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We present a detailed analysis of the application of a multi-scale Hierarchical Re-

construction method for solving a family of ill-posed linear inverse problems. When the

observations on the unknown quantity of interest and the observation operators are known,

these inverse problems are concerned with the recovery of the unknown from its obser-

vations. Although the observation operators we consider are linear, they are inevitably

ill-posed in various ways. We recall in this context the classical Tikhonov regulariza-

tion method with a stabilizing function which targets the specific ill-posedness from the

observation operators and preserves desired features of the unknown. Having studied the

mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the

Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method.

First introduction of the HR method can be traced back to the Hierarchical Decomposi-

tion method in Image Processing. The HR method successively extracts information from

the previous hierarchical residual to the current hierarchical term at a finer hierarchical

scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method



provides an reasonable approximate solution to the unknown, when the observation ma-

trix satisfies certain conditions with specific stabilizing functions. When compared to the

Tikhonov regularization method on solving the same inverse problems, the HR method

is shown to be able to decrease the total number of iterations, reduce the approximation

error, and offer self control of the approximation distance between the hierarchical sum

and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report

numerical experiments supporting our claims on these advantages the HR method has

over the Tikhonov regularization method.
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Chapter 1: Introduction

1.1 The Recovery Problems

We analyze a multi-scale Hierarchical Reconstruction (HR) method on solving a

family of ill-posed linear inverse problems. The scenario is as follows. Let X and Y be

two Hilbert spaces, each equipped with the norms || · ||X and || · ||Y respectively. There is

an unknown x∗ ∈ X , to which we do not have direct access. However, we are able to ob-

tain the observation y∗ ∈ Y by applying the observation operator A : X → Y to x∗, i.e.,

y∗ = Ax∗. With the known y∗ and A at hand, these inverse problems are concerned with

the recovery of x∗ by performing certain extraction of information from y∗. Although

the observation operator A is linear, the operator A is ill-posed in various ways, making

recovery of x∗ by direct “solution” of the linear equation Ax = y∗ impossible. Addi-

tional conditions are needed in order to augment the ill-posed linear equation Ax = y∗,

henceforth converting it into well-posed extended problems. The Tikhonov regularization

method [57, 58] is a classical tool to address such inverse problems with the help of an

extra regularization parameter λ > 0. However, the Tikhonov regularization method is

limited by the usage of one such λ > 0. Since the the regularization parameter λ con-
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trols the distance between the Tikhonov observation1 and y∗, λ can be understood as a

regularization scale. Built upon this particular understanding, we propose a multi-scale

generalization to the Tikhonov regularization method, so-called the HR method. The HR

method was first introduced in Image Processing [48, 49] to treate the multi-scale issues

in image decomposition and de-noising, and then it was further developed and analyzed

in solving linear PDEs [54, 55] to construct uniformly bounded solutions in regularity

spaces. We adopt the HR method for its multi-scale approach and feature preserving by

the usage of a suitable stabilizing function. The HR method realizes that the informa-

tion in the residual term can be extracted at a finer regularization scale. Therefore, the

HR method performs successive extraction of information from the previous hierarchical

residual to the current hierarchical term at a finer hierarchical scale. By utilizing a lad-

der of finitely many hierarchical residuals together with their corresponding hierarchical

scales, the HR method can decrease the total number of iterations, reduce approximation

error, and offer self control of the distance between the hierarchical sum (sum of all hi-

erarchical terms) and the unknown x∗, when compared to the Tikhonov regularization

method on solving the same inverse problems.

1.2 Regularization Methods: from Single Scale to Multi Scale

Given the observation y∗ and the observation operator A, the Tikhonov regulariza-

tion method finds an approximate solution xT (λ) to Ax = y∗ from a convex feasible set

C ⊂ X with an extra regularization parameter λ > 0. The approximate solution, xT (λ),

1The Tikhonov observation is obtained by applying the observation operator to the approximate solution

from the Tikhonov regularization method.
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also satisfies the following,

xT (λ) = arg min
x∈C

{
λf(x) +

1

2
||y∗ − Ax||2Y

}
. (1.1)

Here the non-negative auxiliary function f : X → R is a stabilizing function. The proper

choice of the stabilizing function f depends on the desired features from the unknown

which we want to preserve. If we plan to recover sparse unknowns, we could set f(x) =

||x||`1; if we are interested in preserving the “edges” in images, set f(x) = ||x||TV

(Total Variation norm); if we are recovering unknown from the L2 space of functions,

set f(x) = ||x||2L2/2. The distance between y∗ and AxT (λ) is controlled by the regu-

larization parameter λ; when λ ↓ 0, AxT (λ) → y∗. Hence, AxT (λ) can be understood

as an approximation to y∗ at the scale λ. Let xλ = xT (λ) and define residual term as,

rλ := y∗−Axλ. We have a decomposition of y∗ at the scale λ as y∗ = Axλ + rλ. Since

rλ 6= 0 (or we are done), there is information remaining in rλ, which we can extract at a

finer scale, say λ
2
,

xλ
2

= arg min
x∈C

{λ
2
f(x) +

1

2
||rλ − Ax||2Y

}
with r λ

2
:= rλ − Axλ

2
. (1.2)

We now have a better two-scale representation of y∗ given by y∗ = Axλ + Axλ
2

+ r λ
2
;

information below scale λ
2

remains intact in r λ
2
. This process in (1.2) can continue. To

simplify notations, we start with r0 = y∗ and λ1 = λ, and find the first hierarchical term

x(1) such that the following holds

x(1) = arg min
x∈C

{
λ1f(x) +

1

2
||r0 − Ax||2Y

}
with r1 := r0 − Ax(1),

3



we proceed by iterating at the dyadic scales λj = 21−jλ1: for 2 ≤ j ≤ J , we solve for

the other hierarchical terms x(j)’s from the following recursive equation,

x(j) = arg min
x∈C

{
λjf(x) +

1

2
||rj−1 − Ax||2Y

}
with rj := rj−1 − Ax(j).

Summing the recursive relation, rj = rj−1 − Ax(j), we end up with a hierarchical de-

composition of y∗,

y∗ = Ax(1) + Ax(2) + . . .+ Ax(J) + rJ .

In this fashion, we also obtain an approximate solutionXJ to the ill-posed linear equation

Ax = y∗, where XJ is the sum of hierarchical terms, i.e., XJ =
∑J

j=1 x(j). As J

increases, the hierarchical term x(j) extracts information from rj−1 at a finer scale∼ λj =

21−jλ1. We note that coarser and finer decompositions are available. Different ladder of

scales λj = θj−1λ1 with 0 < θ < 1 can be employed depending on the problems at

hand. With additional conditions on the observation operator A and suitable choice of

the stabilizing function f , we can show that XJ becomes a reasonable approximation

to x∗. Thanks to utilizing a ladder of finitely many hierarchical residuals rj’s with their

corresponding hierarchical scales λj’s, the HR method shows different advantages over

the Tikhonov regularization method, which will be explored in details in the following

chapters.

1.3 Thesis Outline

In the following chapters, we will discuss in details the specific application of em-

ploying the HR method for three different kinds of ill-posed linear inverse problems. They

4



are structured as follows.

In chapter 2, we investigate the sparse recovery problem from Compressed Sensing.

Having known the observation operator A ∈ RM×N and the observation ŷ∗ ∈ RM from

a k-sparse2 unknown vector x̂∗ ∈ RN , the original sparse recovery problem is concerned

with the recovery of x̂∗ by extracting information from ŷ∗. The ill-posedness is due to

an under-determined observation matrix A (M � N ). We discuss some of the reasons

why the constrained `1 method introduced by Candès, et al. and separately by Dohono,

is preferred for sparse recovery. We suggest using the unconstrained `1 method with an

extra regularization parameter λ > 0 to provide an approximate solution xλ to a gen-

eral unknown vector x∗ ∈ RN from its noisy observation yε∗ = Ax∗ + ε (||ε||2 ≤ ε)3.

We show that when the observation matrix A satisfies the Robust Null Space Property

(RNSP) of order k, ||xλ − x∗||1 ≤ O(λ, ε, σ)4. However, it takes larger number of itera-

tions for numerical algorithms to find the solution from the unconstrained `1 method with

an extremely small regularization parameter λ to perform recovery of x̂∗ from ŷ∗. Built

upon the understanding of λ being a regularization scale, we propose the HR method as

a multi-scale generalization to the unconstrained `1 method in order to reduce the total

number of iterations. The hierarchical sum XJ , as the sum of hierarchical terms x(j)’s,

i.e., XJ =
∑J

j=1 x(j), becomes a reasonable approximate solution to x∗ when the ob-

servation matrix A satisfies the RNSP of order k. We conduct numerical experiments

2A vector x ∈ RN is k-sparse if it has at most k non-zero entries.

3For x ∈ RN , ||x||p = p

√∑N
i=1

∣∣(x)i∣∣p.
4σ = σ(x∗, k, 1) is the best k-term approximation error of x∗ in `1 norm, i.e., let x∗(k) be the best

k-term approximation of x∗, then σ = ||x∗−x∗(k)||1. We drop the dependence on x∗, k and 1 in order to

simplify the notation.
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comparing the HR method to the unconstrained `1 minimization on recovery of a general

unknown x∗ from yε∗ with λ = λJ . We close Chapter 2 with a brief discussion on extend-

ing the analysis of the HR method to recovery of vectors in CN .

In chapter 3, we study the deconvoution problem on the Helmholtz filter for the

closure problem in Large Eddy Simulation (LES). The Helmholtz filter Aδ : X → X

with a filtering radius δ > 0 is defined as an convolution with a scaled kernel Kδ =

(4πδ2||s||2)−1 exp(−δ−1||s||2) for any s ∈ R3, i.e., y = Kδ ∗ x = Aδx for x, y ∈ X .

When the filtered output y∗ (= Aδx∗ ∈ X ) is given, we are interested in recovering the

unknown x∗ by solving Aδx = y∗. The inverse of Aδ is well-defined as an elliptic dif-

ferential equation with Dirichlet boundary condition. However direct application of A−1
δ

is not possible in the context of LES, when one is only given the access to the numerical

output yh∗ = Ahx∗, where Ah (= Ahδ )5 is the discrete Helmholtz filter and h is the spatial

resolution scale from a certain discretization scheme. We will focus on using the Finite

Element discretization scheme to provide the discrete Helmholtz filter Ah as a numerical

approximation to the Helmholtz filter Aδ. Note that in the discrete setting the Finite Ele-

ment matrix associated to Ah is a square matrix, i.e., M = N . We briefly discuss a family

of Tikhonov regularization methods on providing approximate solutions to the the discrete

equation Ahx = yh∗ . We propose the HR method as an multi-scale generalization of the

Tikhonov-Lavrentiev regularizatoin method. In order to show the discrete approximation

error by using the HR method, we begin with the analysis of applying the HR method to

find an approximate solution to the continuous equation Aδx = y∗. We then continue our

5We drop the dependence on δ to simplify the notation and emphasize the importance of the spatial

resolution scale h

6



analysis on showing the discrete approximation error when we employ the HR method to

find an approximation solution to the discrete equation Ahx = yh∗ . We also discuss the

descent property of using the HR method when we perform de-convolution from a noisy

discrete filtered output yh,ε∗ cause by modeling errors when the residual stress tensor is

approximated. We also provide a stopping criteria to prevent the HR approximate solution

sequence from deviating from its convergence to x∗. Numerical experiments, comparing

the HR method to other Tikhonov methods on recovery of x∗ via de-convolution from

yh,ε∗ , are reported to support our claim on the improved approximation error provided

by the HR method. We conclude the chapter by discussion of possible extension of the

approximation error analysis for the HR method to the Finite Difference discretization

scheme and other convolution filters.

In chapter 4, we discuss two inverse problems from Linear Regression (LR). In LR,

we are given a set of data from M observations: {A,yε∗}, with the ith row of A ∈ RM×N

being the regressors and ith entry of yε∗ ∈ RM being the response from the ith observation.

However, the regressor matrix A is over-determined (M � N ) and the response yε∗ is not

in the range of A. Finding a linear model which satisfies Ax = yε∗ exactly is impossi-

ble. Alternatively, we find approximate solutions to Ax = yε∗. We examine two different

scenarios. First, when yε∗ is generated as the linear combination of the regressor matrix

A with noise, i.e., there is a unique x∗ ∈ RN such that yε∗ = Ax∗ + ε with ||ε||2 ≤ ε.

Second, there is no known relationship between yε∗ and A. However, we are interested in

performance of using linear models to approximate the relationship between yε∗ and A,

7



i.e., yε∗ = Ax∗ + ε for some unknown x∗ ∈ RN and a well-controlled6 modeling error ε.

We begin our analysis by comparing the Least Square (LS) method to the Least Absolute

Shrinkage and Selection Operator (LASSO) method for both scenarios. We note that the

regularization parameter λ used in the LASSO method controls the distance between the

LASSO linear model and the LS linear model, as well as the distance between the LASSO

linear model and the unknown linear model x∗. In order to offer better control over the

distance between the linear model provided by our linear model to either the LS linear

model or x∗, we propose the HR method as a multi-scale generalization to the LASSO

method. Thanks to using a hierarchy of regularization scales, the HR linear model has its

distance to the LS linear model or x∗ controlled by the number of HR iterations taken.

We report numerical experiments on comparing the HR method to the LASSO method

and the LS method. We end Chapter 4 on the extension of using the HR method to Linear

Regression on non-linear basis functions.

We conclude the thesis in chapter 5. We survey the advantages which the HR

method has over the Tikhonov regularization on solving the three different ill-posed linear

inverse problems. We further develop the HR method for solving general ill-posed linear

inverse problems. We show necessary assumptions on the stabilizing function f in order

to guarantee convergence of the HR approximate solution to x∗.

In Appendix A, we discuss individual single scale implementations of the general

Tikhonov regularization methods.

6By “well-controlled”, we mean that the difference, yε∗−Ax∗, is smallest in some `p norm, or satisfying

other conditions.
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Chapter 2: Hierarchical Reconstruction Method for Sparse Recovery

2.1 Introduction: Recovery of General x∗ from Its Noisy Observation yε∗

We study the sparse recovery problem from Compressed Sensing. The k-sparse1

unknown x̂∗ ∈ RN is to be recovered from its indirect observation ŷ∗ = Ax̂∗ ∈ RM

where A ∈ RM×N is an observation matrix. The observation process is linear, however

the observation matrix A is severly under-determined, i.e., M � N . Hence, recovery

of x̂∗ by direct “solution” of the linear system Ax = ŷ∗ is impossible. However, the

theories from Compressed Sensing show that by knowing sparsity level of x̂∗ before

hand, namely the constant k, recovery of x̂∗ from ŷ∗ is possible and practical. In 2006,

Candès, et al. [7], and separately Donoho [12], introduced the constrained `1 method2,

which finds a solution from the following

x1 = arg min
x∈RN

{
||x||1

∣∣∣Ax = ŷ∗

}
.

A major milestone in the theories for Compressed Sensing is that when the observation

matrixA satisfies certain recoverability condition, for any k-sparse unknown x̂∗, the solu-

tion provided by the constrained `1 method, namely x1, will be the same as x̂∗. However,
1A vector x ∈ RN is to said to be k-sparse if x has at most k non-zero entries.

2For any x ∈ RN and any p > 0, ||x||p = p

√∑N
i=1

∣∣xi∣∣p; for p = 0, ||x||0 counts the number of

non-zero entries in x.
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it is not always convenient to encounter sparse quantities, one might be given a task to

recover a general unknown vector x∗ ∈ RN . Moreover, due to inevitable errors in the ob-

servation process, one only has access to its noisy observation yε∗, i.e., yε∗ = Ax∗+ε. The

details of observation error term, ε, remain mostly unknown; fortunately, it is bounded

above in `2 norm by some known noise level constant ε > 0, i.e., ||ε||2 ≤ ε. Aiming

to provide a robust method to recover x∗ from yε∗, we suggest using the unconstrained `1

method, which finds an approximate solution to x∗ with the help of an extra regularization

parameter λ > 0 and the approximate solution satisfies the following,

xλ = arg min
x∈RN

{
λ||x||1 +

1

2
||yε∗ − Ax||22

}
.

We show that when the observation matrix A satisfies the Robust Null Space Property

(RNSP) of order k, the approximation error, x∗ − xλ, is bounded above by O(σ, ε, λ)3.

When the unconstrained `1 method is used for recovery of x̂∗ from ŷ∗, the approximate

solution xλ can be thought of as an approximation to x̂∗ at the scale λ. Based on the

understanding of λ being a regularization scale, we adopt the Hierarchical Reconstruc-

tion (HR) method, from its first introduction in image processing in [48, 49], as a multi-

scale generalization of the unconstrained `1 method. The HR method successively ex-

tracts information from the previous hierarchical residual rj to the current hierarchical

term x(j) at a finer hierarchical scales λj . When the observation matrix A also satisfies

RNSP of order k, the hierarchical sum XJ , as the sum of all hierarchical terms x(j), i.e.,

XJ =
∑J

j=1 x(j) with a ladder of hierarchical scales {λj}Jj=1, approximates x∗ with an

error bounded above byO(λ1, λJ , J, ε, σ). Thanks to utilizing a ladder of finitely many hi-
3σ = σ(x∗, k, 1) stands for the best k-term approximation error of x∗ in `1 norm. We drop the depen-

dence of x∗, k and 1 to simplify the notation.
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erarchical residuals together with their corresponding hierarchical scales, the HR method

is able to reduce the total number of iterations for numerical solvers when compared to

the unconstrained `1 method on the recovery of x∗ from yε∗ with λ = λJ .

The remaining sections of this chapter is structured as follows. In section 2.2, we

compare three constrained `p methods (for p = 0, 1, 2) for the recovery of k-sparse un-

known x̂∗ from its observation ŷ∗. We conclude that the constrained `1 method is the most

practical convex optimization method to use for recovery of a k-sparse unknown x̂∗ from

its observation ŷ∗ due to the presence of `1 norm. In section 2.3, we introduce the nearby

problem: recovery of a general unknown x∗ from its noisy observation yε∗. We com-

pare the unconstrained `1 method to the quadratically constrained `1 method. We show

the recoverability condition for both methods such that the approximation error is under

controlled. In section 2.3.1, we propose the HR method as a multi-scale generalization

to unconstrained `1 method. We show the recoverability condition for the HR method,

so that the hierarchical sum becomes a reasonable approximation to x∗. In section 2.4,

we present numerical experiments, comparing the HR method to the unconstrained `1

method on the recovery of x∗ from yε∗ with λ = λJ . The HR method uses significantly

fewer number of iterations than the unconstrained `1 method. At the end, we conclude

this chapter in section 2.5 by discussion of extending the HR method to the recovery of

unknowns in CN .

11



2.2 The Original Problem: Recovery of k-sparse x̂∗ from Observation

ŷ∗

The sparse recovery problem, recovery of the k-sparse unknown x̂∗ from its ob-

servation ŷ∗, has the following setup. There is the k-sparse unknown vector x̂∗ ∈ RN ,

one is given the indirect observations stored in ŷ∗ ∈ RM with the ith entry (ŷ∗)i being

the observation result taken as an usual Euclidean inner product of x̂∗ with the observing

vector ai ∈ RN , i.e., (ŷ∗)i = 〈x̂∗,ai〉. We define the observation matrix A ∈ RM×N as

the concatenation of ai’s, i.e., the ith row of A is a>i . Knowing the observation ŷ∗ and the

observation matrix A, one is entrusted with the task of recovering the k-sparse unknown

x̂∗ from ŷ∗. However, the observation matrixA is severally under-determined (M � N ),

recovery of x̂∗ is impossible by direct “solution” of the linear equation Ax = ŷ∗. How-

ever, when the sparsity level of x̂∗, namely the constant k, is known before hand, the

recovery of x̂∗ becomes possible. The question on an effective and efficient procedure

to recover x̂∗ remains unanswered. We have mentioned in chapter 1 that the general

Tikhonov regularization method can be employed to solve ill-posed linear systems. In the

sparse recovery setting, the general Tikhonov regularization method finds an approximate

solution xT (λ) toAx = ŷ∗ from a convex feasible set C ⊂ RN with an extra regularization

parameter λ > 0. The approximate solution xT (λ) also satisfies the following,

xT (λ) = arg min
x∈C

{
λf(x) +

1

2
||ŷ∗ − Ax||22

}
. (2.1)

12



The stabilizing function f is chosen to retain the desired feature of x̂∗, namely the sparsity

level, in other words, to recover the compact support4 of x̂∗. The `0 functional, which

counts the number of non-zero entries of a vector, is a natural candidate for the stabilizing

function f . The constrained `0 method finds to an approximate solution x0 from within a

convex feasibility set B = {x ∈ RN
∣∣∣Ax = ŷ∗} such that the following holds,

x0 = arg min
x∈B

{
||x||0

}
. (P0)

Remark 2.2.1. We set the stabilizing function f(x) = ||x||0 (for other constrained `p

methods, we set f(x) = ||x||p for p > 0) and set the convex feasible set as C = B in

(2.1). When we let the regularization parameter λ in (2.1) approach infinity, the general

Tikhonov regularization method becomes the constrained `0 method (or the constrained

`p method respectively).

The recoverability condition for the constrained `0 method to recover the k-sparse

x̂∗ from ŷ∗ is that sp(A) > 2k (see [13] for the definition of the spark of a matrix, i.e.,

sp(A).). It is relatively easy to construct an observation matrix A with M = 2k and

sp(A) > M , e.g., the Vandermonde matrix. However, for large k, the constrained `0

method is considered NP-hard [43]. A straightforward alternative would be to consider

the following constrained `p problem,

xp = arg min
x∈B

{
||x||p

}
, for 0 < p < 1. (2.2)

The `p functional || · ||p (for 0 < p < 1) becomes a quasi-norm and sparsity induc-

ing, however solving (2.2) is nevertheless NP-hard [25]. There are three major alterna-

4The support of a vector x ∈ RN is a set of indices corresponding to the non-zero entries of x.
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tives to remedy the numerical inefficiency of the constraiend `0 method: greedy meth-

ods, thresholding methods, and convex optimization methods. The greedy approach

[8, 10, 11, 24, 32, 39, 45–47, 51, 61, 65] estimates the support of x̂∗ by adding to a pos-

sible support set one suitable index at a time. The thresholding-based methods [5, 22]

tries to estimate the whole support of x̂∗ by finding a set of k possible indices via special

selections. Both approaches are discrete and sensitive to small perturbation in ŷ∗. Es-

pecially the greedy approach, slight change in one entry of ŷ∗ might result in choosing

a totally different index. On the contrary, the convex optimization method offers a con-

tinuous approach for seeking the support of x̂∗ and robust against small perturbation in

ŷ∗. The question of choosing a suitable convex objective function remains unanswered.

We begin our search by probing into the relationship between `0 functional and the `p

functional in the following limit,

||x||0 = lim
p→0
||x||p = lim

p→0

p

√√√√ N∑
i=1

∣∣(x)i
∣∣p.

Only the non-zero terms survive the limit, therefore the `0 functional counts the number

of non-zero entries in x. The `p functional becomes a norm when p ≥ 1 and therefore

convex. However, when p > 1, the `p norm is strictly convex5. We choose the `2 norm as

the representative case, since the vector space RN with `2 norm becomes a Hilbert space.

The constrained `2 method finds an approximate solution x2 from B such that x2 satisfies

the following

x2 = arg min
x∈B

{
||x||2

}
. (P2)

5A function g : RN → R is strictly convex if for any x1 and x2 ∈ dom(g) (x1 6= x2) and any t ∈ (0, 1),

when tx1 + (1− t)x2 ∈ dom(g), then g(tx1 + (1− t)x2) < tg(x1) + (1− t)g(x2).
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The approximate solution x2 from (P2), despite of having a closed form expression (see

section A.1 for details) is rarely sparse. In figure 2.1, we compare the solutions from (P1)

and (P2) in R2.
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Figure 2.1: x1 versus x2

The strict convexity from the `2 norm is one of the reasons why the approximate

solution x2 is rarely sparse. We need a convex (but not strictly convex) `p functional

to induce sparsity on its solutions. Therefore, the `1 norm becomes a logical choice to

make. Moreover, thanks to the well established history of using the `1 minimization in

geophysical and statistical applications, there exist a great number of polished and well-

tested algorithms to solve `1 related minimization problems. In fact, Candès, et al., and

separately by Donoho, suggested using the the constrained `1 method to recover k-sparse

x̂∗ from ŷ∗. The constrained `1 method finds an approximate solution x1 ∈ B such that

the approximate solution satisfies the following,

x1 = arg min
x∈B

{
||x||1

}
. (P1)
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The solution from the constrained `1 method, namely x1, will be the same as x̂∗ when

the observation matrix A satisfies one of the following recoverability conditions: Re-

stricted Isometry Propertiy (RIP) in [7], `1-Coherence in [13, 14, 29, 61], or Null space

Property (NSP) in [9]. We present a recoverability condition, known as the Robust Null

Space Property (RNSP) in [23]. Such recoveryability condition will be used to show

the approximation errors between the approximate solutions (provided by three different

methods which will be discussed in later sections) and x̂∗. Before we present the defini-

tion of RNSP, we give the following clarification: the restriction of a vector x ∈ RN on

an index set K ⊂ [N ] = {1, 2, . . . , N} is denoted as (x)K , and it is defined as follows,

((x)K)i =


(x)i, i ∈ K

0, i /∈ K
, for i ∈ [N ].

Definition 2.2.2 (Definition 4.17 in [23]). A matrixA ∈ RM×N is said to satisfy the RNSP

(with respect to || · ||2) with constants 0 < ρ < 1 and τ > 0 relative to a set K ⊂ [N ] if

||vK ||1 ≤ ρ||(v)Kc ||1 + τ ||Av||2, ∀v ∈ RN .

The matrix A is said to satisfy the RNSP of order k (with respect to || · ||2) with constants

0 < ρ < 1 and τ > 0 if it satisfies the RNSP with the same constants 0 < ρ < 1 and

τ > 0 relative to any set K ⊂ [N ] with card(K) ≤ k.

Remark 2.2.3. The RNSP of order k implies NSP of order k. Let v ∈ Null(A) (the null

space of A), when A satisfies RNSP of order k with constants τ > 0 and 0 < ρ < 1, we

have for any set K ⊂ [N ] with card(K) ≤ k, the following holds

||(v)K ||1 ≤ ρ||(v)Kc ||1 + τ ||Av||2 = ρ||(v)Kc||1 < ||(v)Kc||1.
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When a matrix A satisfies RIP of order 2k, the matrix A also satisfies RNSP of order k

(see theorem 6.13 in [23]).

The following theorem provides an equivalent description of definition 2.2.2, such

description will be used throughout this chapter instead of the original definition of RNSP.

Theorem 2.2.4 (Theorem 4.20 in [23]). A matrix A ∈ RM×N satisfies the RNSP with

constants 0 < ρ < 1 and τ > 0 relative to K ⊂ [N ] if and only if for any u, v ∈ RN , the

following holds

||u− v||1 ≤
1 + ρ

1− ρ
(||u||1 − ||v||1 + 2||(v)Kc||1) +

2τ

1− ρ
||A(u− v)||2.

Remark 2.2.5. The inequality in theorem 2.2.4 is asymmetric. When we interchange u

and v, we obtain

||v − u||1 ≤
1 + ρ

1− ρ
(||v||1 − ||u||1 + 2||(u)Kc ||1) +

2τ

1− ρ
||A(v − u)||2.

Adding the two inequalities together, we derive an symmetric inequality

||u− v||1 ≤
1 + ρ

1− ρ
(||(u)Kc||1 + ||(v)Kc||1) +

2τ

1− ρ
||A(v − u)||2. (2.3)

The new inequality (2.3) sheds some light into another explanation of the RNSP property:

when both u and v are supported on the set K and they give the same observation, i.e.,

Au = Av, then u = v.

2.3 The Nearby Problem: Recovery of General x∗ from Noisy Observa-

tion yε∗

Beside recovery of sparse unknowns, we also invest special interests in recovery of

general unknowns, since sparsity is rather a rare property to encounter. Let x∗ be any
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general unknown, we plan to investigate the recovery of x∗ from its noisy observation

yε∗ = Ax∗ + ε instead of its observation y∗, since the observation process is inevitably

corrupted by errors: human errors, machine precision, etc. The error term ε is caused by

a number of factors and its details remains untraceable. Fortunately, the error term ε is

bounded above in `2 norm, i.e., ||ε||2 ≤ ε for some known noise level ε > 0. Before

we introduce the robust methods to recover x∗, we introduce the following remark on

measuring the distance from x∗ to a set of k-sparse vectors.

Remark 2.3.1. Let Sk be the set of all k-sparse vectors in RN : Sk = {x ∈ RN
∣∣∣||x||0 ≤

k}. We define the function σ(x∗, k, 1) as the best k-term approximation error of x∗ in `1

norm, i.e.,

σ(x∗, k, 1) = inf
x∈Sk
{||x∗ − x||1}.

Thanks to the usage of the `1 norm (or any other `p norm see [9]), such distance be

realized by a k-sparse vector in Sk, which is obtained by keeping the k largest entries

(in magnitude) of x∗; we denote this vector as x∗(k) (Note that such vector might not

be unique), and name it the best k-term approximation of x∗ in `1 norm. It follows that,

σ(x∗, k, 1) = ||x∗ − x∗(k)||1. Unless otherwise redefined, we use σ = σ(x∗, k, 1) to

simplify the notation.

The question of an effective and efficient procedure to recover x∗ from yε∗ remains

unanswered. One can tweak the constrained `1 method by replacing the original feasible

set B with a new feasible set Bη = {x ∈ RN
∣∣∣||yε∗ − Ax||2 ≤ η} with an extra parameter

η > 0 to obtain the following quadratically constrained `1 method,

x1+η = arg min
x∈Bη

{
||x||1

}
. (2.4)
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Remark 2.3.2. We set the stabilizing function f(x) = ||x||1 and set the convex feasible

set as C = Bη in (2.1). When we let the regularization parameter λ in (2.1) approach in-

finity, the general Tikhonov regularization method becomes the quadratically constrained

`1 method.

We present the following theorem from [23] on the recoverability condition for the

quadratically constrained `1 method to recover x∗ from yε∗.

Theorem 2.3.3 (Theorem 4.19 in [23]). Assume that a matrix A ∈ RM×N satisfies the

RNSP of order k with constants 0 < ρ < 1 and τ > 0. For any general unknown

x∗ ∈ RN , a solution, x1+η of (2.4) where the input yε∗ = Ax∗ + ε (||ε||2 ≤ ε) and the

parameter η ≥ ε are used, approximates x∗ with the following `1 error

||x1+η − x∗||1 ≤
2(1 + ρ)

1− ρ
σ +

2τ

1− ρ
(η + ε).

If η = ε, then x1+η = x1+ε and

||x1+ε − x∗||1 ≤
2(1 + ρ)

1− ρ
σ +

4τ

1− ρ
ε.

Recall that σ = σ(x∗, k, 1).

Proof. By the optimality of x1+η, we have ||x1+η||1 ≤ ||x∗||1. Set u = x1+η, v = x∗,

K = supp(x∗(k)) (recall that xσ∗ (k) is the best k-term approximation of xσ∗ in `1 norm).

It follows from theorem 2.2.4,

||x1+η − x∗||1 ≤
1 + ρ

1− ρ

(
||x1+η||1 − ||x∗||1 + 2||(x∗)Kc ||1

)
+

2τ

1− ρ
||A(x1+η − x∗)||2

≤ 2(1 + ρ)

1− ρ
σ +

2τ

1− ρ
(||A(x1+η − yε∗||2 + ||yε∗ − Ax∗||2)

≤ 2(1 + ρ)

1− ρ
σ +

2τ

1− ρ
(η + ε).
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Here, we used the equality: (x∗)Kc = x∗ − x∗(k) and σ = ||(x∗)Kc||1.

Remark 2.3.4. When we apply (2.4) to the recovery a k-sparse unknown x̂∗ from its clean

observation ŷ∗, we should be able to recover exactly x̂∗ when we set the parameter η = 0.

In fact, given the error bound in theorem 2.3.3, we have ||x1+0−x̂∗||1 ≤ 0⇒ x1+0 = x̂∗.

We also have interests in another method to recover a general unknown x∗ from its

noisy observation yε∗, so-called the unconstrained `1 method, which finds an approximate

solution xλ with a regularization parameter λ > 0. The approximate solution xλ satisfies

the following,

xλ = arg min
x∈RN

{
λ||x||1 +

1

2
||yε∗ − Ax||22

}
. (PU )

Remark 2.3.5. We set the stabilizing function f(x) = ||x||1, set the convex feasible set as

C = RN , and use yε∗ instead of ŷ∗ in (2.1). The general Tikhonov regularization method

becomes the unconstrained `1 method.

The following theorem discusses the approximation error when the unconstrained

`1 method is used to recover x∗ from yε∗.

Theorem 2.3.6. Assume that a matrix A ∈ RM×N satisfies the RNSP of order k with

constants 0 < ρ < 1 and τ > 0. For any general unknown x∗ ∈ RN , a solution, xλ of

(PU ) where the input yε∗ = Ax∗ + ε with ||ε||2 ≤ ε is used, approximates x∗ with the

following `1 error

||xλ − x∗||1 ≤
1 + ρ

1− ρ

( ε2

2λ
− λ

2β2
+ 2σ

)
+

2τ

1− ρ
(λα + ε).

Recall that σ = σ(x∗, k, 1). We also define the constants β and α as β := ||A>||2 and

α :=
√
N ||(AA>)−1A||2.
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Proof. First, we use the optimality condition of xλ,

λ||xλ||1 +
1

2
||yε∗ − Axλ||22 ≤ λ||x∗||1 +

1

2
||yε∗ − Ax∗||22.

It follows from lemma A.3.6,

||xλ||1 − ||x∗||1 ≤
1

2λ
||yε∗ − Ax∗||22 −

1

2λ
||yε∗ − Axλ||22 ≤

ε2

2λ
− λ

2β2
.

Second, let u = xλ, v = x∗, and set K = supp(x∗(k)) (recall that x∗(k) is the best

k-term approximation of x∗ in `1 norm). By theorem 2.2.4, we have

||xλ − x∗||1 ≤
1 + ρ

1− ρ
(||xλ||1 − ||x∗||1 + 2||(x∗)Kc ||1) +

2τ

1− ρ
||A(xλ − x∗)||2

≤ 1 + ρ

1− ρ

( ε2

2λ
− λ

2β2
+ 2σ

)
+

2τ

1− ρ
(||Axλ − yε∗||2 + ||yε∗ − Ax∗||2)

≤ 1 + ρ

1− ρ

( ε2

2λ
− λ

2β2
+ 2σ

)
+

2τ

1− ρ
(αλ+ ε).

Remark 2.3.7. When we apply the unconstrained `1 method to the recovery of k-sparse

unknown x̂∗ from its clean observation ŷ∗, we obtain the following error bound,

||xλ − x̂∗||1 ≤
4ταβ2 − (1 + ρ)

(1− ρ)β2
λ.

In other words, the approximate solution xλ of (PU ) is within the O(λ) neighborhood

of x̂∗. When we use the unconstrained `1 method to recover a general x∗ from its noisy

observation yε∗, we have to be careful at choosing a proper λ. In order to provide the

optimal error bound, we have to minimize the following term

1 + ρ

1− ρ

( ε2

2λ
− λ

2β2

)
+

2ταλ

1− ρ
, ∀λ > 0.
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We have the optimal λopt calculated from the following expression,

λopt = εβ

√
1 + ρ

4β2ατ − (1 + ρ)
. (2.5)

Such optimal λopt is obtainable, when 4τµ2
max

√
N > (1 + ρ)µmin, where µmax and µmin

are the maximum and minimum singular values of the matrix A respectively.

The following remark is concerned with the performance between the quadratically

constrained `1 method and the unconstrained `1 method on recovery of x∗ from yε∗.

Remark 2.3.8. We consider the approximate solution xλ obtained from solving (PU ) with

input yε∗ and the regularization parameter λ is set at the optimal λopt in (2.5), and the

approximate solution x1+η obtained from solving (2.4) with input yε∗ and the parameter

η being set at η = ε. When the following inequality is satisfied, i.e.,

4τ 2β2 + (1 + ρ)2 > 4(1 + ρ)ταβ2,

the difference, xλ − x∗, would have a smaller upper bound than x1+η − x∗.

We refer the readers to Proposition 3.2 in [23] for connection between the quadrat-

ically constrained `1 method and the unconstrained `1 method.

2.3.1 The HR Method for Recovery of General x∗ from Noisy Observa-

tion yε∗

We have shown that when using the unconstrained `1 method to recover a k-sparse

x̂∗ from its clean observation ŷ∗ with an observation matrix A satisfying RNSP of order

k, the approximate solution xλ in (PU ) is within an O(λ)-neighborhood of x̂∗. The regu-

larization parameter λ controls the distance between xλ and x̂∗. When λ ↓ 0, xλ → x̂∗.
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It is advantageous to use an extremely small λ in order to obtain a highly accurate approx-

imate solution; however, smaller λ usually leads to larger number of iterations taken by a

numerical solver. Recall in section 1.2, we proposed the HR method as a multi-scale gen-

eralization to the general Tikhonov regularization in order to improve the regularization

procedure. Along the same line of reasoning in section 1.2, we propose the HR method as

a multi-scale generalization to the unconstrained `1 method in order to decrease the total

number of iterations, via a ladder of gradually decreasing regularization parameters λj’s,

which are understood as hierarchical scales in the HR setting. In the setting of recovery

of a general unknown x∗ from its noisy observation yε∗, the HR method is used for an

under-determined matrix A. We begin with a general λ > 0 for the unconstrained `1

method,

xλ = arg min
x∈RN

{
λ||x||1 +

1

2
||yε∗ − Ax||22

}
,

since there is information left in the residual, rλ = yε∗−xλ, i.e., rλ 6= 0 (or we are done),

we can extract further information from rλ at a finer scale, say λ
2
,

xλ
2

:= arg min
x∈RN

{λ
2
||x||1 +

1

2
||rλ − Ax||22

}
with r λ

2
:= rλ − Axλ

2
.

We obtain with a two scale decomposition of yε∗, i.e., yε∗ = Axλ + Axλ
2

+ r λ
2
. The

previous extraction process can continue. To simplify the notations, we will use numbered

subscripts from now on. We start from setting x(1) = xλ, r0 = yε∗, and choose a ladder

of hierarchical scales designed as λj = 21−jλ. The HR method will solve the following,

x(j) = arg min
x∈RN

{
λj||x||1 +

1

2
||rj−1 − Ax||22

}
, for 1 ≤ j ≤ J.

The hierarchical residual rj satisfies a recursive relation: rj := rj−1 − Ax(j). We sum

up the hierarchical terms x(j), and obtain an approximate solution in the form of a hier-
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archical sum, i.e., XJ =
∑J

j=1 x(j). The hierarchical observation AXJ will provide a

multi-scale approximate description of yε∗ as follows,

yε∗ = Ax(1) + Ax(2) + . . .+ Ax(J) + rJ .

When the observation matrix satisfies certain recoverability condition, the hierarchical

sum XJ , as the sum of the hierarchical terms x(j), i.e., XJ =
∑J

j=1 x(j), would provide

a multi-scale approximation of x∗, as follows

XJ = x(1) + x(2) + . . .+ x(J) ≈ x∗.

We note that different ladders of the hierarchical scales can be employed, e.g., λj =

θj−1λ1 for 0 < θ < 1 and a carefully chosen λ1. Such finitely many scales are important

in optimizing the approximation error, XJ − x∗. We summarize the HR method with a

general ladder of scales {λj}Jj=1 designed as λj = θj−1λ1. Given the initial hierarchical

residual r0 = yε∗, the HR method chooses a suitable starting hierarchical scale λ1 > 0

and finds the first hierarchical term x(1) from the following

x(1) = arg min
x∈RN

{
λ1||x||1 +

1

2
||r0 − Ax||22

}
and r1 := r0 − Ax(1).

Note that x(1) 6= x1. Next, the HR method finds other hierarchical terms x(j) for 2 ≤ j ≤

J with λj = θj−1λ1 from the following recursive relationship,

x(j) = arg min
x∈RN

{
λj||x||1 +

1

2
||rj−1 − Ax||22

}
and rj := rj−1 − Ax(j). (PHR)

We begin the approximation error analysis of the hierarchical sumXJ with the following

lemma on the bounds of the hierarchical residual rj’s.
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Lemma 2.3.9. Assume that the matrix A has linearly independent rows. The hierarchical

residuals, rj = rj−1 − Ax(j), satisfy the following bounds,

λj||A>||−1
p ≤ ||rj||p ≤ λj

p
√
N ||(AA>)−1A||p, for 1 ≤ p ≤ ∞, 1 ≤ j ≤ J.

Hence r(j) → 0 as λj → 0.

Proof. Since the hierarchical residual rj and the hierarchical term x(j) satisfy the signum

equation: A>rj = λjsgn(x(j)). Following the proof presented in lemma A.3.6, we have

λj||A>||−1
p ≤ ||rj||p ≤ λj

p
√
N ||(AA>)−1A||p.

Here we used the fact that the matrix A has linearly independent rows, hence A>A is

non-singular. Thus, ||rj||p → 0 as λj → 0.

We present the recoverability condition in the following theorem for the HR method

to provide reasonable approximate solution to xσ∗ .

Theorem 2.3.10. Assume that the matrix A ∈ RM×N satisfies the RNSP of order k with

constants 0 < ρ < 1 and τ > 0. For any unknown x∗ ∈ RN , a solution, XJ as sum of

the hierarchical terms in (PHR) where the input r0 = yε∗ = Ax∗ + ε (||ε||2 ≤ ε) is used,

approximates x∗ with the following `1 error,

||XJ − x∗||1 ≤
1 + ρ

1− ρ

( ε2

2λ1

− λ1

2β2
+
λ1

2
(αθ−2 − β−2)

θ − θJ

1− θ
+ 2σ)

+
2τ

1− ρ

(
λJα + ε

)
.

Recall that σ = σ(x∗, k, 1) and the constants β := ||A>||2 and α :=
√
N ||(A>A)−1A||2.
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Proof. We begin with finding the upper bound on ||XJ ||1 − ||x∗||1. We start from the

first hierarchical term x(1). By the optimality of x(1), we have

λ1||x(1)||1 +
1

2
||r0 − Ax(1)||22 ≤ λ1||x∗||1 +

1

2
||r0 − Ax∗||22.

It follows that,

||x(1)||1 − ||x∗||1 ≤
1

2λ1

(||r0 − Ax∗||22 − ||r0 − Ax(1)||22) ≤ ε2

2λ1

− λ1

2β2
.

Regarding the bound on other hierarchical terms x(j) for j ≥ 2, we follow the energy

estimate proof in [54]. By the optimality of x(j), we have

λj||x(j)||1 +
1

2
||rj−1 − Ax(j)||22 ≤

1

2
||rj−1||22,

then we derive,

||x(j)||1 ≤
1

2λj
(||rj−1||22 − ||rj||22) ≤ 1

2λj
(α2λ2

j−1 − β−2λ2
j) ≤

λj
2

(α2θ−2 − β−2).

Combining all the bounds together, we obtain

||XJ ||1 − ||x∗||1 ≤ (
J∑
j=1

||x(j)||1)− ||xσ∗ ||1 ≤
ε2

2λ1

− λ1

2β2
+ (α2θ−2 − β−2)

J∑
j=2

λj
2

≤ ε2

2λ1

− λ1

2β2
+
λ1

2
(α2θ−2 − β−2)

J∑
j=2

θj−1

≤ ε2

2λ1

− λ1

2β2
+
λ1

2
(α2θ−2 − β−2)

θ − θJ

1− θ
.

Using lemma 2.3.9 and theorem 2.2.4, we let u = XJ , v = x∗, and setK = supp(x∗(k))

(recall x∗(k) is the best k-term approximation of x∗ in `1 norm), then we have

||XJ − x∗||1 ≤
1 + ρ

1− ρ

(
||XJ ||1 − ||x∗||1 + 2||(x∗)Kc||1

)
+

2τ

1− ρ
||A(XJ − x∗)||2

≤ 1 + ρ

1− ρ

( ε2

2λ1

− λ1

2β2
+
λ1

2
(α2θ−2 − β−2)

θ − θJ

1− θ
+ 2σ

)
+

2τ

1− ρ

(
λJα + ε

)
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Corollary 2.3.11. Assume that the matrix A ∈ RM×N satisfies the RNSP of order k with

constants 0 < ρ < 1 and τ > 0; in fact, we can lessen the restriction on A, requiring

it to be only having linear independent rows. The sequence of hierarchical partial sums,

{XJ}∞J=1, where XJ =
∑J

j=1 x(j) with x(j) in (PHR), forms a Cauchy sequence. Thus,

XJ converges as J →∞.

Proof. We let 2 ≤ J1 < J2, and defineXJi =
∑Ji

j=1 x(j) for i = 1, 2 respectively. Using

the bounds on the hierarchical term x(j) shown in the first half of the proof for theorem

2.3.10, we have

||XJ2 −XJ1||1 ≤
λ1

2
(α2θ−2 − β−2)

J2∑
j=J1

θj−1 =
λ1

2
(α2θ−2 − β−2)

θJ1−1 − θJ2
1− θ

.

It follows that the sequence of hierarchical partial sums, {XJ}∞J=1, forms a Cauchy se-

quence, thus it converges.

The following remark is concerned with the asymptotic behavior of the hierarchical

sum.

Remark 2.3.12. When we use the HR method to the recovery of a k-sparse unknown x̂∗

from its clean observation ŷ∗, the HR method with the input r0 = ŷ∗ give the following

error bound

||XJ − x̂∗||1 ≤
1 + ρ

1− ρ

(λ1

2
(α2θ−2 − β−2)

θ − θJ

1− θ
− λ1

2β2

)
+

2τ

1− ρ
αλJ .

We have θJ → 0 as J →∞. From corollary 2.3.11, we learn thatXJ is convergent when

J →∞. We letXJ →XHR as J →∞, it follows that

||XHR − x̂∗||1 ≤
1 + ρ

1− ρ
λ1

2(1− θ)

(
α2θ−1 − β−2

)
.
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Consider the function g : (0, 1)→ R defined as,

g(θ) =
α2θ−1 − β−2

1− θ
.

The function g has only one root

θ1 = (αβ)2 = (
√
N
µmax

µmin

)2 > 1.

Recall that µmax and µmin are maximum and minimum singular values of the matrix A

respectively. Thus, the function g is never zero in (0, 1). The function g has two critical

points:

θcp = 1±
√

1− (αβ)−1.

Since we require that the hierarchical multiplier 0 < θ < 1, we set θ = 1−
√

1− (αβ)−1

in order to obtain the optimal error bound forXHR.

We will conclude this section by the following remark regarding the performance of

the HR method when compared to the unconstrained `1 method on recovery of a general

unknown x∗ from its noisy observation yε∗.

Remark 2.3.13. We consider the hierarchical sum, XJ as a sum of hierarchical terms

x(j)’s in (PHR) with the input r0 = yε∗ and a ladder of hierarchical scales {λj}Jj=1,

and the solution, xλ in (PU ) with the input yε∗ and regularization parameter λ. When

yε∗ = Ax∗ + ε (||ε||2 ≤ ε) for some general unknown x∗ and λJ = λ, the approximation

error from using the HR method, namely XJ − x∗, would have a smaller upper bound

than the approximation error from using the unconstrained `1 method, namely xλ − x∗,

when the following inequality is satisfied,

λ1θ
J−1 − (αβλ1)2θJ−2 − (βε)2θ + (βε)2 > 0.
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We require implicitly that J ≥ 2; otherwise when J = 1, we haveX1 = xλ.

We are also interested in the optimal performance of the HR method for recovery

of x∗ from yε∗, when we have the freedom to choose λ1, θ and J . The optimal 3-tuple,

(λ1, θ, J) is chosen such that the following term,

1 + ρ

1− ρ

( ε2

2λ1

− λ1

2β2
+
λ1

2
(α2θ−2 − β−2)

θ − θJ

1− θ

)
+

2τ

1− ρ
αλ1θ

J−1,

is at its minimum. We also require that λ1 > 0, 0 < θ < 1 and J ≥ 2.

2.4 Numerical Experiements

We run the numerical simulations by comparing the unconstrained `1 method and

the HR method on recovery of a k-sparse x̂∗ from its noisy observation ŷε∗ = Ax̂∗ + ε

(||ε||2 ≤ ε) with λ = λJ . We implement the Gradient Projection for Sparse Recon-

struction (GPSR) algorithm [20] for solving (PU ) in MATLAB. The k-sparse unknown

x̂∗ ∈ RN is generated with k = 160 non-zero entries, and the values of those entries

are randomly picked as ±1, and the location of the non-zero entries is also randomly

picked. We set the number of observations M to 1024, and the dimension of the unknown

is set at N = 4096. The entries of A ∈ RM×N are identically distributed standard nor-

mal variables (satisfying the Gaussian distribution with mean 0 and standard deviation

1), i.e., A = randn(M,N) in MATLAB. We orthonormalize the rows of A by doing

A = (orth(A.′)).′. The noise level is set as ε = γ ∗ ||Ax∗||2, where γ (the noise to signal

ratio) changes from 0 to 0.04. Other parameters for the GPSR algorithm is set as follows:

β = 0.5, µ = 0.1, ᾱ = 0.1, the maximum number of iterations is allowed at 500, we

do not de-bias the solution, and the stopping criteria is set as
∣∣min(z,∇F (z))

∣∣, where
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z is the approximate solution of GPSR at the jth iterate, and ∇F (·) is the gradient of

the objective function F defined in equation (8) in [20], and the tolerance for stopping

criteria is set at 10−3. First, we show the comparison between the `2 based methods and

the `1 based methods in figure 2.2.
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Figure 2.2: `1 Methods versus `2 Methods

For the `2 based methods, we employ the Least Square (LS) method, the constrained

`2 method, and the `2
2− `2

2 Tikhonov regularization method (also known as Ridge Regres-

sion, see section A.2 for details). For the `1 based methods, we employ the GPSR and

the HR method (based on GPSR) with θ = 1/2, 1/4, 1/8 and J = 2. The regulariza-

tion parameter is fixed at λJ = λ ≈ 0.0019. All three `2 methods produce approximate

solutions which are not sparse at all; whereas the `1 methods are able to produce sparse

approximate solutions to x̂∗. Table 2.1 shows the comparison between the GPSR and

the HR method on sparse recovery from ŷε∗. Each cell in table (2.1) has two values: the

integer value represents the total number of iterations used for each algorithm, the real

value inside parenthesis represents the approximation error.
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Algorithms γ = 0 γ = 0.01 γ = 0.02 γ = 0.04

GPSR 283(1.49) 287(2.76) 301(6.24) 329(14.3)

HR (θ = 1/2, J = 2) 160(1.47) 164(2.59) 172(5.77) 189(13.5)

HR (θ = 1/4, J = 2) 86(1.51) 88(2.66) 92(6.07) 135(13.5)

HR (θ = 1/8, J = 2) 75(1.64) 82(2.90) 94(6.25) 116(14.1)

Table 2.1: (PU ) versus (PHR)

As show in the table 2.1, the HR method is able to reduce the total number of

iterations to half of which is used by GPSR when we use θ = 1/2. When θ = 1/4,

the number of iterations is further reduced to a quarter of the total number from GPSR.

However, we note that by simply decreasing θ does not always significantly reduces the

number of iterations, notice the change from θ = 1/4 to θ = 1/8. It signifies that the

need to find an optimal θ which we should choose.

2.5 Conclusion

We started the chapter by discussing various constrained `p methods for the recov-

ery of k-sparse unknown x̂∗ from its clean observation ŷ∗. Next, we suggested using

two different regularization methods for the recovery of general unknown x∗’s from its

noisy observation yε∗. One of the suggestions is the unconstrained `1 method, which is

the preferred method discussed in details in this chapter. We then proposed a multi-scale

generalization of the unconstrained `1 method, the HR method, and discussed its conver-

gence property and its performance for recovery of x∗ from yε∗. At the end, we note that
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the HR method can be extended to recovery of unknowns in CN , since the RNSP property

used in this chapter is also defined in CN [23].
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Chapter 3: Hierarchical Reconstruction Method for Deconvolution

3.1 Introduction: Deconvolution on the Helmholtz Filter

We analyze the de-convolution problem on the Helmholtz filter for the closure prob-

lem in Large Eddy Simulation (LES), since LES has gained more and more popularity in

simulating fluid flows, especially turbulent flows, due to its capability of reducing com-

putational cost by appropriate usage of certain LES filter. The closure problem arises in

LES when a low pass spatial and linear filter, with filtering radius δ > 0 (also known as

LES filter), is applied to the Navier-Stokes equations (NSE). The setup is as follows. Let

Ω ⊂ R3 be the physical domain with a Lipschitz boundary ∂Ω, ρ be the constant density

and ν the viscosity. The velocity u = (u1, u2, u3)> and pressure p are functions of time

t > 0 and space s ∈ Ω. The filtered velocity ū = (ū1, ū2, ū3)>and the filtered pressure

p̄ satisfy the following filtered NSE (after application of a LES filter to the incompresible

flow),
∂ūi
∂si

= 0, (Mass)

∂ūi
∂t

+
∂

∂sj
(uiuj) +

1

ρ

∂p̄

∂si
= ν

∂

∂sj
(
∂ūi
∂sj

+
∂ūj
∂si

), (Momentum)

(3.1)

Here, the low pass filter (also known as LES filter) commutes with temporal partial deriva-

tive ∂/∂t and all spatial derivatives ∂/∂si. The filtered equations in (3.1) are almost

closed with respect to ū and p̄ except the second order term (uiuj). When the term (uiuj)
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is replaced by ūiūj , the difference, (uiuj) − ūiūj , is not zero. The residual stress tensor,

τij = (uiuj) − ūiūj , contains the interaction between the unfiltered velocity and the fil-

tered velocity, and it has to be modeled in terms of only the filtered velocity, henceforth

requiring de-convolution from the filtered velocity. The study on modeling of residual

stress tensor is beyond the scope of this thesis. Out of many possible LES filters, we

choose the Helmholtz filter [26,27]. Because when the Helmholtz filter is used, the resid-

ual stress tensor can be expressed exactly in terms of the filtered velocity

τij = 2δ2∇ūi · ∇ūj + δ4(∆ūi)(∆ūj). (3.2)

Therefore, we focus ourselves on the study of de-convolution on the Helmholtz filter. We

consider a more general setup for the de-convolution problem as follows. Let X be a

Hilbert space of functions defined over the physical domain Ω. The space X is equipped

with the standard L2 norm and the standard inner product, i.e., for any x,y ∈ X ,

||x||L2(Ω) =

∫
s∈Ω

∣∣x(s)
∣∣2 ds and 〈x,y〉 =

∫
s∈Ω

x(s) · y(s) ds. (3.3)

For the unknown function x∗ ∈ X , its filtered output y∗ ∈ X is obtained by applying the

Helmholtz filter to x∗ in the following convolution setting,

x∗ 7→ y∗ : y∗(s) :=

∫
s′∈Ω

Kδ(s− s′)x∗(s′) ds′ = Kδ ∗ x∗. (3.4)

Here the integral kernel Kδ is given by the standard integral kernel K scaled by δ, i.e.,

Kδ(s) = δ−3K(δ−1s). The standard integral kernel K is defined as follows,

K(s) =
1

4π

exp(−||s||2)

||s||2
, for s ∈ R3. (3.5)

We denote the convolution action with this kernel Kδ as a multiplication with the op-

erator Aδ, i.e., y∗ = Kδ ∗ x∗ = Aδx∗. When the filtered output y∗ is given, the de-
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convolution problem is inquiring about the possibility of recovery of the unknown x∗ via

de-convolution from y∗. In the case of the Helmholtz filter, the unknown x∗ can be ex-

actly recovered by applying the inverse of the Helmholtz filterAδ, namelyA−1
δ , to y∗. The

equation x∗ = A−1
δ y∗ gives the following elliptic differential equation with a Dirichlet

boundary condition,

y∗ 7→ x∗ :


x∗(s) = −δ2∆y∗(s) + y∗(s), s ∈ Ω

x∗(s) = y∗(s), s ∈ ∂Ω

. (3.6)

Despite having a well-defined inverse, recovery of x∗ by direct application of A−1
δ to y∗

is not always possible. In actual implementations, one only has access to the approximate

numerical output yh∗ (where h represents the spatial resolution for certain discretization

scheme), which is obtained by solving LES numerically. In this chapter, we will focus on

the Finite Element Method (FEM) and use it to define the discrete Helmholtz filter, Ah(=

Ahδ )
1: X → X h (X h is a finite dimensional subspace of X ), as a numerical approximation

to Aδ. The discrete equation yh∗ = Ahx∗ is defined in the weak formulation setting: for

the unknown x∗ ∈ X , there is a unique FEM solution yh∗ ∈ X h such that for all vh ∈ X h,

the following holds

x∗ 7→ yh∗ : δ2〈∇yh∗ ,∇vh〉+ 〈yh∗ ,vh〉 = 〈x∗,vh〉. (3.7)

The discrete operator Ah is Symmetric Positive Definite (SPD) over X h but Symmetric

Positive Semi-Definite (SPSD) over X [40]. Therefore, when given the discrete filtered

output yh∗ , it is not possible to recover x∗ by directly solving the discrete equation Ahx =

yh∗ . To counter this particular kind of ill-posedness of Ah and considering that Ah is SPD

1We drop the dependence of δ for Ahδ to emphasize the presence of the numerical resolution scale h.
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over X h, one can employ the Tikhonov-Lavrentiev regularization (TLR) method. The

TLR method finds a unique FEM solution xhL(λ) ∈ X h such that for all vh ∈ X h the

following holds,

λδ2〈∇xhL(λ),∇vh〉+ (1 + λ)〈xhL(λ),v
h〉 = δ2〈∇yh∗ ,∇vh〉+ 〈yh∗ ,vh〉.

Based on the understanding that the regularization parameter λ represents an regulariza-

tion scale and further exploiting the filter property of Ah, we propose the HR method as a

multi-scale generalization to the TLR method. By setting the initial discrete hierarchical

residual rh0 = yh∗ , the HR method finds the unique FEM solution xh(j) ∈ X h such that for

all vh ∈ X h the following holds,

λδ2〈∇xh(j),∇vh〉+ 〈xh(j),vh〉 = δ2〈∇rhj−1,∇vh〉+ 〈rhj−1,v
h〉, 1 ≤ j ≤ J.

Here the discrete hierarchical residual rhj ∈ X h is found as the unique FEM solution such

that for all vh ∈ X h, the following recursive relationship holds,

δ2〈∇rhj ,∇vh〉+ 〈rhj ,vh〉 = δ2〈∇rhj−1,∇vh〉+ 〈rhj−1 − xh(j),vh〉.

The HR method utilizes a ladder of discrete hierarchical residuals with their correspond-

ing hierarchical scales in a recursive manner, i.e., it successively extracts information from

the previous discrete hierarchical residuals rhj−1 to the discrete hierarchical term xh(j) at

a finer hierarchical scale λj . After J steps of hierarchical extraction, we sum up the dis-

crete hierarchical terms to obtain the discrete hierarchical sum, i.e.,Xh
J =

∑J
j=1 x

h
(j). We

show that the discrete hierarchical sumXh
J can approximate x∗ with the following error,

||x∗ −Xh
J ||L2(Ω) ≤ δ2J

( J∏
j=1

λj

)
||∆Jx∗||L2(Ω)

+ Chk max
1≤j≤J

(
√
δ2λj + h)||DjAx∗||Hk+1(Ω).
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Here Dj is the total hierarchical de-convolution operator after j steps of hierarchical it-

erations (see definition 3.4.2) and k represents the degree of basis functions used in a

Finite Element scheme. When the residual stress tensor is approximated, one is given the

noisy discrete filtered output yh,ε∗ . We show an (near) optimal stopping criteria for the HR

method to provide an approximate solution to x∗ via de-convolution from yh,ε∗ .

The remaining sections of this chapter are structured as follows. In section 3.2, we

introduce the necessary inequalities needed for the proofs of the approximation errors for

the HR method, then we expand more on the discussion about properties of the Helmholtz

filter. In section 3.3, we introduce the nearby problem: recovery of x∗ via de-convolution

from the discrete filtered output yh∗ . We discuss a couple Tikhonov regularization meth-

ods on solving the nearby problem. Next, in section 3.4, we first provide the continuous

approximation error analysis for the HR method on recovery of x∗ via de-convolution

from y∗. Such continuous approximation error bound will be used in the discrete ap-

proximation error analysis later. We then continue our analysis about the HR method on

solving the nearby problem and show the discrete approximation error analysis. Due to

the fact that the residual stress tensor might be approximated, one is given the noisy fil-

tered output yh,ε∗ . In section 3.5, we present the analysis of the HR method on providing

an approximate solution to x∗ via de-convolution from yh,ε∗ and we also provide an (near)

optimal stopping criteria to enforce the convergence of the HR approximate solutions to

x∗. We conduct numerical experiments by comparing a family of Tikhonov regulariza-

tion methods to the HR method on solving the nearby problem, testing the (near) optimal

stopping criteria on solving the noisy nearby problem, and show the convergence rate of

the HR method on the nearby problem in R2. At the end, we conclude the chapter by
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discussing the possibility of extending the analysis of using the HR method with other

discretization scheme, such as the Finite Difference Method (FDM), and applying the HR

method to other type of LES filters.

3.2 The Original Problem: Recovery of x∗ from Continuous Filtered

Output y∗

Before we discuss more about the Helmholtz filter, we plan to introduce some of

the notations and inequalities used through out this chapter. First, we use the standard

notation for Lebesgue and Sobolev spaces and their norms. Meanwhile, the physical

domain Ω is a regular, bounded, polyhedral domain in R3. We define the following space,

X = H1
0 (Ω)n =

{
x ∈ L2(Ω)n : ∇x ∈ L2(Ω)n×n and x = 0 on ∂Ω

}
. (3.8)

The dimensional parameter n can be either 1 (for the pressure) or 3 (for the velocity). We

mentioned that X h is a finite dimensional subspace of X . When using FEM, an example

X h is the set of continuous polynomials of degree k. We also assume that we have ho-

mogeneous boundary data throughout. We use the following approximation inequalities

from [6],

inf
vh∈Xh

||x− vh||L2(Ω) ≤ Chk+1||x||Hk+1(Ω), x ∈ Hk+1(Ω)n,

inf
vh∈Xh

||x− vh||H1(Ω) ≤ Chk||x||Hk+1(Ω), x ∈ Hk+1(Ω)n.

(3.9)

We will also employ the following inequalities for our proofs:

• Cauchy-Schwartz inequality:
∣∣〈x,y〉∣∣ ≤ ||x||L2(Ω)||y||L2(Ω), ∀x,y ∈ X ;
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• Young’s inequality: given ε > 0, a, b ≥ 0, and 1 < p, q < ∞ with p−1 + q−1 = 1,

then

ab ≤ ε

p
ap +

ε1−q

q
bq;

• Triangle inequality: ||x+ y||L2(Ω) ≤ ||x||L2(Ω) + ||y||L2(Ω), ∀x,y ∈ X .

The de-convolution problem on a general linear filter is considered an important inverse

problem [26, 34, 40, 41, 53]. Such problem occurse in many applications including pa-

rameter identification [18, 19], the de-convolution problem of image processing [4], and

the closure problem in turbulence modeling [3, 28, 36, 41]. We invest special interests

in the de-convolution problem on the Helmholtz filter, since the Helmholtz filter has a

well-defined inverse. The Helmholtz filter, also known as the Helmholtz differential filter

(since its differential form is used more often), is used in several Large Eddy Simulation

models [3,26–28,36,40,41]. It is equivalent to the Pao filter used in image processing [36].

The original problem in the de-convolution on the Helmholtz filter is the recovery x∗ via

de-convolution from y∗. We mentioned that the original problem is well-posed, since

recovery of x∗ can be obtained via x∗ = A−1
δ y∗ and A−1

δ is well-defined.

Lemma 3.2.1. The Helmholtz filterAδ defined in (3.4) with the convolution kernel defined

in (3.5) has the inverse operator A−1
δ defined in terms of the elliptic differential equation

with Dirichlet boundary equation in (3.6).

Proof. We start from the differential equation. For any x,y ∈ X , x = A−1
δ y ⇒ x =

−δ2∆y + y. Let x̃ and ỹ be the Fourier transform of x and y respectively, and ξ be the

variable in the Fourier space. Apply the Fourier transform to the differential equation, we
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obtain x̃ = (1 + δ2||ξ||22)ỹ. Hence,

ỹ =
1

1 + δ2||ξ||22
x̃ and ỹ = K̃δx̃⇒ K̃δ =

1

1 + δ2||ξ||22
.

Here K̃δ represents the Fourier symbol of the Helmholtz convolution kernel Kδ. Let F−1

be the inverse Fourier operator, we have y = F−1(K̃δ) ∗ x. Next, we focus on find the

inverse Fourier transform of the standard kernel (since δ2||ξ||22 = ||δξ||22), i.e.,

F−1(
1

1 + ||ξ||22
) =

∫
ξ

exp(−is · ξ)

1 + ||ξ||22
dξ. (3.10)

After a change of coordinates: ξ = rξ′ with r > 0 and ξ′ ∈ S2 (the unite sphere in R3),

(3.10) becomes∫ ∞
r=0

∫
ξ′∈S2

exp(−irs · ξ′)
1 + r2

r2dσ(ξ′)dr =

∫ ∞
r=0

r2

1 + r2

sin(r||s||2)

r||s||2
dr

=

∫ ∞
r=0

r sin(r||s||2)

(1 + r2)||s||2
dr =

1

4π

exp(−||s||2)

||s||2
.

Here σ(ξ′) is the surface measure on S2 (see [21]). Therefore

Kδ = exp(−||s||2/δ)/(4πδ2||s||2).

We end this section with the following remark.

Remark 3.2.2. The Helmholtz filter Aδ is symmetric. To see that, consider u,v ∈ X ,

〈Aδu,v〉 =

∫
s

(∫
s′
Kδ(s− s′)u(s′)ds′

)
· v(s)ds

=

∫
s

∫
s′
Kδ(s− s′)u(s′) · v(s)ds′ds

=

∫
s′

∫
s

u(s′) ·
(
Kδ(s

′ − s)v(s)
)
dsds′

= 〈u, Aδv〉.
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Next, we investigate the upper bound on Aδ. By basic Harmonic Analysis and theories of

Fourier multipliers, we have for any x ∈ X

||Aδx||L2(Ω) = ||Kδ ∗ x||L2(Ω) = ||F(Kδ ∗ x)||L2(Ω) = ||K̃δx̃||L2(Ω)

≤ ||K̃δ||L∞(Ω)||x̃||L2(Ω) ≤ ||x̃||L2(Ω).

Here, we used the fact K̃δ(ξ) = (1 + δ2||ξ||22)−1 ≤ 1 for any ξ in the Fourier space.

We conclude this section by a figure showing the Fourier symbol of the Helmholtz

filter A for various δ’s to demonstrate the scale “cut-off” effect of the filtering radius.
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Figure 3.1: Fourier Symbol: (1 + δ2r2)−1

3.3 The Nearby Problem: Recovery of x∗ from Discrete Filtered Output

yh∗

We mentioned in the section 3.1 that the discrete Helmholtz operatorAh is ill-posed,

hence recovery of x∗ by directly solving the discrete equation Ahx = yh∗ is impossible.
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We consider a linear operator A : X → Y , which is compact and its range is finite

dimensional, inverting the linear equation Ax = y is considered ill-posed [1,2,30,44,52,

62, 64]. In order to find a suitable approximate solution to Ax = y, one can consider the

general Tikhonov regularization method, which finds an approximate solution from

xT (λ) = arg min
x∈C

{
λf(x) +

1

2
||y − Ax||2Y

}
. (3.11)

In the case of A = Ah, solving the linear equation Ahx = yh∗ to recover x∗ is ill-

posed in exactly the same manner. We will present two specific implementations of (3.11)

to address the ill-posed equation Ahx = y∗. First, we consider the `2
2 − `2

2 Tikhonov

regularization method [19, 59, 60], which finds the FEM solution xhT (λ) ∈ X h (with a

regularization parameter λ > 0) such that for all vh ∈ X h, the following holds

λδ4〈∆xhT (λ),∆v
h〉+ 2λδ2〈∇xhT (λ),∇vh〉+ (1 + λ)〈xhT (λ),v

h〉

= δ2〈∇yh∗ ,∇vh〉+ 〈yh∗ ,vh〉.
(3.12)

Remark 3.3.1. Denoted in the operator form, the `2
2 − `2

2 Tikhonov regularization (`2TR)

method finds the FEM solution xhT (λ) satisfying the following equation

((Ah)2 + λI)xhT (λ) = Ahyh∗ . (3.13)

The approximate solution xhT (λ) is a solution of the following minimization problem,

xhT (λ) = arg min
xh∈Xh

{λ
2
||xh||2L2(Ω) +

1

2
||yh∗ − Ahxh||2L2(Ω)

}
.

When we set C = X h, f(xh) = ||xh||2L2(Ω)/2, A = Ah, y = yh∗ , Y = X h, and || · ||Y =

|| · ||L2(Ω) in (3.11), we obtain the `2TR method.
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Considering the fact that the discrete Helmholtz operator Ah is SPD over X h, there

is a SPD operator B such that Ah = B2. The solution from the following

xhL(λ) = arg min
xh∈Xh

{λ
2
||xh||2L2(Ω) +

1

2
||B−1yh∗ −Bxh||2L2(Ω)

}
(3.14)

also satisfies the equation

(B2 + λI)xhL(λ) = B(B−1yh∗)⇒ (Ah + λI)xhL(λ) = yh∗ .

This reasoning gives rise to the Tikhonov-Lavrentiev regularization (TLR) method (see

[19, 33, 37, 41, 63]). The TLR method finds the FEM solution xhL(λ) ∈ X h such that for

all vh ∈ X h, the following holds

λδ2〈∇xhL(λ),∇vh〉+ (1 + λ)〈xhL(λ),v
h〉 = δ2〈∇yh∗ ,∇vh〉+ 〈yh∗ ,vh〉. (3.15)

Remark 3.3.2. Put in the operator form, the TLR method finds the FEM solution xhL(λ)

satisfying the following equation

(Ah + λI)xhL(λ) = yh∗ . (3.16)

Define a weighted L2 norm for xh ∈ X h as follows: ||xh||L2
B−1 (Ω) = ||B−1xh||L2(Ω).

When we consider the following

||B−1yh∗ −Bxh||L2(Ω) = ||B−1(yh∗ −B2xh)||L2(Ω) = ||yh∗ − Ahxh||L2
B−1 (Ω),

we obtain another formulation of (3.14)

xhL(λ) = arg min
xh∈Xh

{λ
2
||xh||2L2(Ω) +

1

2
||yh∗ − Ahxh||2L2

B−1 (Ω)

}
.

Such specific formulation can be obtained from (3.11) when we set f(xh) = ||xh||L2(Ω)/2,

C = X h, Y = X h, and || · ||Y = || · ||L2
B−1 (Ω).
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The TLR method is also known as the method of Lavrentiev regularization [35] or

the method of Singular Perturbation [38]. We conclude this section by comparing the

effects of the regularization parameter λ on the singular values of the two de-convolution

operators: the Tikhonov de-convolution operator ((Ah)2 + λI)−1Ah and the Lavrentiev

de-convolution operator (Ah + λI)−1.
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Figure 3.2: The Effect of λ

3.4 The HR Method for Recovery of x∗ from Discrete Filered Output yh∗

We argue that since the regularization parameter λ in the TLR methods presents a

regularization scale, there should be successive extraction of information from the previ-

ous residual at a finer scale. Recall that in chapter 2, we propose the HR method to tackle

the ill-posedness from an under-determined matrix A. Along the same line of reasoning,

we propose the HR method as a multi-scale generalization to the TLR method to counter

the ill-posedness from the discrete linear operatorAh such that the discrete approximation

error will be improved thanks to a ladder of decreasing hierarchical scales. Furthermore,

44



we exploit the filter property of the discrete Helmholtz filter Ah, i.e., the filtering radius

δ. To simplify the notations, we will use the operator form of the TLR method. Let

xhλ = ((1− λ)Ah + λI)−1yh∗ ,

since there is information left in the residual, rhλ = yh∗−xhλ, i.e., rhλ 6= 0 (or we are done),

we can extract further information from rhλ at a finer scale, say λ
2
,

xhλ
2

= ((1− λ

2
)Ah +

λ

2
I)−1rhλ with rhλ

2

:= rhλ − Axhλ
2

.

We obtain with a two scale decomposition of yh∗ , i.e., yh∗ = Axhλ + Axhλ
2

+ rhλ
2

. The

previous extraction process can continue. To simplify the notations, we will use numbered

subscripts from now on. We start from xh(1) = xhλ, rh0 = yh∗ , and choose hierarchical

scales λj = 21−jλ. The HR method will solve the following,

xh(j) = ((1− λj)Ah + λjI)−1rhj−1, for 1 ≤ j ≤ J.

The discrete hierarchical residual rhj satisfies a recursive relation: rhj = rhj−1 − Axh(j).

We sum up the discrete hierarchical terms xh(j)’s, and obtain an approximate solution in

the form of a discrete hierarchical sum, i.e., Xh
J =

∑J
j=1 x

h
(j). The discrete hierarchical

observation AXh
J will provide a multi-scale description of yh∗ as follows,

yh∗ = Axh(1) + Axh(2) + . . .+ Axh(J) + rhJ .

It also follows that the discrete hierarchical sumXh
J , as the sum of the discrete hierarchi-

cal terms xh(j), i.e., Xh
J =

∑J
j=1 x

h
(j), would provide a multi-scale approximation of x∗,

i.e.,

Xh
J = xh(1) + xh(2) + . . .+ xh(J) ≈ x∗.
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We note that different ladders of the hierarchical scales can be employed, e.g., λj =

θj−1λ1 for 0 < θ < 1 and a carefully chosen λ1. Such finitely many scales are important

in optimizing the approximation error, Xh
J − x∗. We summarize the HR method with

a general ladder of decreasing hierarchical scales {λj}Jj=1 as follows. Given the initial

hierarchical residual r0 = yh∗ , the HR method chooses a suitable starting hierarchical

scale λ1 > 0 and finds the first discrete hierarchical term xh(1) ∈ X h as the unique FEM

solution such that for all vh ∈ X h the following holds

λδ2〈∇xh(1),∇vh〉+ 〈xh(1),v
h〉 = δ2〈∇rh0 ,∇vh〉+ 〈rh0 ,vh〉.

The first hierarchical residual rh1 ∈ X h is found at the unique FEM solution such that for

all vh ∈ X h the following holds

δ2〈∇rh1 ,∇vh〉+ 〈rh1 ,vh〉 = δ2〈∇rh0 ,∇vh〉+ 〈rh0 − xh(j),vh〉.

With a carefully chosen a ladder of decreasing hierarchical scales {λj}Jj=1, the HR method

solves for the unique FEM solution xh(j) ∈ X h such that for 2 ≤ j ≤ J and all vh ∈ X h,

the following holds

λδ2〈∇xh(j),∇vh〉+ 〈xh(j),vh〉 = δ2〈∇rhj−1,∇vh〉+ 〈rhj−1,v
h〉. (3.17)

Here the discrete hierarchical residual rhj ∈ X h is found as the FEM solution such that

for all vh ∈ X h, the following recursive relationship holds

δ2〈∇rhj ,∇vh〉+ 〈rhj ,vh〉 = δ2〈∇rhj−1,∇vh〉+ 〈rhj−1 − xh(j),vh〉. (3.18)

Remark 3.4.1. Using the operator notation, the HR method is expressed as follows: find

the unique FEM solution xh(j) ∈ X h satisfying

((1− λj)Ah + λjI)xh(j) = rhj−1, 1 ≤ j ≤ J. (3.19)
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For the discrete hierarchical residual rhj , it satisfies the following recursion,

rhj = rj−1 − Ahxh(j). (3.20)

The discrete hierarchical sum is the sum of the discrete hierarchical terms, i.e.,

Xh
J =

∑J
j=1 x

h
(j). Before we present the discrete approximation error, x∗ − Xh

J , we

have to discuss the continuous approximation error, x∗ −XJ , where XJ is obtained by

applying the HR method to the original problem: recovery of x∗ via de-convolution from

the continuous filtered output y∗. The HR method for the recovery of x∗ from y∗ is set

up as follows. With a ladder of decreasing hierarchical scales {λj}Jj=1, the HR method

initially solves for the first hierarchical term x(1) ∈ X from the following

((1− λ1)Aδ + λ1I)x(1) = r0 and r0 = y∗.

Setting r1 = r0 − Ax(1), the HR method solves for the hierarchical term x(j) ∈ X from

the following

((1− λj)Aδ + λjI)x(j) = rj−1, for 2 ≤ j ≤ J, (3.21)

with hierarchical residual rj is given in a recursion, rj = rj−1 − Aδx(j). We sum up the

hierarchical terms to obtain the hierarchical sum, i.e.,XJ =
∑J

j=1 x(j). Next, we present

the following definitions on the hierarchical de-convolution operators Dλj and DJ for

convenience of notation.

Definition 3.4.2. For λj > 0, define the jth step hierarchical de-convolution operator

with respect to λj as Dλj , i.e., x(j) = Dλjrj−1, in operator form, as

Dλj = ((1− λj)Aδ + λjI)−1 (3.22)
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For J ≥ 1, define the total hierarchical operator with respect to J as DJ , i.e.,

XJ = DJy∗. (3.23)

The next lemma is concerned with the bounds on the operators Dλj , DλjAδ and

I −DλjAδ.

Lemma 3.4.3. For λj ∈ (0, 1], the operators, Dλj , DλjAδ and I −DλjAδ, are bounded.

In particular, they satisfy

||Dλj ||L2(Ω) ≤
1

λj
, ||DλjAδ||L2(Ω) ≤ 1, and ||I −DλjAδ||L2(Ω) < 1. (3.24)

Proof. For any λ ∈ (0, 1], the range of the function g : (0, 1] → R, defined as g(x) =(
(1−λ)x+λ

)−1, is (0, λ−1]. The range of the function h : (0, 1]→ R, defined as h(x) =

x
(
(1−λ)x+λ

)−1, is (0, 1]. Recall that ||Aδ||L2(Ω) ≤ 1. SinceDλj = ((1−λj)Aδ+λjI)−1,

||Dλj ||L2(Ω) ≤ λ−1
j . Again, since DλjAδ = ((1− λj)Aδ + λjI)−1Aδ, ||DλjAδ||L2(Ω) ≤ 1.

It follows that ||I −DλjAδ||L2(Ω) < 1.

Theorem 3.4.4. For the de-convolution from y∗, the regularization error, eJ = x∗−XJ ,

is given by

eJ = (−δ2)J
( J∏
j=1

(λjDλjAδ)
)

∆Jx∗. (3.25)

We also have

||eJ ||L2(Ω) ≤ δ2J(
J∏
j=1

λj)||∆Jx∗||L2(Ω). (3.26)

Proof. First, let 1 ≤ j ≤ J , define Xj = Djy∗. Realize that for j ≥ 2, Xj −Xj−1 =

x(j), andX1 = x(1). Meanwhile, the hierarchical residual,

rj = rj−1 − AδXj = y∗ − AδXj
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For j = 1, we have

[(1− λ1)Aδ + λ1I]x∗ = (1− λ1)y∗ + λ1x∗ and

[(1− λ1)Aδ + λ1I]X1 = y∗.

Taking difference of the previous equations, we have

e1 = x∗ −X1 = λ1Dλ1(I − Aδ)x∗ = λ1Dλ1Aδ(A
−1
δ − I)x∗.

For j ≥ 2, we consider

[(1− λj)Aδ + λjI](x∗ − x∗) = y∗ − Aδx∗ and

[(1− λj)Aδ + λjI](Xj −Xj−1) = y∗ − AδXj−1.

Taking difference of the previous equations, we obtain

ej = λjDλj(I − Aδ)ej−1 = λjDλjAδ(A
−1
δ − I)ej−1.

Hence, by Math Induction together with (A−1
δ − I)x∗ = −δ2∆x∗, we arrive at the fol-

lowing

eJ = (−δ2)J
( J∏
j=1

(λjDλjAδ)(A
−1
δ − I)

)
x∗ = (−δ2)J

( J∏
j=1

(λjDλjAδ)
)

∆Jx∗.

Regarding the bound on eJ , we can use the bounds from lemma 3.4.3 to obtain

||eJ ||L2(Ω) = ||(−δ2)J
( J∏
j=1

(λjDλjAδ)
)

∆Jx∗||L2(Ω)

≤ δ2J
( J∏
j=1

λj

)
||∆Jx∗||L2(Ω).
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Remark 3.4.5. The number of hierarchical iterations taken depends heavily on the reg-

ularity of the unknown x∗, when the growth of ∆Jx∗ is controlled by the filtering radius

δ, i.e., ||δ2J∆Jx∗||L2(Ω) < ∞, we can take as many hierarchical iterations as possible.

When the growth of ∆Jx∗ becomes impossible to manage by the filtering radius δ, we will

pick the largest Jmax such that ||δ2Jmax∆Jmaxx∗||L2(Ω) <∞.

With the continuous approximation error bound established, we are now ready to

show the discrete approximation error. We begin with the definition of two discrete de-

convolution operators.

Definition 3.4.6. For λj > 0, define the jth step discrete hierarchical de-convolution

operator with respect to λj as Dh
λj

, i.e., xh(j) = Dh
λj
rhj−1, in operator form,

Dh
λj

= ((1− λj)Ah + λjI)−1.

For J ≥ 1, define the total discrete hierarchical operator with respect to J as Dh
J , i.e.,

Xh
J = Dh

Jy
h
∗ .

Theorem 3.4.7. Let Ah be the discrete Helmholtz filter with filtering radius δ > 0, and

choose a ladder of decreasing scales {λj}Jj=1. The discrete approximation error, x∗−Xh
J ,

where Xh
J =

∑J
j=1 x

h
(j) with the discrete hierarchical term xh(j) in (3.17), is bounded as

follows,

||x∗ −Xh
J ||L2(Ω) ≤ δ2J

( J∏
j=1

λj

)
||∆Jx∗||L2(Ω)

+ Chk max
1≤j≤J

(
√
λjδ2 + h)||DjAδx∗||Hk+1(Ω).
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Proof. RealizingXh
J = Dh

JA
hx∗ andXJ = DJAδx∗, we break the discrete approxima-

tion error into two parts,

||x∗ −Xh
J ||L2(Ω) ≤ ||x∗ −XJ ||L2(Ω) + ||XJ −Xh

J ||L2(Ω). (3.27)

The first half of (3.27) is bounded in theorem 3.4.4 as

||x∗ −XJ ||L2(Ω) ≤ δ2J
( J∏
j=1

λj

)
||∆Jx∗||L2(Ω).

For the second half of (3.27), we follow the ideas in [42] and choose 1 ≤ j ≤ J , let

Xh
j = Dh

jA
hx∗ andXj = DjAδx∗. For all vh ∈ X h and 2 ≤ j ≤ J , we have

λjδ
2〈∇(Xj −Xh

j ),∇vh〉+ 〈Xj −Xh
j ,v

h〉 = λjδ
2〈∇(Xj−1 −Xh

j−1),∇vh〉.

The initial case when j = 1 follows similarly from [41]. We define

ηj = Xj −wh
j and φhj = Xh

j −wh
j

for some wh
j ∈ X h to be chosen later for each 2 ≤ j ≤ J . Using these definitions, for

any vh ∈ X h, we have

λjδ
2〈∇(ηj − φhj ),∇vh〉+ 〈ηj − φhj ,vh〉 = λjδ

2〈∇(ηj−1 − φhj−1),∇vh〉.

Set vh = φhj and let dhj = Xj −Xh
j = ηj − φhj ,

λjδ
2||∇φhj ||2L2(Ω) + ||φhj ||2L2(Ω) = λjδ

2〈∇ηj,∇φhj 〉+ 〈ηj,φhj 〉

− λjδ2〈∇dhj−1,∇φhj 〉

≤ λjδ
2||∇ηj||2L2(Ω) +

λjδ
2

4
||∇φhj ||2L2(Ω)

+
1

2
||ηj||2L2(Ω) +

1

2
||φhj ||2L2(Ω)

+ λjδ
2||∇dhj−1||2L2(Ω) +

λjδ
2

4
||∇φhj−1||2L2(Ω).
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Keeping only terms with ||∇φhj ||2L2(Ω) and ||φhj ||2L2(Ω) on the left hand side, we obtain

λjδ
2||∇φhj ||2L2(Ω) + ||φhj ||2L2(Ω) ≤ 2λjδ

2||∇ηj||2L2(Ω) + ||ηj||2L2(Ω)

+ 2λjδ
2||∇dhj−1||2L2(Ω).

Using

||∇dhj ||L2(Ω) ≤ ||∇ηj||L2(Ω) + ||∇φhj ||L2(Ω) and

||dhj ||L2(Ω) ≤ ||ηj||L2(Ω) + ||φhj ||L2(Ω),

we end up with the following recursion,

λjδ
2||∇dhj ||2L2(Ω) + ||dhj ||2L2(Ω) ≤ 3λjδ

2||∇ηj||2L2(Ω) + 2||ηj||2L2(Ω)

+ 2λjδ
2||∇dhj−1||2L2(Ω).

Therefore we have

||dhJ ||L2(Ω) ≤ C max
1≤j≤J

(
√
λjδ2||∇ηj||L2(Ω) + ||ηj||L2(Ω)).

This inequality holds for any wh
j ∈ X h; Having taken the infimum over X h and by (3.9),

we arrive at the following,

||DJAδx∗ −Dh
JA

hx∗||L2(Ω) ≤ Chk max
1≤j≤J

(
√
λjδ2 + h)||DjAδx∗||Hk+1(Ω).

Combing the bounds for both parts, we prove our claim.

Note that the number of hierarchical iterations taken, namely J , depends on the

regularity of the unknown x∗. When the term,
√
λjδ2, behaves roughly like h, we gain

an extra degree of accuracy in the discrete approximation by using the HR method.

3.5 Recovery of x∗ from Noisy Discrete Filtered Output yh,ε∗

When the residual stress tensor is approximated in some LES models, there is a

modeling error εh in the numerical output yh,ε∗ , i.e., yh,ε∗ = Ahx∗ + εh. Limited informa-
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tion is known about the modeling error εh, except that it is bounded, i.e., ||εh||L2(Ω) ≤ ε.

We analyze the approximation error when applying the HR method for finding an approx-

imate solution to x∗ via de-convolution from yh,ε∗ . We start from a closed form expression

for the discrete de-convolution operator Dh
J .

Proposition 3.5.1. The discrete hierarchical sum after J steps of hierarchical iteration,

namelyXh
J , is given by

Xh
J = Dh

Jy
h
∗ =

(
Dh
λJ

+
J−1∑
j=1

(

j−1∏
i=0

(I −Dh
λJ−i

Ah))Dh
λJ−j

)
yh∗ , for J ≥ 2. (3.28)

When J = 1,Xh
1 = Dh

λ1
yh∗ .

Proof. The case for J = 1 is obvious. For any J ≥ 2, we use the fact thatXh
J −Xh

J−1 =

xh(J), r
h
J = yh∗ −Xh

J , and Xh
1 = xh(1) = Dh

λ1
yh∗ . Starting from the hierarchical sum after

J steps (for J > 1),

Xh
J = Xh

J−1 +Dh
λJ

(yh∗ − AhXh
J−1) = Dh

λJ
yh∗ + (I −Dh

λJ
Ah)Xh

J−1

= Dh
λJ
yh∗ + (I −Dh

λJ
Ah)Dh

λJ−1
yh∗ + (I −Dh

λJ
Ah)(I −Dh

λJ−1
Ah)Xh

J−2

... Inductively

=
(
Dh
λJ

+
J−1∑
j=1

(

j−1∏
i=0

(I −Dh
λJ−i

Ah))DλhJ−j

)
yh∗ .

The following lemmas provides the upper bounds on the operators: Ah, Dh
λj

, and

Dh
J .

Lemma 3.5.2. The operators, Ah : X → X h, Dh
λj

: X h → X h, and Dh
J : X h → X h are
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bounded as follows,

||Ah||L2(Ω) ≤ 1, ||Dh
λj
||L2(Ω) ≤

1

λj
, ||Dh

J ||L2(Ω) ≤
J∑
j=1

1

λj
.,

Moreover, we also have

||I −Dh
λj
Ah||L2(Ω) ≤ 1 and ||Dh

λj
Ah||L2(Ω) ≤ 1.

Proof. First, set vh = yh∗ in (3.6), then

||yh∗ ||L2(Ω) ≤ δ2〈∇yh∗ ,∇yh∗〉+ 〈yh∗ ,yh∗〉 = 〈x∗,yh∗〉 and

〈x∗,yh∗〉 ≤
1

2
||yh∗ ||2L2(Ω) +

1

2
||x∗||2L2(Ω).

We have ||yh∗ ||L2(Ω) ≤ ||x∗||L2(Ω), thus ||Ah||L2(Ω) ≤ 1. Next, in the operator form,

Dh
λj

= ((1 − λj)A
h + λjI)−1, which is a convex combination of Ah and I , along the

line of reasoning in lemma 3.4.3, we have ||Dh
λj
||L2(Ω) ≤ λ−1

j . Similarly Dh
λj
Ah = ((1−

λj)A
h + λjI)−1Ah, we have ||Dh

λj
Ah||L2(Ω) ≤ 1. Therefore, ||I − Dh

λJ−k
Ah||L2(Ω) < 1.

For the last inequality, using proposition 3.5.1, we have Dh
J = Dh

λJ
+
∑J−1

j=1 (
∏j−1

i=0 (I −

Dh
λJ−i

Ah))Dh
λJ−j

. For any vh ∈ X h, we derive the following,

||Dh
Jv

h||L2(Ω) = ||
(
Dh
λJ

+
J−1∑
j=1

(

j−1∏
i=0

(I −Dh
λJ−i

Ah))Dh
λJ−j

)
vh||L2(Ω)

≤
J∑
j=1

1

λj
||vh||L2(Ω),

hence ||Dh
J ||L2(Ω) ≤

∑J
j=1 λ

−1
j .

Theorem 3.5.3. If the noise εh ∈ X h is bounded with ||εh||L2(Ω) ≤ ε for some noise level

ε > 0, the discrete approximation error, x∗−Xh,ε
J , whereXh,ε

J = Dh
Jy

h,ε
∗ , is bounded as
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follows

||x∗ −Xh,ε
J ||L2(Ω) ≤ δ2J

( J∏
j=1

λj

)
||∆Jx∗||L2(Ω)

+ Chk max
1≤j≤J

(
√
λjδ2 + h)||DjAδx∗||Hk+1(Ω) + ε

J∑
j=1

1

λj
.

Proof. With the presence of noise, we have the discrete hierarchical sum expressed in

terms of yh,ε∗ , i.e.,Xh,ε
J = Dh

Jy
h,ε
∗ = Dh

J(Ahx∗ + εh), therefore, using theorem 3.4.7, we

have

||x∗ −Xh,ε
J ||L2(Ω) = ||x∗ −Dh

JA
hx∗ −Dh

Jε
h||L2(Ω)

≤ ||x∗ −Dh
JA

hx∗||L2(Ω) + ||Dh
Jε

h||L2(Ω)

≤ δ2J
( J∏
j=1

λj

)
||∆Jx∗||L2(Ω) + ε

J∑
j=1

1

λj

+ Chk max
1≤j≤J

(
√
λjδ2 + h)||DjAδx∗||Hk+1(Ω).

Given the bound in theorem 3.5.3, we note that there is an amplification of noise

when using the HR method. In order to balance the effect of noise amplification on

the approximation error bound, we suggested an (near) optimal stopping criteria for the

hierarchical iterations. We plan to investigate the condition for finding the (near) optimal

stopping criteria for the HR method when yh,ε∗ is provided. We start from the following

functional.

E0(vh) =
1

2
〈Ahvh,vh〉 − 〈yh,ε∗ ,vh〉, for vh ∈ X h. (3.29)

Remark 3.5.4. Consider the following minimization problem,

wh = arg min
vh∈Xh

{
E0(vh)

}
. (3.30)
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The solution wh of (3.30) also satisfies the linear equation Ahwh = yh,ε∗ .

Now we discuss the condition on the hierarchical scale λj’s so that the sequence of

discrete hierarchical partial sums, {Xh,ε
j }∞j=1, will form a decreasing sequence for E0.

Proposition 3.5.5. Let Ah be the discrete Helmholtz filter, when 0 < λj ≤ 1
2

for any

1 ≤ j <∞, the Hierarchical partial sums, Xh,ε
j =

∑j
i=1 x

h,ε
(i) = Dh

j y
h,ε
∗ , after j steps of

HR iterations are a decreasing sequence for E0, in particular,

E0(Xh,ε
j−1)− E0(Xh,ε

j ) = 〈
(

(
1

2
− λj)Ah + λjI

)
(Xh,ε

j −X
h,ε
j−1),Xh,ε

j −X
h,ε
j−1〉

≥ 0,

(3.31)

with the equality is achieved if and only ifXh,ε
j = Xh,ε

j−1.

Proof. We will expand the energy functional E0 using its definition and cancel terms to
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prove the identity along with the fact that Ah is SPD over X h,

E0(Xh,ε
j−1)− E0(Xh,ε

j ) =
1

2
〈AhXh,ε

j−1,X
h,ε
j−1〉 −

1

2
〈AhXh,ε

j ,Xh,ε
j 〉

− 〈yh,ε∗ ,Xh,ε
j−1 −X

h,ε
j 〉

=
1

2
〈AhXh,ε

j−1,X
h,ε
j−1 −X

h,ε
j 〉+

1

2
〈Ah(Xh,ε

j−1 −X
h,ε
j ),Xh,ε

j 〉

− 〈yh,ε∗ ,Xh,ε
j−1 −X

h,ε
j 〉

=
1

2
〈Ah(Xh,ε

j−1 −X
h,ε
j ),Xh,ε

j−1 +Xh,ε
j 〉

− 〈
(

(1− λj)Ah + λjI
)

(Xh,ε
j −X

h,ε
j−1),Xh,ε

j−1 −X
h,ε
j 〉

− 〈AhXh,ε
j−1,X

h,ε
j−1 −X

h,ε
j 〉

=
1

2
〈Ah(Xh,ε

j−1 −X
h,ε
j ),Xh,ε

j−1 −X
h,ε
j 〉

− λj〈(I − Ah)(Xh,ε
j −X

h,ε
j−1),Xh,ε

j−1 −X
h,ε
j 〉

= 〈
(1

2
− λj)Ah + λjI

)
(Xh,ε

j −X
h,ε
j−1),Xh,ε

j −X
h,ε
j−1〉.

The difference in (3.31) stays positive as long as 0 < λj ≤ 1
2

for any 1 ≤ j < ∞, thus

E0(Xh,ε
j−1) > E0(Xh,ε

j ) unlessXh,ε
j = Xh,ε

j−1.

From the definition of the HR method, we note that Xh,ε
j = Xh,ε

j−1 if and only if

xh,ε(j) = 0. It also follows that AhXh,ε
j = yh,ε∗ . However, such convergence is not desired.

It is crucial for the HR method to stop after performing a certain number of hierarchical

iterations since we seek an approximate solution Xh,ε
j → x∗ as j → ∞. Consider the

following noisy functional,

Eε(v
h) =

1

2
〈Ahvh,vh〉 − 〈yh,ε∗ − εh,vh〉, for any vh ∈ X h. (3.32)
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Remark 3.5.6. Consider the solution from the following minimization problem,

wh = arg min
vh∈Xh

{
Eε(v

h)
}
. (3.33)

The solution wh satisfies the linear equation Ahwh = yε∗ − εh = Ahx∗. Moreover,

Eε(v
h) = E0(vh) − 〈εh,vh〉. Having expanded the difference, Eε(X

h,ε
j−1) − Eε(Xh,ε

j ),

we have

Eε(X
h,ε
j−1)− Eε(Xh,ε

j ) = E0(Xh,ε
j−1)− E0(Xh,ε

j )− 〈εh,Xh,ε
j−1 −X

h,ε
j 〉.

Next, we discuss the condition on the hierarchical scale λj’s so that the hierarchical

partial sums, {Xh,ε
j }∞j=1, in the functional Eε will form a decreasing sequence.

Theorem 3.5.7. Let Ah be the discrete Helmholtz filter and suppose the modeling error

is bounded above as ||ε||L2(Ω) ≤ ε for some known noise level ε > 0. The discrete

hierarchical partial sums from the HR method form a decreasing sequence for the energy

functional Eε as long as the following inequalities hold

ε

||xh,ε(j) ||2
≤ λj ≤

1

2
, for j ≥ 2. (3.34)

Proof. We start from the Cauchy-Schwartz inequality,
∣∣〈εh,xh,ε(j)〉

∣∣ ≤ ε||xh,ε(j) ||L2(Ω). When

(3.34) holds, we have

0 ≤ ε||xh,ε(j) ||L2(Ω) −
∣∣〈εh,xh,ε(j)〉

∣∣ ≤ λj||xh,ε(j) ||
2
L2(Ω) −

∣∣〈εh,xh,ε(j)〉
∣∣

≤ 〈
(

(
1

2
− λj)Ah + λjI

)
(Xh,ε

j −X
h,ε
j−1),Xh,ε

j −X
h,ε
j−1〉 −

∣∣〈εh,Xh,ε
j −X

h,ε
j−1〉

∣∣
≤ 〈
(

(
1

2
− λj)Ah + λjI

)
(Xh,ε

j −X
h,ε
j−1),Xh,ε

j −X
h,ε
j−1〉+ 〈εh,Xh,ε

j −X
h,ε
j−1〉

= Eε(X
h,ε
j−1)− Eε(Xh,ε

j ).
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Theorem 3.5.7 indicates that when the size of the updates is larger than twice the

noise, then the updates move the approximations closer to the desired unknown x∗. As

the updates become smaller and smaller, Xh,ε
j begins to accumulate more noise, unless

the resolution scale λj is larger then the ratio between the noise level and the update,

which prompts us to consider stopping the hierarchical update.

3.6 Numerical Experiements

First, we verify the optimal stopping criterion (Theorem 3.5.7) in MATLAB (ver-

sion: R2015b) with the following details: first we choose a true solution to be x∗ =

sin(πs) + sin(200πs), plotted in Figure 3.3, over the interval [0, 2].
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Figure 3.3: Original Signal: x∗ = sin(πs) + sin(200πs).

We discretize the interval with a step size of h = 2
1000

(hence 1001 sample points)

and choose the filtering radius for the Helmholtz filter to be δ = 6h. To implement the

discrete Helmholtz filter, we begin with approximating the Laplace operator with a center

differencing scheme,

∆x∗ ≈ ∆hx∗ =
x∗(s− h)− 2x∗(s) + x∗(s+ h)

h2
.
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Define the discrete operator (Ah)−1 as

(Ah)−1x∗ = −δ2∆hx∗ + x∗.

Our simulated data was obtained by filtering the true solution and adding 1% (the noise

to signal ratio) random noise to the filtered data, that is, yh,ε∗ = Ahx∗ + εh where

||εh||L2(Ω) = 0.01 ∗ ||Ahx∗||L2(Ω) (εh is generated in MATLAB using the command

“randn”, and normalized to have a unit L2 norm). For calculating the L2 norm of a

function g over [a, b], we use either the composite Trapezoidal rule or the composite

Simpson’s rule. We select the initial hierarchical scale λ1 = 0.1 and the hierarchical mul-

tiplier θ = 0.1. To calculate λj , we use the formula λj = θj−1λ1 for j ≥ 2. We use the

following guideline for finding the optimal stopping J :

Step 1: At the jth iterate, except the initial iterate, we calculate ||xh,ε(j) ||L2(Ω).

Step 2: We then compare λj to ε/||xh,ε(j) ||L2(Ω).

Step 3: According to theorem 3.5.7 : if λj ≥ ε/||xh,ε(j) ||L2(Ω), we proceed to next iterate;

otherwise, we stop the iteration.

The actual simulation which we did for this demonstration, on the other hand, will not

stop once we find the stopping Jopt; instead the (near) optimal Jopt will be recorded.

Figure 3.4 shows the noisy functional,Eε, calculated with the HR partial sumXh,ε
j ’s. The

calculated (near) optimal stopping point (via theorem 3.5.7) occurs after Jopt = 2 iteration

steps and is shown as a solid green dot. The figure shows that the algorithm stops right

where functional reaches its minimum and starts increasing again, hence avoiding the

convergence to the noisy solution. However, because we do not have precise information
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of the noise (as it is always the case in real life applications), the algorithm will always

try to stop before the functional reaches its minimum.
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Figure 3.4: Noisy functional Eε calculated for for 1 ≤ j ≤ 20.

We check the efficiency of the HR method by comparing the relative error of a solu-

tion for a given initial λ1 (θ is set at 0.1) to the relative errors found with `2TR method and

TLR method with λ = λ1. We implement the codes in MATLAB (version R2015b) with

the following details: we start out with the original data as x∗ = sin(πs)+0.1 sin(100πs),

with 1001 sample points taken over the interval [0, 2], see figure 3.5; hence the step size

is h = 2
1000

. We set our filtering radius at δ = 0.01. We create 101 sample points of the λ1

from [10−1.2, 1] and calculate 2 steps the HR method (due to the possible regularity issue

of the original x∗). For an approximation x̃ to a desired solution x∗, the relative error,

erel, is defined as, erel = ||x∗ − x̃||L2(Ω)/||x∗||L2(Ω).
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Figure 3.5: Original Signal: x∗ = sin(πs) + 0.1 sin(100πs).

The results are shown in Figures 3.6.
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Figure 3.6: Comparison of the 4 regularization methods

As shown in the figure, the `2TR method and TLR method perform roughly the

same. The HR method with only 1 hierarchical iteration (HR1) taken performs superior

than the two methods (from −1.2 to −1.4); the HR method with 2 hierarchical iterations

(HR1) improves from HR1 (from−1.4 to−1.6). Next, we calculate the convergence rates

of the HR method to verify the convergence rates predicted in theorem 3.4.7. We take a
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Figure 3.7: x∗ = sin(πs1) sin(πs2) + sin(20πs1) sin(20πs2).

true solution over the domain [0, 2]× [0, 2] of

x∗ = sin(πs1) sin(πs2) + sin(20πs1) sin(20πs2).

see Figure 3.7. We discretize using the square command in FreeFEM++ [31] with n

intervals in each of x and y coordinates and use piece-wise continuous linear polynomials.

We use a filter radius of δ = 0.1(2π
n

)1/4 = O(h0.25) and regularization parameter λ1 =

0.1(2π
n

)1/2 = O(h0.5) with θ = 0.9. And the results are presented in the following table.

Table 3.1: Convergence rates for the HR method.

n L2 error rate H1 error rate

60 7.28251e− 05 27.7141

120 6.58783e− 07 110.5449 10.2005 2.7169

240 4.52863e− 07 1.4547 2.65976 3.8351

480 4.52255e− 08 10.0134 0.729082 3.6481

960 3.52947e− 09 12.8137 0.19551 3.7291
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The L2 error is predicted to be of the order of h3, since we used degree k = 2 for the

basis function in FreeFEM++. In the case of the HR method, it shows super convergence

since the convergence rate is reported at more than a factor of eight. For the H1 error,

the error is predicted to have a rate of h2. The HR method is shown to have roughly a

decaying factor of four.

3.7 Conclusion

We discussed the recovery of the unknown x∗ via de-convolution on the Helmholtz

filter from there different kinds of filtered quantity: the original filtered output yh∗ , the

discrete filtered output yh∗ , and the noisy discrete filtered output yh,ε∗ . We analyzed the

application of the HR method on finding an approximate solution to x∗ via de-convolution

from three kinds of filtered output. We concluded that the HR method provided a much

better approximation error on de-convolution from y∗ and yh∗ , when compared to the

two Tikhonov regularization methods. When the noisy discrete filtered output yh,ε∗ is

provided, we also supplied an (near) optimal stopping criteria for the HR method to stop

the hierarchical iterations before the convergence sequence of approximation solutions

from the HR method deviates from its convergent path to x∗. We noted that our discrete

approximation error analysis can be applied to other discretization scheme, such as the

Finite Difference Method, as long as the bound on DjAδx∗ − Dh
jA

hx∗ can be derived

from such discretization scheme. Moreover, our analysis can be extended to other LES

filters, especially for recovery of x∗ via the de-convolution from y∗, the analysis is done

using only the upper bound of the Helmholtz filterA in L2 norm, regardless of the specific
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definition of the Helmholtz filter Aδ.
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Chapter 4: Hierarchical Reconstruction Method for Linear Regression

4.1 Introduction: Linear Regression

We study two inverse problems from Linear Regression. When given the data from

a set of M observations: {A,yε∗} (A ∈ RM×N and yε∗ ∈ RM ), where the ith row of A

and the ith entry of yε∗ are the regressors and response for the ith observation respectively.

With the regressor matrix A being over-determined (M � N ) and yε∗ not in the range

of A, finding a linear model x∗ ∈ RN satisfying the linear equation Ax = yε∗ exactly

is impossible. Instead of finding an exact solution to the equation Ax = yε∗, we seek a

most suitable linear model x∗ such that Ax∗ ≈ yε∗, where the modeling error, yε∗ − Ax∗,

is well-controlled, such as being smallest in `2 norm. The Least Square (LS) method

provides a linear model from the following

xLS = arg min
x∈RN

{
||yε∗ − Ax||2

}
.

The LS linear model comes with a modeling error, yε∗ − AxLS , being smallest in the `2

norm. However, the LS linear model, xLS , is never sparse. Since sparse linear models

have few non-zero entries making them easier to interprete, these sparse linear models are

sought after in this chapter. In order to provide a sparse linear model through a continuous

selection process, the Least Absolute Shrinkage and Selection Operator (LASSO) method
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[56] produces a sparse linear model, xLA(λ), via the usage of a `1 constraint or a `1 penalty

function. The constrained LASSO method finds a linear model from a convex feasible set

Bλ = {x ∈ RN
∣∣∣||x||1 ≤ λ} such that xLA(λ) satisfies the following

xLA(λ) = arg min
x∈Bλ

{
||yε∗ − Ax||2

}
.

The penalized LASSO method finds a linear model satisfying

xLA(λ) = arg min
x∈RN

{
λ||x||1 +

1

2
||yε∗ − Ax||22

}
.

However, choosing a suitable λ is significant in obtaining a useful linear model xLA(λ).

Considering that the regularization parameter λ controls the distance between xLA(λ) and

xLS , we propose the Hierarchical Reconstruction (HR) method as an multi-scale general-

ization to the LASSO method. Recall that in previous chapters, the HR method was used

to provide approximate solutions to linear equation either with an under-determined ma-

trix or a linear operator with an eigenvalue of 0 as the ill-posed operator. In this chapter,

the HR method is used to tackle the ill-posedness from an over-determined matrix. The

constrained HR method solves for the hierarchical term x(j) satisfying

x(j) = arg min
x∈Bλj

{
||rj−1 − Ax||2

}
, for 1 ≤ j ≤ J.

The penalized HR method solves for the hierarchical term x(j) satisfying

x(j) = arg min
x∈RN

{
λj||x||1 +

1

2
||rj−1 − Ax||22

}
, for 1 ≤ j ≤ J.

In both HR methods, the hierarchical residual is defined in a recursive manner rj =

rj−1 − Ax(j) and the initial hierarchical residual is set as r0 = yε∗. The hierarchical

scales {λj}Jj=1 are a sequence of decreasing scales. Utilizing a ladder of hierarchical
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residuals with their corresponding hierarchical scales, the HR method successively ex-

tracts information from the previous hierarchical residual to the current hierarchical term

at a finer hierarchical scale. The hierarchical sum, as the sum of all hierarchical terms

XJ =
∑J

j=1 x(j), becomes the linear model produced by the HR method, and its dis-

tance to xLS is controlled by the number of hierarchical iterations taken. Since the main

focus of this thesis is on the recovery of the unknown, we also investigate the de-noising

problem in Linear Regression, where the responses yε∗ are the noisy linear combination

of the unknown linear model x∗, i.e., yε∗ = Ax∗ + ε with a given noise level ε > 0

(||ε||2 ≤ ε). We compare the linear models from the LS method and the LASSO method,

and discuss their de-noising capability. We also consider the linear model from the HR

method, and show that the de-nosing capability from using the hierarchical extraction is

superior than the other two methods.

The remaining sections of the chapter are structured as follows. In section 4.2, we

discuss the difference between the LS linear model and the LASSO linear models. In

section 4.2.1, we propose the HR method and discuss its ability to control the distance

between the HR linear model and the LS linear model. We move on to the de-noising

problem in section 4.3 and discuss the difference in de-noising capability between the LS

linear model and the LASSO linear models. In section 4.3.1, we show that the HR linear

model has superior de-noising capability than the LASSO linear models due to its multi-

scale hierarchical extraction approach. In section 4.4, we report numerical experiments

on comparing the three linear models. We conclude this chapter 4.5 with discussion on

extending the HR method to linear regression with non-linear basis function.
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4.2 The Original Problem: Finding the Most Suitable Linear Model

The original problem in Linear Regression is concerned with finding the most suit-

able linear model x∗ so that the modeling error, yε∗ − Ax∗, is well-controlled, e.g., being

smallest in some `p norm. The relationship between responses yε∗ and the regressor matrix

A is unknown before hand, the original problem is investigating the performance of using

a linear model to approximate such relationship. Considering that the regressor matrix A

is over-determined and the response yε∗ is not in the range of A, we employ the general

Tikhonov regularization method, which finds a linear model from a convex feasible set

C ⊂ RN such that the linear model satisfies the following

xT (λ) = arg min
x∈C

{
λf(x) +

1

2
||yε∗ − Ax||22

}
. (4.1)

Now we discuss the different implementation of the stabilizing function f and the regu-

larization parameter λ in order to counter the ill-posedness from the regressor matrix A.

The LS method finds a linear model xLS which satisfies the following

xLS = arg min
x∈RN

{
||yε∗ − Ax||2

}
. (PLS)

Remark 4.2.1. When we set C = RN and λ = 0 in (4.1) (eliminating the need to specify

a stabilizing function f ), the general Tikhonov regularization method becomes the LS

method. Here, we used the fact that the minimizer of ||yε∗ − Ax||22/2 is the same as that

of ||yε∗ − Ax||2.

Such linear model xLS has the its modeling error being the smallest in the `2

norm, which is one of the desired features for the original problem. Hence, we will take

69



x∗ = xLS as the reference linear model for the original problem throughout this chapter.

However the LS linear model is rarely sparse. To attain sparsity (having few non-zero

entries), several approaches had been introduced. The Best Subset Selection [56] (BSS)

method provides a k-sparse1 linear model by keeping the k largest (in magnitude) entries

of the LS linear model xLS . However, such selection process is discrete, slight changes

in value of one of the entries of xLS will produce a totally different BSS linear model. In

order to provide a continuous selection process, the Ridge Regression [56] (RR) method

finds a linear model xλ which satisfies the following

xλ = arg min
x∈RN

{λ
2
||x||22 +

1

2
||yε∗ − Ax||22}.

Remark 4.2.2. When we set C = RN and f(x) = ||x||22/2 in (4.1), the general Tikhonov

regularization method becomes the RR method.

While the RR method is robust against small changes in yε∗, the RR linear model

is rarely sparse. The LASSO method was introduced to provide a sparse linear model

through a continuous selection process. There are two known definitions for the LASSO

method. The original definition uses a `1 constraint, known as the constrained regression

[50, 56]. The constrained LASSO method finds a linear model xLA(λ) from a convex

feasible set Bλ = {x ∈ RN
∣∣∣||x||1 ≤ λ} ⊂ RN with a regularization parameter λ > 0

satisfying the following,

xLA(λ) = arg min
x∈Bλ

{
||yε∗ − Ax||2

}
. (PCL)

The constrained LASSO linear model xLA(λ) has a closed form expression when the re-

1A linear model x ∈ RN is k-sparse if and only if it has at most k non-zero entries.
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gressor matrix A is an isometry (A>A = I), i.e.,

(xLA(λ))i = sgn((xLS)i)(
∣∣(xLS)i

∣∣− γ)+, 1 ≤ i ≤ N. (4.2)

The parameter γ > 0 is chosen such that ||xLA(λ)||1 = λ. This close form expression is

exactly the same as the soft shrinkage operator in [15, 17]. We will use the constrained

LASSO method for isometry regressor matrix A.

Remark 4.2.3. When we set C = Bλ and f(x) = 0 (moving the regularization parameter

λ to the constraint) in (4.1), the general Tikhonov regularization method becomes the

constrained LASSO method.

The other definition uses a `1 penalty function, known as the penalized regression

[50]. The penalized LASSO method finds a linear model xLA(λ) from the following,

xLA(λ) = arg min
x∈RN

{
λ||x||1 +

1

2
||yε∗ − Ax||22

}
. (PPL)

Remark 4.2.4. When we set C = RN and f(x) = ||x||1 in (4.1), the general Tikhonov

regularization method becomes the penalized LASSO method.

The connection between the constrained LASSO method and penalized LASSO

method was explained in [16, 50]. We will use the penalized LASSO method for any

other regressor matrix A. Thanks to using the `1 constraint (or the `1 penalty function),

the LASSO method is able to produce a sparse linear model. Since the LASSO method

is also minimizing the modeling error, yε∗ − AxLA(λ), the LASSO linear model is robust

against small changes in yε∗. The following lemma discusses the difference between the

LS linear model and the LASSO linear models.
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Lemma 4.2.5. Given the data, {A,yε∗}, from a set of M observations, we assume that

the regressor matrix A has linearly independent columns. The difference between the LS

linear model in (PLS) and the constrained LASSO linear model in (PCL) is bounded as

follows,

||xLS − xLA(λ)||1 = ||xLS||1 − λ.

The difference between the LS linear model in (PLS) and the penalized LASSO linear

model in (PPL) is given as follows,

xLS − xLA(λ) = λ(A>A)−1sgn(xLA(λ)).

Proof. Since the regressor matrix used in (PCL) is an isometry, by lemma A.5.2 and (4.2),

we have

||xLS − xLA(λ)||1 = ||xLS||1 − ||xLA(λ)||1 = ||xLS||1 − λ.

For the LASSO linear model in (PPL), we combine (A.10) with A>AxLS = A>yε∗,

λsgn(xLA(λ)) + A>(AxLA(λ) − AxLS) = 0

⇒ xLS − xLA(λ) = λ(A>A)−1sgn(xLA(λ)).

We end this section by the following remark.

Remark 4.2.6. For the constrained LASSO method, when λ = ||xLS||1, xLA(λ) = xLS;

whereas λ = 0 would lead to xLA(λ) = 0. In fact, when λ = ||xLS||1/2, the size of

support of xLA(λ) is roughly half of the size of the support of xLS . For the penalized

LASSO method, when λ = 0, xLA(λ) = xLS; when λ = ||A>yε∗||∞, xLA(λ) = 0.
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As we learn from the previous remark that choosing a suitable regularization pa-

rameter λ is crucial for finding a useful LASSO linear model. When a LASSO linear

model is found not desired, a re-trial with a different λ is deemed necessary. The sin-

gle scale approach would re-start from scratch, leaving the residual term, yε∗ − AxLA(λ),

totally un-used.

4.2.1 The HR Method for the Original Problem

From lemma 4.2.5, we learn that the regularization parameter λ controls the dis-

tance between the LS linear model xLS and the LASSO linear model xLA(λ). The regular-

ization parameter λ can be viewed as a regularization scale. Based on this understanding,

we propose a multi-scale generalization to the LASSO method, the HR method. Recall

that in chapter 2, the HR method was used to provide approximate solutions to the ill-

posed Ax = yε∗ where the operator A is an under-determined matrix; in chapter 3, the

HR methods used to provide approximate solutions to the ill-posed Ahx = yh,ε∗ where

the linear operator Ah (the discrete Helmholtz filter) has an eigenvalue of 0. In this chap-

ter, the HR method is used for an over-determined matrix A. From previous remarks, we

learn that the two different LASSO methods are specific implementations of the general

Tikhonov regularization method. We begin with the general form for the LASSO method.

Let

xλ = xLA(λ) = arg min
x∈C

{
λf(x) +

1

2
||yε∗ − Ax||22

}
,
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since there is information left in the residual, rλ = yε∗−xλ, i.e., rλ 6= 0 (or we are done),

we can extract further information from rλ at a finer scale, say λ
2
,

xλ
2

:= arg min
x∈C

{λ
2
f(x) +

1

2
||rλ − Ax||22

}
with r λ

2
:= rλ − Axλ

2
.

We obtain with a two scale decomposition of yε∗, i.e., yε∗ = Axλ+Axλ
2
+r λ

2
. The previous

extraction process can continue. To simplify notations, we will use numbered subscripts

from now on. We start from setting x(1) = xλ, r0 = yε∗, and choose hierarchical scales

λj = 21−jλ. The HR method will solve the following,

x(j) = arg min
x∈C

{
λjf(x) +

1

2
||rj−1 − Ax||22

}
, for 1 ≤ j ≤ J.

The hierarchical residual rj satisfies a recursive relation: rj = rj−1 − Ax(j). We sum

up the hierarchical terms, x(j), and obtain a linear model in the form of a hierarchical

sum, i.e.,XJ =
∑J

j=1 x(j). The hierarchical observation AXJ will provide a multi-scale

description of yε∗ as follows,

yε∗ = Ax(1) + Ax(2) + . . .+ Ax(J) + rJ .

It follows that the hierarchical sum XJ presents a multi-scale approximate description

of xLS . To be exact, the distance between XJ and xLS is controlled by the number of

hierarchical steps taken. We will present two HR methods based on the two different

LASSO methods. For the constrained HR method, the hierarchical term x(j) is found

from a shrinking convex feasibility set Bλj and it satisfies the following,

x(j) = arg min
x∈Bλj

{
||rj−1 − Ax||2

}
. (PCH)
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For the penalized HR method, the hierarchical term x(j) is found satisfying the following,

x(j) = arg min
x∈RN

{
λj||x||1 +

1

2
||rj−1 − Ax||22

}
. (PPH)

The following remark discusses properties of the hierarchical least square term uj =

A>rj from the constrained HR method.

Remark 4.2.7. Let uj ∈ RN be such that uj = A>rj , then the following holds,

• u0 = A>r0 = A>yε∗ = xLS .

• For i ∈ supp(uj−1), (uj−1)i = 0⇒ (uj)i = 0, hence supp(uj) ⊂ supp(uj−1).

• For i ∈ supp(uj), (uj)i and (uj−1)i have the same sign and
∣∣(uj)i∣∣ < ∣∣uj−1)i

∣∣.
• uj = A>rj = A>(rj−1 − Ax(j)) = uj−1 − x(j), and uJ = xLS −XJ .

The proof of the statement made in remark 4.2.7 is easily obtained by following the

remark A.5.3. Given the additional properties in remark 4.2.7, we can show the following

lemma.

Lemma 4.2.8. The hierarchical term x(j) defined in (PCH) satisfies the following,

• ||x(j)||1 = λj .

• supp(x(j)) ⊂ supp(x(j−1)).

• For i ∈ supp(x(j)), (x(j))i and (x(j−1))i have the same sign and
∣∣(x(j))i

∣∣ <∣∣(x(j−1))i
∣∣.

The hierarchical sum,XJ =
∑J

j=1 x(j), satisfies the following,
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• ||XJ ||1 =
∑J

j=1 λj .

• For the LS linear model xLS defined in (PLS), ||xLS−XJ ||1 = ||xLS||1−
∑J

j=1 λj .

Proof. Following remark 4.2.7, the hierarchical term x(j) satisfies the following (for j ≥

2),

• ||x(j)||1 = λj .

• supp(x(j)) ⊂ supp(x(j−1)).

• For i ∈ supp(x(j)), (x(j))i · (x(j−1))i > 0 and
∣∣(x(j))i

∣∣ < ∣∣(x(j−1))i
∣∣.

The initial hierarchical term, X1 = xLA(λ1), and therefore it satisfies remark A.5.3 with

λ = λ1 and xLS = A>yε∗. It follows that,

||XJ ||1 = ||
J∑
j=1

x(j)||1 =
J∑
j=1

||x(j)||1 =
J∑
j=1

λj.

Since supp(x(1)) ⊂ supp(xLS), using remark A.5.3, we have

||xLS −XJ ||1 = ||xLS||1 − ||XJ ||1 = ||xLS||1 −
J∑
j=1

λj.

Remark 4.2.9. As shown in lemma 4.2.8, we learn that the distance betweenXJ and xLS

is controlled by the number of hierarchical steps taken from a pre-determined hierarchy

of scales {λj}Jj=1.

Next, we are concerned with the distance between the HR linear model XJ and

xLS , when the hierarchical terms x(j)’s are given in (PPH).
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Lemma 4.2.10. The distance between the HR linear model, XJ =
∑J

j=1 x(j) with the

hierarchical term x(j) in (PPH), and the LS linear model xLS is given as follows,

xLS −XJ = λJ(A>A)−1sgn(x(J)).

Proof. For the hierarchical term x(j) defined in (PPH), it satisfies the following signum

equation,

λjsgn(x(j)) + A>(Ax(j) − rj−1) = 0, for λj ≤ ||A>rj−1||∞.

Using the fact that A>AxLS = A>yε∗ and rJ = yε∗ − AXJ , we arrive at the following,

λJsgn(x(J)) + A>(AAx(J) − rJ−1) = λJsgn(x(J)) + A>(AXJ − yε∗) = 0.

It follows that,

xLS −XJ = λJ(A>A)−1sgn(x(J)).

Remark 4.2.11. The distance between XJ and xLS is only determined by the final hier-

archical scale λJ .

4.3 The De-noising Problem in Linear Regression

Given the noisy response yε∗ = Ax∗ + ε as the unknown linear model x∗ with a

bounded observation noise ε, i.e., ||ε||2 ≤ ε, the de-noising problem is inquiring about

the possibility of recovering x∗ from yε∗. However since exact recovery is not possible,

the de-noising problem is interested in the performance of the available linear models.

The following lemma discusses the de-noising performance of the LS linear model xLS .
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Lemma 4.3.1. Given the noisy responses yε∗, we assume that A has linearly independent

columns. The LS linear model, xLS in (PLS), approximates x∗ with the following error,

xLS − x∗ = (A>A)−1A>ε.

Proof. Since the LS linear model xLS solves the normal equation, A>AxLS = A>yε∗, it

follows that,

A>AxLS = A>(Ax∗ + ε) = A>Ax∗ + A>ε. (4.3)

Multiplying the inverse of A>A to the right of both sides of (4.3), we obtain the error

formula in lemma 4.3.1.

Remark 4.3.2. When ε = 0, the LS linear model recovers exactly x∗. When ε 6= 0, the

observation noise is amplified by (A>A)−1A>. Note that when A>A = I , xLS − x∗ =

A>ε.

The following lemma is concerned with the de-noising performance of the LASSO

linear models.

Lemma 4.3.3. Given the noise responses yε∗, we assume that A has linearly indepen-

dent columns. The LASSO linear model xLA(λ) in (PCL) approximates x∗ with the error

bounded above as follows,

||x∗ − xLA(λ)||1 ≤ ||xLS||1 + ε||A>||2 − λ.

For the LASSO linear model xLA(λ) in (PPL), it approximates x∗ with the following error,

x∗ − xLA(λ) = (A>A)−1(λsgn(xLA(λ))− A>ε).
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Proof. Using lemma A.5.2 and xLS − x∗ = A>ε, we have

||x∗ − xLA(λ)||1 ≤ ||xLS − xLA(λ)||1 + ||A>ε||1 ≤ ||xLS||1 − ||xLA(λ)||1 + ||ε||2||A>||2

= ||xLS||1 − λ+ ε||A>||2.

For the second definition of the LASSO linear model, we start with the signum equation

in (A.10),

0 = λsgn(xLA(λ)) + A>(AxLA(λ) − yε∗) = λsgn(xLA(λ)) + A>(AxLA(λ) − Ax∗ − ε)

= A>A(xLA(λ) − x∗) + λsgn(xLA(λ))− A>ε.

Multiplying the inverse of A>A to both sides of the previous equation, we move the

difference term xLA(λ) − x∗ to the right to obtain the following,

x∗ − xLA(λ) = (A>A)−1(λsgn(xLA(λ))− A>ε).

Remark 4.3.4. First, we consider constrained LASSO method. When ε = 0, the LASSO

linear model recovers x∗ when λ1 = ||xLS||1; we also have xLA(λ1) = xLS . When

ε 6= 0, we can set λ2 = min{||xLS||1, ε||A>||2}; however, due to the restriction on λ (0 ≤

λ ≤ ||xLS||1), using the LASSO method for de-noising is at best performing the same as

using the LS method. Second, we consider the penalized LASSO method. When ε = 0,

the LASSO linear model recovers x∗ when λ3 = 0; we also have xLA(λ3) = xLS . For

ε 6= 0, the noise amplification is reduced due to the presence of the term λsgn(xLA(λ)).

It follows that the penalized LASSO method offers a better de-noising capability than the

constrained LASSO method.
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4.3.1 The HR Method for the De-noising Problem

We argue that the HR method demonstrates superior de-noising capability than the

LASSO method, thanks to its usage of a ladder of hierarchical residuals with their corre-

sponding hierarchical scales. We begin the de-noising analysis with the following lemma.

Lemma 4.3.5. Given the noisy responses yε∗, we assume that A has linearly independent

columns. The hierarchical sum, XJ =
∑J

j=1 x(j) with the hierarchical term x(j) in

(PCH), approximates x∗ with the following error bound,

||x∗ −XJ ||1 ≤ ||xLS||1 + ε||A>||2 −
J∑
j=1

λj.

For the hierarchical term x(j) in (PPH), the hierarchical sum, XJ =
∑J

j=1 x(j), approx-

imates x∗ with the following error,

x∗ −XJ = (A>A)−1(λJsgn(x(J))− A>ε).

Proof. For the constrained HR method, we use lemma 4.2.8 together with x∗ = xLS −

A>ε to derive the following,

||x∗ −XJ ||1 ≤ ||xLS −XJ ||1 + ||ε||2||A>||2 ≤ ||xLS||1 − ||XJ ||1 + ε||A>||2

= ||xLS||1 + ε||A>||2 −
J∑
j=1

λj.

For the penalized method, we use remark 4.2.7 together with rJ = yε∗ − AXJ to obtain

the following,

0 = λJsgn(x(J)) + A>(Ax(J) − rJ−1) = λJsgn(x(J)) + A>(AXJ − yε∗)

= λJsgn(x(J)) + A>(AXJ − Ax∗ − ε) = A>A(XJ − x∗) + λJsgn(x(J))− A>ε.
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Multiplying the inverse of A>A to both sides of the previous equation, we move the

different term,XJ − x∗, to the right to obtain,

x∗ −XJ = (A>A)−1(λJsgn(x(J))− A>ε).

Remark 4.3.6. For the constrained HR method, we first consider ε = 0. When we have∑J
j=1 λj = ||xLS||1, we have XJ = x∗ as well as XJ = xLS . Next, we consider

ε 6= 0. Due to the usage of a ladder of hierarchical scales, we can decrease the term,

||xLS||1 + ε||A>||2, by a sum of hierarchical scales
∑J

j=1 λj; however when
∑J

j=1 λj ≥

||xLS||1, the HR linear model will become the LS linear model. For the penalized HR

method, we first consider ε = 0. When the final hierarchical scale λJ = 0, we have

XJ = x∗ as well as XJ = xLS . Next, we consider ε 6= 0. Since the noise term is

reduced by the extra λJsgn(x(J)), we can design the ladder of hierarchical scales, so that

the difference, λJsgn(x(J))− A>ε, can be at its minimum.

4.4 Numerical Experiments

We run the numerical simulation by comparing the HR method to the LS method

and LASSO method on the de-noising problem for Linear Regression. The unknown lin-

ear model x∗ ∈ RN is generated with k = 32 non-zero entries, and the values of those

entries are randomly picked as ±1, ±0.5 and ±0.25 to demonstrate the HR method’s

multi-scale capability, and the location of the non-zero entries is also randomly picked.

We set the number of observations M to 512, and the dimension of the unknown linear

model is set at N = 120. The entries of the regressor matrix A ∈ RM×N are samples of
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identically distributed standard normal variables, i.e., A = randn(M,N). We orthonor-

malize the columns ofA by doing [A, ] = qr(A, 0). The noise level is set at ε = 1.00. The

noise is generated as ε = randn(M, 1) and normalized to have unit `2 norm; then ε = ε∗ε

and yε∗ = Ax∗+ ε. The LS linear model is obtained by doing xLS = A>yε∗. The regular-

ization parameter λ for the constrained LASSO method is set as λ = 0.4 ∗ norm(xLS, 1).

The HR method uses the initial hierarchical scale λ1 = λ and performs 2 hierarchical

iterations. The linear models are plotted in the same plot shown in figure 4.1.
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Figure 4.1: Comparison of 3 Linear Models on De-noising

As shown in the figure 4.1, the LS linear model xLS recovers most of the features

of x∗ long with the noisy part embedded in yε∗. For the LASSO linear model, when

A>A = I , the LASSO method works similar to the soft shrinkage operator and starts

from the maximum entries (in magnitude) of xLS and move down until it accumulates

enough energy, i.e., ||xLA(λ)||1 = λ. The HR method, on the other hand, due to its
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multi-scale approach, works similar to an iterative soft shrinkage, starting from where

the previous hierarchical residual is and continuing picking up energy from xLS , until it

finishes J hierarchical iterations, thus ending up recovering more features of x∗ and not

allowing the noisy information enter the approximate solution.

4.5 Conclusion

We discussed two inverse problems in Linear Regression. We compared the LS

method and the LASSO method on addressing these inverse problems. We proposed the

HR method based on the LASSO method and showed that the HR method controlled the

distance between its linear model and the LS linear model. We also discussed the de-

noising capability of the HR method. We note that normally each column of the regressor

matrix A contains samples of a certain independent variable. When a nonlinear basis

function is used, i.e., yεi = f1,i(a1,i)x1 + f2,i(a2,i)x2 + . . . + fN,i(aN,i)xN + εi, we can

assemble a different regressor matrix Ā, such that each entry of Ā corresponds to fi,j(ai,j).

We end up with a different linear system Āx ≈ yε∗; however the analysis and convergence

results will follow through.

83



Chapter 5: Conclusion

5.1 Conclusion

We presented the analysis of the applicaiton of the Hierarchical Reconstruction

(HR) method for solving three different inverse problems. These inverse problems which

we studied were concerned with the recovery of an unknown quantity x∗ in a Hilbert

space X from its observation y∗ in another Hilbert space Y equipped with norm || · ||Y .

The observation y∗ is obtained by applying an observation operator A : X → Y to x∗.

When the observation operator A is ill-posed, recovery of x∗ is done via the general

Tikhonov regularization method. The general Tikhonov regularization method finds an

approximation solution to x∗ with an extra regularization parameter λ > 0 from the

following,

xT (λ) = arg min
x∈C

{
λf(x) +

1

2
||y∗ − Ax||2Y

}
. (5.1)

Here C is a convex feasibility subset in X and the non-negative auxiliary function f :

X → R+ is a stabilizing function which targets the specific ill-posedness of A. The

choice of the stabilizing function f depends on the desired features of the unknown x∗,

which the approximate solution xT (λ) would also attain.

For the recovery of a general unknown x∗ ∈ RN from its noisy observation yε∗ =
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Ax∗ + ε ∈ RM (||ε||2 ≤ ε), we suggested using the unconstrained `1 method. The

unconstrained `1 method finds a solution from the following,

xλ = arg min
x∈RN

{
λ||x||1 +

1

2
||yε∗ − Ax||22

}
.

Having understood the relationship between xλ and x∗, we proposed the HR method to

decrease the number of total iterations. The HR method finds the approximate solution as

a sum of hierarchical terms, x(j)’s, with each of them satisfying the following,

x(j) = arg min
x∈RN

{
λj||x||1 +

1

2
||rj−1 − Ax||22

}
, for 1 ≤ j ≤ J,

with the hierarchical residual residual defined recursively rj = rj−1 − Ax(j) and the

initial hierarchical residual is set as r0 = yε∗. The ladder of finitely many hierarchical

scales is set as: λj = θj−1λ1 where 0 < θ < 1 and the initial hierarchical scale λ1

depends on the problem at hand. With a ladder of finitely many and gradually decreasing

hierarchical scales, the HR method was shown to decrease the total number of iterations,

when compared to the unconstrained `1 method on recovery of a general x∗ from its noisy

observation yε∗ with λ = λJ .

For the recovery of the unknown x∗ ∈ X via de-convolution from its discrete

filtered output yh∗ ∈ X h (X h is a finite dimensional subspace of X ) where yh∗ is obtained

by application of the discrete Helmholtz filter Ah, i.e., yh∗ = Ahx∗, the recovery cannot

be done by direct solution of the linear equation Ahx = yh∗ due to the ill-posedness

of Ah. Therefore, we suggested the Tikhonov-Lavrentiev regularization method to find

an approximate solution, which finds a FEM solution xhL(λ) with an extra regularization

parameter λ > 0 such that for all vh ∈ X h, the following holds

λδ2〈∇xhL(λ),∇vh〉+ (1 + λ)〈xhL(λ),v
h〉 = δ2〈∇yh,ε∗ ,∇vh〉+ 〈yh,ε∗ ,vh〉.

85



Having understood that the λ contributes to the accuracy of the approximate solutionxhL(λ)

alongside with the spatial resolution scale h, which is used by a certain Finite Element

Method, we proposed the HR method in order to improve the approximation error. With

a carefully designed ladder of hierarchical scales {λj}Jj=1, the HR approximate solution,

namely the discrete hierarchical sum as the same of all the discrete hierarchical terms,

was shown to be a better approximate solution to x∗ than the TLR approximate solution

xhL(λ). When the noisy discrete filtered output yh,ε∗ = Ahx∗ + εh (||εh||L2(Ω) ≤ ε), we

provided a (near) optimal stopping criteria for stopping the hierarchical iterations.

For the recovery of the linear model x∗ ∈ RN from a set of data given by M

observations, {A,yε∗}, the problem is ill-posed since the regressor matrix A ∈ RM×N

is over-determined and yε∗ is not in the range of A. We suggested the Least Absolute

Shrinkage and Selection Operator (LASSO) method. The LASSO method has two differ-

ent versions. The constrained LASSO method finds a linear model from the following,

xLA(λ) = arg min
x∈Bλ

{
||yε∗ − Ax||2

}
.

Here the feasible set Bλ = {x ∈ RN
∣∣∣||x||1 ≤ λ} is convex. The penalized LASSO

method finds a linear model from the following,

xLA(λ) = arg min
x∈RN

{
λ||x||1 +

1

2
||yε∗ − Ax||22

}
.

The LASSO linear model xLA(λ) retains the sparsity feature thanks to its usage of `1

constraint (or the `1 penalty function). In order to offer better control on the sparsity level,

we proposed the HR method based on the two different version of LASSO methods. With

a careful designed ladder of decreasing hierarchical scales, the HR method was shown to
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control the approximation error, i.e., XJ − x∗, by the number of hierarchical iterations

taken.

5.2 Future Work

We are now ready to discuss the approximation error from using the HR method to

recovery of the unknown x∗ from its noisy observation yε∗ = Ax∗ + ε (||ε||2 ≤ ε) where

the ill-posed observation operator A is linear with no further information given. The HR

method finds an approximate solution to x∗, namelyXJ , as the sum of hierarchical terms

x(j) which is obtained from

x(j) = arg min
x∈X

{
λf(x) +

1

2
||rj−1 − Ax||2Y

}
, (5.2)

with the hierarchical residual defined in a recursive equation rj = rj−1 − Ax(j) and the

initial hierarchical residual set as r0 = yε∗. Before we present the error analysis, we will

need the following assumptions:

A. 1: f(u+ v) ≤ f(u) + f(v), for any u, v ∈ X ;

A. 2: If f(u− v) = 0, then u = v, for any u, v ∈ X ;

A. 3: f(u−v) ≤ α(f(u)−f(v))+βG(u,v)+γ||A(u−v)||Y , for any u, v ∈ X ; α, β

and γ > 0 are constants and the function G depends on the desired features which

we want to preserve from the unknown;

A. 4: Let

xT (λ) = arg min
x∈X

{
λf(x) +

1

2
||yε∗ − Ax||2Y

}
,

and define r = yε∗ − AxT (λ), then ζ1λ ≤ ||r||Y ≤ ζ2λ for some 0 < ζ1 < ζ2.
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The following theorem is concerned with the approximation error from using the HR

method.

Theorem 5.2.1. For an unknown x∗ ∈ X , a solution XJ , as the sum of the hierarchical

termsx(j) in (5.2) with the initial hierarchical residual set as r0 = yε∗ where yε∗ = Ax∗+ε

(||ε||Y ≤ ε), will approximate x∗ with the following error,

f(XJ −x∗) ≤ α
( ε

2λ1

− ζ
2
1λ1

2
+
λ1

2
(ζ2

2θ
−2− ζ2

1 )
θ − θJ

1− θ

)
+βG(XJ ,x∗) + γ(ζ2λJ + ε).

Here the ladder of hierarchical scales {λj}Jj=1 is designed as λj = θj−1λ1 with 0 < θ < 1

and λ1 depending on the particular kind of recovery problem at hand.

Proof. We begin with f(XJ) ≤
∑J

j=1 f(x(j)). By the optimality condition of x(1), we

have

λ1f(x(1)) +
1

2
||r0 − Ax(1)||2Y ≤ λ1f(x∗) +

1

2
||r0 − Ax∗||2Y = λ1f(x∗) +

ε2

2
.

It follows that

f(x(1))− f(x∗) ≤
ε2

2λ1

− ζ2
1λ

2
1

2
.

For other hierarchical terms x(j) (for 2 ≤ j ≤ J), we use an energy estimate,

λ1f(x(j)) +
1

2
||rj−1 − Ax(j)||2Y ≤

1

2
||rj−1||2Y .

Hence, we obtain

f(x(j)) ≤
1

2λj
(ζ2

2λ
2
j−1 − ζ2

1λ
2
j) ≤

(ζ2
2θ
−2 − ζ2

1 )λj
2

Therefore, the difference, f(XJ)− f(x∗), is bounded as

f(XJ)− f(x∗) ≤ (
J∑
j=1

f(x(j)))− f(x∗) ≤
ε2

2λ1

− ζ2
1λ1

2
+ (ζ2

2θ
−2 − ζ2

1 )
J∑
j=2

λj
2

≤ ε2

2λ1

− ζ2
1λ1

2
+

(ζ2
2θ
−2 − ζ2

1 )λ1

2

θ − θJ

1− θ
.
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Combing all the previous bounds together, we obtain

f(XJ − x∗) ≤ α(f(XJ)− f(x∗)) + βG(XJ ,x∗) + γ||A(XJ − x∗)||Y

≤ α
( ε2

2λ1

− ζ2
1λ1

2
+

(ζ2
2θ
−2 − ζ2

1 )λ1

2

θ − θJ

1− θ

)
+ βG(XJ ,x∗)

+ γ(||AXJ − yε∗||Y + ||yε∗ − Ax∗||Y)

≤ α
( ε2

2λ1

− ζ2
1λ1

2
+

(ζ2
2θ
−2 − ζ2

1 )λ1

2

θ − θJ

1− θ

)
+ βG(XJ ,x∗)

+ γ(ζ2λJ + ε).

The next step in my research would be the analysis of applying the HR method

for recovery of x∗ from yε∗ when yε∗ = A(x∗) + ε and the observation operator A is

non-linear. A natural starting point for this future research would be to study the general

Tikhonov regularization method for providing approximate solutions to the non-linear

equation A(x) = yε∗.
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Appendix A: More on Tikhonov Regularization

We devote this chapter to the discussion of individual implementations of the gen-

eral Tikhonov regularization method. Given y in a Hilbert space Y equipped with a norm

|| · ||Y , it is generally difficult to find an unknown x from another Hilbert space X satis-

fying the linear equation Ax = y exactly when the linear operator A is ill-posed. The

general Tikhonov regularization method finds an approximate solution to Ax = y from a

convex feasible set C ⊂ X with the help of an extra regularization parameter λ > 0, and

the approximate solution satisfies the following,

xT (λ) = arg min
x∈C

{
λf(x) +

1

2
||y − Ax||2Y

}
. (A.1)

Here the non-negative auxiliary function f : X → R+ is a stabilizing function. The

appropriate choice of the stabilizing function f and the feasible set C will be discussed in

details in each individual section.

A.1 The Constrained `2 Method

The constrained `2 method is used to tackle the ill-posed linear system Ax = y

where the matrix A ∈ RM×N is under-determined (M � N ). It finds an approximate

solution within a convex feasible set B = {x ∈ RN
∣∣∣Ax = y}, and it satisfies the
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following

x2 := arg min
x∈B

{
||x||2

}
. (A.2)

Remark A.1.1. We set X = RN , Y = RM , || · ||Y = || · ||2, C = B, and f(x) = ||x||2 in

(A.1). When we let λ→∞, we obtain the constrained `2 method.

The minimizer to the constrained `2 method has a closed form expression.

Lemma A.1.2. Assume that the matrix A has linearly independent rows. The minimizer

x2 to (A.2) has a closed form expression, i.e.,

x2 := A>(AA>)−1y. (A.3)

Proof. First, we want to show the solution defined in (A.3) satisfies the feasibility condi-

tion, i.e., Ax = y. Let x̃ = A>(AA>)−1y, we have

Ax̃ = AA>(AA>)−1y = y.

Moreover, for any other x ∈ RN such that Ax = y, we have,

〈x− x̃, x̃〉 = 〈x− x̃, A>(AA>)−1y〉 = 〈A(x− x̃), (AA>)−1y〉 = 0.

Hence the difference, x− x̃, is orthogonal to x̃. Therefore,

||x||22 = ||x− x̃||22 + ||x̃||22 ≥ ||x̃||22

with the equality achieved only when ||x− x̃||2 = 0.

Remark A.1.3. The pair, (x2, A
>r) with r = y − Ax2, is an extremal pair, because

〈x2, A
>r〉 = 0 = ||x2||2||A>r||.

Here, we used the fact that y − Ax2 = 0.
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A.2 The `22 − `22 Tikhonov Regularization Method

The `2
2 − `2

2 Tikhonov regularization method finds an approximate solution to the

linear system Ax = y where A ∈ RM×N is ill-posed. The approximate solution satisfies

the following

xT (λ) = arg min
x∈RN

{λ
2
||x||22 +

1

2
||y − Ax||22

}
. (A.4)

Remark A.2.1. We set X = RN , Y = RM , || · ||Y = || · ||2, C = RN , and f(x) = ||x||22/2

in (A.1), then we obtain the `2
2 − `2

2 Tikhonov regularization method.

Lemma A.2.2. The minimizer xT (λ) of (A.4) has a closed form expression,

xT (λ) = (A>A+ λI)−1A>y.

Proof. Define the energy functional J : RN → R+ as J(x) = λ
2
||x||22 + 1

2
||y − Ax||22.

The derivative of J is D(x) = λx − A>y + A>Ax. When the shifted normal equation

has an solution, i.e., (A>A + λI)xc = A>y, the energy functional J has a critical point.

The Hessian of J is H(J) = A>A + λI . H is Symmetric Positive Definite. Hence the

critical point is a minima.

Remark A.2.3. The pair (xT (λ), A
>r) with r = y − AxT (λ) is an extremal pair, since

〈xT (λ), A
>r〉 = 〈xT (λ), λxT (λ)〉 = λ||xT (λ)||22.

From (A.4), we have,

A>r = A>(y − AxT (λ)) = λxT (λ).

Thus, ||A>r||2 = λ||xT (λ)||2.
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A.3 The Unconstrained `1 Method

The unconstrained `1 method finds an approximate solution to the linear system

Ax = y where A ∈ RM×n is ill-posed. The approximate solution satisfies the following,

xλ = arg min
x∈RN

{
λ||x||1 +

1

2
||y − Ax||22

}
. (A.5)

Remark A.3.1. We set X = RN , Y = RM , || · ||Y = || · ||2, C = RN , and f(x) = ||x||1

in (A.1), then we obtain the unconstrained `1 method.

We present the following lemma on the Euler-Lagrange equation which the solution

from (A.5) would satisfy.

Lemma A.3.2. The solution, xλ of (A.5), also satisfies the following equation,

λsgn(xλ) + A>(Axλ − y) = 0.

Proof. We start from the following energy functional J : RN → R,

J(x) = λ||x||1 +
1

2
||y − Ax||22.

We define a sub-gradient to the `1 norm,

(sgn(x))i = sgn((x)i) =


1, (x)i > 0

0, (x)i = 0

−1, (x)i < 0

.

Let xλ be a solution of (A.5). For any xλ + εu, J(xλ) ≤ J(xλ + εu). We expand the

difference term, J(xλ + εu)− J(xλ), and obtain

J(xλ + εu)− J(xλ) = ε〈λsgn(xλ) + A>(Axλ − y),u〉+
ε2

2
||Au||22
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Since J(xλ + εu)− J(xλ) ≥ 0 for any small ε, we let ε ↓ 0 and divide both sides by ε to

obtain

ε〈λsgn(xλ) + A>(Axλ − y),u〉 ≥ 0;

Next we let ε ↑ 0 and divide both sides by ε again to obtain

ε〈λsgn(xλ) + A>(Axλ − y),u〉 ≤ 0.

It follows that ε〈λsgn(xλ) + λA>(Axλ − y),u〉 = 0. Since u is picked arbitrarily, we

have the minimizer, xλ, satisfying the following Euler-Lagrange equation,

λsgn(xλ) + A>(Axλ − y) = 0.

The following lemma is concerned with the extremal pair relationship.

Lemma A.3.3. The pair, (xλ, A
>r) with r = y−Axλ, is called an extremal pair, because

the pair satisfies the following equality,

〈xλ, A>r〉2 = ||xλ||1||A>r||∞.

Proof. From signum equation in lemma A.3.2, we have

〈xλ, A>r〉2 = 〈xλ, A>(y − Axλ)〉 = 〈xλ, λsgn(xλ)〉 = λ||xλ||1

Furthermore, we have

||A>r||∞ = ||A>(y − Axλ)||∞ = ||λsgn(xλ)||∞ = λ.

Putting the two together, we have

〈xλ, A>r〉 = ||xλ||1||A>r||∞.
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Remark A.3.4. When we use the usual Hölder’s Inequality on any pair (x, A>(y−Ax)),

〈x, A>(y − Ax)〉2 ≤ ||x||1||A>(y − Ax)||∞.

The equality is realized when x = xλ, which is another optimal condition for the mini-

mizer of (A.5) to hold.

Using lemma A.3.2, we can show an upper bound on λ to avoid trivial solution.

Lemma A.3.5. The minimizer, xλ, of (A.5) is non-trivial if and only if λ ≤ ||A>yε∗||∞.

Proof. We consider the extremal pair, (xλ, A
>r), where r = yε∗ − Axλ. When xλ is

non-trivial, it follows that,

λ||xλ||1 ≤ λ||xλ||1 + ||Axλ||22 = 〈xλ, A>r〉+ ||Axλ||22 = 〈xλ, A>(r + Axλ)〉

≤ 〈xλ, A>y〉 ≤ ||xλ||1||A>y||∞.

Therefore λ ≤ ||A>y||∞. We use a similar idea from [49] to show that when λ >

||A>y||∞, xλ = 0.

Now, we are ready to show the bounds on the residual term, r = y − Axλ.

Lemma A.3.6. Assume that the matrix A has linealry independent rows. The residual

term, r = y − Axλ, satisfies the following bounds,

λ||A>||−1
p ≤ ||r||p ≤ λ

p
√
N ||(AA>)−1A||p, for 1 ≤ p ≤ ∞.
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Proof. We begin from the equation in lemma A.3.2, we have r = λ(AA>)−1Asgn(xλ).

It follows that,

||r||p = λ||(AA>)−1Asgn(xλ)||p ≤ λ||(AA>)−1A||p||sgn(xλ)||p

≤ λ
p
√
N ||(AA>)−1A||p.

For the lower bound, we take the `p norm of the signum equation in lemma A.3.2 to obtain

||λsgn(xλ)||p = ||A>r||p ≤ ||A>||p||r||p.

It follows that

||r||p ≥ λ||sgn(xλ)||p||A>||−1
p ≥ λ||A>||−1

p .

A.4 The Least Square Method

The Least Square (LS) method finds a linear model as an approximate solution to

the linear equation Ax = y where A ∈ RM×N is ill-posed, and the linear model satisfies

the following,

xLS = arg min
x∈RN

{
||y − Ax||2

}
. (A.6)

Remark A.4.1. We set X = RN , Y = RM , || · ||Y = || · ||2, C = RN , and f(x) = 0 in

(A.1), then we obtain the LS method. Here we used the fact that minimizer of ||y−Ax||2

is the same as ||y − Ax||22/2.

Lemma A.4.2. Assume that A has linearly independent columns. The solution of (A.6)

has a closed form expression, xLS = (A>A)−1A>y.
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Proof. We define an energy functional J : RN → R as J(x) = ||y − Ax||22 = ||y||22 −

2〈A>y,x〉+ ||Ax||22. The derivative of J isD(x) = −2A>y+2A>Ax. The only critical

point of J is xcp = (A>A)−1A>y. The Hessian of J is H(x) = 2A>A, which is SPD.

Thus xcp is the unique minimizer. xLS = xcp as claimed.

Remark A.4.3. Let r = y −AxLS , and we consider the pair (xLS, A
>r). Since A>r =

A>(y − AxLS) = 0, we have

〈xLS, A>r〉 = 0 = 0||xLS||2.

Therefore, we call the pair (xLS, A
>r) an extremal pair.

A.5 The Least Absolute Shrinkage and Selection Operator Method

When given a data from M observations, {A,y} where A ∈ RM×N and y ∈ RM ,

the constrained Least Absolute Shrinkage and Selection Operator (LASSO) method finds

a linear model from a convex feasible set Bλ = {x ∈ RN
∣∣∣||x||1 ≤ λ} such that the linear

model satisfies the following

xLA(λ) = arg min
x∈Bλ

{
||y − Ax||2

}
. (A.7)

We will use the following notation (·)+, which is defined as

(x)+ =


x x > 0

0 x ≥ 0

, for x ∈ R.

Remark A.5.1. We setX = RN , Y = RM , ||·||Y = ||·||2, C = Bλ, and f(x) = 0 in (A.1),

then we obtain the constrained LASSO method. Here we used the fact that minimizer of

||y − Ax||2 is the same as ||y − Ax||22/2.
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Lemma A.5.2. The constrained LASSO linear model, xLA(λ) of (A.7) has the following

closed form expression,

(xLA(λ))i = sgn((xLS)i)(
∣∣(xLS)i

∣∣− γ)+, for 1 ≤ i ≤ N.

The parameter γ > 0 is chosen such that ||xLA(λ)||1 = λ.

Proof. We start from the definition of the constrained LASSO method, minimizing the

objective function ||y − Ax||2 is also equivalent to minimizing ||y − Ax||22. It follows

that,

||y − Ax||22 = ||y||22 − 2〈y, Ax〉+ ||Ax||22

= ||xLS − x||22 + ||y||22 − ||xLS||22.

We used the fact that A>A = I . Since y and xLS are considered fixed, the constrained

LASSO method finds a linear model from the following,

xLA(λ) = arg min
x∈Bλ

{
||xLS − x||22

}
.

Using the Lagrange multiplier method, there exists a γ > 0 such that

xLA(λ) = arg min
x∈RN

{
||xLS − x||22 + γ||x||1

}
.

The objective function is completely de-coupled, i.e.,

||xLS −x||22 + γ||x||1 =
N∑
i=1

(
(x)2

i − 2(x)i(xLS)i + (xLS)2
i + γ

∣∣(x)i
∣∣) =

N∑
i=1

Li((x)i).

Here each function Li(x) = x2 − 2x(xLS)i + (xLS)2
i + γ

∣∣x∣∣ for x ∈ R. The minima of

the function Li is xmin = sgn((xLS)i)(
∣∣(xLS)i

∣∣− γ/2)+. Since each Li depends only on

(x)i, we have

(xLA(λ))i = sgn((xLS)i)(
∣∣(xLS)i

∣∣− γ/2)+, for 1 ≤ i ≤ N.
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Remark A.5.3. The following list shows additional properties which the LASSO minimier

would satisfy when it is found using the formula in lemma A.5.2.

• ||xLA(λ)||1 = λ.

• When (xLS)i = 0 for some 1 ≤ i ≤ N , (xLA(λ))i = 0. Thus, supp(xLA(λ)) ⊂

supp(xLS).

• When
∣∣(xLS)i

∣∣ ≤ γ, (xLA(λ))i = 0.

• When γ = 0⇒ λ = ||xLS||1, xLA(λ) = xLS .

• When γ > ||xLS||∞ ⇒ λ = 0, xLA(λ) = 0.

• For i ∈ supp(xLA(λ)), (xLA(λ))i and (xLS)i have the same sign, and
∣∣(xLA(λ))i

∣∣ <∣∣(xLS)i
∣∣.

Lemma A.5.4. The pair, (xLA(λ), A
>r), where r = y∗ − AxLA(λ), is called an extremal

pair, because it satisfies the following equality,

〈xLA(λ), A
>r〉 = ||xLA(λ)||1||A>r||∞. (A.8)

Moreover, we have ||A>r||∞ = γ and ||xLA(λ)||1 = λ.

Proof. First, let⊗ denote the component wise multiplication for vectors of the same size,

1 ∈ RN with all of its entries being 1’s,
∣∣ · ∣∣ and (·)+ are defined component wise for
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vectors. Starting from the inner product, we have,

〈xLA(λ), A
>r〉 = 〈xLA(λ), A

>(y∗ − AxLA(λ))〉 = 〈xLA(λ),xLS − xLA(λ)〉

= 〈sgn(xLS)⊗ (
∣∣xLS∣∣− γ1)+,xLS〉 − ||sgn(xLS)⊗ (

∣∣xLS∣∣− γ1)+||22

= 〈(
∣∣xLS∣∣− γ1)+,

∣∣xLS∣∣〉 − ||(∣∣xLS∣∣− γ1)+||22

= 〈
∣∣xLS∣∣− γ1)+, γ1〉 = γ||xLA(λ)||1.

Meanwhile,

||A>r||∞ = ||A>(y∗ − AxLA(λ)||∞ = ||xLS − xLA(λ)||∞

= ||
∣∣xLS∣∣− (

∣∣xLS∣∣− γ1)+||∞ = γ.

Therefore, 〈xLA(λ), A
>r〉 = ||xLA(λ)||1||A>r||∞ as claimed. Moreover, ||xLA(λ)||1 = λ

is shown in remark A.5.3.

Given the set of data from M observations, {A,y}, the penalized LASSO method

finds a linear model from the following,

xLA(λ) = arg min
x∈RN

{
λ||x||1 +

1

2
||y − Ax||22

}
. (A.9)

Remark A.5.5. We set X = RN , Y = RM , || · ||Y = || · ||2, C = RN , and f(x) = ||x||1

in (A.1), then we obtain the penalized LASSO method.

Following the idea shown in lemma A.3.2, we can show that xLA(λ) also satisfies

the following,

λsgn(xLA(λ)) + A>(AxLA(τ) − y∗) = 0. (A.10)

With this signum equation established for the penalized LASSO linear model, we show

the following lemma on the extremal pair relationship.
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Lemma A.5.6. The pair (xLA(λ), A
>r) with xLA(λ) in (A.9) and r = y∗ − AxLA(λ), is

an extremal pair. It satisfies the following,

〈xLA(λ), A
>r〉 = ||xLA(λ)||1||A>r||∞.

Proof. Since xLA(λ) satisfies (A.10), we have

〈xLA(λ), A
>r〉 = 〈xLA(λ), A

>(y∗ − AxLA(λ))〉 = 〈xLA(λ), λsgn(xLA(λ))〉

= λ||xLA(λ)||1.

Meanwhile,

||A>r||∞ = ||A>(y∗ − AxLA(λ))||∞ = ||λsgn(xLA(λ))||∞

= λ||sgn(xLA(λ))||∞ = λ.

Therefore 〈xLA(λ), A
>r〉 = ||xLA(λ)||1||A>r||∞.
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