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Abstract 

A fully autonomous agent recognizes new problems, explains what causes 
such problems, and generates its own goals to solve these problems. Our 
approach to this goal-driven model of autonomy uses a methodology called 
the Note-Assess-Guide procedure. It instantiates a monitoring process in 
which an agent notes an anomaly in the world, assesses the nature and cause 
of that anomaly, and guides appropriate modifications to behavior. This 
report describes a novel approach to the note phase of that procedure. A-
distance, a sliding-window statistical distance metric, is applied to 
numerical vector representations of intermediate states from plans 
generated for two symbolic domains. Using these representations, the 
metric is able to detect anomalous world states caused by restricting the 
actions available to the planner.   



1. Introduction 

A truly intelligent agent not only can solve formal problems given to it by some oracle 
(e.g., an external user); it can also notice when something is amiss in the world and do 
something about it. That is, an autonomous agent should be able to recognize new problems 
as well as solve known ones; it should be able to generate its own goals as well as accept 
goals from a user. In this context, the first step in recognizing and representing a problem 
is to detect when the world is not as expected or desired. Although not all such 
discrepancies signal a problem, and not all problems are relevant to an individual agent, 
the detection of anomalous data is a key enabling step in a new kind of intelligent agency 
we call goal-driven autonomy (Cox, 2007; 2013; Klenk, Molineaux, & Aha, 2013; Munoz-
Avila, Jaidee, Aha, Carter, 2010). Furthermore, anomaly detection is an outstanding 
technical problem in many other areas of interest to the artificial intelligence community 
(e.g., Albrecht, et al., 2000; Basseville, & Nikiforov, 1993; Chandola, Banerjee, & Kumar, 
2009; Crook & Hayes, 2001; Fawcett & Provost, 1999; Janssens, Postma, & Hellemons, 
2011; Leake, 1989; Pannell & Ashman, 2010; Schank & Owens, 1987; Sussman, 1975). 

The problem of anomaly detection is instrumental to both cognitive and metacognitive 
processes. An anomaly exists when an expected outcome (i.e., an expectation) is 
significantly different from an actual outcome (or when no outcome occurs at all). At the 
cognitive level, noting an anomaly means that the agent understands when its own actions 
or other events go awry in the world. At the metacognitive level, it means that the agent 
notes when its own reasoning or memory fails. The ability to notice anomalies enables the 
deliberate evaluation of the agent’s progress towards its goals and a readjustment of its 
action and thinking. We conceptualize this capability as a core three-phase process called 
the Note-Assess-Guide procedure (Anderson & Perlis, 2005; Perlis, 2011). The first phase 
of the procedure is to note an anomaly or failure. The second is to assess the nature and 
cause of the anomaly, and the third it to guide a response to the anomaly, either changing 
what the agent does in the world or learning to reason in a different way. 

For example a business management agent may note that normal shipments are not getting 
delivered on time to customers as expected. A cursory assessment may determine that the 
bottleneck is due to a union longshoreman strike at the regional shipping center. The guided 
response may be to create a corporate goal to obtain alternate logistics options for the 
future. In a metacognitive example, a planning agent may expect that her car will get her 
to some destination, but experience an expectation failure (as well as disappointment) when 
the car runs out of gas. Noting this anomaly leads the agent to assess the cause of failure 
as forgetting to fill up when at the store before starting the journey and to learn to check 
the gas gauge before starting the car. The former sequence involves noting an anomaly in 
the world, whereas the latter concerns anomalous decisions and memory performance by 
the agent itself. In both cases, expectation failures drive the note phase, although these 
expectations may at times be implicit.  

The purpose of this report is to examine in some depth the Note phase of the Note-Assess-
Guide procedure and to put forth a novel method of implementing it. Our focus is on 
detecting anomalies in domains where states are represented symbolically with predicates, 
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as is often the case in deliberative planning systems used in cognitive architectures. The 
challenge is to detect significant changes in the domain as reflected in changes in sequences 
of world states observed while executing plans. This is accomplished by using a numeric 
metric, which was developed to detect changes in real-valued data streams. We pair this 
metric with a representation of predicate streams that converts them to streams of integers 
by counting the number of instantiations of each distinct predicate in a state, ignoring 
predicate arguments. Experiments with a classical planner in the logistics and blocksworld 
domains show that the pairing of this metric and the collapsed state representation leads to 
a method capable of robust detection of subtle changes in the underlying domains. 

The remainder of this report is organized as follows. The second section examines the 
metric that has been used in previous research to detect changes in numeric data streams. 
The third section describes a novel representation that allows the metric to be used against 
streams of symbolic predicates describing the world as it shifts over time in response to 
events and forces. Finally we report results from two empirical studies that evaluate our 
approach, discuss related research, and conclude. 

3. The A-distance Metric as an Indication of Change 

An intelligent agent not only plans for goals and executes actions to carry out plans, but it 
is also important to monitor such actions to assure everything is still going according to its 
plan. That is it needs to understand it actions in context and identify problems as they arise. 
A Note-Assess-Guide (NAG) procedure 1  constitutes an interpretive understanding of 
perceptual and conceptual input in such contexts. The procedure is to Note whether an 
anomaly has occurred; to Assess potential causes of the anomaly by generating hypotheses; 
and to Guide the system through a response (see Anderson, Oates, Chong & Perlis, 2006, 
for further details on the latter two phases). Responses can take various forms, such as (1) 
test the hypothesis; (2) ignore and try again; (3) ask for help; (4) change the goal; or 
introduce a new goal. The first phase of the NAG procedure, i.e., noting an anomaly, 
requires some way to represent what is normal, or what is expected. Expectations that drive 
reasoning can be both implicit as well as explicit. Here we focus on the former.  

Done right, the Note phase naturally provides input to the Assess phase by pointing to 
candidate causes in the domain, the (physical) agent, or the agent’s reasoning processes. 
We claim that algorithms for monitoring streaming real-valued time series for 
distributional changes can enable precisely this functionality for many aspects of the 
operation of intelligent, autonomous agents. 

Consider a search and rescue robot with a classifier that finds people in camera images. 
The classifier is a Support Vector Machine (SVM) trained in the lab where labeled 

1 This procedure was identified as such in our earlier work on the Metacognitive Loop (Anderson, Oates, 
Chong & Perlis, 2006; Schmill et al., 2011) and is at least implicit in the still earlier Meta-AQUA system 
(Cox & Ram, 1999).  
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examples are plentiful, but it is deployed in a building filled with smoke and the robot finds 
none of the 10 people thought to be inside. The problem is that the change in image quality 
affects the accuracy of the SVM. In the absence of human feedback during the mission, 
what are the indications that something has gone wrong? How can the problem reliably be 
attributed to the change in the SVM’s input distribution rather than, say, damage to the 
robot’s wheels that prevents it from exploring quickly and fully or that the 10 people have 
already been found and rescued? In prior work (Dredze, Oates, & Piatko, 2010), we showed 
that these questions can be answered by treating the margin values produced by an SVM2 
as it classifies unlabeled instances as a univariate data stream and watching that stream for 
changes using a metric known as the A-distance. In the remainder of this section we 
describe the A-distance metric, and in the next section we show how it can be applied to 
domains where the underlying state representation is symbolic rather than numeric. 

3.1 A-distance 

The problem of finding points at which the statistical properties of a real-valued time series 
change has been studied extensively in statistics (Caron, Doucet, & Gottardo 2012), 
machine learning (Saatci, Turner, & Rasmussen 2010), and data mining (Kifer, Ben-David, 
& Gehrke 2004), and is often called change-point detection. Practical applications include 
such tasks as fault detection (an electronic circuit or an industrial process behaves 
differently after a fault), intrusion detection (an intruder behaves differently from the user 
she is pretending to be), and video segmentation (identifying the points at which an ice 
skater transitions between skills during her routine). Given that the vast majority of this 
work assumes the underlying data are real-valued and univariate, we map our symbolic 
representations to real-valued time series rather than invent new symbolic change-point 
detection algorithms.  

The A-distance (Kifer, Ben-David, & Gehrke, 2004) detects differences between two 
arbitrary probability distributions by dividing the range of a random variable into a set of 
(possibly overlapping) intervals, and then measuring changes in the probability that a value 
drawn for that variable falls into any one of the intervals (see Figure 2). If such a change is 
large, a change in the underlying distribution is declared. Let 𝒜𝒜 be a set of real intervals 
and let A ∈ 𝒜𝒜 be one such interval. For that interval, P(A) is the probability that a value 
drawn from some unknown distribution falls in the interval. The A-distance between P and 
P′, i.e., the difference between two distributions over the intervals, is defined in Equation 
1 below. 

𝑑𝑑𝒜𝒜(P,P′) = 2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴∈𝒜𝒜  |P(A) – P’(A)|  (1) 

Two distributions are said to be different when, for a user-specified threshold ε, 𝑑𝑑𝒜𝒜(P,P′) 
> ε. The A-distance is distribution independent. That is, it makes no assumptions about the 
form of the underlying distribution or about the form of the change that might occur. Unlike 

2 The margin is the distance separating the two closest points (i.e., the support vectors) between positive and 
negative examples (see Ben-Hur & Weston, 2010). 
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the L1 norm,3 the A-distance can be shown to require finitely many samples to detect 
distribution differences, a property that is crucial for streaming, sample-based approaches 
(Batu, et al., 2000; Kifer, Ben-David, & Gehrke, 2004). 

 

Figure 1. The A-distance compares the probability, P, that an element in a stream will fall into the "box" 
with height A with the probability P' it will fall into the corresponding box at a later point in time. When 
the probabilities differ by more than some threshold, the system infers that the underlying distribution of 

the stream has changed. 

3.2 Applications of A-distance 

In supervised classification problems, the class label produced by an SVM is based on the 
margin’s sign and the certainty of that label is related to the margin’s magnitude. As the 
feature distribution changes in ways that impact accuracy, the margin distribution changes 
as well (see Figure 3), and the A-distance can detect these changes (Dredze, Oates, & 
Piatko, 2010). This only requires a specification of what to monitor (the margin of the SVM 
that detects people), a sample of margin values obtained when the SVM works well (in the 
lab, yielding P), and a sliding window of margin values produced over time in the field 
(yielding P′). The key insight is that changes in the behavior of the deployed classification 
algorithms can provide useful information about both when performance may have 
degraded and what knowledge is at fault. That is, changes in the margin distribution (i.e., 
changes from P to P′) both indicate a problem and point to the SVM’s input data 
distribution as the cause.  

3 This norm is simply the length of a vector in Manhattan distance. 

P P’

A { 
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Figure 2: Plots of accuracy (upper) and margin values (lower) for an SVM trained to classify sentiment of 
DVD reviews (Dredze, Oates, & Piatko, 2010). The first 500 test instances are from the DVD domain while 

the next 1500 instances are reviews of electronics. There is a clear drop in accuracy and margin values 
(dotted lines show the means before and after the change), both of which can be reliably detected with A-
distance trackers. The advantage of using margin values is that they do not require labeled instances yet 

can be used to detect changes in classification accuracy. 

The A-distance can also be used to monitor changes in aspects of a system’s performance 
explicitly optimized by its designers, such as rate of motion or stability (measured by 
summed pitch and roll) of a legged robot. The system designer merely has to specify the 
quantity to be monitored and an A-distance tracker can be deployed to detect changes. If 
any of these performance measures change co-temporally with the behavior of deployed 
classification/learning algorithms as indicated, for example, by an A-distance tracker 
monitoring margin values, a possible point of failure is suggested. Note that this idea of 
monitoring the behavior of algorithms is quite general and potentially powerful. Other 
values that can be monitored to indicate and localize problems include rewards obtained 
by following a reinforcement learning policy, frequencies of instances sorting to particular 
leaves in a decision tree, activations of hidden nodes in a neural network, weights computed 
for each training set instance as a lazy kernel regression model sees test instances, and rates 
of particular rules firing in a declarative knowledge base. But here we intend to demonstrate 
the monitoring of streams of symbolic relational states as they change during plan 
execution using the A-distance. 

4. Environmental Change as Streams of Varying Predicate 
Representations 

In a simple but novel approach to applying the A-distance metric to the detection of 
anomalies during the Note phase, consider a planning domain such as the logistics (i.e., 
package delivery) world (Veloso, 1994). As plans execute in the service of delivering 
various packages, the states of the world change in regular patterns. If a metacognitive 
system can monitor key relational states, it could apply the A-distance metric to indicate 
when something of interest has occurred in the world (or in the reasoner itself).  
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4.1 Symbolic Representations of Actions and States 

An example state of the logistics domain is illustrated in Figure 4. The figure shows two 
cities, A and B, with a post office and airport in each. At Airport-B, Plane-B awaits the 
cargo contained in Truck-B (i.e., Object-B). To deliver the cargo to City-A, it is sufficient 
to unload the object from Truck-B, load it onto Plane-B, fly it to Airport-A, and then 
unload it. This description represents the execution of a simple four-step plan. However 
traditional planners do not provide an observing agent with the direct information 
necessary to track how the world changes as the plan executes.  

Instead consider the predicates that are true in the initial state shown in Figure 4. Table 1 
enumerates these predicates. Another predicate that exists in this domain is the inside-
airplane relation, but no planes are loaded with cargo, and so the predicate is not listed in 
the table. To convert this data to a usable, abstract representation, one need only count the 
number of predicates irrespective of their argument from top to bottom in the table. The 
abstract state representation is thus a non-negative integer vector in which each dimension 
represents the number of instances of a single type-generalized state predicate (Cox & 
Kerkez, 2006). The abstract vector-representation of the initial state is therefore [3 2 2 1 
0], assuming inside-airplane as the final element. A sequence of states in this 
representation is thus a sequence of vectors of the same length (5 in this case), and the 
distribution of values in each position of these vectors can be tracked for changes using the 
A-distance. Any change detected in this way points to a change in the prevalence of the 
corresponding predicate. 

 

 

PostOffice-B

Airport-A

Airport-B

Plane-B

Plane-A

Truck-A

Truck-B

Object-A

Object-B

Object-C

Truck-C

City-B

City-A

Figure 3. Example initial state in the logistics domain. 
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Table 1. Concrete literals in the initial state of Figure 4. 

Predicate Argument 1 Argument 2 

at-truck Truck-A Postoffice-A 
at-truck Truck-B Airport-B 
at-truck Truck-C Airport-A 

at-airplane Plane-A Airport-A 
at-airplane Plane-B Airport-B 

at-obj Object-A Postoffice-A 
at-obj Object-C Postoffice-B 

inside-truck Object-B Truck-B 

Table 2 illustrates a novel plan representation for the four-step execution sequence. This 
representation maintains all intermediate, abstract states before and after each action 
execution. The first vector represents the problem’s initial state, and the last vector is the 
goal state following the unloading of the plane. Although verbose, this representation 
allows efficient organization of plan libraries for case-based plan recognition (Kerkez & 
Cox, 2003), and it enables the A-distance metric to be applied to symbolic domains for 
change detection. 

Table 2. Intermediate abstract-state vector representation of plan. 

 

Static predicates for which no domain operators exist to modify the relation and hence 
remain fixed throughout plan execution sequences can be dropped for efficiency, although 
we do not take advantage of this strategy. For example the literal (same-city airport-A 
postoffice-A) asserts that both locations are in the same city (i.e., City-A), but no planning 
operator can change this relationship. Thus the predicate count for same-city will never 
change no matter what plan the agent executes.4 

 

4 The vector representations for the logistics domain shown in this paper are simplified for explanatory 
purposes. The actual predicate vector sequence used in the domain is (at-truck at-airplane part-of at-obj 
inside-airplane inside-truck loc-at same-city). 

[3 2 2 1 0] 

Unload-tr (Truck-B) 
[3 2 3 0 0] 

Load-pl (Plane-B,Object-B) 
[3 2 2 0 1] 

Fly (Plane-B,City-A) 
[3 2 2 0 1] 

Unload-pl (Plane-B) 
[3 2 3 0 0] 
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4.2 A-distance Applied to Predicate Streams from Vector Representations 

To note major changes in the domain, an agent compares the A-distance between a sample 
window known to be non-anomalous and a sliding window moving through the current 
predicate stream. Once the A-distance is greater than a constant domain-specific threshold 
parameter, the agent can conclude that the underlying probabilistic distribution differs 
between the windows and hence an anomaly exists. For domains such as blocksworld and 
logistics, we use this method for each predicate stream and take the first anomaly in an 
arbitrary left to right order in the vector representation. Such an anomaly indicates that the 
corresponding predicate occurs more or less frequently in recent state representations than 
in the past.  

Note that applying the A-distance to any stream of data requires the user to specify the 
window size and the tiling. In the experiments described below, the window size n=100 
was chosen manually to be large enough to, on average, span all of the steps in a small 
number (e.g., 5 – 10) of plans. This ensures that the data in the window captures enough 
variation to get a good estimate of the distribution of predicate counts but is not so large as 
to include anomalous data initially. Also, because planning operators are intended to 
change the state of the world, we stream the discrete first derivative of the raw predicate 
counts rather than streaming the counts themselves. That way, the A-distance signals when 
the rate of change of a count is unusual regardless of the level of the count. Finally, all 
values in this stream are integers, so we tile the space of integers using intervals of the form 
𝒜𝒜 = {[i – 0.5, i + 0.5]} for all integers i in the observed range. In this way all discrete 
values have their own tile and accumulate their own counts. Tiles are created as needed 
(i.e., as their corresponding values are seen in the stream).  

Table 3 presents the algorithms used to gather data in each predicate stream. P and P′ are 
arrays of probabilities, one each for each interval in set 𝒜𝒜. Input is treated as a FIFO queue 
as are the base window, w, and sliding window, w′.5 The probability update function adjusts 
the probabilities as w′ traverses the input observations. This algorithm is performed upon 
each predicate stream in the sequence of intermediate abstract-state vectors.  

 

 

 

 

 

5 Note that the procedure deleteQ is a function that returns a queue. This is important in the recursive call 
of function IsAnomalous. 
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Table 3: Algorithms for processing a single stream. 

procedure ProcessStream (input:queue; n:int; 𝒜𝒜:set; ε:0.0..1.0) 

w ⃪ createQ (w); w′ ⃪ createQ (w′) 
last ⃪ front (input) 
input ⃪ deleteQ (input) 
for i ⃪ 2 .. n 
w ⃪ addQ (w, |last - front(input)|) 
last ⃪ front (input)  
input ⃪ deleteQ (input) 

w′ ⃪ w  
P ⃪ initProbabilities (w, 𝒜𝒜) 
P′ ⃪ initProbabilities (w′, 𝒜𝒜) 
IsAnomalous (last, input, w′, P, P′, 𝒜𝒜, ε) 

 

;;; The returned list is of the form [ head | tail ] 

function IsAnomalous  
 (last:int; input, w′:queue; P, P′:array; 𝒜𝒜:set; ε:0.0..1.0):list 
if emptyQ(input) then return [] 
w′ ⃪ addQ (deleteQ(w′),|last-front(input)|) 
P′ ⃪ update (w′,𝒜𝒜,P′) 
IsAnomalous ⃪ 
  [𝑑𝑑𝒜𝒜(P,P′)>ε | IsAnomalous (front(input),deleteQ(input),w′,P,P′,𝒜𝒜,ε)] 
 

5. Evaluation 

This section presents results from two experiments. In the first, we consider only the initial 
instance of a reported anomaly. If the report is correct, we label that test a success. 
Otherwise, or if A-distance runs to completion without detecting an anomaly that is present, 
it is a failure. In the second experiment, we perform a more fine-grained analysis. Each 
time the sliding window shifts one data point, we compare the A-distance result with the 
true world state (normal or anomalous), and a value is stored representing a hit, miss, false 
positive or true negative. These data are then evaluated using several statistical 
performance metrics. 

5.1 Experimental Design 

The same basic experimental design was used for both experiments. We used the 
Prodigy/Agent planning software (Cox, Edwin, Balasubramanian, & Elahi, 2001; Veloso 
et al., 1995) to generate data for these tests. First we generated two separate series of 
pseudo-random problems. One series was from the logistics domain described in section 
4, and the other was from the classical blocksworld domain. Blocksworld problems 
contained up to eight blocks in the initial state, and logistics problems contained up to five 
packages to deliver. Prodigy/Agent was run on both series to extract those plans that had 
solutions within a 300 second time bound. These plans were used as the normal data for 
each domain. We then removed the unstack action operator from the blocksworld domain 
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and the unload-airplane operator from the logistics domain and re-ran the planner on the 
problem series. The missing operators cause a shift in the types of solutions generated, and 
the resulting plans constituted the anomalous data for their respective domains. We 
concatenated various randomizations of the plan sets to simulate a dynamic world that 
exhibits an anomaly. These two collections of events constituted the experimental data for 
our test. The experimental task was then to detect locations where change occurs.  

The data for an individual test consist of an experimental block in the format illustrated by 
Figure 5. Normal plans represent solved problems using a complete and uncorrupted 
domain. Anomalous plans represent those solved with domains having missing operators. 
All experimental blocks start with a stable area that is guaranteed to have no anomaly (i.e., 
only normal plans) so that the algorithm can determine the underlying normalcy 
distribution. This area is then followed by the main body within which an anomalous target 
sequence may exist. As shown in the figure, the target sequence could be at any one of ten 
locations to the right of the safe area. The interval separation between potential target 
locations is called an increment. The size of the stable area is measured by the sum of one 
increment and the width of the target.  

For the blocksworld domain shown in the figure, the increment width is 49 plan sequences 
and the target width is 98, so the stable area consists of 147 normal plans concatenated 
together. For the logistics domain, the increment width is 68 and the target width is 74. The 
differences in widths exist because more blocksworld problems were solved with a missing 
operator than with logistics. In the blocksworld domain, all experimental blocks contain 
686 plans of varying length; whereas all blocks in the logistics domain contain 828 plans.6  

The target sequence will vary in its proportion of anomalous plans across different blocks. 
We differentiate the intensity of an anomaly represented by a target sequence by drawing 
from both normal and anomalous plan pools and randomizing the order of the plans within 
the sequence. The intensity varies in increments of 10% from 100% anomalous to 0%. At 
intensity 100, the target consists of only anomalous plans; at 0 intensity, it has only normal 
plans; and at intensity 50 the target is half anomalous and half normal.  

6 Normal blocksworld plans average 10.33 steps with a standard deviation of 5.82, and anomalous plans 
average 5.44 steps with a 2.56 standard deviation. Logistics statistics are 8.05 steps on average with a 3.99 
standard deviation for normal plans and 3.71 steps with a 1.37 standard deviation for anomalous. 

 
147 98

343
target

49

98seq.
stable
area

Figure 4. Experimental block structures. Numbers indicate lengths in terms of number of plans. On the left 
is a block for the blocksworld domain showing an anomaly target sequence two increments from the right. 

On the right is a block for logistics with the target flush right. 

142 74

612
target

68

stable
area seq.
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The task of the A-distance metric is to detect the presence of the target sequence while 
minimizing false positives. So in the left block of Figure 5, the system should begin to 
recognize anomalous states at a location equal to or slightly greater than plan number 
147+343+1 = 491. It should then identify the states of the following 98 plans as also 
anomalous. However because intensities less than 100 include normal plans, the first plan 
in a target may not actually be anomalous. For blocks with a target sequence with intensity 
0, all data are normal. Thus for all predicate streams in each 0-intensity block, the A-
distance metric should find no perceptible difference in underlying distributions. 

Given that ten target locations exist and for each one we vary the intensity across eleven 
variations, 110 total blocks of data exist in each trial of the two domains. In both 
experiments, we run ten such trials for each domain and average the performance. We also 
select 12 different threshold values (i.e., epsilon) to test the A-distance ranging from .2 to 
.65 in .05 increments. Additionally, the average number of steps in a block is 7425.4 for 
blocksworld and 5679.9 for logistics. Given that the abstract state vectors in the data 
produce 5 predicate streams in blocksworld and 8 streams in logistics, our second, more 
thorough analysis uses results from a total of 490,076,400 empirical observations in 
blocksworld and 599,797,440 observations in logistics. 

5.2 Experiment 1 

In our first analysis (Cox, Oates, Paisner, & Perlis, 2012), we looked at only one measure 
of performance: accuracy. A successful (i.e., accurate) result was recorded if the first 
reported anomaly actually occurred in the anomalous section of the data. If it instead 
occurred before the anomalous section (a false positive), it was a failure; if no hit was 
recorded by the end of the anomaly that also counted as a failure. The only exception to 
this rule was for the intensity 0 anomalous sections, which actually contained only normal 
data. In these instances, if A-distance reported no anomalies the run was a success and 
otherwise a failure. 

Figure 6 shows accurate performance expressed as a percentage and graphed as a function 
of the intensity of the anomaly for the logistics domain. With the exception of 0-intensity 
blocks, the higher the intensity the greater the performance of the note phase. That is, the 
A-distance metric can detect persistent anomalies with near 100% accuracy and does so 
with few false positives or misses, and it correctly rejects normal plans as being non-
anomalous.  

This performance varies depending upon the value of the threshold epsilon used to 
determine when the A-distance is great enough to signal the anomaly. Given high 
thresholds, accuracy is equal to or near 100 percent for high intensity targets (i.e., for 
targets with mainly anomalous plans), and the performance quickly falls off for less intense 
anomalies. With low thresholds, the algorithm performs well across a wider span of 
intensity values, though less well at the end points of 100 and 0. This represents a classic 
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tradeoff between maximizing hits and minimizing false positives in signal-detection 
theory.  

Figure 5. Logistics domain: Accuracy as a function of anomaly intensity. 

The performance in the blocksworld domain is comparable to logistics as can be seen in 
Figure 7. The accuracy deviates somewhat from Figure 6, but the trends remain the same. 
The greatest difference is that similar performance graphs map to approximately .1 higher 
epsilon values in the blocksworld domain. See Figure 8 for the comparison. 

 

Figure 6. Blocksworld domain: Accuracy as a function of anomaly intensity. 

Figure 8 illustrates the shift in performance graphically. Here accuracy averaged over all 
intensities is shown as a function of increasing epsilon values. In the blocksworld, overall 
accuracy reaches a maximum of 67.64 at an epsilon value of .35; whereas in logistics, a 
maximum accuracy of 62.5 occurs at an epsilon value of .3. These data show rough trends 
when using A-distance for symbolic representations. The next experiment examines our 
approach more closely. 
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Figure 7. Average overall accuracy as a function of threshold (epsilon) value. 

5.3 Experiment 2 

Our second analysis (Cox, Oates, Paisner, & Perlis, 2013), rather than labeling each run as 
either a success or a failure, looks at A-distance’s performance across all observations in 
each data set. The analyses that follow divide the data into four standard categories: hit, 
miss, false positive and true negative. To accomplish this, as each data point is added to 
the sliding window, the Boolean result of applying A-distance (reflecting whether an 
anomaly was detected) is compared with a Boolean value representing whether the data 
point is within the anomalous section of the data, the target. 

Using these data, we calculated several standard statistical performance metrics: recall 
(hits divided by the sum of hits and misses), precision (hits divided by the sum of hits and 
false positives), and F1 (the harmonic mean of precision and recall). As such recall 
represents the fraction of correctly identified anomalies within all of the identifications that 
actually occurred; whereas precision represents the fraction of correctly identified 
anomalies within the total that should have occurred. Figures 9-14 show these data graphed 
as functions of anomaly intensity for blocksworld and logistics.  

Some general trends emerge in both domains. Recall is very good at high intensities, but 
this number drops as the percentage of anomalous data in the target area declines, falling 
under 0.1 for most epsilon threshold values as the fraction of anomalous plans drops below 
50%. As might be expected, there is also a consistent negative correlation between epsilon 
value and recall that applies without exception across both domains, with the highest tested 
epsilon value of 0.75 yielding the worst recall rate, and the lowest value of 0.2 generating 
the best performance in this area.  

Precision data paint a more complicated picture. For most epsilons, precision increases to 
a maximum near the midpoint of the intensity range and then goes down again as intensity 
approaches 1. This is a perplexing result at first glance – one would expect that the number 
of false positives would be independent of intensity and that hit percentage would only 
increase as anomalies became more easily detectable, generating a constant positive slope 
for precision as a function of intensity. The reason that our results differ from this ideal is 
that there is an inherent response lag associated with sliding window algorithms.  

Epsilon 
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To decide that the A-distance exceeds epsilon, enough observations need to be gathered to 
approximate the distribution, so the initial portion of the target sequence will be missed. 
Likewise, a delay exists in determining when the distribution no longer differs from the 
comparison (i.e., normal) window. Therefore a large number of false positives will exist 
immediately past the target, reflecting that most of the data points in the window are 
anomalous even though the current state has returned to normal. For lower intensity targets, 
the algorithm will “give up” on the detection earlier and thus will have fewer false 
positives. For greater intensities, the lag will be larger in terms of the average number of 
observations after the target before the first true negative. We might have reduced the 
number of false positives by defining the current observation as the one in the center of the 

Figure 9. Recall as a Function of Anomaly Intensity [logistics] 

Figure 8. Recall as a Function of Anomaly Intensity [blocksworld] 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
ca

ll

Anomaly Intensity

Epsilon = 0.2

Epsilon = 0.25

Epsilon = 0.3

Epsilon = 0.35

Epsilon = 0.4

Epsilon = 0.45

Epsilon = 0.5

Epsilon = 0.55

Epsilon = 0.6

Epsilon = 0.65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
ca

ll

Anomaly Intensity

Epsilon = 0.2

Epsilon = 0.25

Epsilon = 0.3

Epsilon = 0.35

Epsilon = 0.4

Epsilon = 0.45

Epsilon = 0.5

Epsilon = 0.55

Epsilon = 0.6

Epsilon = 0.65

15 
 



window rather than on the leading edge, but this would in a sense be a false improvement 
- in an on-line setting we would merely have replaced the delay we have now with a 
predetermined response lag of half the window size.  

Another unusual feature of the precision graphs is the tendency to jump suddenly from 0% 
to 100% precision, and sometimes back again. This trend is especially pronounced at higher 
epsilon values and in the logistics domain. The reason for it is that the number of recorded 
hits is extremely small for high epsilon and low intensity. In these cases, there might only 
be one or two hits in the entire target space for a given intensity and no false positives, 
yielding a perfect precision rating. When intensity falls by 0.1 in the next observation, the 
anomaly becomes too faint to be detected at all and no positives of any sort are reported, 
dropping precision to 0. Though many overall observations are recorded, for high epsilon 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Anomaly Intensity

Epsilon = 0.2

Epsilon = 0.25

Epsilon = 0.3

Epsilon = 0.35

Epsilon = 0.4

Epsilon = 0.45

Epsilon = 0.5

Epsilon = 0.55

Epsilon = 0.6

Epsilon = 0.65

Figure 11. Precision as a Function of Anomaly Intensity [logistics] 

Figure 10. Precision as a Function of Anomaly Intensity [blocksworld] 
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and low intensity we have very few positive examples, causing the variance behavior 
associated with a small sample size.  

F1 is the harmonic mean of recall and precision and reflects the trends described 
previously. What we see in Figures 13 and 14 is that blocksworld’s performance is 
somewhat more consistent across intensities, reflecting both a larger false positive rate 
(which is, lag bias aside, broadly constant across intensities) and a recall rate that falls less 
quickly with intensity than in the logistics domain. F1 performance in logistics is superior 
in mid-range intensities, whereas blocksworld performance is better in lower and higher 
intensity values. It also reveals some differences between blocksworld and logistics in 
terms of optimal epsilon values, which can be seen more clearly in Figures 15 and 16.  

These charts graph three different F-statistics as functions of epsilon. F(x) reflects 
differently weighted harmonic means of precision and recall, with higher x values skewing 
towards recall. F values in logistics are generally highest at the lowest epsilon value tested, 
0.2, and fall fairly constantly from there. In blocksworld, the optimal epsilon seems to be 

Figure 12. F1 as a Function of Anomaly Intensity [logistics] 

Figure 13. F1 as a Function of Anomaly Intensity [blocksworld] 
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closer to 0.3, depending on which f value is used. This result seems to reflect a larger base 
variance in blocksworld distributions, requiring a higher epsilon value to reduce false 
positives.  

 

6. Related Research 

Detecting anomalies in the input of agents and other intelligent systems represent a 
significant scientific problem in many areas of interest to the artificial intelligence 
community (e.g., Albrecht et al., 2000; Basseville & Nikiforov 1993; Crook and Hayes 
2001; Fawcett and Provost 1999; Janssens, Postma, & Hellemons 2011; Pannell, & 
Ashman 2010). A very large body of work exists on the subject of anomaly detection in 
data streams (see Chandola, Banerjee, & Kumar 2009). In general, such work faces 
challenges posed by the huge volume of data present in many domains. Because of this, 
algorithms that perform computations using all of the accumulated data at each step are 
often infeasible in practice. One proposed solution to this problem is the “s-monitor” 
approach (Huang et al. 2009). An s-monitor is a simple model of the data which is used to 
check for changes frequently, while a more complete analysis is performed at wider 

Figure 15. F Values as Functions of Epsilon [logistics]. 

Figure 14. F Values as Functions of Epsilon [blocksworld]. 
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intervals. The success of this method depends on the quality of the models, but it can be 
both effective and efficient if these are implemented well.  

 A-distance employs another approach to the problem of big data, the sliding window 
model. Many versions of this class of algorithm have been studied using a variety of 
statistical tools. One study (Khalastchi et al., 2001) examined the use of one such algorithm 
in autonomous robots. In this study, Mahalanobis distance, which is a statistical distance 
metric similar to a-distance, was used to detect anomalies using a single sliding window. 
Several experiments were conducted using aerial ground-based and simulated agents. 
Results suggested that sliding window models could be usefully applied in real-time.  

In addition, several innovations have been developed for customizing the parameters of the 
algorithm. One modification introduced variable, self-adjusting window sizes (Deypir, 
Sadreddini, & Hashemi 2012), while another added automatic recalibration of the threshold 
for declaring an anomaly (Ahmed, Clark, & Mohay 2008). These changes provide sliding 
window style approaches with more flexibility for dealing with different or fluctuating data 
sets without extensive user customization. 

Anomaly detection is applied to a wide array of domains, including health, sports, 
meteorology, web security, and others. Many example applications take real-valued n-
dimensional streams as input, but there are also some that analyze text or other forms of 
value-restricted or symbolic data (Agyemang, Barker, & Alhajj 2006). Like A-distance, 
they generally require that the data be converted to some form of numeric value or vector 
which can then be analyzed statistically as a stream.  

Some anomaly detection algorithms also use rule-based strategies. These are especially 
important in cases where certain types of anomalies are considered important and others 
are not, so that a purely statistical model would generate many false positives. Rule-based 
techniques have been used in detecting disease outbreaks (Wong et al. 2002), and in 
computer intrusion detection using state transition analysis (Ilgun, Kemmerer, & Porras, 
1995). One drawback of this type of approach compared with a statistical model is that 
such algorithms must be tailored to fit their particular domain, and are usually not 
generalizable. 

Time series data streams, in which each data point follows temporally and is dependent on 
those that came before it, are an important subcategory of anomaly detection problems. 
They have many real world applications, from real-time video analysis (Lelescu & 
Schonfeld 2003) to searching for perturbations in the data from nuclear reactors (Kozma 
et al. 1994). While statistical time series anomaly detection has been studied extensively, 
it has generally been used to analyze numeric data streams. Symbolic domains such as 
blocksworld and logistics have received much less attention due to the apparent difficulty 
of performing statistical analyses. 

In the larger context of cognitive systems, many others have also focused upon failure-
driven reasoning and learning that begins with noting anomalies or expectation failures. 
For example, it has long been argued that failure provides both human and artificial 
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reasoners with strong clues when deciding what needs to be learned (Birnbaum, Collins, 
Freed, & Krulwich, 1990; Cox & Ram, 1994; Fox & Leake, 1995; Hammond, 1986; 
Kolodner, 1987; Pazzani, 1990; Reason, 1992; Schank & Owens, 1987; Sussman, 1975; 
VanLehn, 1991). One of the earliest AI systems in this tradition is HACKER (Sussman, 
1975). In planning domains, it would notice when plan execution failures occur due to 
negative goal interactions and respond by debugging the goal ordering of the plan. More 
generally, however, the NAG approach can be situated within systems exhibiting goal-
driven autonomy and more generally goal reasoning (Vattam, Klenk, Molineaux, & Aha, 
2013). 

7. Conclusion 

This report has presented the results of two sets of experiments employing A-distance in 
the two symbolic domains of logistics and blocksworld. This is significant as an extension 
of statistical anomaly detection techniques to a category of environments (i.e., planning 
domains) in which they had previously been absent. It is also a significant building block 
in our research work on metacognitive architectures (see Cox, Maynord, Paisner, Perlis, & 
Oates, 2013; Maynord, Cox, Paisner, & Perlis, 2013) and goal-driven autonomy (e.g., Cox, 
2013; Paisner, Cox, Maynord, & Perlis, in press). More generally it is a step toward the 
computational recognition and analysis of problems. Not all anomalies are problems, but 
many problems start with some discrepancy or anomaly in the world. Recognizing and 
classifying anomalous changes represents a first step in understanding what goes wrong in 
an agent’s environment and improving its performance in complex domains.  

In subsequent work, we intend to link this research to the assess phase of the NAG 
procedure by developing methods to increase the depth of analysis when anomalies are 
detected. In planning domains, we will examine ways of using the anomalous predicates 
discovered by A-distance to reason about which operators are either most dependent on the 
predicates (through pre-conditions) or most likely to affect the predicates (through post-
conditions). For example, in the logistics world experiments above the predicate most often 
implicated in the detection of change was inside-airplane. This predicate was also in the 
effects list of the dropped unload-airplane operator. Assessment might infer that a change 
in the occurrence of this action was the cause of the observed change and might justify this 
inference by hypothesizing an event such as a union work stoppage to account for the lack 
of these actions in the observation stream (using prior knowledge about such events). 
Unfortunately inside-truck was a second predicate that saw A-distances greater than the 
given epsilon value (hence correlated with change). Because this predicate is indirectly 
involved in the causal relationships associated with the change, assessment is neither 
simple nor obvious. Future research remains to determine the most effective approaches 
for the assessment and guide phases that leverage the results reported here, as well how to 
best incorporate this approach with preexisting work. 
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