
Tr = (T Wae (¢ Ajna d) = [0.3, 1) Wae {6 : [1,1], f:[0.7,0.9],a: [1,1]} =
[1, 1], (C Nind d) : [03, 1], (b Nind C) : [03, 1], (b Nind d) : [03, 1], f:10.7,0.9
P>Cr;=e: [1, 1] — (b Nind € Nind d) : [025, 1]/\ f: [05,01]

8. Qs =< ((b NingcNinad) :[0.25,1],8),(f: [0.5,0.1], {e: [1,1]}
Ts = 1%; Tg[(b Nind € Nind d)] = [03, 1] - [025, 1]

9. Qo =< (f :[0.5,0.1],{e: [1,1]}

{c:[0.3,1],d:[0.3,1],5:
1,a:[1,1]}

10. Qo=10

The following two important results state that rrespective of which update strategy is used, b-cache
supported hp-refutations are guaranteed to be sound and complete. (Completeness assumes that the
program P is consistent). The proofs are straighforward, as we know that H Rp is sound and comlete,

and the b-cache supported hp-refutation via H Rp is just its conservative extention.

Theorem 10 (Soundness of b-cache supported hp-refutation via H Rp).

Let P be an hp-program, @ be an initial query, and W be any update strategy. If there exists a b-cache
supported refutation via HRp of @ = 3(Fy : p1 A ... A Fy : py) from P with the answer substitution ©
then PEY((F1 i pa Ao A Fy t4n)0O).

Theorem 11 (Completeness of b-cache supported hp-refutation ).
Let P be a consistent hp-program, Q' be a query, and W be any update strategy. Then, if P = 3(Q")
then there exists a b-cache supported hp-refutation of Q' from P via HRp.
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7 Related Work and Conclusions

Logic knowledge bases have been extended to handle fuzzy modes of uncertainty since the early 70’s
with the advent of the MYCIN and Prospector systems [10]. Shapiro was one of the first to develop
results in fuzzy logic programming [27]. Baldwin [1] was one of the first to introduce evidential logic
programming and a language called FRIL. Van Emden [31] was the first to provide formal semantical
foundations for logic programs that was later extended by Subrahmanian [28] and then completely
generalized in a succession of papers by Blair and Subrahmanian[3], and Fitting[12], Ginsberg [13], and
applied to databases by Kifer and Li [16] and Kifer and Subrahmanian [17]. All the above works did
not obey the laws of probability.

The first works in the area of probabilistic logic programming were due to Ng and Subrahmanian
who, in a series of papers [22, 24], developed techniques for probabilistic logic programming under
the assumption of tgnorance. Their work built upon earlier work on probabilistic logics due to Fagin,
Halpern and and others [11] and Nilsson [25].

In contrast, Kiessling and his group [14, 30, 26] have developed a framework called DUCK for
reasoning with uncertainty. They provide an elegant logical axiomatic theory for uncertain reasoning

in the presence of rules, and using the independence assumption.

Perhaps the most significant related work is the elegant recent work of Lakshmanan’s group [20, 19].
There are several differences between our approach, and theirs. First, the syntax is different. We
associate probabilities with atoms, while [20] associates two intervals with any rule. Second, their work
can be viewed as a refinement of [23] and [17]. In contrast, in this paper, we propose a generalization
of [22]. Third, our semantics is different. For instance, even if none of the hybrid p-strategies in our
paper are present, and we just have two facts a : [1,1] and a : [0,0] in P, our semantics would declare
an inconsistency, while theirs would imply a : [1, 1], but would not be inconsistent. This seems quite
counter-intuitive to us. They only allow atoms in the head and in the body, at most one conjunction
(corresponding to one of our basic formulas) is allowed. In contrast, we allow arbitrary basic formulas in
rule heads, and allow arbitrary conjunctions of basic formulas reflecting different probabilistic strategies
in the rule body. Fourth, our semantics uses arbitrary and new definitions of conjunction and disjunction
strategies in logic programs. Fifth, we have developed multiple alternative ways of processing queries
to probabilistic logic programs, include the use of arbitrary update strategies in cache-based query
processing. Lakshmanan and his colleagues complement our results with elegant query optimization
results. Developing such results in the general setting of hp-programs remains a significant challenge,

and will need to build upon the foundation laid by them in that arena.

There has been a substantial body of work on probabilistic extensions of relational databases, which
we do not discuss here as their relation to logic programming is not immediate. For the sake of
completeness, such works include[2; 5, 15, 18]. In particular, [18] proposes a set of axioms governing
probabilistic strategies. This differs from our work here in that the axioms are different and there is no

notion of a “decomposition” function associated with p-strategies.

In sum, our paper’s goal was to provide a flexible probabilistic logic programming framework. Past
approaches to logic programming with probabilities assumed that knowledge about all events in the
real world represented by propositional symbols or predicate symbols took one single form — either we
assumed ignorance of all dependences between such events (e.g. [22]) or we assumed independence (e.g.
in most AT expert systems). In practice however, a probabilistic logic programming system must be
flexible enough to allow the logic programmer to explicitly specify any domain specific knowledge he
has about dependences (or lack thereof) between events. Our approach allows this, through the use of

syntactic connectives that represent generalized conjunction/disjunction strategies. We have provided a

38



formal model theoretic and fixpoint semantics for such hp-programs and shown that they are equivalent.

We have further proposed three alternative execution paradigms for hp-programs.

In future work, we plan to build an hybrid probabilistic deductive database system that incorporates
many of the ideas proposed in this paper. This system will be built on top of our ProbView[18]
probabilistic relational database system. We hope to use this implementation, when complete, to
experiment with different probabilistic query evaluation algorithms such as those described here, as

well as probabilistic query optimization techniques that we hope to develop in the future.
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