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The above list represents a small fraction of relationships between events, each leading to di�erentpossible probabilities for complex events such as (e1 ^ e2). The same holds for disjunctive events aswell.In previous e�orts, probabilistic logic programming has assumed a �xed probabilistic strategy[20,19, 22, 23, 24], such as (i) ignorance of the dependencies between events, or (ii) independence betweenevents. However, an end user writing a probabilistic logic program should have the 
exibility to writerules that re
ect his/her speci�c knowledge about dependencies between events. For instance, the usershould be able to express statements such as the two given below, that allow the user to explicitlyarticulate the probabilistic dependencies between events.� \If the chairman of company C sells his stock and the chairman retires, and we are ignorant ofthe dependencies between these two events, then conclude that the stock in company C will drop,with probability between 40{90%."� \If the chairman of company C sells his stock and the chairman retires, and the retirement impliessale of stock (e.g. in an employee owned company), then conclude that the stock in company Cwill drop, with probability between 5{20%."Both rules above refer to the same two events, viz. sale of stock by the chairman, and retirement ofthe chairman. However, the �rst rules speci�es what to conclude if we are ignorant of the relationshipbetween these two events, while the second explicitly encodes speci�c knowledge about the dependenciesbetween events. The rules lead to very di�erent conclusions.In this paper, we make the following contributions:1. First, we de�ne a general axiomatic notion of a probabilistic strategy. We show how a number ofwell known probabilistic strategies are special cases of our de�nition.2. We then de�ne the concept of a hybrid probabilistic program (hp-program, for short). If the userselects a set of probabilistic strategies i1; : : : ; ik for use in an hp-program (s/he may select thesein any way, as long as these selections satisfy the axioms de�ning probabilistic strategies), thenthis automatically de�nes a set of conjunction and disjunction connectives.3. Subsequently, we de�ne a �xpoint semantics for hp-programs, a model theoretic semantics forhp-programs, and a proof procedure, and prove that the �xpoint theory, model theory, and prooftheory all lead to equivalent characterizations. This applies to any selection of probabilisticstrategies made by the user, as long as these selections satisfy the axioms de�ning probabilisticstrategies.2 Probabilistic Strategies (p-strategies)In this section, we provide an axiomatic de�nition of probabilistic strategies (p-strategies). As we havealready seen in the Introduction (cf. the ignorance strategy), the probability of a compound eventmay be an interval, rather than a point, even if point probabilities are known for the primitive eventsinvolved. This was �rst shown by Boole[4] in 1854. Thus, p-strategies will be de�ned on intervals {points, in any case, are special cases of intervals.Let C[0; 1] denote the set of all closed intervals of [0; 1]. Let PC[0; 1] denote the powerset of C[0; 1].If [a; b] 2 C[0; 1]; [c; d]2 C[0; 1] then we write [a; b] �t [c; d] if a � c and b � d. A probabilistic strategy,de�ned below, is a pair of functions that satisfy certain properties.2



De�nition 1 A probabilistic strategy (p-strategy) is a pair of functions: i =< c; d >, such that:1. c : C[0; 1]�C[0; 1]�! C[0; 1] is called a probabilistic composition function satisfying the followingaxioms:(a) Commutativity : c([a1; b1]; [a2; b2]) = c([a2; b2]; [a1; b1])(b) Associativity : c(c([a1; b1]; [a2; b2]); [a3; b3]) = c([a1; b1]; c([a2; b2]; [a3; b3]))(c) Monotonicity : c([a1; b1]; [a2; b2]) � c([a3; b3]; [a2; b2]) if[a1; b1] � [a3; b3]2. d : C[0; 1] �! 2C[0;1]�C[0;1] is called a probabilistic decomposition function.The function c above is a composition function that generates a new interval from two input intervals.In contrast, the decomposition function d takes an interval, as input, and returns as output, a set ofpairs of intervals. For now, there is no \connection" that ties c and d together: this will be made laterthrough the concept of coherence (De�nition 3). P-strategies are of two types, depending upon whetherthey satisfy certain extra axioms.De�nition 2 Conjunctive and Disjunctive p-strategies� A p-strategy < c; d > is called a conjunctive p-strategy if it satis�es the following axioms:1. Bottomline : It is always the case thatc([a1; b1]; [a2; b2]) �t [min(a1; a2);min(b1; b2)]2. Identity : c([a; b]; [1;1]) = [a; b]3. Annihilator :c([a; b]; [0;0]) = [0; 0]� A p-strategy < c; d > is called a disjunctive p-strategy if c satis�es the following axioms:1. Bottomline : [max(a1; a2);max(b1; b2)] �t c([a1; b1]; [a2; b2])2. Identity : c([a; b]; [0;0]) = [a; b]3. Annihilator : c([a; b]; [1;1]) = [1; 1]Intuitively, a composition function determines, given the probability ranges of two events, the probabilityrange of their (either and- or or-composition). A decomposition function may be thought of as the inverseof composition: given the probability range of the result (and/or-composition of two events) it returnsthe set of all possible pairs of initial probabilistic ranges for the two events. To ensure that this holdswe need the following de�nition:De�nition 3 A p-strategy < c; d > is called coherent if(8[a; b] 2 C[0; 1])(([a1; b1]; [a2; b2]) 2 d([a; b]) i� c([a1; b1]; [a2; b2]) = [a; b]:Throughout the rest of this paper, we will use the expression p-strategy to refer to coherent p-strategies,i.e. only coherent p-strategies will be considered. Before investigating the properties of p-strategies, wepresent some simple examples below.2.1 Examples of P-strategiesIn this section, we will present examples of various probabilistic assumptions that have been usedextensively in reasoning with uncertainty. In particular, we show how the de�nition of a p-strategy isrich enough to capture these assumptions. 3



2.2 IndependenceThe strategy of independence may be described as the conjunctive p-strategy inc =< cinc; dinc > andthe disjunctive p-strategy ind =< cind; dind >, where:� The conjunctive p-strategy inc =< cinc; dinc > is given by:cinc([a1; b1]; [a2; b2]) = [a1a2; b1b2]:dinc(a; b) = f< [a1; b1]; [a2; b2] > j(a1a2 = a and b1b2 = b)g:� The disjunctive p-strategy ind =< cind; dind > is given by:cind([a1; b1]; [a2; b2]) = [min(1; a1 + a2 � a1a2);min(1; b1 + b2 � b1b2)]dind([a; b]) contains < [a1; b1]; [a2; b2] >2 C[0; 1]� C[0; 1]i� if a = 1 then a1 + a2 � a1a2 � 1if a < 1 then a1 + a2 � a1a2 = aif b = 1 then b1 + b2 � b1b2 � 1if b = 1 then b1 + b2 � b1b2 = b2.3 IgnoranceWhen nothing is known about the relationship between the events we are forced to use p-strategiesthat re
ect ignorance[22]. igc =< cigc; digc > below is a conjunctive ignorance strategy, while igd =<cigd; digd > is a disjunctive ignorance strategy.� Conjunctive ignorance p-strategyigc =< cigc; digc >, wherecigc([a1; b1]; [a2; b2]) = [max(0; a1 + a2 � 1);min(b1; b2)]digc([a; b]) contains < [a1; b1]; [a2; b2] >i� if a = 0 then a1 + a2 � 1if a > 0 then a1 + a2 � 1 = a(b = b1 and b2 � b1) or (b = b2 and b1 � b2)� Disjunctive ignorance p-strategyigd =< cigd; digd >, wherecigd([a1; b1]; [a2; b2]) = [max(a1; a2);min(1; b1 + b2)]digd([a; b]) contains < [a1; b1]; [a2; b2] >i� (a = a1 and a2 � a1) or (a = a2 and a1 � a2)if b = 1 then b1 + b2 � 1if b < 1 then b1 + b2 = b4



2.4 Positive CorrelationSometimes we know that the fact that event e1 has happened implies that some event e2 also had tohappen (f.e., one would assume that \Jon rides a bus" would imply \Jon bought a ticket"). Below areconjunctive and disjunctive strategies for thies case.� Congunctive p-sttrategypcc =< cpcc; dpcc >, wherecpcc([a1; b1]; [a2; b2]) = [min(a1; a2);min(b1; b2)]dpcc([a; b]) = f< [a1; b1]; [a2; b2] >gi� (a = a1 and a2 � a1) or (a = a2 and a1 � a2)and (b = b1 and b2 � b1) or (b = b2 and b1 � b2)� Disjunctive p-strategypcd =< cpcd; dpcd >, wherecpcc([a1; b1]; [a2; b2]) = [max(a1; a2);max(b1; b2)]dpcc([a; b]) = f< [a1; b1]; [a2; b2] >gi� (a = a1 and a2 � a1) or (a = a2 and a1 � a2)and (b = b1 and b2 � b1) or (b = b2 and b1 � b2)2.5 Negative correlationSometimes, the fact that event e1 took place means that event e2 could not possibly happen. F.e., if\Jon came by bus" did happen, then \Jon came by train" did not. In this case we know that bothevents could not possibly happen together, therefore there is no conjunction p-strategy for negativecorrelation. However, it does make sense to ask what is the probability that one of the events tookplace. Below is the disjunctive p-strategy for that.ncd =< cncd; dncd >, where cncd([a1; b1]; [a2; b2]) = [min(1; a1 + a2);min(1; b1 + b2)]dncd([a; b]) = f< [a1; b1]; [a2; b2] >gsuch that: if a = 1 then a1 + a2 � 1if b = 1 then b1 + b2 � 1The following result, which is immediately veri�able from the de�nitions, asserts that the fourp-strategies described here are all coherent.Proposition 1 inc, igc and pcc are conjunctive coherent p-strategies. Similarly, ind, igd, pcd andncd are disjunctive coherent p-strategies. 5



2.6 Properties of P-StrategiesIn this section, we de�ne various aspects of p-strategies that will play a key role in the de�nition of our�xpoint semantics and our model theory. First, we need the followingClaim 1 Let i =< c; d > be a coherent p-strategy. Then a pair < [a1; b1]; [a2; b2] >2 d([a; b]) i�< [a2; b2]; [a1; b1] >2 d([a; b])Proof. By commutativity of composition function if c([a1; b1]; [a2; b2]) = [a; b] then c([a2; b2]; [a1; b1]) =[a; b]. Since i is a coherent p-strategy, both < [a1; b1]; [a2; b2] > and < [a2; b2]; [a1; b1] > are in d[a; b].The simple claim above merely assures us that if < [a1; b1]; [a2; b2] >2 d([a; b]), then so is <[a2; b2]; [a1; b1] >.Claim 2 Let i =< ci; di > be a coherent disjunctive or conjunctive p-strategy. Then ci([0; 1]; [0;1]) =[0; 1]. More generally, ci([x; 1]; [y; 1]) = [z; 1] and ci([0; x]; [0; y]) = [0; z].Given a pair [a; b], the projection set of decomposition function d w.r.t. [a; b] is the set of all [a0; b0]'ssuch that [a0; b0] can be composed with some [a00; b00] via the composition function c to yield [a; b].De�nition 4 Let i =< c; d >. The \decomposition projection set" �D is de�ned to be:�Di([a; b]) = f[a0; b0] 2 C[0; 1]j(9[a00; b00] 2 C[0; 1])(< [a0; b0]; [a00; b00] >2 d([a; b]))gIntuitively speaking, projection functions are used as follows: suppose we know that the probabilityof (say) some compound event (e1 ^ e2) lies in the interval [a; b], when ^ is computed w.r.t. someconjunctive p-strategy i =< c; d >. In this case, �Di([a; b]) speci�es the set of all possible probabilityintervals for e1 (and likewise for e2) that could have led to (e1 ^ e2)'s probability interval being [a; b].In other words, in order for (e1 ^ e2)'s probability interval to be [a; b], e1's probability interval musthave been an element in �Di([a; b]), but we do not know which one.As a consequence, e1's probability may be as low as the smallest point in S[x;y]2�Di([a;b])[x; y], oras large as the largest member of S[x;y]2�Di([a;b])[x; y]. This yields an interval for e1's probability, andmotivates the following de�nition.De�nition 5 Let i =< c; d > be a p-strategy. A \maximal interval" md for d([a; b]) is de�ned asmdi([a; b]) = [ min[a0;b0]2Di([a;b])(a0); max[a0;b0]2Di([a;b])(b0)]:When computing probabilities of primitive events from known probabilities of more complex events, weneed to be able to compute \maximal intervals" e�ciently. The following theorem gives us a constanttime method to compute \maximal intervals" w.r.t. conjunctive and disjunctive p-strategies.Theorem 1 Suppose i =< c; d > is any conjunctive coherent p-strategy and j =< c0; d0 > is anydisjunctive coherent p-strategy. Then:1. (8[a; b] 2 C[0; 1])(mdi[a; b] = [a; 1]).2. (8[a; b] 2 C[0; 1])(mdj[a; b] = [0; b]).Proof. 6



1. Let mdi([a; b]) = [a0; b0]. Since i is conjunctive strategy, ci([a; b]; [1;1]) = [a; b] (Identity), andsince i is coherent, [1; 1] 2 �Di([a; b]). Since b0 = max[â;b̂]2�Di ([a;b])(b̂), and [1; 1] 2 �Di([a; b]),b0 = 1.Since ci([a; b]; [1; 1]) = [a; b] and i is coherent, [a; b] 2 �Di([a; b]). By the bottomline axiom,(8[â; b̂] 2 �Di([a; b]))(a � â). Since [a; b] 2 �Di([a; b]) a = min[â;b̂]2�Di ([a;b])(â), and therefore,a0 = a.2. Let mdi([a; b]) = [a0; b0]. Since i is disjunctive strategy, ci([a; b]; [0;0]) = [a; b] (Identity), and sincei is coherent, [0; 0] 2 �Di([a; b]). Therefore, since a0 = min[â;b̂]2�Di([a;b])(â), and [0; 0] 2 �Di([a; b]),a0 = 0.Since ci([a; b]; [0; 0]) = [a; b] and i is coherent, [a; b] 2 �Di([a; b]). By the bottomline axiom,(8[â; b̂] 2 �Di([a; b]))(b � b̂). Since [a; b] 2 �Di([a; b]) b = max[â;b̂]2�Di ([a;b])(b̂), and therefore,b0 = a.3 Syntax of hp-programsIn hybrid probabilistic programs, we assume the existence of an arbitrary, but �xed set of conjunctiveand disjunctive p-strategies. The programmer may augment this set with new strategies when s/heneeds new ones for their application. The following de�nition says that each strategy has an associatatedconjunction operator, and a disjunction operator.De�nition 6 Let CONJ be a �nite set of conjunctive p-strategies and DISJ be a �nite set of dis-junctive p-strategies. Let S denote CONJ [DISJ .� Let i 2 CONJ . Connective ^i is called an i-annotated conjunction� Let i 2 DISJ . Connective _i is called an i-annotated disjunctionHybrid basic formulas, de�ned below, are either conjunctions of atoms, or disjunctions of atoms (butnot mixes of both) w.r.t. a single connective.De�nition 7 Let i be a p-strategy, and A1; : : : ; Ak be atoms. ThenA1 ^i A2 : : :^i Akand A1 _i A2 : : :_i Akare called hybrid basic formulas. Suppose bfi(BL) denotes the set of all ground hybrid basic formulasfor the _i and ^i connectives. Let bfS (BL) = [i2Sbfi(BL). Similarly, bfCONJ = [i2CONJ bfi(BL)and bfDISJ = [i2DISJ bfi(BL).For instance, returning to our stock example, the formulas (ch-sells-stock(C) _ig ch-retires(C)) and(price-drop(C) ^in stable(C)) are basic formulas involving the ignorance and independence p-strategies.In order to proceed further we have to de�ne a notion of annotaion. De�nitions 8{ 10 below wereintroduced in [23].Let L be a language generated by �nitely many constant and predicate symbols. We assume that Lhas no ordinary function symbols, but it may contain annotation function symbols for a �xed family offunctions interpreted as follows: 7



De�nition 8 An annotation function f of arity n is a total function f : [0; 1]n �! [0; 1].Let Fn[0; 1] denote the set of all annotation functions of arity n and let F [0; 1] denote [1n=0Fn[0; 1].We assume that each annotation function is computable, in the sense that for any annotation functionf 2 Fn[0; 1] there exists a �xed procedure that given valid input computes the value of f on this inputin a �nite amount of time.We also assume that all variable symbols from L are partitioned into two classes. We will call one classobject variable symbols and this class will contain the regular �rst order logic variable symbols. Secondclass of variable symbols, annotation variables will contain variable symbols that can range over theinterval [0; 1]. These variables can apprear only inside annotation items, which are de�ned below:De�nition 9 An annotation item � is one of the following:� a constant in the [0; 1] interval� an annotation variable symbol from L� let f be an annotation function symbol from L of arity n and let �1; : : : ; �n be annotation items.Then f(�1; : : : ; �n) is also an annotation item.De�nition 10 Let �1 and �2 be annotation terms. Closed interval [�1; �2] is called an annotation oran annotation term.Following the terminology introduced in [23] if an annotation term has no annotation variables in it,we call it a c-annotation. Otherwise it will be called a v-annotation.Example 1 [0; 1] and [0:3; 0:6] are c-annotations. [V1; 1] and [0:5 � V1; V1] are v-annotations.Let BL denote the Herbrand base of L. Since L contains no �rst-order logic function symbols, BL is�nite.De�nition 11 A hybrid probabilistic annotated basic formula (hp-annotated basic formula) is anexpression of the form B : � where B is a hybrid basic formula and � is an annotation .Informally speaking, B : � may be read as \The probability of B occuring lies in the interval �." Forexample, the annotated basic formula (ch-sells-stock(C) _ig ch-retires(C)):[0:4; 0:9] may be read as: \Theprobability that the chairman sells stock or the chairman retires lies in the 40{90% interval, assuming(no knowledge) ignorance of the relationship between these two primitive events." Hybrid rules maynow be constructed from hybrid annotated formulas as follows.De�nition 12 Let B0; B1; : : : ; Bk be hybrid basic formulas. Let �0; �1; : : : ; �k be annotations, suchthat every annotation variable (if any) occurring in �0 also occurs in at least one of �1; : : : ; �k . Ahybrid probabilistic clause (hp-clause ) is a construction of the form:B0 : �0  B1 : �1 ^ : : :^Bk : �kInformally speaking, the above rule is read: \If the probability of B1 falls in the interval �1 and � � � theprobability of Bk falls within the interval �k, then the probability of B0 falls within the interval �0.Notice that the de�nition above contains a requirement that every annotation variable that appears inthe annotation for the head of the clause also appears in one or more annotations for the body of thehp-clause. Therefore, 8



Example 2 � A : [V1; V1] � is not an hp-clause.� A : [V1; V2] � (B ^ind C) : [0; V1]^D : [V2; 1] is an hp-clause.De�nition 13 A hybrid probabilistic program (hp-program ) over set S of p-strategies is a �nite setof hp-clauses involving only connectives from S.For example, the following four clauses constitute a simple hp-program using the p-strategies of ignoranceand independence.price-drop(C):[0:4; 0:9] � (ch-sells-stock(C) _igd ch-retires(C)):[0:6; 1].price-drop(C):[0:5; 1] � (strike(C) _ind accident(C)):[0:3; 1].buy-stock(C):[0:7; 1] � (price-drop(C) ^inc stable(C)):[0:3; 1].sell-stock(C):[0:5; 1] � (price-drop(C) ^inc unstable(C)):[0:4; 1] ^ have-stock(C):[1; 1].stable(c):[0:8; 1] �.strike(c):[0:4; 0:5] �.unnstable(C):[V 1; V 2] � stable(C):[1� V 2; 1� V 1].The program above is a very simple example of a market decision making program. The �rst tworules tell us when to expect that the stock of company C will drop. According to the �rst rule, it willdrop with probability between 40% and 90% if the probability that CEO of the company will sell thestock or that he will retire is more than 60%. We use ignorance assumption here, because we do notknow if there is any connection between the two events. In fact, for di�erent companies the correlationmay range from the two being independent, to one being a consequence of the other. The Ignoranceassumption here gives us a certain \lowest common denominator" in terms of relationship between thetwo events.The second rule states that if the probability that the company's employees will go on strike or that anaccident happens on premises of the company is over 30%, then the probability that the stock of thecompany will drop is at least 40%. It is more or less safe to assume that the causes for strikes and foraccidents to occur are completely di�erent, therefore, the two events are independent of each other.The next two rules deal with decision-making. The third rule of the program, says that we should buystock of company C if its price drops, but (and) the compnay is generally known to be stable. Wewant to assume that our knowledge of the stability of company C is independent of the price dropunder consideration, therefore, the conjunction of the two events is made under the assumption ofindependence. The fourth rule provides an alternative to the third by declaring that if the price dropsand there is a high probability that the company is unstable, the stock has to be sold. For this rule to�re, however, we need one more condition: one can sell stock of company C only if one owns this stock.This is why we must know for sure (i.e. with probability 100% ) that we own this stock if we want tosell it.Two facts that follow describe our current knowledge of situation, expressed probabilistically. The �rstfact states that company c is stable with probability more than 80%. The second fact states that theprobability of a strike for this company is between 40% and 50%.Finally the last rule can be used to establish the connection between the information about the stabilityof company C and its nonstability. Indeed, if we assume that each company is either stable or unstable(a reasonable assumption for our example), then, if we know that the probability that company C isstable is p, the probability that C is unstable (i.e., not stable) than would have to be 1�p. We exend thissimple observation to the notion of probabilistic intervals to obtain that if C is stable with probabilitybetween V 1 and V 2 then it is unstable with probability between 1� V 2 and 1� V 1.9



4 Declarative Semantics of hp-programsHaving completed the de�nition of the syntax of hp-programs, we are now in a position to develop thedeclarative semantics of such programs. We will �rst develop a �xpoint semantics of hp-programs, fol-lowed by a model theoretic semantics, and show that the two are essentially equivalent characterizationsof hp-programs. Later, in Section 5, we will provide a proof procedure for hp-programs.4.1 Fixpoint SemanticsAs usual, suppose we have a logical language L consisting of variable symbols, constant symbols, functionsymbols, and predicate symbols, and that BL denotes the Herbrand base of this language. An atomicfunction, de�ned below, merely assigns closed intervals to ground atoms.De�nition 14 A function f : BL �! C[0; 1] is called an atomic function .Intuitively, if f(A) = �, then this means that according to the atomic function f , the probability of theground atom A lies in the interval �. We may impose on ordering, �, on the set of atomic functions asfollows: f1 � f2 i� (8A 2 BL)f1(A) � f2(A):Intuitively, as one \climbs up" the �-ordering, the atomic functions involved assign \sharper" proba-bility ranges to ground atoms. Though atomic functions do not, by themselves, make assignments tobasic formulas, they may be extended to do so,De�nition 15 Let f be an atomic function. Then the functionhf : bfS(BL) �! C[0; 1], is de�ned as follows:1. hf (F ) = f(F ), if F 2 BL2. hf (F1 ^i F2) = ci(hf (F1); hf (F2)) where i =< ci; di >2 CONJ3. hf (F1 _i F2) = ci(hf (F1); hf (F2)) where i =< ci; di >2 DISJis called a hybrid formula function (based on the atomic function f).Suppose HFF denotes the set of all hybrid formula functions. The �-ordering on atomic functionsmay be extended to basic formulas in the obvious way: h1 � h2 i� (8F 2 bfS (BL))h1(F ) � h2(F ).Lemma 1 1. If f; g are atomic functions such that f � g, then hf � hg.2. < HFF ;�> is a complete lattice.Proof1. Induction on the structure of formula F .� Base Case. F is atom. Then by de�nition:hf (F ) = f(F ) � g(F ) = hg(F ) since f � g.� Induction Step Let hf (F1) � hg(F1) and hf (F2) � hg(F2). Let �i denote any conncetive ofa form ^i; i 2 CONJ or _i; i 2 DISJ . Let also (F1 �i F2) 2 bfS(BL).In this case, by def. hf (F1 �i F2) = ci(hf (F1); hf (F2)) and hg(F1 �iF2) = ci(hg(F1); hg(F2)).By monotonicity property of composition function,hf (F1 �i F2) = ci(hf (F1); hf (F2)) � ci(hf (F1); hg(F2)) � ci(hg(F1); hg(F2)) = hg(F1 �i F2)10



2. Let H � HFF . We de�ne least upper bound of H to be:F(H)(F ) = \f�jh(F ) = �; h 2 Hg and greatest lower bound of H as:u(H)(F ) = closure([f�jh(F ) = �; h 2 Hg).The top element of HFF is the function > such that 8F 2 bfS (BL) h(F ) = ;. The bottomelement is the function ? such that 8F 2 bfS (BL) h(F ) = [0; 1].Given any hp-program P , we wish to associate with P , an operator TP that maps hybrid formulafunctions to hybrid formula functions. We do this by �rst de�ning a (similar) intermediate operator SPthat is used subsequently to de�ne TP .De�nition 16 Let P be a hybrid probabilistic program. Operator SP : HFF �! HFF is de�ned asfollows (where F is a basic formula): SP (h)(F ) = \M whereM = f��jF : � � F1 : �1 ^ : : :^Fn : �nis a ground instance of some clause in P ;� is a ground substitution of annotation variables and(8j � n)h(Fj) � �j�g if M = ; SP (h)(F ) = [0; 1].The operator SP is very simple. Given h 2 HFF and a basic formula F , it proceeds as follows: (i)First, it �nds all ground instances of rules in P such that the head of the rule instance is of the formF : � and such that for each Fi : �i in the body, h(Fi) � �i, i.e. h says that Fi's probability does in factlie within the interval �i. (ii) It then takes the intersection of the intervals associated with the heads ofall rules identi�ed in the preceding step. Note that in the above de�nition, it is entirely possible thatSP (h)(F ) could be the empty set. In this case, there is an intuitive inconsistency, because the formulafunction SP (h) is saying that F 's probability lies in the empty set. However, this is absurd, as theempty set cannot contain anything. This will be discussed in further detail in Section 4.2.Example 3 Consider our stock example. Let h assign the following values to the atoms:h(ch-sells-stock(c)) = [0:8; 0:8]h(ch-retires(c)) = [0:1; 0:1]h(strike(c)) = [0:4; 0:5]h(price-drop(c)) = [0:7; 0:9]h(stable(c)) = [0:5; 0:6]Assume that for all other ground atoms A, h(A) = [0; 1].Now, suppose we want to compute SP (h)(price-drop(c)). There are two ground rule instances withprice-drop(c) as their head in the set of all groundizations of rules in P :price-drop(c):[0:4; 0:9] � (ch-sells-stock(c) _igd ch-retires(c)):[0:6; 1].price-drop(c):[0:5; 1] � (strike(c) _ind accident(c)):[0:3; 1].First we compute� h((strike(c) _ind accident(c)) = cind(h(strike(c)),accident(c)) = cind([0:4; 0:5]; [0;1]) = [min(1; 0:4+0� 0:4 � 0);min(1; 0:5+ 1� 0:5 � 1)] = [0:4; 1]� [0:3; 1]..11



� h((ch-sells-stock(c) _igd ch-retires(c))) = cigd(ch-sells-stock(c),ch-retires(c))= cigd([0:8; 0:8]; [0:1;0:1]) =[max(0:8; 0:1);min(1; 0:8+ 0:9)] = [0:8; 0:9]� [0:6; 1].Since both rules will �re, M = f[0:4; 0:9]; [0:5;1]g and therefore, SP (h)(price-drop(c)) = [0:4; 0:9] \[0:5; 1] = [0:5; 0:9].However, the SP operator is not quite \right." The reason is that in order to determine F 'sprobability, it is not enough to merely look for rule instances whose head is identical to F . For instance,F might be (p ^ig q). The probability of (p ^ig q) may certainly be in
uenced by rules with head p : �0because such rules may impose lower bounds on p's probability { and hence on (p ^ig q)'s probability.Thus, SP , by itself, does not allow us to accurately infer the probability associated with a formula F .SP needs to be augmented appropriately in order to do so. However, before de�ning TP , we present asimple monotonicity property of SP . Note that SP is monotonic regardless of what p-strategies appearin P .Lemma 2 SP is monotonic, i.e., if h1; h2 are two formula functions andh1 � h2 then, SP (h1) � SP (h2).Proof.Let F be a hybrid basic formula. We have h1(F ) � h2(F ). By def. of SP ,SP (h1)(F ) = \M1M1 = f�jF : � � F1 : �1 ^ : : :^ Fn : �nis a ground instance of some clause in P ; (8j � n)h1(Fj) � �jgSince h1(Fj) � �j can be rewritten as �j � h1(Fj), using transitivity of �, we obtain that for anyground instance F : �  � F1 : �1 ^ : : :^ Fn : �n of a rule of program P , such that � 2 M1, � 2 M2,where M2 = f�jF : � � F1 : �1 ^ : : :^ Fn : �nis a ground instance of some clause in P ; (8j � n)h2(Fj) � �jgand therefore, M1 � M2. Therefore, SP (h2)(F ) = \M1 = (\M1) \ (M2 �M1) = SP (h1)(F ) \ (M2 �M1) � SP (h1)(F ) i.e., SP (h1)(F ) � SP (h2)(F ).Let us now de�ne the TP operator.De�nition 17 Let F = F1 �i : : : �i Fn, G = G1 �i : : :�iGk, H = H1 �i : : :�iHm where � 2 f^;_g. Wewill write G�H = F i�:1. fG1; : : : ; Gkg � fF1; : : : ; Fng andfH1; : : : ;Hmg � fF1; : : : ; Fng and2. fG1; : : : ; Gkg [ fH1; : : : ;Hmg = fF1; : : : ; Fng and3. fG1; : : : ; Gkg \ fH1; : : : ;Hmg = ; and4. G 6= F , H 6= F . 12



The de�nition above provides a convenient notation for expressing the fact that formula F can bepartitioned into subformulas G and H exactly.De�nition 18 Let P be a hybrid probabilistic program. We inductively de�ne operator TP : HFF �!HFF as follows:1. Let F be an atomic formula.� if SP (h)(F ) = ; then TP (h)(F ) = ;.� if SP (h)(F ) 6= ;, then letM = fh��; iij(F �i G) : � � F1 : �1 ^ : : :^ Fn : �nwhere � 2 f_;^g and � is a ground substitution of the annotation varables and i 2 S and (8j �n)h(Fj) � �j�g. We de�neTP (h)(F ) = (\fmdi(��)jh��; ii 2Mg) \ SP (h)(F )2. (F not atomic) Let F = F1 �i : : : �i Fn.Let M 0 = fh��; iijD1�i : : :�iDk : � � E1 : �1^ : : :Em : �m 2 ground(P ); (81 � j � m)h(Ej) ��j ; fF1; : : : ; Fng � fD1; : : :Dkg; n < kgThen:TP (h)(F ) = SP (h)(F ) \ (\fci(TP (h)(G); TP (h)(H))jG�H = Fg) \ (\fmdi(��)jh��; ii 2M 0g)The TP operator may be justi�ed as follows: (i) Consider an atomic formula A: if SP (h)(F ) = ;,then this means that an inconsistency (to be made more formal in Section 4.2) has occurred. Forinstance, if we have an hp-program containing two facts a : [0; 0] and a : [1; 1], then whatever h we pick,SP (h)(a) = ;, re
ecting the (in this case 
agrant) inconsistency in P . Thus, TP (h) must also assign; to F . If SP (h)(F ) 6= ;, then it may be case that SP (h) has assigned too \wide" an interval to F ,because it ignores rules that are \associated" with F . As F is atomic, there might be rules whose bodiesare satis�ed by h, which include F in its head. We must �nd all such rules, and \split" the rule headinto its F part, and the non-F part, say G. Clearly, the rule head must be of the form (F �i G) where� is either ^ or _. As the rule's body is satis�ed by h, it means that the head of this rule, viz. (F �iG)has probability in the interval �. The rule in question thus allows us to conclude that F 's probabilityranges anywhere in md(�) which is the \maximal interval" associated with F w.r.t. the connection �i.We repeat this for each rule with F as part of the head.(ii) When F is not a ground atom, there can be three sources of bounds on F 's probability interval.First source, taken care by SP operator are the rules with F as their head. Second source is informationthat can be inductively obtained by computing TP for every pair G;H of formulas such that G�H = F(notice that we require both G and H to be non-empty), and using ci to combine these values. Finally,some rules of the program may contain F as the proper subset. The probability range of F from eachof such rules is determined by the mdi function. Combining (intersecting) the ranges obtained from allthree sources we obtain the �nal value of TP operator.The following example demonstrates how TP is computed.Example 4 Let us consider the stock program P and the formula function h from the previous example.Suppose we want to compute TP (h)(price-drop(c)^pccbuy-stock(c)) (i.e., the probability of the fact thatthe drop in price of stocks will result in purchases of new stock of company c).13



It is easy to see that TP (h)(price-drop(c)^pccbuy-stock(c)= cpcc(TP (h)(price-drop(c)); TP (h)(buy-stock(c)),as the heads of all rules in P are atomic.TP (h)(price-drop(c)) = SP (h)(price-drop(c)) = [0:5; 0:9] (see Example 3). TP (h)(buy-stock(c)) =SP (h)(buy-stock(c)). To �nd the latter we consider the following ground rule in P :buy-stock(c):[0:7; 1] � (price-drop(c) ^inc stable(c)):[0:3; 1].Recall from Example 3 that h(price-drop(c)) = [0:7; 0:9] and h(stable(c)) = [0:5; 0:6]. Then, h((price-drop(c) ^inc stable(c))) = cinc(h(price-drop(c)); h(stable(c))) = cinc([0:7; 0:9]; [0:5;0:6]) = [0:7 �0:5; 0:9� 0:6] = [0:35; 0:54]� [0:3; 1], which entails that SP (h)(buy-stock(c))) = [0:7; 1]Finally, TP (h)(price-drop(c)^pccbuy-stock(c)= cpcc(TP (h)(price-drop(c)); TP (h)(buy-stock(c)) =cpcc([0:5; 0:9]; [0:7; 1]) = [min(0:5; 0:7);min(0:9; 1)] = [0:5; 0:7].It follows immediately from the de�nition of the TP operator that, for any program P , formula functionh and formula F , TP (h)(F ) � SP (h)(F ). The following result says that regardless of which p-strategiesare considered in P , the TP operator is guaranteed to be monotonic.Theorem 2 TP is monotonic,i.e., if h1; h2 are two formula functions and h1 � h2 then, TP (h1) �TP (h2).Proof.Let F be a hybrid basic formula. We proceed by induction on rank(F ).� F is an atomic formula. We have h1(F ) � h2(F ). Let us assume that both SP (h1)(F ) andSP (h2)(F ) are non-empty. (Otherwise, we must have SP (h2)(F ) = ; which implies TP (h2)(F ) = ;and therefore, it must be the case that TP (h2)(F ) � TP (h1)(F ) ). By lemma SP (h1)(F ) �SP (h2)(F ). Let us considerM1 = f�j(F �i G) : � � F1 : �1 ^ : : :^ Fn : �nwhere � 2 f_;^g and i 2 S and (8j � n)h1(Fj) � �jgSince h1(Fj) � �j can be rewritten as �j � h1(Fj), using transitivity of �, we obtain that forany ground instance F : � � F1 : �1 ^ : : :^ Fn : �n of a rule of program P , such that � 2M1,� 2M2, where M2 = f�j(F �i G) : � � F1 : �1 ^ : : :^ Fn : �nis a ground instance of some clause in P ; (8j � n)h2(Fj) � �jgTherefore, M1 � M2. But this means that M 01 = fmd(�)j� 2 M1g � M 02 = fmd(�)j� 2 M2g.Then \M 02 � \M 01, i.e., \M 01 � \M 02.Since TP (h1)(F ) = SP (h1)(F )\(\M 01), TP (h2)(F ) = SP (h2)(F )\(\M 02), SP (h1)(F ) � SP (h2)(F )and \M 01 � \M 02, we obtain that TP (h1)(F ) � TP (h2)(F )� Let the theorem hold for all basic hybrid formulas of ranks less than k. Let rank(F ) = k andF = F1 _i : : :_i Fn or F = F1 ^i : : :^i Fn.>From Lemma 1 we know that SP (h1)(F ) � SP (h2)(F ).14



Let G;H be such formulas, that G� H = F . By the induction hypothesis, (since rank(G) < kand rank(H) < k, we have TP (h1)(G) � TP (h2)(G) and TP (h1)(H) � TP (h2)(H), therefore, bymonotonicity axiom for p-strategies (applied twice) we have:ci(TP (h2)(G); TP (h2)(H)) � ci(TP (h1)(G); TP (h1)(H))i.e. ci(TP (h1)(G); TP (h1)(H)) � ci(TP (h2)(G); TP (h2)(H))From this is follows that(\fci(TP (h1)(G); TP (h1)(H))jG�H = Fg) � (\fci(TP (h2)(G); TP (h2)(H))jG�H = Fg)Finally, let M1 = fD1 �i : : : �i Dk : �  � E1 : �1 ^ : : :Em : �m 2 ground(P )j (81 � j �m)h1(Ej) � �j; fF1; : : : ; Fng � fD1; : : :Dkg; n < kg and M2 = fD1 �i : : : �i Dk : �  � E1 :�1 ^ : : :Em : �m 2 ground(P )j (81 � j � m)h2(Ej) � �j ; fF1; : : : ; Fng � fD1; : : :Dkg; n < kgLet M 01 = �jD : � � Body 2M1 and M 02 = �jD : � � Body 2M2since h1 � h2, we can claim that if some ground instance C 2M1, C also is in M2, i.e.,M1 � M2.Therefore (\f�j� 2M 02g) � (\f�j� 2M 01g), i.e., (\f�j� 2M 01g) � (\f�j� 2M 02g).Combining the established results into one, using the formula for TP (h)(F ) we obtain the desiredTP (h1)(F ) � TP (h2)(F ).Again, note that the above result applies regardless of what set of p-strategies occur in program P .It is easy to see now that we may de�ne the iterations of TP as:De�nition 19 1. T 0P = h? where ? is the atomic function that assigns [0; 1] to all ground atomsA.2. T�P = TP (T��1P ) where � is a successor ordinal whose predecessor is denoted by �� 1.3. T 
P = tfT�P j� < 
g, where 
 is limit ordinal.In [7] it was established that if all clauses in P have only constant annotations then lfp(TP ) = T!P ,where lfp(TP ) is the least �xed point of TP . This, however, turns out to not be the case when P hasclauses with variable annotations. The follwoing example is from [23].Example 5 Consider the programA : [0; V=2] � A : [0; V ]B : [0; 0] � A : [0; 0]Since T 0P (A) = [0; 1], after the �rst iteration T 1P (A) = [0; 0:5]. At each subsequent iteration, we will getthe interval assigned to A narrow by half. Eventually T!P will assign [0; 0] interval to A. Then T!+1Pwill �nally assign [0; 0] to B.4.2 Probabilistic Model TheoryWe are now ready to de�ne a logical model theory for hp-programs. For this purpose, hybrid basicformula functions will play the role of an \interpretation." The key inductive de�nition of satisfactionis given below. 15



De�nition 20 Satisfaction. Let h be hybrid basic formula function, F 2 bfS (BL), � 2 C[0; 1]. We saythat� h j= F : � i� h(F ) � �.� h j= F1 : �1 ^ : : :^ Fn : �n i� (8 1�j�n)h j= Fj : �j.� h j= F : � � F1 : �1 ^ : : :^ Fn : �n i� either h j= F : � or h 6j= F1 : �1 ^ : : :^ Fn : �n.� h j= (9x)(F : �) i� h j= F (t=x) : � for some ground term t.� h j= (8x)(F : �) i� h j= F (t=x) : � for every ground term t.A formula function h is called a model of an hp-program P (h j= P ) i� (8p 2 P )(h j= p).As usual, we say that F : � is a consequence of P i� for every model h of P , it is the case that h(F ) � �.Recall, from Section 4.1, that we can have cases where a hybrid formula function, h, could assign; to some formula. When h(F ) = ;, h is \saying" that F 's probability lies in the empty set. Thiscorresponds to an inconsistency because, by de�nition, nothing is in the empty set.De�nition 21 Formula function h is called fully de�ned i�8(F 2 bfS (BL))(h(F ) 6= ;).The following important result fully ties together, the �xpoint theory associated with hp-programs,and the model theoretical characterization of hp-programs, regardless of which p-strategies occur in thehp-program being considered.Theorem 3 Let P be any hp-program. Then:1. h is a model of P i� TP (h) � h.2. P has a model i� lfp(TP ) is fully de�ned.3. If lfp(TP ) is fully de�ned, then it is the least model of P , and F : � is a logical consequence of Pi� T!P (F ) � �.Proof.1. Claim 1. TP (h) � h =) h j= P .Let F 2 bfS (BL).Let P 0 = fp 2 ground(P )jp is of form F : � � F1 : �1 ^ : : :^ Fn : �ng.Two cases are possible. If P 0 = ; then P has no rules with F in the head and therefore h j= P 0by def.Let P 0 6= ;.Consider a rule p0 2 P 0. p0 is of a form F : � � F1 : �1 ^ : : :^ Fn : �n. Two cases are possible.� (8 1 � j � n)(�j � h(Fj)) In this case, we know thath j= F1 : �1 ^ : : :^ Fn : �n. We have to show thath j= F : �, i.e. h(F ) � �.By our assumption, TP (h)(F ) � h(F ), i.e., h(F ) � TP (h)(F ). By de�nition of TP and SPoperators, it is always the case that TP (h)(F ) � SP (h)(F ). We now show that SP (h)(F ) � �.16



By de�nition, SP (h)(F ) = \F where F = f�jF : �  � F1 : �1 ^ : : : ^ Fn : �n is aground instance of a rule in P ; (8 1 � j � n)(�j � h(Fj))g. We know that p0 : � 2 F ,therefore, SP (h)(F ) � �, which implies that TP (h)(F ) � �. Combining together we obtain:h(F ) � TP (h)(F ) � SP (h)(F ) � � which implies h j= F : �, therefore, h j= p0.� (9 1 � j � n)(h(Fj) 6� �j) in this case h 6j= Fj : �j, therefore, h 6j= F1 : �1 ^ : : : ^ Fn : �n,and therefore, h j= p0.This proves the �rst claim.Claim 2. h j= P =) TP (h) � h.Let F 2 bfS (BL). We prove the claim by induction on rank(F ).� Base Case. rank(F ) = 0, i.e., F is atomic. LetF : �1  � : : :: : :F : �k  � : : :(F �i1 G1) : �1  � : : :: : :(F �im G1) : �m  � : : :be the list of all rules from program P that contain F in the head, such that, h satis�es theirbodies.By de�niton of TP , TP (h)(F ) = �1 \ �2 \ : : :\ �k \mdi1(�1) \ : : :\mdim (�m).Since h satis�es all the bodies of these rules, h must also satisfy all the heads, i.e., (8 1 �� � k)(h(F ) � �j) and(8 1 � � � l)(h(F �ij G) � �j). From �rst set of inequalities we obtain: h(F ) � �1 \ �2 \: : :\ �k.From second set of inequalities: h(F �ij G) = cij (h(F ); h(G)) and therefore h(F ) � mdij (�j).This leads to h(F ) � mdi1(�1) \ : : :\mdim(�m), which combined with previous result givesus desired h(F ) � TP (h)(F ) i.e., TP (h)(F ) � h(F ).� Induction Step. Let our claim hold for all basic formulas rank less than k. Let rank(F ) = kand F = A1 �i : : : �i Ak.Let F : �1  � : : :: : :F : �k  � : : :be all the rules with F as the head, such that h satis�es their bodies. We must therefore,conclude that for each of these rules h satis�es its head, i.e., h(F ) � �1 \ �2 \ : : : \ �k =SP (h)(F ).Let now G and H be basic formulas such that G � H = F . By de�nition, rank(g) < kand rank(H) < k, therefore, by the induction hypothesis, h(G) � TP (h(G)) and h(H) �TP (h(H)). Since G�H = F , G�iH � F and therefore h(F ) = h(G�iH) = ci(h(G); h(H)) �17



ci(TP (h)(G); TP (h)(F ) (the last inequality is due to monotonicity property of compositionfunction). Therefore we conclude thath(F ) � (\fci(TP (h)(G); TP (h)(H))jG�H = Fg)Let now (F �i D1) : �1  � : : :: : :(F �i Ds) : �s  � : : :be all the ground instances of rules in P such that h satis�es thier bodies and F is a partof their heads. Since h j= P , h j= (F �i D1) : �1; : : : ; h j= (F �i Ds) : �s, i.e., (81 � j �s)(h(F �i Dj) � �j). But we know that h(F �i Dj) = ci(h(F ); h(Dj)) � �j. For this to betrue it must be the case that h(F ) � mdi(�j). Therefore, h(F ) � mdi(�1) \ : : :\mdi(�s).Combining the three inequalities together we obtain:h(h) � SP (F )\(\fci(TP (h)(G); TP (h)(H))jG�H = Fg)\(mdi(�1)\: : :\mdi(�s)) = TP (h)(F )which proves the theorem.2. Let lfp(TP ) be fully de�ned. Since we know that TP (lfp(TP )) = lfp(TP ), it is also the case thatTP (lfp(TP )) � lfp(TP ). According to part 1 of this theorem, lfp(TP ) is a model of P .Assume now that P has a model h. By de�nition of a model, h is fully de�ned. We knowthat TP (h) � h. By construction of lfp(TP ), and because of the monotonicity of TP operatorlfp(TP ) � TP (h). Therefore lfp(TP ) � h. This means that for all basic formulas F , h(F ) �lfp(TP )(F ). Since h is fully-de�ned, lfp(TP ) has to be fully de�ned too.3. Part 3 of this theorem is a direct corollary of Part 2 and theorem 2.The second result above links consistency of P programs with the fully de�ned-ness property of T!P .Of course, if there exists an integer i such that either SiP or T iP are not fully de�ned, then T!P cannotbe fully de�ned either, and hence, P would not have a model.5 Proof ProcedureAt this stage, we have provided a complete description of what is a logical consequence of an hp-programP . In this section, we develop three query processing procedures.� The �rst query processing procedure (Section 5.2), termed hp-resolution, builds upon previousapproaches of Ng and Subrahmanian [22] by �rst requiring that programs P be compiled to anew set, CL(P ). Queries are then processed by a process akin to linear input resolution, with thedi�erence that clauses from CL(P ) may be considered input clauses. This process su�ers fromthe major 
aw that usually, construction of CL(P ) is prohibitively expensive.� The second procedure (Section 5.3), termed HRP -refutations, is more pragmatic. Rather thanrequiring a compilation step, when a query Q is posed, HRP refutations allow relevant parts of theCL(P ) to be dynamically constructed. This has two advantages over hp-refutations. First, hp-refutations often \lose" right at the beginning as the compilation process may take a tremendousamount of time and space. This does not happen withHRP -refutations. Second, HRP -refutationsonly need a small part of CL(P ), not all of it, and this small part may be constructed as needed.18



� The third procedure (Section 5.4), expands upon HRP , to use tabling, as initially introducedin logic programming by Tamaki and Sato[29]. This procedure assumes caches (or tables) arebounded a priori in size - a situation certainly true in practical implementations where tablescannot grow in an unbounded fashion. Furthermore, table management in probabilistic logicprograms is much more complicated than in ordinary logic programming for many reasons. First,a query does not merely have a set of answers. Rather, a query has associated answer substitutions,each of which has an associated probability range. As computation proceeds, these ranges mayget re�ned or sharpened { something that does not happen in classical logic programm tables.Second, caches in our framework may contain basic formulas with associated probabilities. Suchcaches implicitly contain probability ranges for basic formulas implied by the cached formulas,as well as basic formulas that imply the cached formulas. A third di�erence between our workand classical logic program tabling is that there are often many ways to update a table in thecase of probabilistic logic programs. We de�ne cache update strategies, and show several di�erentsuch strategies. We show how HRP -refutations may be extended with arbitrary cache updatestrategies.Unlike classical resolution, when dealing with annotated conjunctions and disjunctions, uni�ers maynot be unique, as noted by Ng and Subrahmanian[22]. Before proceeding to describe our di�erent notionsof resolution, we summarize observation of [22] below as it is necessary for the further development ofour proof procedure.5.1 Uni�cation in HPPsAs rules of clauses in hp-programs may contain annotated basic formulas, any notion of uni�cationmust be able to handle uni�cation of annotated basic formulas. In this section, we recapitulate from[22] how this may be done.De�nition 22 � � is a uni�er of annotated conjunctionsC1 � A1 ^i : : :^i An1 and C2 � B1 ^j : : :^j An2 i� i; j 2 CONJ and i = j and fAk�j1 � k �n1g = fBk�j1 � k � n2g� � is a uni�er of annotated disjunctionsD1 � A1 _i : : :_i An1 and D2 � B1 _j : : :_j An2 i� i; j 2 DISJ and i = j and fAk�j1 � k �n1g = fBk�j1 � k � n2gIn order to proceed we need to de�ne a notion of maximally general uni�er.De�nition 23 Let U (C1; C2) denote the set of all uni�ers of C1 and C2. Let �1;�2 2 U (C1; C2).1. �1 � �2 i� there exists a substitution 
, such that �1 = �2
.2. �1 � �2 i� �1 � �2 and �2 � �1.3. Let [�] = f�0 2 U (C1; C2)j� � �0g.4. [�1] � [�2] i� there exists such 
 that [�1] = [�2
].5. [�1] < [�2] i� [�1] � [�2] and [�2] 6= [�1].From the above de�nition, it is easy to see that � is an equivalence relation on elements of U (C1; C2)and � is a partial order on f[�]j� 2 U (C1; C2)g. We can de�ne a notion of maximally general uni�er.19



De�nition 24 � 2 U (C1; C2) is a maximally general uni�er (max-gu) of C1 and C2 i� there is nosuch other uni�er �0 2 U (C1; C2) that [�] � [�0].Lemma 3 If two basic formulas are uni�able then they have a max-gu (not necessarily unique).5.2 hp-ResolutionIn general, in the presence of basic formulas, just \straight" resolution is not su�cient for query process-ing. The reason is that to establish a basic formula, e.g. (p ^i q) : �, we might need to separately provep : �1 and q : �2 and then combine �1; �2 using the composition function associated with p-strategy i.There are two ways to do this: (i) allow resolution not against hp-clauses in P , but against hp-clausesin an expanded version of P , or (ii) introduce, in addition to resolution, new rules of inference corre-sponding the the \expansion" steps alluded above. Both cases are essentially equivalent from the pointof view of completeness. In what follows we discuss the former procedure.First, we add to P all \tautologies". Any formula of the form F : [0; 1] is a tautology as F 'sprobability certainly, lies in the [0; 1] interval.De�nition 25 Let P be an hp-program. Then REDUN(P) is de�ned asREDUN(P ) = P [ fA : [0; 1] � jA 2 BLg:In addition to the above tautologies, we need to \merge" rules together and/or infer \implied" rules.For example, if one rule has F1 : �1 in the head, and another has F2 : �2 in the head, and these areuni�able via max-gu �, then these two rules may jointly provide some information on the probabilityof (F1 ^i F2) where i is some p-strategy. Likewise, if (F1 �i F2) : �0 is in the head of some rule, thenthis rule certainly provides some information about F1's probability, and F2's probability. The closureof P, de�ned below, expands the rules in P by performing such merges and/or inferences.De�nition 26 Let P be an hp-program. Then CL(P ) (closure of P) is de�ned as follows� CL0(P ) = REDUN (P ):� 1. For each pair of clauses F1 : �1  � Body1 and F2 : �1  � Body2 2 CLj(P ), such thattheir heads F1 : �1 and F2 : �2 are uni�able via max-gu � add clause (F1 : �1 \ �2  �Body1 ^Body2)� to CLj+1(P ).2. For each clause F1 �i F2 : � � Body 2 CLj(P ) add the following two clauses to CLj+1(P ):{ F1 : mdi(�) � Body{ F2 : mdi(�) � Body3. For each two clauses (A1 �i : : : �i Ak) : �1  � Body1 and (B1 �i : : : �i Bl) : �1  � Body2 2CLj(P ), k > 1; l � 1, add the clause(A1 �i : : : �i Ak �i B1 �i : : : �i Bl) : ci(�1; �2) � Body1 ^Body2to CLj+1(P ).4. if A and B are atoms, and CLj(P ) contains clauses A : �1  � Body1 and B : �2  � Body2,add (A �i B) : ci(�1; �2) � Body1 ^Body2for each i 2 CONJ [DISJ to CLj+1(P ).20



� CL(P ) = Sj�0CLj(P )The following result says that the above steps are all sound. No new rule is produced that was notalready a logical consequence of P .Lemma 4 For every clause C 2 CL(P ), P j= C.Proof. Let C be a clause in CL(P ). We have to consider a number of possibilities.� Base Case.1. C 2 P . Then by de�nition of j=, P j= C.2. C 62 P , C 2 REDUN (P ). In this case C is of the form A : [0; 1]  �, and A is a groundinstance of an atom. Let h be a formula function, such that h j= P . It is always the casethat h(C) � [0; 1], which yields h j= C.� Induction Step.Assume that for each clause C 2 CLj(P ), P j= C. Let C 2 CLj+1(P )� CLj(P ).As C 2 CLj+1(P ) � CLj(P ), C must have been inserted into CLj+1(P ) by the means of one ofthe cases 1� 4 from Def. 26. We have to consider each case separately.1. Suppose C was inserted by the means of case 1. Then there exist such clauses C1 � F1 :�1  � Body1 and C2 � F2 : �2  � Body2, such that, C1 2 CLj(P ); C2 2 CLj(P ), F1 andF2 are uni�able via max-gu �, andC � (F1 : �1 \ �2  � Body1 ^Body2)�We need to show that P j= C. Suppose h is a model of P , i.e., h j= P , and C
 is a groundinstance of C, such that h j= (Body1 ^ Body2)�
. By the induction hypothesis, h j= C1and h j= C2, therefore, h j= C1�
 and h j= C2�
. As h j= Body1�
, we conclude thath(F1�
) � �1. Likewise we can conclude that h(F2�
) � �2.But since � is a max-gu of F1 and F2, F1�
 = F2�
, and therefore h(F1�
) � �1 \ �2, i.e.h j= F1�
 : �1 \ �2.2. Suppose C was inserted by the means of case 2. Then there exists such a clause C1 �(F1 �i F2) : � � Body 2 CLj(P ), that eitherC � F1 : mdi(�) � Bodyor C � F2 : mdi(�) � Body:We will consider the former case, the latter case is symmetric. We need to show that P j= C.Let C
 be a ground insance of C and let h j= P and h j= Body
. By induction hypothesis,h j= C1, and therefore, h((F1 �i F2)
) � �. By the de�nitions of mdi and h, this yieldsh(F1) � mdi(�), i.e., h j= F1 : mdi(�).3. Let C be inserted by the means of case 3. In this case, CLj(P ) will contain two clauses,C1 � (A1 �i : : : �i Ak) : �1  � Body1 and C2 � (B1 �i : : : �i Bl) : �2  � Body2, such that,k > 1; l � 1, andC � (A1 �i : : : �i Ak �i B1 �i : : : �i Bl) : ci(�1; �2) � Body1 ^Body2:21



We need to show P j= C. Let C
 be a ground instance of C and let h j= P and h j=(Body1 ^ Body2)
. By induction hypothesis, h j= C1 and h j= C2, and therefore, h j= C1
and h j= C2
. Since h j= Body1
 and h j= Body2
, we have h j= (A1 �i : : : �i Ak)
 : �1 andh j= (B1 �i : : : �i Bl)
 : �2, i.e., h((A1 �i : : :Ak)
) � �1, and h((B1 �i : : : �i Bl)
) � �2. Butthen,h((A1�i : : :�iAk�iB1�i : : :�iBl)
) = ci(h((A1�i : : :�iAk)
); h((B1�i : : :�iBl)
)) � ci(�1; �2);which means h j= C.4. Finally, let C be inserted in CLj+1(P ) by the means of case 4. Then, CLj(P ) will contain 2clauses, C1 � A : �1  � Body1 and C2 � B : �2  � Body2, such that both A and B areatomic, and C � (A �i B) : ci(�1; �2) � Body1 ^Body2for some p-strategy i.We have to show P j= C. Let C
 be a ground instance of C and let h j= P and h j=(Body1 ^ Body2)
. By induction hypothesis, h j= C1 and h j= C2, therefore, h j= C1
 andh j= C2
. Since h j= Body1
 and h j= Body2
, we obtain h j= A
 : �1 and h j= B
 : �2, i.e.h(A
) � �1 and h(B
) � �2. Hence, h((A �i B)
) = ci(h(A
); h(B
)) � ci(�1; �2), whichmeans that h j= C
 and thefore h j= C.We now present a refutation procedure for query processing.De�nition 27 A query is a formula of the form 9(F1 : �1 ^ : : :^ Fn : �n), where (81 � i � n) (Fi 2bfS(BL)). Fis need not be ground.De�nition 28 Suppose C � G : � � G1 : �1 ^ : : :^Gm : �m 2 CL(P ) and Q � 9(F1 : �1 ^ : : :^Fn :�n) is a query. Let C and Q be standardized apart. Let also G and Fi be uni�able for some 1 � i � n.Then 9((F1 : �1 ^ : : :^Fi�1 : �i�1 ^G1 : �1 ^ : : :^Gm : �m ^Fi+1 : �i+1 ^ : : :^ Fn : �n)�)is an hp-resolvent of C and Q i�:1. � is a max-gu of G and Fi2. �� and �i� are ground and �� � �i�If � is a uni�er but not necessarily a max-gu, we call the resolvent an unrestricted hp-resolvent.De�nition 29 Let Q � 9(F1 : �1 ^ : : : ^ Fn : �n) be an initial query, and P an hp-program. Anhp-deduction of Q from P is a sequence < Q1; C1;�1 > : : : < Qr; Cr;�r > : : : where, Q = Q1, for alli � 1 , Ci is a renamed version of a clause in CL(P ) and Qi+1 is an hp-resolvent of Qi and Ci viamax-gu �i.If the �i's are not restricted to be max-gu's, we call the resulting sequence an unrestricted hp-deduction.De�nition 30 Let Q � 9(F1 : �1 ^ : : : ^ Fn : �n) be an initial query, and P an hp-program. Anhp-refutation of Q from P is a �nite hp-deduction < Q1; C1;�1 > : : : < Qr ; Cr;�r > where, the hp-resolvent of Qr and Cr via �r is the empty query. �1 : : :�r is called the computed answer substitution.We are now in a position to state the soundness and completeness of hp-resolution.22



Theorem 4 (Soundness of hp-refutation).Let P be an hp-program, and Q be an initial query. If there exists an hp-refutation of Q � 9(F1 :�1 ^ : : :^ Fn : �n) from P with the answer substitution � then P j= 8((F1 : �1 ^ : : :^ Fn : �n)�).Proof. Let < Q1; C1;�1 > : : : < Qn; Cn;�n > be our hp-refutation. We proceed by induction on n.Base case: n = 1In this case Q1 � F1 : �1, C1 � G1 : �1  �2 CL(P ), F1�1 = G1�1 and �1 � �1. Let h j= P . Bythe previous lemma, h j= C1. Therfore, h j= 8(G1 : �1) and in particular h j= 8((G1 : �1)�1). But,since F1�1 = G1�1 and �1 � �1, we get h j= 8(F1 : �1)�1).Induction Step.Suppose the theorem holds for any hp-refutation < Q2; C2;�2 > : : : < Qn; Cn;�n >. Consider anhp-refutation < Q1; C1;�1 >;< Q2; C2;�2 > : : : < Qn; Cn;�n >. Let h j= P . Let Q1 � (F1 :�1 ^ : : :^ Fm : �m) and C1 � G : �  � Body be (a renamed version of) a clause in CL(P ), such thatfor some 1 � i � m, Fi�1 = G�1 and � � �i. Then, Q2 � (F1 : �1 ^ : : :^ Fi�1 : �i�1 ^Body ^ Fi+1 :�i+1^ : : :^Fm : �m)�1. By induction hypothesis, h j= 8(Q2�2 : : :�n), i.e. h j= 8(F1 : �1 ^ : : :^Fi�1 :�i�1 ^ Body ^ Fi+1 : �i+1 ^ : : : ^ Fm : �m)�1�2 : : :�n). Therefore, h j= 8(F1 : �1 ^ : : : ^ Fi�1 :�i�1 ^ Fi+1 : �i+1 ^ : : : ^ Fm : �m)�1�2 : : :�n) and h j= 8(Body�1 : : :�n). Since also h j= C1, weobtain h j= 8((G�1 : : :�n) : �). Since � � �i, we obtain h j= 8((Fi�1 : : :�n) : �i)), i.e. h j= 8((Fi :�i)�1 : : :�n). Combining with h j= 8(F1 : �1^: : :^Fi�1 : �i�1^Fi+1 : �i+1^: : :^Fm : �m)�1�2 : : :�n)we get the desired: h j= 8(Q1�1 : : :�n), i.e., h j= 8(Q1�).In order to prove completeness thorem we have to establish �rst a number of facts. The followingtwo lemmas can be proved by a straightforward application of mgu and lifting lemmas for classical logicprogramming in Lloyd[21].Lemma 5 (Max-gu Lemma). Let Q be a query that has an unrestricted hp-refutation from an hp-program P . Then, Q has an hp-refutation of the same length and if �1; : : : ;�m are the uni�ers formthe unrestricted hp-refutation, and �01; : : : ;�0m are the max-gu's from the hp-refutation, then, for some
 �1 : : :�m = �01; : : : ;�0m
.Lemma 6 (Lifting Lemma) Let P be an hp-program, Q be a query, � be a substitution. Let Q� havean hp-refutation from P . Then Q has an hp-refutation from P of the same length. Also, if �1; : : : ;�mare the max-gu's from the refutation of Q� and �01; : : : ;�0m are the max-gu's from the refutation of Qthen, for some substitution 
: ��1 : : :�m = �01; : : : ;�0m
.Now we can prove completeness theorem.Theorem 5 (Completeness of hp-refutation ).Let P be a consistent hp-program and Q0 be a query. Then, if P j= 9(Q0) then there exists an hp-refutation of Q0 from P .Proof.Since P j= 9(Q0), there exists such a ground substitution � that P j= Q0�. Let Q � Q0�. We willprove that Q has an hp-refutation from P . By Lifting Lemma, Q0 will also have a refutation from P .Let Q � F1 : �1 ^ : : :^ Fm : �m. Since P j= Q, it must be the case that P j= Fi : �i, 1 � i � m.Claim 1: Let F : � and G : � be ground annotated formuals which have hp-refutations from P . Then,so does F : � ^G : � . 23



Proof. Let < F : �;C1;�1 > : : : < QFl ; Cl;�l > be the hp-refutation for F : �. Let < G : �;D1;�1 >: : : < QGk ; Dk�k > be the hp-refutation for G : �. Then, as F : � and G : � are ground, the followingwill be the hp-refutation for F : � ^G : � :< F : �^G : �; C1;�1 >;< QF2 ^G : �; C2;�2 > : : : < QFl ^G : �; Cl;�l >;< G : �;D1;�1 > : : : < QGk ; Dk�k >. (Claim 1).Now all we have to prove isClaim 2:Let P j= 9(F 0 : �). Then there exists a refutation of F 0 : � from P .Proof. Since P j= F 0 : �, there exists a ground substitution � such that P j= F 0� : �. Let F = F 0�.We show that F : � has an hp-refutation from P , and by lifting lemma so will F 0 : �.Since P j= F : �, by Theorem 3, T!P (F ) � �. By de�nition of T!P , there exists such an � < ! thatT�P (F ) � �. Consider the smallest such integer. We now proceed by induction on �.Base Case: � = 0. By de�nition of T 0P , T 0P (F ) = [0; 1]. Therefore, � = [0; 1].If F is atomic, then, since F is ground, a clauseC � F : [0; 1] �is in REDUN (P ), and therefore it is in CL(P ). Then, < F : �;C; e > (e is the empty substitution) isthe hp-refutation for F : �.Let F � (A1 �i A2 �i : : : �i An), where each Ai is atomic. Then, a set of clausesCi � Aj : [0; 1] �is in REDUN (P ) and therefore each of these clauses is in CL0(P ). By de�nition of CL(P ) and becausefor any p-strategy i ci([0; 1]; [0;1]) = [0; 1], CLn(P ) (and therefore CL(P )) will contain the clauseC � (A1 �i A2 �i : : : �i An) : [0; 1] �(In fact we can argue that the above clause will be contained in CLlog2(n)(P )).Then the refutation for F : � will be < F : �;C; e > (e is the empty substitution).Induction Step. Assume that for any formula G : � such that T��1P j= G : �, there exists a refutation �of G : � from P .We prove the claim by induction on the structure of F .Base Case. F is atomic.Let M 0 = f�0jG : �0  � Body 2 P ;T��1P j= Body, where G is uni�able with Fg. We notice thatSP (T��1P )(F ) = \f�0j�0 2M 0g.Let M 00 = f�00j(G �i H) : �00  � Body 2 P ;T��1P j= Body, where G is uni�able with Fg.We have, by de�nition of T�P (� > 0):T�P (F ) = SP (T��1P )(F ) \ (\fmd(�00)j�00 2M 00g) � �. Two cases are possible.1. jM 0 [M 00j = 1. 24



Assume M 0 6= ;. Than, there is a unique rule C0 � G : �0  � Body 2 P , s.t., G uni�es with F ,T��1P j= Body, and SP (T��1P )(F ) = �0. (Notice that C 0 2 P implies C0 2 CL(P )). Let �0 be themax-gu for G and F .By induction hypothesis, there exists an hp-refutation < Body;C1;�1 > : : : < Qk; Ck;�k > forBody. Then < F : �;C0;�0 >;< Body;C1;�1 > : : : < Qk; Ck;�k >is the refutation for F : �.Assume now that M 00 6= ;. Then there is a unique rule C0 � (G�iH) : �0Body 2 P , s.t., G uni�eswith F via max-gu �0, T��1P j= Body and TP (T (P��1)(F ) = mdi(�0). Since C 0 2 P , C0 2 CL0(P )and therfore the following clause C00 � G : mdi(�0)  � Body is in CL1(P ). By the inductionhypothesis, there exists an hp-refutation for Body: < Body;C1;�1 > : : : < Qk; Ck;�k >. Then< F : �;C00;�0 >;< Body;C1;�1 > : : : < Qk; Ck;�k >is the refutation for F : �.2. jM 0 [M 00j > 1Let C0 = fG : �0  � Body 2 P jT��1P j= Bodyg, where G is uni�able with F , andM 0 = f�0jG : �0  � Body 2 C0g.Let also C00 = f(D �i H) : �00  � Body 2 P jT��1P j= Bodyg, where D is uni�able with F andM 00 = f�00j(D �i H) : �00  � Body 2 C00g.Since all clauses from C0 are in P , they are also in CL0(P ). LetG1 : �01  � Body01: : :Gs : �0s  � Body0sbe all clauses in C0. Since they are in CL0(P ), we can claim that the clauseC1 � G1�0 : �01 \ : : :\ �0s  � Body01 ^ : : :^Body0swill be in CLs(P ) (actually, it will already be in CLlog2(s)(P )) where �0 is the max-gu of G1; : : : ; Gs(such a substitution must exist since we know that each of Gj is uni�able with F ).Let (D1 �i1 H1) : �001  � Body001: : :(Dr �ir Hr) : �00r  � Body00rbe all clauses in C00. Since C00 � P , every clause in C00 is also in CL0(P ). Therefore, the followingset of clauses: D1 : mdi1(�001) � Body001: : :Dr : mdir (�00r ) � Body00rwill be a subset of CL1(P ). Then, we can claim that CLr(P ) (or even CLlog2(r)(P ) will containthe following clause: 25



C2 � D1�00 : mdi1(�001) \ : : :\mdir (�00r ) � Body001 ^ : : :^Body00rwhere �00 is the max-gu for D1; : : :Dr .Let l = max(r; s). Since both C1 2 CLl(P ) and C2 2 CLl(P ), the following clauseC � G1�01 : �01\ : : :\�0s\mdi1(�001)\ : : :\mdir(�00r ) � Body01^ : : :^Body0s^Body001 ^ : : :^Body00r(where �01 is the max-gu of G1�0 and D1�00) will be in CLl+1(P ) and therefore, in CL(P ).Notice that �01\ : : :\�0s\mdi1(�001)\ : : :\mdir(�00r ) = T�P (F ) � �. Also, by induction hypothesis,each Body0j and Body00j has an hp-refutation, therefore by Claim 1 of the theorem, their con-junction has an hp-refutation. Let < Q1; C1;�1 >; : : : ; < Qz; Cz;�z > be such an hp-refutation.Than the following is an hp-refutation for F : � :< F : �;C;�>;< Q1; C1;�1 >; : : : ; < Qz; Cz;�z >where � is the max-gu of F and G1�01.Induction Step. Assume that the theorem holds for every formula of size less than k and let F =A1 �i : : : �i Ak, where A1; : : :Ak are atomic.Let C1 = fG : �0  � Body 2 P jT��1P j= Body, where G is uni�able with Fg, andM1 = f�0jG : �0  � Body 2 C2g.Let C=2 f(D�iE) : �00  � Body 2 P jT��1P j= Body, where D is uni�able with Fg andM2 = f�00j(D�iE) :�00 � Body 2 C2g.Let G1 : �01  � Body01: : :Gs : �0s  � Body0sbe all clauses in C1. Since they are in CL0(P ), we can claim that the clauseCF1 � G1�0 : �01 \ : : :\ �0s  � Body01 ^ : : :^Body0swill be in CLs(P ) (actually, it will already be in CLlog2(s)(P )) where �0 is the max-gu of G1; : : : ; Gs(such a substitution must exist since we know that each of Gj is uni�able with F ).Let (D1 �i1 E1) : �001  � Body001: : :(Er �ir Er) : �00r  � Body00rbe all clauses in C2. Since C2 � P , every clause in C2 is also in CL0(P ). Therefore, the following set ofclauses: D1 : mdi1(�001) � Body001: : :Dr : mdir (�00r ) � Body00r26



will be a subset of CL1(P ). Then, we can claim that CLr(P ) (or even CLlog2(r)(P ) will contian thefollowing clause: CF2 � D1�00 : mdi1(�001) \ : : :\mdir (�00r ) � Body001 ^ : : :^Body00rwhere �00 is the max-gu for D1; : : :Dr .Now, consider any pair of basic formulas H and I such that H � I = F . Since F � (H �i I),we must conclude that T�P (F ) = T�P (H �i I) = ci(T�P (H); T�P (I). By our assumption T�P (F ) � �therefore, ci(T�P (H); T�P (I)) � �. Let � 0 = T�P (H); � 00 = T�P (I). We can now say that T�P j= H : �1 andT�P j= I : �2, such that ci(�1; �2) � �.By the induction hypothesis, there exist hp-refutations for H : � 0 and I : � 00. Let< H : �0; CH1 ;�H1 >< QH2 ; CH2 ;�H2 > : : : < QHt ; CHt ;�Ht >and < I : � 00; CI1 ;�I1 >< QI2; CI2 ;�I2 > : : : < QIu; CIu;�Iu >be these respective hp-refutations. Let us look at the clauses CH1 and CI1 . These clauses have to be ofa (respective ) form: CH1 � H0 : �0  � Body0where, �0 � �0, T��1P j= Body00, H0 is uni�able with H, andCI1 � I0 : �00  � Body00where, �0 � �0, T��1P j= Body00, I0 is uni�able with I.By de�nition of hp-refutation, both CH1 and CI1 are in CL(P ). Let w be the smallest integer such thatboth CI1 2 CLw(P ) and CH1 2 CLw(P ). Then we can claim that CLw+1(P ) will contain the followingclause: CH�iI � (H 0 �i I0) : ci(�0; �00) � Body0 ^Body00Since both Body0 and Body00 have hp-refutations, so does Body0 ^ Body00. In fact, we know that< QH2 ; CH2 ;�H2 > : : : < QHt ; CHt ;�Ht > is an hp-refutation forBody0 (QH2 = Body0) and < QI2; CI2 ;�I2 >: : : < QIu; CIu;�Iu > is an hp-refutation for Body00 (QI2 = Body00. Then, the following will be an hp-refutation for (H0 �i I 0) : ci(�0; �00):< (H 0�iI 0) : ci(�0; �00); CH�iI ;� >;< Body0^Body00; CH2 ;�H2 > : : : < QHt ^Body00; CHt ;�Ht >;< Body00; CI2 ;�I2 > : : : << QIu; CIu;�Iu >Let now HIf< H1; I1 >; : : : < Hm; Im >g be all possible pairs of basic formulas such that for each< H; I >2 HI H � I = F . By applying the reasoning above we will conclude that for each pair< Hj; Ij > CL(P ) contains a clauseCj � (H0j �i I 0j) : �j  � Bodyjthat �j � �, (H 0j �i I 0j) is uni�able with F and Hj is uni�able with H 0j and Ij is uni�able with I 0j ,T��1P j= Bodyj . Let q = maxfq1; : : : qmg, where (81 � j � m)(Cj 2 CLqj (P ) and Cj 62 CLqj�1(P )).Then CLq+m(P ) will contain the clauseCF3 � F�F3 : �1 \ : : :\ �m  � (Body1 ^ : : :Bodym)�F327



where �F3 is the max-gu of (H1 �i I1); : : :9Hm �i Im). Since all Body1; : : :Bodym have hp-refutations,so does Body1 ^ : : :Bodym (and therefore Body1 ^ : : :Bodym)�F3 ).Now we can combine clauses CF1 , CF2 and CF3 together into:CF � F�F : �0 \ �00 \ � � Body1 ^Body2 ^Body3where �F is a max-gu of the heads of CF1 , CF2 and CF3 , �0,�00 and � are probability ranges ofCF1 , CF2 and CF3 respectively and Body1, Body2 and Body3 are their respective bodies. It is clearthat (i) �0 \ �00 \ � � � and (ii) CF 2 CL(P ). We also know that there exists an hp-refututation< Body1 ^ Body2 ^ Body3; CB1 ;�B1 > : : : < QBv ; CBv ;�Bv > of Body1 ^ Body2 ^ Body3. Then thefollowing is an hp-refutation for F : �:< F : �;CF ;� >;< Body1 ^Body2 ^Body3; CB1 ;�B1 > : : : < QBv ; CBv ;�Bv >, where � is a max-gu uni�er of F and the head of CF .(Completeness theorem).5.3 HRP Refutations for HP-programsNote that the hp-refutation procedure assumes that CL(P ) has been constructed prior to processinga query. In practice, this is an extremely expensive process, both in terms of time taken to constructCL(P ), and in terms of space requirements. Even for propositional programs, P , it is easy to see thatCL(P ) can contain exponentially many clauses. The HRP refutation framework described here avoidsthe construction of CL(P ).In the de�nition below, anytime a formula (F �iG) is written it is assumed that � 2 f^;_g and if � = ^then i 2 CONJ and if � = _ then i 2 DISJ .De�nition 31 Let P be an hp-program. We de�ne a formal system HRP as follows:1. Axioms of HRP include all clauses from P and all clauses of the form: A : [0; 1]  � whereA 2 BL.2. Inference Rules. There are 5 inference rule schemes in HRP .� A-Composition: Let A1; A2 2 BLA1 : �1  � Body1 A2 : �2  � Body2(A1 �i A2) : ci(�1; �2) � Body1 ^Body2� F-Composition: Let A1; : : :Ak; B1 : : :Bk 2 BL(A1 �i : : : �i Ak) : �1  � Body1 (B1 �i : : : �i Bl) : �2  � Body2(A1 �i : : : �i Ak �i B1 �i : : : �i Bl) : ci(�1; �2) � Body1 ^Body2� Decomposition: L-Decomposition R-Decomposition(F�iG):� �BodyF :mdi(�) �Body (F�iG):� �BodyG:mdi(�) �Body� Clari�cation: F1 : �1  � Body1 F2 : �2  � Body2(F1 : �1 \ �2  � Body1 ^Body2)�if F1 and F2 are uni�able via max-gu �28



� Exchange: Let A1; : : : ; Ak 2 BL, and let B1; : : : ; Bk be a permutation of A1; : : : ; Ak(A1 �i : : : �i Ak) : � � Body(B1 �i : : : �i Bk) : � � Body3. A �nite sequence C1 : : :Cr of hp-clauses is called an HRP -derivation i� each clause Cj is eitheran axiom or can be constructed from one or more previous of C1 : : :Cj�1 by applying one of theinference rule schemes to them. We call clause Cr the result of the HRP -derivation.4. An hp-clause C is derivable in HRP i� there exists such an HRP -derivation C1; : : :Cr thatCr = C. We denote it by P ` C.The following theorems tell us that the system of axioms and inference rules describing HRP pre-cisely captures the closure, CL(P ), of P .Theorem 6 (soundness of HRP ) For each hp-clause C, if P ` C then C 2 CL(P ).Proof. We notice �rst that the set of all axioms of HRP is exactly P [REDUN (P ) = CL0(P ). Nextwe notice that the �rst 4 inference rule schemes preciesely match the 4 rules used to add new hp-rulesto CL(P ). Finally, the last inference rule scheme (Exchange) does not create a new basic formula, itjust rearranges the order of atoms in it.Theorem 7 (completeness of HRP ) For each hp-clause C, if C 2 CL(P ) then P ` C.Proof. if C 2 CL(P ) then there exists such an integer n that CCLn(P ) and C 62 CLn�1(P ). We provethe theorem using induction on n.In the base case n = 0 and we know that CL0(P ) = P \ REDUN (P ). As it was noticed in theprevious theorem, this set is exactly the set of all axioms of HRP , therefore, C is an axiom of HRP .On the induction step, we consider a clause C added to CLn(P ). ByDef 26 C was added to CLn(P )by one of four rules. Since these rules match exactly the four inference rules of HRP and by inductionhypothesis for every clause C0CLn�1(P ) we know that P `HRP C 0, we can obtain the proof of C inHRP by application of a matching rule to the same clauses.De�nition 32 Let Q � 9(F1 : �1 ^ : : : ^ Fn : �n) be an initial query, and P an hp-program. Anhp-refutation via HRP of Q from P is a �nite sequence < Q1; C1;�1 > : : : < Qr; Cr;�r > where,� Q1 = Q� Qr is empty� P ` Ci for all 1 � i � r� Qi+1 is an hp-resolvent of Qi and Ci with max-gu �i, for all 1 � i < r.The following results tell us that hp-refutations using HRP are both sound and complete and thus,theyconstitute the �rst sound and complete proof procedure for probabilistic logic programs (includingthose in [22]) that do not require the construction of a program closure. Here is a simple example ofHRP -refutations.Example 6 (HRP refutations) Consider the HP-program P given by:29



a : [1; 1] � (b ^ind c ^ind d) : [0:25; 1]^ f : [0:5; 0:9]:e : [1; 1] � (b ^ind c ^ind d) : [0:25; 1]^ f : [0:5; 1]:(f ^ind g) : [0:7; 0:8] � b : [1; 1]:(f _ig g) : [0:7; 0:9] � :b : [1; 1] � (c ^ind d) : [0:3; 1]:c : [0:6; 1] � : d : [0:5; 1] � :A refutation of the query Q = a[0:9; 1]^ e : [1; 1] is given by:Q1 = Q = a[0:9; 1]^ e : [1; 1]P 3 C1 = a : [1; 1] � (b ^ind c ^ind d) : [0:25; 1]^ f : [0:5; 0:9]:Q2 = (b ^ind c ^ind d) : [0:25; 1]^ f : [0:5; 0:9]^ e : [1; 1]P ` C2 = (b ^ind c ^ind d) : [0:3; 1] � (c ^ind d) : [0:3; 1]:Q3 = (c ^ind d) : [0:3; 1]^ f : [0:5; 0:9]^ e : [1; 1]P ` C3 = (c ^ind d) : [0:3; 1]) �Q4 = f : [0:5; 0:9]^ e : [1; 1]P ` C4 = f : [0:7; 0:9] � b : [1; 1]:Q5 = b : [1; 1]^ e : [1; 1]P 3 C5 = b : [1; 1] � (c ^ind d) : [0:3; 1]:Q6 = (c ^ind d) : [0:3; 1]^ e : [1; 1]P ` C6 = (c ^ind d) : [0:3; 1]) �Q7 = e : [1; 1]P 3 C7 = e : [1; 1] � (b ^ind c ^ind d) : [0:25; 1]^ f : [0:5; 0:1]:Q8 = (b ^ind c ^ind d) : [0:25; 1]^ f : [0:5; 0:1]:P ` C8 = (b ^ind c ^ind d) : [0:3; 1] � (c ^ind d) : [0:3; 1]:Q9 = (c ^ind d) : [0:3; 1]^ f : [0:5; 0:1]:P ` C9 = (c ^ind d) : [0:3; 1]) �Q10 = f : [0:5; 0:1]:P ` C10f : [0:7; 0:9] � b : [1; 1]:Q11 = b : [1; 1]:P 3 C11 = b : [1; 1] � (c ^ind d) : [0:3; 1]:Q12 = (c ^ind d) : [0:3; 1]:P ` C12 = (c ^ind d) : [0:3; 1]) �Q13 = 2Theorem 8 (Soundness of HRP )-Refutations).Let P be an hp-program, and Q be an initial query. If there exists an hp-refutation via HRP of Q �9(F1 : �1^ : : :^Fn : �n) from P with the answer substitution � then P j= 8((F1 : �1^ : : :^Fn : �n)�).Theorem 9 (Completeness of HRP )-Refutations).Let P be a consistent hp-program and Q0 be a query. Then, if P j= 9(Q0) then there exists an hp-refutation of Q0 from P via HRP .Both theorems above follow immediately from the soundness and completeness theorems for HP-refutation and soundness and completeness theorems for HRP w.r.t. CL(P ). Before concluding this30



section, we brie
y reiterate that HRP refutations avoid compile-time construction of CL(P ) { anexpensive and time/space consuming proce3ss.5.4 B-CacheWe are now ready to study e�cient tabled query processing techniques for HPPs. In this section,we will �rst de�ne caches and bounded caches. Intuitively, a cache contains formulas with establishedprobability ranges. As resolution based processing of a query occurs, we will gain information aboutcertain basic formulas. These will need to be \added" to the cache. For this purpose, we will de�ne inthis section, a family of updating strategies and introduce several example strategies. Later, in Section 6,we will show how to use these tables and table update strategies for hand in hand with the resolutionbased proof procedure.5.4.1 De�nitionsDe�nition 33 A cache is a �nite set of annotated basic formulas. If b is an integer, a bounded b-cacheis a �nite set of annotated basic formulas containing at most b atoms each.Basically a b-cache is a collection of hybrid probabilistic basic formulas, where each formula's lengthis bounded by a constant b. Note that a b-cache may be considered to be a hybrid probabilistic logicprogram all of whose clauses are \facts".De�nition 34 Let T be a b-cache, F be a basic formula (not necessarily ground). By T [F ] we denotethe set of all such pairs f< �;� >g, where � is a substitution for F and � � [0; 1] is the smallestinterval such that T j= 8(F� : �).Intuitively T [F ] represents what the b-cache T \thinks" about the possible probability ranges of in-stances of F . Note that if F is ground, then f�j < �;� >2 T [F ]g is a singleton set. Without loss ofgenerality we will abuse notation in this case and write T [F ] = �.5.4.2 B-Cache Update strategiesWe �x an integer b > 0, a language L and a set S of p-strategies. Let T [b; L;S] denote the set of allpossible b-caches over bfS(BL). Whenever b, L and S are clear from the context we may use T insteadof T [b; L;S].We are interested in developing a resolution-based query processing procedure that is irredundant in thesense that it does not \re-infer" facts that it has already inferred. In the case of classical logic programs,caches and their utilization are relatively simple: caches contain facts; when performing resolution onan atom A in the query, we check to see if A is subsumed by the cache (Tamaki and Sato[29]). Analternative approach is due to Warren et. al. who check the cache for variants of A [8, 6]. However, inthe case of probabilistic logic programs, b-caches are somewhat more complicated.As the resolution triggered by a query proceeds, more and more information is being established andany time new information is obtained, we want to insert it to our b-cache. However simple addition ofa new basic formula to T is not enough, because as we add new probabilistic information - we mightbe able to update the probability intervals for some other basic formulas already in T . Also, the waysuch an update can be de�ned is not unique - in fact, there is a variety of possible \intuitive" updates.Rather than de�ning a speci�c update procedure, we �rst proceed by de�ning a notion of an updatestrategy - a function that takes a b-cache and a basic formula as input, and returns a new \improved"31



b-cache. We will establish a number of basic properties of any update strategy. Later we will de�ne anumber of speci�c update strategies that are \natural" or \intuitive".In the de�nition below CN (S), where S is a set of hp-formulas denotes the set of all logical conse-quences of S.De�nition 35 A function f : T � bfS (BL) � C[0; 1] �! T is called a b-cache update strategy i� itsatis�es the following conditions:1. (8T 2 T )(8F 2 bfS(BL))(8� 2 C[0; 1])CN (T ) � CN (f(T; F; �)) � CN (T [ fF : �g)2. (8T 2 T )(8F;G 2 bfS(BL))(8�; � 2 C[0; 1])f(f(T; F; �); G; �) = f(f(T;G; �); F; �)We will use the ] operator to denote b-cache update functions. When more than one update functionis considered, we will use the ]f notation and annotate F with �. (so, f(T; F; �) = T ]f F : �).Clause (1) in the above de�nition says that an update of a b-cache (i)should not decrease the amountof information that is contained in, or that can be deduced from the b-cache but at the same time (ii)may not increase the content of the table \unreasonably". Notice that b-caches, by their very de�nition,automatically pose certain restrictions on how complete the update is - if the length of an updatingformula is greater than b - the formula itself cannot be stored in the b-cache.Clause (2) of the above de�nition says that the order in which we apply the update operator fshould not matter. Updating a table T with F : � �rst and then G : � should be the same as doing itthe other way around.De�nition 36 Let P be an hp-program and T be a b-cache. We say that T is sound w.r.t. P (P j= T )i� for each formula F : � 2 T , P j= F : �.Lemma 7 (soundness of b-cache update). Let P be an hp-program, T be a b-cache and F be a basicformula. Let f be any b-cache update strategy. Then if P j= T and P j= F : � then also P j= T ]f fF :�g.Proof. Let F 0 : �0 2 T ]f F : �. Two cases are possible.1. F 0 : �0 2 T . In this case, since P j= T , it has to be P j= F 0 : �0.2. F 0 : �0 62 T . We know that T ]f F : � j= F 0 : �0, hence F 0 : �0 2 CN (T ]f F : �). We also knowthat CN (T ]f F : �) � CN (T [ fF : �g), therefore, we can obtain that T [ fF : �g j= F 0 : �0.But, P j= T and P j= F : � implies that P j= T [ fF : �g. Combining the obtained resultstogether we get P j= F 0 : �0.In order to simplify notation we de�ne an update of a b-cache with a �nite set of formulas as follows:De�nition 37 Let S = fF1 : �1; : : : ; Fn : �ng be a �nite set of annotated basic formulas and u- ab-cache update strategy. We de�neT ]u S = (: : : (T ]u F1 : �) ]u : : :) ]u Fn : �n)32



The order in which we write Fis is irrelevant as by the second property of the b-cache update strategy(commutativity), the result of updating a b-cache with a sequence of basic formulas does not dependon the order of formulas. (Second property establishes it for a sequence of 2 basic formulas. It is easilyextended onto the case of sequences of 3 or more formulas).As the reader may notice, there are numerous functions that satisfy the de�nition of an updatestrategy. Some of these are intuitively \more complete" than others. The following de�nition capturesthis informal notion.De�nition 38 Let u and w be two b-cache update strategies. We say that u is more complete than w(denoted u � w) i� (8T 2 T )(8F 2 bfS(BL))(8� 2 C[0; 1])CN (T ]w F : �) � CN (T ]u F : �).Two update strategies u and w are equivalent i� if both u � w and w � u.An update strategy u is maximally complete i� (8w)(u � w).5.4.3 Examples of Update StrategiesIn this section, we will provide examples of a number of di�erent update strategies, and show how thesestrategies are related to one another w.r.t. the \more complete" relationship.The �rst kind of update strategy we consider is a relatively simple \atomic update."De�nition 39 (Atomic Updates) Let T be a b-cache and A be an atomic (not necessarily ground)formula. An atomic update of T by A : �, denoted T ]at fA : �g is de�ned as follows:1. If T has no atomic formulas that unify with A : �, then T ]at fA : �g = T [ fA : � �g2. Otherwise we proceed in a number of steps:(a) If there is a formula A : � in T , we replace it with A : � \ �.(b) For all B, such that B : � 2 T and A� = B for some substitution �, we replace B : � withB : � \ �.(c) Let B = f� jB : � 2 T ^ (9�)B� = Ag. We add A : � \ (\�2Bf�g) to T .(d) For each B such that B : � 2 T and A�1 = B�2 for some substitutions �1 and �2 we addA�1 : � \ � to T .(e) If no clause for A had been added to T on previous steps, we add A : � to T .An atomic update is not a \complete" b-cache update per se, but it will be at the core of a number ofupdates that we consider further. Informally, we can describe this process as follows: we check to seeif T contains any formulas uni�able with A. If not, we just add A : � to T . Otherwise, we look forformulas in T which have probabilities that can a�ect the probability of A, or vice versa (see example).Then we update probability ranges for all such formulas.Example 7 Suppose our b-cache T = fp(a; Y ) : [0:4; 0:7]; p(b; Y ) : [0:6; 0:9]; p(X;a) : [0:5; 1]g Below weshow the results of T ]atA for a number of given atoms (we consider variables in all the formulas to bestandardized apart).A T ]at Ap(X;Y ) : [0:5; 0:95] fp(a; Y ) : [0:5; 0:7]; p(b; Y ) : [0:6; 0:9]; p(X; a) : [0:5; 0:95]; p(X;Y ) : [0:5; 0:95]gp(a; a) : [0:3; 0:6] fp(a; Y ) : [0:4; 0:7]; p(b; Y ) : [0:6; 0:9]; p(X; a) : [0:5; 1]; p(a; a) : [0:4; 0:6]gp(b; Z) : [0:4; 0:8] fp(a; Y ) : [0:4; 0:7]; p(b; Y ) : [0:6; 0:8]; p(X; a) : [0:5; 1]; p(b; a) : [0:5; 0:8]g33



Atomic updates do not update annotated basic formulas that are not atomic, and hence the cachethat results from an atomic update may not be maximally complete, i.e. it may be the case thatT [ fF : �g j= G : �0, but (T ]at F : �) 6j= G : �0 for a non-atomic G. An alternative update strategythat propagates such updates is given below.De�nition 40 (Propagated Atomic Update - pat) Let T be a b-cache, F be a basic formula. APropagated Atomic Update strategy (pat) is de�ned as follows:1. F is atomic. T ]pat F : � = T ]at F : �.2. Let F = (F1 �i : : : �i Fm). T ]pat F : � = (: : : (T ]at F1 : mdi(�)) ]at : : :) ]at Fm : mdi(�))The Propagated Atomic Update strategy extends atomic updates onto complex formulas. Among theadvantages of this strategy are its relative simplicity and the fact that it works for any bound b on ab-cache. However it is a rather weak strategy in the sense that because every updating formula getsbroken into the atoms that constitute it, some information about the probability ranges of associatedformulas is lost, i.e. it is not maximally complete. The following example demonstrates this fact.Example 8 Let T = ; and F = (p(a) ^inc q(a)) : [0:3; 0:6]. By de�nition T 0 = T ]pat F = fq(a) :[0:3; 1]; p(a) : [0:3; 1]g. Now we have T 0[(p(a) ^inc q(a)] = [0:3 � 0:3; 1] = [0:09; 1]� [0:3; 0:6]. However,if the bound b is greater than 1, we could try to store F itself in T 0, and preserve information about itsprobability range.The above example suggests how the PAT strategy can be modi�ed to be able to be more complete.De�nition 41 (Elementary b-cache update) Let T be a b-cache, F be a basic formula. We de�nean elementary b-cache update strategy (denoted ]eb as follows:1. Case 1. jF j = 1. (F is atomic). T ]eb fF : �g = T ]at fF : �g2. Case 2. 1 < jF j � b. Let F � F1 �i : : : �i Fm. We proceed in a number of steps.(a) Let T 0 = T ]pat F : �(b) Let f< �1;�1 >; : : : < �k;�k >� T 0[F ] be all pairs from T 0[F ], s.t., � 6� �. We proceed insteps. Let T 0 = T 0. Consider T i (0 � i < k) constructed. We now construct T i+1.� If F�i+1 : � 2 T 0 we replace it with F : �\� and declare the new b-cache to be the resultof an update operation, i.e. T i+1 = (T i � fF�i+1 : �g)[ fF�i+1 : � \ �g� If F�i+1 : � 62 T 0 we declare T i+1 = T i [ fF�i+1 : � \ �g.(c) Now we declare T ]eb F : � = T k.3. Case 3. jF j > b. Let F = F1 �i : : : �i Fm Let B1; B2; : : :Bk be all subformulas of F of size b.Then T ]eb fF : �g = (T ]pat F ) ]eb B1 : mdi(�) ]eb : : :]eb Bk : mdi(�).It is easy to notice thatProposition 2 (i) (8b > 0)eb � pat (ii) e1 � patElementary updates allow us to capture more informationabout the updating formula, but these updatesstill allow for the loss of information as is shown in the following example.34



Example 9 Let T = ; and F = (A ^inc B ^inc C) : [0:4; 0:6] (A,B,C are ground atoms). Let T 0 =T ]e3 F . By de�nition above T 0 = f(A ^inc B ^inc C) : [0:4; 0:6];A : [0:4; 1]; B : [0:4; 1]; C : [0:4; 1]g.We notice that T 0[(A ^inc B)] = [0:16; 1]. However, it is clear that F j= (A ^inc B) : [0:4; 1].The following strategy is more complete than elementary b-cache updates, but is also more di�cultto compute.De�nition 42 (Full b-cache update) Let T be a b-cache, F be a basic formula.We de�ne a full b-cache update strategy (denoted ]fb) as follows:1. Case 1. jF j = 1. (F is atomic). T ]fb fF : �g = T ]at fF : �g2. Case 2. Let F � F1 �i : : : �i Fm, m � b. Let B1; : : :Bk be all the subformulas of F of size < m.We declare T ]fb fF : �g = T ]eb F : � ]eb B1 : mdi(�) ]eb : : :]eb Bk : mdi(�).3. Case 3. jF j > b. Let F = F1 �i : : : �i Fm Let B1; B2; : : :Bk be all subformulas of F of size � b.Then T ]fb fF : �g = (T ]pat F ) ]eb B1 : mdi(�) ]eb : : :]eb Bk : mdi(�).The following result tells us that not only is the full b-cache update strategy more complete thanthe elementary b-cache update strategy, it is also maximally complete when b is taken to be the size ofthe Herbrand base of our underlying logical language L.Proposition 3 (i) (8b > 0)fb � eb (ii) f1 � e1 � pat(iii) Suppose k = jBLj. Then: fk is maximally complete update strategy.As the reader may easily notice from the de�nitions, implementing atomic updates is easy, however,PAT is more e�cient than the elementary b- cache strateges eb, which get less e�cient as b gets larger {and �nally, implementing the full b-cache strategies is hardest of all, with the e�ciency of these updatesdegrading as b increases. This will become apparent from the examples shown in the next section.6 Proof Procedure for HP-Programs with b-cacheIn the previous section, we presented a query refutation procedure for hybrid probabilistic programs.We now modify that refutation procedure for the case of query resolution from an hp-program withb-cache.Informally the desired resolution procedure works as follows. Initially we have query Q, program P , ab-cache update strategy u and our b-cache T is (initially) empty. On each resolution step, we select abasic formula F : � from current query and perform a lookup for the probability range of this formulain our current b-cache. To do this we have to compute T [F ]. Once T [F ] is computed we compare it to�. In case T [F ] � � we consider current resolution step done. Otherwise, we use refutation proceduredescribed above to perform one resolution step. If we decide that this resolution step resulted in provingnew basic formula, we use b-cache update strategy u to update current b-cache with one or possiblemore new proven formulas.De�nition 43 Let Q � 9(F1 : �1 ^ : : :^ Fn : �n) be an initial query to hp-program P .A b-cache supported initial query Q̂ is de�ned as follows: Let Fi1 : �i1 : : :Fin : �in is an arbitrarypermutation of F1 : �1 ^ : : :^ Fn : �n. Then Q̂ �< (Fi1�i1 ; ;); : : : ; (Fin : �in ; ;) >.Any initial b-cache supported query is a b-cache supported query.35



It is clear from the de�nition above that one query to P of size n can generate n! di�erent b-cachesupported queries.De�nition 44 We di�ne a b-cache supported resolvent and a b-cache update procedure simulteneously.Let P be an hp-program, T - a b-cache and u - a b-cache update strategy. Let Q̂ �< (G1 : �1; S1); : : : ; (Gm :�m; Sm) >, where for each 1 � i � m, Si is a set (possibly empty) of annotated basic formulas (notnecesserily ground). Two cases have to be considered:1. There exists < �;� >2 T [G1], such that, � � �1. Let C � G1� : � �. ThenQ̂0 �< (G2� : �2; S2�); : : : ; (Gm� : �m; Sm�) >is a b-cache supported resolvent of Q̂ and C.A b-cache update procedure �u for this case can be de�ned as follows: �u(Q̂; T; C;�) = T ]u S1�.2. There is no < �0;�0 >2 T [G1], such, that �0 � �1. In this case, let C � G : �  � F1 :�1 ^ : : :^ Fn : �n, G1 uni�es with G via max-gu � and � � �1. Let Fi1 : �i1 : : :Fin : �in be anyarbitrary permutation of F1 : �1 ^ : : :^ Fn : �n.We de�ne a b-cache supported resolvent of Q̂,C and T to be:Q̂0 �< (Fi1� : �i1 ; ;); : : : ; (Fin� : �in ; S1� [ fG1�g); (G2� : �2; S2�); : : : ; (Gm� : �m; Sm�) >.A b-cache update procedure for this case is de�ned as follows:(a) Body of C is empty . �u(Q̂; T; C;�) = T ]u G1� : � ]u S1�(b) Body of C is not empty. �u(Q̂; T; C;�) = TDe�nition 45 Let P be an hp-program, Q - a query and u - a b-cache update strategy.A b-cache supported refutation of Q from P via HRP is a �nite sequence< Q̂1; C1;�1; T1 > : : : < Q̂r; Cr;�r; Tr >, where� Q̂1 is b-cache supported initial version of Q.� T1 = ;� Q̂r is empty.� for each 1 � i � r either P ` Ci or Ti ` Ci.� for each 1 � i < r, ^Qi+1 is a b-cache supported resolvent of Q̂i and Ci with max-gu �i.� for each 1 � i < r, Ti+1 = �u(Q̂i; Ti; Ci;�i) 36



Example 10 (2-cache supported hp-refutation with elementary update strategy) Let usreturn to the hp-program shown in Figure 6 and the query considered there. We present below, arefutation using a 2-cache (i.e. b = 2) using the strategy e2, i.e. elementary 2-cache update. The readerwill notice that using this strategy cuts the number of steps in the resolution by 3 steps, leading to anover 20% reduction in the length of a proof. Note that had we used a di�erent update strategy, thereduction may have been di�erent.1. Q1 =< (a : [1; 1]; ;); (e : [1; 1]; ;)>T1 = ;;P 3 C1 = a : [1; 1] � (b ^ind c ^ind d) : [0:25; 1]^ f : [0:5; 0:9]:2. Q2 =< ((b ^ind c ^ind d) : [0:25; 1]; ;); (f : [0:5; 0:9]; fa : [1; 1]g); (e : [1; 1]; ;)>T2 = ;;P ` C2 = (b ^ind c ^ind d) : [0:3; 1] � (c ^ind d) : [0:3; 1]:3. Q3 =< ((c ^ind d) : [0:3; 1];f(b^ind c ^ind d) : [0:3; 1]g); (f : [0:5; 0:9];fa : [1; 1]g); (e : [1; 1]; ;)>T3 = ;;P ` C3 = (c ^ind d) : [0:3; 1]) �4. Q4 =< (f : [0:5; 0:9]; fa : [1; 1]g); (e : [1; 1]; ;)>T4 = (T3 ]2e (c ^ind d) : [0:3; 1])) ]2e (b ^ind c ^ind d) : [0:3; 1] = fc : [0:3; 1]; d : [0:3; 1]; b :[0:3; 1]; (c^ind d) : [0:3; 1]; (b^ind c) : [0:3; 1]; (b^ind d) : [0:3; 1]gP ` C4 = f : [0:7; 0:9] � b : [1; 1]:5. Q5 =< (b : [1; 1]; ff : [0:7; 0:9]; a : [1; 1]g); (e : [1; 1]; ;)>T5 = T4;T [b] = [0:3; 1] 6� [1; 1];P 3 C5 = b : [1; 1] � (c ^ind d) : [0:3; 1]:6. Q6 =< ((c ^ind d) : [0:3; 1];fb : [1; 1]; f : [0:7; 0:9]; a : [1; 1]g; (e : [1; 1]; ;)>T6 = T5 = T4;T6[(c ^ind d)] = [0:3; 1]� [0:3; 1]7. Q7 =< (e : [1; 1]; ;)>T7 = (T6 ]2e (c ^ind d) : [0:3; 1])]2e fb : [1; 1]; f : [0:7; 0:9]; a : [1; 1]g = fc : [0:3; 1]; d : [0:3; 1]; b :[1; 1]; (c^ind d) : [0:3; 1]; (b^ind c) : [0:3; 1]; (b^ind d) : [0:3; 1]; f : [0:7; 0:9]; a : [1; 1]gP 3 C7 = e : [1; 1] � (b ^ind c ^ind d) : [0:25; 1]^ f : [0:5; 0:1]:8. Q8 =< ((b ^ind c ^ind d) : [0:25; 1]; ;); (f : [0:5; 0:1]; fe : [1; 1]gT8 = T7;T8[(b^ind c ^ind d)] = [0:3; 1]� [0:25; 1]9. Q9 =< (f : [0:5; 0:1]; fe : [1; 1]gT9 = T8 = T7;T9[f ] = [0:7; 0:9]� [0:5; 0:9]10. Q10 = 2The following two important results state that irrespective of which update strategy is used, b-cachesupported hp-refutations are guaranteed to be sound and complete. (Completeness assumes that theprogram P is consistent). The proofs are straighforward, as we know that HRP is sound and comlete,and the b-cache supported hp-refutation via HRP is just its conservative extention.Theorem 10 (Soundness of b-cache supported hp-refutation via HRP ).Let P be an hp-program, Q be an initial query, and ] be any update strategy. If there exists a b-cachesupported refutation via HRP of Q � 9(F1 : �1 ^ : : :^ Fn : �n) from P with the answer substitution �then P j= 8((F1 : �1 ^ : : :^ Fn : �n)�).Theorem 11 (Completeness of b-cache supported hp-refutation ).Let P be a consistent hp-program, Q0 be a query, and ] be any update strategy. Then, if P j= 9(Q0)then there exists a b-cache supported hp-refutation of Q0 from P via HRP .37



7 Related Work and ConclusionsLogic knowledge bases have been extended to handle fuzzy modes of uncertainty since the early 70'swith the advent of the MYCIN and Prospector systems [10]. Shapiro was one of the �rst to developresults in fuzzy logic programming [27]. Baldwin [1] was one of the �rst to introduce evidential logicprogramming and a language called FRIL. Van Emden [31] was the �rst to provide formal semanticalfoundations for logic programs that was later extended by Subrahmanian [28] and then completelygeneralized in a succession of papers by Blair and Subrahmanian[3], and Fitting[12], Ginsberg [13], andapplied to databases by Kifer and Li [16] and Kifer and Subrahmanian [17]. All the above works didnot obey the laws of probability.The �rst works in the area of probabilistic logic programming were due to Ng and Subrahmanianwho, in a series of papers [22, 24], developed techniques for probabilistic logic programming underthe assumption of ignorance. Their work built upon earlier work on probabilistic logics due to Fagin,Halpern and and others [11] and Nilsson [25].In contrast, Kiessling and his group [14, 30, 26] have developed a framework called DUCK forreasoning with uncertainty. They provide an elegant logical axiomatic theory for uncertain reasoningin the presence of rules, and using the independence assumption.Perhaps the most signi�cant related work is the elegant recent work of Lakshmanan's group [20, 19].There are several di�erences between our approach, and theirs. First, the syntax is di�erent. Weassociate probabilities with atoms, while [20] associates two intervals with any rule. Second, their workcan be viewed as a re�nement of [23] and [17]. In contrast, in this paper, we propose a generalizationof [22]. Third, our semantics is di�erent. For instance, even if none of the hybrid p-strategies in ourpaper are present, and we just have two facts a : [1; 1] and a : [0; 0] in P , our semantics would declarean inconsistency, while theirs would imply a : [1; 1], but would not be inconsistent. This seems quitecounter-intuitive to us. They only allow atoms in the head and in the body, at most one conjunction(corresponding to one of our basic formulas) is allowed. In contrast, we allow arbitrary basic formulas inrule heads, and allow arbitrary conjunctions of basic formulas re
ecting di�erent probabilistic strategiesin the rule body. Fourth, our semantics uses arbitrary and new de�nitions of conjunction and disjunctionstrategies in logic programs. Fifth, we have developed multiple alternative ways of processing queriesto probabilistic logic programs, include the use of arbitrary update strategies in cache-based queryprocessing. Lakshmanan and his colleagues complement our results with elegant query optimizationresults. Developing such results in the general setting of hp-programs remains a signi�cant challenge,and will need to build upon the foundation laid by them in that arena.There has been a substantial body of work on probabilistic extensions of relational databases, whichwe do not discuss here as their relation to logic programming is not immediate. For the sake ofcompleteness, such works include[2, 5, 15, 18]. In particular, [18] proposes a set of axioms governingprobabilistic strategies. This di�ers from our work here in that the axioms are di�erent and there is nonotion of a \decomposition" function associated with p-strategies.In sum, our paper's goal was to provide a 
exible probabilistic logic programming framework. Pastapproaches to logic programming with probabilities assumed that knowledge about all events in thereal world represented by propositional symbols or predicate symbols took one single form { either weassumed ignorance of all dependences between such events (e.g. [22]) or we assumed independence (e.g.in most AI expert systems). In practice however, a probabilistic logic programming system must be
exible enough to allow the logic programmer to explicitly specify any domain speci�c knowledge hehas about dependences (or lack thereof) between events. Our approach allows this, through the use ofsyntactic connectives that represent generalized conjunction/disjunction strategies. We have provided a38
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