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Typically, pure substances may be found with only one gaseous or liquid state, while their

solid state may exist in various polymorphic states. The existence of two distinct liquid forms in

a single component substance is more unusual since liquids lack the long-range order common

to crystals. Yet, the existence of multiple amorphous states in a single component substance, a

phenomenon known as “liquid polyamorphism,” has been observed or predicted in a wide variety

of substances. In contrast to standard phase transitions, it has been suggested that polyamor-

phic liquid-liquid transitions are caused by the interconversion of molecular or supramolecular

states. To investigate this phenomenon, a nonequilibrium thermodynamic model was developed

to quantitatively describe the interplay between the dynamics of molecular interconversion and

fluid-phase separation. The theory has been compared to a variety of interconverting systems,



and has demonstrated a quantitative agreement with the results of Monte Carlo and Molecular

Dynamics simulations.

In this thesis, it is shown that there are two major effects of molecular interconversion on

the thermodynamics and the kinetics of fluid-phase separation: if the system evolves to an equi-

librium state, then the growth of one of the alternative phases may result in the destruction of

phase coexistence - a phenomenon referred to as “phase amplification.” It is demonstrated that

depending on the experimental or simulation conditions, either phase separation or phase am-

plification would be observed. Previous studies of polyamorphic substances report conflicting

observations of phase formation, which may be explained by the possibility of phase amplifica-

tion occurring. Alternatively, if the system evolves to a nonequilibrium steady state, the phase

domain growth could be restricted at a mesoscopic length scale. This phenomenon (referred to as

“microphase separation”) is one of the simplest examples of steady-state dissipative structures,

and may be applicable to active matter systems, hydrodynamic instabilities, and bifurcations in

chemical reactions, in which the nonequilibrium conditions could be imposed by an external flux

of matter or energy.
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Preface

This thesis consists of results from my original research performed in collaboration with

my co-authors. The contents of this thesis have been adopted with permission from our publica-

tions, of which I am either the first or second author. The investigation of the fluid-fluid phase

transition in high-pressure hydrogen (Section 2.2), high-density sulfur (Section 2.3), and fluids

exhibiting water-like anomalies (Section 2.4) was conducted in Refs. [1–3], respectively. The

phenomenological theory that describes the dynamics of phase transitions affected by molec-

ular interconversion (Chapter 3) was developed in Refs. [4, 5]. This theory was verified via

Monte Carlo (MC) and molecular dynamics (MD) simulations of three physically distinct micro-

scopic models of mixtures with species interconversion (Chapter 4), which were investigated in

Refs. [6–8].

Throughout my Ph.D. project, I developed the theory, participated in the computer simula-

tions of the microscopic models, performed the data analysis, made the figures (except Figs. 4.10-

4.13, which were created by Betül Uralcan), and was a major contributor to the text of the pub-

lished manuscripts. I would like to ascribe appropriate credit to my research advisor, who con-

ceived the project and supervised the research, and to our collaborators, whose contribution was

crucial for the success of the project.

The two-state thermodynamic approach (Section 2.1) was originally developed by my advi-

sor, Mikhail Anisimov, and his co-workers [9]. The equation-of-state of high-pressure hydrogen

(Section 2.2) was developed in collaboration with Nathaniel Fried [1]. The maximum-valence
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model (Section 2.3), the HL model (Section 4.1), and the HCS model (Section 4.3) were de-

veloped and simulated by Sergey Buldyrev and Nikolay Shumovskyi [2, 5, 6, 8]. The blinking-

checkers lattice model (Section 2.4) was originally developed by Frédéric Caupin and Mikhail

Anisimov [10]; I described the interfacial properties of this model [3]. My major contribution to

the research project was the generalization of the Cahn-Hilliard theory of spinodal decomposition

and the development of the generalized Cook-Binder theory of the time-evolution of the structure

factor in fluids with interconversion of species (Chapter 3) [4,5,8]. Numerical calculations of the

time evolution of the order parameter and structure factor (Section 3.3) were performed in col-

laboration with Salim Asadov, Nikolay Shumovskyi, and Sergey Buldyrev [5]. The simulations

of the CM model (Section 4.2) were performed by Betül Uralcan, Frank H. Stillinger, and Pablo

Debenedetti [7, 8].

Thomas J. Longo

April 15, 2023
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my fiancé. Thank you all for your endless support and encouragements throughout my studies.

v



Table of Contents

Preface ii

Acknowledgements iv

Table of Contents vi

List of Tables viii

List of Figures ix

List of Abbreviations xxiv

Chapter 1: Introduction 1

Chapter 2: Two-State Thermodynamics of Fluid Polyamorphism 8
2.1 Interconversion of Two States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Fluid-Fluid Phase Transition in High-Pressure Hydrogen . . . . . . . . . . . . . 13

2.2.1 Phase Behavior of Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Phase Separation Coupled with Dimerization . . . . . . . . . . . . . . . 15

2.3 Liquid-Liquid Phase Transition in High-Density Sulfur . . . . . . . . . . . . . . 23
2.3.1 Maximum-Valence Model . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Phase Separation Coupled with Polymerization . . . . . . . . . . . . . . 28

2.4 Liquid-Liquid Phase Transition in Fluids Exhibiting Water-Like Anomalies . . . 32
2.4.1 Blinking-Checkers Lattice Model . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Virtual Critical Line in Interconverting Mixtures . . . . . . . . . . . . . . 37
2.4.3 Anomalies of Interfacial Properties . . . . . . . . . . . . . . . . . . . . . 42

2.5 Conclusion of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 3: Phase Formation Affected by Species Interconversion 63
3.1 Generalizing Cahn-Hilliard Theory . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 Conserved and Nonconserved Order-Parameter Dynamics . . . . . . . . 64
3.1.2 Phase Amplification vs. Microphase Separation . . . . . . . . . . . . . . 73

3.2 Temporal Evolution of the Structure Factor . . . . . . . . . . . . . . . . . . . . . 78
3.2.1 Generalized Cook-Binder Theory . . . . . . . . . . . . . . . . . . . . . 78
3.2.2 Characteristic Length Scales . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Temporal Evolution of the Order Parameter . . . . . . . . . . . . . . . . . . . . 85
3.4 Effects of Heat and Volume Change of Interconversion . . . . . . . . . . . . . . 89

vi



3.5 Effects of Critical Order-Parameter Fluctuations . . . . . . . . . . . . . . . . . . 93
3.6 Conclusion of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 4: Application of Theory to Microscopic Models 99
4.1 Hybrid Ising / Binary Lattice (HL Model) . . . . . . . . . . . . . . . . . . . . . 99

4.1.1 HL Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.2 Phase Amplification in the HL Model . . . . . . . . . . . . . . . . . . . 103
4.1.3 Nonequilibrium Spatially-Modulated Stripes . . . . . . . . . . . . . . . . 115

4.2 Chiral-Mixture of Interconverting Enantiomers (CM Model) . . . . . . . . . . . 122
4.2.1 CM Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2.2 Phase Amplification in the CM Model . . . . . . . . . . . . . . . . . . . 127
4.2.3 Formation of Dissipative Structures . . . . . . . . . . . . . . . . . . . . 130
4.2.4 Characteristic Time Scales in the CM Model . . . . . . . . . . . . . . . . 137
4.2.5 Finite-Size Restrictions in the CM Model . . . . . . . . . . . . . . . . . 139

4.3 Coarse-Grained Hard-Core-Shoulder Model (HCS Model) . . . . . . . . . . . . 144
4.3.1 HCS Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3.2 Nonequilibrium Bicontinuous Microemulsions . . . . . . . . . . . . . . 147

4.4 Sources of Microphase Separation . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.4.1 Comparison of the Microscopic Models . . . . . . . . . . . . . . . . . . 150
4.4.2 Onset and Termination of Microphase Separation . . . . . . . . . . . . . 152

4.5 Conclusion of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Chapter 5: Overall Conclusion 158

Appendix A: Comparison of Exact Solution with Phenomenological Ansatzes 160

Bibliography 165

vii



List of Tables

2.1 The suggested locations of the FFCP and the SFF-TP in hydrogen. . . . . . . . . 15
2.2 Liquid-vapor critical points of interconverting systems, referred to as “actual”

critical points, for the seven systems considered in this section (with εAA = 1.6,
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2.16 The liquid-vapor interfacial tension as a function of temperature (a), and also pre-
sented in reduced units (b), for the system with εBA = 1.00 (blue), εBA = 1.04
(orange), εBA = 1.08 (green), εBA = 1.12 (red), εBA = 1.16 (purple), εBA = 1.20
(pink), and εBA = 1.24 (gray). In (b), the critical temperature is given by the “vir-
tual” critical point (for the non-reactive binary mixture) for each concentration
along the thermodynamic path selected by the interconversion reaction. The blue
arrows indicate the direction of warming. (c) The reduced interfacial thickness,
ζ̂ = ζ/`, and (d) the reduced relative distance between the concentration and
density profiles, δ̂ = δ/`. In (a-d), the dotted lines indicate the discontinuity of
the interfacial properties for the system with εBA = 1.00 at the triple point, shown
by the vertical bars in (c,d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.17 (a) The behavior of the liquid-vapor interfacial tension follows the power law, σ =
σ0|∆T̂ |3/2, where the amplitude was found to be σ0 = 0.71, asymptotically close
to the actual liquid-vapor critical temperature (see Table 2.2). (b) The behavior
of the reduced liquid-vapor interfacial thickness, ζ̂ = ζ/`, follows the power law,
ζ̂ = ζ̂0|∆T̂ |−0.38, where the amplitude was found to be ζ̂0 = 1.50 asymptotically
close to the actual critical point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.18 Asymptotic behavior of the liquid vapor coexistence for systems with εAA = 1.6,
εBB = 2.0, ê = 3, ŝ = 4, and with various values of εBA: εBA = 1.00 (blue), εBA =
1.04 (orange), εBA = 1.08 (green), εBA = 1.12 (red), εBA = 1.16 (purple), εBA =
1.20 (pink), and εBA = 1.24 (gray). (a) The temperature-density LV coexistence
follows the meanfield power law, ∆T̂ ∼ |∆ρ̂|2, where ∆T̂act = 1 − T/T act

c

and T act
c is the actual critical temperature selected by the interconverting path.

Likewise, ∆ρ̂act = 1 − ρ/ρact
c , where ρact

c is the actual critical density. (b) The
temperature-average concentration LV coexistence follows the meanfield power
law, ∆T̂ ∼ |∆x̄act|2, where ∆x̄act = 1 − x̄/xact

c , in which x̄ = (xL + xV)/2
and xact

c is the actual critical concentration. (c,d) Illustrate, as an example, the
asymptotic behavior of the system with εBA = 1.08, in which (d) shows the
asymptotic behavior of each branch of the concentration coexistence. . . . . . . . 53

2.19 Comparison between the liquid-liquid (dashed curves) and liquid-vapor (solid
curves) interfacial tensions as a function of temperature for the system with εBA =
1.00 (blue), εBA = 1.04 (orange), εBA = 1.08 (green), εBA = 1.12 (red). The
dotted blue line indicates the discontinuity in the liquid-vapor interfacial tension. 56

2.20 Liquid-liquid interfacial properties of the systems exhibiting liquid polyamor-
phism with εAA = 1.6, εBB = 2.0, ê = 3, ŝ = 4, and with various values of
εBA: εBA = 1.00 (blue), εBA = 1.04 (orange), εBA = 1.08 (green), εBA = 1.12
(red). (a) the reduced thickness, ζ̂ = ζ/` of the liquid-liquid interface, and (b)
the reduced shift, δ̂ = δ/`, between the density and concentration liquid-liquid
profiles. In (a,b) the thickness and shift reach a finite value (marked with a blue
circle) at the triple point temperature. . . . . . . . . . . . . . . . . . . . . . . . . 56
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2.21 (a) The behavior of the liquid-liquid interfacial tension follows the meanfield
power law, σ = σ0|∆T̂ |3/2, (dashed lines) asymptotically close to the actual
liquid-liquid critical temperature (see Table 2.3). (b) The behavior of the reduced
liquid-liquid interfacial thickness, ζ̂ = ζ/`, follows the meanfield power law, ζ̂ =
ζ̂0|∆T̂ |−1/2, (dashed lines). In (a,b) the systems exhibiting liquid polyamorphism
and a liquid-liquid critical point are shown: εBA = 1.04 (orange), εBA = 1.08
(green), εBA = 1.12 (red), and the amplitudes of the asymptotic meanfield power
laws are provided in Table 2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.22 Normalized density and concentration liquid-vapor profiles as a function of the
coordinate perpendicular to the planar interface, ẑ = z/`, given by Eqs. (2.54)
and (2.55) for the system with εAA = 1.6, εBB = 2.0, εBA = 1.08, ê = 3, and
ŝ = 4 at the two temperatures (a,b) that correspond to the two extrema of the
liquid-vapor interfacial tension (shown in Fig. 2.16). Normalized (c) density and
(d) concentration profiles for three-phase coexistence at the triple point, TTP =
0.6843, for the system with εAA = 1.6, εBB = 2.0, and εBA = 1.00. . . . . . . . . 59

2.23 Interfacial profiles of species B, ρB = ρx, in the blinking-checkers model demon-
strate surface enrichment near the TP temperature, TTP = 0.68429. (a) Surface
enrichment of species B for the system with εBA = 1.00. The colored curves indi-
cate temperatures from T = 0.68989 to T = TTP in steps of ∆T̂ = −0.0008 in or-
der of purple to red. The black curves are T = 0.68389 (dashed) and T = 0.68309
(solid). (b) Surface enrichment of species B for the system with εBA = 1.04. The
curves are T = 0.6882 to T = 0.6826 in steps of ∆T = −0.0008 (blue to pink).
In (a,b), the black arrows indicate the direction of decreasing temperature. Note
that while the transition of a surface enriched profile (T > TTP) to a smooth pro-
file (T < TTP) is discontinuous in the system with εBA = 1.00, it is continuous in
the system with εBA = 1.04. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 The characteristic growth rate, Eq. (3.14), affected by the competition between
diffusion, natural interconversion, and forced interconversion at ∆T̂ = −0.5.
Complete phase separation (as predicted by Cahn-Hilliard’s theory for L = 0
and K = 0) is illustrated by the red curve for M = 100. Phase amplification is
illustrated by the purple curves for restricted (M = 100 - solid) and unrestricted
(M = 10 - dashed) cases, in which L = 10 and K = 2. Microphase separation
for M = 100, L = 1, and K = 2 is illustrated by the solid green curve. When
the growth rate is always negative, as illustrated by the green dashed curve (for
M = 1, L = 1, and K = 2), there is no phase domain growth corresponding
to a homogeneous steady state. The green circles indicate the three characteristic
wavenumbers of the amplification factor: the maximum, qm, the lower cut-off,
q−, and the upper cut-off, q+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xiv



3.2 Steady-state phase domain morphology for different magnitudes of forced inter-
conversion (after ∼ 105 time steps) numerically computed from the time evolu-
tion of the order parameter, Eq. (3.7), with M = 1, L = 1/127, ∆T̂ = −0.1,
` = 64, σi = 0.1, and η = 10−5, as discussed in Section 3.3. Morphologies
are shown for the middle slice of the three-dimensional system at (a) K = 0, (b)
K = 5× 10−4, (c) K = 15× 10−4, and (d) K = 25× 10−4. The red regions
correspond to where the value of the normalized order parameter is ϕ/ϕmax = 1,
the purple regions correspond to where the value of the normalized order param-
eter is ϕ/ϕmax = −1, and the other colors depict the interface between these two
regions. The image in (a) depicts a metastable structure toward phase amplifica-
tion [6], while the images in (b-d) are modulated steady-state structures with a
characterize size, 1/q−. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 a) The amplification factor, ω(q), given by Eq. (3.15) with κ = 1, ∆T̂ = −0.1,
M = 1, L = 1/127, and K = 1.3× 10−3. b) The time evolution of the structure
factor, given by Eq. (3.23) in the presence of natural and forced interconversion.
The black dotted line depicts the evolution of the maximum of the structure factor.
Due to the external source of forced interconversion, the maximum of the struc-
ture factor is interrupted at the wavenumber q−, while for complete phase separa-
tion and phase amplification, the maximum of the structure factor will evolve to
q = 0 for an infinite-sized system. . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Temporal evolution of the structure factor: a) for a system undergoing diffusion
dynamics (M = 1) toward an equilibrium state in the absence of natural intercon-
version (L = 0) and forced interconversion (K = 0); b) for a system undergoing
a hybrid of diffusion (M = 1) and natural interconversion (L = 0.01) dynam-
ics in the presence of forced interconversion (K = 1.5× 10−3) toward a steady
state. The structure factor, given by Eq. (3.23), exhibits a crossover from spinodal
decomposition to the nucleation regime. The dashed-black curves indicate the de-
velopment of the maximum of the structure factor. The characteristic crossover
time is defined in Eq. (3.24) and adopted as τ = 100. In (a) the evolution of the
maximum of the structure factor moves to q = 0 for infinite-size system and satu-
rates at Sm(q = 0, t→∞) = 1/(2ξ2) = 5 for ∆T̂ = −0.1. In contrast, in (b) the
evolution of the maximum is interrupted at a characteristic cut-off wavenumber
predicted by the characteristic phase domain growth rate, qs

m(t→∞) ∝ q−, and
it saturates at Sm(q−, t→∞) = 417. . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 The time evolution of the wavenumber corresponding to the maximum of the
structure factor, given by Eq. (3.23), during the crossover from the early stage
of spinodal decomposition, q ∝ t1/4 (green - dashed), to the nucleation regime,
q ∝ t1/3 (orange - dashed) for a system undergoing diffusion dynamics in the
absence of natural interconversion (L = 0) and forced interconversion (K = 0)
under conditions: M = 1, ∆T̂ = −0.1, τ = 100. . . . . . . . . . . . . . . . . . 83
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3.6 The effect of increasing interconversion force on the phase domain growth rate
for M = 100, L = 1, and ∆T̂ = −0.5. The red dashed line corresponds to the
inverse maximum size of the phase domain on the length scale of the simulation
box, q∗. When q− > q∗ microphase domains will form. Alternatively, when
q− < q∗, the size of the simulation box will cut-off the growing phase domains.
The conditions where ω(q) < 0 (dashed-dot portions of the curves) corresponds
to non-growing wavenumbers. As the rate of forced interconversion increases,
the growth rate is shifted down from the onset of phase separation where q− = q∗

(red, K = 1), to the microphase region (green, K = 3.75), to the termination
point of domain growth (blue, K = 6.5) where q− = qm = q+ = q∗∗, and to the
no growth regime for any wavenumber (orange, K = 9.25). . . . . . . . . . . . 84

3.7 Time evolution of the structure factor computed from the Fast Fourier trans-
form (FFT) of Eq. (3.7) for M = 1, L = 1/127, ∆T̂ = −0.1, ` = 64,
σi = 0.1, η = 10−5 depicted at times t = 6× 103 (green), t = 1.2× 104 (blue),
t = 2.4× 104 (orange), t = 5× 104 (red), t = 1× 105 (pink), and t = 2× 105

(black). The open circles in (a-d) depict the computed structure factors for the
four selected magnitudes of forced interconversion averaged over N = 100 real-
izations with 95% confidence interval error bars, while the solid lines illustrate the
behavior of the structure factors assuming a Gaussian distribution. The wavenum-
ber is normalized by the size of the system, such that q = 1 corresponds to phase
domains with a characteristic size of half the simulation box, `/2. . . . . . . . . . 86

3.8 The temporal evolution of the symmetry of phase separation. a) The time evolu-
tion of the average order parameter, calculated by first averaging over all space
and second by averaging the absolute value over N = 100 realizations, for
M = 1, L = 1/127, ∆T = −0.1, σi = 0.1, η = 1.0× 10−5, and various mag-
nitudes of forced interconversion, K. b) The time evolution of the N -averaged
standard deviation of the averaged order parameter, calculated by first determin-
ing the standard deviation of the spatially averaged order parameter and second
by averaging over N = 100 realizations. This method of averaging highlights the
behavioral deviation from an equal concentration of species A and B, ϕ = 0. . . . 88

3.9 Three hypothesized binary mixture systems exhibiting interconversion of species
and liquid-liquid phase separation quenched from high temperature to low tem-
perature (without volume change). The black dashed curve corresponds to the
liquid-liquid phase coexistence in this system without interconversion and with
interaction energy, ε = 2. The open circle indicates the liquid-liquid critical point
(LLCP), while the crosses show the locations of T = TBA, the points correspond-
ing to 50:50 interconversion for different energy change of reaction. For a system
with TBA = 1.05Tc (green), no liquid-liquid phase transition will be observed
upon quenching. For a system with TBA = Tc (red), the quenching process passes
through the critical point. For a system with TBA = 0.95Tc (purple), there are two
equilibrium solutions for the fraction of interconversion, such that upon quench-
ing to the cross, phase amplification occurs with equal probability of forming an
A-rich or B-rich phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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3.10 The phase diagram (suggested in ref. [13]) for supercooled water that exhibits
a liquid-liquid phase transition (global phase diagram illustrated in Fig. 1.1). A
hypothesized quenching process by compression for supercooled water is shown
from the one phase region at P1 = 20 MPa (orange) to the two phase region at
P2 = 120 MPa (green) along the Widom line (dashed black) which corresponds
to a line of constant fraction of interconversion, lnK = 0. Two additional isobars
are shown for reference at P = 40 MPa (blue) and P = 80 MPa (purple) along
with the liquid-liquid coexistence (black). Phase amplification would only be
possible in a system where the number of molecules changes to compensate the
volume change of the interconversion reaction. . . . . . . . . . . . . . . . . . . . 92

3.11 a) Characteristic phase domain growth rate in the vicinity of the critical point
(∆T̂ = −0.001) forM0 = 1, L = 0.002, andK = 2.25×10−5 calculated through
Eq. (3.13), red curve, with use of the diverging molecular mobility, Eq. (3.27),
and scaling inverse susceptibility in the first order epsilon expansion, χ̂−1

q=0 ∼
|∆T̂ |−γ with γ = 1 + ε/6 (ε = 4 − d). The meanfield approximation is shown
by the green curve, Eq. (3.13). b) The onset, red solid curves, Eq. (3.28), and
termination, red dashed curves, Eq. (3.29), of microphase separation affected by
critical fluctuations for M = 1, L = 0.01, ` = 100, ν = 1/2 + ε/12. The
meanfield approximation is shown by the green curves. . . . . . . . . . . . . . . 96

4.1 The spontaneous equilibrium order parameter (ϕ = ϕ0) in the lattice gas / lattice
binary mixture along the liquid-vapor phase coexistence (red domain). One of
the two alternative magnetizations (ϕ0 > 0 and ϕ0 < 0) in the Ising ferromagnet
in zero field are shown in the red domain with blue arrows. The solid curve is the
crossover from meanfield behavior (dashed) to the asymptotic scaling power law
ϕ ∝ ∆T β with β = 0.326 [52, 53], while the crosses correspond to simulation
results of the HL model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Phase amplification in the HL model for systems with T = 4.0, ` = 100, and
interconversion probabilities pr: (a) 100%, (b) 10%, (c) 10−4%, and (d) 10−7%.
The inset in (d) shows 10−7% interconversion probability at a shorter time scale.
Each curve represents one of the 100 different realizations of the MC simulations,
while the solid zero line depicts the behavior of a system with 0% interconversion.
The simulation snapshots in (a,d) correspond to the end of the simulation time. . . 104

4.3 The evolution of the order parameter during phase amplification. (a) The RMS
of the distribution of the growth rates for different probabilities captured at the
same time, t = 300. The solid curve is the crossover between σ ∝ √pr and
σ ∝ pr, approximated as σ = a

√
pr(1 + bpr)/(1 +

√
pr). (b-d) The growth of the

order parameter for different (b) probabilities at ∆T̂ = −0.11 and ` = 100, (c)
system sizes at pr = 1.0 and ∆T̂ = −0.11, and (d) distances to the critical point
at pr = 1.0 and ` = 100; The inset shows the power law for the initial growth of
the reduced order parameter, ϕ/ϕ0 ∝ t3/4. . . . . . . . . . . . . . . . . . . . . . 106
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4.4 Scaling properties of the growth of the reduced order parameter, ϕ̂ = 〈ϕ〉/ϕ0. (a)
The order parameter growth with time rescaled by system size. The size depen-
dence of the rescaling parameter, τ(`), is shown in the inset; in the log-log scale
with a slope of 1. The colors are the same as in Fig. 4.3c. (b) The order pa-
rameter growth with time rescaled by probability; the rescaling parameter τ0(pr),
inversely proportional to the probability, is shown in the inset. The colors are the
same as in Fig. 4.3b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Topological characteristics of the time dependence of phase amplification. (a) For
spherical domains, the reduced deviation from the equilibrium order parameter,
∆ϕ̂ = 1 − ϕ/ϕ0 scales as t3/2. This is shown for temperatures, ∆T̂ , as: −0.11
(cyan), −0.025 (purple), −0.014 (orange), and −0.009 (brown). The inset shows
the effect for a cylindrical domain at ∆T̂ = −0.11. (b) A zero curvature Schwarz-
P interface is initially formed by simulating a system with Kawasaki dynamics
(pr = 0) for a long time. At t − t0 = 0, the system obtains Glauber dynamics
(pr = 1) and the collapse of one of the phases is shown. Amplification transitions
from random-walk behavior,

√
t, at short times (see inset) to exponential behavior

before saturation shown by the straight line. . . . . . . . . . . . . . . . . . . . . 110
4.6 The time evolution of the concentration for the HL model with pure Ising dy-

namics (pr = 1), given by Eq. (4.5) with the time-dependent susceptibility in the
form of Eq. (4.4). For ∆T̂ = −0.32 (green), τ = 0.2, ϕ∞ = 0.91, a = 1.9 and
b = 0.3, and for ∆T̂ = −0.11 (blue) τ = 0.2, ϕ∞ = 0.73, a = 4.6, and b = 0.4.
The open circles are the computational data presented in Fig. 4.3d. . . . . . . . . 113

4.7 Effect of forced interconversion on domain size, R, normalized by the system
size, `, in the HL model. (a) The time dependence of the domain growth for en-
ergy source E = 5 and interconversion probability pr = 1/128 at T/Tc = 0.24
(green), T/Tc = 0.27 (blue), and T/Tc = 0.40 (red), where Tc = 4.511 [54]. The
horizontal dashed line indicates the size of the simulation box, R = `. (b) Tem-
perature dependence of the steady-state domain size for E = 5 and pr = 1/128.
The vertical dashed line indicates the onset temperature, T ∗/Tc. (c) Depen-
dence of the steady-state domain size on the energy of forced interconversion
for pr = 1/256 and T/Tc = 0.31. The vertical dashed line denotes the onset
source energy, E∗. In (a-c), the system is simulated on a 3-dimensional lattice of
size ` = 100. The open circles are the results of MC simulations, the images are
snapshots of the system for selected conditions, and the curves are the theoretical
predictions. In (a-c), black denotes up-spins and white denotes down-spins. . . . 116

4.8 Domain size as a function of temperature in the HL model. (a) pr = 1/32 and (b)
pr = 1/256, for a system of size ` = 100 and energies: E = 1 (orange), E = 2
(green), E = 3 (red), E = 4 (purple), E = 5 (brown), E = 6 (pink), E = 7
(gray), E = 8 (yellow), E = 9 (cyan), and E = 10 (dark blue). The solid curves
are the theoretical predictions of q−, the inverse steady-state domain size, where
the fit parameters are provided in Table 4.1. . . . . . . . . . . . . . . . . . . . . 118
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4.9 a) Steady-state structure factors computed for the HL (open circles) and the pre-
diction given by Eq. (4.7) (solid lines) for selected external energy sources (E)
at ∆T̂ = −0.4, M = 1, L = 1/127, ` = 100, and averaged over N = 60 re-
alizations with 95% confidence interval error bars. The insets show steady-state
(t ∼ 3× 105) domain morphologies observed in the HL model for the selected
energies. b) The dependence of forced interconversion on the wavenumber cor-
responding to the maximum of the structure factor, qs

m, in the steady-state limit.
The open circles are numerical computations of structure factors determined from
FFTs of the time evolution of the order parameter, given by Eq. (3.7), in the
steady-state limit (t ∼ 105) for M = 1, L = 1/127, σi = 0.1, and η = 10−5,
averaged over N = 100 realizations. The triangles correspond to the predic-
tions of K determined from fits of Eq. (4.7) to the structure factor for the HL
model, like those presented in (a). The curves illustrate the theoretical predic-
tion qm(t→∞) ∝ q−, given by the full expression for q−, found from evaluating
ω(q, 0) = 0 using Eq. (3.15). The colors correspond to temperatures: ∆T̂ = −0.1
(blue), ∆T̂ = −0.2 (green), ∆T̂ = −0.3 (red), and ∆T̂ = −0.4 (purple). The
inset shows the relationship between K and E. . . . . . . . . . . . . . . . . . . . 121

4.10 Molecular representation and geometrical features of tetramer molecules. L-
enantiomers (green), D-enantiomers (blue) and achiral transition states (cis- or
trans-, red) are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.11 Time dependence of the instantaneous dihedral angle of a typical tetramer in a
racemic mixture at P = 0.1 for the conservative formulation of the CM model, at
several values of T and kd. a) T = 0.6, b) T = 1.7, and c) T = 2.3, with kd = 5
(green), kd = 9.86 (orange) and kd = 19.86 (purple). d) Behavior of the dihedral
angle at a very low value of the dihedral constant, kd = 0.001. . . . . . . . . . . 128

4.12 The phase diagram showing phase amplification in the CM model with conser-
vative intermolecular forces, heterochiral bias parameter λ = 0.5, and rigidity
spring constant kd = 0.001. The circles on the solid curve are the computational
data for the critical temperature of equilibrium phase separation and the curve
is the fit of Eq. (4.12). The snapshots depict the equilibrium states for the pres-
sures P = 0.1, P = 1, P = 5, and P = 10 below the critical temperature and
at P = 1 above the critical temperature. The triangles show the prediction of
the critical temperature from the extrapolation of the CM model with dissipative
intermolecular forces to the limit kd →∞. . . . . . . . . . . . . . . . . . . . . . 129

4.13 The change of compositional heterogeneity with chiral interconversion kinetics
at T = 1.7 and P = 0.1 in the dissipative-force formulation. a) Steady-state
snapshots of chiral liquid systems at various dihedral force constants (kd). b) The
steady-state domain size as a function of interconversion rate, 1/τINC. The solid
line is the approximation given by 1/τINC = a1/R

2
∞ + a2/R

4
∞, which follows

from Eq. (4.15), where a1 = 4.6 × 10−3 and a2 = 3.8 × 10−4. The inset shows
the linear correlation betweenR∞ and kd. The colored points highlight the results
corresponding to the three dihedral force constants for which the domain growth
is shown in Fig. 4.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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4.14 Steady-state domain size, R, normalized by the size of the system, `, in the CM
model. (a) The time evolution of the domain size for different interconversion
rates, tuned by the rigidity parameter, kd, as kd = 3 (purple), kd = 5 (green),
and kd = 9.86 (red) at the reduced pressure P = 0.1 and T/Tc = 0.35, where
Tc(P = 0.1) = 2.32, as indicated on Fig. 4.12. (b) The normalized steady-state
domain size as a function of temperature at P = 0.1 and kd = 5. The verti-
cal dashed line indicates the onset temperature, T ∗/Tc. In (a) and (b), the open
circles correspond to simulation results, the curves correspond to the theoretical
predictions (see Table 4.3), and the images show snapshots of the system simu-
lated at the indicated conditions. In (a-b), dark/clear spheres correspond to the
L-/D-configuration of a chiral tetramer (spheres are located a tetramer’s center of
mass). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.15 Phase domain growth for the dissipative-force formulation of the CM model. The
open circles represent computational data [7], and the curves illustrates predic-
tions of the time evolution of the domain size, R(t) = 1/qs

m, from Eq. (3.23) for
dihedral force constants: kd = 5 (green), kd = 9.86 (red), kd = 19.86 (blue), and
kd → ∞ (black) for T = 1.8, Tc = 2.3, τ = 2, and M = 0.0022. The domain
size is normalized by the size of the computational box, `. The dashed curves
represent the predictions of the domain growth if it is not restricted by the finite
size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.16 The mutual diffusion coefficient affected by interconversion, given by Eq. (4.17),
as a function of the normalized steady-state domain size R∞, Eq. (4.18) in the
CM model. The open circles are computational data for the dissipative-force
formulation of the CM model at three different dihedral force constants: kd = 5
(green), kd = 9.86 (red), and kd = 19.86 (blue) [7]. The molecular mobility in
the limit kd → ∞ is approximated as M = b0T/η, where b0 = 0.94 and η is the
viscosity approximated by the Arrhenius equation η ∼ eT0/T . The characteristic
temperature T0 is 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.17 Temperature dependence of the characteristic time scales in the dissipative-force
formulation of the CM model for dihedral force constants: kd = 5 (green), kd =
9.86 (orange), and kd = 19.86 (purple) at P = 0.1. a) Characteristic time for
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Chapter 1: Introduction

Typically, pure substances may be found with only one gaseous or liquid state, while their

solid state may exist in various polymorphic crystalline states. The existence of multiple dis-

tinct liquid forms in a single component substance is more unusual since liquids lack the long-

range order common to crystals. Yet, the existence of multiple amorphous liquid states in a

single component substance, a phenomenon known as “liquid polyamorphism,” [9, 55, 56] has

been observed or predicted in a wide variety of substances, such as superfluid helium [57, 58],

high-pressure hydrogen [1, 35, 37, 38, 59], high-density sulfur [2, 51], phosphorous [60, 61], car-

bon [62], silicon [63–66], silica [67,68], selenium and tellurium [69,70], and cerium [71]. Liquid

polyamorphism is also highly plausible in deeply supercooled liquid water [9, 13, 55, 56, 72–80].

A substance may be found to be polyamorphic by experimentally or computationally de-

tecting a liquid-liquid phase transition (LLPT), which terminates at a liquid-liquid critical point

(LLCP). For example, liquid polyamorphism, via the existence of two alternative supramolec-

ular structures, has been hypothesized to explain the remarkable anomalies in the thermody-

namic properties of supercooled water, namely a maximum in the temperature dependence of

its density and its isothermal compressibility [81, 82], a maximum in the isobaric heat capac-

ity [83], and an inflection point in its surface tension [84–87]. Simulations of water-like mod-

els [74–77, 79, 88–91], apparently supported by experiment [92, 93], have demonstrated the hy-
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Figure 1.1: Hypothesized global pressure-temperature phase diagram for water. The black curves
indicate the solid-solid and solid-liquid-gas phase transitions experimentally reported for wa-
ter [11], while the blue curve indicates the hypothesized liquid-liquid phase transition. The dotted
black curve represents the line of spontaneous ice nucleation [12]. The red circle is the liquid-
vapor critical point (LVCP) and the red star is the hypothesized liquid-liquid critical point (LLCP)
around 220 K and 60 MPa as suggested in Ref. [13].

pothesized LLPT in supercooled water, see Fig. 1.1.

Fluid polyamorphism ultimately originates from the complex interactions between molecules

or supramolecular structures. However, it may be phenomenologically modeled through the re-

versible interconversion of two alternative molecular or supramolecular states [4, 9, 10]. The

application of this “two-state” approach to the variety of polyamorphic substances could be just

as a useful phenomenology or it may reflect the true microscopic origin of fluid polyamorphism.

Indeed, there are a few substances, such as hydrogen, sulfur, phosphorous, and carbon, where

the existence of alternative liquid or dense-fluid states is explicitly induced by a reversible chem-

ical reaction: dimerization in hydrogen [1] or polymerization in sulfur, phosphorus, and car-

bon [2]. While equilibrium phase transitions in simple fluids have been well-studied, the descrip-
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tion of phase transformations in the presence of interconversion between alternative molecular or

supramolecular states, and in fluids far from equilibrium, is much less investigated [94–96].

The interconversion of two-states significantly effects both the thermodynamics and dy-

namics of fluid mixtures. In particular, molecular interconversion imposes an additional ther-

modynamic constraint, the chemical-reaction equilibrium condition, which reduces the number

of thermodynamic degrees of freedom. In this case, the concentration of a binary mixture is no

longer an independent variable, being a function of temperature and pressure. Consequently, a bi-

nary mixture with interconversion of species follows the Gibbs phase rule for a single-component

substance. In the absence of interconversion, the binary mixture exhibits a critical point for each

concentration. Collectively, these critical points make up a critical locus. The interconversion

of species selects a single path through the planes of phase coexistence at fixed concentration,

crossing the critical locus of the binary mixture at a unique point. Moreover, this path could cross

the critical line, the line of triple points, or any other unique line on the phase diagram more

than once. The resulting phase diagram can be viewed as the phase diagram of a polyamorphic

single-component fluid with multiple fluid-fluid critical points.

The thermodynamic properties, being state functions, under interconversion equilibrium

conditions are the same as those in the non-reacting binary mixture at the corresponding equi-

librium temperature, pressure, and overall concentration. Therefore, at any point along the ther-

modynamic path selected by interconversion, the properties are affected by the proximity to the

critical line of the non-reacting binary mixture. It should be noted that the evolution of the ther-

modynamic properties along the path (where the equilibrium concentration changes) is generally

very different from the evolution of the same property at constant composition, which would

typically be studied in non-reacting binary mixtures. This line in the interconverting mixture is
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referred to as the “virtual critical line,” which may be used to describe the anomalous behavior

of the thermodynamic properties along this path.

The interconversion of species also effects the dynamics of phase formation. Generally, a

mixture of two liquids will phase separate if their interactions are not favorable for mutual mix-

ing. The most recognizable example is almost complete separation of water and oil. Another

example is a possible demixing of structural isomers, such as enantiomers with opposite molec-

ular chirality [7, 97–99]. In contrast, solid ferromagnetic (such as iron) or ferroelectric (such as

barium titanate) materials, in the absence of a magnetic or electric field, do not establish equilib-

rium coexistence between phases with alternative magnetizations or polarizations [94, 100, 101].

However, if liquids exhibit interconversion of species, similar to the flipping of magnetic spins or

electric dipoles, the thermodynamics and dynamics of phase separation will dramatically change.

In this thesis, it is shown that molecular interconversion may destroy or restrict liquid-liquid

phase separation. After a binary mixture, initially containing equal amounts of the alternative

molecules, is quenched from the one-phase homogeneous region at a high temperature into the

unstable region below the critical temperature of demixing at constant pressure, the species will

separate through a process known as spinodal decomposition [102]. However, if the two species

with the same density may rapidly interconvert (like in a mixture of enantiomers [7]), then to

avoid the formation of an energetically unfavorable interface, the phases will compete with each

other until one of them is eliminated [6]. This is the phenomenon of phase amplification, the

result of the competition between the diffusive dynamics of phase separation and the “flipping”

dynamics of interconversion. In magnetic and ferroelectric materials, away from the Curie tem-

perature and in the absence of a magnetic or electric field, the phenomenon of phase amplification

occurs naturally. In such materials, there is no restriction on the direction of magnetization or
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polarization, meaning that there is no conservation of the number of magnetic spins or electric

dipoles with a particular orientation. Similarly, in fluids with fast molecular interconversion,

the conservation of the number of alternative molecules is broken and phase amplification could

occur.

In interconverting fluids, the growth of one phase at the expense of another stable phase

occurs to avoid the formation of an energetically unfavorable interface, and consequently, the

coexistence of the alternative phases is destroyed [6]. Since the interface is crucial to phase am-

plification, in macroscopic systems where the interfacial energy is much smaller than the bulk

energy, the system may enter a metastable state in which the energetic benefit of phase amplifi-

cation is negligible [4]. Thus, the size of the system plays a crucial role in phase amplification.

As discussed in Chapter 3, it is also shown that, in addition to smaller system sizes, a faster rate

of the interconversion reaction and closer proximity to the LLCP of demixing are necessary for

one to observe phase amplification [4, 6].

In a nonequilibrium system, if an external force causes the alternative molecules to stay

in equal numbers, the striking phenomenon of steady-state, restricted (“microphase”) separation

into mesoscale domains may be observed. In equilibrium, examples of mesoscale structures are

present in bicontinuous or spatially modulated microemulsions [103, 104] and microphase sepa-

ration of diblock or polyelectrolyte copolymers [105,106], where these mesoscale patterns are the

result of the minimization of the equilibrium free energy [9,107]. As discussed in Chapter 4, it is

found that the structure of the phase domains formed from nonequilibrium microphase separation

resembles modulated or bicontinuous microemulsion structures [9,103–107]. However, contrary

to the patterns formed in equilibrium or in metastable (“frozen”) conditions [108,109] (like those

commonly observed in glasses [110,111]), these nonequilibrium structures persist in steady-state
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due to the continuous energy supply. Thus, steady-state microphase separation is one of the sim-

plest examples of dissipative structures in condensed matter. The characteristic length scale of

this dissipative structure emerges as a result of the competition between forced interconversion

and phase growth. If the source of forced interconversion is not sufficiently strong to overcome

the natural interconversion of alternative species, then the phenomenon of phase amplification,

the growth of one stable phase at the expense of another phase, is observed [4, 6, 112]. An ex-

ternal racemizing energy source can be achieved in physical systems through the interactions of

energy-carrying particles, such as photons, that may break intramolecular bonds [111]. It can

also be seen in biological cells through a flux of energy produced by ATP [113, 114] or it could

be achieved chemically through an external flux of matter or heat [115–117].

The size of the system, rate of forced interconversion, and proximity to the LLCP are also

important to observe microphase separation. In this thesis, it is found that there are two key

conditions for microphase separation to be observed. First, if the characteristic size of the meso-

scopic steady-state microphase domains is comparable to half the size of the system, then the

system will produce the same two alternative phases that would be observed without intercon-

version [4, 5, 8]. As a result, the size of the system may “cut off” the system’s ability to phase

separate into microdomains. Second, if the rate of forced interconversion is much faster than

the natural interconversion or diffusion rate, then the external force dominates the systems’ ki-

netics and no phase formation is possible. Consequently, it is shown that the size of the system

and the rate of the forced interconversion reaction are crucial components to observe microphase

separation [4, 5, 8].

This thesis is organized as follows: In Chapter 2, the two-state thermodynamic approach

to model fluid polyamorphism is discussed. The application of this approach is considered for
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fluid-fluid transitions in hydrogen, sulfur, and substances exhibiting water-like anomalies. In

Chapter 3, the Cahn-Hilliard model of spinodal decomposition (phase separation process that

occurs after a binary mixture is quenched into the unstable region), is generalized to include

equilibrium (natural) and nonequilibrium (forced) interconversion of species. In Chapter 4, the

generalized Cahn-Hilliard theory is applied to describe the behavior of microscopic models of

mixtures, simulated through molecular dynamics (MD) or Monte Carlo (MC) methods, which

exhibit both natural and forced molecular interconversion. General concluding remarks and sug-

gestions for future research are presented in Chapter 5.
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Chapter 2: Two-State Thermodynamics of Fluid Polyamorphism

In this chapter, the two-state thermodynamic approach for fluid polyamorphism is intro-

duced (Sec. 2.1). The approach is applied to describe the fluid-fluid transition in high-pressure

hydrogen (Sec. 2.2), high-density sulfur (Sec. 2.3), and fluids exhibiting water-like anomalies

(Sec. 2.4). In addition to the phase behavior of these substances, the approach is also used to

describe the anomalies in the interfacial properties of fluids exhibiting interconversion between

species.

2.1 Interconversion of Two States

Consider a symmetric binary mixture of two species A and B with molecular fractions,

xB = x and xA = 1 − x. Initially, it may be assumed that both species have the same densities

(ρ = 1), viscosities, and molecular weights. This system can be described by a Landau-Ginzburg

free-energy functional with a single order parameter uniquely linked to the fraction of species B

as, ϕ = x/xc − 1, where xc is the critical fraction. This functional reads as

F [{ϕ}] =
1

ρ

∫
V

(
Ĝ(ϕ, T, P ) +

1

2
κ|∇ϕ|2

)
dV (2.1)
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Figure 2.1: A symmetric binary mixture is quenched along the critical molecular fraction (where
the order parameter is ϕ = 0) from a point, T̂1 in the one phase region to a point, T̂2 below the
critical temperature of demixing in the unstable region. The solid curve indicates the liquid-liquid
coexistence (binodal), while the dashed curve indicates the limit of stability (spinodal).

where the first term represents the thermodynamic “bulk” free energy and the second term is

included to describe the contribution to the free energy due to inhomogeneities within the system.

For an isotropic system, the coefficient κ is the square of the range of intermolecular interactions,

on the order of the square of the molecular size.

The bulk free energy density for the system, Ĝ, is the reduced Gibbs energy, Ĝ = G/kBTc,

where kB is Boltzmann’s constant and the critical temperature for liquid-liquid phase separation

is Tc. The bulk free energy density may be expressed in the general form,

Ĝ = ĜA + xĜBA + Ĝmix (2.2)

where ĜBA = µ̂0
B− µ̂0

A is the reduced difference between the Gibbs energies (chemical potentials)

of pure species A and B, referred to as the Gibbs energy change of reaction. For the symmetric

9



binary-lattice (“regular solution”) model, Ĝmix is formulated through the order parameter, ϕ, and

in the meanfield approximation, it reads as

Ĝmix = T̂

[(
1 + ϕ

2

)
ln

(
1 + ϕ

2

)
+

(
1− ϕ

2

)
ln

(
1− ϕ

2

)]
+
ε

4
(1− ϕ2) (2.3)

where T̂ = T/Tc is the reduced temperature and ε is a non-ideality interaction parameter, which

generally depends on temperature and pressure. The conditions for liquid-liquid phase equilib-

rium is

∂Ĝmix

∂ϕ

∣∣∣∣
T,P

=
T̂

2
ln

(
1 + ϕ

1− ϕ

)
− ε

2
ϕ = 0 (2.4)

The critical molecular fraction, xc, and critical temperature, Tc, are obtained from the thermody-

namic stability conditions

∂2Ĝ

∂ϕ2

∣∣∣∣
T,P

= 0 and
∂3Ĝ

∂ϕ3

∣∣∣∣
T,P

= 0 (2.5)

as

xc = 0.5 and Tc = ε/(2kB) (2.6)

Consider the interconversion between molecular states A and B through a reversible chem-

ical reaction of the form

A
k1−−⇀↽−−
k2

B (2.7)

where k1 and k2 are the forward and reverse reaction rates, respectively. Since, for this system, the

chemical reaction coordinate is the order parameter, the chemical reaction equilibrium condition
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reads

∂Ĝ

∂ϕ

∣∣∣∣
T,P

=
∂Ĝmix

∂ϕ

∣∣∣∣
T,P

− ĜBA = 0 (2.8)

The reaction-equilibrium condition constrains the number of thermodynamic degrees of freedom

for the system. Consequently, the fraction of interconversion, given through the order parameter

ϕ, is no longer an independent thermodynamic variable, but instead, becomes a function of tem-

perature and pressure. The reduced Gibbs energy change of the reaction, ĜBA, can be expressed

through the reaction equilibrium constant, K(T̂ , P̂ ) = k1/k2, and is given, up to second-order in

temperature and pressure, as

ĜBA = −T̂ lnK(T̂ , P̂ ) = ê− ŝT̂ + υ̂P̂ + γT̂ P̂ +
1

2
δT̂ 2 − 1

2
κP̂ 2 (2.9)

where ê = e/(kBTc), ŝ = s/kB, and υ̂ = υ/(kBTc) are the reduced energy, entropy, and volume

changes of the reaction, while γ, δ, and κ are proportional to the volumetric expansivity, isobaric

heat capacity, and isothermal compressibility changes of the reaction, respectively [9, 10].

The reduced chemical potential for such a system undergoing spinodal decomposition to-

wards both chemical-reaction and phase equilibrium, µ̂ = µ/kBTc, is the reduced deviation of the

chemical-potential difference in solution (µ = µA − µB) from its equilibrium value, µ = 0. The

reduced time-dependent chemical potential is found from the functional derivative of Eq. (2.1) as

µ̂ = µ̂th − κ∇2ϕ (2.10)

where the order parameter depends on space and time, ϕ = ϕ(r, t). In this form, the chemical po-

tential is comprised of a thermodynamic potential as µ̂th = ∂Ĝ/∂ϕ|T,P , and a spatial-dependent
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part, κ∇2ϕ. The thermodynamic component [118] is

µ̂th =
T̂

2
ln

(
1 + ϕ

1− ϕ

)
− ε

2
ϕ− ĜBA (2.11)

Expanding the logarithmic term to first order in ϕ via a Taylor series around ϕ = 0 (the value

of the order parameter at the initial time t = 0), gives ∂Ĝ/∂ϕ ≈ χ̂−1
q=0ϕ, where the inverse ther-

modynamic susceptibility in the limit of zero wavenumber is χ̂−1
q=0 = ∂2Ĝ/∂ϕ2. In the meanfield

regular-solution model, the inverse susceptibility scales as χ̂−1
q=0 ∼ ∆T̂ , where ∆T̂ = T/Tc − 1

is the reduced distance to the critical temperature. Therefore, the chemical potential defined in

Eq. (2.10) in the first-order approximation becomes

µ̂ ≈ ∆T̂ϕ− ĜBA − κ∇2ϕ (2.12)

It should be emphasized that the reduced chemical potential, given by Eq. (2.12), when the term

related to interconversion is absent, is the same as obtained in the classical Cahn-Hilliard the-

ory [102].

In addition to the chemical potential, the density and entropy are obtained from derivatives

of the Gibbs energy, Eq. (2.2), as

ρ̂(P̂ , T̂ ) =

(
∂Ĝ

∂P̂

)−1

ϕ,T̂

=

[
1

ρ̂A
+ xe

∂ĜBA

∂P̂

∣∣∣∣
ϕ,T̂

+
∂Ĝmix

∂P̂

∣∣∣∣
ϕ,T̂

]−1

(2.13)

S(P̂ , T̂ ) = −∂Ĝ
∂T̂

∣∣∣∣
ϕ,P̂

= SA − xe
∂ĜBA

∂T̂

∣∣∣∣
ϕ,P̂

− ∂Ĝmix

∂T̂

∣∣∣∣
ϕ,P̂

(2.14)

where ρ̂A = ρ̂A(P, T ) and SA = SA(P, T ) are the density and entropy (per molecule) of state A
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and xe = x(P̂ , T̂ ) is the equilibrium fraction of species. Thus, from the appropriate specification

of state A and the equilibrium reaction constant, K, one may obtain all other thermodynamic

properties, such as the isothermal compressibility and heat capacity, as well as the global phase

diagram that includes both the vapor-liquid and the liquid-liquid transitions. In the next section,

this is demonstrated by applying the two-state approach to the fluid-fluid phase transition in high-

pressure hydrogen.

2.2 Fluid-Fluid Phase Transition in High-Pressure Hydrogen

Experiments and simulations have discovered that at extremely high pressures, highly-

dense fluid (dimeric) hydrogen dissociates into atomistic fluid hydrogen [21, 34–45, 48, 59, 119–

123]. In this section1, the two-state thermodynamic approach (Sec. 2.1) and the generalized

law of corresponding states (obtained from reducing the temperature, pressure, and entropy by

their critical values), in combination with the available experimental data and with the results of

computations [21, 39–46, 48, 124], are utilized to predict the equation of state of hydrogen near

the fluid-fluid phase transition (FFPT).

2.2.1 Phase Behavior of Hydrogen

The suggested global phase diagram of hydrogen, based only on the available experimental

evidence for the fluid-fluid phase transition [34–38], the solid-liquid melting transition [14–17,

125–127], and the location of solid-metallic hydrogen [22, 29–33], which is supported by the

most recent computational studies [21, 39–45, 47, 48, 124, 128–130], is shown in Fig. 2.2a. It

1This section was reproduced from Nathaniel R. Fried, Thomas J. Longo, and Mikhail A. Anisimov, J. Chem.
Phys., 157, 101101 (2022); https://doi.org/10.1063/5.0107043, with the permission of AIP Publishing.
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Figure 2.2: The global pressure-temperature phase diagram for hydrogen. (a) The full range
from low to extreme pressures in logarithmic scale. The crosses indicate the experimental data
for the solid-liquid melting transition presented in Diatschenko et al. [14] (blue), Datchi et al. [15]
(cyan), Gregoryanz et al. [16] (pink), and Zha et al. [17] (purple). The solid black curves at low
pressure (P ≤ 0.1 GPa) are the liquid-gas-solid phase transitions [18], while the solid black
curve at high pressure (P > 0.1 GPa) is the Kechin equation [19] as reported in ref. [17]. The
black dashed curve is the predicted continuation of the melting line based on experimental and
computational evidence [17,20,21], while the dotted lines represent the highly-debated prediction
[22–28] of the domain of solid metallic hydrogen [22, 23, 28–33]. The red line is the first-order
fluid-fluid phase transition adopted in this section. (b) The phase diagram of hydrogen at extreme
conditions, in the area of the box in (a). The open circles are experimental data presented in
Zaghoo et al. [34–36] (dark brown), McWilliams et al. [37] (light brown), and Ohta et al. [38]
(orange). Simulation results [21, 39–46] are spread within the grey area and shown in detail in
Fig. 2.3. The fluid-fluid phase transition (solid red) and Widom line (dotted red) are represented
by Eq. (2.18). The red star is the location of the fluid-fluid critical point (FFCP) as adopted in
this section.

illustrates the fact that a huge pressure gap separates the liquid-gas [18] and fluid-fluid phase

transitions in hydrogen.

The adopted locations of the FFCP and the solid-fluid-fluid triple point (SFF-TP) in this

section are based on the available experimental data [34–38] and on discussions present in the

literature [42–44] (Table 2.1). It should be noted that the exact location of the FFCP is uncertain,

as the interpretation of both the Zaghoo et al. [35] and Ohta et al. [38] experimental data have

been highly debated [43, 131–133]. Most authors suggest that the experimental data of Ohta et

al. [38], on the anomalies of the heating efficiency, are obtained in the supercritical region [43].

14



Table 2.1: The suggested locations of the FFCP and the SFF-TP in hydrogen.

P [GPa] T [K] ρ [g/cm3]

FFCP 105 1900 0.8
SFF-TP 250 600 -

The results observed by Ohta et al. [38] have been interpreted [1] as being the anomalies of

the heating efficiency along the “Widom line”, the line corresponding to the maximum of the

fluctuations of the order parameter, which emanates from the critical point [9, 78, 134].

The significant discrepancy between the results of different computational models makes

it impossible to utilize these results for a single equation of state. However, presenting the same

results in reduced variables, as suggested by the law of corresponding states, allows the com-

putational results to be used along with the experimental data for thermodynamic modeling. In

Fig. 2.3, all of the available computational and experimental data on the fluid-fluid phase transi-

tion are presented in real units of pressure and temperature (Fig. 2.3a) and in reduced variables

(Fig. 2.3b), P̂ = P/Pc and T̂ = T/Tc, where Pc and Tc are the critical pressures and temper-

atures obtained (or adopted) from different works. It has been found that the simulation data

based on the Quantum Monte Carlo (QMC) approach could also be collapsed into the universal

phase diagram by reducing the entropy by its critical value, Ŝ = S/Sc [1]. In classical thermo-

dynamics, the reference value for the entropy is arbitrary. Commonly, the value, Sc, is adopted

as Sc = dP̂ /dT̂ |T=Tc [135–138], which was found to be Sc = 0.8 for all QMC simulations.

2.2.2 Phase Separation Coupled with Dimerization

Thermodynamically, the fluid-fluid transition in hydrogen can be modeled through the two-

state approach (Sec. 2.1), in which state A represents the free atoms of hydrogen and state B
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represents dimerized hydrogen atoms. The total Gibbs energy per hydrogen atom (reduced by

RidTc, where Rid is the ideal-gas constant) is given by Eq. (2.2), where µ̂◦A and µ̂◦B are the Gibbs

energies of hydrogen in the monatomic or diatomic states, respectively, and x is the fraction of

hydrogen atoms in the diatomic state. Unlike the symmetric system considered in Sec. 2.1, the

mixing of free hydrogen atoms and diatomic hydrogen is not symmetric, and thus, Ĝmix may be

modeled as

Ĝmix(x) = T̂
[(x

2

)
ln
(x

2

)
+ (1− x) ln (1− x)

]
+ ε(T̂ , P̂ ) x(1− x) (2.15)

The dimensionless non-ideality parameter, ε = ε(T̂ , P̂ ), may be approximated up to first order

in ∆T̂ and ∆P̂ , as

ε(T, P ) = ε0 − εT∆T̂ + εP∆P̂ (2.16)

where ∆T̂ = T̂ − 1 and ∆P̂ = P̂ − 1.

The FFCP parameters are determined from the thermodynamic stability criteria (Eq. 2.5),

such that the critical fraction and critical temperature of hydrogen atoms is given by

xc =
√

2− 1 and Tc = 2(2−
√

2)2ε0 (2.17)

It should be noted that the first study to apply the two-state thermodynamic approach to high-

pressure hydrogen was presented by Cheng et al. [21]. While the predictions of Cheng et al.

for the FFPT are not in agreement with the results of all other simulations and experimental

studies [45], their study provides a reasonable idea for how the non-ideality parameter, ε, might

depend on pressure and temperature. Based on the suggested trend, εT and εP are optimized to
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Figure 2.3: Unifying the different simulation results with experimental data of hydrogen by the
generalized law of corresponding states. (a) Experimental and simulation results for the fluid-
fluid phase transition (FFPT). (b) Unified representation of the FFPT by reducing pressure, P̂ =
P/Pc, temperature, T̂ = T/Tc, and the critical value of the entropy, Ŝ = S/Sc. In (a) and (b),
the open circles are the experimental data of Zaghoo et al. [34–36] (dark brown), McWilliams
et al. [37] (light brown), and Ohta et al. [38] (orange). The computational results are indicated
by the triangles: blue tints correspond to the Density Functional Theory (DFT) simulations of
Bonev et al. [47] (dark blue), Morales et al. [48] (blue), Hinz et al. [44] (sky blue), and Karasiev
et al. [45] (light blue). Meanwhile, green tints correspond to the Quantum Monte Carlo (QMC)
simulations of Morales et al. [48] (dark sea green), Lorenzen et al. [39] (green), Perlioni et al. [41]
(dark green), Mozzola et al. [42] (lime green), and Tirelli et al. [46] (yellow green). The colored
stars correspond to the reported (or adopted in this section) critical points for each data set. The
solid black curve is the solid-fluid phase transition line as discussed in Fig. 2.2, and the red solid
line is the FFPT predicted in this section.

agree with the behavior of hydrogen from the available computational data [41–44, 46, 48], and

consequently, these parameters were adopted as εT = 2.062 and εP = −0.175. The asymmetric

Gibbs energy of mixing is illustrated in Fig. 2.4a along with the fluid-fluid coexistence, calculated

via the common tangent method, and the limit of absolute stability (spinodal), calculated via the

thermodynamic stability conditions.

The condition for chemical-reaction equilibrium is given by ∂Ĝ/∂x|T,P = 0, resulting in

the balance of the Gibbs energy of reaction, ĜBA, and the exchange chemical potential of mixing,
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µ̂mix = ∂Ĝmix/∂x|T̂ ,P̂ , such that thermodynamic equilibrium follows from

ĜBA = −µ̂mix (2.18)

The Gibbs energy of reaction, ĜBA = ĜBA(T̂ , P̂ ), may be approximated up to second order in T̂

and P̂ , as in Eq. (2.9). To balance the Gibbs energy of reaction, Eq. (2.9), with the derivative of

the Gibbs energy of mixing, ĜBA is expressed as an expansion in ∆T̂ and ∆P̂ as

ĜBA = u− a∆T̂ + b∆P̂ + g∆T̂∆P̂ +
d

2
(∆T̂ )2 − k

2
(∆P̂ )2 (2.19)

where the modified coefficients of the thermodynamic balance, Eq. (2.19), are related to the

coefficients of reaction, Eq. (2.9), as:

ê = u+ a− b+ g +
d

2
− k

2

ŝ = a+ g + d

υ̂ = b− g + k

(2.20)

along with γ = g, δ = d, and κ = k.

If the Gibbs energy of mixing, Ĝmix, would be symmetric with respect to x, then ĜBA =

−µmix = 0, could describe the conditions for both reaction equilibrium and fluid-fluid phase

equilibrium [9]. However, since the monatomic and diatomic mixing is asymmetric, the condition

for the balance of phase and reaction equilibrium, Eq. (2.18), is given through

µ̂mix

T̂
= a2

(
ε(T, P )

T̂
− ε0

)2

+ a1

(
ε(T, P )

T̂
− ε0

)
+ a0 (2.21)
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Figure 2.4: The components of the Gibbs energy (per atom) for hydrogen in the vicinity of the
fluid-fluid phase transition. (a) The Gibbs energy of reaction, GBA, as given by Eq. (2.9). The
isotherms are T = 0.5Tc (orange), T = 0.75Tc (blue), T = Tc (green), T = 1.25Tc (red), and
T = 1.5Tc (purple). (b) The Gibbs energy of mixing, Gmix, as given by Eq. (2.15). Gmix is shown
as a function of the fraction of hydrogen atoms in the diatomic state, x, for isotherms T = 0.5Tc

(blue), T = 0.75Tc (green), and T = Tc (red) at P = Pc. The solid curve corresponds to the
fluid-fluid coexistence.

where the coefficients a0 = −0.502, a1 = 0.166, and a2 = −0.071.

The developed equation of state is formulated through the Gibbs energy for the system

as a function of temperature and pressure. Due to the interconverting nature, the two-states of

hydrogen are thermodynamically equivalent to a single component system. Consequently, this

produces an equation of state in terms of the equilibrium fraction of dimerized atoms, xe =

xe(T, P ), and the density of the system, ρ = ρ(T, P ). The equation of state presented in this

section contains seven adjustable parameters: five from the Gibbs energy of reaction, GBA, (u,

a, b, g, and k), Eq. (2.9) and two from the non-ideality parameter in the Gibbs energy of mixing

(εT and εP ), Eq. (2.16). The number of adjustable parameters are reduced from the following

analysis of the available computational data on hydrogen in the vicinity of the fluid-fluid critical

point.

From the computational heat capacity data presented by Karasiev et al. [45], the heat-
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Figure 2.5: Equilibrium fraction of hydrogen atoms in the diatomic state, xe. (a) Equilibrium
fraction-pressure diagram for T = 0.5Tc (orange), T = 0.75Tc (blue), T = Tc (green), and
T = 1.25Tc (red). (b) Equilibrium fraction-temperature diagram for P = 0.75Pc (blue), P =
Pc (green), P = 1.25Pc (red), P = 1.5Pc (purple). The solid and dashed black curves are,
respectively, the fluid-fluid coexistence and the limit of thermodynamic stability (spinodal).

capacity change of reaction is approximated to be δ ≈ 0, and from the computational isothermal-

compressibility data presented in the supplemental material of Pierleoni et al. [41], it is approx-

imated that κ ≈ 0.625 [mm3/GPa ·mol]. Additionally, e = −108 [kJ/mol] is adopted based on

the known value of the bond dissociation energy of H2 [139]. As discussed above, εT and εP are

assigned as εT = 2.062 and εP = −0.175.

From these findings, the number of free parameters have been reduced to three: a, b, and

g. The values of the remaining free parameters are determined as a = −4.95, b = 0.044,

and g = 0.0124 from the computational and experimental data utilizing the generalized law of

corresponding states (Fig. 2.3). Using the relations between these parameters and the physical

parameters in Eq. (2.9), the following parameters are estimated: the entropy change of the reac-

tion as s = −34.0 [J/K ·mol], the volume change of the reaction as υ = 393 [mm3/mol], and

the volume-expansivity change of the reaction as γ = 0.0677 [mm3/K ·mol]. The Gibbs energy

change of reaction is shown in Fig. 2.4b. It demonstrates that the pressure is the major factor in
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the behavior of GBA.

Using the Gibbs energy of mixing, Eq. (2.15), the Gibbs energy of reaction, Eq (2.9), and

the variables determined from the universal phase diagram, the equilibrium fraction of hydrogen

atoms in the dimerized state, xe, is determined from Eq. (2.18). The corresponding equilibrium-

fraction phase diagrams are presented in Fig. 2.5(a,b). At higher temperatures and lower pres-

sures, the equilibrium composition changes from the dimeric state xe = 1 to the monomeric state

xe = 0.

The density of species is expressed through the equilibrium fraction via Eq. (2.13), and

with use of Eq. (2.15) for Ĝmix is given in the form [9]

ρ̂(P̂ , T̂ ) =

(
∂Ĝ

∂P̂

)−1

T̂

=

[
1

ρ̂A
+ xe

∂ĜBA

∂P̂
+
∂ε

∂P̂
xe (1− xe)

]−1

(2.22)

where ρ̂A = ρ̂A(P̂ , T̂ ) is the volume of the monatomic hydrogen state, and may be expressed up

to second-order in ∆T̂ and ∆P̂ as

ρ̂A = ρ̂c − ρ̂0∆T̂ + ρ̂1∆P̂ + ρ̂2∆T̂∆P̂ − ρ̂3

(
∆P̂
)2

+ ρ̂4

(
∆T̂
)2

(2.23)

Using the most recent QMC simulations presented in Tirelli et al. [46], ρ̂A is estimated by

Eq. (2.23) with coefficients: ρ̂c = 1.01, ρ̂0 = 0.25, ρ̂1 = 0.56, ρ̂2 = 0.56, ρ̂3 = 0.21, and

ρ̂4 = 0.12. The corresponding pressure-density phase diagram is presented in Fig. 2.6, and

demonstrates a good agreement with the computational data in the vicinity of the FFCP.

It is noted that the properties observed in experimental studies (e.g. conductivity, reflec-

tivity, thermal efficiency, etc.) could be indirectly related to the order parameter for the FFPT in
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Figure 2.6: The pressure-density phase diagram of hydrogen based on the equation of state de-
veloped in this section. The open circles correspond to the QMC simulations of Tirelli et al. [46].
Isotherms are T̂ = 0.67 (orange), T̂ = 0.73 (red), T̂ = 0.8 (brown), T̂ = 0.87 (purple), T̂ = 0.93
(green), and T̂ = 1.0 (blue). The fluid-fluid coexistence is shown by the solid black curve. The
red star is the FFCP adopted in this section.

hydrogen, ϕ = x/xc−1. The measurable quantities (such as density or conductivity) are coupled

to the order parameter.

There is a remarkable analogy between the challenges in thermodynamic modeling of fluid

polyamorphism in hydrogen and that in supercooled water. In both cases, there is a reasonable

agreement among the scientific community on the shape and location of the first-order transition

line, while the position of the corresponding FFCP and LLCP are highly uncertain and subjects

of current debate in the literature [13, 34–36, 43, 78, 131–133]. This uncertainty, in both hydro-

gen and water, is due to the extreme conditions of the phenomena. In supercooled water, the

liquid-liquid transition is hidden below the temperature of spontaneous ice formation [75, 78],
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while in hydrogen, the fluid-fluid transition occurs at immensely high pressures (millions of

atm) [43]. Consequently, it is not surprising that the available computational or experimental

data are scarce [40, 43, 44]. In this section, it has been shown that despite the uncertainty in de-

termining the location of the FFCP in hydrogen, thermodynamic modeling provides a principle

direction to predict the equation of state for the system. Remarkably, the law of corresponding

states can be utilized to reconcile the different computational models of hydrogen and experi-

ment [21, 34–45, 48, 124] into a unified equation of state. An additional parameter has been in-

cluded to generalize the law of corresponding states, the entropy at the critical point (Sc), which

provides the opportunity for further studies of hydrogen, both experimental and computational,

to be unified under the general approach presented in this section.

2.3 Liquid-Liquid Phase Transition in High-Density Sulfur

While the fluid-fluid phase transition in hydrogen was induced by the dimerization reac-

tion, a fluid-fluid phase transition may also be induced by more complex chemical reactions or

interactions, such as polymerization or gelation. An example of polymerization induced fluid

polyamorphism was recently discovered in high-density sulfur [51]. A polymerized state of sul-

fur exists above 433 K [140–144]). It has been experimentally demonstrated that well above the

liquid-gas critical pressure (in the range from 0.5 to 2.0 GPa around 1000 K), sulfur exhibits

a LLPT indicated by a discontinuity in density from a low-density-liquid (LDL) monomer-rich

phase to a high-density-liquid (HDL) polymer-rich phase [51]. However, with further increase of

temperature, as the system approaches the liquid-gas phase transition (LGPT), the polymer chains

gradually dissociate. A schematic representation of the phase diagram in sulfur is illustrated in
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Figure 2.7: A schematic representation of the phase diagram of sulfur. The solid black curves
represent the solid-liquid-gas phase transition in sulfur [49–51], while the blue curve represents
the experimentally verified liquid-liquid phase transition [51]. The dashed black line is the pre-
dicted continuation of the melting line based on experimental evidence [49]. The black circles
are the solid-liquid-liquid triple point (TP-SLL) and the solid-liquid-gas triple point (TP-SLG),
while the red circle is the liquid-gas critical point (LGCP) and the red star is the liquid-liquid
critical point (LLCP).

Fig. 2.7.

In this section2, the liquid-liquid phase transition in high-density sulfur is considered via a

simple model that may describe liquid polyamorphism in a variety of chemically-reacting fluids.

This model is referred to as the “maximum-valence model,” as it combines the ideas of two-state

thermodynamics [9] with the maximum-valence approach [145–147], in which atoms may form

covalent bonds via a reversible reaction, changing their state according to their bond number. By

mimicking the valence structure and maximum bond number, z, the maximum-valence model

predicts the LLPT in systems with dimerization (z = 1), polymerization (z = 2), and gelation

(z > 2). The maximum-valence model, simulated via Molecular dynamics (MD) methods, is

2This section was reproduced from Nikolay A. Shumovskyi, Thomas J. Longo, Sergey V. Buldyrev, and Mikhail
A. Anisimov, Phys. Rev. E, 106, 015305 (2022); https://doi.org/10.1103/PhysRevE.106.015305, with the permission
of APS Publishing.
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utilized to model the liquid-liquid phase transition in high-density sulfur. In particular, it will be

demonstrated that when the bonded atoms attract each other stronger than to the unbonded atoms,

phase separation is coupled to polymerization generating the LLPT in sulfur.

2.3.1 Maximum-Valence Model

The polymerization of a sulfur-like system (z = 2) is modeled by characterizing each

atom by its coordination number, the number of bonds it has with other atoms. Depending on

the coordination number, each atom is assigned to distinguished states: S0 (with zero bonds),

S1 (with one bond), and S2 (with two bonds). Atoms cannot form more than two bonds and,

consequently, will polymerize into a linear polymer. All of the atoms in the system may change

their state by forming or breaking a covalent bond via a reversible reaction. Fig. 2.8a depicts the

three types of reversible reactions that may occur in the system. In this section, it is demonstrated

that the minimum ingredients required to produce a LLPT are the following: i) the van der

Waals interactions between atoms, which produce a LGPT; ii) covalent bonds between atoms,

which induce polymerization; and iii), as hypothesized here, additional van der Waals interactions

between atoms with maximum valency (having two bonds), which couple phase segregation to

polymerization. These three ingredients are illustrated by square-well potentials in Figs. 2.8(b-d).

Physically, the additional attraction between atoms in neighboring chains may stem from

the fact that in real polymers the covalent bond is shorter than the diameter of the unbonded

(“free”) atoms, such that the attractive wells of bonded atoms in neighboring chains overlap with

each other [148–153]. This effectively creates an additional zone of attraction between poly-

mer chains, which is a common attribute that produces LLPTs in soft-core potentials [150, 151].
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In these models, the atoms which penetrate the soft-core, can be regarded as bonded, which

generate an additional “effective” attractive well due to the fact that such “bonded” atoms have

more neighbors in their attractive range [154]. However, the explicit shortening of the covalent

bonds between atoms would require the development of a microscopic Hamiltonian for this phe-

nomenon, which would be most desirable for a future study. Therefore, for simplicity, instead

of shortening the length of the covalent bonds, this effect is accounted for in the model through

the additional “effective” square-well attraction (iii). Without this potential, with characteristic

energy ε22, and consequently, in the absence of polymerized atoms, no LLPT will occur. It is

noted that this simplification is in the spirit of common semi-phenomenological models of non-

ideal binary mixtures, such as the Flory-Huggins theory of polymer solutions [155–158] or a

regular-solution model [159].

The three ingredients of interactions were implemented in the maximum-valence model via

an event-driven MD technique [160,161]; in particular, a discrete MD package (DMD) is utilized

that only includes particles interacting through spherically-symmetric step-wise potentials, which

may form bonds via reversible reactions [162]. Simulations are performed in an NVT ensemble

of N = 1000 atoms in a cubic box with periodic boundaries at various constant densities and

temperatures. The temperature is controlled by a Berendsen thermostat [163]. The van der Waals

and covalent-bonding interactions are implemented by separating each atom into two overlapping

hard spheres (a core and a shell), with the same diameter σ and mass m, see Figs. 2.8(b-d). The

connection between the core and its shell is represented by an infinite square-well potential of

width d � σ. The cores and shells of different atoms do not interact with each other. The core

represents the atom without its valence electrons. It interacts with other cores via a wide potential

well with depth ε and widthw = 0.4σ (the parameters are chosen as an example, Fig. 2.8b), which
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Figure 2.8: Reactions and interactions in the maximum-valence model. (a) The three types of
covalent bond-forming reversible chemical reactions that may occur in the system. If two atoms
without bonds (S0) collide with each other, they may form a bond and become S1 atoms. If a S0

and S1 atom collide, they may form a bond and become S1 and S2 atoms, respectively. If two
S1 atoms collide with each other, they form an additional bond and become S2 atoms. (b-d) The
three major interactions between atoms, in which each atom is composed of a core and shell, both
with a radius σ and massm. U(r) is the pair potential energy and r is the distance from the center
of an atom. (b) The cores of each atom interact with an attractive square well of depth ε = 1 and
width w = 0.4. (c) The shells may react to form covalent bonds that consist of a narrow well with
depth εb = 1 and width wb = 0.02. (d) Phase segregation is coupled to polymerization via the
additional attractive interactions between atoms in state S2, described by a square well of depth
ε22 = 0.5 and width w22 = 0.3.

models the van der Waals interactions in the system. Meanwhile, the shell represents the outer

valence electron cloud. It interacts with other shells via a narrow potential well with depth εb = ε

and width wb = 0.02σ (Fig. 2.8c), which models the breaking and forming of covalent bonds.

In the absence of the shell, this system has a liquid-gas critical point (LGCP) at ρLG
c =

N/V = 0.35 ± 0.05, T LG
c = 1.04 ± 0.01, and P LG

c = 0.094 ± 0.005 [153], well above the

equilibrium crystallization line, which was forced to be at low temperature by selecting the ap-

propriate width, w, of the potential. It is noted that all physical parameters are normalized by the

appropriate combination of massm, length σ, and energy ε units, as used in Ref. [153]. When the
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shell interactions are included and the system may form covalent bonds, the location of the LGCP

changes, but not significantly. In addition to the wide and narrow wells, an additional attractive

potential well is introduced (with depth ε22 = 0.5ε and width w22 = 0.3σ, Fig. 2.8d) for the van

der Waals interaction between the shells of the atoms with two bonds (both in the state S2), which

are not chemically bonded to each other.

It should be noted that during either the formation or breaking of a bond, the new state of

the reacting particles may modify the potential energy of the interactions with their non-bonded

neighboring particles [162]. In the maximum-valence model, this occurs when particles in the

state S1 convert to the state S2 (or vice versa). To maintain the conservation of energy, the change

of the total potential energy, ∆U , is calculated due to the change of the state of the reacting

particles and subtracted from the kinetic energy of the reacting pair. As a consequence, the

equations for computing the new velocities [162] may not have real solutions. In this case, the

bond will not form or break, and the reacting particles will conserve their states through an elastic

collision.

2.3.2 Phase Separation Coupled with Polymerization

Figure 2.9a illustrates isotherms on a pressure-density (P -ρ) plane, which exhibit two sets

of van der Waals loops. The loops correspond to the LGCP, located at low density and pressure,

and the LLCP, located at a higher density and pressure. Fig. 2.9b illustrates the LG and LL

coexistence on a P -T plane along with the critical isochores. At the triple point (TP), the gaseous,

LDL, and HDL phases coexist. In contrast to the ST2 model for water [74], but in agreement with

spherically symmetric models [151,164], the P -T line of the LL coexistence has a positive slope.
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Figure 2.9: Phase diagrams for the maximum-valence model (with ε22 = 0.5 and εb = 1.0)
obtained in an NVT ensemble after t = 106 time units. (a) The isotherms in the P -ρ plane are
T = 0.96 − 1.20 (red-purple) in steps ∆T = 0.02. (b) The liquid-gas and liquid-liquid critical
isochores in the P -T plane are ρLG

c = 0.35 and ρLL
c = 0.81 as indicated by the lower and upper

dashed lines, respectively. In both figures, the liquid-gas and liquid-liquid coexistence curves
are calculated via the Maxwell construction and indicated by the solid curves. The liquid-gas
(T LG

c = 1.023, P LG
c = 0.0922, ρLG

c = 0.35) and liquid-liquid (T LL
c = 1.187, P LL

c = 2.28, ρLL
c =

0.81) critical points are indicated by the red open circles, while the triple point (P TP = 0.0738,
T TP = 0.995) is indicated by the black open circles.

Figure 2.10a presents the LG and LL coexistence curves on a T -ρ phase diagram. Although

there is a distribution of polymer chains with varying lengths, a simple way to characterize the

degree of polymerization is to find the fractions x0, x1 and x2 of atoms in states S0, S1 and S2. Due

to the conservation of the number of atoms, x0+x1+x2 = 1. The fraction x2 was computed based

on the asymmetric LL coexistence curve (Fig. 2.10a). Remarkably, x2 was found to be symmetric

and centered around x2 = 0.5 as shown in Fig. 2.10b. Consequently, the sum x0 + x1 = 1 − x2

has the same symmetry. This feature suggests that 1−x2 may be viewed as the appropriate order

parameter for the LLPT coupled with polymerization. In contrast, the density, ρ − ρLG
c , is the

order parameter for the LGPT, as commonly accepted. The symmetric nature of x2, and the fact

that S1 atoms are the intermediate states in the formation of polymer chains, enables a two-state

thermodynamic approach [9] by reducing this model to two alternative states, with fractions x2

29



Figure 2.10: (a) T -ρ phase diagram for the maximum-valence model (with ε22 = 0.5 and εb =
1.0) obtained in an NVT ensemble after t = 106 time units. The temperature dependence of the
fraction of atoms with two bonds, x2, (b) and the average chain-length, 〈n〉, (c) in two coexisting
liquid phases. The simulation data in (b) is fit to a second order polynomial.

and x0 + x1.

Qualitatively, the phase diagram of sulfur matches that of the maximum-valence model

with a specific set of interaction parameters. In sulfur, the LGCP is located at T LG
c = 1314 K,

P LG
c = 20.7 MPa, and ρLG

c = 563 kg/m3 [165], while the LLCP is located at T LL
c = 1035 K,

P LL
c = 2.15 GPa, and ρLL

c ≈ 2000 kg/m3 [51], such that the ratio of the LL to LG critical

parameters qualitatively matches the predictions of the maximum-valence model. It is noted

that the behavior of sulfur is more complicated away from the LLPT since liquid sulfur contains

octamers that (above the lambda transition [140–144]) are to be broken down upon heating before

polymerization can occur [143]. Since in the considered formulation of the maximum-valence

model, it is approximated that atoms link together to form linear polymers, which mimics the

valence structure and bond formation of sulfur in the vicinity of the LLPT.

Also, the computed structure factor contains qualitative similarities with the LLPT in sul-

fur. In Fig. 2.11, the structural differences between the LDL and HDL phases is depicted through

the density correlation function, g(r), and the structure factor, S(q), for several densities at con-
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Figure 2.11: (a) The density correlation function g(r) and (b) the structure factor S(q) across
the liquid-liquid transition at T = 1.00 for densities of ρ = 0.65 (blue), ρ = 0.70 (orange),
ρ = 0.75 (green), ρ = 0.80 (red), ρ = 0.85 (purple), and ρ = 0.90 (black). In (a), the sharp peak,
around r = 1 (in units of σ), corresponds to the length of the covalent bond, which increases
upon increasing density. Simultaneously, in (b), the maximum of the structure factor (the first
peak) shifts to larger wavenumbers upon increasing density, while the second peak acquires a
characteristic bump, similar to what was recently observed in sulfur [51]. The divergence of the
structure factor at q = 0 indicates the divergence of the isothermal compressibility in the vicinity
of the LLCP. The insets (dashed boxes) highlight the behavior of the maximum of the correlation
function and second peak of the structure factor.

stant temperature near the liquid-liquid coexistence (computed for the atom cores). In Fig. 2.11a,

the g(r) shows a sharp peak corresponding to the covalent bond length r = 1.02σ, in the HDL

phase. Correspondingly, the structure factor shows a shift in the first peak to a larger wavenum-

ber q, while the second peak changes due to polymerization. This change is similar to what was

observed in a recent experiment on sulfur [51]. In addition, S(q) shows a dramatic increase as

q → 0 for the points corresponding to the equilibrium between two liquid phases (see Fig. 2.11b),

which is indicative of the divergence of the isothermal compressibility. It is noted that in this sec-

tion, a gas-LDL-HDL triple point is found, while in the recent experimental work on sulfur [51],

the solid-LDL-HDL triple point is observed. In principle, this triple point may be reproduced in

the maximum-valence model by fine-tuning the parameters, which requires further investigation.

Overall, the maximum-valence model demonstrates that when bonded atoms attract each
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other more strongly than to the non-bonded atoms or when the bonded and non-bonded atoms

repel each other, the LLPT is generated by the coupling between phase separation and the chem-

ical reaction. The maximum-valence model could also be used to study the LLPTs in systems

with other maximum valence numbers. For instance, when z = 1, the LLPT is induced by

dimerization (e.g. in hydrogen, as discussed in Sec. 2.2). For z ≥ 3, the LLPT could be in-

duced either by gelation or by molecular network formation [145]. For example, it could be

used to model the phase behavior of liquid phosphorous with z = 3 [60, 61] as well as sili-

con [66], silica [68, 166], or supercooled water with z > 3 [78, 147]. Further investigation of the

maximum-valence model for these coordination numbers z 6= 2, has been recently performed by

Shumovskyi and Buldyrev [167].

2.4 Liquid-Liquid Phase Transition in Fluids Exhibiting Water-Like Anomalies

In addition to the fluid-fluid phase transitions induced by interconversion reactions, such as

the dimerization in hydrogen (Sec. 2.2) and the polymerization in sulfur (Sec. 2.3), the intercon-

version may be induced by the structural change between two supramolecular states. For instance,

it has been hypothesized that the existence of a liquid-liquid phase transition in supercooled wa-

ter may be caused by the interconversion between a high-density state (five coordination number)

and a low-density state (four coordination number) of water [9,13,55,56,72–80]. In this section3,

a simple microscopic model is introduced and discussed. This model, which is referred to as the

“blinking-checkers” lattice model, is capable of describing the anomalies in the thermodynamic

properties of supercooled water and systems exhibiting similar anomalies (like silicon [63]). In

3This section was reproduced from Thomas J. Longo, Sergey V. Buldyrev, Mikhail A. Anisimov, and Frédéric
Caupin, J. Phys. Chem. B, 127, 3079 (2023); https://doi.org/10.1021/acs.jpcb.2c08901, with the permission of ACS
Publications.
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particular, this model is utilized to describe the anomalous behavior in the interfacial properties

of such systems [3].

The blinking-checkers model is a compressible binary lattice, thermodynamically equiva-

lent to the mixture of two lattice gases. In this model, “black” (state A) and “white” (state B)

species interact on a lattice, while interconversion is implemented by allowing the particles to

change their color by tuning the energy and entropy of interconversion. Previous lattice mod-

els, were able to reproduce the anomalous behavior of water, but required complex interactions

between species [168–170]. Phenomenologically, the blinking-checkers lattice model may be

applied to describe the structural interconversion of any two states, like that predicted for super-

cooled water. Depending on the interaction parameters between species, the blinking-checkers

model is able to reproduce the three possible scenarios of polyamorphic behavior, one of which

could occur in supercooled water. For instance, if the interaction between the two species is

strong, no liquid-liquid transition occurs, corresponding to the “singularity-free” scenario [168].

If the interaction between two species is weak (but not too weak), then a LLPT with a LLCP oc-

curs, which corresponds to the “second critical point” scenario [74]. However, if the interaction

is very weak, then a LLPT occurs, but the LLCP disappears (as it lies in the unstable region),

which corresponds to the “critical point free” scenario [171, 172].

2.4.1 Blinking-Checkers Lattice Model

Consider a compressible binary-lattice of fixed total volume, V , where each of theN lattice

sites can either be empty or occupied by one particle of two types (A and B). The numbers of

particles of type A and B are NA and NB, respectively. The number density is ρ = (NA +NB)/N
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and the fraction of particles of type B in the mixture is x = NB/(NA + NB). The interactions of

each particle with its neighbors is given by interaction parameters between each particle type of

the form, εAA, εBB, and εBA. There is no interaction with empty sites. The total Gibbs energy, in

the form of Eq. (2.2), is adopted, in which the Gibbs energy of pure species A, the Gibbs energy

change of reaction, and the Gibbs energy of mixing are given in the forms

µ̂◦A = −2ρεAA + T̂ ln

(
ρ

1− ρ

)
(2.24)

ĜBA = −T̂ lnK = ê− ŝT̂ + v̂P̂ (2.25)

Ĝmix = T̂ [x lnx+ (1− x) ln(1− x)]− 2ρεx(1− x) (2.26)

where ε = εAA + εBB − 2εBA and v̂P̂ = 2ρ(εBB − εAA). In this model, all units are expressed

in a dimensionless form relative to the species B - species B interaction energy, εBB. Thus, the

units of energy, temperature, pressure, and surface tension are, respectively, εBB/2, εBB/(2kB),

εBB/(2`
3), and εBB/(2`

2), in which ` is the length of a lattice cell and kB is adopted as kB = 1.

The temperature and pressure are reduced by the critical temperature or pressure of a pure system

consisting of only species B as T̂ = T/T B
c in which T B

c = εBB/(2kB) and P̂ = P/P B
c in which

P B
c = εBB/(2`

3). Note that upon comparing the Gibbs energy change, Eq. (2.25), with that of

the general case, Eq. (2.9), ĜBA in the blinking-checkers lattice model is the simplest possible

approximation of the Gibbs energy change of reaction.

In lattice models, it is often more convenient to use the Helmholtz energy instead of the

Gibbs energy, since the volume of each lattice site is constant. Thus, since the Gibbs energy

per lattice site, G = Gt/N , is related to the Helmholtz energy per lattice site, F = Ft/N , via

a Legendre transform of the form G = F + PV , where PV is a constant, then the Helmholtz
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Figure 2.12: Density-temperature and pressure-temperature phase diagrams for the blinking-
checkers model with εAA = 1.6, εBB = 2.0, εAB = 1.08, ê = 3, and ŝ = 4. The liquid-
vapor coexistence (blue curves) terminates at the liquid-vapor critical point, LVCP. The liquid-
liquid coexistence (red curves) terminates at the liquid-liquid critical point, LLCP. The limits
of thermodynamic stability (spinodals) are given by the dashed curves. In (a,b), the dotted line
corresponds to the condition, x = 1/2, which qualitatively separates the regions enriched either
by species A (at low temperatures and low densities) or species B (at high temperatures and high
densities).

energy may be obtained from the integral of the Gibbs energy, Eqs. (2.2), with respect to density.

The reduced Helmholtz energy per lattice site, f̂ = F/(NkBTc), in the blinking-checkers

model is given by

f̂(T, ρ, x) =ρx
(
ê− T̂ ŝ

)
− ρ2[εBBx

2 + εAA(1− x)2 + 2εBAx(1− x)]

+ T̂ [ρx lnx+ ρ(1− x) ln(1− x)] + T̂ [ρ ln ρ+ (1− ρ) ln(1− ρ)]

(2.27)

The three terms in square brackets in Eq. (2.27) describe the contribution to the free energy

from the energy of interactions, the entropy of mixing of the two species, and the entropy of

mixing of the occupied and empty sites. The condition for chemical-reaction equilibrium defines
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the equilibrium concentrations (molecular fractions) of species B, x = xe(T, ρ), such that the

interconverting binary mixture thermodynamically behaves as a single component fluid.

Figure 2.12(a) and (b) illustrates the ρ-T and P -T phase diagram of the blinking-checkers

lattice for an example set of interaction parameters (εAA = 1.6, εBB = 2.0, and εAB = 1.08) and

interconversion-reaction parameters (ê = 3 and ŝ = 4). For this choice of the energy and the

entropy of reaction, we obtain a negative slope for the liquid-liquid phase transition, similar to

that predicted for supercooled water. The line that qualitatively separates the region enriched by

species 1, at low temperatures and low densities (referred to as “L1”), from the region enriched by

species 2, at high temperatures and high densities (referred to as “L2”), is indicated by the dotted

line in Fig. 2.12(a,b). Furthermore, for this set of interaction parameters, two critical points and

a “bottleneck” in the liquid-vapor coexistence are observed. The ρ-T and x-T phase diagrams

for seven systems are illustrated in Fig. 2.13(a,b). Note that for different sets of parameters, one

may obtain multiple fluid-fluid critical points, representing the more complex phase behavior of

polyamorphic fluids.

The Helmholtz energy of the non-reacting binary lattice model, f̂ , Eq. (2.27), may be

expressed through the partial densities, ρB = ρx and ρA = ρ(1− x), as given by

f̂(T̂ , ρA, ρB) =ρB

(
ê− T̂ ŝ

)
− (ρA + ρB)(εAAρA + εBBρB) + ερAρB

+ T̂ [ρA ln ρA + ρB ln ρB + (1− ρA − ρB) ln(1− ρA − ρB)]

(2.28)
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The chemical potentials of each species in solution is given by

µ̂B =
∂f̂

∂ρB

∣∣∣∣
ρA,T̂

=
(
ê− T̂ ŝ

)
− 2εBBρB − (εAA + εBB − ε)ρA + T̂ ln

(
ρB

1− ρA − ρB

)
(2.29)

µ̂A =
∂f̂

∂ρA

∣∣∣∣
ρB,T̂

= −(εAA + εBB − ε)ρB − 2εAAρA + T̂ ln

(
ρA

1− ρA − ρB

)
(2.30)

The difference between the chemical potentials, µ̂BA = µ̂B − µ̂A, for the non-reacting binary

lattice model in solution is given by

µ̂BA =
(
ê− T̂ ŝ

)
+ 2(εAA − εBA)ρA − 2(εBB − εBA)ρB + T̂ ln

(
ρB

ρA

)
(2.31)

The chemical-reaction equilibrium condition requires, µ̂BA = 0, or equivalently ∂f̂/∂x|T̂ ,ρ = 0.

2.4.2 Virtual Critical Line in Interconverting Mixtures

If interconversion does not occur, the blinking-checkers model describes a compressible

binary mixture, which may exhibit liquid-vapor and liquid-liquid coexistence, as well as the

corresponding critical lines [10]. Consider a point on a critical line with temperature, Tc, density,

ρc, and type A particles’ molecular fraction, xc. In a fixed volume, V , the corresponding critical

isochore, at fixed composition, contains a fixed number of particles A and B, given by ρcxcV and

ρc(1 − xc)V , respectively. At temperatures below Tc, the system will separate into two phases,

α and β (which could be liquid and vapor or liquid and liquid). For phase i = α or β, let ρi, xi,

and Vi be the density, type A fraction, and volume, respectively. At each T ≤ Tc, the six values

(ρi, xi, Vi)i=α,β are fully determined by three conservation equations (one for volume and two for

mass), and three equilibrium conditions (two for the chemical potentials and one for the pressure)
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Figure 2.13: Liquid-vapor (a,b) and liquid-liquid (c,d) coexistence curves for the seven systems
with εAA = 1.6, εBB = 2.0, e = 3, s = 4, and with various values of εBA: εBA = 1.00 (blue),
εBA = 1.04 (orange), εBA = 1.08 (green), εBA = 1.12 (red), εBA = 1.16 (purple), εBA = 1.20
(pink), and εBA = 1.24 (gray). The critical points, indicated by the stars in (a,b) and open
circles in (c,d), are the unique liquid-vapor (LVCP) or liquid-liquid (LLCP) critical points in the
interconverting system, referred to as “actual” critical points. As also indicated in Fig. 2.12,
species A is enriched in the low-density, low-temperature region, while species B is enriched
in the high-density, high-temperature region. For the system with εBA = 1.00, the dashed blue
curves in (c,d) indicate the liquid-vapor coexistence, while in (a-d), the dotted blue line indicates
the discontinuity at the triple point.
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Table 2.2: Liquid-vapor critical points of interconverting systems, referred to as “actual” critical
points, for the seven systems considered in this section (with εAA = 1.6, εBB = 2.0, ê = 3, and
ŝ = 4).

εBA T act
c ρact

c xact
c P act

c

1.00 0.905 0.548 0.174 0.208
1.04 0.900 0.546 0.183 0.204
1.08 0.896 0.544 0.193 0.201
1.12 0.893 0.541 0.202 0.198
1.16 0.890 0.538 0.211 0.195
1.20 0.889 0.534 0.219 0.192
1.24 0.888 0.531 0.227 0.189

as

ρVxVυV + ρLxLυL = ρx (2.32)

where ρV, xV, ρL, and xL are the liquid and vapor coexisting values of the density and concen-

tration, while υV and υL are the volumes of the liquid (L) or vapor (V) phases. Eliminating the

volumes via υV + υL = 1 and ρVυV + ρLυL = ρ in Eq. (2.32), gives the overall concentration

and density in terms of just the coexisting parameters as

xVρρV − xLρρL + xLρLρV − xVρLρV = xρ(ρV − ρL) (2.33)

Equation (2.33) defines the overall density and concentration for any set of coexisting densities

and concentrations.

As discussed in Section 2.1, when interconversion takes place, the system (in terms of

the Gibbs Phase Rule [173]) thermodynamically behaves as a single component fluid, follow-

ing the given paths along liquid-vapor or liquid-liquid coexistence in the two phase region. It

should be emphasized that after the interconverting system reaches equilibrium, the thermody-
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Table 2.3: Liquid-liquid critical points (LLCP) for the three systems exhibiting liquid polyamor-
phism and a LLCP (with εAA = 1.6, εBB = 2.0, ê = 3, and ŝ = 4).

εBA T act
c ρact

c xact
c P act

c

1.04 0.667 0.851 0.419 0.211
1.08 0.660 0.904 0.463 0.358
1.12 0.654 0.958 0.488 0.726

namic properties, being state functions, are the same as a non-reacting binary mixture with the

same equilibrium composition, temperature, and pressure. Therefore, for each point along the

interconversion path, there is a corresponding unique critical point of the non-reacting binary

mixture, which is connected to this point on the path by a critical isochore for the non-reacting

mixture at fixed composition. Thus, the corresponding binary-mixture critical point is referred to

as the “virtual” (i.e. invisible along the interconversion path) critical point, while the intercon-

verting system’s unique liquid-vapor critical point (LVCP) is referred to as the “actual” LVCP.

Similarly, for systems exhibiting interconversion, the single liquid-liquid critical point (LLCP),

is referred to as the actual LLCP. It should be emphasized that not only the phase diagram of

the interconverting mixture is characterized by unique fluid-fluid critical points (like that of a

single-component fluid), but the response functions, being second derivatives of the free energy

at µ12 = 0, also exhibit the singularities characteristic of single-component fluids.

The virtual critical points are defined for the binary mixture at each overall concentration,

x, and overall density, ρ, through the conservation equations, Eqs. (2.32) and (2.33). Introducing

the notation, f̂y = ∂f̂/∂y, the critical line is determined from the following thermodynamic

stability conditions,

f̂ρBρB f̂ρAρA − f̂ 2
ρBρA

= 0 (2.34)
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Figure 2.14: Illustration of the thermodynamic path selected by the interconversion reaction for
ê = 3 and ŝ = 4 at constant volume, V , and at constant number of occupied lattice sites,
N1 +N2, represented through (a) the liquid branch of the liquid-vapor temperature-concentration
coexistence (see Fig. 2.13b), and (b) the activity, a = 1/[1 + e−GBA/T̂ ], for the systems with
different interaction parameters: εBA = 1.00 (blue), εBA = 1.04 (orange), εBA = 1.08 (green),
εBA = 1.12 (red), εBA = 1.16 (purple), εBA = 1.20 (pink), and εBA = 1.24 (gray). For each
system, the liquid-vapor critical line (LVCL) is shown by the dashed curves, while the collapsed
coexistence, in (a), is illustrated by the black curve. The insets show the LV critical points for
each scenario. Note that for the system with εBA = 1.00, the thermodynamic path crosses through
the triple point, indicated by the dotted line in (a).

f̂ρBρBρB

(
f̂ρBρA

f̂ρBρB

)3

− 3f̂ρBρBρA

(
f̂ρBρA

f̂ρBρB

)2

+ 3f̂ρBρAρA

(
f̂ρBρA

f̂ρBρB

)
− f̂ρAρAρA = 0 (2.35)

Collectively, these critical points, realized only for the non-reacting binary system, make up the

virtual critical line in the reacting system. At each point along the thermodynamic path, the

behavior of the thermodynamic properties, being state functions, are connected to each unique

virtual critical point by critical isochores at constant composition.

An illustration of the thermodynamic path along liquid-vapor equilibrium in the intercon-

verting fluid for seven different sets of interaction parameters, εBA, is shown in Fig. 2.14(a). In
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the coexisting liquid and vapor phases, there are two branches of the density and concentration,

given by ρcxc
L (T ), ρcxc

V (T ), xcxc
L (T ), and xcxc

V (T ), see Fig. 2.13(a,b) for details. For simplicity, in

Fig. 2.14(a) only the liquid branch of the liquid-vapor coexistence is shown, see Fig. 2.13(b) for

both branches. The liquid-vapor critical lines for the seven binary mixtures with the same inter-

action parameters are also shown (dashed lines). Fig. 2.14(b) displays the same, but replacing the

abscissa, x, by the “activity”, a = 1/[1 + e−ĜBA/T̂ ], [174–176] where ĜBA is given by Eq. (2.25).

Thus, for each point along the thermodynamic path selected by interconversion, the activity is

restricted by Eq. (2.25), such that for the seven systems considered in this section, the activities

collapse into the line shown in Fig. 2.14(b), as only εBA is varied in each system.

The proximity of the virtual critical line affects the properties along coexistence in the

interconverting fluid, causing, in particular, the bottlenecked shape of the ρ-T liquid-vapor co-

existence (Fig. 2.13). For the chosen selection of the interaction parameters, this particular ef-

fect is pronounced because the difference between εAA and εBB is significant (εAA = 1.6 and

εBB = 2.0). In addition, the asymmetry of the liquid-vapor coexistence occurs due to the exis-

tence of the liquid-liquid critical point, and even occurs in the singularity-free scenario where the

liquid-liquid critical point is moving to indefinite pressure.

2.4.3 Anomalies of Interfacial Properties

The possibility of anomalous behavior of the liquid-vapor surface tension, σLV, of super-

cooled water has been a topic of long-standing interest. In 1951, an inflection point in the tem-

perature dependence of σLV was reported to occur near 0 °C [177], but later studies, showing

larger uncertainties, cast doubts on the early measurements [178, 179]. Only recently, the highly
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accurate studies by Hruby and coworkers became available [84–87]. Initially, in Refs. [84–86]

it was concluded that no anomaly occurred in σLV(T ) down to −26 °C; however, the results of

the latest experiment [87], reaching −31.4 °C, suggest that an inflection point might be possible.

Theoretical studies support the existence of anomalies in liquid-vapor surface tension of super-

cooled water [169, 180–185]. Using two closely related microscopic models of water-like asso-

ciating fluids, Feeney and Debenedetti [180] predicted either an inflection point or a maximum,

depending on the details and assumptions of the approach. Hruby and Holten [169] proposed

a two-state model able to generate an inflection point in the liquid-vapor surface tension of wa-

ter. The inflection point has also been predicted by molecular dynamics simulations with several

water potentials, such as SPC/E [181, 182], WAIL [183], and TIP4P/2005 [182, 184, 185].

To model the fluid interfaces, density gradient theory (DGT) is utilized [186–190], in which

the free energy of the system is expanded in a Taylor series up to second-order in terms of deriva-

tives of the concentration and density with respect to the coordinate perpendicular to the inter-

face [190]. In this subsection, the anomalous behavior of the interfacial properties in the blinking-

checkers lattice model is investigated. Also, the conditions for observing either an inflection point

or an extrema in the liquid-vapor interfacial tensions is discussed.

2.4.3.1 Interfacial Properties via Density Gradient Theory

Following the ideas presented by van der Waals [191, 192], and later elaborated by Cahn

and Hilliard [193], the interfacial tension of a binary fluid may be obtained [189, 194, 195] by

assuming a local spatial-dependent density and concentration, ρ = ρ(r′) and x = x(r′), where r′

is the spatial coordinate, and generating a Taylor series around a neighboring point r to second-
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order, yielding

ρ(r′) = ρ(r) + (r′ − r)∇ρ(r) +
1

2
(r′ − r)2∇2ρ(r) (2.36)

x(r′) = x(r) + (r′ − r)∇x(r) +
1

2
(r′ − r)2∇2x(r) (2.37)

The total interaction energy, E, is defined through each of four possible species interactions by

integrating over r′. For the species B - species B interaction (denoted as “BB”), assuming all

interaction parameters are independent of position, this gives EBB = −εBB
∫

dr′ [(r′)x(r′)ρ(r′)].

With use of Eqs. (2.36) and (2.37), this gives the following expressions for the four interaction

energies:

E
(2)
BB = −εBB`

2

(
∇x∇ρ+

1

2

[
x∇2ρ+ ρ∇2x

])
(2.38)

E
(2)
BA = −εBA`

2

(
−∇x∇ρ+

1

2

[
(1− x)∇2ρ− ρ∇2x

])
(2.39)

E
(2)
AB = −εAB`

2

(
∇x∇ρ+

1

2

[
x∇2ρ+ ρ∇2x

])
(2.40)

E
(2)
AA = −εAA`

2

(
−∇x∇ρ+

1

2

[
(1− x)∇2ρ− ρ∇2x

])
(2.41)

where the superscript “(2)” indicates only the contribution to the interaction energy from the

second-order gradient terms, the notation “(r)” has been dropped for simplicity, and ` = |r′ − r|

is the distance between two lattice cells. Note that all odd terms go to zero upon integration over

r′ due to the symmetry of the lattice.

It is assumed that the gradient terms only contribute to the local internal energy per lattice

site, u = U/N , and do not effect the local entropy. The internal energy per lattice site is given by
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u =
1

2

∫
dr [ρx(EBB + EBA) + ρ(1− x)(EAB + EAA)] (2.42)

Simplifying Eq. (2.42) with use of Green’s first identity [196] gives the contribution from the

interactions of the surface to the excess free energy. Thus, one obtains

σ =

∫ [
∆Ω(x, ρ, T ) +

1

2
κx(ρ)|∇x|2 +

1

2
κρ(x)|∇ρ|2 + κρ,x(ρ, x)∇ρ · ∇x

]
dr (2.43)

where κx, κρ, and κρ,x are the microscopic “influence” coefficients. ∆Ω is the excess grand

potential per lattice site, given by [189]

∆Ω(x, ρ, T ) = f̂(x, ρ, T )− ρxµ̂cxc
B − ρ(1− x)µ̂cxc

A + P̂ cxc (2.44)

where µ̂A, µ̂B, and P̂ are the chemical potentials of species A and B per lattice site in solution and

the pressure per lattice site, respectively, while the superscript “cxc” indicates that the quantity is

evaluated along the phase coexistence. The three influence parameters are given by

κx(ρ) =
1

2
`2ρ2ε (2.45)

κρ(x) =
1

2
`2
[
εBBx

2 + 2εBAx(1− x) + εAA(1− x)2
]

(2.46)

κρ,x(ρ, x) =
1

2
`2ρ [εBBx+ εBA(1− 2x)− εAA(1− x)] (2.47)

It is noted that there are three limits that may be observed for Eq. (2.43), in which the system

reverts to either the lattice-gas or binary-lattice models [9]. For these three cases, the integrand
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of Eq. (2.43) becomes: In the limit of pure species B (x = 1),

∆Ω(x = 1, ρ, T ) +
1

4
`2εBB|∇ρ|2 (2.48)

In the limit of pure species A (x = 0),

∆Ω(x = 0, ρ, T ) +
1

4
`2εAA|∇ρ|2 (2.49)

In the limit of very high density (ρ = 1),

∆Ω(x, ρ = 1, T ) +
1

4
`2ε|∇x|2 (2.50)

Furthermore, the equilibrium condition is found by the minimization of Eq. (2.43) with

respect to density or concentration via the Euler-Lagrange derivative [192,194,195], which yields

two expressions,

∂(∆Ω)

∂ρ
+

1

2

∂κx
∂ρ
|∇x|2 +

1

2

∂κρ
∂x
∇x∇ρ = κρ∇2ρ+ κx,ρ∇2x (2.51)

∂(∆Ω)

∂x
+

1

2

∂κρ
∂x
|∇ρ|2 +

1

2

∂κx
∂ρ
∇x∇ρ = κx,ρ∇2ρ+ κx∇2x (2.52)

where the fact that ∂κx,ρ/∂ρ = (1/2)∂κρ/∂x and ∂κx,ρ/∂x = (1/2)∂κx/∂ρ are used. Upon

integration, these equations give the equilibrium condition for the interfacial tension [189, 194,

195]

∆Ω(x, ρ, T ) =
1

2
κx(ρ)|∇x|2 +

1

2
κρ(x)|∇ρ|2 + κρ,x(ρ, x)∇ρ · ∇x (2.53)
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Figure 2.15: Liquid-vapor (a,b) and liquid-liquid (c,d) diameters of the density, Eq. (2.60), and the
concentration, Eq. (2.61), as a function of the distance to the virtual LVCL (or LLCL) along the
thermodynamic path selected by interconversion for systems with εAA = 1.6, εBB = 2.0, ê = 3,
ŝ = 4, and with various values of εBA: εBA = 1.00 (blue), εBA = 1.04 (orange), εBA = 1.08
(green), εBA = 1.12 (red), εBA = 1.16 (purple), εBA = 1.20 (pink), and εBA = 1.24 (gray). In
(a-d), the dotted blue lines indicate the discontinuity for the system with εBA = 1.00 at the triple
point.

To determine the interfacial profiles, a variational approach is adopted based on a family of anzatz

functions, choosing the optimal one by minimizing the interfacial tension, given by Eq. (2.43).
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Also, exact numerical solutions for the profiles are obtained by solving the equilibrium condition

for the surface tension, Eq. (2.53). It is found that the variational approach is enough to capture

the anomalous behavior of the interfacial properties with sufficient accuracy (see Appendix A

for details). Throughout this subsection, the variational results are reported, based on the Fisher-

Wortis profile, which accounts for the thermodynamic asymmetry between the two coexisting

phases [197, 198]. A comparison with an alternative symmetric ansatz is also discussed in Ap-

pendix A. The Fisher-Wortis ansatz is given in normalized form as a combination of symmetric

and asymmetric components for both the density and concentration (molecular fraction) profiles

as

ρ̂(ẑ) =
ρ(ẑ)− ρα
ρβ − ρα

=ρ̂sym(ẑ) + ∆ρ̂dρ̂asym(ẑ) (2.54)

x̂(ẑ) =
x(ẑ)− xα
xβ − xα

=x̂sym(ẑ) + ∆x̂dx̂asym(ẑ) (2.55)

where the symmetric contributions to the profiles are given by

ρ̂sym(ẑ) =
1

2

[
tanh

(
ẑ

ζ̂

)
+ 1

]
(2.56)

x̂sym(ẑ) =
1

2

[
tanh

(
ẑ + δ̂

ζ̂

)
+ 1

]
(2.57)
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and where the asymmetric contributions to the profiles are given by

ρ̂asym(ẑ) = tanh2

(
ẑ

ζ̂

)
+

ln
[
cosh

(
ẑ

ζ̂

)]
cosh2

(
ẑ

ζ̂

) − (ρβ − ρα) (2.58)

x̂asym(ẑ) = tanh2

(
ẑ + δ̂

ζ̂

)
+

ln
[
cosh

(
ẑ+δ̂

ζ̂

)]
cosh2

(
ẑ+δ̂

ζ̂

) − (xβ − xα) (2.59)

in which ẑ = z/` is the normalized coordinate perpendicular to the planar interface, the subscripts

“α” and “β” indicate the coexisting phases, ζ̂ = ζ/` is the normalized interfacial thickness, and

δ̂ = δ/` is the normalized shift between the concentration and density profiles. The coefficient

of the asymmetric terms in Eqs. (2.54) and (2.55) is the reduced diameter for the density and

concentration, given by

∆ρ̂d =
ρβ + ρα

2ρc
− 1 (2.60)

∆x̂d =
xβ + xα

2xc
− 1 (2.61)

where ρc and xc are the critical points determined from the non-reacting blinking-checkers model,

referred to as virtual critical points, see Sec. 2.4.2. The diameters with respect to the virtual

critical points are illustrated in Fig. 2.15 for each system investigated. Relative to the liquid-vapor

coexistence, for the liquid-liquid coexistence, the diameters are small, such that the asymmetric

contribution to the liquid-liquid interfacial profiles is also minimal.

Due to the lack of a theory to account for the interfacial profile asymmetry in compressible

binary fluids, the Fisher-Wortis ansatz is adopted, even though it was originally developed for a

single component substance [197, 198]. This ansatz contains only two free parameters, ζ̂ and δ̂,
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less than the symmetric ansatz, and it partially reproduces the asymmetry of the exact solution

(see details in Appendix A).

2.4.3.2 Liquid-Vapor Interfacial Tensions

Using the Fisher-Wortis ansatz, the liquid-vapor interfacial tension along the thermody-

namic path (selected by interconversion) as a function of temperature is presented in Fig. 2.16(a)

for seven systems. It is found that all scenarios exhibit either an inflection point or two ex-

trema. Of the two scenarios that exhibited an inflection point, but not extrema, (εBA = 1.20

and εBA = 1.24) both were “singularity free scenarios” (exhibiting no liquid-liquid phase transi-

tion) [10] whose thermodynamic path was relatively far away from the liquid-vapor critical line,

see Fig. 2.14. Each of the remaining scenarios exhibit a maximum and minimum depending on

the proximity of the selected thermodynamic path to the liquid-vapor critical line, including the

singularity-free system with εBA = 1.16. The scenarios for which the liquid-vapor coexistence

was interrupted by the triple point (εBA = 1.00) exhibit a discontinuity of the liquid-vapor surface

tension at this point.

The reduced interfacial tension, expressed through the distance to the virtual LV critical

temperature ∆T̂ = 1− T/[Tc(x)], is illustrated in Fig. 2.16(b). Systems exhibiting two extrema

in their interfacial tension demonstrate a “looping” pattern as the thermodynamic path approaches

and then deviates from the virtual LVCL. As the interconverting systems approach their actual LV

critical points, the surface tension asymptotically follows the meanfield power law σ ∼ |∆T̂ |3/2,

as presented in Fig. 2.17(a).

In the region where the surface tension reaches a minimum, the interfacial thickness, pre-
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Figure 2.16: The liquid-vapor interfacial tension as a function of temperature (a), and also
presented in reduced units (b), for the system with εBA = 1.00 (blue), εBA = 1.04 (orange),
εBA = 1.08 (green), εBA = 1.12 (red), εBA = 1.16 (purple), εBA = 1.20 (pink), and εBA = 1.24
(gray). In (b), the critical temperature is given by the “virtual” critical point (for the non-reactive
binary mixture) for each concentration along the thermodynamic path selected by the intercon-
version reaction. The blue arrows indicate the direction of warming. (c) The reduced interfacial
thickness, ζ̂ = ζ/`, and (d) the reduced relative distance between the concentration and density
profiles, δ̂ = δ/`. In (a-d), the dotted lines indicate the discontinuity of the interfacial properties
for the system with εBA = 1.00 at the triple point, shown by the vertical bars in (c,d).
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Figure 2.17: (a) The behavior of the liquid-vapor interfacial tension follows the power law, σ =
σ0|∆T̂ |3/2, where the amplitude was found to be σ0 = 0.71, asymptotically close to the actual
liquid-vapor critical temperature (see Table 2.2). (b) The behavior of the reduced liquid-vapor
interfacial thickness, ζ̂ = ζ/`, follows the power law, ζ̂ = ζ̂0|∆T̂ |−0.38, where the amplitude was
found to be ζ̂0 = 1.50 asymptotically close to the actual critical point.

sented in Fig. 2.16(c), correspondingly reaches a maximum. This phenomenon occurs since the

thermodynamic path approaches the virtual LVCL. A DGT treatment of the liquid-vapor inter-

face of real water [199] reported the possibility of a minimum in the temperature dependence of

the interfacial thickness (as observed in several cases here), depending on the equation of state

used to describe metastable water. Also, it should be noted that, in particular, for the system with

εBA = 1.00, the interfacial thickness exhibits a discontinuity at the triple point temperature (see

Table 2.5). It is estimated that the DGT approximation breaks down when the interface becomes

sharp. In this limit, the contribution to the free energy from the liquid-vapor interface is given

through Eq. (2.48), as (1/4)`2εBB|∇ρ|2, which upon integration over the volume of space gives,

σLV,shp ≈ εBB/8 = 0.2. This limit is reached around T = 0.5, where the interfacial thickness

becomes proportional to the size of the lattice cell, ζ̂ = 1. For each system in the vicinity of
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Figure 2.18: Asymptotic behavior of the liquid vapor coexistence for systems with εAA = 1.6,
εBB = 2.0, ê = 3, ŝ = 4, and with various values of εBA: εBA = 1.00 (blue), εBA = 1.04
(orange), εBA = 1.08 (green), εBA = 1.12 (red), εBA = 1.16 (purple), εBA = 1.20 (pink), and
εBA = 1.24 (gray). (a) The temperature-density LV coexistence follows the meanfield power law,
∆T̂ ∼ |∆ρ̂|2, where ∆T̂act = 1 − T/T act

c and T act
c is the actual critical temperature selected

by the interconverting path. Likewise, ∆ρ̂act = 1 − ρ/ρact
c , where ρact

c is the actual critical
density. (b) The temperature-average concentration LV coexistence follows the meanfield power
law, ∆T̂ ∼ |∆x̄act|2, where ∆x̄act = 1− x̄/xact

c , in which x̄ = (xL + xV)/2 and xact
c is the actual

critical concentration. (c,d) Illustrate, as an example, the asymptotic behavior of the system with
εBA = 1.08, in which (d) shows the asymptotic behavior of each branch of the concentration
coexistence.
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the liquid-vapor critical point, it was found that the interfacial thickness followed an asymp-

totic power law of the from ζ̂ ∼ |∆T̂ |−0.38, which deviates from the van der Waals meanfield

asymptotic power law [192], ζ̂ ∼ |∆T̂ |−0.5, for the thickness of the order-parameter interface,

Fig. 2.17(b). As predicted by the complete scaling theory [136,137,200], the order parameter for

the compressible binary mixture is a nonlinear combination of ρ and x. Thus, the discrepancy in

the asymptotic behavior of the interfacial thickness may be attributed to the assumption that the

thickness for the density and concentration profiles is the same as for the order parameter in the

Fisher-Wortis ansatz, see Eqs. (2.54) and (2.55).

The inflection points of the concentration and density profiles are related through the shift

δ, which was included in the concentration profile ansatz, Eq. (2.55). In the first-order approx-

imation, δ can be separated into symmetric and asymmetric contributions as, δ = δsym + δasym.

The symmetric contribution is proportional to the difference in the centers of each profile, δsym ∼

x[ẑ = 0]− ρ[ẑ = 0], while the asymmetric contribution is proportional to the difference in diam-

eters, δ ∼ ∆x̂d−∆ρ̂d. The effects of asymmetry on near-critical interfacial profiles in the scaling

theory of inhomogeneous fluids was considered in Ref. [201] In the region of the anomalous

behavior of the surface tension, this shift reaches a maximum as illustrated in Fig. 2.16(d). Simi-

larly to the interfacial thickness, the shift is also discontinuous at the triple point temperature (see

Table 2.5). Meanwhile, at the actual LV critical temperature δ approaches a finite value, as both

the density and concentration profiles become infinitely smooth and the numerical calculation

become uncertain due to the large fluctuations.
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2.4.3.3 Liquid-Liquid Interfacial Tensions

The liquid-liquid interfacial tensions were calculated for the four systems exhibiting liq-

uid polyamorphism (εBA = 1.00, εBA = 1.04, εBA = 1.08, and εBA = 1.12) with use of the

Fisher-Wortis ansatzes for the density and concentration profiles, Eqs. (2.54) and (2.55), and are

illustrated in comparison with the liquid-vapor interfacial tension in Fig. 2.19. It was found that

for three systems: (εBA = 1.00, εBA = 1.04, and εBA = 1.08), the liquid-liquid interfacial ten-

sion crosses that of the liquid-vapor, being larger for lower temperatures [180]. This is different

from the conclusion of Feeney and Debenedetti [180] that σLL is fundamentally lower than σLV at

the same temperature. Indeed, this behavior is observed when the bottleneck in the liquid-vapor

coexistence is absent, as in the case of Ref. [180], or not very deep, as in the blinking-checkers

model for the system with εBA = 1.12. Depending on the choice of parameters in the blinking-

checkers model, σLL may be large away from the LLCP; however, as the LLCP is approached,

the ratio σLL/σLV must vanish.

It should be noted that, for the liquid-liquid interfacial tension, the DGT is a good approxi-

mation everywhere as the liquid-liquid coexistence approaches infinite pressures before forming

a sharp interface between the two liquid phases. In the limit of a sharp liquid-liquid interface,

the contribution to the free energy from the liquid-liquid interfacial tension, σLL, is given through

Eq. (2.50), as (1/4)`2ε|∇ρ|2, which when integrated over space, gives σLL,shp ≈ ε/8. It is esti-

mated that a sharp interface forms where σshp ≈ ε/8, which goes from σshp ≈ 0.2 for the system

with εBA = 1.00 to σshp ≈ 0.17 for the system with εBA = 1.12, which is larger than any of

the liquid-liquid interfacial tensions observed in the model. For the system with εBA = 1.00, the

liquid-liquid interfacial tension is smaller than both the liquid A - vapor or the liquid B - vapor
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Figure 2.19: Comparison between the liquid-liquid (dashed curves) and liquid-vapor (solid
curves) interfacial tensions as a function of temperature for the system with εBA = 1.00 (blue),
εBA = 1.04 (orange), εBA = 1.08 (green), εBA = 1.12 (red). The dotted blue line indicates the
discontinuity in the liquid-vapor interfacial tension.

Figure 2.20: Liquid-liquid interfacial properties of the systems exhibiting liquid polyamorphism
with εAA = 1.6, εBB = 2.0, ê = 3, ŝ = 4, and with various values of εBA: εBA = 1.00 (blue),
εBA = 1.04 (orange), εBA = 1.08 (green), εBA = 1.12 (red). (a) the reduced thickness, ζ̂ =
ζ/` of the liquid-liquid interface, and (b) the reduced shift, δ̂ = δ/`, between the density and
concentration liquid-liquid profiles. In (a,b) the thickness and shift reach a finite value (marked
with a blue circle) at the triple point temperature.
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Figure 2.21: (a) The behavior of the liquid-liquid interfacial tension follows the meanfield power
law, σ = σ0|∆T̂ |3/2, (dashed lines) asymptotically close to the actual liquid-liquid critical tem-
perature (see Table 2.3). (b) The behavior of the reduced liquid-liquid interfacial thickness,
ζ̂ = ζ/`, follows the meanfield power law, ζ̂ = ζ̂0|∆T̂ |−1/2, (dashed lines). In (a,b) the sys-
tems exhibiting liquid polyamorphism and a liquid-liquid critical point are shown: εBA = 1.04
(orange), εBA = 1.08 (green), εBA = 1.12 (red), and the amplitudes of the asymptotic meanfield
power laws are provided in Table 2.4.

interfacial tensions (see Table 2.5 for details). The reduced interfacial thicknesses, ζ̂ , and the

reduced shifts between the concentration and density profiles, δ̂, are illustrated in Fig. 2.20. In

particular, it is noted that, for the systems that reach a liquid-liquid critical point: (εBA = 1.04,

εBA = 1.08, and εBA = 1.12), the liquid-liquid interfacial tension does not demonstrate any

anomalous behavior. Furthermore, the interfacial tensions and interfacial thicknesses follow

the predicted meanfield asymptotic power laws, see Fig. 2.21. Moreover, in the system with

εBA = 1.00, the liquid-liquid interfacial tension exhibits a minimum prior to the triple point

temperature.

57



Table 2.4: Asymptotic amplitudes of the liquid-liquid interfacial tension and liquid-liquid corre-
lation length of concentration fluctuations for the three systems exhibiting liquid polyamorphism
and a liquid-liquid critical point. The asymptotic meanfield behavior is illustrated in Fig. 2.21.

εBA σ0 ζ̂0

1.04 4.26 0.433
1.08 11.48 0.315
1.12 15.35 0.282

2.4.3.4 Interfacial Profiles

In this subsection, the interfacial profiles for density and concentration. Figure 2.22(a)

and (b) show the interfacial profiles predicted from the Fisher-Wortis ansatzes, Eqs. (2.54) and

(2.55), for the system with εBA = 1.08 at the temperatures that correspond to the maximum and

minimum of the LV interfacial tension. It is found that at the minimum, the interfacial profiles

are relatively symmetric, while at the maximum, the concentration profile contains a large asym-

metric contribution. The large asymmetry predicted by the Fisher-Wortis concentration ansatz

occurs since the diameter of the concentration, ∆x̂d, reaches a maximum at this temperature, see

Fig. 2.15.

For the system with εBA = 1.00, at the triple point temperature, TTP = 0.6843, all of

the interfacial properties exhibit a discontinuity (see Table 2.5). Since the interfacial tension

of the LB-V (low-density-liquid - vapor) interface is much larger than the other two interfacial

Table 2.5: The surface tension σ, normalized interfacial thickness ζ̂ = ζ/`, and normalized
shift δ̂ = δ/` for the three coexisting phases (liquid A, liquid B, and vapor) for the system with
εBA = 1.00 at the triple point temperature (T = 0.6843).

σ ζ̂ δ̂

LB-V 0.00793 8.242 3.203
LA-V 0.00334 5.372 2.145
LA-LB 0.00321 6.040 0.983
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Figure 2.22: Normalized density and concentration liquid-vapor profiles as a function of the
coordinate perpendicular to the planar interface, ẑ = z/`, given by Eqs. (2.54) and (2.55) for the
system with εAA = 1.6, εBB = 2.0, εBA = 1.08, ê = 3, and ŝ = 4 at the two temperatures (a,b)
that correspond to the two extrema of the liquid-vapor interfacial tension (shown in Fig. 2.16).
Normalized (c) density and (d) concentration profiles for three-phase coexistence at the triple
point, TTP = 0.6843, for the system with εAA = 1.6, εBB = 2.0, and εBA = 1.00.
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Figure 2.23: Interfacial profiles of species B, ρB = ρx, in the blinking-checkers model demon-
strate surface enrichment near the TP temperature, TTP = 0.68429. (a) Surface enrichment
of species B for the system with εBA = 1.00. The colored curves indicate temperatures from
T = 0.68989 to T = TTP in steps of ∆T̂ = −0.0008 in order of purple to red. The black curves
are T = 0.68389 (dashed) and T = 0.68309 (solid). (b) Surface enrichment of species B for the
system with εBA = 1.04. The curves are T = 0.6882 to T = 0.6826 in steps of ∆T = −0.0008
(blue to pink). In (a,b), the black arrows indicate the direction of decreasing temperature. Note
that while the transition of a surface enriched profile (T > TTP) to a smooth profile (T < TTP) is
discontinuous in the system with εBA = 1.00, it is continuous in the system with εBA = 1.04.

tensions, then in accordance with Antonov’s rule [192], σLA,V+σLA,LB < σLB,V, it is predicted that

the LB-V interface will be enriched (wetted) by the LA (high-density-liquid) phase to reduce the

energetically unfavorable LB-V interface. This indicates that the non-monotonic behavior of the

liquid-vapor interfacial tension may be caused by the surface enrichment of the LB-V coexistence

by species A (see Fig. 2.23). Notwithstanding this complete wetting phenomenon, it is displayed

in Fig. 2.22(c) and (d) that the interfacial profiles for the density and concentration of the three

coexisting phases at the triple point.
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2.4.3.5 Conditions for Anomalous Interfacial Behavior

It should be noted that, based on the findings presented in the previous subsections, no

general conclusion about the absence of a liquid-liquid transition can be drawn from the existence

of an inflection point in the liquid-vapor interfacial tension. For instance, on one hand, in the

present description, the inflection point is observed only for singularity free scenarios; on the

other hand, the TIP4P/2005 model of water exhibits an inflection point [182, 184, 185], while

it is thought to possess a liquid-liquid transition terminated by a critical point [91, 202, 203].

It is emphasized that the anomaly in the temperature dependence of the interfacial tension is

linked to the anomaly in the liquid-vapor coexistence along the thermodynamic path selected

by interconversion, and originates in the region where the equilibrium fraction of species, xe,

most dramatically changes, a concept that was first suggested by Hruby and Holten [169]. It

follows from the results discussed in the previous subsections that the shape of the LV coexistence

is affected by two factors: the proximity to the virtual LVCL and the existence of the liquid-

liquid phase transition. The anomalies in supercooled water can be interpreted as the results

of the interconversion of two supramolecular structures. This interconversion occurs only at

low temperatures, extremely far away from the liquid-vapor critical point. Therefore, the LV

coexistence in supercooled water, because of the maximum of the liquid density at 4 °C, exhibits

a valley only in its liquid branch [78]. Consequently, the LV surface tension may exhibit a

maximum or an inflection point depending on the depth of the valley [180].
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2.5 Conclusion of Chapter 2

It has been found that the fluid-phase behavior is significantly affected by molecular inter-

conversion. The two-state thermodynamic approach provides a general framework to describe

fluid-fluid phase transitions in a variety of polyamorphic fluids. This approach considers the

interconversion of two species or two supramolecular structures to be generic cause of fluid

polyamorphism, for example: the dimerization in hydrogen (Sec. 2.2), the polymerization in

sulfur (Sec. 2.3), the folding-unfolding of proteins, or the structural transition in polyamorphic

supercooled water (Sec. 2.4). It should be emphasized that even without an explicit chemical

reaction between two species, like that in supercooled water, polyamorphism may be modeled

through the framework of two-state thermodynamics.
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Chapter 3: Phase Formation Affected by Species Interconversion

In this chapter1, based on the ideas of the Cahn-Hilliard theory of spinodal decomposi-

tion [193], a phenomenological theory to describe the nonequilibrium dynamics of phase forma-

tion in interconverting mixtures is introduced. This approach is referred to as the “generalized

Cahn-Hilliard theory.” The developed approach goes beyond Cahn-Hilliard’s theory by not only

including the interconversion of species, but also by describing the time-evolution of the system

into the coarsening and the nucleation regimes. Polyamorphic systems, with non-zero energy and

volume of reactions, as well as the effects of fluctuations of the order parameter in the critical

region are also investigated.

3.1 Generalizing Cahn-Hilliard Theory

In this section, the Cahn–Hilliard theory of spinodal decomposition is generalized to in-

clude the effects of two types of molecular interconversion: natural, in which the interconversion

of species mirrors the equilibrium “flipping” of spins in the Ising model, and forced, in which an

external force causes the alternative molecules to stay in equal amounts. This behavior is cap-

tured by the spatial and temporal evolution of the order parameter, given through the continuity

1This chapter was reproduced from Thomas J. Longo and Mikhail A. Anisimov, J. Chem. Phys., 156,
084502 (2022); https://doi.org/10.1063/5.0081180 and from Thomas J. Longo, Nikolay A. Shumovskyi, Salim
M. Asadov, Sergey V. Buldyrev, and Mikhail A. Anisimov, J. Non-Cryst. Solids: X, 13, 100082 (2022);
https://doi.org/10.1016/j.nocx.2022.100082 with the permission of AIP Publishing and Elsevier, respectfully.
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equation. Also, the experimental and computational conditions required to observe the two ma-

jor predictions of the theory, phase amplification (under equilibrium conditions) and microphase

separation (under nonequilibrium conditions), are discussed.

3.1.1 Conserved and Nonconserved Order-Parameter Dynamics

The continuity equation for an incompressible binary mixture is given in the general form [94,

107, 117, 118, 204–207],

∂ϕ

∂t
+∇ · JC = JNC (3.1)

where JC is the mutual diffusion flux associated with the conserved component of the order

parameter, and it is related to the gradient of the chemical potential by JC = −M∇µ̂, in which

M is the molecular mobility and µ̂ is the chemical potential given by Eq. (2.10). Similarly,

the flux associated with the nonconserved component of the order parameter is JNC, which (for

reaction-diffusion systems) is expressed through the reaction rate [118, 206, 207].

In Cahn-Hilliard’s theory of spinodal decomposition, when there is only mutual diffusion

(no interconversion of any form), the number of molecules of a particular species is conserved

such that JNC = 0 and Eq. (3.1) reduces to the classical Cahn-Hilliard equation [102]

∂ϕ

∂t
= M∇2µ̂ (3.2)

This equations describes the dynamics of a system that will evolve toward phase separation when

quenched into the unstable region (under the spinodal). This equation can be analytically solved

with use of Fourier analysis to determine the phase domain growth rate (also, referred to as the

64



“amplification factor”) [102], which, in the Cahn-Hilliard theory, is given by

ω(q) = −Dq2(1− ξ2q2) (3.3)

where ξ is the correlation length of concentration fluctuations and D is the mutual diffusion

coefficient; in the meanfield approximation, ξ2 = κ/|χ̂−1
q=0| and D = Mχ̂−1

q=0. In the unstable

region (under the spinodal), the susceptibility is negative, the correlation length by definition is

positive, and, consequently, the mutual diffusion coefficient is negative. Hence, mutual diffusion

is the driving force for phase separation through spinodal decomposition [102, 208, 209].

The flux, associated with the nonconserved component of the order parameter, in the con-

tinuity equation, Eq. (3.1), originates due to the two types of interconversion reactions present in

the system, and consequently, JNC, may be expressed through two terms [100],

JNC = −Lµ̂+ π (3.4)

where the first term, −Lµ̂, with an interconversion kinetic coefficient L, represents the rate of

natural interconversion, in which the chemical potential is given by Eq. (2.12). The second

term, π, denotes a nonequilibrium source of forced interconversion that requires the alternative

species to remain in equal amounts and is analogous to the external magnetic or electric field in

ferromagnetic or ferroelectric systems [100].

Initially, consider the simplest chemical reaction in which the interconversion equilibrium

constant K = k1/k2 = 1, which does not depend on temperature or pressure, such that lnK = 0.

Therefore, the Gibbs energy change of reaction, given by Eq. (2.9), is ĜBA = 0 [210], (the more
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general case, when K = K(T, P ), will be considered in Section 3.4). In this approximation,

the interconversion between species A and B mirrors the flipping of spins in the Ising model, in

which there is no heat or volume change of the reaction. Thus, the −Lµ̂ term, corresponding

to the natural interconversion, represents the nonconserved evolution of the order parameter, in

which the conservation of molecules of a certain species is no longer a conserved property [211].

As for the source term, π, depending on the system, it can be written in a variety of forms,

but typically, it characterizes the additional interactions present in a system. It may be classified

as a “source” (π > 0) or a “sink” (π < 0) of diffusion or interconversion, and it may exist as an

equilibrium source or be introduced externally, producing a nonequilibrium system. For exam-

ple, the internal source can be found in systems of diblock copolymers, where the finite size of

the block competes with phase segregation, leading to the formation of equilibrium microphase

domains [212, 213]. Another example of this type of source is in ferromagnetic or ferroelectric

systems and dipolar fluids, in which the long-ranged Coulombic interactions may produce equi-

librium microphase separation [107]. A diffusion-promoting source could also be introduced

externally through radiation to enhance or inhibit phase separation [214].

Alternatively, an external interconversion source could be achieved via the interactions of

energy-carrying particles, such as photons, that may break intramolecular bonds [215] or it could

be seen in biological cells through a flux of energy produced by ATP [113, 114]. Likewise, the

source could promote interconversion through the flux of matter, such as in a system constrained

to an adsorbing-desorbing layer [116]. Lastly, an internal interconversion source originating from

a disbalance of intermolecular forces could produce a nonequilibrium system with steady-state

microphase domains. This effect was observed by Uralcan et al. [7] in a dissipative chiral-mixture

model, which is referred to as the “CM model.” This case is considered in Section 4.2.
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In this chapter, a source of forced interconversion that is independent of the chemical poten-

tial in the equilibrium state is considered; one that will drive the system towards a “completely in-

terconverted state” - a spatially homogeneous state with equal amounts of interconverting species

- by allowing the alternative species to interconvert against the equilibrium conditions via a sim-

ple interconversion reaction, Eq. (2.7). Thus, forced interconversion may be viewed as a local

chemical reaction for which the chemical potential difference depends only on the bulk concen-

tration [207]. For this reason, such a source is referred to as a “forced interconversion source.”

If the effect of forced interconversion on a system with conserved order-parameter dynam-

ics (L = 0) is considered, then this scenario corresponds to the model originally introduced by

Glotzer et al. [216, 217] where in the first-order approximation (valid only near thermodynamic

equilibrium [207]) the forced interconversion term in Eq. (3.4) has the form of π = k2xB− k1xA.

Rearranging this reaction rate using the fact that the total number of particles in the system is

conserved, xA + xB = 1 and K = k1 = k2, then the source of forced interconversion may be

written in terms of the order parameter (ϕ) as π = −Kϕ(r, t). In this case, Eq. (3.1) is given in

the form

∂ϕ

∂t
= M∇2µ̂−Kϕ (3.5)

The corresponding growth rate for this system is ω(q) = −K − Dq2(1 − ξ2q2). Glotzer et al.

found that the addition of such a specific type of forced interconversion source causes the system

to phase separate into microphase domains with a characteristic length scale less than the size

of the simulation box - the phenomenon of nonequilibrium microphase separation. They show

that the growth rate is restricted at a wavenumber, q− =
√
−K/D, corresponding to the first

root of ω(q) = 0. Glotzer et al.’s model predicts the formation of microphase domains only in

67



a nonequilibrium steady-state in the presence of a forced interconversion source [117, 207, 218].

It is noted that this phenomenon could be conceptually compared to the common “household”

example of stirring a mixture of water and oil. Obviously, there is no chemical interconversion

between water and oil molecules. However, the water and oil will separate into phase domains,

whose size depends on the stirring rate, K.

It is important to note that, in the first-order approximation, the form of the source of forced

interconversion is similar to the thermodynamic part of the chemical potential, µ̂th, being linearly

proportional to ϕ, Eq. (2.12). However, as shown by Eq. (2.12), µ̂ in the meanfield approximation

is linearly dependent on the distance to the critical temperature, while the source only depends

on the order parameter, ϕ and the reaction rate K.

Combining Eq. (3.4) for JNC and choosing the source of forced interconversion consid-

ered by Glotzer et al., π = −Kϕ, the continuity equation, Eq. (3.1), may be expressed in the

generalized form

∂ϕ

∂t
= M∇2µ̂− Lµ̂−Kϕ (3.6)

In which the three terms with kinetic coefficients, M , L, and K represent mutual diffusion, natu-

ral interconversion, and forced interconversion dynamics, which typically depend on temperature,

pressure, and (for L and K) the interconversion rate.

Equation (3.6) may be generalized by expressing the source term, π, through a nonequilib-

rium (“unbalanced”) chemical potential, µ̃. This unbalanced chemical potential competes with

the “balanced” chemical potential, µ̂, given by Eq. (2.12). In the first-order approximation, µ̃ is a

non-local (spatially-independent) chemical potential that scales linearly with the order parameter

as µ̃ ∼ −ϕ. Thus, in this form, the general continuity equation, involving all three dynamical
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processes, is given by [4, 5]

∂ϕ

∂t
= M∇2µ̂− Lµ̂+Kµ̃ (3.7)

Note that in the lowest-order approximation of Eq. (2.12), the natural interconversion dynamics

scales as −Lµ̂ ∼ −L∆T̂ϕ, which is positive for T < Tc, while in the same approximation, the

forced interconversion dynamics scales as Kµ̃ ∼ −Kϕ, which is negative, indicating that the

two are always in opposition. Consequently, the difference between the unbalanced and balanced

chemical potentials, ∆µ̃ = µ̂− µ̃, provides the net driving force on the system.

By rearranging Eq. (3.7) to explicitly include this driving force, the dynamics of the natural

and forced interconversions may be combined into a single term with a kinetic coefficient, L.

Redefining the unbalanced chemical potentials as µ̃′ = (K/L)µ̃, a simplified continuity equation

may be expressed through two dynamic processes in the form [4, 8]

∂ϕ

∂t
= M∇2µ̂− L∆µ̃′ (3.8)

where ∆µ̃′ is the difference between the balanced and (redefined) unbalanced chemical potential,

∆µ̃′ = µ̂ − µ̃′, such that the second term describes the coupled natural-forced interconversion

dynamics in the system. In this form, Eq. (3.8) is similar to the continuity equations used to

describe the dynamic behavior in active matter systems [107, 219–221]. However, it should be

noted that the derivation presented in this section is different from other studies of active matter

systems as this derivation explicitly considers the evolution of the system toward equilibrium and

the behavior at equilibrium. For instance, in the developed approach, both the natural intercon-

version and diffusion dynamics depend on the local (spatially-dependent) part of the chemical
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potential, µ̂.

It can be shown that the reduced entropy production, σ̂s = σs/kB, obtained using the deriva-

tion from Groot and Mazur [204] as well as by Mauri [206], has the form σ̂s = −JC ·∇µ̂+JNCµ̂th.

Using the mutual diffusion flux, JC, from the discussion of Eq. (3.1) and the interconversion flux,

JNC, from Eq. (3.4) with the unbalanced chemical potential µ̃, the entropy production may be

written in the simplified form

σ̂s = M |∇µ̂|2 + Lµ̂thµ̂+Kµ̂thµ̃ (3.9)

or, equivalently, through the difference in balanced and unbalanced chemical potentials as

σ̂s = M |∇µ̂|2 + Lµ̂th∆µ̃
′ (3.10)

where it can be seen that σ̂s > 0 always, and specifically, in the equilibrium limit when, µ̂ = 0,

the entropy production remains σ̂s > 0 due to the presence of the external source of forced

interconversion.

Using the chemical potential described by Eq. (2.12) with ĜBA = 0 for the simple inter-

conversion reaction, Eq. (3.7) may be expressed in the expanded form

∂ϕ

∂t
= −(K + Lχ̂−1

q=0)ϕ+ (Mχ̂−1
q=0 + Lκ)∇2ϕ−Mκ∇4ϕ (3.11)
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Figure 3.1: The characteristic growth rate, Eq. (3.14), affected by the competition between dif-
fusion, natural interconversion, and forced interconversion at ∆T̂ = −0.5. Complete phase
separation (as predicted by Cahn-Hilliard’s theory for L = 0 and K = 0) is illustrated by the
red curve for M = 100. Phase amplification is illustrated by the purple curves for restricted
(M = 100 - solid) and unrestricted (M = 10 - dashed) cases, in which L = 10 and K = 2.
Microphase separation for M = 100, L = 1, and K = 2 is illustrated by the solid green curve.
When the growth rate is always negative, as illustrated by the green dashed curve (for M = 1,
L = 1, and K = 2), there is no phase domain growth corresponding to a homogeneous steady
state. The green circles indicate the three characteristic wavenumbers of the amplification factor:
the maximum, qm, the lower cut-off, q−, and the upper cut-off, q+

This differential equation has the following solution:

ϕ = ϕ0 +
∑
i

ϕ∞e
ω(qi)t cos(qi · r) (3.12)

where ϕ0 and ϕ∞ are constants determined by the initial (t = 0) and steady-state (t → ∞)

conditions of the order parameter, respectively, while ω(q) is the generalized growth rate, defined

as

ω(q) = −(Lχ̂−1
q=0 +K)− (Mχ̂−1

q=0 + κL)q2 −Mκq4 (3.13)
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It is noted that a conceptually similar equation for the growth rate in a system with an auto-

catalytic reaction [115] was also obtained by Lefever et al. [117]. Eq. (3.13) can also be expressed

through the susceptibility, χ̂q=0, and the correlation length, ξ, as

ω(q) = −K − χ̂−1
q=0(Mq2 + Lκ)(1− ξ2q2) (3.14)

Alternatively, Eq. (3.14) may be symmeterized and expressed in the form

ω(q, t) = Mκq2
m(t)[q2

m(t)− 2q2
−]−Mκ[q2 − q2

m(t)]2 (3.15)

where the two characteristic wavenumbers, qm and q−, are the maximum and the lower cut-off of

the amplification factor, respectively (see Fig. 3.1). Using a first order approximation, they have

the form

q2
m = −

(Mχ̂−1
q=0(t) + Lκ)

2Mκ
and q2

− = −(K + L∆T̂ )

M∆T̂ + Lκ
(3.16)

It should be noted that the maximum of the amplification factor, qm = qm(t) is time dependent,

while q− is time independent. The time dependence of qm(t) is given through the higher order

terms of the chemical potential, Eq. (2.11), and is introduced into the time-dependent inverse

susceptibility, χ̂−1
q=0(t) = ∂µ̂/∂ϕ(t). The origin of this temporal evolution is due to the change

in concentration at constant temperature from the unstable (ϕ = 0) to the stable (ϕ > 0) regime;

as such, in the second order approximation, χ̂−1
q=0(t) ' ∆T̂ + (1 + ∆T̂ )ϕ(t) [4, 5, 222, 223].

In contrast, q− is an intrinsic property of the system, and since q− determines the cut-off for the

smallest possible growing domain modes, then the steady-state limit of the time evolution of the

maximum wavenumber will also be cut-off by q− as qm(t→∞) ∝ q−. To verify this prediction,
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qm was numerically computed from the wavenumber corresponding to the maximum of the struc-

ture factor, qs
m (Section 3.3), and compared with the steady-state domain modes obtained from

simulations of a nonequilibrium hybrid model (Section 4.1).

3.1.2 Phase Amplification vs. Microphase Separation

In this section, the key differences between phase amplification, microphase separation, and

phase separation without interconversion, which is referred to as “complete phase separation” is

presented. First, it should be emphasized that the phase transition through phase amplification

is fundamentally different from phase separation. Phase amplification occurs to avoid the for-

mation of an energetically unfavorable interface between alternative stable phase domains. This

phenomenon is only possible due to the nonconserved nature of the order parameter. In contrast,

in a phase separating binary mixture the formation of an interface is required due to the con-

served nature of the order parameter. However, it is noted that in macroscopic systems where

the interfacial energy is much smaller than the bulk energy, a system with a nonconserved order

parameter may enter a metastable state in which an interface forms between phases [6,224,225].

An example of such a metastable state is depicted in Fig. 3.2a. Thus, the size of the system plays

a crucial role in phase amplification. With increasing system size, the energy of the surface de-

creases when compared to the bulk energy, the conformational energy of the metastable interface

becomes less unfavorable, and the possibility that the system will form an interface drastically

increases.

Second, similar to phase amplification, the size of the system and the rate of forced in-

terconversion are crucial for microphase separation to occur. It has been found that there are
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Table 3.1: Limiting cases of the interplay between diffusion, natural interconversion, and forced
interconversion.

Conditions Phenomenon

Only Diffusion
(L = 0 & K = 0)

Complete Phase
Separation

Only Natural
Interconversion

(M = 0 & K = 0)

Unrestricted Phase
Amplification

Only Forced
Interconversion

(M = 0 & L = 0)

Homogeneous
Steady State

two key conditions required to observe microphase separation: 1) if the characteristic size of the

mesoscopic steady-state microphase domains are comparable to half the size of the system, then

the system will produce the same two alternative phases that would be observed without inter-

conversion. As a result, the size of the system may “cut off” the system’s ability to phase separate

into microdomains. 2) if the rate of forced interconversion is much faster than the natural inter-

conversion or diffusion rate (Dq2), then the external force dominates the systems’ kinetics and

no phase formation is possible. Consequently, the characteristic length scale of the microphase

emerges as a result of the competition between forced interconversion and diffusion.

Whether phase amplification or microphase separation will occur depends on the interplay

of the three dynamics in the system: diffusion, natural interconversion, and forced interconver-

sion, as given through the characteristic growth rate, Eq. (3.14). In the limiting cases when one of

the rates dominates the system, complete phase separation, unrestricted phase amplification, or a

homogeneous steady state will be observed. The results of these observations are summarized in

Table 3.1.
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Table 3.2: Conditions for phase amplification and microphase separation as illustrated in Fig. 3.1.
The left column corresponds to the solid lines and the right column corresponds to the dashed
lines.

M |χ̂−1
q=0| > Lκ M |χ̂−1

q=0| < Lκ

L|χ̂−1
q=0| > K

Restricted (Slow)
Phase Amplification

Unrestricted (Fast)
Phase Amplification

L|χ̂−1
q=0| < K

Microphase
Separation

Homogeneous
Steady State

In a system with mixed dynamics where diffusion, natural interconversion, and forced in-

terconversion are present, the interplay between these three rates produces either phase amplifi-

cation, microphase separation, or a homogeneous steady state with no domain growth. The resul-

tant effect on the system may be determined through the shape and intercepts of the characteristic

growth rate (amplification factor). For instance, the competition between natural interconver-

sion (Lχ̂−1
q=0) and forced interconversion (K), as follows from Eq. (3.13), shifts the intercept of

ω(q = 0) up or down producing either phase amplification or microphase separation depending

on their magnitude. Meanwhile, the competition between diffusion (Mχ̂−1
q=0) and natural inter-

conversion (Lκ) dynamics is described by the concavity or convexity of the growth rate around

q = 0, which when combined with the position of the intercept determines whether restricted

or unrestricted phase amplification will be observed or if the system will remain homogeneous

instead of phase separating into microphase domains. Characteristic growth rates for various

relationships between M , L, and K are shown in Fig. 3.1 and summarized in Table 3.2. Exam-

ples of the phase domains formed in a system exhibiting microphase separation are depicted in

Figs. 3.2(b-d).

To achieve phase amplification, the forced interconversion rate must be slower than the
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natural interconversion rate, K < L|χ̂−1
q=0|, such that the growth rate is shifted up. Alternatively,

microphase separation occurs when the forced interconversion rate and the diffusion rate is faster

than the natural interconversion rate, such that K > L|χ̂−1
q=0| and M |χ̂−1

q=0| > κL, respectively. It

is noted that in the case when forced interconversion is faster than natural interconversion (while

the diffusion rate is slower than the interconversion rate) the system will be in a homogeneous

state as the growth rate is negative for all wavenumbers.

The conditions for whether the system will achieve complete macro-phase separation, un-

dergo microphase separation, or experience phase amplification can be determined from the char-

acteristic wavenumbers of the growth rate, Eq. (3.14), found from its two roots and maximum.

These wavenumbers are defined as: qm, the wavenumber corresponding to the fastest growing

inhomogeneities; q−, the first root of ω(q); and q+, the second root of ω(q). These three charac-

teristic wavenumbers are related through q2
− = 2q2

m−q2
+. The existence of a non-zero q− indicates

steady-state microphase separation; such that, after infinite time, the size of the steady-state phase

domain, R∞, will be described by R∞ ∼ 1/q−, where q− is given by Eq. (3.16). Thus, it is pre-

dicted that the steady-state domain size may be expressed through an “effective” mutual diffusion

coefficient, modified by interconversion kinetics, Deff = −χ̂−1
q=0(M − Lξ2), such that Eq. (3.16)

may be expressed in the form

q2
− =

K − Lχ̂−1
q=0

Deff
(3.17)

Additionally, solving Eq. (3.14) for qm, gives

(qm)2 =
1

2ξ2

(
1− L

M
ξ2

)
(3.18)

76



Figure 3.2: Steady-state phase domain morphology for different magnitudes of forced intercon-
version (after ∼ 105 time steps) numerically computed from the time evolution of the order
parameter, Eq. (3.7), with M = 1, L = 1/127, ∆T̂ = −0.1, ` = 64, σi = 0.1, and η = 10−5, as
discussed in Section 3.3. Morphologies are shown for the middle slice of the three-dimensional
system at (a) K = 0, (b) K = 5× 10−4, (c) K = 15× 10−4, and (d) K = 25× 10−4. The
red regions correspond to where the value of the normalized order parameter is ϕ/ϕmax = 1, the
purple regions correspond to where the value of the normalized order parameter is ϕ/ϕmax = −1,
and the other colors depict the interface between these two regions. The image in (a) depicts
a metastable structure toward phase amplification [6], while the images in (b-d) are modulated
steady-state structures with a characterize size, 1/q−.

Thus, the maximum of the growth rate is shifted in comparison to Cahn-Hilliard theory, qm =

1/(
√

2ξ) [102], as shown in Fig. 3.1. This shift is independent of the strength of the source of

forced interconversion.
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3.2 Temporal Evolution of the Structure Factor

In this section, following the ideas of Cook [226], a phenomenological theory to describe

the temporal evolution of the structure factor of a system of interconverting fluids is presented.

Based on the suggestions of Binder et al. [227], a simple crossover function to account for the

transition from spinodal decomposition (at early times) to nucleation and coarsening (at long

times) is incorporated. This theory is referred to as the “generalized Cook-Binder theory.”

3.2.1 Generalized Cook-Binder Theory

Defining the order parameter fluctuation variable as δĉ(r, t), the structure factor is given

through the correlation function for the concentration fluctuations [228], such that

S(q, t) =

∫
dr < δĉ(r, t)δĉ(r0, t) > eiq·r (3.19)

As shown by Cook [226] and Langer et al. [229], the equation of motion for S(q, t) is found by

introducing order-parameter fluctuations into the time evolution of the order parameter, Eq. (3.7),

with δĉ(r) as the fluctuation variable and spatially integrating 〈|δĉ|2〉. Following this procedure,

one obtains the first-order solution for mixed diffusion-interconversion dynamics as

∂S(q, t)

∂t
= 2ω(q, t)S(q, t) + 2

(
Mq2 + Lκ

)
(3.20)

where ω(q, t) is given by Eq. (3.15) [213, 230, 231]. It is noted that in the absence of intercon-

version and forced racemization, this equation reduces to the result presented by Cook [226].
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Solving this differential equation for the structure factor, assuming a linear approximation [222],

∂ω/∂t� ω(q, t), gives [223, 227, 232, 233]

S(q, t) = S∞(q) + [S0(q)− S∞(q)] e2ω(q,t)t (3.21)

where S0(q) ≡ S(q, t = 0) and S(q, t) represents the modified Cahn-Hilliard-Cook structure

factor, which now includes natural and forced interconversion. In the limit of infinite time, when

∂S(q, t)/∂t = 0, the steady-state structure factor, S∞(q), is given by

S(q, t→∞) ≡ S∞(q) =
Mq2 + Lκ

−ω(q, t→∞)
(3.22)

It can be seen that when either L = 0 or M = 0, then this equation under equilibrium conditions

(K = 0) reduces to the Ornstein-Zernike structure factor - SOZ = ξ2/(1 + ξ2q2).

The time-dependent structure factor, Eq. (3.21), can be simplified by applying the condition

that at t = 0, the system is quenched from a sufficiently high temperature where S0(q) = 0.

Therefore, Eq. (3.21) may be written as

S(q, t) = S∞(q)
(
1− e2ω(q,t)t

)
(3.23)

which is valid from the initial stages of spinodal decomposition to the coarsening regime [232,

234]. Evaluating ∂S∞/∂q = 0 to determine the wavenumber corresponding to the maximum

of the structure factor gives, qs
m = 21/4q− in the steady-state limit. The time evolution of the

structure factor is illustrated in Fig. 3.3b. As suggested by Binder et al. [227], to account for the
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Figure 3.3: a) The amplification factor, ω(q), given by Eq. (3.15) with κ = 1, ∆T̂ = −0.1,
M = 1, L = 1/127, and K = 1.3× 10−3. b) The time evolution of the structure factor,
given by Eq. (3.23) in the presence of natural and forced interconversion. The black dotted line
depicts the evolution of the maximum of the structure factor. Due to the external source of forced
interconversion, the maximum of the structure factor is interrupted at the wavenumber q−, while
for complete phase separation and phase amplification, the maximum of the structure factor will
evolve to q = 0 for an infinite-sized system.

time dependence of qm(t), a simple approximation of the transition is assumed in the form

qm(t) = qm(t = 0)e−t/τ + q−
(
1− e−t/τ

)
(3.24)

based on the limiting values of qm at t = 0 and t → ∞, where τ = 100, is a system dependent
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parameter that controls the crossover from spinodal decomposition to the coarsening regime. As

shown in Fig. 3.3, the wavenumber corresponding to the maximum of the steady-state structure

factor, qsm, aligns with the prediction of q− from the theory. To accurately match the predictions

from the theory with the computational results presented in the following section, the character-

istic wavenumbers from the theory are scaled by the size of the system.

3.2.2 Characteristic Length Scales

Using Eq. (3.23), the evolution of a system that only exhibits diffusion dynamics (toward

equilibrium) is compared to a system that exhibits diffusion dynamics in the presence of a source

of forced interconversion (toward steady state). The behavior of these systems through all three

regimes: namely, spinodal decomposition, coarsening, and nucleation is shown in Figs. 3.4(a,b).

It is observed that the introduction of a forced interconversion source causes the growth of the

structure factor to be interrupted at the lower cut-off wavenumber, q−. In the first order approxi-

mation, the wavenumber corresponding to the maximum of structure factor, qs
m, in the steady-state

limit of qs
m(t→∞) determined from ∂S(q, t→∞)/∂q = 0 is given by

qs
m(t→∞) = 21/4q− ∝

√
K

−Deff
(3.25)

It should be noted that the general scaling law qs
m ∝ K1/2 was observed in simulations of a chiral

model [7] and a hybrid Ising/lattice-gas model [5] as will be discussed in detail in Sections 4.1 and

4.2. This behavior differs from studies of the microphase domain formation in block copolymers

where it was found that qsm ∝ K1/4 [213, 235]. The difference in this behavior between the

systems considered in this section (as well as those in Chapter 4) and the block copolymers might
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Figure 3.4: Temporal evolution of the structure factor: a) for a system undergoing diffusion
dynamics (M = 1) toward an equilibrium state in the absence of natural interconversion (L = 0)
and forced interconversion (K = 0); b) for a system undergoing a hybrid of diffusion (M = 1)
and natural interconversion (L = 0.01) dynamics in the presence of forced interconversion (K =
1.5× 10−3) toward a steady state. The structure factor, given by Eq. (3.23), exhibits a crossover
from spinodal decomposition to the nucleation regime. The dashed-black curves indicate the
development of the maximum of the structure factor. The characteristic crossover time is defined
in Eq. (3.24) and adopted as τ = 100. In (a) the evolution of the maximum of the structure factor
moves to q = 0 for infinite-size system and saturates at Sm(q = 0, t → ∞) = 1/(2ξ2) = 5 for
∆T̂ = −0.1. In contrast, in (b) the evolution of the maximum is interrupted at a characteristic
cut-off wavenumber predicted by the characteristic phase domain growth rate, qs

m(t→∞) ∝ q−,
and it saturates at Sm(q−, t→∞) = 417.
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Figure 3.5: The time evolution of the wavenumber corresponding to the maximum of the structure
factor, given by Eq. (3.23), during the crossover from the early stage of spinodal decomposition,
q ∝ t1/4 (green - dashed), to the nucleation regime, q ∝ t1/3 (orange - dashed) for a system
undergoing diffusion dynamics in the absence of natural interconversion (L = 0) and forced
interconversion (K = 0) under conditions: M = 1, ∆T̂ = −0.1, τ = 100.

be attributed to the difference in the nature of the order parameters - the systems considered in

this section being described by a single-component order parameter and the block copolymers

being described by an n-component order parameter.

The crossover behavior for the transition between spinodal decomposition and nucleation

in a system with diffusion dynamics toward equilibrium is shown in Fig. 3.5. The wavenumber

corresponding to the maximum of the structure factor, given by Eq. (3.23), evolves according

to q ∝ t1/4 (short times, spinodal decompostion regime) and q ∝ t1/3 (long times, nucleation

regime). The crossover from one regime to the order is illustrated by the crossing of the orange

and green dashed lines in Fig. 3.5.

Within systems that exhibit microphase separation, the generalized Cahn-Hilliard theory

predicts that there are two characteristic length scales that restrict phase formation. First, in sim-
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Figure 3.6: The effect of increasing interconversion force on the phase domain growth rate for
M = 100, L = 1, and ∆T̂ = −0.5. The red dashed line corresponds to the inverse maximum
size of the phase domain on the length scale of the simulation box, q∗. When q− > q∗ microphase
domains will form. Alternatively, when q− < q∗, the size of the simulation box will cut-off the
growing phase domains. The conditions where ω(q) < 0 (dashed-dot portions of the curves)
corresponds to non-growing wavenumbers. As the rate of forced interconversion increases, the
growth rate is shifted down from the onset of phase separation where q− = q∗ (red, K = 1),
to the microphase region (green, K = 3.75), to the termination point of domain growth (blue,
K = 6.5) where q− = qm = q+ = q∗∗, and to the no growth regime for any wavenumber (orange,
K = 9.25).

ulation or experiment, the phase domain is restricted by the finite size of the system, `. The event

where the domain size reaches the size of the system is defined as “complete” phase separation,

and is denoted as ` ∼ 1/q∗. This event is referred to as the “onset” of microphase separation,

and it is characterized by a magnitude of forced interconversion, K = K∗, and temperature

T = T ∗. Second, when the size of the microphase domains become proportional to the corre-

lation length of order-parameter fluctuations (ξ ∼ 1/q∗∗), the formation of microphase domains

no longer become energetically favorable. The event when fluctuations become so great as to

destroy the phase domain is referred to as the “termination” of microphase separation. At this

event, the system is in a “homogeneous steady state,” and is characterized by a magnitude of

forced interconversion K = K∗∗ at a temperature T = T ∗∗. These phenomena are illustrated by
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the amplification factor, Eq. (3.14), in Fig. 3.6.

3.3 Temporal Evolution of the Order Parameter

In this section, the finite difference method [236] is utilized, with a spatial step ∆x = 1 and

a time step ∆t = 0.015, to numerically calculate the temporal evolution of the order parameter,

given by Eq. (3.7) with a chemical potential with the higher-order terms given by Eq. (2.10) for

the simple interconversion reaction with ĜBA = 0. The structure factor, numerically calculated

via a Fast Fourier Transform (FFT) of the order parameter throughout the system [236] is com-

pared to the structure factor predicted by the generalized Cook-Binder theory. It is observed that

for time steps ∆t > 0.015, the solution diverges [5, 236]. A random force term, η, is included to

account for the thermal motion of the particles [226,232]. The system is initialized on an `×`×`

cubic lattice with positions varied with initial random, Gaussian noise, σi.

It has been confirmed that the presence of a source of forced interconversion causes the

system to phase separate into steady-state microphase domains as presented in Figs. 3.2(a-d).

Due to the periodic boundary conditions imposed in the continuum finite-difference method used

to compute Eq. (3.7), it has been found that the stripe morphologies will form at any angle with

respect to the simulation box. The characteristic size of the stripe-like domains decreases with

increasing forced interconversion source strength, K. It is noted that a condition for microphase

separation is that K must be sufficiently “strong” as to overcome the natural interconversion. If

the magnitude of K is not strong enough, then (depending on the rate of natural interconversion)

the system will either undergo phase amplification or complete phase separation. For instance,

for M = 1, L = 1/127, ∆T̂ = −0.1, and K ≤ 4× 10−4, then microphase separation is not
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Figure 3.7: Time evolution of the structure factor computed from the Fast Fourier transform
(FFT) of Eq. (3.7) for M = 1, L = 1/127, ∆T̂ = −0.1, ` = 64, σi = 0.1, η = 10−5 depicted
at times t = 6× 103 (green), t = 1.2× 104 (blue), t = 2.4× 104 (orange), t = 5× 104 (red),
t = 1× 105 (pink), and t = 2× 105 (black). The open circles in (a-d) depict the computed struc-
ture factors for the four selected magnitudes of forced interconversion averaged over N = 100
realizations with 95% confidence interval error bars, while the solid lines illustrate the behavior
of the structure factors assuming a Gaussian distribution. The wavenumber is normalized by the
size of the system, such that q = 1 corresponds to phase domains with a characteristic size of
half the simulation box, `/2.

observed. Since L = 1/127, the interconversion rate is relatively slow, and thus, the system has a

higher probability of forming an interface between phases as shown in Fig. 3.2a. However, for a

system with natural interconversion this state is metastable, and eventually, the interface between

phases will break down and phase amplification will occur [4–6].

The time-dependent structure factors, which produce the stripe-like morphology illustrated

86



in Figs. 3.2(a-d), are presented in Figs. 3.7(a-d). It is observed that the time evolution of the

maximum of the structure factor in Fig. 3.7a is interrupted at the wavenumber q = 0, which

corresponds to a system undergoing phase amplification. For K = 4× 10−4 (Fig. 3.7b), the

maximum of the time evolution of the structure factor is interrupted at q/qmax = 1, indicating

complete phase separation where the phase domains have a characteristic size of half the sim-

ulation box, `/2. In Figs. 3.7(c,d), the time evolution of the maximum of the structure factor

is interrupted at higher wavenumbers, depending on K. These wavenumbers correspond to the

characteristic size of the stripe-like phase domains and are independent of the size of the system.

It is also observed that the structure factor at the maximum wavenumber (qm) contains the largest

uncertainty, with respect to the other wavenumbers. The non-monotonic temporal evolution of

the structure factor observed in Figs. 3.7b can be attributed to τ ≈ 1.5× 103, a large charac-

teristic crossover time scale between spinodal decomposition and coarsening. This observation

suggests that the crossover time scale, τ = τ(K), may depend on forced interconversion.

The average value of the order parameter, calculated by first averaging over all space and

second averaging the absolute value over N = 100 realizations, is presented in Fig. 3.8a. This

method of averaging highlights the behavioral deviation from ϕ = 0, when the molecular fraction

of species A is equivalent to species B; therefore, this figure represents the temporal evolution

of the symmetry of phase separation. It is observed that the initial value 〈|ϕ|〉 is determined by

σi, the random initial configuration, whereas the steady-state behavior of 〈|ϕ|〉 is determined by

η, the thermal noise to be included in Eq. (3.7). It is found that 〈|ϕ|〉 develops a peak during the

formation of the stripe-like patterns. As the phase domains coarsen, the averaged order parameter

reaches a steady-state value, 〈|ϕ(t→∞)|〉 = ϕ0 indicating the stable formation of the stripe-like

domains.
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Figure 3.8: The temporal evolution of the symmetry of phase separation. a) The time evolution of
the average order parameter, calculated by first averaging over all space and second by averaging
the absolute value overN = 100 realizations, forM = 1, L = 1/127, ∆T = −0.1, σi = 0.1, η =
1.0× 10−5, and various magnitudes of forced interconversion, K. b) The time evolution of the
N -averaged standard deviation of the averaged order parameter, calculated by first determining
the standard deviation of the spatially averaged order parameter and second by averaging over
N = 100 realizations. This method of averaging highlights the behavioral deviation from an
equal concentration of species A and B, ϕ = 0.

In Fig. 3.8b, it is shown the temporal evolution of the standard deviation of the averaged

order parameter, calculated by first determining the standard deviation over all space and second

by averaging over N = 100 realizations. It is observed that the N -averaged standard devia-

tion, 〈σ〉N , was constant through the early stages of spinodal decomposition, but dramatically

increased during the formation of the stripe-like patterns. It is noted that in the K = 0 case, due

to phase amplification, 〈σ〉N rapidly increases as the domains coarsen, but then decreases when

one phase grows at the expense of the other. In this case, the constant steady-state limit of the

averaged standard deviation, 〈σ(t→∞)〉N = σ0, indicates that the order parameter has reached

its equilibrium value, |ϕ| = ϕ0, which depends on the distance to the critical temperature.
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3.4 Effects of Heat and Volume Change of Interconversion

So far in this chapter, the dynamics of simple systems have been considered, in which

the Gibbs energy change of the reaction, ĜBA, does not depend on pressure or temperature;

thus, the forward and reverse equilibrium reaction rates are always equivalent (K = 1). Since,

in this case, the enthalpy of reaction is zero, as given through the Gibbs-Helmholtz relation,

∆ĤBA = T̂ 2∂(lnK)/∂T̂ = 0 [210], then, in the one phase region, the equilibrium interconver-

sion between states A and B remains always equivalent, being independent of temperature and

pressure. However, as discussed in Chapter 2, most polyamorphic substances have a non-zero

enthalpy and volume change of the reaction, such that the equilibrium fraction of interconversion

depends on temperature and pressure, K = K(T, P ) [9]. This effect may be incorporated into the

time evolution of the order parameter using Eq. (2.12) for the reduced chemical potential. In this

case, the solution of Eq. (3.7) becomes

ϕ =
LĜBA

2(K + Lχ̂−1
q=0)

+
∑
i

ϕ∞e
ω(qi)t cos(qi · r) (3.26)

where only the infinite time solution of the order parameter is effected by the Gibbs energy of

reaction. The phase domain growth rate, ω(q), remains unaffected and is described by Eq. (3.14).

It should be noted that the introduction of the temperature and pressure dependence into the

equilibrium interconversion fraction is different from considering the symmetric binary mixture

quenched with at a higher concentration of species A (or B). In this case, phase amplification will

proceed with a higher probability of forming an A-rich (or B-rich) phase.

For the remainder of this section, the effects of temperature and pressure on the equilibrium
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Figure 3.9: Three hypothesized binary mixture systems exhibiting interconversion of species
and liquid-liquid phase separation quenched from high temperature to low temperature (without
volume change). The black dashed curve corresponds to the liquid-liquid phase coexistence
in this system without interconversion and with interaction energy, ε = 2. The open circle
indicates the liquid-liquid critical point (LLCP), while the crosses show the locations of T = TBA,
the points corresponding to 50:50 interconversion for different energy change of reaction. For
a system with TBA = 1.05Tc (green), no liquid-liquid phase transition will be observed upon
quenching. For a system with TBA = Tc (red), the quenching process passes through the critical
point. For a system with TBA = 0.95Tc (purple), there are two equilibrium solutions for the
fraction of interconversion, such that upon quenching to the cross, phase amplification occurs
with equal probability of forming an A-rich or B-rich phase.

interconversion fraction, K will be discussed, and, in particular, how they could affect the pos-

sibility of phase amplification. To do so, the hypothesized phase diagram of supercooled water

that exhibits a liquid-liquid phase transition, see Fig. 3.10, is utilized to illustrate a real system.

Also, predictions about how phase amplifications could be observed in such a system are made.

To start, a discussion of the effect of temperature on the equilibrium fraction, K, in three

different hypothesized polyamorphic systems, characterized by three different heat of reactions,

∆ĤBA, are presented, in which the two alternative phases are assumed to have the same density.

In this formulation, there are two characteristic energies, ê and ε. Consider the heat of reac-
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tion, ∆ĤBA = ê, which defines the temperature dependence of the equilibrium interconversion

fraction, and the heat of mixing ∆Ĥmix ∝ ε, given by Eq. (2.3), which defines the critical tem-

perature of liquid-liquid demixing. Suppose that the ê > 0 such that cooling favors the formation

of species B. Depending on the relation between the reference temperature of interconversion

TBA, at which lnK = 0 (corresponding to 50:50 interconversion), and the critical temperature

of demixing one can observe different scenarios upon quenching below Tc ∝ ε, as shown in

Fig. 3.9. In a system with TBA > Tc, the liquid-liquid phase transition will not be observed. If

the system has TBA = Tc, the system follows the interconversion fraction to the phase enriched

with B without phase coexistence. In a system with TBA < Tc, the system crosses the first-order

liquid-liquid phase transition at the point where the interconversion fraction of B is smaller than

50%. Depending on the final location of the quenching point, phase amplification will occur with

a preference to the formation of a single A-rich or B-rich phase. When the final location of the

quench is at ϕ = 0 (corresponding to a 50:50 interconversion rate) as shown in Fig. 3.9, phase

amplification will occur randomly without a preference to an alternative phase [4, 6]. However,

due to the difference between bulk energies of species A and B, it is predicted that for one stable

phase to grow at the expense of another phase, energy must be supplied or removed from the

system. Therefore, either experimentally or computationally, this process must be conducted in a

heat reservoir and the thermal conductivity of the system must be faster than the interconversion

rate.

Next, consider a system in which the two alternative species have different molecular vol-

umes and the equilibrium interconversion fraction depends on pressure. In this case, the vol-

ume change of the interconversion reaction is not zero. For example, consider the hypothe-

sized phase diagram of supercooled water suggested by Caupin and Anisimov [13] as shown
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Figure 3.10: The phase diagram (suggested in ref. [13]) for supercooled water that exhibits a
liquid-liquid phase transition (global phase diagram illustrated in Fig. 1.1). A hypothesized
quenching process by compression for supercooled water is shown from the one phase region
at P1 = 20 MPa (orange) to the two phase region at P2 = 120 MPa (green) along the Widom
line (dashed black) which corresponds to a line of constant fraction of interconversion, lnK = 0.
Two additional isobars are shown for reference at P = 40 MPa (blue) and P = 80 MPa (purple)
along with the liquid-liquid coexistence (black). Phase amplification would only be possible in
a system where the number of molecules changes to compensate the volume change of the inter-
conversion reaction.

in Fig. 3.10. It has been suggested the liquid-liquid phase separation in supercooled water is

caused by the interconversion between two alternative supramolecular structures [13, 76, 80].

Here, a quench by compression is illustrated from P1 = 20 MPa in the one phase region to

P2 = 120 MPa below the critical temperature of demixing along the Widom line for water,

where lnK = 0 [9, 13, 77, 79, 237]. This condition is preserved along this path because the

change in the temperature is compensated by the corresponding change in the pressure as pre-

dicted by Eq. (2.9). In this case, it is predicted that phase amplification may only occur in the

presence of a specific “barostat” that supplies or removes molecules to compensate the volume

change of the interconversion reaction. Without such a barostat, phase amplification would not
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be possible.

It is noted that even though phase amplification may be predicted to occur if there is no vol-

ume change of interconversion, there are a variety of factors (like the size of the system, distance

from the critical temperature, and the rate of interconversion) that may increase the probability

of a metastable interface to form between phases [6]. The effect of possible phase amplification

has not been discussed in previous simulations of models for polyamorphic substances, but it

could be a factor effecting the possibility of equilibrium phase separation to be observed in both

experiment and simulations.

Since the order parameter in polyamorphic systems is a hybrid containing both conserved

and nonconserved components, the coupling between these two components affects the phase

domain growth in both nucleation and spinodal decomposition regimes [238]. This important

feature of the dynamics of liquid polyamorphism could also be elaborated within the framework

of interconversion of molecular or supramolecular species.

3.5 Effects of Critical Order-Parameter Fluctuations

In 1952, Lee and Yang showed that the Ising model for an anisotropic ferromagnet and the

lattice gas model for a fluid are mathematically equivalent [239]. This was a paradigm shift in the

physics of condensed matter, making a profound effect on the modern theory of phase transitions

and critical phenomena. It was later proven that all fluids exhibiting phase separation, whether

simple or complex, belong to the same class of critical-point universality in thermodynamics

as the Ising model [240]. Within the same universality class, the systems demonstrate the same

critical singularities and the same critical equation of state, provided that the appropriately defined
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order parameters, ϕ, have the same symmetry. The one-component-vector order parameter (ϕ,

the magnetization) in the Ising model and the scalar order parameter (ϕ = 1− 2ρ, where ρ is the

density) in the lattice gas posses the same symmetry, Z2 up-down symmetry [241, 242].

According to Halperin and Hohenberg [100], the Ising and lattice-gas models belong to the

different dynamic universality classes, A and H, respectively. The relaxation of the conserved

order-parameter (density) in the lattice-gas model is controlled by diffusion, while the relaxation

of the non-conserved order-parameter (the fraction of spins pointing up or down) in the Ising

model is controlled by the flipping of spins (spin “interconversion”). In addition, the mobility,

M , in fluids diverges near the critical point as described by the mode-coupling theory [243],

while the interconversion kinetic coefficient, L, is constant [100].

The meanfield approximation does not properly incorporate the effects of diverging fluc-

tuations in the critical region. This part of the phase diagram is roughly defined by the region

where the correlation length of the order-parameter fluctuations is significantly larger than the

distance between molecules (the Ginzburg criterion [173]). In practice, the region where phys-

ical properties of fluids are significantly modified by fluctuations can roughly be estimated as

∆T̂ ≤ 0.1 [244]. Fluctuation-induced effects are described by the renormalization group (RG)

theory and the scaling theory of critical phenomena [100, 240, 245, 246]. A comprehensive the-

ory of phase transitions in the presence of molecular interconversion in the vicinity of the critical

point has not yet been developed. In this section, simple scaling arguments on the behavior of

such systems in the approximation of the first-order epsilon expansion of the RG theory in pow-

ers of ε = 4 − d, where d is the system dimensionality, are presented. In this approximation,

the Landau-Ginzburg free energy functional in the form of Eq. (2.1), used in the description of

spinodal decomposition, corresponds to the Ornstein-Zernike correlation function, in which the
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susceptibility is proportional to the square of the correlation length, χ̂q=0 = ξ2/κ [210].

As the system approaches the critical point, the susceptibility, χ̂q=0 ∼ (∂2f0/∂ϕ
2)−1,

diverges as |∆T |−γ and the correlation length diverges as ξ ∼ |∆T̂ |−ν , where in the first-

order RG epsilon expansion for the 3d Ising-model universality class γ = 1 + ε/6 = 7/6 and

ν = γ/2 = 1/2 + ε/12 = 7/12 [247]. The actual theoretical and most accurate experimental

values for the critical exponents differ from those given by the lowest approximation of the RG

theory, such that γ = 1.24 and ν = 0.63 [248, 249]. The difference between γ and 2ν appears

only in the second order epsilon expansion, in which γ = ν(2 − ε2/54) [247]. However, these

differences only marginally change the behavior of the phase domain growth rate (amplification

factor), presented in Fig. 3.11a.

There is another effect, the fluctuation induced divergence of the mobility, which is only

relevant for the dynamic universality class H. In the vicinity of the critical point, the mode-

coupling theory, strongly supported by accurate experimental studies, predicts the divergence of

the molecular mobility [250]

M = M0ξ
1−zηK(qξ)

[
1 +

(
qξ

2

)]zη/2
(3.27)

where M0 = kBT/(6πη0κ) is the non-diverging mobility in the meanfield approximation; η0

is the amplitude of the dynamic viscosity, which weakly diverges as η = η0ξ
zη (zη = 1/19

in the first RG epsilon expansion [251–253], and K(qξ) ≡ K(y) = [3/(4y2)](1 + y2 + [y3 −

y−1] arctan y) is the Kawasaki function [254]. The net effect is that the mutual diffusion coef-

ficient asymptotically close to the critical point in the limit q → 0 vanishes as D = Mχ̂−1
q=0 ∼

|∆T |ν−zη [101,255]. Therefore, the phase domain growth rate given through Eq. (3.13) incorpo-
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Figure 3.11: a) Characteristic phase domain growth rate in the vicinity of the critical point (∆T̂ =
−0.001) for M0 = 1, L = 0.002, and K = 2.25× 10−5 calculated through Eq. (3.13), red curve,
with use of the diverging molecular mobility, Eq. (3.27), and scaling inverse susceptibility in the
first order epsilon expansion, χ̂−1

q=0 ∼ |∆T̂ |−γ with γ = 1 + ε/6 (ε = 4 − d). The meanfield
approximation is shown by the green curve, Eq. (3.13). b) The onset, red solid curves, Eq. (3.28),
and termination, red dashed curves, Eq. (3.29), of microphase separation affected by critical
fluctuations for M = 1, L = 0.01, ` = 100, ν = 1/2 + ε/12. The meanfield approximation is
shown by the green curves.

rates the form of χ̂−1
q=0 from scaling theory and M from mode coupling theory, Eq. (3.27).

The comparison between the prediction for the growth rate, Eq. (3.13), in the meanfield

approximation and in scaling theory is shown in Fig. 3.11a. This figure depicts a significant

effect of critical fluctuations on the growth rate. The wavenumber corresponding to the steady-

state domain size is shifted toward smaller wavenumbers and the maximum of the growth rate is

much stronger, indicating that the domain size growth into steady-state microphase domains will

be faster and result in larger domain sizes in the steady-state regime. The structure factor in the

scaling regime is given by Eq. (3.23) with use of the scaling growth rate.

In addition, both the onset and termination of microphase separation are affected by critical

fluctuations. In particular, from the growth rate, ω(q), it can be shown from Eq. (3.13) that

K∗(T̂ = T̂ ∗) = Lχ̂−1
q=0 − (Mχ̂−1

q=0 + Lκ)(q∗)2 −Mκ(q∗)4 (3.28)
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where T̂ ∗ = T ∗/Tc is the reduced temperature at the onset. Therefore, the magnitude of forced

interconversion at the onset of microphase separation scales with proximity to the critical point as

K∗ ∝ Lχ̂−1
q=0 ∼ |∆T̂ ∗|2ν . In contrast, in the meanfield approximation, K∗ ∝ |∆T̂ ∗|. In addition,

the magnitude of forced interconversion at the termination of microphase separation, ω(qm) = 0,

is given by

K∗∗(T̂ = T̂ ∗∗) =
(−Mχ̂−1

q=0 + Lκ)2

4Mκ
(3.29)

where T̂ ∗∗ = T ∗∗/Tc is the reduced temperature at the termination point, and thus, K∗∗ ∝

Dχ̂−1
q=0 ∼ |∆T̂ ∗∗|3ν , while in the meanfield approximation, K∗∗ ∝ |∆T̂ ∗∗|2. As shown in

Fig. 3.11b, the effect of critical fluctuations lowers the amplitude of the onset and termination

lines. Away from the critical point, these lines should converge with their meanfield predictions.

3.6 Conclusion of Chapter 3

A phenomenology describing phase formation affected by both natural (equilibrium) and

forced (nonequilibrium) molecular interconversion has been presented. This theory is applicable

to systems where the order parameter possesses both conserved and non-conserved dynamics.

It has been shown that a source of forced interconversion may cause microphase separation,

while in the absence of forced interconversion, the competition between diffusion and natural

interconversion dynamics results in the phenomenon of phase amplification, where one phase

grows at the expense of another stable phase. Phase amplification occurs to avoid the formation of

an energetically unfavorable interface between alternative stable phase domains. In macroscopic

systems, where the interfacial energy is much smaller than the bulk energy, the formation of a

metastable interface becomes less unfavorable, and the possibility that the system would form an
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interface significantly increases [4]. Meanwhile, in the phenomenon of microphase separation,

the presence of an external energy source compensates the energy penalty of forming an interface,

such that the formation of additional interfaces becomes favorable.

It should be emphasized that the possibility of observing phase amplification depends on

the simulation or experimental conditions. In real systems, the volume change of the intercon-

version reaction may not be zero. Thus, in an NV T ensemble, phase amplification is restricted

by the conservation of matter, such that complete phase separation would be observed. However,

in an NPT or µV T ensemble, where the size of the simulation box or the number of particles

in the system are allowed to fluctuate, then phase amplification could be observed (depending on

the size of the system, temperature, and interconversion rate). The possibility of phase amplifi-

cation has not been discussed in previous studies of polyamorphic substances. For example, the

possibility of phase amplification in high-pressure hydrogen (Section 2.2) and in polyamorphic

supercooled water could be a primary challenge of observing a FFPT in simulations or experi-

ment [1].
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Chapter 4: Application of Theory to Microscopic Models

In this chapter, a quantitative agreement is obtained between the developed approach, the

generalized Cahn-Hilliard theory and the Cook-Binder theory, and simulations of three micro-

scopic models as well as through a comparison with the behavior of Glotzer et al.’s nonequi-

librium binary-mixture model [207, 213, 216, 217, 235, 256, 257].It is shown that the interplay

between phase separation, natural interconversion, and forced interconversion may generate dis-

sipative structures – a nonequilibrium bicontinuous microemulsion, revealed by molecular dy-

namics (MD), or a nonequilibrium spatially modulated state, as observed in Monte Carlo (MC)

studies. It is also shown that under certain conditions the three models with different origins of

interconversion and the model of Glotzer et al. [207, 213, 216, 217, 235, 256, 257] may exhibit

identical behavior.

4.1 Hybrid Ising / Binary Lattice (HL Model)

As emphasized in Section 3.5, the Ising and lattice-gas models are equivalent in thermody-

namics, but fundamentally different in dynamics. As a result, in zero ordering field, the average

order parameter, 〈ϕ〉, is zero for the lattice gas (ρ = 1/2) and non-zero for the Ising model. The

density or concentration relaxes to equilibrium by spatial-dependent diffusion, while the relax-

ation of the magnetization in the lowest approximation is not spatial dependent. An important
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Figure 4.1: The spontaneous equilibrium order parameter (ϕ = ϕ0) in the lattice gas / lattice
binary mixture along the liquid-vapor phase coexistence (red domain). One of the two alternative
magnetizations (ϕ0 > 0 and ϕ0 < 0) in the Ising ferromagnet in zero field are shown in the
red domain with blue arrows. The solid curve is the crossover from meanfield behavior (dashed)
to the asymptotic scaling power law ϕ ∝ ∆T β with β = 0.326 [52, 53], while the crosses
correspond to simulation results of the HL model.

consequence of the difference in dynamics of the conserved and non-conserved order parameters

is the difference of their equilibrium states, as illustrated in Fig. 4.1. To model diffusion and in-

terconversion dynamics in a binary system, a simple lattice model where the particles of different

types are represented by spins of different orientations is considered. Diffusion is simulated by

“swapping” a pair of randomly selected neighboring spins and interconversion is simulated by

“flipping” a spin at a randomly selected lattice site. At each MC step, the probability that a ran-

dom spin will attempt to flip is pr, while swapping a randomly selected pair of nearest neighbor

spins will be attempted with probability 1 − pr. This step is accepted according to the standard

Metropolis criterion [258].
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4.1.1 HL Model Description

1 Consider an “Ising-like” lattice model where diffusion is modeled by “swapping” the

position of two neighboring species and interconversion is modeled by “flipping” one species

type to another [6]. The diffusion and interconversion dynamics are simulated using a hybrid of

Kawasaki and Glauber Monte Carlo (MC) methods [228,259,260], respectively. The species are

arranged on an ` × ` × ` cubic lattice with a coordination number of 6. Using the Ising model

Hamiltonian [261]

H = −ε
2

`3∑
i=1

∑
j∈Ω(i)

sisj (4.1)

where si, sj = ±1 are spins, Ω(i) is the set of 6 nearest neighbors of spin i, and ε is the interaction

energy. The critical temperature of this system is Tc = 4.5115(1)ε/kB [54]. Realizations are

initialized with a random spin configuration in which `3/2 are positive and the other `3/2 are

negative. In addition, it is assumed that at each MC step the probability of a random spin flip

(a Glauber step) is pr, while the probability of swapping a randomly selected pair of nearest

neighbor spins (a Kawasaki step) is 1− pr.

In each Glauber step, a random spin is selected and has a chance to flip according to the

standard Metropolis criterion [258]. In each Kawasaki step, a pair of spins is randomly se-

lected out of the list of opposite pairs and this pair has a chance to be swapped according to the

Metropolis criterion. After each successful flip or swap, the list of opposite pairs is updated.

1This subsection was reproduced from Nikolay A. Shumovskyi, Thomas J. Longo, Sergey V. Buldyrev, and
Mikhail A. Anisimov, Phys. Rev. E Lett., 103, L060101 (2021); https://doi.org/10.1103/PhysRevE.103.L060101
with the permission of APS Publications, from Thomas J. Longo, Nikolay A. Shumovskyi, Salim M.
Asadov, Sergey V. Buldyrev, and Mikhail A. Anisimov, J. Non-Cryst. Solids: X, 13, 100082 (2022);
https://doi.org/10.1016/j.nocx.2022.100082 with the permission of Elsevier, and from Thomas J. Longoa, Niko-
lay A. Shumovskyi, Betül Uralcan, Sergey V. Buldyrev, Mikhail A. Anisimov, and Pablo G. Debenedetti, Proc.
Natl. Acad. Sci., 120, e2215012120 (2022), https://doi.org/10.1073/pnas.2215012120 with the permission of NAS
Publications.
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A size-independent MC time is introduced as t = n/`3, so that in each time unit, each spin in

the system has a chance pr to flip, or each spin can swap with a neighboring spin, 1 − pr. The

frequency of spin flipping is absorbed into the time step, δt, so the Onsager coefficients, L and

M (and consequently pr), do not depend on temperature.

The equilibrium formulation, described above and detailed in Ref. [6], is converted to

nonequilibrium via the introduction of an additional energy, E, incorporated into the Boltzmann

factor for the probability that a spin flip will be accepted as p ∼ exp [−(∆U − E)/kBT ], in which

∆U is the difference in internal energy of the system for this step [258]. Thus, the effect of the

energy source only affects the interconversion dynamics of the system. The diffusion dynamics,

determined in each Kawasaki step, occur with a probability that two spins will swap according to

the Metropolis criterion without any additional energy source.

In the nonequilibrium formulation of the HL model, an additional energy, E, due to the ex-

ternal source of forced interconversion is incorporated into the Boltzmann factor for the Metropo-

lis criterion of a spin flip as p ∼ exp{[−(∆U − E)/kBT ]}, where ∆U is the difference in internal

energy of the system for this step. When E = 0, the system evolves according to the equilibrium

formulation detailed above, which leads to phase amplification. If E > 0 and is large enough

to overcome natural interconversion (and, consequently, phase amplification), then steady-state

microphase separation occurs. The energy source, E, reduces the thermodynamic energy bar-

rier between inhomogeneous and phase separated states. Thus, it promotes interconversion to

an equal composition of species in opposition to natural interconversion where, in general, the

relative population of interconverting species varies with thermodynamic conditions. For energy

E ≥ 12, the external source of forced interconversion is always greater than ∆U (cubic lattice in

three dimensions), such that spin interconversion occurs with probability, pr, and the Metropolis
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criterion is always accepted (p ∼ 1). This scenario makes this model equivalent to the model

of Glotzer et al. [213, 216, 217, 256]. For E < 12, the local environment of the selected species

influences the probability of the interconversion reaction occurring (p < 1). Thus, whether a

spin-flip will be accepted at each MC step is determined by both the spin-flip probability, pr, and

the Metropolis criterion, p. For the diffusion dynamics, the spin-swap step is performed accord-

ing to the standard Metropolis criterion without any additional energy source, such that diffusion

is the same in both the equilibrium and nonequilibrium formulations of this model.

The dynamic structure factor is calculated using the method described in Kumar et al. [262].

It is noted that this method differed from the FFT method, used in Section 3.3, since the maximum

of the structure factor (after normalizing by `3) differed by a factor of π. Additionally, using

the FFT method, the time evolution of the structure factor was interrupted at the wavenumber

q/qmax = 1 (indicating that the size of the two phase domains were half the size of the simulation

box, `/2), while using the method presented in Kumar et al., the maximum of the structure

factor was interrupted at a larger wavenumber. To correct for this difference, in this section, the

wavenumbers are scaled such that complete phase separation occurs at q/qmax = 1.

4.1.2 Phase Amplification in the HL Model

In this section, the rate of phase amplification in the HL model is characterized through

the interconversion probability, system size, and distance to the critical temperature. Scaling

arguments are provided for the topological behavior of the resultant structures that occur during

phase amplification. Through comparison with the generalized Cahn-Hilliard theory, a qualitative

comparison is obtained between the predictions of the theory and simulations of the HL model.
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Figure 4.2: Phase amplification in the HL model for systems with T = 4.0, ` = 100, and
interconversion probabilities pr: (a) 100%, (b) 10%, (c) 10−4%, and (d) 10−7%. The inset in (d)
shows 10−7% interconversion probability at a shorter time scale. Each curve represents one of the
100 different realizations of the MC simulations, while the solid zero line depicts the behavior of
a system with 0% interconversion. The simulation snapshots in (a,d) correspond to the end of the
simulation time.
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4.1.2.1 Temporal Evolution of the Order Parameter in the HL Model

2The lattice gas and Ising models both generate phase domains, for T < Tc, that will either

grow or collapse according to the growth rate law, Eq. (3.14), see Fig. 3.1. The competition

between the two types of dynamics of the order parameter results in phase amplification. How-

ever, the rate of phase amplification depends on the probability for the system to follow Ising

(non-conserved) order-parameter dynamics, see Fig. 4.2(a-d) where the phenomenon of phase

amplification is shown for different probabilities from pure Ising, pr = 1, to extremely low prob-

ability pr = 1.0×10−7. For the extremely low probability, most realizations just fluctuate around

〈ϕ〉 = 0. However, it is remarkable that even for this probability phase amplification still occurs.

One of the most evident characteristic of phase amplification is the increase in the width

of the distribution of the growth rates as the Ising-dynamcs probability increases. Assuming

that the distribution of the rates (slopes) in Fig. 4.2 is Gaussian, in Fig. 4.3a, it is shown that

the standard deviation of this distribution (calculated at the same time t = 300) changes from

σ ∝ √pr to σ ∝ pr as the system transitions from lattice gas to Ising behavior. As a result,

by comparing arithmetic averages of the absolute value of different initial configurations, the

three key parameters that describe the evolution of the order parameter are: interconversion rate

(probability), system size, and distance to the critical point. As shown in Fig. 4.3(b-d), phase

amplification is faster for larger pr, smaller `, and closer distance to the critical point (smaller

∆T̂ ).

By reducing the order parameter by its equilibrium value (ϕ̂ = 〈ϕ〉/ϕ0) and rescaling the

2This subsection was reproduced from Nikolay A. Shumovskyi, Thomas J. Longo, Sergey V. Buldyrev, and
Mikhail A. Anisimov, Phys. Rev. E Lett., 103, L060101 (2021); https://doi.org/10.1103/PhysRevE.103.L060101,
with the permission of APS Publications.
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Figure 4.3: The evolution of the order parameter during phase amplification. (a) The RMS of
the distribution of the growth rates for different probabilities captured at the same time, t =
300. The solid curve is the crossover between σ ∝ √pr and σ ∝ pr, approximated as σ =
a
√
pr(1 + bpr)/(1 +

√
pr). (b-d) The growth of the order parameter for different (b) probabilities

at ∆T̂ = −0.11 and ` = 100, (c) system sizes at pr = 1.0 and ∆T̂ = −0.11, and (d) distances to
the critical point at pr = 1.0 and ` = 100; The inset shows the power law for the initial growth of
the reduced order parameter, ϕ/ϕ0 ∝ t3/4.

time as t/τ(`) the system-size and temperature dependent ϕ(t) are collapsed as shown in Fig.

4.4a, in which the characteristic time τ(`) is proportional to `2 as shown in the inset. After
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introducing another characteristic scaling time τ(pr), the order parameter growth is collapsed

into a set of curves which cross at the same inflection point. Except for small probability, all

these curves have approximately the same slope at the inflection point, but when the probability

becomes very small, the slope significantly increases and breaks the master-curve collapse. The

unique case of extremely small probability will be addressed in the discussion of Fig. 4.5b. The

characteristic time, τ(pr), appears to be a linear function of probability as shown in the inset of

Fig. 4.4b.

Simulations of the HL model also demonstrate that phase amplification occurs when one

phase domain forms an interface with negative curvature against another. To highlight this effect,

phase amplification for individual domains in the shape of a sphere and a cylinder are shown in

Fig. 4.5a. These different topologies have different rates: ϕ ∝ t3/2 and ϕ ∝ t for the sphere and

cylinder respectively.

One can notice from Fig. 4.2a, that even for systems with Ising dynamics, there is a small

number of realizations that survive for a long time, but eventually, they will also be amplified

rapidly. This effect is attributed to the accidental formation of zero-curvature interfaces formed

during the domain growth, and hence, the emergence of two transient metastable phases. It is

observed that at least two types of zero curvature interfaces are possible: a planar interface and

a Schwarz-P interface [263]. The planar interfaces are stable with respect to small perturbations,

while the Schwarz-P interfaces are metastable. This effect is clarified in Fig. 4.5b, by allowing

the system to reach an equilibrium Schwarz-P interface under lattice-gas dynamics (pr = 0). The

collapse of the Schwarz-P interface occurs after switching the system to Ising dynamics (pr = 1)

at time t = t0. The dynamics of the average order parameter during phase amplification and

of individual domains with simple topological structures (spheres, cylinders, and zero-curvature
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structures) may be explained through the following scaling arguments.

4.1.2.2 Scaling Analysis of Phase Amplification

In this subsection3, scaling arguments are presented to describe the growth rate of phase

amplification in the HL model. The number of growing phase domains in a given system is

(`q)d, where q is the characteristic curvature (wave number) of the domain’s interface and d

is the dimensionality of the space in which the domain may grow. If the interaction between

different domains is neglected, then the root-mean-square (RMS) fluctuation of the density per

unit volume is
√

(`q)d/`d. To obtain the growth rate of the average order parameter, this factor

must be multiplied by the growth rate of the phase domain volume - υ/t ∝ 1/qdt. Assuming the

interface exhibits a random walk in which t ∝ q−2, then υ/t ∝ 1/qd−2. Thus, the growth rate of

the average order parameter, ∂〈ϕ〉/∂t ∝ `−d/2q−d/2+2, and as a function of time this is equivalent

to ∂〈ϕ〉/∂t ∝ `−d/2td/4−1. Integrating gives

〈ϕ(t, `, T )〉 = Aϕ0(T )

(
t

τ

)d/4
(4.2)

Where the characteristic time τ = τ0`
2, with τ0 being linearly proportional to pr (see the inset

of Fig. 4.4b), and ϕ0(T ) is the equilibrium value of the order parameter. The amplitude, A,

is practically independent of temperature. It can be shown from the Kelvin equation of excess

pressure near a curved interface that A ∝ σξ/ϕ2
0 [261], where σ is the interfacial tension. This

combination is a constant in meanfield theory in which σ ∝ ϕ3
0 and ξ ∝ ϕ−1

0 , while in the

3This subsection was reproduced from Nikolay A. Shumovskyi, Thomas J. Longo, Sergey V. Buldyrev, and
Mikhail A. Anisimov, Phys. Rev. E Lett., 103, L060101 (2021); https://doi.org/10.1103/PhysRevE.103.L060101,
with the permission of APS Publications.
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Figure 4.4: Scaling properties of the growth of the reduced order parameter, ϕ̂ = 〈ϕ〉/ϕ0. (a) The
order parameter growth with time rescaled by system size. The size dependence of the rescaling
parameter, τ(`), is shown in the inset; in the log-log scale with a slope of 1. The colors are the
same as in Fig. 4.3c. (b) The order parameter growth with time rescaled by probability; the
rescaling parameter τ0(pr), inversely proportional to the probability, is shown in the inset. The
colors are the same as in Fig. 4.3b.

Ornstein-Zernike approximation of scaling theory σ ∝ ξ−2 and ϕ2
0 ∝ ξ−1 [198, 240]. Eq. (4.2),

as demonstrated in Fig. 4.4a, is strongly supported by the simulation data. It is shown that the

growth of the average order parameter, in d = 3 space, closely follows the scaling law 〈ϕ〉 ∝ t3/4

- see the inset of Fig. 4.3d.

However, each individual phase domain within a realization of ϕ(t) evolves depending on

the curvature of the interface between domains. Writing the rate of individual-domain growth in

terms of time gives υ/t ∝ td/2−1. Integration gives the growth rate for an individual domain as

ϕ ∝ td/2. Using the Kelvin theory [261,264], it is possible to show that the domain encapsulated

by the convex surface with positive curvature shrinks, and eventually disappears at time t = tf ,

so that the net order parameter of the system approaches its equilibrium value ϕ0 as ∆ϕ̂ =

(1 − ϕ/ϕ0) ∝ (tf − t)(d∗+1)/2, where d∗ = d − 1 is the dimension of the interface, i.e. d∗ = 2
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Figure 4.5: Topological characteristics of the time dependence of phase amplification. (a) For
spherical domains, the reduced deviation from the equilibrium order parameter, ∆ϕ̂ = 1− ϕ/ϕ0

scales as t3/2. This is shown for temperatures, ∆T̂ , as: −0.11 (cyan), −0.025 (purple), −0.014
(orange), and −0.009 (brown). The inset shows the effect for a cylindrical domain at ∆T̂ =
−0.11. (b) A zero curvature Schwarz-P interface is initially formed by simulating a system with
Kawasaki dynamics (pr = 0) for a long time. At t− t0 = 0, the system obtains Glauber dynamics
(pr = 1) and the collapse of one of the phases is shown. Amplification transitions from random-
walk behavior,

√
t, at short times (see inset) to exponential behavior before saturation shown by

the straight line.

for a spherical domain and d∗ = 1 for cylindrical domain. In Fig. 4.5a, these power laws are

demonstrated, by selecting two typical topologies: a cylinder, following the power law ϕ ∝ t, and

a sphere, following the power law ϕ ∝ t3/2. According to the scaling arguments presented above,

it is observed that the rate of growth is independent of the distance to the critical temperature.

However, as T → Tc the fluctuations of the order parameter growth become increasingly more

prominent.

Also, if a system forms an interface with zero curvature the interface could exist for a

long time. The only surface corresponding to stable equilibrium against amplification is the

planar interface. In this case a bump with positive curvature produced by a fluctuation shrinks,
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while a cavity with negative curvature will flatten. In periodic boundary conditions this interface

forms a strip with two parallel surfaces. Fluctuations will only produce random changes to the

width of this strip, w = `∆ϕ̂/2, corresponding to the longer lasting realizations in Fig. 4.2a.

Eventually, when w becomes comparable to ξ, the domain will be punctured and a hole with

the average positive curvature of the growing domain will be formed causing the strip to quickly

disappear. In periodic boundary conditions, or locally, the growing domains can form other

surfaces with zero curvature, for example, a Schwarz-P surface [263]. This is especially likely

when pr is small and the system has time to evolve largely according to Kawasaki dynamics.

Once such an interface is formed, the amplification process is “frozen”, and the order parameter

follows random walk behavior. However, such interfaces are unstable against fluctuations and

will collapse when the growing phase forms an interface with negative curvature to break the

phase domain of the receding phase. The average order parameter behavior in the limiting case

of pr → 0 is illustrated in Fig. 4.5b. When a zero curvature interface is first formed due to

Kawasaki dynamics, then (no matter how small the Ising probability, pr) Glauber dynamics will

proceed until, eventually, one of the phases will disappear. In this case, a renormalized time

tG = tpr is used, which essentially counts only the Glauber steps. The sigmoidal shape of this

curve shows a crossover from random, square root behavior corresponding to the initial random

walk of the interface (near unstable equilibrium) to the quick exponential amplification (after a

part of the interface develops non-zero curvature). This phenomenon explains the increase in

the growth rate of the order parameter for the small probability of Ising dynamics in Fig. 4.4b

through the transformation of t to tG = t/τ0 ∝ pr. The development of negative or positive

curvature on the surface of a phase domain is a result of fluctuations. The events corresponding

to the collapse of the interface become increasingly more likely with smaller system size, smaller
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domain width, and closer distance to the critical point where the effects of fluctuations are more

pronounced. A study of phase amplification due to more complicated topologies is a subject of

future work.

4.1.2.3 Comparison with Generalized Cahn-Hilliard Theory

In this subsection4, the generalized Cahn-Hilliard theory is compared to simulations of

phase amplification in the HL model. The growth-rate equation for the HL model is characterized

by a mixture of conserved and non-conserved order-parameter dynamics. It can be characterized

from Eq. (3.7), in the absence of forced interconversion (K = 0), as

ω(q) = −χ̂−1
q=0(Lκ+Mq2)(1− ξ2q2) (4.3)

When M = 0, the nonconserved order parameter grows according to Ising spin-interconversion

dynamics [211], while, when L = 0, the conserved order parameter grows according to lattice-

gas molecular-diffusive dynamics [102]. From Eq. (4.3), the probability that the system will

exhibit Ising-model spin interconversion is defined as pr = Lκ/(Mq2 +Lκ), in which (typically)

κ = 1. If pr = 1, the order parameter relaxes to equilibrium through unrestricted (fast) phase

amplification to one of two alternative phases with either positive or negative order parameter.

If pr = 0, the order parameter exhibits complete phase separation, and if 0 < pr < 1, the rate

of phase amplification is restricted by the interconversion probability, the distance to the critical

temperature, and the system size.

Applying the generalized Cahn-Hilliard theory, the evolution of the order parameter in

4This subsection was reproduced from Thomas J. Longo and Mikhail A. Anisimov, J. Chem. Phys., 156, 084502
(2022); https://doi.org/10.1063/5.0081180, with the permission of AIP Publishing.
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Figure 4.6: The time evolution of the concentration for the HL model with pure Ising dynamics
(pr = 1), given by Eq. (4.5) with the time-dependent susceptibility in the form of Eq. (4.4). For
∆T̂ = −0.32 (green), τ = 0.2, ϕ∞ = 0.91, a = 1.9 and b = 0.3, and for ∆T̂ = −0.11 (blue)
τ = 0.2, ϕ∞ = 0.73, a = 4.6, and b = 0.4. The open circles are the computational data presented
in Fig. 4.3d.

the HL model is quantified through Eq. (3.12). In a system with pure Ising dynamics (pr =

1), the wavenumber corresponding to the fastest growth is qm = 0, hence the growth rate is

ω(qm) = −Lχ̂−1
q=0. During the later stages of spinodal decomposition, as the system evolves

toward nucleation, the susceptibility, at constant temperature, changes due to the time evolution of

the order parameter. To account for the crossover to the nucleation regime, instead of Eq. (3.24),

the time-dependent susceptibility evolving through the two limits: χ̂−1
q=0(t = 0) ∝ −∆T̂ and

χ̂−1
q=0(t → ∞) ∝ ∆T̂ is considered. By interpolating between these two limits, one obtains the

time-dependent susceptibility in the form

χ̂−1
q=0(t) = aχ̂−1

q=0(t = 0)
[
2e−(t/τ)b − 1

]
(4.4)
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where a is a constant depending on the temperature and b is an effective exponent, which was

empirically found to change between b = 1/3 to b = 1/2 in the interval of |∆T̂ | = 0.32− 0.06.

The temporal evolution of the order parameter as a result of phase amplification, for pr = 1, is

obtained from Eq. (3.12) as

ϕ = ϕ∞
[
1− eω(qm)t

]
(4.5)

It should be noted that to satisfy the boundary conditions that the order parameter is ϕ = 0 at

t = 0, while also reaching its equilibrium value in the limit t → ∞, then ϕ∞ = −ϕ0/∆T̂ ,

in Eq. (3.12), where ϕ∞ denotes the equilibrium value of the order parameter. As illustrated in

Fig. 4.6, the simulation results of Fig. 4.3d are in good agreement with this description.

It is emphasized that phase amplification is manifested by the growth of the average order

parameter from ϕ = 0 to its equilibrium value. In the case of pure diffusion dynamics, pr = 0,

the time evolution of the order parameter is described by a special form of Eq. (3.12), when the

constant ϕ0 = 0, corresponding to the Cahn-Hilliard theory:

ϕ = ϕ∞e
ω(qm)t cos(qmr) (4.6)

In this case, qm = 1/(
√

2ξ), such that the average order parameter is given through the factor

〈cos(qmr)〉 = 0. In contrast, for Ising spin-interconversion dynamics, the cosine term is evaluated

at qm = 0 corresponding to 〈cos(qm = 0 · r)〉 = 1. Therefore, for pure diffusion dynamics

(pr = 0), the average order parameter will remain at ϕ = 0 [6], corresponding to complete phase

separation into two symmetric phases of positive and negative order parameter with the same

magnitude.
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In a hybrid case, when both diffusion and interconversion are present (0 < pr < 1), the

average of the general time evolution of the order parameter will no longer be zero, and phase

amplification will be observed. This prediction is in agreement with the simulations presented in

Section 4.1.2.1, which demonstrated that even an extremely small probability of interconversion

dynamics may result in phase amplification, although the number of corresponding realizations

will be exponentially small.

4.1.3 Nonequilibrium Spatially-Modulated Stripes

The nonequilibrium formulation of the HL model, due to an external source of intercon-

version, generates nonequilibrium spatially-modulated stripes. In this section, predictions of the

generalized Cahn-Hilliard theory and generalized Cook-Binder theory are compared to simula-

tions of the HL model; a qualitative agreement is obtained.

4.1.3.1 Temporal Evolution of the Domain Size

5The effect of the source of forced interconversion is introduced into the HL model through

a tunable imbalance in the internal energy via the energy of forced interconversion (E), such that

the source boosts the probability for two alternative species to interconvert into equal amounts.

If forced interconversion is not strong enough to overcome natural interconversion (which corre-

sponds to equilibrium conditions), then phase amplification is observed, provided that the natural

interconversion probability is significant. If forced interconversion overcomes natural intercon-

version by a sufficient amount, it is observed that the locally phase-separated domains stop grow-

5This subsection was reproduced from Thomas J. Longoa, Nikolay A. Shumovskyi, Betül Uralcan, Sergey V.
Buldyrev, Mikhail A. Anisimov, and Pablo G. Debenedetti, Proc. Natl. Acad. Sci., 120, e2215012120 (2022),
https://doi.org/10.1073/pnas.2215012120, with the permission of NAS Publications.
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Figure 4.7: Effect of forced interconversion on domain size, R, normalized by the system size,
`, in the HL model. (a) The time dependence of the domain growth for energy source E = 5
and interconversion probability pr = 1/128 at T/Tc = 0.24 (green), T/Tc = 0.27 (blue), and
T/Tc = 0.40 (red), where Tc = 4.511 [54]. The horizontal dashed line indicates the size of the
simulation box, R = `. (b) Temperature dependence of the steady-state domain size for E = 5
and pr = 1/128. The vertical dashed line indicates the onset temperature, T ∗/Tc. (c) Dependence
of the steady-state domain size on the energy of forced interconversion for pr = 1/256 and
T/Tc = 0.31. The vertical dashed line denotes the onset source energy, E∗. In (a-c), the system
is simulated on a 3-dimensional lattice of size ` = 100. The open circles are the results of MC
simulations, the images are snapshots of the system for selected conditions, and the curves are
the theoretical predictions. In (a-c), black denotes up-spins and white denotes down-spins.
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ing upon reaching a characteristic size, as illustrated in Fig. 4.7a. The temperature and energy

at the onset of microphase separation is defined as T ∗ and E∗. As shown in Figs. 4.7b and 4.7c,

for temperatures and energies, T > T ∗ and E > E∗ (for a given probability, pr), dissipative

structures are observed and the steady-state domain size decreases as the energy of forced inter-

conversion increases and as the temperature becomes closer to the critical demixing temperature,

Tc.

It is found that the dissipative domain structure has the form of spatially-modulated stripes

due to the symmetry and boundary conditions of the lattice on which the MC simulations are

performed. As shown by the simulation snapshots in Fig. 4.7b, the striped pattern becomes more

disordered when the domain size becomes comparable with the correlation length of concentra-

tion fluctuations. Also, it is observed that the chance of forming defects, like kinks or corners in

the phase-domain structure, increases for larger-sized microphase structures (see the simulation

snapshots in Fig. 4.7c). Only after an astronomically large simulation time will these kinks fully

diffuse to produce the final steady-state structure. This effect is attributed to the fact that the

energy penalty from forming a corner is minuscule when compared to the bulk, such that these

defects would take a longer time to diffuse. Yet, for smaller microphase domains, these defects

generate a larger energy penalty when compared to the bulk, and thus, are removed faster.

The theoretical curves, presented in Figs. 4.7(a-c) and Figs. 4.8(a,b) are obtained from the

time-evolution of the order parameter, Eq. (3.7). The kinetic coefficients, M and L, are assigned

to be independent of temperature, while the kinetic coefficient of forced interconversion is related

to the energy source, E, through K = f(T )E2 (where f(T ) is a function of temperature only)

- verified in the next Section (4.1.3.2). With use of Eq. (3.17) for q−, the characteristic size

of the steady-state domains, R, in the HL model is given in the first-order approximation by,
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Figure 4.8: Domain size as a function of temperature in the HL model. (a) pr = 1/32 and (b)
pr = 1/256, for a system of size ` = 100 and energies: E = 1 (orange), E = 2 (green), E = 3
(red), E = 4 (purple), E = 5 (brown), E = 6 (pink), E = 7 (gray), E = 8 (yellow), E = 9
(cyan), and E = 10 (dark blue). The solid curves are the theoretical predictions of q−, the inverse
steady-state domain size, where the fit parameters are provided in Table 4.1.

Table 4.1: Fit parameters of the theoretical prediction in Fig. 4.8a (top, pr = 1/32) and Fig. 4.8b
(bottom, pr = 1/256) of the inverse steady-state domain size, q−.

E Amp M L

1 13.7 0.370 0.98
2 15.6 0.360 1.06
3 19.3 0.330 1.24
4 23.8 0.276 1.28
5 26.1 0.277 1.46
6 23.6 0.292 1.57
7 25.1 0.272 1.62

E Amp M L

1 31.3 0.050 0.46
2 31.3 0.060 0.74
3 25.8 0.109 1.00
4 18.5 0.217 1.23
5 15.9 0.268 1.42
6 15.3 0.283 1.55
7 16.4 0.285 1.67
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R2 ∼ q−2
− ≈ −DHL

eff /K, where DHL
eff = ∆T̂ (M + Lξ2). The theoretical prediction of the domain

size, R/`, in Fig. 4.7b is given by this expression with M = 0.26, L = 1.33, and amplitude,

A = 19.5, while the theoretical prediction for Fig. 4.7c is obtained with coefficients M = 0.16,

L = 1.21, and amplitude A = 20.9. Additional figures showing the steady-state domain size as

a function of temperature for different source strengths, E, and interconversion probabilities, pr,

in the HL model are illustrated in Fig. 4.8. The theoretical predictions are provided in Tables 4.1

and 4.4.

4.1.3.2 Temporal Evolution of the Structure Factor

6In Figs. 4.9(a,b), the generalized Cook-Binder theory (defined in Section 3.3) is compared

to simulations of HL model. In Fig. 4.9a, it is shown the steady-state structure factor from simula-

tions at three different external energy values, E, at constant temperature, ∆T̂ = −0.4, averaged

over N = 60 realizations. Unlike the morphologies computed from Eq. (3.7) via the finite-

difference method, the snapshots of the MC simulations shown in the insets of Fig. 4.9a depict

stripe-like phase domains that form along the diagonal of the simulation box. Three system-

dependent constants are introduced into the steady-state structure factor, when qm ∼ q−, and use

Eq. (3.22) in the form

S∞(q) =
S̃a2(q2 + Leff)

a2q4
− + [q2 − (1 + a)q2

−]2
(4.7)

where the amplitude ratio relating the theory to the HL model is S̃ = 46.5 and the effective

interconversion kinetic coefficient is Leff ∼ L/M = 0.0012. The constant a = 0.2, which

6This subsection was reproduced from Thomas J. Longo, Nikolay A. Shumovskyi, Salim M. Asadov,
Sergey V. Buldyrev, and Mikhail A. Anisimov, J. Non-Cryst. Solids: X, 13, 100082 (2022);
https://doi.org/10.1016/j.nocx.2022.100082, with the permission of Elsevier.
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describes the relationship between qm(t→∞) and q−, broadens or sharpens the scattering peak.

At the maximum of the structure factor, when q = q−, then Eq. (4.7) reduces to S∞(q−) =

S̃/(2q2
−), which is independent of a. It is noted that in this form, Eq. (4.7) resembles the scattering

intensity distribution of microemulsions [265].

In Fig. 4.9b, the dependence of the wavenumber corresponding to the maximum of the

structure factor, qs
m, on the magnitude of forced interconversion, K is illustrated for the theo-

retical prediction (curves), computations of the time evolution of the order parameter (circles),

and simulations of the HL model (triangles). The curves are determined from the full expression

for the lower cut-off wavenumber, q−, found from Eq. (3.15), when ω(q, 0) = 0. A variable

amplitude and shift are introduced to scale the theoretical prediction of q− such that microphase

separation begins at q = 1. An additional system dependent constant is introduced to describe

the relationship between qm(t → ∞) and q−. The numerical computations of qs
m (averaged over

N = 100 realizations) from the time evolution of the order parameter, Eq. (3.7), are shown in

the steady-state regime (after t ∼ 105 time steps). The magnitude of forced interconversion, K,

(for different external energies, E) was obtained for the HL model using Eq. (4.7). In the inset of

Fig. 4.9b, the relationship between theory and the HL model, K ∝ E2, is illustrated.

In addition, as illustrated by Fig. 4.9b, two values of forced interconversion, K∗ and K∗∗

(indicated by the vertical lines), are found that bound the formation of microphase domains. Both

boundaries increase with ∆T̂ ; such that, for ∆T̂ > −0.1, K∗∗ is located off the scale of the fig-

ure. For K < K∗ phase amplification was observed, while for K > K∗∗, no striped patterns

were observed; instead, only a homogeneous solution persisted, in which an apparent structure

on a small scale may be attributed to the correlations between order-parameter fluctuations. In

this case, the particles are forced to interconvert so rapidly that diffusion is impossible. As shown
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Figure 4.9: a) Steady-state structure factors computed for the HL (open circles) and the prediction
given by Eq. (4.7) (solid lines) for selected external energy sources (E) at ∆T̂ = −0.4, M = 1,
L = 1/127, ` = 100, and averaged over N = 60 realizations with 95% confidence interval error
bars. The insets show steady-state (t ∼ 3× 105) domain morphologies observed in the HL model
for the selected energies. b) The dependence of forced interconversion on the wavenumber cor-
responding to the maximum of the structure factor, qs

m, in the steady-state limit. The open circles
are numerical computations of structure factors determined from FFTs of the time evolution of
the order parameter, given by Eq. (3.7), in the steady-state limit (t ∼ 105) forM = 1, L = 1/127,
σi = 0.1, and η = 10−5, averaged over N = 100 realizations. The triangles correspond to the
predictions of K determined from fits of Eq. (4.7) to the structure factor for the HL model, like
those presented in (a). The curves illustrate the theoretical prediction qm(t → ∞) ∝ q−, given
by the full expression for q−, found from evaluating ω(q, 0) = 0 using Eq. (3.15). The colors
correspond to temperatures: ∆T̂ = −0.1 (blue), ∆T̂ = −0.2 (green), ∆T̂ = −0.3 (red), and
∆T̂ = −0.4 (purple). The inset shows the relationship between K and E.

in Fig. 4.9b, the lower bound, K∗, is associated with the characteristic wavenumber, q∗ = q = 1,

which corresponds to phase domains that form at half the size of the simulation box, `/2. In con-

trast, the characteristic wavenumber associated with the upper bound, q∗∗, is strongly dependent

on temperature [4, 7].

It should be noted that for ∆T̂ = −0.1, no structured microphase separation was observed

in the HL model. The lack of structured domains is attributed to the increase in concentration

fluctuations facilitated by the close proximity to the critical point. This effect was not observed

in the time evolution of the order parameter, shown in Figs. 3.2(a-d), as the meanfield theory

described in Chapter 3 is only applicable sufficiently far away from the critical point.
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Lastly, as shown in Section 3.3, the wavenumber corresponding to the maximum of the

structure factor, qs
m, scales linearly with the lower cut-off wavenumber, q−. Consequently, it is

observed that the scaling law that qs
m ∼

√
K ∝

√
f(T )E, where the temperature dependent

prefactor is f(T ) ' 9.71T/(Tc− T ). This result has also been confirmed in the CM model (Sec-

tion 4.2). Interestingly, previous studies of phase separating block copolymers in the presence of

forced interconversion found that qs
m ∼ K1/4 [213,235]. As these previous studies considered an

n-component order parameter to describe the block copolymer system (whereas, in this study, the

binary mixture is described via a single-component order parameter), this implies that the effect

of K on qs
m is system dependent and could depend on the nature of the order parameter.

4.2 Chiral-Mixture of Interconverting Enantiomers (CM Model)

Many biological systems are chiral at different levels of organization, including the monomers

that constitute proteins, nucleic acids and membranes, as well as the mesoscopic and macro-

scopic structures that they form, such as the DNA double helix, plant tendril helices, and human

appendages [266, 267]. From a practical point of view, chirality also plays a key role in many

industrial processes [268–270]. The active ingredients of many drugs are chiral molecules, and

their different enantiomers can exhibit significant differences in activity, absorption, selectivity

and toxicology [271–273]. Thus, molecular level insight on chiral preference and phase behavior

is thus desirable for a broad range of potential applications in science and technology.

Chiral states are not static in nature, and often the individual molecules of different chirali-

ties may interconvert. Interconversion between alternative molecular states of systems exhibiting

phase separation is a ubiquitous phenomenon that has been previously found in many condensed
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matter systems [117,207,213,218,256,274–282]. In this regard, such chiral systems may be con-

sidered as the simplest physical example of phase amplification. To investigate this phenomenon,

the interplay between chiral interconversion kinetics and phase behavior has been investigated in

the liquid phase of a three-dimensional, off-lattice, flexible tetramer model [7, 98] (referred to as

the CM model). This model consists of chiral tetramer molecules with a tunable interconversion

rate between the two enantiomeric forms. It also includes a pair potential energy function with

a tunable chiral bias parameter that can favor either locally racemic or heterochiral interactions.

Two formulations of the CM model are considered - one with energy conservation and another

one with energy dissipation.

4.2.1 CM Model Description

7The CM model represents a series of works [7, 8, 97–99], inspired by the smallest known

chiral molecule in nature, hydrogen peroxide [283–285], based on a 4-site flexible molecule that

can adopt two non-superimposable mirror-image configurations. The model was initially intro-

duced by Latinwo et al. [98] as a coarse-grained potential energy function with a force imbalance

that promotes kinetically arrested liquid-liquid phase separation, and it was subsequently refor-

mulated by Petsev et al. with an additional 8-body force resulting in an energy-conserving force

field [99]. In this subsection, the formulation of the CM model is briefly reviewed.

A single tetramer molecule of the model is composed of 4 sites that lie along a three-bond

7This subsection was reproduced from Betül Uralcan, Thomas J. Longo, Mikhail A. Anisimov, Frank H. Still-
inger, and Pablo G. Debenedetti, J. Chem. Phys., 155, 204502 (2021); https://doi.org/10.1063/5.0071988, with the
permission of AIP Publishing.
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Table 4.2: Parameters for the CM model in real and reduced units

Units
ks

(kcal/mol Å2)
kb

(kcal/mol rad2)
kd

(kcal/mol)
b
Å

m
(g/mol)

ε0
(kcal/mol)

Real 1000 100 0.00015-4.00 1.18 72.25 0.15535
Reduced 8003 643.7 0.001-25.86 1.0583 8.5 1

backbone at r1, r2, r3, and r4 (Fig. 4.10) with the total intramolecular potential energy function

Φ(1)({ri}) =
3∑
i=1

ks
2

(ri,i+1 − b)2 +
2∑
i=1

kb
2

(
Θi −

π

2

)2

+ kdcos2φ (4.8)

where ri,i+1 is the instantaneous distance between sites i and i + 1, b represents the equilibrium

bond length, ks, kb, and kd are the force constants for bond stretching, molecular angle bending,

and dihedral motion, and Θi and φ are the bond and dihedral angles, respectively. At mechanical

equilibrium, the bond angles are Θ1 = Θ2 = π/2, and the dihedral angle is φ = ±π/2.

The intermolecular potential energy between sites j and k of tetramers α and γ is

Φ(2)({rαi } ,
{
rγj
}

) =
4∑

i,j=1

εtt(ζ
α, ζγ)υ

(∣∣rαi − rγj ∣∣
σtt

)
(4.9)

where σtt is the pair potential length parameter which specifies the range of the intermolecular

interactions, υ is the 12-6 Lennard-Jones pair potential, and εtt is the strength of the interac-

tion energy with a renormalization factor that can be tuned to favor/disfavor the homochiral and

heterochiral interactions

εtt(ζ
α, ζγ) = ε0

[
1 + λζ(rαi=1,2,3,4)ζ(rγi=1,2,3,4)

]
(4.10)

Here, ζα and ζγ are scalar chirality measures of the molecules as defined below, ε0 is the LJ
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Figure 4.10: Molecular representation and geometrical features of tetramer molecules. L-
enantiomers (green), D-enantiomers (blue) and achiral transition states (cis- or trans-, red) are
shown.

energy of interaction in the absence of chiral bias and λ is the chiral bias parameter.

The sign of λ defines the nature of chiral bias such that, λ < 0 favors heterochiral inter-

actions and racemic mixtures, λ > 0 favors homochiral interactions and enantiopure states, and

λ = 0 represents a bias-free scenario [98]. It is noted that the chirality renormalization parameter

effectively represents the local binding preferences of real chiral molecules that are not captured

by the LJ potential. For instance, aspartic acid and glutamic acid exhibit phase behavior in accor-

dance with homochiral bias (λ > 0) [286], while serine and histidine both display heterochiral

bias (λ < 0) [287]. Experimental phase separation in enantiomeric liquids [288] is modeled with

λ ≥ 0. In this study, the scalar chirality measure ζ is defined as

ζ(r1, r2, r3, r4) =
r12 · (r23 × r34)

|r12||r23||r34|
(4.11)
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where, for each tetramer, the chirality of the enantiomer is determined based on the numerical

sign of ζ . In particular, ζ = −1 and ζ = 1 give L-type and D-type enantiomers, respectively. The

measure varies between these extremes as the configuration of the sites change in time.

The molecular dynamics simulations of the CM model are performed using a modified

version of the molecular dynamics (MD) package Large-scale Atomic / Molecular Massively

Parallel Simulator (LAMMPS) [289]. The renormalization parameter is set to λ = 0.5. The

values for the intermolecular and intramolecular interactions are summarized in Table 4.2 both in

real physical units and in reduced form. The simulation system is comprised of 1000 tetramers

randomly initialized in a cubic box with molecular density ρ = 0.27. The simulations are per-

formed in the isothermal-isobaric ensemble using the Nosé-Hoover thermostat and barostat, re-

spectively. For all systems, periodic boundary conditions are used with a potential cutoff 4σtt,

where σtt = 1.115 Å (or σtt = 1 in reduced units). A time step of 0.0005t∗ is used for the

velocity-Verlet integrator where t∗ is the reduced time unit.

Two formulations of the CM model are considered. In the conservative formulation, all

intermolecular forces are balanced by taking into account the multi-body forces arising from

an explicit chirality-dependent characteristic interaction energy term, as detailed in ref. [99].

In this case, phase amplification is observed where the growth of one of the two alternative

states is restricted only by system size. The dissipative formulation, on the other hand, exhibits

an imbalance of intermolecular forces imposed between substituents of opposite chirality (as

a result of not applying the gradient operator to the chirality dependent term in the potential

energy function) [7]. The phenomenon of microphase separation is observed in the dissipative

formulation of this model. It should be noted that the force constant for dihedral rotation controls

the kinetics of enantiomeric interconversion, and is denoted by kd.
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4.2.2 Phase Amplification in the CM Model

8In Fig. 4.11, the time dependence of the dihedral angle of a single tetramer in a racemic

mixture of 1000 tetramers, at different temperatures and for a range of values of the dihedral

force constant, is shown for the CM model with conservative forces. It can be seen that the

enantiomers do not interconvert within the simulation times sampled here, Figs. 4.11(a-c). Inter-

conversion between the two enantiomorphs is achieved only at much lower kd values (kd = 0.001

in Fig. 4.11d).

The CM model with conservative intermolecular forces always undergoes phase amplifica-

tion below the critical demixing temperature. This is because in a system where molecules can

interconvert, the number of molecules of each type (chirally distinct enantiomers in the present

case) is not a conserved quantity, and hence the system minimizes its free energy by avoiding the

energetic penalty associated with the formation of an interface, such that one of the two alterna-

tive phases grows at the expense of the other.

The above considerations apply strictly only at true thermodynamic equilibrium. From a

numerical point of view, it is important to understand that the “stiffness” of the force constant

for the dihedral angle, kd, determines the ease with which such equilibrium can be attained.

The mean frequency with which an individual molecule is able to switch its chirality varies in

the opposite direction to any kd variation. Thus, below the critical temperature for demixing,

and for small enough values of kd, interconversion occurs frequently and the system is able to

attain true equilibrium, resulting in phase amplification. On the other hand, for sufficiently large

8This subsection was reproduced from Betül Uralcan, Thomas J. Longo, Mikhail A. Anisimov, Frank H. Still-
inger, and Pablo G. Debenedetti, J. Chem. Phys., 155, 204502 (2021); https://doi.org/10.1063/5.0071988, with the
permission of AIP Publishing.
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Figure 4.11: Time dependence of the instantaneous dihedral angle of a typical tetramer in a
racemic mixture at P = 0.1 for the conservative formulation of the CM model, at several values
of T and kd. a) T = 0.6, b) T = 1.7, and c) T = 2.3, with kd = 5 (green), kd = 9.86 (orange)
and kd = 19.86 (purple). d) Behavior of the dihedral angle at a very low value of the dihedral
constant, kd = 0.001.

values of kd, interconversion is increasingly rare, the system is under diffusive control, and phase

separation, rather than amplification, occurs on practical time scales accessible to simulation,

even if the system is under the action of conservative forces.

The mixed diffusion and interconversion dynamics of the CM model can be described

through the generalized Cahn-Hilliard theory presented in Chapter 3. In the conservative-force

formulation of the CM model, the dynamics of such a system is characterized by a growth rate

given in the form of Eq. (4.3). In the CM model, the self-diffusion (mobility) coefficient is given

by M ≈ kT/6πηR0, where η is the shear viscosity and R0 is the size of the tetramer (adopted as
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Figure 4.12: The phase diagram showing phase amplification in the CM model with conservative
intermolecular forces, heterochiral bias parameter λ = 0.5, and rigidity spring constant kd =
0.001. The circles on the solid curve are the computational data for the critical temperature of
equilibrium phase separation and the curve is the fit of Eq. (4.12). The snapshots depict the
equilibrium states for the pressures P = 0.1, P = 1, P = 5, and P = 10 below the critical
temperature and at P = 1 above the critical temperature. The triangles show the prediction of
the critical temperature from the extrapolation of the CM model with dissipative intermolecular
forces to the limit kd →∞.

R0 = 1 in reduced units). The interconversion kinetic coefficient, L depends on the strength of

the rigidity spring constant, kd, such that it becomes zero in the limit when kd →∞ and diverges

when kd → 0. Therefore, for large values of kd (M � L), phase separation is expected, while

for very small values of kd (L�M ), phase amplification is predicted.

Figure 4.12 shows the phase diagram of the CM model in the case when kd = 0.001

(L � M ) and interconversion dynamics control the phase behavior of the system. The pressure

dependence of the critical temperature is empirically described by

Tc(P ) = Tc(P = 0) +
αP

1 + P
(4.12)
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where Tc(P = 0) = 2.19 and α = 2.43. It is noted that although kd primarily determines the

interconversion rate, it also affects the system’s equilibrium thermodynamics. For example, the

total pair interaction energy shows a small but non-zero dependence on kd at otherwise identical

thermodynamic conditions. Accordingly, one expects the critical temperature to depend on kd.

This effect is at the limit of detectability, and for numerical purposes, kd can be considered

as controlling interconversion kinetics, while having at most a modest effect on the system’s

thermodynamics.

As shown in Fig. 4.12, where λ = 0.5, above the critical temperature, a homogeneous

mixture of A- and B- enantiomers is observed throughout the simulation box. The apparent

mesoscopic inhomogenities shown by the snapshot in Fig. 4.12 above the critical temperature are

attributed to the growing correlation length of concentration fluctuations in the critical region.

Below Tc, phase amplification occurs. Note that by quenching the racemic mixture below Tc, due

to the effect of phase amplification [6], the system equilibrates arbitrarily to either A- or B-type

enriched enantiomer phases as illustrated in Fig. 4.12, thereby establishing a chiral preference.

4.2.3 Formation of Dissipative Structures

9In the dissipative-force formulation of the CM model, the nonequilibrium condition is

mimicked internally through an imbalance in intermolecular forces [7, 99]. This imbalance is in-

troduced if the chirality-dependent characteristic energy scale is not included (as it should) when

9This subsection was reproduced from Betül Uralcan, Thomas J. Longo, Mikhail A. Anisimov, Frank H. Still-
inger, and Pablo G. Debenedetti, J. Chem. Phys., 155, 204502 (2021); https://doi.org/10.1063/5.0071988, with the
permission of AIP Publishing, from Thomas J. Longo and Mikhail A. Anisimov, J. Chem. Phys., 156, 084502
(2022); https://doi.org/10.1063/5.0081180, with the permission of AIP Publishing, and from Thomas J. Longoa,
Nikolay A. Shumovskyi, Betül Uralcan, Sergey V. Buldyrev, Mikhail A. Anisimov, and Pablo G. Debenedetti, Proc.
Natl. Acad. Sci., 120, e2215012120 (2022), https://doi.org/10.1073/pnas.2215012120, with the permission of NAS
Publications.
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Figure 4.13: The change of compositional heterogeneity with chiral interconversion kinetics at
T = 1.7 and P = 0.1 in the dissipative-force formulation. a) Steady-state snapshots of chiral
liquid systems at various dihedral force constants (kd). b) The steady-state domain size as a
function of interconversion rate, 1/τINC. The solid line is the approximation given by 1/τINC =
a1/R

2
∞ + a2/R

4
∞, which follows from Eq. (4.15), where a1 = 4.6× 10−3 and a2 = 3.8× 10−4.

The inset shows the linear correlation between R∞ and kd. The colored points highlight the
results corresponding to the three dihedral force constants for which the domain growth is shown
in Fig. 4.15.

applying the gradient operator to calculate site-site forces [8]. Figure 4.13 illustrates the infinite

time limit of the dependence of the steady-state domain length, R(t→∞) = R∞ ∝ kd, on the

dihedral force constant of the tetramer model with P = 0.1 when the system is quenched from

T = 2.6 to T = 0.8. It is shown that below kd = 25.86, the domain growth saturates at a certain

steady-state value below Rmax, which is indicated by the simulation snapshots in Fig. 4.13a. The

emergence of such smaller domain sizes suggests that the growth of the phase domains at these

conditions is restricted by the dissipation in the intermolecular interaction forces, not by the finite

length scale of the simulation box.

131



The characteristic time of interconversion, τINC is inversely related to the interconversion

kinetic coefficient, L, such that the simulation data can be well described by 1/τINC = a1/R
2
∞ +

a2/R
4
∞ (solid-line in Fig. 4.13b). Thus, the interconversion kinetic coefficient has the following

dependence on the rigidity parameter, kd,

L = M
T 2

k2
d

(
1 + a

T 2

k2
d

)
(4.13)

where a is constant and the even power of the temperature dependence originates from the nat-

ural coupling between dihedral angle rotation and thermal energy in an equilibrium ensemble.

Furthermore, the assumption L ∝ M provides a good fit to simulation data and implies that

enantiomer interconversion is linked to rotational mobility (the latter being proportional to trans-

lational mobility through the Stokes-Einstein and Debye-Stokes-Einstein equations.)

The prediction that the size of the microphase domains is restricted proportionally to kd at

fixed temperature and pressure is also demonstrated in Fig. 4.14a. Just like the HL model, the

domain size at fixed dihedral-force constant decreases with increasing temperature as shown for

kd = 5 in Fig. 4.14b. As depicted by the simulation snapshots in Fig. 4.14, the onset temperature

T ∗ and k∗d, correspond to the conditions where the domain size reaches the size of the simulation

box.

Unlike the HL model, where the source of forced interconversion (E) is uncoupled from

the interconversion probability (pr), in the CM model, both of these effects are controlled by

the rigidity parameter, kd. Consequently, when kd → ∞ (corresponding to pr → 0 in the HL

model) no interconversion, either natural or forced, occurs and the system would phase separate

via Cahn-Hilliard diffusion-induced spinodal decomposition [4]. As discussed for the HL model

132



Figure 4.14: Steady-state domain size, R, normalized by the size of the system, `, in the CM
model. (a) The time evolution of the domain size for different interconversion rates, tuned by the
rigidity parameter, kd, as kd = 3 (purple), kd = 5 (green), and kd = 9.86 (red) at the reduced
pressure P = 0.1 and T/Tc = 0.35, where Tc(P = 0.1) = 2.32, as indicated on Fig. 4.12.
(b) The normalized steady-state domain size as a function of temperature at P = 0.1 and kd =
5. The vertical dashed line indicates the onset temperature, T ∗/Tc. In (a) and (b), the open
circles correspond to simulation results, the curves correspond to the theoretical predictions (see
Table 4.3), and the images show snapshots of the system simulated at the indicated conditions.
In (a-b), dark/clear spheres correspond to the L-/D-configuration of a chiral tetramer (spheres are
located a tetramer’s center of mass).

in Section 4.1.2, for low interconversion probability, the system commonly enters a transient

metastable state with an interface, rather than undergo phase amplification [6]. This phenomenon

is also relevant to the CM model, where it is increasingly likely for high enough kd that the system

will enter a long-living transient state with two phases separated by an interface. This state would

eventually converge to a steady-state configuration with the lowest possible interfacial energy (a

single phase formed via phase amplification), for low T and high kd (which corresponds to low

pr in the HL model). This transient dissipative structure is depicted in the simulation snapshots

of Fig. 4.14, where it is observed that an interface has formed between the two phases.

Unique to the CM model, an imbalance of intermolecular forces produces an imbalance

in chemical potential associated with the interconversion dynamics [99], such that the time-

evolution of the order parameter is best described by Eq. (3.8), in which the difference between
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Table 4.3: Fit parameters used for the theoretical predictions in Fig. 4.14a of the inverse steady-
state domain size, q−. The mobility is given by the Stokes-Einstein relation with amplitude b0

and characteristic temperature T0 = 1.2. Two additional parameters, the amplitude, A, and the
characteristic size of the inhomogeneities (q0 ∼ 1/R0) are included.

kd b0 A q0

3 0.0013 4.55 0.04
5 0.0023 3.80 0.07
10 0.0022 1.55 0.06

the balanced and unbalanced chemical potentials, ∆µ̃′, corresponds to the compensation of the

contribution from the enthalpy of mixing in the chemical potential coupled with the interconver-

sion kinetic coefficient, L. It is noted that the first term in Eq. (2.12) could also be written through

the derivatives of the reduced entropy of mixing, ∆Ŝmix = ∆Smix/ρckBTc, and the reduced en-

thalpy of mixing, ∆Ĥmix = ∆Hmix/ρckBTc, as

∆T̂ϕ = −T ∂(∆Ŝmix)

∂ϕ
+
∂(∆Ĥmix)

∂ϕ
≈ T̂ϕ− ϕ (4.14)

Therefore, it may be considered that the racemization of enantiomers is equivalent to forced inter-

conversion driven only by the entropy of mixing as seen through the comparison with Eq. (4.14).

As a result, ∆µ̃′, in the first-order approximation is given by

∆µ̃′ ≈ T̂ϕ− κ∇2ϕ (4.15)

The characteristic phase domain growth rate for the dissipative CM model, with a chemical

potential given by Eq. (4.15), reads

ω(q) = −L(T̂ + κq2)−M∆T̂ q2(1− ξ2q2) (4.16)
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Figure 4.15: Phase domain growth for the dissipative-force formulation of the CM model. The
open circles represent computational data [7], and the curves illustrates predictions of the time
evolution of the domain size, R(t) = 1/qs

m, from Eq. (3.23) for dihedral force constants: kd = 5
(green), kd = 9.86 (red), kd = 19.86 (blue), and kd → ∞ (black) for T = 1.8, Tc = 2.3, τ = 2,
and M = 0.0022. The domain size is normalized by the size of the computational box, `. The
dashed curves represent the predictions of the domain growth if it is not restricted by the finite
size.

Solving Eq. (4.16) for ω(q) = 0, the first root, q−, is obtained, which corresponds to the minimum

wavenumber below which the growth rate becomes negative and phase domain growth will not be

possible. In the first approximation, Eq. (4.16) leads to the prediction of a competition between

interconversion and negative diffusion as,

q2
− =

L

Deff
≈ T 2

k2
d(−∆T̂ )

(4.17)

where the effective mutual diffusion coefficient is defined as Deff = −(∆T̂ /T̂ )(M + Lξ2) in

which ∆T̂ /T̂ = (T − Tc)/T . The effective mutual diffusion coefficient represents the diffusion

of species affected by interconversion. Remarkably, forced interconversion of species enhances
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Figure 4.16: The mutual diffusion coefficient affected by interconversion, given by Eq. (4.17), as
a function of the normalized steady-state domain sizeR∞, Eq. (4.18) in the CM model. The open
circles are computational data for the dissipative-force formulation of the CM model at three
different dihedral force constants: kd = 5 (green), kd = 9.86 (red), and kd = 19.86 (blue) [7].
The molecular mobility in the limit kd → ∞ is approximated as M = b0T/η, where b0 = 0.94
and η is the viscosity approximated by the Arrhenius equation η ∼ eT0/T . The characteristic
temperature T0 is 3.5.

the translational molecular mobility M , into the effective mobility, Meff = M + Lξ2. This is a

novel phenomenon that was recently discovered [7].

The characteristic size of the steady-state domains, R∞ ∝ 1/q−, is presented in the first

approximation of Eq. (4.17) by

R∞ ≈
kd
T

√
−∆T̂

T̂
(4.18)

The phase domain growth in the CM model, based on the predictions from the generalized Cook-

Binder theory, is illustrated in logarithmic scale in Fig. 4.14a and in normal scale in Fig. 4.15 (also

depicting the predictions for kd →∞) for different dihedral force constants. The domain size is

calculated from the inverse wavenumber corresponding to the maximum of the time-dependent

structure factor, R(t) ∝ 1/qs
m, as given by Eq. (3.25). In Fig. 4.16, the agreement of the effect

of interconversion on the effective diffusion coefficient, given by Eq. (4.17), is demonstrated
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through comparisons with computational data [7].

4.2.4 Characteristic Time Scales in the CM Model

10Next, in order to further elucidate the kinetics of phase separation, the correlations be-

tween the characteristic interconversion (INC) time of a tetramer τINC, the characteristic phase

separation time τLLPS, and the characteristic molecular self-diffusion time τD are considered, each

of which are well-described by the generalized Cahn-Hilliard theory. In the fits of the simulation

data, presented in Fig. 4.17, the interconversion kinetic coefficient, L, is given by Eq. (4.13),

with an adjustable coefficient b0 and where the mobility, M , is given through the Stokes-Einstein

relation that M = kBT/6πηR0, where the viscosity of the system is assumed to be η = eT0/T ,

in which the characteristic temperature, T0, was also adjusted to better describe the behavior of

each dihedral constant, kd, at low temperatures.

In the two phase region, the growth rate formula, Eq. (4.16), describes the characteristic

times of liquid-liquid phase separation (LLPS) on the length scale of the simulation box. As seen

in Fig. 4.17a, the time of LLPS becomes infinite when the microdomain sizes reach the size of

the simulation box, q− = q∗, which is computationally observed as “complete” phase separation.

Therefore, the characterisitc LLPS time is found as τLLPS = aLLPS/ω̃(q∗), where the amplitude

aLLPS = 0.34 and Tc = 2.35. In the fit, presented in Fig. 4.17a, q∗ is adjusted such that τLLPS →∞

when the temperature reaches T = T ∗, the onset of phase separation on the scale of the simulation

box. Also, the characteristic temperature T0 was slightly different for the three different dihedral

constants: T0 = 2.2(kd = 5), T0 = 1.925(kd = 9.86), and T0 = 1.2(kd = 19.86).

10This subsection was reproduced from Betül Uralcan, Thomas J. Longo, Mikhail A. Anisimov, Frank H. Still-
inger, and Pablo G. Debenedetti, J. Chem. Phys., 155, 204502 (2021); https://doi.org/10.1063/5.0071988, with the
permission of AIP Publishing.
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Figure 4.17: Temperature dependence of the characteristic time scales in the dissipative-force
formulation of the CM model for dihedral force constants: kd = 5 (green), kd = 9.86 (orange),
and kd = 19.86 (purple) at P = 0.1. a) Characteristic time for liquid-liquid phase separation at
the length scale of the simulation box, q = q∗. The curves are τLLPS ∝ 1/ω̃(q∗) where ω̃(q) is
given by Eq. (4.16) where it was found that q∗ = 0.15 and Tc = 2.35. The condition τLLPS →∞
corresponds to T = T ∗. b) Characteristic times for chiral interconversion. τINC ∝ 1/L, and the
curves are given by Eq. (4.13). c) Characteristic self-diffusion times, where the curves are given
by Eq. (4.19).
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The interconversion time in the two phase region (T < T ∗), as shown in Fig. 4.17b, is

well-described by Eq. (4.13), for which the constants were found to be T0 = 0.36, b0 = 29.4, and

a = 526.6. The characteristic interconversion time, τINC, of a tetramer is shown in Fig. 4.17b.

The characteristic self-diffusion time is given by

τD =
R2

0

DCM
eff
≈ R2

0

(M∆T + L)/T̂
(4.19)

whereDCM
eff is the effective (kd-dependent) self-diffusion coefficient. As a result, the characteristic

time of self-diffusion (Fig. 4.17c) is found from, τD = aD/Deff, where aD is an amplitude coeffi-

cient of the order R2
0, determined from the fit to be 0.94. Also, the characteristic temperature T0

was found to be somewhat different for the three different dihedral constants: T0(kd = 5) = 3.4,

T0(kd = 9.86) = 4.8, and T0(kd = 19.86) = 7.0. The self-diffusion time shown in Fig. 4.17c ex-

hibits a crossover from the inverse mobility, τD ∝ T̂ /M∆T (at large kd), to the intertconversion

time, τD ∝ T̂ /L (at small kd).

4.2.5 Finite-Size Restrictions in the CM Model

11As was also observed in the HL model, in the CM model the phase domain growth is

restricted by the finite size of the system, `. For certain temperatures (at constant kd), the charac-

teristic wavelength, q−, reaches the characteristic wavelength of the simulation box, q∗ (which is

related to the size of the simulation box through Rmax ∼ ` ∼ 1/q∗), hence phase separation is ob-

served on the length scale of the computation box. This event is referred to as “complete” phase

11This subsection was reproduced from Betül Uralcan, Thomas J. Longo, Mikhail A. Anisimov, Frank H. Still-
inger, and Pablo G. Debenedetti, J. Chem. Phys., 155, 204502 (2021); https://doi.org/10.1063/5.0071988 and from
Thomas J. Longo and Mikhail A. Anisimov, J. Chem. Phys., 156, 084502 (2022); https://doi.org/10.1063/5.0081180,
with the permission of AIP Publishing.
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separation, ` ∼ 1/q∗, since, computationally, it would appear as if two-phase separation was oc-

curring. Since q− is cut-off at q∗, the temperature corresponding to the cut-off (T ∗) characterizes

the onset of the observed phase separation. This phenomenon is illustrated by Fig. 4.15, where

(for kd = 9.86 and kd = 19.86) the computational data demonstate that the steady-state domain

size stops growing when the system reaches the size of the simulation box. Dashed curves are

utilized to indicate the prediction for the unrestricted domain growth.

In this case, the line separating the apparent two phase region (R∞ > 1/q∗) and the mi-

crophase region (R∞ ≤ 1/q∗) is found from the first root of the phase domain growth rate -

see Fig. 3.6 and Eq. (4.17). The line interpreted as the onset of microphase separation (where

R∞ = 1/q∗ ∼ `, T = T ∗) is determined as

1

k2
d

=
2

T̂ ∗

(
−∆T̂ ∗

T ∗

)2 [
1−

√
1− (q∗)2

(−∆T̂ ∗)

2
]

(4.20)

The onset temperature as a function of dihedral angle force constant, kd, is depicted in Fig. 4.18a.

The onset temperature is numerically calculated from Eq. (4.20). As depicted in Fig. 4.18a, the

onset of arrested phase separation on the scale of the simulation box also depends on pressure.

Physically, this originates from the density-dependent energetic bias towards homochiral interac-

tions, represented phenomenologically by the introduction of λ > 0 in the model. Thermodynam-

ically, this pressure dependence of T ∗ can be attributed to the underlying pressure dependence of

the critical temperature of the liquid-liquid transition in the thermodynamic limit (Tc), at infinite

kd, due to the compressibility of the tetramer model. The values for the critical temperature for

three different pressures are given in the caption of Fig. 4.18a.

Rescaling the onset temperature by Tc(P ) gives the universal function of kd depicted in

140



Figure 4.18: Dihedral force constant dependence of the onset temperature of phase separation on
the length scale of the simulation box in the dissipative-force formulation CM model for P = 1.0
(red circles), P = 0.5 (blue circles), and P = 0.1 (black circles). The curves are numerically
calculated from the first solution of ω̃ = 0, given by Eq. (4.16), when q− = q∗ = 0.11 ≈
1/Rmax ∼ 1/`, T = T ∗, and Tc(P = 1.0) = 3.45, Tc(P = 0.5) = 2.91, and Tc(P = 0.1) =
2.3 for different pressures (a) and in rescaled coordinates (b). The triangles, shown in (b), are
obtained from the asymptotic limits of the time of liquid-liquid phase separation, τLLPS →∞, as
shown in Fig. 4.17a for q∗ = 0.15 and Tc = 2.35.

Fig. 4.18b. Also, in Fig. 4.18b, the predictions of T ∗, obtained for three selected values of kd

through the asymptotic limits of τLLPS → ∞ as illustrated in Fig. 4.17a, are illustrated. The pre-

dictions of T ∗ are just above the observed onset temperature because they correspond to slightly

higher values of q∗ and Tc (0.15 vs. 0.11 and 2.35 vs. 2.30 respectively). This difference can be
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attributed to the uncertainty in obtaining the onset of phase separation on the scale of the simula-

tion box. These values, however, are in good agreement with the computational T ∗ data obtained

from the onset of phase separation.

As predicted from the growth rate factor, both the conservative and the dissipative force

formulations will become identical in the limit of an infinitely rigid spring constant (kd → ∞)

or when the kinetic interconversion coefficient goes to zero (L → 0). This prediction is con-

firmed by extrapolating the critical temperatures shown in Fig. 4.18a to kd →∞ and comparing

Tc(P ) to the ones obtained from the conservative force formulation. Remarkably, this pressure

dependence of the critical temperature for the conservative-force formulation of the CM model

is fully consistent with the prediction obtained from the dissipative-force formulation as shown

in Fig. 4.12. This is evidence for the consistency of the computational data of the CM model for

these two alternative formulations.

In addition to the onset of microphase separation, another phenomenon takes place when

the source of forced interconversion shifts the entire phase domain growth rate below zero. In

this scenario, when the growth rate becomes negative for all wavenumbers, a homogeneous steady

state exists, in which no phase domain growth will occur. The point at which the maximum of

the growth rate crosses zero, ω(qm) = 0, is characterized through the termination temperature,

T ∗∗. At this point, the three characteristic wavenumbers merge into a single point, qm = q− =

q+ = q∗∗, see Fig. 3.6. For the dissipative CM model the termination probability is given in the

first order approximation by

1

k2
d

= 2

(
∆T̂ ∗∗

T̂ ∗∗

)2 [
T̂ ∗∗ +

∆T̂ ∗∗

4

]−1

(4.21)
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Figure 4.19: The conditions for microphase separation at a length scale, R∞ = 1/q−. The
solid curve depicts the onset temperature of microphase separation, T = T ∗, at the scale of
the computational box, Eq. (4.20), for R∞ = 1/q∗ = 7.1 and Tc = 2.4. The two dashed curves
depict the lines of steady-state domain size that are smaller than the size of the computational box,
R∞ = 3.6 (lower) and R∞ = 2.0 (upper), while the dotted curve depicts the growth-termination
temperature, T = T ∗∗, Eq. (4.21). The symbols are computational data (from the observed
size of the phase domain) in the dissipative-force formulation of the CM model for pressure
P = 0.1. The symbols indicate the onset of phase separation (open circles), the microphase
region (R∞ = 1/q∗, closed circles), and the two phase region (R∞ > 1/q∗, triangle). The two
simulation snapshots illustrate the behavior of the system composed of A-rich (green), B-rich
(blue), and intermediate (red) states of the CM model. [7]

The termination line, T = T ∗∗ is indicated by the dotted line in Fig. 4.19. The growth-termination

temperature is restricted by the correlation length such that the microphase domain is constrained

between the size of the computational box and the correlation length of the order-parameter

fluctuations. Figure 4.19 shows the termination line along with three lines of constant domain

size (wavenumber).
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4.3 Coarse-Grained Hard-Core-Shoulder Model (HCS Model)

12Unlike the previous examples, the HCS model, utilizes a tunable source of forced in-

terconversion, implemented through the interactions with an external flux of energy carrying

agents [8]. In biological systems, these agents can be thought of as ATP molecules, which change

the conformation of a protein between two phase-segregating states. Alternatively, Each species

in the HCS model represents a generic mixture of two chiral molecules (or any two chiral states),

like the CM model (Section 4.2), simulated via a coarse-grained two-state approach, while the

event-driven kinetics allow for an independent source of natural and forced interconversion, sim-

ilar to that in the HL model (Section 4.1).

4.3.1 HCS Model Description

A system initially consisting of an equal number of NA = NB = N/2 = 32, 000 identical

hard spheres of type A and B with diameter σ are considered. While all particles repel each

other as hard spheres with diameter σ, phase segregation is generated by the additional repulsion

between A and B particles via a square shoulder potential at distance d = 1.3σ, with energy

ε0. The interactions within the system are simulated via event-driven MD with discontinuous

potentials [290, 291]. Additionally, Nag = 10, 000 agents as an external source of energy are

introduced, which collide with particles A and B at a distance b < σ. The agents contain an

additional energy ε (measured in units of ε0), which upon collision with particles A or B boosts

the probability of species interconversion (A −−⇀↽−− B). Physically, ε can be regarded as an external

12This section reproduced from Thomas J. Longoa, Nikolay A. Shumovskyi, Betül Uralcan, Sergey V.
Buldyrev, Mikhail A. Anisimov, and Pablo G. Debenedetti, Proc. Natl. Acad. Sci., 120, e2215012120 (2022),
https://doi.org/10.1073/pnas.2215012120, with the permission of NAS Publications.
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Figure 4.20: Self-diffusion (molecular mobility) of the HCS model. Simulations were conduced
for a system with b = 0 (no interconversion, either natural or forced). The open circles indicate
simulation results, while the curve is the fit of M = 0.056

√
T + 0.015T .

energy carried by an ATP molecule or another active agent, which can compensate the effect

of the heat of mixing arising from interconversion [8]. In simulations of the HCS model, this

reaction occurs instantaneously, without any metastable intermediate state of either species.

The systems considered in this section are simulated in an `× `× ` box of length ` = 40σ

with periodic boundaries at temperature T , measured in units of ε0/kB. To regulate the temper-

ature, a Berendsen thermostat is utilized [292]. The collision of the agents with species A or B

occurs with conservation of linear and angular momentum of the pair as well as with total poten-

tial energy change, ∆U . The total energy is composed of potential, kinetic, and external energy,

in which the external energy is incorporated into the kinetic energy of the colliding particles. The

equilibrium formulation occurs with conservation of energy, such that ε = 0.

In the equilibrium formulation, the agents either contain no additional energy, ε, or the

cross-sectional area of their interaction with the species, b2, is zero, such that the agents pass

through species A or B without interacting. Physically, this corresponds to a scenario when the
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Figure 4.21: Critical temperature of the HCS model. Internal energy, ∆U , of the HCS model
as a function of temperature (blue) for the case b = 0 (no interconversion, either natural or
forced). The blue circles indicate the results of simulations, while the red circles correspond to
the calculated isochoric heat capacity, CV = ∂U/∂T |V . The solid red curve is an empirical fit of
CV , where the temperature corresponding to the maximum of CV is the critical temperature for
the HCS model, Tc = 3.6± 0.05, in units of ε0/kB.

energy is unable to transfer from the agents to the species in the system. In the nonequilibrium

formulation, the agents possess both the additional energy and cross-sectional area necessary to

interact and convert species A to B and vice-versa. Without an external source of energy, an

energetically costly interconversion reaction violates the conservation laws, so that the particles

will recoil and interconversion will not happen. However, in the presence of an external source

of energy, provided by the agents, the interconversion reaction may happen both in favorable or

unfavorable conditions, just as in the HL model.

The particles (A, B, and the agents) have equal masses m, and the simulation time is

measured in units of σ
√
m/ε0. For the HCS model, the system is modeled as a dense fluid

of hard spheres with a molecular mobility found to be M = 0.056
√
T + 0.015T , as shown in

Fig. 4.20. In the kinetic theory of gases, the interconversion kinetic coefficient, L, is given by

146



L ∝ 4b2Nc
√
πkBT/m/`

3 = κb2, where b is the interaction probability, Nc is the number of

energy carriers in the system, m is the mass of each interacting species, and ` is the size of the

system. In the reduced form, κ = 4Nc
√
πkBT/m/`

3 is related to the particle interaction density

and the mean-free-path per unit time (the characteristic velocity of motion), such that κ is propor-

tional to M . The critical temperature for this model was determined from simulations in the limit

of no interconversion (b = 0) as Tc = 3.6 ± 0.05. This value was found from the temperature

corresponding to the maximum of the isochoric heat capacity as illustrated in Fig. 4.21.

4.3.2 Nonequilibrium Bicontinuous Microemulsions

In the HCS model, non-relativistic energy-carrying particles are introduced as a source of

forced interconversion. They carry energy, ε, and transfer this energy via molecular collisions

with cross-sectional area b2. When the additional particles carry no extra energy, ε = 0, only

natural interconversion, with a probability b, will occur. However, due to the external source

of energy provided by the particles, forced interconversion will occur just like in the previously

considered models (HL, Section 4.1, and CM, Section 4.2). Similar to those models, in the HCS

model, the characteristic domain size decreases as a function of temperature and interconversion

probability, b, as depicted in Fig. 4.22. In this case, when b = 0, then regardless of ε, no inter-

conversion will be possible. For conditions b < b∗ ≈ 0.02 at T < T ∗ = 0.22Tc and ε < ε∗ = 10,

corresponding to the onset of microphase separation, the system enters a transient state with an

interface, similar to the CM model, as illustrated by the simulation snapshots in Fig. 4.22b.

It is noted that below the onset of microphase separation, the characteristic steady-state

domain size is comparable to the size of the simulation box, ` ∼ 1/q∗. Consequently, the on-
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Figure 4.22: Steady-state domain size, R, normalized by the size of the system, `, in the HCS
model. (a) The temperature-dependence of the normalized steady-state domain size for b = 0.005
(blue), b = 0.050 (black), and b = 0.075 (green) at ε = 10. (b) The normalized steady-state
domain size as a function of interconversion probability, b, for the energy source ε = 12 and
T/Tc = 0.22. The vertical dashed line indicates the onset interconversion probability, b∗. In
(a) and (b), the open circles correspond to simulation of 64, 000 particles, the curves correspond
to the theoretical predictions, and the images show snapshots of the system simulated at the
indicated conditions.

set conditions for all models depends on the system size. In addition, for small system sizes

phase amplification occurs faster than for large systems, such that instead of entering a transient

state below the onset, the system may undergo phase amplification. As observed in the HCS

model, for large system sizes, in the microphase separation region, one could observe more reg-

ular structures, like the nonequilibrium spatially-modulated stripes observed in the HL model

(Section 4.1.3). The snapshots, presented in Fig. 4.22 demonstrate that the off-lattice MD simu-

lations produce nonequilibrium bicontinuous “microemulsion” structures.

The steady-state domain size is determined as the inverse of the wavenumber corresponding

to the maximum of the time-dependent structure factor S(q, t) in the limit t→∞. The theoretical

prediction for the system with b = 0.05 depicted in Fig. 4.22(a) is determined from q− with

amplitude, A = 145, and mobility amplitude, M0 = 0.005, while the prediction for the system

with b = 0.075 is determined from amplitude, A = 394, and mobility amplitude, M0 = 0.001.
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Figure 4.23: Structure factor, S(q, t), in the HCS model. The formation of a steady-state bicon-
tinuous microemulsions observed in MD simulations of the HCS model for 64,000 particles at
interconversion energy source ε = 12, T/Tc = 0.1, and interconversion probability b = 0.05
(a) and b = 0.15 (b). The images show snapshots of the steady-state system simulated at the
specified conditions.

The theoretical prediction for the system depicted in Fig. 4.22(b) is given by Eq. (3.17), withA =

88 and M0 = 0.09. An example of the steady-state structure factor for two different interaction

cross-sections is illustrated in Figs. 4.23(a,b). Additional simulation results depicting the domain

size as a function of temperature for the HCS model for different forced interconversion source

strengths, ε, and molecular interaction cross-sections, b2, are shown in Figs. 4.24(a,b). It should

be noted that for extremely low temperatures, T/Tc ≤ 0.08, the simulated systems freeze, such

that the characteristic domain size is always smaller than the predicted steady-state size. The

metastable freezing is not captured by the theoretical approach. Due to this freezing effect, no

phase amplification or metastable two-phase separation was observed in the HCS model at low

temperatures.
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Figure 4.24: Domain size as a function of temperature for the HCS model. (a) ε = 6 and (b) ε = 8,
for system size ` = 40σ, averaged over N = 10 realizations, for interconversion probabilities,
b = 0.005 (blue), b = 0.05 (black), and b = 0.075 (green). It should be noted that for low
temperatures, T/Tc ≤ 0.8, the simulated systems freeze, such that the characteristic domain size
is always less than the predicted size (as indicated by the triangles).

4.4 Sources of Microphase Separation

In this section13, the ubiquitous nature of the nonequilibrium behavior in interconverting

binary systems are considered through comparisons of the simulated models. Also, the limiting

conditions for the observation of microphase separation are discussed. It is shown that under

certain constrains all three of the considered models, as well as the model of Glotzer et al. [207,

213, 216, 217, 235, 256, 257], would exhibit the same behavior.

4.4.1 Comparison of the Microscopic Models

As indicated by Eq. (3.7), there are three kinetic coefficients, L,M , andK, whose interplay

determines whether microphase separation may occur. In the HL model, the kinetic coefficients,

L and M (considered to be independent of temperature and pressure), determine the probability

13This section was reproduced from Thomas J. Longoa, Nikolay A. Shumovskyi, Betül Uralcan, Sergey V.
Buldyrev, Mikhail A. Anisimov, and Pablo G. Debenedetti, Proc. Natl. Acad. Sci., 120, e2215012120 (2022),
https://doi.org/10.1073/pnas.2215012120, with the permission of NAS Publications.
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of natural interconversion, pr, through pr = L/(Mq2 + L) [4, 6]. Thus, M = 0 corresponds to

fast interconversion (pr = 1), while L = 0 corresponds to no natural interconversion (pr = 0). In

this model, for small pr, the source of forced interconversion is approximated as being uncoupled

from natural interconversion and related it to the kinetic coefficient K as K ∝ E2, where the

prefactor depends on temperature only (Section 4.1.3.2). In the limit when E → Emax = 12, the

HL model becomes equivalent to the model of Glotzer et al. [207, 213, 216, 217, 235, 256, 257],

in which there is no natural interconversion (pr = 0).

In the CM model, the source of forced interconversion is coupled to the natural intercon-

version rate through the dihedral force constant, kd. The behavior of the system with differ-

ent dihedral-force constants may be related to the behavior of the HL model system for dif-

ferent interconversion probabilities, pr, by considering an interpolation between two limits as

kd =
√

(1/pr)− 1, such that kd → 0 (pr = 1) corresponds to fast natural and forced intercon-

version, while kd → ∞ (pr = 0) corresponds to no interconversion [4]. This specific feature

of the CM model, that the natural and forced interconversions are controlled by a single param-

eter kd, means that without interconversion (only in the limit kd → ∞), the CM system is in

equilibrium and exhibits regular phase separation. This effect is utilized in the theoretical model,

Eq. (3.7), when both the natural and forced interconversions are controlled by the same kinetic

coefficient, such thatL = K, where the dissipative intramolecular forces may be expressed, in the

interconversion dynamics, through the difference between the balanced and imbalanced chemical

potentials, ∆µ̂, given by Eq. (2.10). The mobility,M is described by the Stokes-Einstein relation,

while the interconversion kinetic coefficient, L, has been found to be proportional toM , such that

L = MT 2/k2
d, see Eq. (4.13).

Just like the behavior of the HL model, the source of forced interconversion in the HCS
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model depends on the relation between L and K, and, in the first-order approximation, they may

be assumed to be uncoupled from each other. Consequently, the behavior of the nonequilibrium

HCS model may be described via a similar dynamic equation as used to describe the behavior

of the HL model. However, in the nonequilibrium HCS model, while the natural interconversion

rate is determined by the interaction cross-section of the molecules and energy-carrying agents,

L ∝ b2, the effect of forced interconversion varies with the strength of the energy source, ε. This

effect is introduced into the difference between the balanced and imbalanced chemical potentials,

Eq. (2.10), as a tunable parameter, such that when ε → 0 the nonequilibrium chemical potential

µ̃ → 0 and the system evolves according to equilibrium conditions. However, in the limiting

case, when K and L are of equal magnitude, such that the enthalpic contribution to the chemical

potential is completely compensated, see Eqs. (4.15) and (4.15), then the HCS model will be

dynamically equivalent to the CM model.

For all of the models considered, in the first-order approximation, the domain size (R)

scales with interconversion probability as R ∝ 1/
√
pr ∝ kd ∝ 1/b. The steady-state domain

size also depends on the temperature. In the CM and HCS models, this temperature dependence

originates from M and L, while in the HL model, this temperature dependence originates from

the relationship between K and E. As shown by the solid curves on Figs. 4.7, 4.14, and 4.22, a

quantitative comparison between the simulation results and the theory is obtained.

4.4.2 Onset and Termination of Microphase Separation

As observed in the simulations of all three microscopic models, there are three regions in

which different phenomena may be observed. They may be identified by the interplay between
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diffusion, natural interconversion, and forced interconnection, which are described by the kinetic

coefficients M , L, and K in Eq. (3.7). When natural interconversion, L, is faster than the diffu-

sion or the forced interconversion rate, then phase amplification is observed. For instance, in the

HL model this occurs where T < T ∗ and E < E∗. When the diffusion rate, D ∝ Mq2, is faster

than the natural and the forced interconversion rates, then transient (“apparent”) two-phase sepa-

ration on the scale of the simulation box is observed. For instance, in the CM and HCS models,

this is observed where T < T ∗ and 1/kd < 1/k∗d (CM) or b < b∗ (HCS). The curve that separates

phase amplification or transient two-phase region from the microphase separation region is re-

ferred to as the onset. This curve may be found from Eq. (3.7), considered for the particular case,

when the characteristic size of the phase domains, determined from the maximum of the growth

rate equation, becomes equal to the size of the simulation box, q ∼ 1/`.

Alternatively, when forced interconversion, K, is faster than diffusion and natural inter-

conversion, then the alternative species will interconvert so fast that no dissipative structures may

form and only a homogeneous steady state with statistically equal molecular fractions of the in-

terconverting species will remain. In this case, the characteristic size of the domains is of the

order of the molecular length scale, R0 ∼
√
κ. The temperature and energy at which this occurs

is defined as the “termination” of microphase separation (T ∗∗ and E∗∗). For instance in the HL

and HCS models, this occurs when E > E∗∗ (ε > ε∗∗) or T > T ∗∗, while in the CM model,

since the natural and forced interconversion are coupled, this region occurs when 1/kd > 1/k∗∗d

or T > T ∗∗. This effect is shown in Fig. 4.25a where the characteristic size for E > 7 is R0 for

all temperatures. An increase in R0 with temperature could be attributed to the growing corre-

lation length of order-parameter fluctuations upon the approach to the critical temperature. The

curve that separates the microphase region from the homogeneous steady-state region is referred
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Figure 4.25: The onset and termination of microphase separation. (a) The steady-state domain
size in the HL model for pr = 1/128 and different forced interconversion energies from E = 1
(orange) to E = 10 (dark blue) in steps of ∆E = 1, just as in Fig. 4.8 (Fit parameters provided
in Table 4.4). For E > E∗∗ = 7 (the termination energy), the data collapse into a single line
(black), indicating that the characteristic steady-state domain size remains on the order of the
microscopic length scale R0(T ), which corresponds to homogeneous steady-state systems for all
temperatures. For E ≤ 7, the onset of microphase separation is observed at T = T ∗(E∗), where
E∗ is the onset energy. For T < T ∗, the steady-state domain size is equal to the size of the
system, R = `. (Caption continues on the next page.)
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Figure 4.25: (b) The onset energy E∗ (black circles and curve) for the HL model as a function of
temperature for pr = 1/128. Colored open circles and dashed curves correspond to steady-state
domain sizes: R = 0.143 (blue), R = 0.095 (green), and R = 0.074 (red). (c) The inverse onset
rigidity parameter 1/k∗d (black circles and curve) for the CM model at P = 0.1. Colored circles
and dashed curves correspond to steady-state domain sizes: R = 0.32 (blue), R = 0.22 (green),
and R = 0.18 (red). In (b) and (c), the blue area corresponds to phase separation on the scale
of the simulation box, the white area corresponds to microphase separation, and the yellow area
corresponds to homogeneous steady states. The images in (b) and (c) correspond to the different
final states of the systems below E∗(T ∗) and 1/k∗d(T

∗) where the size of the phase domain is
on the scale of the simulation box (q∗ ∼ 1/`). In (b), phase amplification is observed since for
pr = 1/128 natural interconversion is relatively fast, while in (c), where natural interconversion
is relatively slow for the simulated range of kd, complete two-phase separation, on the scale of
the simulation box, is found.

Table 4.4: Fit parameters used for the theoretical prediction illustrated in Fig. 4.25a for the HL
model, with pr = 1/128.

E Amp M L

1 11.7 0.268 0.79
2 16.0 0.374 1.10
3 19.4 0.332 1.23
4 23.4 0.294 1.32
5 23.1 0.230 1.47
6 23.5 0.300 1.61
7 25.1 0.282 1.66

to as the termination curve, and may be found in the present theory, when the maximum of the

characteristic growth rate with respect to q reaches zero.

The region of the phase diagram where microphase separation occurs (between the onset

and the termination lines) is where diffusion, natural interconversion, and forced interconversion

are balanced, such that where steady-state dissipative structures are observed. The characteristic

length scale of the microphase region is predominantly given by the interplay between diffusion

and forced interconversion. The comparison between these three regions in the HL and CM

models is illustrated in Figs. 4.25(b and c). As shown, the onset and termination curves behave

similarly between these regions.
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It has been shown that under certain limits all of the simulated models would exhibit identi-

cal dynamic behavior. These limits are summarized as: 1) The limit of complete phase separation

occurs when pr → 0 and E → 0 (HL), kd → ∞ (CM), and b → 0 and ε → 0 (HCS). 2) Mi-

crophase separation in the absence of natural interconversion occurs in the HL and HCS models

whenE ≤ Emax and ε ≤ εmax at constant pr or b and T . In the limit when pr and b are small, while

E ≥ Emax and ε ≥ εmax, the dynamic behavior of the HL and HCS models becomes equivalent

to the model of Glotzer et al. [207, 213, 216, 217, 235, 256, 257]. 3) The dynamic behavior of the

CM model (imbalance of interaction forces) is a limiting case of the behavior of the HL and HCS

models (external source of energy-carrying particles). 4) Limit of a homogeneous steady state

occurs in all the models for T > T ∗∗, when E > E∗∗ (HL), kd → 0 (CM), and ε > ε∗∗ (HCS).

4.5 Conclusion of Chapter 4

In summary, depending on the rate of interconversion and distance to the critical tempera-

ture, there are three possible scenarios that are observed in the behavior of the three microscopic

models of mixtures that exhibit phase separation in the presence of both the natural and forced

interconversions of species: (1) phase amplification or transient two-phase separation on the scale

of the simulation box, (2) microphase separation, and (3) homogeneous steady state. Unlike the

modulated phases and bicontinuous microemulsion structures observed in equilibrium conditions

or the patterns formed in “frozen” spinodal decomposition states [9, 103–107], the steady-state

dissipative structures investigated here are the result of the continuous energy supply to the sys-

tem. The three physically different microscopic models considered here, as well as the nonequi-

librium model of Glotzer et al. [207,213,216,217,235,256,257], demonstrate identical behavior
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under appropriate limits. This behavior is quantitatively unified by the generalized Cahn-Hilliard

theory presented in Chapter 3.
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Chapter 5: Overall Conclusion

In this thesis, it has been demonstrated that there are two major effects of molecular in-

terconversion on the thermodynamics and kinetics of phase transitions: if the system relaxes to

equilibrium, then the growth of one of the alternative phases may result in the destruction of

phase coexistence. This phenomenon is referred to as phase amplification. In contrast, if the

system evolves to a nonequilibrium state, the phase domain growth could be restricted at a meso-

scopic length scale. This phenomenon is referred to as microphase separation. A nonequilibrium-

thermodynamic approach has been developed, the generalized Cahn-Hilliard theory and the gen-

eralized Cook-Binder theory, to quantitatively describe the interplay between the dynamics of

interconversion and phase separation. The theory has been verified with the results of simula-

tions of several microscopic models of interconverting systems.

There is a variety of applications and broader impacts for the developed approach. As

discussed in Chapter 2, molecular or supramolecular interconversion may be a generic cause

of fluid polyamorphism. The possibility of phase amplification occurring in both simulations

and experiments has rarely been discussed in the literature, while this phenomenon may ex-

plain the conflicting reports on the existence or non-existence of a fluid-fluid phase separation in

polyamorphic substances (such as supercooled water [9, 13, 55, 56, 72–80] and high-pressure hy-

drogen [21, 34–45, 48, 59, 119–123]). In addition, one may hypothesize that phase amplification
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could have been the trigger for the biological evolution into the current existence of the unique

chirality in all living organisms [97, 112, 266, 293–295, 295, 296, 296, 297, 297–310].

Nonequilibrium microphase separation could exist in a wide class of systems, includ-

ing “active matter systems,” a recent focus of theoretical and experimental studies [311, 312],

as well as biomolecular condensates (e.g. membraneless organelles), where natural intercon-

version could be caused by mechanisms like polymerization, protein folding-unfolding, and

self-assembly, while forced interconversion could be generated by the nonequilibrium environ-

ment [220, 221, 312–320]. The developed approach could be applicable to understanding and

quantitatively describing these phenomena. In addition, microphase separation could also exist

in other supramolecular structures, e.g. polymer solutions in the presence of photochemical re-

actions [110, 321]. The developed approach can be linked to other dissipative phenomena, like

hydrodynamic instabilities and bifurcations in chemical reactions [322].
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Appendix A: Comparison of Exact Solution with Phenomenological Ansatzes

In this appendix1, a variety of different ansatzes are considered that would minimize the

interfacial tension, Eqs. (2.54) to (2.61), in Sec. 2.4.3.1. It is found that there were no single free-

parameter ansatzes that were able to minimize the interfacial tension with sufficient accuracy,

while several ansatzes with three free parameters were sufficient. In Sec. 2.4.3, the Fisher-Wortis

ansatz in considered, which has two free parameters (the shift, δ̂, and the interfacial thickness, ζ̂).

In this appendix, the two-parameter Fisher-Wortis ansatz is compared to an alternative symmetric

three-parameter ansatz and the exact solution of the interfacial tension equilibrium condition,

Eq. (2.53).

The symmetric three-parameter ansatz is given in normalized form by

ρ̂sym(ẑ) =
ρ(ẑ)− ρV

ρL − ρV

=
1

2

[
tanh

(
ẑ

ζρ

)
− 1

]
(A.1)

x̂sym(ẑ) =
x(ẑ)− xV

xL − xV

=
1

2

[
tanh

(
ẑ + δ̂

ζx

)
− 1

]
(A.2)

in which the three parameters are the shift between the concentration and density profiles, δ̂, and

the interfacial thicknesses of the density, ζ̂ρ, and concentration, ζ̂x profiles. A comparison of

the liquid-vapor interfacial tension between the Fisher-Wortis (FW) and the symmetric ansatzes

1This appendix was reproduced from Thomas J. Longo, Sergey V. Buldyrev, Mikhail A. Anisimov, and Frédéric
Caupin, J. Phys. Chem. B, 127, 3079 (2023); https://doi.org/10.1021/acs.jpcb.2c08901, with the permission of ACS
Publications.

160



Figure A.1: Comparison between the Fisher-Wortis (FW) and an alternative symmetric ansatz
(sym). obtained for the liquid-vapor coexistence, for two systems with εBA = 1.04 (a) and
εBA = 1.12 (b) with εAA = 1.6, εBB = 2.0, ê = 3, and ŝ = 4. (c) The relative deviation between
the symmetric and FW ansatzes.

of Eqs. (A.1) and (A.2) is presented in Fig. A.1. It is found that the FW ansatz describes the

LV interfacial tension with sufficient accuracy everywhere except near the maximum of σLV.

However, in this region, the symmetric ansatz differs from the FW ansatz by ' 1% or less.

Therefore, it was deemed that the FW ansatz is the most sufficient way to describe the interfacial

properties, since it has only two free parameters.
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Figure A.2: Numerical calculations of the liquid-vapor surface tension for three temperatures in
the system with εBA = 1.04, εAA = 1.60, εBB = 2.00, ê = 3, and ŝ = 4. The FW ansatz is given
at iteration 0. The temperatures were chosen based on surface tensions with similar values, as
predicted by the FW ansatz.

In addition to the ansatz method, the interfacial properties were also calculated numerically

by solving the interfacial tension equilibrium condition. It was found that the Euler-Lagrange

derivatives, Eqs. (2.51) and (2.52), were highly unstable, as one would need to know both a

coordinate position of both the density and concentration profiles as well as their derivative at

this position. Thus, to solve these two equations for the density and concentration profiles, would

require the adjustment of four unknown variables. Instead, Eq. (2.53) was numerically solved

using the integral of Eqs. (2.51) and (2.52), which requires two functions, ρ(z) and x(z), and

two coordinate positions. Using one of the ansatzes for one of the unknown functions, one

alternates between solving Eq. (2.53) for ρ(z) and x(z) in an iterative process to determine the

exact solution. Figure A.2 illustrates the iterative solution method for three temperatures in the

system with εBA = 1.04. The solutions for the profiles using the iterative method are presented in

comparison to the FW ansatz in Fig. A.3. It is noted the asymmetric shape of the exact solution

also serves to justify our choice of the FW ansatz, which more closely matches the shape of the
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Table A.1: The degree of asymmetry for each profile of the system with εBA = 1.04 at T =
0.6943, determined from the symmetric ansatz (sym), the Fisher-Wortis ansatz (FW), or the exact
solution as calculated from Eq. (A.3).

Ansatz ρ-Profile x-Profile

Sym 0 0
FW 0.016 0.103
Exact 0.104 -0.060

exact solution for the profiles than the symmetric ansatz. To discuss the amount of asymmetry in

each profile, let φ(z) represent either the density or concentration profiles, and z1/2 be the z-value

where φ(z) reaches its midpoint, φ(z) = [φ(+∞)+φ(−∞)]/2. The degree of asymmetryDAsym

is defined via

DAsym = D0

√√√√√ ∫ +∞
0

{[
φ(+∞)− φ(z1/2 + z′)

]
+
[
φ(−∞)− φ(z1/2 − z′)

]}2
dz′∫ +∞

0

{[
φ(+∞)− φ(z1/2 + z′)

]2
+
[
φ(−∞)− φ(z1/2 − z′)

]2}
dz′

(A.3)

where the prefactor, D0, may be −1 or 1, as given by

D0 = Sign

[∫ +∞

0

[
φ(+∞)− φ(z1/2 + z′)

]
+
[
φ(−∞)− φ(z1/2 − z′)

]
dz′
]

(A.4)

DAsym = 0, if and only if the profile is symmetric; otherwise, DAsym adopts values from −1 to 1

depending on whether the profile spreads more towards the low or high values of φ, respectively.

A summary of the asymmetry for the system with εBA = 1.04 at T = 0.6943 is provided in

Table A.1 below. Thus, it was found that the exact solution is indeed asymmetric. Ultimately,

since the exact solution differs from the FW ansatz by a fraction of a percent (see Fig. A.2), it was

determined that the FW ansatz was the most efficient way to describe the interfacial properties

with sufficient accuracy.
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Figure A.3: Comparison of the liquid-vapor density (a) and concentration (b) interfacial profiles,
as obtained from numerical calculations after eight iterations, ρV4 and xV4, and for the FW ansatz,
ρV0 and xV0, for the system with εBA = 1.04, εAA = 1.60, εBB = 2.00, ê = 3, and ŝ = 4 at
temperature, T = 0.6943 (red curve in Fig. A.2). (c,d) The difference between the exact solution
for the density and concentration profiles and the FW and symmetric ansatzes. In (a-d), the
different profiles were aligned along their Gibbs dividing surface, such that the excess density is
zero for all profiles.
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[181] Y. J. Lü and B. Wei. Second inflection point of water surface tension. Appl. Phys. Lett.,
89:164106, 2006.

[182] Xiaoxiang Wang, Kurt Binder, Chuchu Chen, Thomas Koop, Ulrich Pöschl, Hang Su, and
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[202] José L. F. Abascal and Carlos Vega. Widom line and the liquid-liquid critical point for the
TIP4P/2005 water model. J. Chem. Phys., 133:234502, 2010.

178



[203] John W. Biddle, Rakesh S. Singh, Evan M. Sparano, Francesco Ricci, Miguel A. González,
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