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Manifolds and optimal control were used to better understand trajectories in the 

circular restricted three-body problem (CR3BP).  CR3BP equations were used to 

generate two-dimensional stable and unstable manifolds.  Optimized trajectory 

solutions were found using the Hamilton-Jacobi-Bellman equation applied to the third 

body traveling from L1 toward m2.  Three sets of optimal trajectories with various 

fixed final positions were compared to the L1 manifold.  The cases with final 

positions closest to the manifold remained close and had lower costs.  Trajectories 

with low time allowances took more direct paths to their final positions, leaving the 

manifold and resulting in higher costs.  Large time allowances caused increased 

trajectory length and early departure from the manifold, resulting in increased cost.  

For the intermediate time constrained cases, the trajectories stay longer on the 

manifold and cost less.  From this investigation, optimized trajectories were shown to 

use manifolds when finding the optimal trajectory in the CR3BP. 
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1. Introduction 

In the eighteenth century, Joseph-Louis Lagrange and Leonard Euler better defined 

the restricted problem of three bodies.  He realized that when the two primary bodies 

move in circular orbits there are five points in the bodies’ plane of motion where the 

forces acting on each point are balanced or in equilibrium. The forces that are in 

equilibrium include gravitational attractions of the two large masses on the satellite 

and the centripetal force on the satellite causing it to move with the bodies.  Lagrange 

and Euler discovered these points between 1665 and 1772 and today the five points 

are known as Lagrange points (also referred to as libration or equilibrium points).  

Three of the points (L1, L2, L3) are collinear along a line connecting the two primary 

bodies.  They are unstable and a satellite can be kept in orbit about one of them with 

minimal station-keeping, because there are no large perturbing forces.  The other two 

points (L4, L5) each form equilateral triangles with the two primary bodies and are 

quasi-stable for small mass ratios.  If a satellite is placed at one of the triangular 

points, then it will librate, or oscillate around an equilibrium point if the ratio of the 

two larger masses is less than 0.0385.  The small mass ratio constraint is met by two-

body systems including: Earth-Moon, Sun-Earth, and the Sun with Mercury, Venus, 

Mars, Jupiter, Saturn, Uranus, Neptune, or Pluto. 

 

Lagrange points have many uses and some satellites are already making use of 

Lagrange point orbits.  The greatest potential advantages from using Lagrange point 

orbits include: decreased Earth occultation time, decreased variation in the thermal 

environment when compared to low Earth orbits, decreased spacecraft distance from 
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Earth (for Sun-Earth and Earth-Moon systems) in comparison to some heliocentric 

orbits, decreased station-keeping fuel requirements, and increased viewing of Earth’s 

illuminated hemisphere (for Sun-Earth and Earth-Moon systems).   

 

There are numerous satellites that have utilized Lagrange points.  The satellites that 

have had Lagrange point orbits in the Sun-Earth system and the Earth-Moon system 

include: ISEE-3 (International Sun-Earth Explorer-3) in 1978, Wind in 1994, SOHO 

(Solar and Heliospheric Observatory) in 1995, ACE (Advanced Composition 

Explorer) in 1997, Genesis in 2001, and MAP (Microwave Anisotropy Probe) in 

2001.  Future satellites planning to use Lagrange point orbits include: Planck and 

Herschel in 2007, James Webb Space Telescope (formerly Next Generation Space 

Telescope) in 2010, and SPICA (SPace Infrared telescope for Cosmology and 

Astrophysics). 

 

Because of the large number of current and future spacecraft missions using Lagrange 

points, this area of research is getting a lot of attention.  Currently, the trajectory 

design for Lagrange point missions is not systematic but involves trial and error to 

find a trajectory that will accomplish the requirements of a mission.  A nominal 

trajectory is usually based on previous solutions to the two-body problem using conic 

approximations, but this does not provide adequate accuracy needed for current 

Lagrange point missions.  The trajectory design that is needed most is from a low 

Earth orbit to an orbit about a Lagrange point.  The best solution to trajectory design 
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would be found in a general solution to the three-body problem, but that does not 

currently exist.   

 

One way to address the three-body problem is to look at the manifolds within the 

dynamic system.  A manifold is defined as a surface where an orbit starting on the 

surface will remain on that surface.  (Howell et al. 1997a; Howell et al. 1994; Lo and 

Ross 1998)  The eigenvectors define the stable and unstable manifolds.  A stable 

manifold for the CR3BP is defined as a surface where the respective eigenvector 

results in motion in the direction toward its corresponding Lagrange point.  An 

unstable manifold is defined as a surface where the dynamics of that eigenvector 

dictate the motion to be away from the corresponding Lagrange point.  More research 

is being done using manifolds and dynamic systems theory to develop trajectories 

because they are based on the dynamics of the three-body problem and will help in 

better understanding how to develop trajectories using the smallest cost possible.  

Examples of this research include the study of the center manifold to develop halo 

orbits about the collinear Lagrange points (Lo 1997) and the study of dynamic 

systems theory as it applies to specific Lagrange point missions.  (Gomez et al. 1993; 

Howell et al. 1997b)   

 

Optimal control methods need to be used in conjunction with a dynamical systems 

approach to better prove that manifolds are the optimal way to travel to Lagrange 

points.  Optimal control has been used to generate halo orbits around Lagrange 

points.  (Serban et al. 2002)  Zero cost transfers using optimal control for transfer 
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trajectories from one libration point to another have also been studied.  (Gomez and 

Masdemont 2000)  Some optimal transfers from Earth to the Earth-Moon L2 were 

examined by Starchville and Melton.  (Starchville and Melton 1998)  Despite these 

specific examples, optimal control remains under-utilized in the three-body problem.  

As additional uses for Lagrange orbits are discovered, more satellites will make use 

of Lagrange points.    One way to better plan trajectories from Earth to Lagrange 

points would be to find the optimal path by investigating manifold theory to 

determine the stable optimal pathway.  This thesis examines using optimal control 

and manifolds to better understand trajectories from a Lagrange point toward a 

primary mass in the three-body problem.  Hopefully as the dynamics of the three-

body problem are better understood new trajectories to Lagrange points will be 

discovered. 

 

2. The Three-Body Problem 

Euler and Lagrange first defined the circular restricted three-body problem in 1772.  

The three-body problem is defined as having two massive bodies and a third 

infinitesimal mass.  The problem is described as circular because the two massive 

primary bodies are assumed to move in circular orbits about their common center of 

mass.  The motion is restricted because the two large bodies are assumed to be fixed 

with respect to each other.  (The acronym CR3BP will be used to refer to the circular 

restricted three-body problem.)   
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From Newton’s laws of motion and the law of gravitation, the CR3BP can be defined.  

The force on the ith mass from Newton’s laws for three bodies is: 
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In Equation 1, ijrr  is the vector from mass mi to mj and G is the gravitational constant.  

The radius vectors, R
r

, are from the origin of the coordinate system (also the center of 

mass of the two primaries) to each mass.  Equation 1 is used to show the force on m3 

by m1 and m2. 

 

It is helpful to introduce the standard nondimensional convention used to represent 

the three-body problem.  First, a choice is made to define the distance between the 

two primaries to be one.   

 11212 =−= RRr   (2) 
 

The mass of the third body is infinitesimal, so choosing the mass of the two primaries 

to equal one is also a valid simplification. 

 121 =+mm   (3) 
 

The mass of the smaller primary can be assigned to be µ, so that the masses are 
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The gravitational parameter, µ, can also be defined as a mass ratio. 
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The angular velocity, ω, of the two primaries about their center of mass is defined by 

Kepler’s third law and the definition can be applied to the three-body problem. 
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Then the magnitudes of the radius vectors, jirr  , can be rewritten as 
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where  and .   113 rr = 223 rr =

Equations 2 through 7 were applied to simplify Equation 1 resulting in a new 

representation of the CR3BP equations of motion labeled Equation 8.   
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Lagrange was the first person to develop particular solutions to this set of equations 

of motion in 1772.  Equation 8 can be further simplified by assuming the gravitational 

constant to be equal to one.  Now, from Kepler’s third law (Equation 6), the angular 

velocity is one. 
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After applying Equation 9 to Equation 2, the equations of motion can be written as 
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Equation 10 is a set of three second-order, nonlinear, coupled ordinary differential 

equations that are a mathematical representation of the CR3BP.  This set of equations 

has been normalized and the units of each parameter are in terms of length units (LU), 

time units (TU), and mass units (MU). 

 

A three-body example is shown in Figure 1.  The origin is placed at the center of 

mass of the two large bodies.  The first large mass, m1, is at a distance of -µ from the 

origin.  The second large mass, m2, is at a distance of µ -1. 

 

Figure 1.  Description of the three-body problem coordinate system. 
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Euler and Lagrange are credited with proving the existence of five equilibrium points 

in the CR3BP.  They discovered the five points between 1765 and 1772.  They found 

that when the two primary bodies move on circles about their center of mass, there 

are five points where the forces are in equilibrium.  The forces that are balanced at the 

five points include gravitational attractions of the two large bodies and the centrifugal 

force acting on the third body.  The five points are known as Lagrange points, 

libration points, or equilibrium points and they are shown in Figure 2. (Roy 1965) 

 

 

Figure 2.  The locations of the 5 Lagrange points in the normalized coordinate system. 
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3. Methods 

3.1 Solving for the Lagrange Points 

The five Lagrange points can be found from the CR3BP equations.  In order to solve 

for the five points, the masses are assumed to be at rest in the rotating-frame, so the 

velocity and acceleration components are zero.  Then Equation 10 simplifies to 

Equation 11 and the 5 equilibrium points can be found from the following set of 

equations. 
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These three equations have three unknowns that can be solved for the five (x, y, z) 

locations.  From the third equation, z = 0 is the solution and all five points must lie in 

the x-y plane.  The two equilateral triangle points can be found when r1 = r2 = 1.  

These triangular points are known as L4 and L5 and were discovered by Lagrange in 

1772.  The location of L4 is 
2
3  y,

2
1

+=−= µx  and the location of L5 is 

2
3  y,

2
1

−=−= µx .  The other three points were discovered by Euler in 1765, 

before Lagrange found the triangular points.  Euler found the three collinear points 

when y  = z = 0.  The three points on the x-axis can be found from Equation 12. 
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The previous equation can be written as a quintic equation (13) and solved for the 

three x values of the collinear points. 

 ( ) ( ) 02233 2345 =−−−−+−+ µµµµµ xxxxx   (13) 

Equation (13) never has more than three real roots for 0 < µ < 1.  It must be solved 

using numerical techniques to obtain the values for x.  For small values of µ, L1 and 

L2 are on either side of the smaller body and L3 is on the far side of the larger body. 

(Szebehely 1967; Wiesel 1989) 

 

3.2 Establishing the Stability of the Lagrange Points 

Once the five Lagrange points have been found, the stability of the points should be 

investigated next to better understand the CR3BP.  It is known that if a spacecraft was 

placed exactly at one of the five points with zero velocity it would stay there and this 

can be shown mathematically.  The question to answer is: “What would happen to a 

spacecraft if it was placed near a Lagrange point?”  Linear stability theory can be 

used to answer this question.  Assume that the spacecraft is placed close to a 

Lagrange point.  The velocity at the Lagrange point is zero.  The spacecraft’s position 

is written as 

        ,     , δzzδyyyxxx ee ≈+≈+≈ δ   (14) 
 

where subscript ‘e’ represents the position of the equilibrium or Lagrange point.  If 

the equilibrium point is stable, then δx, δy, and δz will remain small relative to its 

initial value.  If the equilibrium point is unstable or quasi-stable, then δx, δy, and δz 

will increase in magnitude.  Equation 14 can be substituted into the equations of 

motion.  This nonlinear system of equations can be linearized to determine the 
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stability of the five points.  The equations are reorganized into state-space form 

before they are linearized.  The next set of equations is the two-dimensional CR3BP 

in state-space form. 
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Next, the state-space representation of the equations of motion needs to be linearized.  

By definition, the equation below results in a linear set of equations when applied to a 

nonlinear set of equations.   
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In order to linearize the system of equations, the partial derivatives of the equations of 

motion are taken with respect to x, y, and z.  Now the eigenvalues and eigenvectors 

for each Lagrange point can be found from the CR3BP linear set of equations. 

 

If the eigenvalues are all pure imaginary numbers, then the corresponding Lagrange 

point is stable.  If the eigenvalues are real or complex numbers, then the 

corresponding Lagrange point is unstable.  For the two-dimensional (x-y) CR3BP, 

each Lagrange point has four eigenvalues.  The collinear Lagrange points, L1, L2, and 

L3, each have two real eigenvalues that are equal in magnitude but opposite in sign 

and two conjugate pure imaginary eigenvalues.  The collinear points can be 
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considered quasi-stable because there are trajectories that will move the third body 

toward the Lagrange point.  The triangular Lagrange points , L4 and L5, each have 

four purely imaginary eigenvalues. 

 

Two critical values of µ can be found from the linear set of equations to explain the 

stability of the Lagrange points.  They are µc1 ≈ 0.03852 and µc2 ≈ 0.96148.  The 

triangular points, L4 and L5, are stable if µ < µc1 or µ > µc2.  The three collinear points 

are always unstable for any µ (0 <  µ <1).  All of the µ values in the Solar System are 

smaller than 0.03852.   

 

3.3 Solving for Zero Velocity Curves 

The three-body equations of motion can be written as  
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where U is the scalar function:  ( )
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Jacobi’s integral derived from Equation 17 can be obtained by multiplying each 

equation by , , and , respectively, and then integrating.  The resulting equation 
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where C is a constant of integration.  The left-hand side of the equation is the square 

of the velocity of the third body and can be denoted by V2 and Equation 18 can then 

be written as 

   (19) CUV −= 22

 

Equation (19) is Jacobi’s integral, also known as the integral of relative energy. 

 

From Jacobi’s integral, surfaces of zero velocity can be found for the motion of the 

third body.  When the velocity is zero, Jacobi’s integral becomes 

CU =2  

 C
rr

yx =+
−
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21

22 2)1(2 µµ
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C is known as Jacobi’s constant, and it can be determined from initial conditions.  

Curves of constant C values can be plotted to discover more about the motion of the 

third body.  Constant values of C with zero velocity are known as Hill’s curves.  

Motion is constrained by 2U>C so that V2 is positive.  If 2U<C then V2 would be 

negative, resulting in imaginary velocity values.   

 

The constant C value curves (also referred to as zero velocity curves) define the 

boundaries for the third body at a given velocity.  The third body is allowed to move 

to regions with larger C values, but not to regions with smaller C values unless a 

velocity change is applied.  Curves for various C values are shown in Figure 3.  

Certain specific C values are important for defining the motion around Lagrange 
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points and are assigned specific labels from C1 to C5.  (The C1 to C5 labels do not 

correspond to increasing values of C, but instead correspond to decreasing values of 

C, such that C1>C2>C3>C4>C5.)  If r1 and r2 are very large, then C ≈ (x2+y2).  That 

approximation results in the equation for a circle and three circles are formed from 

that approximation, which are labeled C1 in Figure 3.  The three circles include one 

circle around each of the primary masses and a third circle around the system.  If C is 

large and either r1 or r2 is very small, then the inner curves become separate ovals 

around the points (x, y) = (µ-1, 0) and (x, y) = (µ, 0) and there is a third circle around 

the system.  As the C value decreases, the inner ovals become larger and the outer 

circle becomes smaller.  The C2 curve is the specific C value where the two inner 

ovals around the two bodies intersect and this intersection point is the Lagrange point, 

L1.  As the C value continues to decrease there is a point where the inner oval of the 

smaller primary intersects the outer circle of the system and this specific C value is 

labeled C3.  The intersection point of C3 is defined as Lagrange point, L2.  C4 is the 

specific C value where the inner oval of the larger body intersects the outer oval of 

the system and this point is the Lagrange point, L3.  As the C value continues to 

decrease the inner ovals and outer circle continue to converge as seen in C5.  The 

points L4 and L5 are found where the ovals converge to the outer circle as C reaches a 

minimum.   
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Figure 3.  Curves of constant C values and zero velocity. 

 

3.4 Generating the Manifolds for the CR3BP 

In order to generate a manifold for the CR3BP, the two-dimensional nonlinear 

equations of motion were numerically integrated.  The state-space representation of 

the equations of motion (Equation 21) was programmed into Matlab. 
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The set of four, first order, nonlinear equations were numerically integrated using the 

Runge-Kutta-Fehlberg fourth and fifth order (RKF45) method.  The numerical 
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integration requires an initial position and velocity so that it can generate a trajectory 

over a specified time interval.  An initial velocity of zero is required to find the stable 

manifold to travel to a Lagrange point.  The stable manifold can be propagated 

forward and backward in time so that a spacecraft is able to travel to and from a 

Lagrange point on the manifold.  The forward time propagation is done using 

Equation 21.  In order to perform backward time propagation, Equation 21 is 

modified using Equation 22. 
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After the modification, the new equations of motion for backward time propagation 

become Equation 23. 
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Equations 21 and 23 were used to generate stable manifolds around each of the five 

Lagrange points. 
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3.5 Developing the Hamilton-Jacobi-Bellman Optimization Algorithm 

In order to examine an optimized solution to the CR3BP, the Hamilton-Jacobi-

Bellman (HJB) optimization method was chosen.  This method was chosen to 

calculate optimal trajectories from a location near m1 or m2 to a Lagrange point.  The 

optimal control problem was converted into a parameter optimization problem so that 

it can be solved using nonlinear programming.  The nonlinear CR3BP can be 

described by the following function. 

 ( ) ( )tkxftx
dt
d ,,=   (24) 

 

The state of the system is represented by the state vector x(t) and the control law is 

represented by vector k(t).  Both the state vector and the control are functions of time.  

The scalar cost function that is used to describe the optimal control law is 

   (25) ( ) ( ) ( )( )∫ +=
ft

t
ftxmdx,k,τItkxJ τ,,

The cost function, J, integrates the instantaneous cost, I, over time from t to tf and a 

final cost, m, is added to adjust for a difference between the actual state and the 

desired final state. 

 

The cost function can be written subject to constraints imposed by an optimal control 

law in order to develop the optimal cost function.  Equation 26 is of the optimal cost 

function, which is now a function of optimal control law, kopt. 
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),,()(   subject to tkxftx
dt
d

=  

The optimality principle in dynamic programming allows the optimal control law to 

be found over a shorter time interval, resulting in Equation 27.  (Bellman 1957) 

   (27) 
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From an integral approximation and applying a multi-variable Taylor series 

expansion, the HJB partial differential equation (PDE) is found and has the following 

boundary condition in Equation 28.  (Dorato et al. 1995) 
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  (28) 

where    ))(()),(( fff
opt txmttxJ =

An analytical solution to the HJB PDE is only possible for special cases, so when 

applying the HJB PDE to the CR3BP, a numerical approach must be used to find a 

solution to the optimal control problem.  The chosen numerical approach 

approximates the continuous-time optimal control problem as a finite-parameter 

constrained optimization problem that can be solved by nonlinear programming.  

With this approach, a trajectory in the CR3BP is propagated using a finite number of 

nodes that contain dynamic information including the applied control and continuous-

time position and velocity.  The trajectory is divided into time intervals with the final 
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time for each interval named a node.  At each node the state (position and velocity) 

and controller are discretized, so that there are a finite number of equality constraints 

placed on the dynamics.  The controller variables were chosen to be applied as an 

impulsive change in velocity, ∆V, to the body at each node.  Once the state and 

controller are discretized, the cost function (29) can be written as a summation over 

the number of nodes (n-1). 

   (29) ∑
−

=

+∆=
1

1

))((),,(),,(
n

i
fiii txmkxΙtkxJ ττ

The control applied over each segment was chosen to remain constant until the next 

node.  At each node, a new control can be applied, resulting in a piecewise-constant 

control input over the trajectory.  The system dynamics used to propagate the 

trajectory were performed using the Runge-Kutta-Fehlberg (RKF45) numerical 

integration method.  In order to satisfy the system dynamics of the CR3BP for a given 

segment, the variables at either end of the segment were modified by the nonlinear 

programming solver, so that the constraints are met within a user-specified tolerance.   

(Epperson 2002; Stoer and Bulirisch 1993; von Stryk and Schlemmer 1994) 

 

Structure of Nonlinear Programming Algorithm (Bhatti 1998) 

Initial guess is provided for each node vector as a starting solution. 

The first derivative of the node vectors is calculated and the second derivative of the 

cost is approximated with respect to the node vectors. 

The new state of the next node is determined based on reducing the cost from the 

information in step 2. 

The new solution is found from the new state of each node. 
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Go to step 2 and repeat until the cost stops decreasing. 

 

Once a new minimum cost has been found, it is compared to the original cost.  If the 

new cost is greater than the allowable tolerance applied to the original cost, then a 

converged solution to the constrained cost problem has not yet been found.  If the 

solution has not yet converged, then the most recent solution is used as a new guess 

for step 1. 

 
An impulsive velocity (∆V) model was applied at each node in order to adjust the 

state vector for the following segment.  The impulsive velocity cost is a finite sum of 

the ∆V’s.  Equation (30) is the cost that needs to be minimized over the entire 

trajectory. 

   (30) ∑
=

∆=
n

node
nodevehicle VCost

1

 

Now the HJB optimized solution to the CR3BP has been found through programming 

algorithms.  The optimization code that was written can now be run for the CR3BP 

with varying initial and final states.  The following parameters can be varied for 

optimization of different cases: gravitational parameter (µ), starting position and 

velocity, ending position and velocity, and time of trajectory. 
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4. Results 

4.1 Manifold Solution of the CR3BP 

Matlab was used in order to program everything that was needed to develop the three-

body manifolds.  First, the five Lagrange points were found from the CR3BP 

equations of motion as described in the methods section.  Next, the equations of 

motion were linearized in order to find the eigenvalues and eigenvectors to better 

understand the system.  The eigenvectors were plotted to better understand the motion 

of the third body and obtain approximate locations of the two-dimensional manifolds.  

The eigenvectors show direction of motion around each Lagrange point.  The 

potential, U, was found for the CR3BP and Jacobi’s constant of integration, C, was 

calculated.  Hill’s curves were plotted with zero velocity and constant values of C.  

The curves were used to define areas of restricted motion for the third body. 

 

Motion of the third body was found using numerical integration of the CR3BP 

nonlinear equations of motion as described in the methods section.  An initial position 

and velocity was assigned to the third body and then propagated over a specified time 

interval.  The method of numerical integration used for the trajectory propagation was 

Runge-Kutta-Fehlberg (RKF45) with equations from the 4th and 5th order methods.  

Depending on the initial velocity given to the third body (no additional velocity 

applied), its motion was restricted to clearly defined areas that can be shown once the 

potential, U, and Jacobi’s constant, C, are calculated. 
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Dynamic systems theory was used to propagate the third body’s motion in order to 

find the stable manifold in the two-dimensional x-y plane.  No additional acceleration 

or velocity is applied to the third body so that the stable manifold can be found only 

from the dynamics.  In order to have the third body travel to a Lagrange point, using 

only dynamics, it must be on a stable manifold that will allow it to move toward that 

point.  The third body needs to approach a trajectory defined by the eigenvectors 

about a Lagrange point, so that it can travel to one of the points.   

 

The stable manifolds around each Lagrange point were generated using only 

“natural” dynamics.  For each point, four locations were chosen to initiate dynamic 

propagation in order to find the stable manifold.  If the third body is propagated 

forward in time from a point on the stable manifold it will move toward a Lagrange 

point, but if the third body is propagated from an unstable manifold it will move away 

from a Lagrange point.  Each of the four locations were displaced from the Lagrange 

point by ±0.0001 in the x and y directions, such that each of the four quadrants around 

the Lagrange point were represented by one of the initial locations.  Each of the 

collinear Lagrange points (L1, L2, L3) have stable directions designated by the 

eigenvectors where the third body can move toward the Lagrange point.  The stable 

pathways were found by propagating the dynamics backward in time from a position 

near the Lagrange point.  For the collinear Lagrange points, the unstable pathways 

were found by forward time propagation of the third body from positions near the 

Lagrange point.  The triangular Lagrange points (L4, L5), which are stable, allow the 

third body to move toward the Lagrange point from any direction. 
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Figure 4 shows the third body’s motion propagated from positions near L1.  The 

dynamics were propagated with zero initial velocity.  The black curves are the 

unstable manifolds and were found from forward time propagation.  The red curves 

are the stable manifolds, which were found by propagating the dynamics backward in 

time from points near L1.  The stable and unstable manifolds around L1 are 

constrained by the C2 zero velocity curve.  If the third body starts on the side closer to 

m1 (right side of L1), then the third body’s motion remains trapped around m1.  If the 

third body starts on the side closer to m2 (left side of L1), then the third body’s motion 

remains trapped around m2. 

 

 

Figure 4.  The L1 manifold propagated over a long period of time. 
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Figure 5 shows the L1 manifold propagated over a shorter time than the manifold in 

Figure 4.  This portion of the manifold is used to compare to optimized control 

solutions in section 4.3. 

 

 

Figure 5.  The L1 manifold propagated over a short period of time. 
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Figure 6 shows the third body’s motion propagated from positions near L2.  The black 

curves are the unstable manifolds and were found from forward time propagation.  

The red curves are the stable manifolds, which were found by propagating the 

dynamics backward in time from points near L2.  The stable and unstable manifolds 

around L2 are constrained by the C3 zero velocity curve.  If the third body starts on the 

side closer to m1 and m2 (right side of L2), then the third body initially orbits m2 and 

then moves into orbit about m1.  If the third body starts on the side farther away from 

m1 and m2 (left side of L2), then the third body moves continually away from the 

system.  

 

 

Figure 6.  The L2 manifold. 
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Figure 7 shows the third body’s motion propagated from positions near L3.  The black 
curves are the unstable manifolds and were found from forward time propagation.  
The red curves are the stable manifolds, which were found by propagating the 
dynamics backward in time from points near L3.  The stable and unstable manifolds 
around L3 are constrained to remain outside of the C4 zero velocity curve.  If the third 
body starts on the side closer to m1 and m2 (left side of L3), then the third body 
initially travels past m1 and then orbits m2 for a time.  Then third body moves into 
orbit about m1.  If the third body starts on the side farther away from m1 and m2 (right 
side of L3), then the third body moves continually away from the system. 
 

 

Figure 7.  The L3 manifold. 
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Figure 8 shows the third body’s motion propagated from positions near L4.  The black 
curves were found from forward time propagation and the red curves were found by 
propagating the dynamics backward in time from points near L4.  If the third body 
starts at exactly the L4 or L5 location, it will remain there because those points are 
stable.  If the third body starts near L4 or L5, then the motion is unconstrained.  The 
third body is initially influenced by the system but continues on an erratic trajectory.   
 

 

Figure 8.  The L4 manifold. 

 

This section has shown the manifolds around the Lagrange points of the CR3BP.  The 

stable and unstable manifolds agree with the motion described by the eigenvectors.  

Zero velocity curves were also used to verify the dynamic motion of the third body.  

The manifolds generated have the potential to be used to travel to and from Lagrange 

points more optimally.  The next section uses optimal control theory to find 

trajectories that will be compared to the manifolds. 
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4.2 HJB Optimized Solution of the CR3BP 

An optimized solution algorithm was created using the HJB equation applied to the 

CR3BP.  The optimization code finds an optimal trajectory for the third body with a 

given initial and final state over a period of time.  The total cost of the trajectory is 

calculated from the impulsive velocities applied at nodes (equally spaced time 

segments) along the trajectory.   

 

Optimized solutions were found for trajectories along the manifold through L1.  The 

L1 manifold was chosen for optimized solutions because this point has been used by 

numerous satellites in the Sun-Earth system.  The L1 point in the Earth-Moon system 

will probably be used by spacecraft in the near future because of the NASA goals to 

return to the moon and travel further out in space and L1 provides many advantages 

for doing that.  The L1 manifold is also an interesting manifold where travel from 

either m1 or m2 to the point can be studied.   

 

The HJB optimization algorithm was used with the L1 manifold for µ = 0.5 and 0.1 

and all of the cases were run using 10 nodes.  The number of nodes affects the 

trajectory that the third body takes to achieve its desired final state and the overall 

cost of the trajectory will vary depending on the number of nodes.  The nodes are 

placed at the end of evenly spaced time intervals throughout the trajectory and are the 

locations where the impulsive ∆V’s are applied.  The number of nodes chosen for 

these optimization cases was ten because it is sufficient to calculate a relatively 

smooth trajectory but does not require a large amount of time to run each case.  
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Increasing the number of nodes results in an optimization problem with a greater 

number of parameters.  Such a case then requires more time to compute since the 

optimization algorithm has a greater number of parameters to vary while minimizing 

the cost. 

 

Initial optimized solutions were found for µ = 0.5 to verify the dynamics when the 

two primary masses are equal.  The dynamics were verified by comparing trajectories 

to m1 and m2 that should be the same.  More solutions were found for µ = 0.1 because 

this is a more interesting case where m1 is much larger than m2 and the solutions are 

more comparable to real life scenarios of the Sun-Earth-Moon system.  This section 

presents the results found using the HJB optimization algorithm and the next results 

section provides more analysis of the optimized solutions by comparing them to 

manifolds.   

 

The following three figures show the results from varying cases when µ = 0.1.  Figure 

9 shows optimized solutions for the starting state of (x, y, , ) =  x& y&

(-0.60903511002320, 0, 0, 0) which is the position of L1, the point between m1 and 

m2.  The final state was chosen to be (x, y, , ) = (-0.91, 0, -3.16, 0), where the final 

position was to the left of m

x& y&

2 but inside of the manifold through L1 and the final 

velocity was set to be a counterclockwise circular velocity around m2.  Equation 31 

was used to calculate the circular velocity, where G is the gravitational constant for 

mass, m, and the orbit has radius, r. 

 
r

Gmvcirc =   (31) 
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These solutions, with the previously mentioned initial and final states, were found for 

a variety of times, from 0.25TU to 2.60TU. 

 

 

Figure 9.  HJB optimization results from L1 to (-0.91, 0). 
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Figure 10.  HJB optimization results from L1 to (-0.92, 0). 

 

Figure 10 shows optimized solutions for the same initial state as Figure 9, which is (x, 

y, , ) = (-0.60903511002320, 0, 0, 0).  The final state was set to (x, y, , ) =  x& y& x& y&

(-0.92, 0, unconstrained, unconstrained), where the final position was left of m2 but 

inside of the manifold through L1.  The final velocity was set to be unconstrained so 

that the end velocity can vary and the optimization algorithm is able to solve for the 

end velocity that provides the lowest cost for the entire trajectory.  These solutions 

were found for times from 0.5TU to 4.0TU. 
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Figure 11.  HJB optimization results from L1 to (-0.95, 0). 

 

Figure 11 shows optimized solutions for the same starting state as Figures 9 and 10, 

which is (x, y, , ) = (-0.60903511002320, 0, 0, 0).  The final state was set to (x, y, 

, ) = (-0.95, 0, unconstrained, unconstrained), where the final position was to the 

left of m

x& y&

x& y&

2 and outside of the manifold through L1 and the final velocity was set to be 

unconstrained so that the end velocity can vary.  These solutions were found for times 

from 0.5TU to 2.5TU. 

 

4.3 Comparison of Manifold and HJB Optimized Solutions About the L1 Point 

In order to compare the manifold approach and the HJB optimized approach for 

trajectories in the CR3BP, an area of interest had to be chosen.  Travel around each of 

the Lagrange points provides for interesting results from a dynamics standpoint.  
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There are three-dimensional manifolds that can be examined in the CR3BP but for 

this project, two-dimensional manifolds were examined to better understand manifold 

behavior in the CR3BP.  One interesting two-dimensional manifold in the CR3BP is 

the manifold that goes through L1, the Lagrange point between the two primary 

masses, and forms a figure-eight curve around m1 and m2.  This manifold was found 

by propagating the dynamics at points close to L1 with zero velocity.  The HJB 

optimization was run for µ = 0.1 from L1 with zero initial velocity and was allowed to 

have an unconstrained end position and velocity.  The optimized solution was 

compared to the manifold generated in Matlab and the two curves overlap throughout 

the entire trajectory, verifying the manifold to be the “natural, unpowered” dynamic 

approach.  This case and all future optimized cases were run for ten nodes on each 

trajectory.   

 

There are many questions that need to be answered in regard to manifolds and the 

CR3BP.  How do trajectories near the manifold behave?  If a small spacecraft (third 

body) needs to travel from the vicinity of one of the primary masses, what pathway 

will it take to get to L1?  Will it take the same pathway as the manifold or take another 

pathway?  If it approaches the manifold, when along its trajectory will it approach or 

cross the manifold?  These questions can be answered by comparing manifolds to 

optimized trajectories in the CR3BP. 

 

In order to answer these questions, several cases were run using the HJB optimization 

algorithm for the CR3BP.  All of the cases were run using ten nodes where the ∆V 
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was applied.  First, an optimization was performed for an initial position at L1 with 

zero velocity and a final position of (x, y) = (-0.91, 0) with an unconstrained velocity.  

The unconstrained velocity case is shown in Figure 12.  The optimized solution 

followed the pathway of the manifold for part of its trajectory and then the optimizer 

applied a ∆V that caused the body to move toward its final state.  This case was 

performed with a total cost of 0.1887LU/TU.  This case needed to be performed 

before cases with constrained end velocities so that the optimizer had an approximate 

initial guess at each node.   

 

 

Figure 12.  Comparison of the manifold to HJB optimization results from L1 to (-0.91, 0) with an 

unconstrained end velocity. 

 

 34



After approximate node velocities were obtained from the unconstrained case, the 

first set of cases were chosen to start at L1 with zero velocity and they were optimized 

over a trajectory to a point near m2 that is inside of the L1 manifold, specifically at the 

point (x, y) = (-0.91,0).  The final state was constrained to have a counterclockwise 

circular velocity of approximately ( , ) = (-3.16, 0) around mx& y& 2.  These cases were 

run in order to determine how the optimized trajectories would relate to the manifold.  

The trajectories from the initial to the final states mentioned above were optimized 

for times of 0.25TU to 2.6TU.  The optimized solutions and the manifold are shown 

in Figure 13.  The cost analysis and distance following the manifold found from these 

cases are summarized in Table 1.   

 

 

 
 

Figure 13.  Comparison of the manifold to HJB optimization results from L1 to (-0.91, 0). 
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Integration Time 
(TU) 

Distance Following 
Manifold Within 

0.01LU  
(LU) 

Cost 
(LU/TU) 

1.0 0.14 0.1887* 

0.25 0.015 2.565 

0.5 0.015 1.756 

0.75 0.26 1.582 

1.0 0.26 1.545 

1.25 0.245 1.481 

1.5 0.18 1.362 

1.75 0.24 1.505 

2.0 0.235 1.489 

2.6 0.02 1.619 
 

Table 1.  Results for Case 1: x0 = (-.609, 0, 0, 0); xf = (-.91, 0, -3.16, 0)   
*unconstrained end velocity 

 

The 0.25TU case forced the trajectory to leave the manifold as soon as it began 

because the time was too short for the body to take a path of less ∆V required.  The 

cost required for this trajectory was 2.565LU/TU.  This cost was much higher than 

the unconstrained case because it was forced to find a solution in less time and it was 

forced to have a specific final velocity.  The 0.5TU case also left the manifold 

immediately because of its small time allowed to reach its final state.  The largest 

time case that was run for these initial and final states was for 2.6TU.  This time was 

much too large and the trajectory strays from the manifold right away.  This case also 

required a large ∆V relative to the unconstrained case.  The 2.6TU case had a cost of 

1.619LU/TU.  The cases for 0.75TU to 2.0TU all started out by following the 

manifold pathway and then leave the manifold at various points because they are 
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forced to achieve their final state.  The case with the lowest cost for the circular end 

velocity was for 1.5TU and the cost was 1.362LU/TU.  The distance that each 

trajectory followed the manifold within 0.01LU was measured using plot 

comparisons of each trajectory to the manifold.  The distance of 0.01LU was 

arbitrarily chosen as the tolerance for being considered “on the manifold” in order to 

make comparisons between the optimized trajectories.  From Figure 13, the cases that 

followed the manifold, within 0.01LU, for the longest distance were for times of 

0.75TU and 1.0TU.  There does not seem to be a direct correlation between the cost 

and the time spent on the manifold for the 0.75TU to 2.0TU cases.  The most likely 

reason for miscorrelation is that these cases were run with ten nodes and the nodes for 

each trajectory are in different locations because the nodes are evenly spaced over 

time, not distance.  The definition of the nodes results in different trajectories leaving 

the manifold at different locations depending on where the node occurs and the 

velocity change at that node.  This could be investigated further if this set of cases 

were run with more nodes, which may produce a case where the lowest cost is found 

to have spent the greatest distance on the manifold. 

 

The next set of cases that were run with the HJB optimization algorithm had an initial 

state at the L1 position and zero velocity and the optimized trajectories shown with the 

manifold in Figure 14.  The final position is still inside of the L1 manifold around m2, 

but the position is further away from m2 than the previous set of cases in Figure 13.  

The final state had a position of (x, y) = (-0.92, 0) and an unconstrained velocity.  The 
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trajectories were optimized for times from 0.5TU to 4.0TU.  The cost analysis and 

distance following the manifold found from these cases are summarized in Table 2.   

 

Figure 14.  Comparison of the manifold to HJB optimization results from L1 to (-0.92, 0). 

 

Integration Time 
(TU) 

Distance Following 
Manifold Within 

0.01LU 
(LU) 

Cost 
(LU/TU) 

0.5 0.02 0.2836 

1.0 Entire Distance 0.1000 

1.5 Entire Distance 0.04499 

2.0 Entire Distance 0.04103 

2.5 Entire Distance 0.03982 

3.0 Entire Distance 0.03862 

3.5 <0.01 0.03838 

4.0 <0.01 0.03831 
 

Table 2.  Results for Case 2: x0 = (-.609, 0, 0, 0); xf = (-.92, 0, unconstrained, unconstrained) 
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From Figure 14, the 0.5TU case was not allowed enough time for the trajectory to 

follow the manifold at all.  It had a cost of 0.2836LU/TU, which was the largest cost 

found for this set of cases.  The time cases of 1.0TU and 1.5TU are initially farther 

from the manifold than the cases of 2.0TU, 2.5TU, and 3.0TU, but all five of these 

cases remain within the 0.01LU tolerance of the manifold for the entire trajectory.  

The 3.5TU and 4.0TU cases did not follow the manifold pathway within the 0.01LU 

tolerance initially, but fairly early their optimized trajectories returned to the manifold 

and remained within the tolerance until the final state.  For this set of cases in Figure 

14, unlike the cases in Figure 13, the cost varied as expected with time so that more 

time allowance was associated with less cost.  The lowest cost was found for the 

4.0TU case and was 0.03831LU/TU, even though this trajectory left the manifold 

initially.   
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Figure 15.  Comparison of the manifold to HJB optimization results from L1 to (-0.95, 0). 

 

Figure 16.  Comparison of the normal and looped cases of HJB optimization results from 2.5TU. 
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The third set of cases optimized using the HJB programming algorithm was 

performed with a final position that is outside of the L1 manifold around m2.  These 

cases are shown in Figures 15 and 16.  All of the cases were run with an initial state at 

L1 and zero initial velocity.  The final state was set to (x, y) = (-0.95, 0) and an 

unconstrained velocity.  The trajectories were optimized for the times of 0.5TU to 

2.5TU.  The cost analysis and distance following the manifold found from these cases 

are summarized in Table 3.  The lowest cost was found for 2.0TU and the total cost 

was 0.1066LU/TU.  The 0.5TU trajectory followed the manifold for the longest 

distance, but also had the highest cost from this set of cases.  This is probably because 

the final position of the trajectories is outside of the manifold and a more direct path 

to the endpoint will follow the manifold for a longer distance.  The cost decreased 

with increasing time for the 0.5TU to 2.0TU trajectories, but the cost increased for the 

2.5TU case.  In the 2.5TU case, it appears as if too much time is allowed for the 

trajectory to reach its endpoint, causing the cost to increase due to the increased 

distance traveled relative to the time allowed. 
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Integration Time 
(TU) 

Distance Following 
Manifold Within 

0.01LU  
(LU) 

Cost 
(LU/TU) 

0.5 0.24 0.3779 

1.0 0.17 0.1468 

1.5 0.13 0.1077 

2.0 0.11 0.1066 

2.5 normal guess 0.14 0.1130 

2.5 looped guess <0.01 0.1208 
 

Table 3.  Results for Case 3: x0 = (-.609, 0, 0, 0); xf = (-.95, 0, unconstrained, unconstrained) 
 

In Figure 16, two cases were compared for 2.5TU and have the same initial and final 

states as in Figure 15.  These two optimized trajectories were run with different initial 

guesses of their expected pathways.  The “normal guess” was given a more direct 

initial approximation that would take it on a pathway similar to the manifold and to 

its final state.  The “looped guess” was given an initial trajectory approximation that 

would loop around m2 before moving to its designated final state.  The direct route 

case had a cost of 0.1130LU/TU, while the looped case had a greater cost of 

0.1208LU/TU. 

 

5. Conclusions 

Matlab programming was used to develop manifolds for the CR3BP.  The five 

Lagrange points were found and the equations of motion were linearized to find the 

eigenvectors and eigenvalues.  Hill’s zero velocity curves were plotted for constant 

values of C.  The curves were used to define areas of restricted motion for the third 
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body.  Using dynamic systems theory, manifolds around each of the Lagrange points 

of the CR3BP were generated.  The stable and unstable manifolds agree with the 

motion described by the eigenvectors and the motion constraints observed from the 

zero velocity curves.  The manifolds generated have the potential to be used to travel 

to and from Lagrange points more optimally.   

 

Optimized trajectory solutions for the CR3BP were found using an HJB programming 

algorithm and the trajectories were compared to the two-dimensional manifold 

through L1.  Optimized trajectories were found from an initial position at L1 to final 

positions around m2 for µ = 0.1.  Cases were run for constrained initial and final 

positions but with unconstrained final velocities.  Additional cases were run with 

constrained initial and final positions and velocities with the final velocities being 

forced to circular velocities around m2.   

 

The set of cases with the final position of (x, y) = (-0.92, 0) follow the manifold closer 

than the other two sets of cases for final positions of (x, y) = (-0.91, 0) and (-0.95, 0) 

throughout the range of times studied.  The three data sets studied each have a 

trajectory with a low time allowance that causes a more direct trajectory to be taken 

to achieve the final position and does not follow the manifold, resulting in a higher 

cost.  When the time allowance is large, the optimized trajectory leaves the manifold 

soon after departing L1 and results in increased distance traveled, which increases the 

cost required to achieve the final state.  The point of increasing cost for a large time 

allowed was not reached within the time cases run for the final state of (x, y) = (-0.92, 
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0).  This is most likely due to the optimized trajectory following closer to the 

manifold and the final location being closer to the manifold for the (x, y) = (-0.92, 0) 

cases, relative to the cases with final positions of (x, y) = (-0.91, 0) and (-0.95, 0).  For 

the cases with less extreme time allowances, the trajectories stay longer on the 

manifold and cost less as the endpoint is fixed at a point closer to the manifold and 

this can be seen in the (x, y) = (-0.92, 0) cases.  The cost in this range of time 

allowance seems to vary inversely to time allowed when the endpoint is close to the 

manifold or varies in a more complex manner as the endpoint is fixed farther from the 

manifold. 

 

These conclusions are the beginning of an area that needs to be further investigated.  

The influence of manifolds on finding the optimal trajectory for the third body in the 

CR3BP needs to be studied more to concretely define that manifolds are the optimal 

pathways to travel in space.  This investigation shows that from initial observations, 

HJB optimized trajectories do use manifolds when finding the optimal pathway to 

travel in the CR3BP.  More research should be done to explore when the optimal 

trajectory uses a manifold and how to optimize entry onto and exit from the manifold.  

This paper examined the manifold through L1, but other specific manifolds could also 

be examined to look at a variety of trajectories in the CR3BP.  There are many areas 

of research with manifolds and the CR3BP to explore that would help to better plan 

for spacecrafts’ trajectories in the future.  These areas of research have the potential 

to reduce fuel usage and transit time while exploring new areas of the space frontier.  
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The better the CR3BP is understood, the more effectively and efficiently humans will 

be able to explore space. 

 

 45



6. Appendices 

6.1 Appendix A 

% Title: rot3body.m 
% Description:  Program looks at the rotating three-body system 
% with 5 libration points. 
% This is the circular restricted three-body problem (CR3BP) 
% Original Date: 1/9/04 
% Author: Raquel Jarabek 
 
clc 
clear all 
close all 
format long 
 
% System has 2 significant massive bodies with a 3rd body moving around  
% the other 2 bodies.  The 3rd body's mass is assumed zero, because it 
% is small enough that its mass does not influence the motion of the 2 
% larger bodies.  Body 2 is revolving around body 1.  Body 3 is free to  
% move as instructed.  This rotating system creates 5 points where the 
% gravitational and centripetal forces are zero. 
 
% This program maps out the force field around the main 2 bodies and  
% looks at the movement of the 3rd body. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Choose mu, mass ratio constant 
 
% Definitions: (normalized values) 
% m1=1-mu                   % largest mass, stationary 
% m2=mu                     % next largest mass, stationary 
% m3=0                      % third body, moving 
% mu=m2/(m1+m2)             % mass ratio 
 
disp(' ') 
disp('The gravitational parameter, mu, is set to:') 
%mu= 3.0034e-6              % mass ratio for Sun-Earth system 
%mu=0.01213                 % mass ratio for the Earth-Moon system; not setup below 
%mu=0.5 
%mu=0.3 
mu=0.1 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% Setting up initial equations of motion. 
 
if mu == 3.0034e-6      % mass ratio for Sun-Earth system 
    x=[-1.4:.2:-.2 .2:.2:1.4]; 
    y=[-1.4:.2:-.2 .2:.3:1.4]; 
elseif mu == 0.5 
    x=[-2:.25:2]; 
    y=[-2:.25:2]; 
elseif mu==0.3 
    x=[-2.2:.2:2.2]; 
    y=[-2.2:.2:2.2]; 
elseif mu==0.1; 
%    x=[-2.2:.2:2.2]; 
%    y=[-2.1:.2:2.1]; 
    x1=[-2.2:.2:-.2]; 
    y1=[-2.1:.2:2.1]; 
    x2=[0:.2:.2]; 
    y2=[.3:.2:2.1]; 
    x3=[0:.2:.2]; 
    y3=[-2.1:.2:-.3]; 
    x4=[.4:.2:2.2]; 
    y4=[-2.1:.2:2.1]; 
else 
    x=[-1.5:.25:1.5]; 
    y=[-1.5:.25:1.5]; 
    disp('************ERROR: This mu will not produce the quiver 

plot.************') 
end; 
 
if mu~=0.1 
    [x,y]=meshgrid(x,y); 
     
    % CM12 is the center of mass of bodies 1 and 2 (location of CS origin) 
    x1=-mu;                     % distance from CM12, to mass 1 (larger mass) 
    x2=1-mu;                    % distance from CM12, to mass 2 (smaller mass) 
     
    r1=sqrt((x-mu).^2+y.^2); 
    r2=sqrt((x+1-mu).^2+y.^2); 
     
    % 3-Body dynamics, rotating system, CR3BP 
    % 2 bodies with significant mass (3rd body has no mass) 
    x_vel=0; 
    y_vel=0; 
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    % Set velocities to zero to obtain Hill's curves. 
     
    om_x=x-((1-mu)*(x-mu))./r1.^3-mu*(x+1-mu)./r2.^3; 
    om_y=y.*(1-(1-mu)./r1.^3-mu./r2.^3); 
    x_accel=2*y_vel+om_x; 
    y_accel=-2*x_vel+om_y; 
end; 
 
if mu==0.1 
    figure(1) 
    hold on 
    x_vel=0; 
    y_vel=0; 
 
    [x,y]=meshgrid(x1,y1); 
    r1=sqrt((x-mu).^2+y.^2); 
    r2=sqrt((x+1-mu).^2+y.^2); 
    om_x=x-((1-mu)*(x-mu))./r1.^3-mu*(x+1-mu)./r2.^3; 
    om_y=y.*(1-(1-mu)./r1.^3-mu./r2.^3); 
    x_accel=2*y_vel+om_x; 
    y_accel=-2*x_vel+om_y; 
    quiver(x,y,x_accel,y_accel,'g') 
 
    [x,y]=meshgrid(x2,y2); 
    r1=sqrt((x-mu).^2+y.^2); 
    r2=sqrt((x+1-mu).^2+y.^2); 
    om_x=x-((1-mu)*(x-mu))./r1.^3-mu*(x+1-mu)./r2.^3; 
    om_y=y.*(1-(1-mu)./r1.^3-mu./r2.^3); 
    x_accel=2*y_vel+om_x; 
    y_accel=-2*x_vel+om_y; 
    quiver(x,y,x_accel,y_accel,'g') 
     
    [x,y]=meshgrid(x3,y3); 
    r1=sqrt((x-mu).^2+y.^2); 
    r2=sqrt((x+1-mu).^2+y.^2); 
    om_x=x-((1-mu)*(x-mu))./r1.^3-mu*(x+1-mu)./r2.^3; 
    om_y=y.*(1-(1-mu)./r1.^3-mu./r2.^3); 
    x_accel=2*y_vel+om_x; 
    y_accel=-2*x_vel+om_y; 
    quiver(x,y,x_accel,y_accel,'g') 
     
    [x,y]=meshgrid(x4,y4); 
    r1=sqrt((x-mu).^2+y.^2); 
    r2=sqrt((x+1-mu).^2+y.^2); 
    om_x=x-((1-mu)*(x-mu))./r1.^3-mu*(x+1-mu)./r2.^3; 
    om_y=y.*(1-(1-mu)./r1.^3-mu./r2.^3); 
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    x_accel=2*y_vel+om_x; 
    y_accel=-2*x_vel+om_y; 
    quiver(x,y,x_accel,y_accel,'g') 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Quiver plot showing directions of 3rd-body acceleration 
 
if mu~=0.1 
    figure(1) 
    quiver(x,y,x_accel,y_accel,'g') 
    hold on 
end; 
 
plot(-1+mu,0,'.k',mu,0,'ok')    % plotting bodies 1 and 2        
title('Quiver plot showing direction of accelerations') 
xlabel('x') 
ylabel('y') 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Libration points locations 
 
% Find all five libration point positions. 
 
% Initialize the x,y,z coordinates of the libration points 
L=zeros(5,3);   % each row is the location of a libration point 
                    % rows of L = [L1 L2 L3 L4 L5]' 
     % each column [x y z] (x is 1st column, y 2nd, z 

3rd) 
 
% Use pg. 64 of Gomez Vol. 1 to solve for 3 collinear lib. pts. to  
% double check the solution found below--done and it checked. 
                     
% Find x coordinate of collinear points using Newton's method 
% initial values are close to the point you are solving for 
clear r1 r2 
%x0=[0.0001 1.0001 -1.001]; 
%x0=[.0001 -1.0001 -.9999];  
x0=[mu+.001 mu-1+.001 mu-1-.0001]; 
for i=1:3 
   x=x0(i); 
   y=0; 
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   dx=1; 
   while abs(dx)>1e-10 
      r1=sqrt((x-mu)^2+y^2); 
      r2=sqrt((x+1-mu)^2+y^2); 
 
      f=x-(1-mu)*(x-mu)/r1^3-mu*(x+1-mu)/r2^3; 
 
      df_dx=1+2*(1-mu)*invelm(abs(x-mu)^3)+2*mu*invelm(abs(x+1-mu)^3); 
       
      dx=-f/df_dx; 
      x=x+dx; 
   end; 
   L(i,1)=x; 
end; 
 
% Find x and y coordinates of triangular libration points 
x_tri=-.5+mu; %-(x1+x2)/2;  % from r1=r2=1 & z=0 
y_tri=sqrt(3)/2; 
L(4,1:2)=[x_tri y_tri]; 
L(5,1:2)=[x_tri -y_tri]; 
 
% Display libration point locations 
disp(' ') 
disp(' ') 
disp('Each row of L is a libration point location = [x y z]') 
L 
 
figure(1) 
hold on 
plot(L(:,1),L(:,2),'r+') 
 
% Plot libration points with labels on separate figure 
if mu == 0.1 
    figure(2) 
    plot(L(:,1),L(:,2),'r+') 
    text(L(1,1),L(1,2)-.1,'L_3') 
    text(L(2,1),L(2,2)-.1,'L_1') 
    text(L(3,1),L(3,2)-.1,'L_2') 
    text(L(4,1),L(4,2)-.1,'L_4') 
    text(L(5,1),L(5,2)+.08,'L_5') 
    hold on 
    plot(-1+mu,0,'.b',mu,0,'ob')    % plotting bodies 1 and 2        
    text(-1+mu,.08,'m_2') 
    text(mu,.08,'m_1') 
    xlabel('x (LU)') 
    ylabel('y (LU)') 
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    title('The 5 Libration Points') 
end; 
 
% Verify the locations of the libration points found by plugging them back  
% into f(x,y) and it should equal zero. f(Lx,Ly)=0 for each point and f is 
% the set of EOM below 
% x_vel and y_vel are set to zero still 
 
for i=1:5; 
   
    x=L(i,1); 
    y=L(i,2); 
 
    fx_accel(i)=2*y_vel+x-((1-mu)*(x-mu))/((x-mu)^2+y^2)^(3/2)-mu*(x+1-

mu)/((x+1-mu)^2+y^2)^(3/2); 
    fy_accel(i)=-2*x_vel+y*(1-(1-mu)/((x-mu)^2+y^2)^(3/2)-mu/((x+1-

mu)^2+y^2)^(3/2)); 
     
end; 
fx_accel 
fy_accel 
disp('If fx_accel and fy_accel = 0, then the libration points are zeros of the equations 

of motion.') 
disp(' ') 
disp(' ') 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Linearize system about each libration point 
% Need linearization in order to find eigenvalues and eigenvectors 
 
% del_xdot = A*del_x + B*del_u 
% where A=del_f/del_x at libration point 
% and B=del_f/del_u at libration point 
 
% f1=x1_dot=x_dot=x3 
% f2=x2_dot=y_dot=x4 
% f3=x3_dot=x_dot_dot 
% f4=x4_dot=y_dot_dot 
 
% Find partial derivatives to complete linearization 
clear x1 x2 i 
syms de ds x1 x2 x3 x4 
% Note: old x1 is now ds and old x2 is now de (ds=old x1=-mu, de=old x2=1-mu) 
% Note: old x is now x1 and old y is now x2 (x1=x, x2=y) 
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x3_dot=2*x4+x1-

de*(x1+ds)/((x1+ds)^2+x2^2)^(3/2)+ds*(x1+de)/((x1+de)^2+x2^2)^(3/2);     
% changed signs 

 
A31sym=diff(x3_dot,x1); 
%pretty(A31sym); 
A32sym=diff(x3_dot,x2); 
%pretty(A32sym); 
 
x4_dot=-2*x3+x2*(1-de/((x1+ds)^2+x2^2)^(3/2)+ds/((x1+de)^2+x2^2)^(3/2));      % 

changed signs 
 
A41sym=diff(x4_dot,x1); 
%pretty(A41sym); 
A42sym=diff(x4_dot,x2); 
%pretty(A42sym); 
 
% Substitute real values into A31,A32,A41,A42 
A31a=subs(A31sym,de,1-mu); 
A31b=subs(A31a,ds,-mu); 
A32a=subs(A32sym,de,1-mu); 
A32b=subs(A32a,ds,-mu); 
A41a=subs(A41sym,de,1-mu); 
A41b=subs(A41a,ds,-mu); 
A42a=subs(A42sym,de,1-mu); 
A42b=subs(A42a,ds,-mu); 
             
for i=1:5; 
     
    A31c(i)=subs(A31b,x1,L(i,1));         
    A31(i)=subs(A31c(i),x2,L(i,2)); 
 
    A32c(i)=subs(A32b,x1,L(i,1));         
    A32(i)=subs(A32c(i),x2,L(i,2)); 
 
    A41c(i)=subs(A41b,x1,L(i,1));         
    A41(i)=subs(A41c(i),x2,L(i,2)); 
 
    A42c(i)=subs(A42b,x1,L(i,1));         
    A42(i)=subs(A42c(i),x2,L(i,2)); 
 
end; 
 
% Assemble A for the linearization 
% del_xdot = A*del_x + B*del_u 
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clear i; 
i=1; 
A1=[0      0      1  0 
    0      0      0  1 
    A31(i) A32(i) 0  2 
    A41(i) A42(i) -2 0]; 
i=2; 
A2=[0      0      1  0 
    0      0      0  1 
    A31(i) A32(i) 0  2 
    A41(i) A42(i) -2 0]; 
i=3; 
A3=[0      0      1  0 
    0      0      0  1 
    A31(i) A32(i) 0  2 
    A41(i) A42(i) -2 0]; 
i=4; 
A4=[0      0      1  0 
    0      0      0  1 
    A31(i) A32(i) 0  2 
    A41(i) A42(i) -2 0]; 
i=5; 
A5=[0      0      1  0 
    0      0      0  1 
    A31(i) A32(i) 0  2 
    A41(i) A42(i) -2 0]; 
 
B=[0 0 0 0]'; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Two checks of A matrices (A1,A2,A3,A4,A5) performed to verify that it  
% was found correctly. 
 
% A Check #1 
% Check A to make sure it was correctly found 
% f(L+eps*V)=f(L)+A*eps*V+O(eps^2) where L=(Lx,Ly) and f is the set of EOM 
% f(L)=f(Lx,Ly)=0 was shown in previous section and O(eps^2)~=0 
% so it must be shown that f(L+eps*V)=A*eps*V 
 
clear x1 x2 x3 x4 i 
 
de=1-mu; 
ds=-mu; 
eps=0.01; 
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V=[1 1 1 1]'; 
 
for i=1:5; 
    Lxy(:,i)=[L(i,1) L(i,2) 0 0]';      % [x y xdot ydot] 
    % Lx,Ly=libration point location and there is no initial velocity 
    L_eps(:,i)=Lxy(:,i)+eps*V; 
     
    x1(i)=Lxy(1,i); 
    x2(i)=Lxy(2,i); 
    x3(i)=Lxy(3,i); 
    x4(i)=Lxy(4,i); 
     
    f(1,i)=x3(i); 
    f(2,i)=x4(i); 
   
f(3,i)=2*x4(i)+x1(i)-

de*(x1(i)+ds)/((x1(i)+ds)^2+x2(i)^2)^(3/2)+ds*(x1(i)+de)/((x1(i)+de)^2+x2(i
)^2)^(3/2); 

 
f(4,i)=-2*x3(i)+x2(i)*(1-

de/((x1(i)+ds)^2+x2(i)^2)^(3/2)+ds/((x1(i)+de)^2+x2(i)^2)^(3/2));  
     
    x1eps(i)=L_eps(1,i); 
    x2eps(i)=L_eps(2,i); 
    x3eps(i)=L_eps(3,i); 
    x4eps(i)=L_eps(4,i); 
 
    f_eps(1,i)=x3eps(i);     % =xdot 
    f_eps(2,i)=x4eps(i);     % =ydot 
 
f_eps(3,i)=2*x4eps(i)+x1eps(i)-

de*(x1eps(i)+ds)/((x1eps(i)+ds)^2+x2eps(i)^2)^(3/2)+ds*(x1eps(i)+de)/((x1e
ps(i)+de)^2+x2eps(i)^2)^(3/2); 

f_eps(4,i)=-2*x3eps(i)+x2eps(i)*(1-
de/((x1eps(i)+ds)^2+x2eps(i)^2)^(3/2)+ds/((x1eps(i)+de)^2+x2eps(i)^2)^(3/2
));   

     
end; 
 
f; 
f_eps; 
AepsV1=A1*eps*V; 
AepsV2=A2*eps*V; 
AepsV3=A3*eps*V; 
AepsV4=A4*eps*V; 
AepsV5=A5*eps*V; 

 54



% f_eps=AepsV so A is correct! 
 
% A Check #2 
% Check A again using eigenvalues 
% A*Vj=lambda*Vj, where lambda=eigenvalue and Vj=eigenvector 
% Check for each eigenvector with cooresponding eigenvalue 
 
% Find the eigenvalues and eigenvectors of A 
[eigvec1,eigval1]=eig(A1); 
[eigvec2,eigval2]=eig(A2); 
[eigvec3,eigval3]=eig(A3); 
[eigvec4,eigval4]=eig(A4); 
[eigvec5,eigval5]=eig(A5); 
 
% for A1 
Aeigvec1=A1*eigvec1;     % each column is A multiplied by each eigenvector 
eigvec_eigval1=eigvec1*eigval1; 
% each column is the eigenvalue multiplied by the cooresponding eigenvector 
 
% for A2 
Aeigvec2=A2*eigvec2;     % each column is A multiplied by each eigenvector 
eigvec_eigval2=eigvec2*eigval2; 
% each column is the eigenvalue multiplied by the cooresponding eigenvector 
 
% for A3 
Aeigvec3=A3*eigvec3;     % each column is A multiplied by each eigenvector 
eigvec_eigval3=eigvec3*eigval3; 
% each column is the eigenvalue multiplied by the cooresponding eigenvector 
 
% for A4 
Aeigvec4=A4*eigvec4;     % each column is A multiplied by each eigenvector 
eigvec_eigval4=eigvec4*eigval4; 
% each column is the eigenvalue multiplied by the cooresponding eigenvector 
 
% for A5 
Aeigvec5=A5*eigvec5;     % each column is A multiplied by each eigenvector 
eigvec_eigval5=eigvec5*eigval5; 
% each column is the eigenvalue multiplied by the cooresponding eigenvector 
 
% Each Aeigvec=eigvec_eigval so the A's are correct! 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Plot curves of constant C and zero velocity to get a Hill curve plot 
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% works for mu=0.5 
[x,y] = meshgrid(-2:.005:2, -2.01:.005:2.01); 
 
% C=2*U, U=potential, V=0; V^2=2*U-C 
C=2*(1-mu)./sqrt((x+ds).^2+y.^2) + 2*mu./sqrt((x+de).^2+y.^2) + (1-mu).*((x-

mu).^2+y.^2) + mu.*((x+1-mu).^2+y.^2); 
 
%C = x.^2 + y.^2 + 2*(1-mu)./sqrt((x-ds).^2+y.^2) + 2*mu./sqrt((x-de).^2+y.^2);     

% bad C 
 
% draw lines at values, V 
L1x=L(1,1);                 
L1y=L(1,2); 
C_L1=2*(1-mu)./sqrt((L1x+ds)^2+L1y^2) + 2*mu/sqrt((L1x+de)^2+L1y^2) + (1-

mu)*((L1x-mu)^2+L1y^2) + mu*((L1x+1-mu)^2+L1y^2); 
L2x=L(2,1);                 
L2y=L(2,2); 
C_L2=2*(1-mu)./sqrt((L2x+ds)^2+L2y^2) + 2*mu/sqrt((L2x+de)^2+L2y^2) + (1-

mu)*((L2x-mu)^2+L2y^2) + mu*((L2x+1-mu)^2+L2y^2); 
L3x=L(3,1);                 
L3y=L(3,2); 
C_L3=2*(1-mu)./sqrt((L3x+ds)^2+L3y^2) + 2*mu/sqrt((L3x+de)^2+L3y^2) + (1-

mu)*((L3x-mu)^2+L3y^2) + mu*((L3x+1-mu)^2+L3y^2); 
 
 
if mu == 3.0034e-6      % mass ratio for Sun-Earth system 
    V=[1 2 C_L2 4 5]; 
    %V=[.9 .95 1 1.05 ]; 
elseif mu == 0.5 
    %V=[1 2 3 C_L2 4 C_L1 5];  
    V=[1 2 3.1 3.71 4.25 5]; 
elseif mu==0.3 
    %V=[1 1.5 1.917 3 4 5]; 
    V=[3.01 3.5 3.76 4.13 5]; 
elseif mu==0.1; 
    V=[3.05 C_L1 C_L2 C_L3 5] 
%    V=[3.05 3.19 3.56 3.69 5]; 
else 
    V=[1 2 3 4 5]; 
    disp('************This mu may not produce the best constant velocity 

curves.************') 
end; 
 
figure(1) 
hold on 
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[curve,h]=contour(x,y,C,V,'b'); 
%h=('C_1') 
%clabel(curve,h) 
%colorbar 
 
xdata=[0.49999999999450756; 0.44469106895456734; 0.3949525693135281; -

0.06461803755165016; -0.2999999999766867]; 
ydata=[0.2999999999689469; 0.09070304003688098; 0.11148357578571826; 

0.12895679351012118; 0.20000000001212503];  
%plot(xdata,ydata,'mx-') 
 
title('Curves of zero velocity (C values)') 
xlabel('x (LU)') 
ylabel('y (LU)') 
axis([-2.2 2.2 -2.2 2.2]) 
axis square 
 
%figure(1) 
%surf(x,y,C) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Plot eigenvalues and eigenvectors for each libration point 
 
if mu == 3.0034e-6      % mass ratio for Sun-Earth system 
    scale1=1; 
    scale2=1; 
    scale3=1; 
    scale4=1; 
elseif mu == 0.5 
    scale1=.3; 
    scale2=.5; 
    scale3=3; 
    scale4=.2; 
elseif mu==0.3 
    scale1=1; 
    scale2=1; 
    scale3=1; 
    scale4=1; 
elseif mu==0.1; 
    scale1=1; 
    scale2=1; 
    scale3=1; 
    scale4=1; 
else 
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    scale1=1; 
    scale2=1; 
    scale3=1; 
    scale4=1; 
    disp('************ERROR: This mu may not produce the best view of the 

eigenvectors.************') 
end; 
 
% eigenvector calculations for L1 
 
x_L1=[L(1,1)+eigvec1(1,1)*scale1               L(1,1)+eigvec1(1,2)*scale3 
    (L(1,1)+eigvec1(1,1)+eigvec1(3,1)*scale2)  

(L(1,1)+eigvec1(1,2)+eigvec1(3,2)*scale4)]; 
y_L1=[L(1,2)+eigvec1(2,1)*scale1               L(1,2)+eigvec1(2,2)*scale3 
    (L(1,2)+eigvec1(2,1)+eigvec1(4,1)*scale2)  

(L(1,2)+eigvec1(2,2)+eigvec1(4,2)*scale4)]; 
 
im=sqrt(-1); 
iter=0; 
for theta=0:.1:2*pi; 
    iter=iter+1; 
    a1(iter)=exp(im*theta); 
    a2(iter)=exp(-im*theta); 
    xyi_L1(iter,:)=a1(iter)*eigvec1(:,3)'+a2(iter)*eigvec1(:,4)'; 
end; 
 
% eigenvector calculations for L2 
 
x_L2=[L(2,1)+eigvec2(1,1)               L(2,1)+eigvec2(1,2) 
    (L(2,1)+eigvec2(1,1)+eigvec2(3,1))  (L(2,1)+eigvec2(1,2)+eigvec2(3,2))]; 
y_L2=[L(2,2)+eigvec2(2,1)               L(2,2)+eigvec2(2,2) 
    (L(2,2)+eigvec2(2,1)+eigvec2(4,1))  (L(2,2)+eigvec2(2,2)+eigvec2(4,2))]; 
 
iter=0; 
for theta=0:.1:2*pi; 
    iter=iter+1; 
    a3(iter)=exp(im*theta); 
    a4(iter)=exp(-im*theta); 
    xyi_L2(iter,:)=a3(iter)*eigvec2(:,3)'+a4(iter)*eigvec2(:,4)'; 
end; 
 
% eigenvector calculations for L3 
 
x_L3=[L(3,1)+eigvec3(1,1)               L(3,1)+eigvec3(1,2) 
    (L(3,1)+eigvec3(1,1)+eigvec3(3,1))  (L(3,1)+eigvec3(1,2)+eigvec3(3,2))]; 
y_L3=[L(3,2)+eigvec3(2,1)               L(3,2)+eigvec3(2,2) 
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    (L(3,2)+eigvec3(2,1)+eigvec3(4,1))  (L(3,2)+eigvec3(2,2)+eigvec3(4,2))]; 
 
iter=0; 
for theta=0:.1:2*pi; 
    iter=iter+1; 
    a5(iter)=exp(im*theta); 
    a6(iter)=exp(-im*theta); 
    xyi_L3(iter,:)=a5(iter)*eigvec3(:,3)'+a6(iter)*eigvec3(:,4)'; 
end; 
 
% eigenvector calculations for L4 
 
iter=0; 
for theta=0:.1:2*pi; 
    iter=iter+1; 
    a7(iter)=exp(im*theta); 
    a8(iter)=exp(-im*theta); 
    xyi_L4a(iter,:)=a7(iter)*eigvec4(:,1)'+a8(iter)*eigvec4(:,2)'; 
    xyi_L4b(iter,:)=a7(iter)*eigvec4(:,3)'+a8(iter)*eigvec4(:,4)';     
end; 
 
% eigenvector calculations for L5b 
 
iter=0; 
for theta=0:.1:2*pi; 
    iter=iter+1; 
    a9(iter)=exp(im*theta); 
    a10(iter)=exp(-im*theta); 
    xyi_L5a(iter,:)=a9(iter)*eigvec5(:,1)'+a10(iter)*eigvec5(:,2)'; 
    xyi_L5b(iter,:)=a9(iter)*eigvec5(:,3)'+a10(iter)*eigvec5(:,4)';     
end; 
 
% Plots for all eigenvectors of all 5 libration points 
 
% plot(x_L1(:,1),y_L1(:,1),'m-',x_L1(2,1),y_L1(2,1),'m.') 
% plot(-x_L1(:,1)+2*L(1,1),-y_L1(:,1),'m-',-x_L1(2,1)+2*L(1,1),-y_L1(2,1),'m.') 
% plot(x_L1(:,2),y_L1(:,2),'m-',x_L1(2,2),y_L1(2,2),'m.') 
% plot(-x_L1(:,2)+2*L(1,1),-y_L1(:,2),'m-',-x_L1(2,2)+2*L(1,1),-y_L1(2,2),'m.') 
 
%plot(xyi_L1(:,1)+L(1,1),xyi_L1(:,2),'y') 
 
% plot(x_L2(:,1),y_L2(:,1),'m-',x_L2(2,1),y_L2(2,1),'m.') 
% plot(-x_L2(:,1)+2*L(2,1),-y_L2(:,1),'m-',-x_L2(2,1)+2*L(2,1),-y_L2(2,1),'m.') 
% plot(x_L2(:,2),y_L2(:,2),'m-',x_L2(2,2),y_L2(2,2),'m.') 
% plot(-x_L2(:,2)+2*L(2,1),-y_L2(:,2),'m-',-x_L2(2,2)+2*L(2,1),-y_L2(2,2),'m.') 
% %plot(xyi_L2(:,1)+L(2,1),xyi_L2(:,2),'y') 
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%  
% plot(x_L3(:,1),y_L3(:,1),'m-',x_L3(2,1),y_L3(2,1),'m.') 
% plot(-x_L3(:,1)+2*L(3,1),-y_L3(:,1),'m-',-x_L3(2,1)+2*L(3,1),-y_L3(2,1),'m.') 
% plot(x_L3(:,2),y_L3(:,2),'m-',x_L3(2,2),y_L3(2,2),'m.') 
% plot(-x_L3(:,2)+2*L(3,1),-y_L3(:,2),'m-',-x_L3(2,2)+2*L(3,1),-y_L3(2,2),'m.') 
% %plot(xyi_L3(:,1)+L(3,1),xyi_L3(:,2),'y') 
 
% plot(xyi_L4a(:,1)+L(4,1),xyi_L4a(:,2)+L(4,2),'c') 
% plot(xyi_L4b(:,1)+L(4,1),xyi_L4b(:,2)+L(4,2),'c') 
%  
% plot(xyi_L5a(:,1)+L(5,1),xyi_L5a(:,2)+L(5,2),'c') 
% plot(xyi_L5b(:,1)+L(5,1),xyi_L5b(:,2)+L(5,2),'c') 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Equations of motion used to propagate forwards in time 
 
% These values are used to create the figure-8 through L1 between m1 and m2. 
if mu == 0.1 
    % for L1--row 2 
    tp1 = 2.3826;     % time to propagate forwards and backwards integration of EOM 

near m1 
    tp2 = 2.853;      % time to propagate forwards and backwards integration of EOM 

near m2 
%    tp1 = 5;         % time to propagate forwards and backwards integration of EOM 

near m1 
%    tp2 = 8;         % time to propagate forwards and backwards integration of EOM 

near m2 
    % for L3--row 1 
%    tp1 = 16.92;      % time to propagate forwards and backwards integration of EOM 

near m1 
%    tp2 = 19.8;       % time to propagate forwards and backwards integration of EOM 

near m2 
    % for L2--row 3 
%    tp1 = 10;         % time to propagate forwards and backwards integration of EOM 

near m1 
%    tp2 = 13;         % time to propagate forwards and backwards integration of EOM 

near m2 
    % for L4--row 4 
%    tp1 = 40;         % time to propagate forwards and backwards integration of EOM 

near m1 
%    tp2 = 40;         % time to propagate forwards and backwards integration of EOM 

near m2 
elseif mu == 0.5 
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    tp1 = 2.331;      % time to propagate forwards and backwards integration of EOM 
near m1 

    tp2 = 2.331;      % time to propagate forwards and backwards integration of EOM 
near m2 

else  
    disp('************ERROR: This mu is not setup to produce the correct 

manifold.************') 
end; 
 
% rv0for=[x y xdot ydot] initial location 
%rv0for=[eigvec1(1,1)*.0001 eigvec1(2,1)*.0001 eigvec1(3,1)*0 eigvec1(4,1)*0]; 
 
rv0for1=[L(2,1)-.0001 L(2,2)+.0001 0 0]; 
%rv0for1=[L(1,1)-.0001 L(1,2)+.0001 0 0]; 
%rv0for1=[L(3,1)-.0001 L(3,2)+.0001 0 0]; 
%rv0for1=[L(4,1)-.0001 L(4,2)+.0001 0 0]; 
 
x=rv0for1(1); 
y=rv0for1(2); 
xdot=rv0for1(3); 
ydot=rv0for1(4); 
C1a=-xdot^2-ydot^2+2*(1-mu)./sqrt((x+ds).^2+y.^2) + 2*mu./sqrt((x+de).^2+y.^2) 

+ (1-mu).*((x-mu).^2+y.^2) + mu.*((x+1-mu).^2+y.^2); 
 
[t_for1,rv1for1]=ode45('forward_rot_eom',[0 tp1],rv0for1,odeset('RelTol',1e-

12,'AbsTol',1e-12),mu); 
[m,n]=size(rv1for1); 
x=rv1for1(m,1); 
y=rv1for1(m,2); 
xdot=rv1for1(m,3); 
ydot=rv1for1(m,4); 
C1b=-xdot^2-ydot^2+2*(1-mu)./sqrt((x+ds).^2+y.^2) + 2*mu./sqrt((x+de).^2+y.^2) 

+ (1-mu).*((x-mu).^2+y.^2) + mu.*((x+1-mu).^2+y.^2); 
 
% p=3000; 
% x=rv1for1(p,1); 
% y=rv1for1(p,2); 
% xdot=rv1for1(p,3); 
% ydot=rv1for1(p,4); 
% C1c=-xdot^2-ydot^2+2*(1-mu)./sqrt((x+ds).^2+y.^2) + 

2*mu./sqrt((x+de).^2+y.^2) + (1-mu).*((x-mu).^2+y.^2) + mu.*((x+1-
mu).^2+y.^2); 

 
rv0for2=[L(2,1)+.0001 L(2,2)-.0001 0 0]; 
%rv0for2=[L(1,1)+.0001 L(1,2)-.0001 0 0]; 
%rv0for2=[L(3,1)+.0001 L(3,2)-.0001 0 0]; 
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%rv0for2=[L(4,1)+.0001 L(4,2)-.0001 0 0]; 
 
x=rv0for2(1); 
y=rv0for2(2); 
xdot=rv0for2(3); 
ydot=rv0for2(4); 
C2a=-xdot^2-ydot^2+2*(1-mu)./sqrt((x+ds).^2+y.^2) + 2*mu./sqrt((x+de).^2+y.^2) 

+ (1-mu).*((x-mu).^2+y.^2) + mu.*((x+1-mu).^2+y.^2); 
 
[t_for2,rv1for2]=ode45('forward_rot_eom',[0 tp2],rv0for2,odeset('RelTol',1e-

12,'AbsTol',1e-12),mu); 
[m,n]=size(rv1for2); 
x=rv1for2(m,1); 
y=rv1for2(m,2); 
xdot=rv1for2(m,3); 
ydot=rv1for2(m,4); 
C2b=-xdot^2-ydot^2+2*(1-mu)./sqrt((x+ds).^2+y.^2) + 2*mu./sqrt((x+de).^2+y.^2) 

+ (1-mu).*((x-mu).^2+y.^2) + mu.*((x+1-mu).^2+y.^2); 
 
plot(rv1for1(:,1),rv1for1(:,2),'k')%,rv0for1(1),rv0for1(2),'*') 
plot(rv1for2(:,1),rv1for2(:,2),'k')%,rv0for2(1),rv0for2(2),'*') 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Equations of motion used to propagate backwards in time 
 
% rv0bac=[x y xdot ydot] initial location 
rv0bac1=[L(2,1)+.0001 L(2,2)+.0001 0 0]; 
%rv0bac1=[L(1,1)+.0001 L(1,2)+.0001 0 0]; 
%rv0bac1=[L(3,1)+.0001 L(3,2)+.0001 0 0]; 
%rv0bac1=[L(4,1)+.0001 L(4,2)+.0001 0 0]; 
 
[t_bac1,rv1bac1]=ode45('backward_rot_eom',[0 tp2],rv0bac1,odeset('RelTol',1e-

12,'AbsTol',1e-12),mu); 
 
rv0bac2=[L(2,1)-.0001 L(2,2)-.0001 0 0]; 
%rv0bac2=[L(1,1)-.0001 L(1,2)-.0001 0 0]; 
%rv0bac2=[L(3,1)-.0001 L(3,2)-.0001 0 0]; 
%rv0bac2=[L(4,1)-.0001 L(4,2)-.0001 0 0]; 
 
[t_bac2,rv1bac2]=ode45('backward_rot_eom',[0 tp1],rv0bac2,odeset('RelTol',1e-

12,'AbsTol',1e-12),mu); 
 
plot(rv1bac1(:,1),rv1bac1(:,2),'r')%,rv0bac1(1,1),rv0bac1(1,2),'*') 
plot(rv1bac2(:,1),rv1bac2(:,2),'r')%,rv0bac2(1,1),rv0bac2(1,2),'*') 
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figure(1) 
if mu == 0.1 
    title('Circular Restricted 3-Body Problem with Hill Curves of Zero Velocity, 

mu=0.1') 
elseif mu == 0.5 
    title('Circular Restricted 3-Body Problem with Hill Curves of Zero Velocity, 

mu=0.5') 
else 
    title('Circular Restricted 3-Body Problem with Hill Curves of Zero Velocity') 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% for mu=0.1; this can be run to compare to results.txt and results2.txt 
% rv0new=[-0.91 0 1 1]; 
% [tnew,rvnew]=ode45('forward_rot_eom',[0 .5],rv0new,odeset('RelTol',1e-

12,'AbsTol',1e-12),mu); 
% plot(rvnew(:,1),rvnew(:,2),'m') 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This case is to verify EOM and the manifold curve through L1 for mu=0.5 
 
if mu == 0.5 
    % Load comparison data from Michel Santos 
    load time.dat 
    load positionx.dat 
    load positiony.dat 
    load speedx.dat 
    load speedy.dat 
 
    p=1; 
    x=rv1for1(p,1); 
    y=rv1for1(p,2); 
    xdot=rv1for1(p,3); 
    ydot=rv1for1(p,4); 
    C_check=-xdot^2-ydot^2+2*(1-mu)./sqrt((x+ds).^2+y.^2) + 

2*mu./sqrt((x+de).^2+y.^2) + (1-mu).*((x-mu).^2+y.^2) + mu.*((x+1-
mu).^2+y.^2); 

 
    % Plot data 
    figure(3) 
    plot(positionx,positiony,'b') 
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end; 
 
% Plotting data from results.txt 
if mu == 0.1 
    load xydata1.dat  
    load xydata2.dat  
    load xydata3.dat  
    load xydata5.dat  
    load xydata6.dat  
    load xydata7.dat  
    load xydata8.dat  
    load xydata9.dat  
    load xydata10.dat  
    load xydata11.dat 
     
    x1=xydata1(1,:); 
    y1=xydata1(2,:); 
    x2=xydata2(1,:); 
    y2=xydata2(2,:); 
    x3=xydata3(1,:); 
    y3=xydata3(2,:); 
    x5=xydata5(1,:); 
    y5=xydata5(2,:); 
    x6=xydata6(1,:); 
    y6=xydata6(2,:); 
    x7=xydata7(1,:); 
    y7=xydata7(2,:); 
    x8=xydata8(1,:); 
    y8=xydata8(2,:); 
    x9=xydata9(1,:); 
    y9=xydata9(2,:); 
    x10=xydata10(1,:); 
    y10=xydata10(2,:); 
    x11=xydata11(1,:); 
    y11=xydata11(2,:); 
     
    L1x=-0.60903511002320;      % x location of L1 
    L1y=0;                      % y location of L1 
    m1x=.1;                     % x location of mass 1 
    m1y=0;                      % y location of mass 1 
    m2x=-.9;                    % x location of mass 2 
    m2y=0;                      % y location of mass 2 
     
    figure(3) 
    hold on 
    plot(x1,y1,'r',x2,y2,'g',x3,y3,'c',x5,y5,'b',x7,y7,'--r',... 
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        x8,y8,'--g',x9,y9,'--c',x10,y10,'--b',x11,y11,'--m',... 
        rv1for1(:,1),rv1for1(:,2),'k',rv1bac2(:,1),rv1bac2(:,2),'k') 
    

legend('.25TU','.5TU','.75TU','1.0TU','1.25TU','1.5TU','1.75TU','2.0TU','2.6T
U','manifold',4) 

    plot(L1x,L1y,'*b',m2x,m2y,'ob') 
    title('Manifold with Circular End Velocity HJB Optimization Results for:') 
    text(-.87,.14,'(x_o,y_o)=(L_1); (x_f,y_f)=(-0.91,0); mu=0.1') 
    xlabel('x (LU)') 
    ylabel('y (LU)') 
    axis([-.97 -.58 -.2 .15]) 
    text(-.89,0,'m_2') 
    text(-.6,0,'L_1') 
 
    figure(4) 
    hold on 
    plot(x6,y6,'r--',... 
        rv1for1(:,1),rv1for1(:,2),'k',rv1bac2(:,1),rv1bac2(:,2),'k')     
    legend('1.0TU unconstrained','manifold',4) 
    plot(L1x,L1y,'*b',m2x,m2y,'ob') 
    title('Manifold with Unconstrained End Velocity HJB Optimization Result for:') 
    text(-.87,.14,'(x_o,y_o)=(L_1); (x_f,y_f)=(-0.91,0); mu=0.1') 
    xlabel('x (LU)') 
    ylabel('y (LU)') 
    axis([-.97 -.58 -.2 .15]) 
    text(-.89,0,'m_2') 
    text(-.6,0,'L_1') 
     
    % Plotting data from results4.txt 
     
    load xy4data1.dat  
    load xy4data2.dat  
    load xy4data3.dat  
    load xy4data4.dat  
    load xy4data5.dat  
    load xy4data6.dat  
    load xy4data7.dat  
    load xy4data8.dat  
     
    x4_1=xy4data1(1,:); 
    y4_1=xy4data1(2,:); 
    x4_2=xy4data2(1,:); 
    y4_2=xy4data2(2,:); 
    x4_3=xy4data3(1,:); 
    y4_3=xy4data3(2,:); 
    x4_4=xy4data4(1,:); 
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    y4_4=xy4data4(2,:); 
    x4_5=xy4data5(1,:); 
    y4_5=xy4data5(2,:); 
    x4_6=xy4data6(1,:); 
    y4_6=xy4data6(2,:); 
    x4_7=xy4data7(1,:); 
    y4_7=xy4data7(2,:); 
    x4_8=xy4data8(1,:); 
    y4_8=xy4data8(2,:); 
     
    figure(5) 
    hold on 
    plot(x4_1,y4_1,'r',x4_2,y4_2,'g',x4_3,y4_3,'c',x4_4,y4_4,'b',x4_5,y4_5,'m',... 
        x4_6,y4_6,'r--',x4_7,y4_7,'g--',x4_8,y4_8,'c--',... 
        rv1for1(:,1),rv1for1(:,2),'k',rv1bac2(:,1),rv1bac2(:,2),'k') 
    legend('.5TU','1.0TU','1.5TU','2.0TU','2.5TU','3.0TU','3.5TU','4.0TU','manifold',4) 
    plot(L1x,L1y,'*b',m2x,m2y,'ob') 
    title('Manifold with Unconstrained End Velocity HJB Optimization Results for:') 
    text(-.87,.14,'(x_o,y_o)=(L_1); (x_f,y_f)=(-0.92,0); mu=0.1') 
    xlabel('x (LU)') 
    ylabel('y (LU)') 
    axis([-.97 -.58 -.2 .15]) 
    text(-.89,0,'m_2') 
    text(-.6,0,'L_1') 
     
    % Plotting data from results3.txt 
     
    load xy3data1.dat  
    load xy3data2.dat  
    load xy3data3.dat  
    load xy3data4.dat  
    load xy3data5.dat  
    load xy3data6.dat  
     
    x3_1=xy3data1(1,:); 
    y3_1=xy3data1(2,:); 
    x3_2=xy3data2(1,:); 
    y3_2=xy3data2(2,:); 
    x3_3=xy3data3(1,:); 
    y3_3=xy3data3(2,:); 
    x3_4=xy3data4(1,:); 
    y3_4=xy3data4(2,:); 
    x3_5=xy3data5(1,:); 
    y3_5=xy3data5(2,:); 
    x3_6=xy3data6(1,:); 
    y3_6=xy3data6(2,:); 
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    figure(6) 
    hold on 
    plot(x3_1,y3_1,'r',x3_2,y3_2,'g',x3_3,y3_3,'c',x3_4,y3_4,'b',x3_5,y3_5,'m',... 
        rv1for1(:,1),rv1for1(:,2),'k',rv1bac2(:,1),rv1bac2(:,2),'k') 
    legend('.5TU','1.0TU','1.5TU','2.0TU','2.5TU','manifold',4) 
    plot(L1x,L1y,'*b',m2x,m2y,'ob') 
    title('Manifold with Unconstrained End Velocity HJB Optimization Results for:') 
    text(-.87,.14,'(x_o,y_o)=(L_1); (x_f,y_f)=(-0.95,0); mu=0.1') 
    xlabel('x (LU)') 
    ylabel('y (LU)') 
    axis([-.97 -.58 -.2 .15]) 
    text(-.89,0,'m_2') 
    text(-.6,0,'L_1') 
     
    figure(7) 
    hold on 
    plot(x3_5,y3_5,'b',x3_6,y3_6,'m--',... 
        rv1for1(:,1),rv1for1(:,2),'k',rv1bac2(:,1),rv1bac2(:,2),'k') 
    legend('2.5TU normal guess','2.5TU looped guess','manifold',4) 
    plot(L1x,L1y,'*b',m2x,m2y,'ob') 
    title('Manifold with Unconstrained End Velocity HJB Optimization Results for:') 
    text(-.87,.14,'(x_o,y_o)=(L_1); (x_f,y_f)=(-0.95,0); mu=0.1') 
    xlabel('x (LU)') 
    ylabel('y (LU)') 
    axis([-.97 -.58 -.2 .15]) 
    text(-.89,0,'m_2') 
    text(-.6,0,'L_1') 
     
end; 
 
 
7.2 Appendix B 

function Xdot=forward_rot_eom(t,x,flag,mu) 
 
% function Xdot=forward_rot_eom(t,x,flag,input) 
% 
% 2-Dimensional Nonlinear State Equations for the X-Y Plane 
% Simple 3-body rotating system 
% EOM with 5 libration points 
% This integration goes forward in time. 
% 
% t=integration initial and final times 
% x=[x y xdot ydot]=[x1 x2 x3 x4] IC's 
% mu=mass ratio 
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% 
% written by Raquel Jarabek 
% date: 7/22/03 
 
de=1-mu;        % distance from CM (origin) to smaller body (Earth) 
ds=-mu;         % distance from CM (origin) to larger body (Sun) 
 
Xdot=[x(3) 
    x(4) 
    2*x(4)+x(1)-

de*(x(1)+ds)/((x(1)+ds)^2+x(2)^2)^(3/2)+ds*(x(1)+de)/((x(1)+de)^2+x(2)^2)
^(3/2) 

    -2*x(3)+x(2)*(1-de/((x(1)+ds)^2+x(2)^2)^(3/2)+ds/((x(1)+de)^2+x(2)^2)^(3/2))]; 
 
 
6.3 Appendix C 

function Xdot=backward_rot_eom(t,x,flag,mu) 
 
% function Xdot=backward_rot_eom(t,x,flag,input) 
% 
% 2-Dimensional Nonlinear State Equations for the X-Y Plane 
% Simple 3-body rotating system 
% EOM with 5 libration points 
% This integrations goes backwards in time and is done 
% by substituting -x2 for x2. 
% 
% t=integration initial and final times 
% x=[x y xdot ydot]=[x1 x2 x3 x4] IC's 
% mu=mass ratio 
% 
% written by Raquel Jarabek 
% date: 1/29/04 
 
de=1-mu;        % distance from CM (origin) to Earth 
ds=-mu;         % distance from CM (origin) to Sun 
 
Xdot=[x(3) 
    x(4) 
    -2*x(4)+x(1)-

de*(x(1)+ds)/((x(1)+ds)^2+x(2)^2)^(3/2)+ds*(x(1)+de)/((x(1)+de)^2+x(2)^2)
^(3/2) 

    2*x(3)+x(2)*(1-de/((x(1)+ds)^2+x(2)^2)^(3/2)+ds/((x(1)+de)^2+x(2)^2)^(3/2))]; 
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6.4 Appendix D 

function xm=invelm(x) 
% function xm=invelm(x) 
% 
% Calculates the element by element inverse of a matrix. 
% 
% B. Keller, 1/8/95 
 
if length(x)==1, xm=1/x; 
else, [i,j]=size(x); xm=ones(i,j)./x; end 
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