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Soft robotics has grown exponentially during the past two decades due to the possibility of

expanded manipulation capabilities over existing rigid robots in complex, unstructured

environments. Additionally, soft robots can mitigate current safety risks associated with rigid

robots due to their softness. The inspiration for soft robotics has been mainly due to the many

examples from nature, such as the agile environmental interactions of the elephant trunk and

octopus tentacles. Over the past two decades, several applications ranging from underwater

operations to minimally invasive surgeries to space operations have been identified for soft

robots. Motivated by these, the overall objective of this dissertation is to study and develop

control frameworks for high-fidelity motion control of soft robotic systems. This entails

exploiting generalized dynamics models for robust/adaptive control strategies for achieving

various operational tasks involved in non-ideal environments, utilizing integrated sensing

technologies, and investigating control of underactuated soft robotic systems.

This dissertation delve into passivity-based adaptive task space control for soft robots,



mitigating uncertainty in the parameters as accurate parameter estimation is particularly hard in

soft robotic systems. Further, this approach is extended to task space bilateral teleoperation of a

soft follower-rigid leader system exploiting null space velocity tracking to achieve sub-task

goals such as conforming to the degree of curvature limits in the soft robot. An enhanced

dynamics model is also introduced tailored for planar soft robots and elaborate on

passivity-based robust control methods for task space trajectory tracking within this context.

This enhanced dynamics model is subsequently extended to encompass 3D spatial soft robots

and a comprehensive framework for passivity-based robust task space bilateral teleoperation is

discussed. Extensive numerical simulations and experiments are conducted to illustrate the

efficacy of these proposed control frameworks. Moreover, to deploy soft robots in the real

world, this dissertation study integrated sensing and control of soft robots and a stretchable

soft-sensing skin for proprioception s introduced. The mapping from the strain signal to the

curvature degree is estimated using a recurrent neural network. Further, an adaptive control

framework for curvature tracking is proposed, leveraging the soft stretchable sensing skins and

providing experimental evidence of its successful application.

This dissertation also introduces a novel robotic system known as the hybrid rigid-soft

robot, composed of serially attached rigid and soft links, offering a fusion of the dexterity

inherent to soft robots with the precision and payload capacity associated with rigid

counterparts. Notably, the study demonstrates that well-established passivity-based adaptive and

robust control techniques can effectively apply to this unique class of robots. A soft inverted

pendulum with a revolute base is also introduced, establishing a scientific foundation and a

methodological approach for introducing innovative soft robots in various practical applications.

An energy-based controller is discussed for the swing-up and stabilization of the soft inverted



pendulum system, highlighting the efficacy of the controller through simulations. Further, a

comprehensive control architecture is developed for the swing-up and stabilization of a class of

underactuated mechanical systems, including the soft inverted pendulum, by applying output

partial feedback linearization and linear control techniques that avoid switching between

controllers. The utility of this control architecture is illustrated using numerical simulations on

the soft inverted pendulum.

These research endeavors collectively contribute to advancing the understanding of soft

robotics and developing effective control strategies for various dexterous soft robotic systems.
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Chapter 1: Introduction

1.1 What are soft robots?

Conventional rigid robots are typically programmed for efficient execution of specific

tasks in controlled environments [1]. However, their adaptability in response to unexpected

changes is often limited due to the rigidity of their structural materials. Soft robots, on the other

hand, are systems capable of autonomous behavior fabricated from materials that have low

elastic moduli, in the range of those of biological materials (104–109Pa) [2]. Moreover, unlike

traditional rigid robots, soft robots typically do not have actuated joints in their structure, and

the motions are achieved by continuous deformation of the soft body [3]. Consequently, they

exhibit a high degree of freedom in engaging with their surroundings flexibly and safely and

swiftly adapting to abrupt alterations in their operating context. This is precisely what is

observed in biological systems. Thus, the inspiration for the development of soft robots has been

the robust and agile environmental manipulation by animals, such as the octopus’s varied use of

tentacles and elephant’s dexterous trunk [4, 5, 6].

From a robotics application standpoint, the compliance and dexterity of soft robots can

be utilized for effective manipulation in unstructured environments. Moreover, these robotic

systems could reduce the harm that could be done in the case of contact, thanks to the softness of

the body, thus potentially mitigating safety risks associated with the classical rigid robots [7]. The

1



potential applications of soft robots are numerous and they include minimal invasive surgery [8],

endoscopy [9], inspection tasks [10], search and rescue [11, 12], locomotion [13] and agriculture

harvesting [14] among others.

1.2 Soft robotics: the research field

Figure 1.1: Research directions in the field of soft robotics.

Soft robotics is an interdisciplinary field that amalgamates various branches of knowledge,

including biology, material science, continuum mechanics, and robotics, all with the

overarching goal of addressing fundamental questions while yielding practical applications [3].

In the pursuit of advancing soft robotics, numerous hardware platforms have been put forth,

each demonstrating improved reliability and increased functionalities [15]. This evolution has

predominantly concentrated on the technological aspects of the field, resulting in a diverse array

of hardware solutions. However, this profusion has introduced a new challenge – the need to

formulate efficient control strategies capable of leveraging the unique properties of soft robots.

To that end, the researchers have investigated different modeling and control frameworks for

soft robots. Moreover, to realize the complete autonomy of soft robots, it is also essential to

equip them with advanced proprioception (sensing capabilities) that do not hinder their inherent

properties. In view of these aspects, four main research directions can be identified in the soft
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robotics field - hardware design, modeling, sensing and control, as illustrated in Figure 1.1. This

dissertation primarily explores the controls development research avenue, which in fact is

closely intertwined with modeling as well as sensing. A brief discussion on the recent advances

in these related aspects are given below.

1.2.1 Analytical modeling

A soft body is an infinite-dimensional dynamic system, making it a challenge to articulate

the kinematics and dynamics of the soft robot in a way that is amenable to control theoretical

formulations. Over the past two decades, several reduced-order mathematical models have been

proposed [3, 5], as summarized below.

The piecewise constant curvature (PCC) formulation is the most widely used modeling

approach for soft robots [3]. It reduces the dimensionality of the soft robot by assuming it to be

composed of a finite number of segments, each with a time-dependent constant curvature (CC)

[16]. The CC segments are attached so that the resulting curve is differentiable everywhere. To

describe each segment, only three parameters are required: the degree of curvature, the arc angle

or the length of the segment, and the bending plane. The PCC formulation was initially used

to analyze the kinematics of soft robots and has been studied extensively [16, 17, 18]. A few

PCC dynamics models have also been proposed [19, 20, 21, 22]. Recently, a modeling approach

proposed by Della Santina et. al. [22], which models a PCC soft robot as if it were a rigid robot

using an augmented formulation, has opened avenues to implement and test traditional control

algorithms that were developed for rigid robots.

Another popular modeling approach for soft robots is based on Cosserat rod theory. This
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represents a body as a stack of infinitesimal solid bodies, making it infinite dimensional [23].

Reduced order models have been developed by using constraints on the deformations, such as

assuming PCC of segments or by including only a finite number of solid bodies in the model [24].

Both kinematics [25, 26] and dynamics models [27, 28] have been shown leveraging Cosserat

rod theory, and they have proven to be more accurate than simplified PCC models. However,

solving the resulting partial differential equations of these models for control applications remains

cumbersome.

The authors in [29, 30] proposed Finite Element Method (FEM) based approaches for

modeling soft robots under quasi-static conditions, and ref. [31] proposed a dynamic model

using a linearized FEM. However, the drawback of FEM is the high dimensionality due to the

fine mesh required for an accurate approximation. Among other models, there are also dynamics

models using Ritz-Galerkin methods [32] and models employing discretizations of a continuum

rod with lumped parameters [33]. Recently, a soft robot dynamics model based on polynomial

curvature was introduced [34], which enables additional degrees of freedom in modeling. It was

used to model a soft inverted pendulum with affine curvature [35].

1.2.2 Control

Soft robot control can be categorized into two main groups: kinematic controllers and

dynamic controllers. Kinematic control exclusively focuses on the robot’s posture, disregarding

any consideration of forces. Consequently, this approach relies on a steady-state model,

allowing it to execute control based solely on position or velocity/acceleration parameters. On

the other hand, dynamic control considers the system’s dynamics, incorporating physical forces
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like inertia and gravity. As a result, dynamic control can attain a higher level of precision than

kinematic controllers and offers greater versatility in enabling force-based interactions with the

robot’s environment.

Among kinematic controllers, the authors in [36] introduced an adaptive visual servo

controller based on a PCC formulation without requiring knowledge of the actual values of the

manipulator’s length. A closed-loop position controller using a FEM-based kinematic model

was demonstrated in [37]. The authors in [38] introduced a real-time closed-loop kinematic

controller for configuration space trajectory tracking using a PCC formulation.

Considering dynamic controllers, a majority of the state-of-the-art dynamic controllers are

open-loop due to the complex nature of the models, which have a high computational cost for

closed-loop control. Feedforward position control of soft robots using PCC-based dynamic

models has been proposed [20, 34, 39]. Using the augmented formulation introduced in [21],

dynamic feedback controllers for soft robots have been designed for curvature and surface

tracking using an impedance controller [21, 22, 40]. A posture controller using a PCC-based

dynamics model has been proposed [41] and a sliding mode controller for tracking [42]. All of

these controllers assumed perfect knowledge of the soft robot models. To handle uncertainty in

dynamic parameters, a task space adaptive control for soft robots has been proposed in [43].

Using an augmented model, the curvature space adaptive control of soft robots has been

proposed in [44]. Configuration space trajectory tracking using an interval-arithmetic-based

robust controller was proposed [45]. Recently, in [46], a nonlinear adaptive position and

stiffness controller for pneumatic soft robots was proposed.

The interested reader is referred to the recent survey papers [3, 5] for a comprehensive

review on soft robot modeling and control.
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1.2.3 Proprioception

Much work on developing embedded sensing for soft robots has emerged in recent years

[47]. Some studies demonstrated the use of commercially available flex sensors embedded in

soft robots to measure the bending of the body [48, 49, 50, 51]. However, a drawback of these

commercial flex sensors is their potential to stiffen the soft bodies since they lack the same level

of softness as the robot itself [52, 53]. As a result, various research groups have turned their

focus to creating soft embedded sensors that preserve the mechanical compliance of soft robots,

thus avoiding this issue [53, 54, 55]. The review paper [56] discusses soft pneumatic actuators

fabricated entirely with additive manufacturing methods with self-sensing capability. Recent

efforts in embedded sensing technology have used polydimethylsiloxane (PDMS) filled with

carbon nanotubes (cPDMS) [52, 57]. Another approach presented in [58] employs off-the-shelf

conductive silicone elastomer sheets that are laser-cut into Kirigami patterns and subsequently

bonded to the soft robot’s skin, resulting in soft piezoresistive silicone sensors. These sensors

have been employed to predict the steady-state 3D configuration of the soft robot through the

application of a trained Recurrent Neural Network (RNN). This strategy has been harnessed for

developing data-driven disturbance observers to estimate external forces acting on soft robots

[59].

1.2.4 Challenges and opportunities

Due to the complexity of the behavior of the soft body, it has been a challenge to articulate

suitable models to describe the dynamics of the soft robots. A few exact models based on

Cosserat rod theory and reduced order models based on certain assumptions on the curvature of
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the robot (constant or polynomial) have emerged in the literature for soft robots. However, the

efficacy of these models in control aspects has not been thoroughly investigated, for example,

the susceptibility of these dynamic models when presented with external forces. Additionally, as

soft robots are inherently infinite dimensional, any reduced-order modeling will introduce some

form of underactuation in the model. However, these reduced-order models are often assumed to

be fully actuated in the considered order. While most of the proof of concept work in the

literature has demonstrated the effectiveness of these fully actuated approximations, the

downside is that relying on a coarse approximation during control design might result in

performance decline and instability. Also note that the designing of control frameworks for soft

robots has been under-developed due to the lack of adoptable dynamic models developed for

soft robots. The exact models are computationally costly for implementing real-time controllers,

while the reduced-order models might be unrealistic for practical implementations.

Furthermore, the existing controllers developed for soft robots assume the perfect knowledge of

the robot model. These might fail if the controllers are not tuned perfectly due to the

uncertainties arising from the parameters, such as the stiffness and damping of the soft robot.

Furthermore, the actuation limits (such as applicable maximum pressure for a pneumatically

actuated soft robot) and the configuration space limits (such as the curvature limits) should also

be considered in developing the control frameworks as these influence the controller’s

performance.

Given these challenges in soft robotics, a crucial focus lies in developing control strategies

that empower soft robots to perform precise and controlled movements in the presence of

continuous interactions with unstructured and dynamic environments. These control strategies

must demonstrate robustness, allowing them to handle uncertainties introduced in the model.
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Furthermore, effectively addressing underactuation in soft robots remains a significant aspect of

research and development of this class of robots. This necessitates the incorporation of

underactuation into control strategies by considering the distinctive dynamics of soft robotic

systems, where there are fewer control inputs than configuration variables. Achieving control in

such systems demands innovative approaches and methods that leverage these robots’ inherent

compliance and flexibility, allowing them to accomplish tasks in ways that traditional rigid

robots cannot.

1.3 Scope and contributions of the dissertation

The primary scope of this dissertation revolves around the dynamic control of soft robotic

systems. In pursuit of this, and motivated by the above challenges and opportunities, this

dissertation contributes to the soft robotics field by investigating the following key challenges:

• Uncertainty mitigation and robust stabilization of soft robots: exploring methods to address

uncertainties and ensure the robust stabilization of soft robotic systems.

• Practical embodied sensing: exploring the application of stretchable soft sensors for

providing feedback in the motion control of soft robots.

• Dexterous and precise manipulation of hybrid rigid-soft robots: exploring the

manipulation capabilities of hybrid rigid-soft robots, focusing on their dexterity and

precision while studying the impact of uncertainties and use different actuation modalities

to achieve task space tracking.
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• Swing-up and stabilization of underactuated soft robots: exploring strategies for swinging

up and stabilizing a novel underactuated soft robotic model, specifically the soft inverted

pendulum with a revolute base.

1.3.1 Contributions

By addressing the challenges identified above, this dissertation aim to contribute to

advancing knowledge and capabilities in soft robotics. The main contributions of this

dissertation are listed in detail below.

Given uncertainty mitigation and robust stabilization of soft robotic systems, this

dissertation investigates classical passivity-based adaptive control and passivity-based robust

control approaches for task space trajectory tracking of soft robotic manipulators and show their

utility for control of soft robots. This is the first time such passivity-based controllers were

investigated for soft robot control. Moreover, this dissertation introduce an enhanced modeling

framework for multi-link soft robots, which captures the inertia effects of the soft robots.

Further, these passivity-based task space controllers are extended for bilateral teleoperation

frameworks, which were studied for the first time.

Considering enabling the soft robots to be deployed in non-ideal scenarios in the real

world, this dissertation investigates the utilization of proprioceptive sensing to obviate the need

for external sensors such as motion capture cameras for curvature measurements. To that end, a

stretchable soft-sensing skin retrofitted to a soft robotic segment is introduced for the degree of

curvature estimation. The utility of this sensor is demonstrated by employing a passivity-based

adaptive controller for curvature tracking. This demonstrates, for the first time, the utilization of
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soft sensing skins for precise control of soft robots.

Given dexterous and precise manipulation, a novel robotic system is introduced, a hybrid

rigid-soft robot composed of serially attached rigid and soft links. This robot would provide both

the dexterity of soft robots and the precision and payload capacity of a rigid robot. One challenge

in controlling these hybrid robots is that there could be increased uncertainty in parameters,

including the actuation parameters. This dissertation demonstrates that the well-known passivity-

based adaptive control and robust control can be utilized to address this challenge. Further, if the

hybrid robots are constructed to be redundant manipulators, it is shown that the null space velocity

of this class of robots can be used for obstacle avoidance sub-task.

As a first step toward understanding how softness impacts the control performance of

underactuated soft systems, this dissertation introduces a novel system coined as a soft inverted

pendulum with a revolute base and study the swing-up and stabilization of this system.

Motivated by swing-up controllers developed for classical underactuated systems, a two-stage

control method is investigated: an energy-based swing-up controller and a linearized stabilizing

controller. Using theoretical proofs and numerical simulations, this dissertation shows that this

soft inverted pendulum with a revolute base can be stabilized upright, a feat never achieved in

the literature before. Further, a single continuous control strategy is introduced to enlarge the

region of attraction of a linear controller for the swing up and stabilization of a class of

underactuated systems, which includes the SIPR system, employing output partial feedback

linearization and a linearized controller. The motivation lies in introducing controllers for

underactuated pendulum-like systems that avoid switching between controllers. Indeed this

continuous controller is formulated in a general way which can be applied to class-I

underactuated systems.
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1.4 Outline of the dissertation

Chapter 2 discusses passivity-based adaptive task space control of soft robots and its

extension for bilateral teleoperation of soft robots. This chapter also introduces the simulation

environment used for most of the numerical simulations presented in this dissertation. In

Chapter 3, an enhanced dynamics model for planar soft robots is introduced, and passivity-based

robust control for task space trajectory tracking of planar soft robots is discussed. Chapter 4

extends the enhanced dynamics model to 3D spatial soft robots, and a passivity-based robust

task space bilateral teleoperation framework is discussed. An adaptive control framework for

curvature tracking is introduced in Chapter 5 utilizing soft stretchable sensing skins and

experimentally demonstrating successful curvature tracking control. In Chapter 6, a novel

robotic system is introduced, coined as a rigid-soft hybrid robot composed of serially attached

rigid and soft links. This robot would provide both the dexterity of soft robots and the precision

and payload capacity of a rigid robot. It is demonstrated that the well-known passivity-based

adaptive and robust control can be utilized for this class of robots. Chapter 7, introduces a soft

inverted pendulum with a revolute base that could provide both scientific evidence and a

prescribed methodology to introduce novel soft robots in several compelling applications in

robotics and control education, agriculture, and health. An energy-based controller for swing-up

and stabilization is discussed for the soft inverted pendulum system, illustrating the designed

controller’s efficacy using simulations. Moreover, in Chapter 8, a control architecture for the

swing-up and stabilization of a class of underactuated mechanical systems is developed, which

includes the soft inverted pendulum, by employing output partial feedback linearization and

linear control. Chapter 9, adds the concluding remarks, providing a summary of the
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contributions, discussing the limitations, and noting possible future research directions.

Additionally, some preliminaries and supplemental material are included in Appendix A.
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Chapter 2: Adaptive Task Space Control of Soft Robots

In this chapter, a passivity-based adaptive task space control framework is developed for

soft robots under the PCC hypothesis leveraging the augmented formulation [22]. Further, a

bilateral teleoperation (leader-follower) framework for soft robots is also introduced. A

simulation study and an experimental investigation of the proposed control algorithms on a

planar soft robot are conducted and the results are discussed pointing out the important

observations.

2.1 Overview

Dynamics models proposed for soft robots have been based on PCC formulation [19, 20,

21, 22], Cosserat rod theory [28] and Ritz-Galerkin models [32] among others [33, 60]. Using

these available models, several control frameworks for soft robots have been developed [5, 22].

However, most of them require exact knowledge of the system parameters, which is hard to

estimate accurately, especially in soft robots. One approach to mitigate the uncertainty in the

parameters is to utilize adaptive control techniques [61]. In the literature, there have been several

previous work on adaptive control of soft robots. A model reference adaptive control for soft

robots [62] has been used in an open-loop inverse dynamic feedforward controller to follow

reference trajectories in the degree of curvature space. A model-based sliding mode controller has
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been developed for curvature tracking [41, 63]. Recently, the authors in [44] proposed adaptive

control for curvature tracking in 3D soft robots. However, these dynamic controllers are not

designed to track task space trajectories. There has been a kinematic adaptive controller for soft

robots proposed for task space trajectory tracking [64], but such kinematic controllers might fail

under considerable dynamic effects.

This chapter proposes a passivity-based adaptive controller for task space trajectory

tracking of soft robots considering a redundant inextensible soft robot under PCC hypothesis.

The dynamic model of the soft robot is approximated to a rigid robot with elastic joints using

the recently introduced augmented formulation [22]. Then the task space adaptive controller is

developed using classical methods by following [61].

Further, as an extension, based on the adaptive task space controller, an adaptive task

space bilateral teleoperation (ATSBT) framework for soft robots is proposed. Although the state

of the art on control and motion planning of soft robots have grown recently, bilateral

teleoperation of soft robot systems has not been addressed adequately [65]. On the other hand,

for rigid link robotic systems bilateral teleoperation frameworks have been extensively studied,

such as in systems with dissimilar kinematics [66], parameter uncertainty [67], constant /

non-constant communication time delays [68, 69], etc. The redundancy of the follower robot

has also been used to achieve secondary objectives such as singularity avoidance and collision

avoidance while tracking the robot tip [67]. Among the very few work on teleoperation of soft

robots, a telerobotic system for telesurgeries has been proposed in [70]. However, only a

kinematic formulation was proposed. A task space teleoperation framework considering the

dynamics for an extensible soft robot using feedback linearization was been proposed in

[41, 71]. The authors also have utilized the null space velocity of the redundant follower robot to
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achieve singularity avoidance as a sub-task. A model based nonlinear control strategy was

utilized to achieve asymptotic task space tracking between the leader device and the soft

follower robots [72]. However, all these works did not include any feedback from the follower

robot to the leader robot, and hence the robots were not controlled bilaterally. Furthermore,

dynamic uncertainty was not considered in the literature on teleoperation of soft robots.

In the proposed ATSBT in this chapter, it is considered that the leader robot is a non-

redundant rigid manipulator. The follower robot is considered to be a redundant inextensible soft

manipulator under the PCC hypothesis. The end-effector is modeled as a lumped mass at the soft

robot’s tip. The ATSBT framework is introduced using classical control strategies developed for

rigid robots. This dissertation demonstrates for the first time that passivity-based adaptive task

space controllers [67] can be constructively utilized for bilateral teleoperation of a rigid leader

robot and a soft follower robot. Consequently, the need for exact knowledge of the rigid leader

or the soft follower robots’ parameters is obviated. This is not only useful when the soft robot’s

model parameters cannot be exactly measured but also in the case when the inertial parameters of

the end effector are not known a priori. Additionally, the null space velocity tracking is utilized

to achieve sub-task goals such as conforming to degree of curvature limits in the soft robot. This

work on bilateral teleoperation of soft robots was presented in [73].

The rest of the chapter is organized as follows. The augmented formulation of the soft

robot is explained in Section 2.2. Then passivity-based adaptive control for task space trajectory

tracking of soft robots is discussed in Section 2.3. The ATSBT framework for the soft robotic

system is introduced in Section 2.4. In Section 2.5, the simulation environment is introduced and

the simulation results are discussed. Finally, in Section 2.6, the experimental setup and the results

for the proposed control frameworks for the soft robotic system are illustrated.
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2.2 Augmented formulation of soft robots

This section briefly explains the mathematical model of the considered soft robot, which is

a planar soft manipulator. The dynamics of the soft robot is formulated as a Lagrangian system

through an approximated dynamically consistent augmented formulation using the methods

introduced by Santina et al.,[21, 22]. The interested reader is referred to [22] for the complete

derivation.

It is assumed that the soft robot is composed of n inextensible segments and each segment

has a CC along the central axis of the segment which is time varying. To form the soft robot,

these n CC segments are attached together in such a way that the resulting curve is differentiable

everywhere. Under this hypothesis a single variable per segment, namely the degree of curvature,

is sufficient to describe the segment’s configuration in space. This model is known as the PCC

model and is commonly used in soft robotics to reduce the infinite dimensionality of the soft

robot [16].

The augmented robot model of this PCC robot is represented as a rigid link robot with a

sequence of revolute and prismatic (R and P) joints with elasticity using the augmented

formulation that connects the kinematic and approximated dynamic properties of the PCC soft

robot to a conventional rigid robot system. Let the total number of joints per CC segment l and

define the generalized coordinates for the PCC robot in this representation as ξ ∈ Rnl which is

called as the augmented configuration. The continuously differentiable map, ζ : Rn → Rnl

connects the augmented configurations to the PCC robot model configurations (degree of

curvature space).

Consider the ith CC segment as shown in Figure 2.1a. Let us denote the degree of
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(a) (b)

Figure 2.1: The PCC robot and the augmented robot as RPPR links are superimposed and shown
here. The soft robot segments are shown in red. Panel (a) shows the ith segment superimposed
RPPR model and panel (b) illustrates the representation of a soft robot manipulator with three
CC segments with an end effector of lumped mass me at the tip.

curvature as qsi, which would be the configuration variable of this segment. Under the

hypothesis of inextensible segments, the length of the segment is assumed to be constant and is

denoted by Lsi. The mass, msi, of the segment is assumed to be lumped at the center of the

main chord connecting the ends of the CC segment.

In this work the augmented robot is represented as a sequence of l = 4 joints (RPPR) and

is illustrated in Figure 2.1a. The augmented representation of this RPPR link representation is

ξi = [ξi1, ξi2, ξi3, ξi4]
⊤ and the kinematically and dynamically consistent connection map is

defined as,

ξi = ζ(qsi) =
[qsi
2
, Lsi

sin( qsi
2
)

qsi
, Lsi

sin( qsi
2
)

qsi
,
qsi
2

]⊤

As the PCC robot is a sequence of n such CC segments joined together, the complete
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configuration of the equivalent rigid robot model would be a sequence of RPPR links,

ξ = ζ(qs) =

[
ζ(qs1)

⊤, ζ(qs2)
⊤, . . . , ζ(qsn)

⊤
]⊤

Figure 2.1b illustrates a PCC robot comprised of three CC segments which also carries an end-

effector approximated as a lumped mass at the end of the robot with mass me.

The dynamics of the augmented robot model including the end-effector is then found using

Euler-Lagrangian methods for rigid robots [74] as,

M(ξ)ξ̈ + C(ξ, ξ̇)ξ̇ +G(ξ) = τ − J⊤
ξ Fext (2.1)

where M(ξ) ∈ Rnl×nl is the inertia matrix, C(ξ, ξ̇)ξ̇ ∈ Rnl is the Coriolis and centrifugal terms

matrix, G(ξ) ∈ Rnl is the gravity vector, τ ∈ Rnl is the augmented control input vector. Here,

the task space of the robot is considered to be Rp where p ≤ n and let the end-effector position of

the robot to be Xs(t, ξ). Fext ∈ Rp is the external forces by the environment on the end-effector

of the soft robot and are mapped through the Jacobian Jξ = ∂Xs(ξ)/∂ξ.

In order to propose control algorithms to the soft robot, one needs to derive the dynamics

of the PCC robot evolving on ξ = ζ(q). This is done by calculating the augmented configuration

derivatives ξ, ξ̇, ξ̈ with regard to q, q̇, q̈ as ξ = ζ(q), ξ̇ = Jζ(q)q̇ and ξ̈ = J̇ζ(q, q̇)q̇ + Jζ(q)q̈ and

substituting them in (2.1). Here Jζ(q) ∈ Rmn×n represents the Jacobian Jζ(q) = ∂ζ(q)/∂q. Then

the resulting equation is pre-multiplied with J⊤
ζ yielding the dynamic equation,

Ms(q)q̈s + Cs(qs, q̇s)q̇s +Gs(qs) = τs − JT
s (qs)Fext (2.2)
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where,

Ms(qs) = J⊤
ζ (qs)M(ζ(qs)) Jζ(qs)

Cs(qs, q̇s) = J⊤
ζ (qs)M(ζ(qs)) J̇ζ(qs, q̇s) + J⊤

ζ (qs) C(ζ(qs), Jζ(qs)q̇s) Jζ(qs)

Gs(qs) = J⊤
ζ (qs)G(ζ(qs))

τs = J⊤
ζ (qs) τ

Js(qs) = Jξ(ζ(qs))Jζ(qs)

Finally, in order to incorporate the compliance of the soft robot, linear elastic and dissipative

terms are introduced to the dynamic equation (2.2). Then, the complete dynamics of the soft

robot in the Lagrangian form is derived as,

Ms(qs)q̈s + Cs(qs, q̇s)q̇s +Dsq̇s +Ksqs +Gs(qs) = τs − JT
s Fext (2.3)

where, damping Ds = diag(di) ∈ Rn×n and stiffness Ks = diag(ki) ∈ Rn×n are usually

determined through system identification. Here diag(·) denotes the diagonal matrix. Specific

properties of Lagrangian systems which are utilized in this dissertation is included in Appendix

A.2 for completeness.
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2.3 Passivity-based adaptive control for task space trajectory tracking

Consider the direct forward kinematics hs(·) : Rn → Rp which maps the configuration

space to the task space Rp. Thus, the end effector position and the velocity are defined as,

Xs(t) =h(qs), Ẋs(t) = Js(qs)q̇s

where, Js(qs) = ∂hs(q)
∂qs

∈ Rp×n is the Jacobian matrix. Let Xd(t) be the desired reference task

space trajectory. Then, the tracking error is defined as,

es(t) = Xs(t)−Xd(t).

In order to drive the tracking error to approach origin, the trajectories of the system is restricted

to the sliding surface,

ss(t) =J
+
s (qs)ės(t) + J+

s (qs)Λes(t) (2.4)

where, Λ ∈ Rp×p is a positive definite gain matrix. Here, J+
s ≜ J⊤

s (JsJ
⊤
s )

−1 ∈ Rn×p is the

pseudo inverse of Js and satisfies the property JsJ+
s = In where In is the n× n identity matrix.

Note that when ss = 0,

ės(t) = −JsJ+
s Λes(t) + J(In − J+

s Js)ψs = −Λes(t) (2.5)
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and hence, the errors will reach the origin when ss = 0. Let us define signals,

vs = q̇s − ss

as = q̈s − ṡs.

Assuming uncertainty in the parameters, let us use the notation (̂·) to denote the estimated values

and (̃·) to denote the estimation error. Using the linearity in parameters property (Property A.3)

of Lagrangian systems for the system (2.3), one can define the regressor (Ys (qs, q̇s, vs, as)) and

parameter (Θs) vector pair for the estimated systems,

Ys(qs, q̇s, vs, as)Θ̂s =M̂s(qs)as + Ĉs(qs, q̇s)vs + D̂svs + K̂sqs + Ĝs(qs). (2.6)

Here time invariant uncertainties in the dynamic terms, stiffness, damping and actuator

parameters are assumed. Thus, the parameter vector Θs is a constant.

Following the adaptive control approach [61], the control input for the soft robot is defined

as,

τs =Ys(qs, q̇s, vs, as)Θ̂s −K0ss (2.7)

where K0 is a positive definite diagonal gain matrix. The closed loop system can be found by

substituting the proposed control (2.7) in the soft robot dynamics (2.3), and using (2.6),

Ms(qs)ṡs + Cs(qs, q̇s)ss +Dsss +K0ss = Ys(qs, q̇s, vs, as)Θ̃s (2.8)
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where Θ̃s = Θ̂s −Θs. Let the adaptation law for the parameter estimation defined as,

˙̂
Θs = −ΓsY

⊤
s ss (2.9)

where Γs is a positive definite symmetric gain matrix that needs to be tuned.

Theorem 2.1 Consider the closed loop system (2.8) with the parameter adaptation law (2.9) and

sliding surface (2.4). In the absence of any external wrenches, the task space position error (es)

and velocity error (ės) asymptotically reach the origin while the parameter estimation error (Θ̃s)

remains bounded.

Proof of Theorem 2.1 Consider a Lyapunov like function for the system defined as,

V =
1

2

(
s⊤s Msss + Θ̃⊤

s Γ
−1
s Θ̃s

)
≥ 0

Differentiating V with respect to time yields,

V̇ =
1

2
s⊤s Ṁsss + s⊤s Msṡs + Θ̃⊤

s Γ
−1
s

˙̃Θs

=
1

2
s⊤s Ṁsss + s⊤s

(
−Csss −Dsss −K0ss + YsΘ̃s

)
+ ˙̃Θ⊤

s Γ
−1
s Θ̃s

Using the skew symmetry property (Property A.2) and using the chosen adaptation law (2.9) one

can obtain,

V̇ = −s⊤s Dsss − s⊤s K0ss ≤ 0.
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As V ≥ 0 and V̇ ≤ 0, limt→∞ V is finite. Therefore, s ∈ L2 and ss, Θ̃s ∈ L∞. From (2.8), noting

the properties of Lagrangian systems, it is observed that ṡs ∈ L∞. Therefore, since ss ∈ L2 and

ṡs ∈ L∞, one can show that ss → 0 as t→ ∞. Now from (2.5), es, ės → 0 once s = 0.

2.4 Adaptive task space bilateral teleoperation framework

The proposed ATSBT framework is developed based on the Lagrangian formulation of the

soft follower robot and the rigid leader robot as given by (2.3) and (2.10) assuming the leader

is non-redundant and the follower is redundant. Similar methods as in [67] is followed in this

dissertation to derive the framework.

2.4.1 The rigid manipulator : leader robot

This section introduces the mathematical model of the leader robot which is modeled as a

rigid serial link manipulator with p links. In the absence of friction, the dynamics of the leader

robot can be written in the usual Euler-Lagrangian form as [74],

Mm(qm)q̈m + Cm(qm, q̇m)q̇m+Gm(qm) = τm + J⊤
m(qm)Fh (2.10)

where Mm(qm) ∈ Rp×p is the inertial matrix, Cm(qm, q̇m)q̇m ∈ Rp collects the centrifugal and

Coriolis terms with Cm(qm, q̇m) ∈ Rp×p expressed in Christoffel symbols and Gm(qm) ∈ Rp is

the gravitational force vector. qm ∈ Rp is the generalized configuration variables which in this

case are the relative joint angles and τm ∈ Rp is the generalized force vector.

23



2.4.2 Control design

The ATSBT framework is designed in this section. Subscripts j = m, s are used for concise

representation where, subscript m refers to the rigid leader robot and subscript s refers to the

soft follower robot. Similar to Section 2.3, consider the maps hm(·) : Rp → Rp and hs(·) :

Rn → Rp which map the configuration spaces to the task space Rp. In this work the direct

forward kinematics of the robots are utilized as these maps and the robot tip positions and their

velocities are defined as, Xj = hj(qj) and Ẋj = Jj(qj)q̇j respectively. Here, Jj(qj) =
∂hj(qj)

∂qj
are

the Jacobian matrices.

Following the passivity-based adaptive control approach [61], assuming time invariant

uncertainties in the inertia and Coriolis/centrifugal terms, the control inputs for the rigid leader

and soft follower robots are given as,

τm =M̂m(qm)am + Ĉm(qm, ˙qm)vm + Ĝm(qm)−Kmsm − JT
mτ̄m

τs =M̂s(qs)as + (Ĉs(qs, q̇s) + D̂s)vs + K̂sqs + Ĝs(qs)−K0ss − JT
s τ̄s (2.11)

where (̂·) indicates the estimates for the corresponding terms. Km and K0 are positive definite

diagonal matrices that needs to be tuned and τ̄j are the coordinating control. The signals aj , vj

and sj , and coordinating controls τ̄j are defined subsequently.

Using the properties of Lagrangian systems one can define the regressor-parameter vector
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pair (Property A.3) for the estimated systems,

M̂m(qm)am + Ĉm(qm, ˙qm)vm + Ĝm(qm) = Ym(qm, q̇m, vm, am)Θ̂m

M̂s(qs)as + (Ĉs(qs, q̇s) + D̂s)vs + K̂0qs + Ĝs(qs) = Ys(qs, q̇s, vs, as)Θ̂s

The tracking errors for the leader system and soft follower system are defined as

em(t) = Xs(t− Ts)−Xm(t),

es(t) = Xm(t− Tm)−Xs(t).

Constant communication time delays of Ts and Tm are assumed here. The signals

am(t), vm(t), sm(t) for the leader and as(t), vs(t), ss(t) for the follower are as follows (omitting

the dependencies due to brevity):

sm = −J−1
m Λmem + q̇m

vm = q̇m − sm = J−1
m Λmem

am = q̈m − ṡm = J̇−1
m Λmem + J−1

m Λmėm

ss = −J+
s Λses + q̇s − (In − J+

s Js)ψs

vs = q̇s − ss = J+
s Λses + (In − J+

s Js)ψs

as = q̈s − ṡs = J̇+
s Λses + J+

s Λsės +
d

dt
[(In − J+

s Js)ψs]

(2.12)

where Λj are properly chosen positive definite matrices and ψs ∈ Rp is the negative gradient of
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an appropriately defined convex function which is utilized for the sub-task control (see Appendix

A.4). J+
s ≜ JT

s (JsJ
T
s )

−1 ∈ Rn×p is the pseudo inverse of Js and satisfies the property JsJ+
s = Ip.

Here Ii, for i = n, p is the i× i identity matrix. The coordinating controls τ̄j are defined as,

τ̄j = krj(−Λjej + Ẋj)− kJj ėj (2.13)

where krj and kJj are positive gains that need to be chosen properly.

The closed loop dynamics of the system is found by substituting the proposed controls

(2.11) to (2.3) and (2.10). Then, using the linear parameterizability of the Lagrangian dynamics

(Property A.3),

Mm(qm)ṡm + Cm(qm, q̇m)sm +Kmsm = Ym(qm, q̇m, vm, am)Θ̃m − JT
mτ̄m + JT

mFh

Ms(qs)ṡs + Cs(qs, q̇s)ss +Dsss +K0ss = Ys(qs, q̇s, vs, as)Θ̃s − JT
s τ̄s − JT

s Fext

(2.14)

where Θ̃j = Θ̂j −Θj . The adaptation law for the parameter estimation is defined as,

˙̂
Θm = −ΓmY

T
m sm,

˙̂
Θs = −ΓsY

T
s ss (2.15)

where Γm and Γs are positive definite symmetric gain matrices.

First, the free motion case is considered when there is no human operator force on the

leader and there is no environmental force on the follower (i.e: Fh = Fe = 0). Following the
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proof of Theorem 3.1 of [67], assuming that Jm is full rank and operated under free motion of the

closed loop teleoperation system (2.13) – (2.15), the tip of the soft follower robot asymptotically

tracks the tip position and velocity of the rigid leader robot. i.e: ei, es → 0 and ėm, ės → 0 as

t→ ∞.

Next, the case when the human operator exerts a force on the leader and/or the follower

robot experiences environmental forces is considered. Here it is assumed that both the human

operator and the remote (follower) environment are passive with respect to the inputs Fh(t),

Fe(t) and outputs rm = Jmsm, rs = Jsss. Hence, there exist constants kh, ke ∈ R+ such that

−
∫ t

0
F T
h (σ)rm(σ)dσ ⩽ −kh and

∫ t

0
F T
e (σ)re(σ)dσ ⩽ −ke.

Similarly to the free motion, assuming that Jm is full rank and the human operator and

the remote environment are passive with respect to the inputs Fh(t), Fe(t) and outputs rm, rs it

can be shown that the closed loop teleoperation system described by (2.13) – (2.15) will drive

ei, es → 0 and ėm, ės → 0 as t→ ∞.

2.5 Simulation study

This section presents the simulation results for the proposed adaptive controller for soft

robot task space trajectory tracking and the proposed bilateral teleoperation framework. First,

the general simulation environment for the soft robot will be introduced and subsequently the

simulated scenarios and the results are illustrated.
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2.5.1 Simulation environment: simulating the soft robot

Since exact models of soft robots are hard to simulate, a FEM approach is utilized to

simulate a planar soft manipulator. While, this model is a hyper-redundant system which lies

outside the PCC hypothesis, it validates the control performance even outside the assumed PCC

hypothesis.

A planar soft robot comprised of three actuated CC segments operating on the horizontal

plane with a fixed base at the origin is considered in the simulations. All the three actuated

segments of the soft robot are considered to be identical with a mass of 1kg and a length of

1m. Each segment is discretized into six equal rigid links (each with mass 0.083kg and length

0.167m) connected through linear torsional spring-dampers with parallel axes. The states of the

FEM, qsim, q̇sim ∈ R18 are mapped to the states of the soft robot model qs, q̇s ∈ R3 by summing

the corresponding states of the finite elements in one segment as,

qs =

[
6∑

j=1

qsimj
,

12∑
j=7

qsimj
,

18∑
j=13

qsimj

]⊤

q̇s =

[
6∑

j=1

q̇simj
,

12∑
j=7

q̇simj
,

18∑
j=13

q̇simj

]⊤
.

For a particular CC segment, the FEM is actuated providing the same torque input for all the joints

in the FEM of that segment. This results in an actuation mapping between the FEM actuation

τsim ∈ R18 and the soft robot actuation τs ∈ R3 defined as τsim = Aτs. Here the transmission
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matrix A ∈ R18×3 defined as,

A =


I6,1 O6,1 O6,1

O6,1 I6,1 O6,1

O6,1 O6,1 I6,1



where I6,1 is the 6 × 1 unity vector ([1, 1, 1, 1, 1, 1]⊤) and O6,1 is the 6 × 1 null vector

([0, 0, 0, 0, 0, 0]⊤). Each torsional spring-damper in the FEM is considered to have a stiffness of

3 Nm/rad and a damping of 1.2 Nms/rad. Thus, assuming identical stiffness and damping in the

CC segments, the torsional damping of each CC segment is found out to be di = d = 0.2

Nm/rad resulting in the systems damping to be Ds = 0.2 I3×3 Nms/rad and torsional stiffness is

ki = k = 0.5 Nm/rad resulting in the systems stiffness to be Ks = 0.5 I3×3 Nm/rad. The

Robotics System Toolbox in Simulink is used to simulate the FEM of the soft robot.

2.5.2 Simulation results for adaptive task space trajectory tracking

In this simulation study, the uncertainty was assumed in the soft robot’s segment masses

(mi), torsional stiffness (ki) and torsional damping (di). Note that, the end effector is omitted in

the dynamics used for this simulation. Thus the parameter vector was chosen as

Θs = [m1,m2,m3, k, d]
⊤ and the initial estimates for the parameters were set to

Θ̂s(0) = [1.2, 0.8, 1.3, 0.1, 0.1]⊤ which are different from the nominal values. The control gains

were set to Γ = 0.75, Λ = 7 and K0 = 2. The soft robot was initialized at

qs(0) = [−0.15, 0.1, 1.5]⊤rad and q̇s(0) = [0, 0, 0]⊤rad/s. A predetermined reference trajectory

(Xd(t)) as shown in Table 2.1 was used over a period of 100s for task space trajectory tracking.
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Table 2.1: Reference trajectory for task space trajectory tracking used in the simulation study

Time / s Reference trajectory ( Xd(t) ) / m

0 ≤ t < 20 [−1.1− 0.5 sin(t/2) , 2.1 + 0.5 cos(t/2)]⊤

20 ≤ t < 30 [0.1t− 3.1− 0.5 sin(10) , 2.1 + 0.5 cos(10)]⊤

30 ≤ t < 40 [−0.1− 0.5 sin(10) , 0.05t+ 0.6 + 0.5 cos(10)]⊤

40 ≤ t < 60 [−0.1− 0.5
(
sin(10)− sin( (t−40)π

5
)
)
, 2.1 + 0.5

(
cos(10) + cos( (t−40)π

5
)
)
]⊤

60 ≤ t < 70 [−0.1t+ 5.9− 0.5 sin(10) , 2.6 + 0.5 cos(10)]⊤

70 ≤ t < 80 [−1.1− 0.5 sin(10) , −0.05t+ 6.1 + 0.5 cos(10)]⊤

80 ≤ t ≤ 100 [−1.1− 0.5 sin(10) , 2.1 + 0.5 cos(10)]⊤

The trace of the soft robot’s tip trajectory along with the reference trajectory in the task

space is illustrated in Figure 2.2a. Considerably high tracking errors over the initial 10s as seen in

Figure 2.2b might be due to the fact that the parameters are being updated and has not converged.

However, as the time progresses the tracking error approaches zero. Figure 2.2c illustrates the

control torques under the proposed adaptive controller. Sudden spikes are observed initially as

well as in instances when the reference trajectory suddenly moves direction. Although such

control signals are possible in a simulation environment, in actual physical soft robot models

there might be actuation limits, thus inhibiting the performance of the controller. To investigate

such behavior, the proposed controller is tested in an experimental study (Section 2.6.2).

The evolution of parameter estimation is illustrated in Figure 2.3. Here, it is observed that

the parameters do not converge to their actual values, except for the stiffness value. Intuitively,

the convergence of the stiffness value to the actual value is required for steady state stability.

However, it can be seen that the other parameter values remain bounded, as expected.
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Figure 2.2: Simulation results for the trajectory tracking performance of the proposed adaptive
controller.
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Figure 2.3: Simulation results for parameter adaptation of the system parameters.

32



2.5.3 Simulation results for ATSBT

This section presents the simulation results demonstrating the performance of the

proposed bilateral teleoperation framework. The rigid leader robot was composed of two links

with [1.55, 1.45]⊤m length and each weighing 1kg. The follower robot was a three segment soft

robot with the same parameters as described above in Section 2.5.1. The control gains were

constant throughout the simulations and were set to Γm = Γs = 0.75 Λm = Λs = 10,

Krm = Krm = 1, Kjm = Kjs = 1 and Km = K0 = 1. The human force and environmental

force were modeled as spring-damper forces. The spring and damper gains for the human force

was set to 50 N/m and 50 Ns/m. Thus, the exerted human force is calculated as

Fh(t) = 50(Xdesired − Xm(t)) − 50Ẋm(t), where Xdesired is the desired location of the leader

robot to be moved to. Those gains for the environmental force is 1050 N/m and 10 Ns/m

resulting in exerted environmental force Fh(t) = 1050(Xwall −Xm(t))− 10Ẋm(t) with Xwall is

the location of the environment obstacle. Considering the parameterization on the dynamics, the

rigid leader was parameterized using the minimum parameters as shown in [74] (see Appendix

A.3) and the soft follower was parameterized with respect to the masses of the segments and the

end-effector, the stiffness and damping as Θs = [m1,m2,m3,me, k, d]
⊤. In the simulations, the

initial parameter estimates were selected to be Θm(0) = [1, 1, 1]T and Θs(0) = [1, 1, 1, 1, 1, 1]T .

2.5.3.1 Scenario with no environmental force

In this simulation study, the remote environment was free from any obstacles, thus the

follower robot was allowed to move freely. The initial conditions for the rigid leader robot was

qm(0) = [π
4
, π
4
]T , q̇m = [0, 0]T and that for the soft follower robot was qs(0) = [π

4
,−π

4
, π
6
]T ,
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q̇s = [0, 0, 0]T . The task space synchronization of the ATSBT with sub-task control for degree of

curvature limits is illustrated in Figure 2.4. The end-effector mass is 0.05kg for this simulation.

Initially no human force is exerted before 5s. At t = 5s the human operator moves the leader

to Xm = [−1, 1]T exerting a force as described above. At t = 12s the human operator moves

the leader to Xm = [1, 2]T . At t = 20s the system is set to operate in free motion. Figure 2.5

illustrates the degree of curvature evolution for this case. Figure 2.6 and Figure 2.7 illustrates the

same experiment with no sub task control.

2.5.3.2 Scenario with environmental interaction

In this simulation, a wall was assumed to be present at x = 0 in the remote environment.

Figure 2.8 depicts the task space teleoperation with sub-task control of curvature limits of qs2 =

[−π, π]⊤ and qs3 = [−π
2
, π
2
]⊤. The initial conditions for the leader and follower were qm(0) =

[1.8, 1.0]⊤, q̇m(0) = [0, 0]T , qs(0) = [2.5,−2.0,−1.65]⊤ and q̇s(0) = [0, 0, 0]⊤. Initially, 0-5s

is in free motion. Then, at t = 5s the human operator moves the leader to Xm = [1.5, 1.5]⊤

exerting a force as described above. At t = 12s the human operator tries to move the leader to

Xm = [−1, 1]⊤ and at t = 16s to Xm = [1, 1]⊤. Finally, at t = 24s the system is set to operate

again in free motion.

At around t = 13s the soft follower robot contacts the wall and the consequences of error

not converging and the force feedback at the leader robot side is clearly seen in Figure 2.8c

illustrating the performance of the proposed bilateral teleoperation framework.
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Figure 2.4: Simulation results for the ATSBT framework without environmental force with sub-
task control for degree of curvature limits.
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Figure 2.5: Simulation results for the ATSBT framework without environmental force illustrating
the degree of curvature evolution with sub-task control for degree of curvature limits.
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c) Synchronization error in x direction.
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Figure 2.6: Simulation results for the ATSBT framework without environmental force and
without sub-task control.

37



0 5 10 15 20 25

-3

-2

-1

0

1

2

3

Figure 2.7: Simulation results for the ATSBT framework without environmental force illustrating
the degree of curvature evolution without sub-task control.
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Figure 2.8: Illustration of the simulation results for ATSBT with environmental force and with
sub-task control for degree of curvature limits.
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2.6 Experimental investigation

This section presents the experimental results demonstrating the performance of the

proposed bilateral teleoperation framework. First the experimental setup is described.

Subsequently, the experimental results of the bilateral teleoperation scenarios are presented and

discussed.

2.6.1 Experimental setup

The experimental setup shown in Figure 2.9 consists of a pneumatically actuated pleated

type soft robot [75], OptiTrack motion capture system and two i7 16GM RAM Windows 10

laptops: one running the control algorithms on Matlab 2015 and the other simulating the rigid

leader robot for the bilateral teleoperation framework only.

2.6.1.1 The Soft Robot

The soft robot used in the experiments, as shown in Figure 2.10, comprises of three bi-

directional pleated type segments (n = 3) which were fabricated following methods outlined

in [75]. The robot was constrained to move on a horizontal table and ball transfers were used

underneath near the segment joints to reduce friction.

Each segment has two compartments that are individually actuated pneumatically. The

segments are assumed to deform with a constant curvature under the applied pressure. The

middle layer of each segment (the joint between the two compartments) is inextensible due to

the restrained material layer. The segment lengths along the inextensible middle layer were

measured to be Lsi = 0.125 m. The segment masses msi = 0.110 kg were measured prior to
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Figure 2.9: The experimental setup consisting of A-soft robot, B-OptiTrack cameras for motion
capturing, C-PC for streaming motion capture data, D-pneumatic control unit, and E-laptop
simulating the leader robot and F-laptop running the main control algorithms.

Figure 2.10: The pleated type soft robot.

(a) (b)

Figure 2.11: Positioning of the markers is shown in panel (a). Panel (b) illustrates the degree of
curvature of the mid segment as seen using the motion capture system.
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joining the segments together. The material properties of each segment were assumed to be

identical. Therefore, for all the segments identical torsional stiffness of ki = k and damping of

di = d were assumed. The identification of the nominal values of k and d will be discussed

subsequently. As seen in Figure 2.11a, an unactuated end effector resembling a soft gripper of

mass me = 0.050 kg was attached to the tip of the soft robot (gripper was not actuated).

2.6.1.2 Degree of Curvature Estimation using Motion Capture

The positions of the end points of each segment was extracted using a Motion Capture

(MoCap) system (OptiTrack) by attaching clusters of markers on the segment ends as shown in

Figure 2.11a. The base of the soft robot was securely attached to the table so that experiments

could be conducted without re-calibration. The degree of curvature of each segment was

calculated using the properties of the dot product of the labeled marker positions as illustrated in

Figure 2.11b:

qsi = 2

(
π

2
− cos−1

(
(a− b) · (c− b)

||a− b|| ||c− b||

))
.

These labeled markers were assumed to be lying on the horizontal plane throughout the trial.

2.6.1.3 The Actuation Unit

The soft robot was actuated using a pneumatic controller unit based on the open source

hardware platform [76] with command inputs serially transmitted to the control board (Arduino

Mega). The compressed air to the unit was supplied by an external compressor at a constant

pressure of 20psi. The air pressure in the segments was regulated by Pulse-Width Modulation
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Figure 2.12: Relationship between the PWM signal and the applied torque

(PWM) using a frequency of 100Hz. The control input calculated by the controller, in terms

of a torque, was converted to a PWM signal for each segment using corresponding mappings.

At a given time instance, only one compartment out of the two in each segment is actuated. A

positive torque commanded one compartment while a negative torque commanded the opposite

compartment of the same segment.

The torque-to-PWM signals mapping was identified by a curve fitting process for each

compartment of the three segments. Considering the dynamic model of the soft robot (2.3), for

the ith segment, a step input of τsi = τpwm resulted in a steady state represented by τipwm = k θipwm .

Here θipwm is the steady state degree of curvature of the considered ith segment and k is the

torsional stiffness.

Sending commands to only one compartment of a segment, the steady state degree of

curvatures (θipwm) were recorded for different PWM signal values. Then the equivalent torque

being applied, τipwm , was calculated hypothesizing the torsional stiffness of each segment to be

k = 1 Nm/rad. Finally, a third order polynomial curve fit was performed using this data for each

of the segments to obtain the mapping from torque to PWM signal. Figure 2.12 illustrates the

relationship between the PWM signals and the equivalent torque being applied for the individual
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compartments of the three segments. The nominal value of the torsional damping of a segment

d = 0.2 Nms/rad was calculated using a system identification process by applying a unit torque

to each of the segment.

2.6.2 Experimental results for adaptive task space trajectory tracking

In this experimental study, the uncertainty was assumed in the soft robot’s segment masses

(mi), end- effector mass (me) torsional stiffness (ki) and torsional damping (di). Thus the

parameter vector was chosen as Θs = [m1,m2,m3,me, k, d]
⊤ and the initial estimates for the

parameters were set to Θ̂s(0) = [0.6, 0.6, 0.6, 0.05, 1, 0.2]⊤. The control gains were set to

Γ = 0.075, Λ = 3.5 and K0 = 0.3. A predetermined reference trajectory as shown in Table 2.2

was used over a period of 30s for task space trajectory tracking. Figure 2.13a shows the task

space trajectories of the reference and the actual paths. The configurations of the soft robot

during the experiment is shown in Figure 2.13b.

2.6.3 Experimental results for ATSBT

The performance of the ATSBT framework is evaluated experimentally in this section. In

these experiments, the fabricated soft robot served as the follower device and a rigid manipulator

which was simulated due to the unavailability of such a robot served as the leader device. The

simulation was done using Matlab/Simulink 2019a in real time using the Simulink Desktop Real-

Time library block on a separate laptop (see Figure 2.9). The communication between the two

laptops, i.e. between the leader and follower robots was achieved through the TCP/IP protocol

over WiFi. The network time delays were measured to be Tm = Ts = 0.004s.
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(a) Task space trajectories

(b) Sequenced photos of the task space trajectory tracking

Figure 2.13: Experimental results for task space trajectory tracking
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Table 2.2: Reference trajectory for task space trajectory tracking used in the experimental study

Time / s Reference trajectory ( Xr(t) ) / m

0 ≤ t < 2 [−0.16 , 0.3]⊤

2 ≤ t < 10.5 [−0.16 + 0.02t, 0.3]⊤

10.5 ≤ t < 11 [0.01, 0.3]⊤

11 ≤ t < 15 [0.01, 0.3− 0.02t]⊤

15 ≤ t < 16 [0.01, 0.22]⊤

16 ≤ t < 23.5 [0.01 + 0.02t, 0.22]⊤

23.5 ≤ t < 25 [0.15, 0.22]⊤

25 ≤ t < 29 [0.15, 0.22 + 0.02t]⊤

29 ≤ t ≤ 30 [0.15, 0.3]⊤

The simulated leader robot comprised of a 2-DoF rigid planar elbow robot and was modeled

according to [74] (see Appendix A.3). The link lengths were chosen as Lm = [0.1895, 0.1895]⊤m

so that the leader robot and the soft follower robot has a similar task space. The masses and

inertia were chosen as mm = [0.2, 0.2]⊤kg and Im = [0.003, 0.003]⊤kgm2 respectively. The

human force was modeled as a spring-damper forces with spring and damper gains set to 150

N/m and 150 Ns/m respectively.

For the soft follower robot, the uncertainty was assumed in the segment masses, end

effector mass, torsional stiffness and torsional damping. Thus the parameter vector was chosen

as Θs = [ms1 ,ms2 ,ms3 ,me, k, d]
⊤. The initial parameter estimates were set as

Θ̂s(0) = [0.5, 0.5, 0.5, 0.01, 2, 1]⊤ which were different from the measured nominal values. The

control gains were constant throughout the experiments and were set to Γs = 0.075, Λs = 3.5,

Krs = 0.3, Kjs = 10 and K0 = 0.3.
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The uncertainty in the rigid leader robot was assumed to be in the rigid robot’s link masses

and in the link inertia. Thus the parameter vector was chosen as Θm = [mm1 ,mm2 , Im1 , Im2 ]
⊤.

The initial parameter estimates were Θ̂m(0) = [0.05, 0.05, 0.001, 0.001]⊤. The control gains were

constant throughout the experiments and were set to Γm = 0.75, Λm = 5, Krm = 1, Kjm = 12

and Km = 1.

2.6.3.1 Scenario with no environmental force

Here the soft follower robot was allowed to move freely with no environmental forces being

applied. The sub-task control of conforming to degree of curvature limits (see Appendix A.4) of

qsi = [−5π
9
, 5π

9
]⊤ is considered. In the experiment, t = 0-5.5s is in free motion for both the robots

to synchronize. Then, from t = 5.5-16.5s (phase 1.1) the human operator exerts a force to move

the leader toward Xm = [0.001, 0.245]⊤. From t = 16.5-27s (phase 1.2) the human operator tries

to move the leader to Xm = [0.2, 0.2]⊤ and from t = 27-35s (phase 1.3) to Xm = [0.25, 0.001]⊤.

At t = 35s the system is set to operate again in free motion.

Figure 2.14 illustrates the results of this scenario without and with the sub-task control.

Figure 2.15 depicts the configurations of the soft robot during the experiment. It is clearly seen

from the sequenced photographs that the sub-task control forces the degree of curvatures of the

segments to be within the desired limits by altering the configuration of the soft robot.
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Figure 2.14: Experimental results for the ATSBT without and with subtask control of conforming
to degree of curvature limits for the scenario with no environmental force.
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(a) without the subtask control

(b) with the subtask control

Figure 2.15: Sequenced photographs of the bilateral teleoperation scenario with no environmental
force.

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 2.16: Trace of the robots’ tips for the ATSBT experiment with sub-task control of
conforming to degree of curvature limits for the scenario with no environmental force.
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2.6.3.2 Scenario with the soft follower interacting with an obstacle

In this scenario an obstacle of the form of a wall at x = 0.05 m appears during the trial

at t = 15s and the trial was conducted without attaching an end effector. In the initial 0 - 5.5s

the robots operate in free motion. From t = 5.5-15.5s (phase 2.1) the human operator moves the

leader toward Xm = [0.001, 0.245]⊤. From t = 15.5-21.5s (phase 2.2) the human operator tries

to move the leader to Xm = [0.2, 0.2]⊤. The soft follower robot contacts the obstacle at around

t = 16.5s. Since the soft robot cannot move past the obstacle, the position errors between the

two robot tips do not approach zero. Therefore, the human operator continuously tries to push

toward the desired point despite the inability to move it any further. This is clearly illustrated in

Figure 2.17 bottom figure showing that the environmental forces experienced by the soft robot

at the follower environment are reflected onto the leader side. From t = 21.5-29.5s (phase 2.3)

the human operator moves the leader robot tip to the opposite direction of the obstacle, toward

Xm = [0.01, 0.33]⊤. Now, it is observed that the tracking errors approach zero and the exerted

forces diminish. At t = 29.5s the system is set in free motion. Figure 2.17 presents the results of

this trial and Figure 2.18 illustrates the configurations of the soft robot and the obstacle. The force

feedback at the leader robot side is clearly seen in this experiment illustrating the performance of

the proposed bilateral teleoperation framework.
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Figure 2.17: The results of the ATSBT involving obstacle contact in the remote(follower)
environment. The forces experienced by the human is shown in the bottom plot.

Figure 2.18: Sequenced photographs of the ATSBT scenario with the soft follower interacting
with an obstacle.
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2.6.4 Discussion

The goal of the experimental investigation was to study the performance of the proposed

passivity-based task space controller and the ATSBT framework for a pneumatically actuated

soft robot. It should be noted that the reference trajectories and the target positions for all the

trials were carefully considered in order for the soft robot to be able to operate in the task space

spanned by qsi = [−5π
9
, 5π

9
]⊤ for all the segments so that the sub task control of conforming to

degree of curvature limits of qsi = [−5π
9
, 5π

9
]⊤ can be utilized.

In the experiments, although the results were satisfactory, the slow movement of the soft

follower robot resulted in the follower robot not reaching the target reference positions in the

allotted time interval. However, this observed result illustrates the critical need for bilateral

teleoperation as the human operator is immersed in the remote follower environment and is able

to respond to changes in the operational scenario.

The slow movement of the follower robot may be due to the slow response of the pneumatic

actuation and also due to the hysteresis effect in the segments. Also spikes can be observed in the

input where the large torques that are generated due to the local singularities of the segments.

Furthermore, although the stiffness of the segments were assumed to be constant, they may

be changing with deformation. This time varying nature of the parameters are not handled by the

passivity-based adaptive control and it can impact the performance as well as the stability of the

bilateral teleoperation system. The frictional effects were neglected in the soft robot model as

well as in the control algorithms. However, there might have been a significant friction between

the soft robot and the surface despite the addition of ball transfers.
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2.7 Summary

In this chapter, a task space adaptive control framework developed for PCC soft robots

leveraging the augmented formulation was presented. The adaptive controller guaranteed task

space trajectory tracking under time invariant parameter uncertainties. Further, an adaptive

bilateral teleoperation framework for task space synchronization for a system consisting of a

non-redundant rigid leader manipulator and a redundant PCC soft follower manipulator was

developed. The redundancy in the soft follower manipulator was exploited to achieve sub-task

objectives such as conforming to curvature limits while tracking the position of the leader robot.

The simulations and the experimental study demonstrated good task space tracking performance

and immersion in the remote environment.
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Chapter 3: Robust Task Space Control of Soft Robots

This chapter investigates the classical passivity-based robust control approach for task

space trajectory tracking of planar PCC soft robots. The developed controller leverages an

enhanced dynamics model for planar multi-link soft robots that considers the mass distribution

of the robot. The efficacy of the modeling and control framework is demonstrated using

numerical simulations and physical experiments.

3.1 Overview

As discussed in Chapter 2, most of the controllers developed for soft robots assume perfect

knowledge of the parameters. However, accurate parameter estimation in soft robots is hard. To

overcome this the researchers have recently developed adaptive and robust controllers for soft

robot curvature tracking [44, 45] and task space tracking [77, 78], getting inspiration from the

classical rigid robotics community [61, 79, 80, 81]. In this chapter passivity-based robust control

ideas [80] have been applied for soft robots for task space trajectory tracking.

The recent modeling approach proposed by the authors in [22], called the augmented

formulation, which models a soft robot as if it was a rigid robot using an augmented rigid

formulation, has opened avenues to implement and test traditional control algorithms that were

developed for rigid robots. Indeed, this model was utilized in developing controllers in Chapter
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2. However, this model considers lumped masses; hence, it is not capturing the total effects due

to the soft body’s inertia. In [82], the authors proposed a dynamics model for variable length

multisection continuum arms assuming a uniform linear density for the segments. Although this

method captures the inertia effects under the linear density assumption, it does not allow the

mass distribution across the width of the links. Recently, a modeling approach that considers the

mass distribution along the length and width of a soft link under affine curvature was introduced

in [35]. However, this approach was only limited to a single link soft robot. This chapter

proposes an enhanced dynamics model for PCC soft robots that considers the soft robot’s mass

distribution along its body by considering the length and width of the soft robot links. This

modeling approach circumvents the inaccuracies caused by the lumped mass models that do not

consider the total inertial effects of the links.

The main contribution of this chapter is to demonstrate the theoretical and experimental

realization of robust trajectory tracking for planar PCC multi-link soft robots. The proposed

framework encapsulates the body’s total inertial effects by considering the soft robot’s mass

distribution along its length and width. Using numerical simulations and experiments on a

multi-link soft robot, the efficacy of the proposed control framework is demonstrated.

The rest of the chapter is organized as follows. The enhanced dynamics model is introduced

for a planar inextensible PCC soft robot in Section 3.2. The passivity-based robust controller

for task space tracking is developed in Section 3.3 leveraging the proposed enhanced dynamics

model. The simulation results are presented in Section 3.4 and the experimental results in Section

3.5.
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Figure 3.1: A planar PCC soft robot with n links is illustrated. The inextensible middle layer is
colored red.

3.2 Planar distributed mass soft robot model

This section introduces the kinematics and the dynamics of a planar inextensible soft robot

and considers the case wherein the base of the soft robot is fixed. First, the kinematics of the soft

robot is discussed and subsequently the dynamics model is introduced, which explicitly takes into

account the mass distribution of the planar soft robot. Note that since this section is considering

a planar soft robot, the task space has a dimension of two.

3.2.1 Kinematics

In this work, the soft robot is consideed to be PCC [16]. Thus, the soft robot is assumed to

be composed of n inextensible segments and each segment is assumed to have a time-varying CC

along the length of the segment. To constitute the soft robot, these n CC segments are attached
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so that the resulting curve is differentiable everywhere and is on a plane. Under this hypothesis, a

single variable per segment, namely the degree of curvature, is sufficient to describe the segment’s

configuration in space. Let q(t) = [q1(t), q2(t), ..., qn(t)]
⊤ be the curvatures of the soft segments.

The soft robot is oriented so that when all the links are straight, the robot aligns with the

y-axis. As shown in Figure 3.1, let the length of the ith segment along its central axis be Li and

its thickness Di. The length of each segment is parameterized by s ∈ [0, 1], such that sLi is the

arc length along the segment’s central axis to the point s from the ith segment’s base. Moreover,

the width of the segments is parameterized by d ∈ [−0.5, 0.5] such that dDi is the lateral distance

to point d on the ith segment from the central axis. At each point s for any segment i along the

soft robot’s body, reference frames {Si
s}, with the superscript i denoting the considered segment

are attached. The base frame, {S0}, is fixed in space.

The orientation αi
s(t) of the reference frame {Si

s} at a point s along the central axis on the

ith segment with reference to the base frame {S0}, can be written as the sum of integral of the

curvature,

αi
s(t) =

i−1∑
k=1

qk(t) +

∫ s

0

qi(t)dl =
i−1∑
k=1

qk(t) + qi(t)s.

Thus the Cartesian coordinates
(
xis,d (t) , y

i
s,d (t)

)
at a general point on the ith segment

parameterized by (s, d) on the soft robot is given by,

xis,d(t) =
i−1∑
k=1

(
Lk

∫ 1

0

sinαk
s(t)ds

)
− dDi cosα

i
s(t) + Li

∫ s

0

sinαi
s(t)ds

yis,d(t) =
i−1∑
k=1

(
Lk

∫ 1

0

cosαk
s(t)ds

)
− dDi sinα

i
s(t) + Li

∫ s

0

cosαi
s(t)ds.
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Define the direct forward kinematics h(q) : Rn → R2 which maps the configuration space to the

task space,

h(q) =
[
xn1,0 , y

n
1,0

]⊤

Thus, the end effector position and the velocity are defined as, X(t) = h(q) and Ẋ(t) = J(q)q̇,

where, J(q) = ∂h(q)
∂q

∈ R2×n is the Jacobian matrix.

3.2.2 Dynamics

This section derives the dynamics of the soft robot based on the Euler-Lagrange (E-L)

formalism. It should be noted that in this dynamics derivation, I do not assume any simplifying

assumptions on the mass distribution, such as uniform linear mass density [82] or concentrated

masses at discrete points [22, 43]. Instead, a normalized mass distribution ρi(s, d) for each

segment i is considered. In the following, where obvious, the time arguments are suppressed in

the expressions due to brevity and clear representation.

Following the E-L method, the inertia matrix M(q) ∈ Rn×n is evaluated as,

M(q) =
n∑

i=1

∫ 1

0

∫ 0.5

−0.5

ρi(s, d)∇q(x
i
s,d, y

i
s,d)

⊤∇q(x
i
s,d, y

i
s,d)ddds

where ∇q is the gradient operator ∇q(·) = ∂(·)
∂q

. Then the centrifugal and Coriolis terms matrix

C(q, q̇) ∈ Rn×n is evaluated using the standard Christoffel symbols [74]. The gravitational
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potential energy Pg ∈ R of the soft robot is calculated by,

Pg =
n∑

i=1

(∫ 1

0

∫ 0.5

−0.5

mig(x
i
s,d sin (ϕ) + yis,d cos (ϕ))ddds

)

where ϕ defines the direction of the gravitational field. Therefore the gravity terms vector

G(q0, θ) ∈ Rn is evaluated as,

G(q) = ∇q (Pg) .

In this work, the elasticity of the soft robot is modeled through a continuous and

homogeneous distribution of infinitesimal springs and dampers along the length of the soft

segments. Assuming a linear relationship for elastic parameters, the stiffness and damping terms

are Kq and Bq̇, respectively. Here the coefficient of stiffness K ∈ Rn×n and damping

B ∈ Rn×n are diagonal matrices with the stiffness ki and damping βi of the ith segment as the

diagonal elements respectively.

Finally, adding the stiffness and damping terms the complete dynamics are,

M(q)q̈ + C(q, q̇)q̇ +Bq̇ +Kq +G(q) = τ (3.1)

Here τ ∈ Rn is the control input and physically it is the effective torque applied on the soft links

causing them to bend with a CC.

Note that the soft robot dynamics in (3.1) is in the Lagrangian form, and hence it

encapsulates the properties of Lagrangian systems such as the skew symmetric property and the

linearly parameterizable property [74] as noted in Appendix A.2.
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Figure 3.2: Illustrating the difference in the forward dynamics of the proposed distributed mass
dynamics model when compared with the augmented formulation. The input was τ = [0.2 +
0.2 sin(0.2πt), 0.2 cos(0.3πt), 0.15 sin(0.5πt)]⊤.

Figure 3.2 illustrates the open loop behavior of a three-link planar PCC soft robot

modeled using the proposed distributed mass approach and the augmented formulation [22] for

a sinusoidal input torque. It is clearly seen from the evolution of the soft robot tip and the

individual curvatures that there are considerable effects due to the soft robot’s mass distribution,

which the augmented formulation does not capture.
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3.3 Passivity-based robust control for task space trajectory tracking

This section presents the passivity-based robust controller for task space trajectory tracking

of planer PCC soft robots. Leveraging the soft robot dynamics as given in (3.1) and following the

well-known passivity-based robust control approach in [80], this chapter shapes it to task space

trajectory tracking inspired by the works in [67, 73]. Note that, for conciseness, a soft robot

operating on the horizontal plane is considered, thus ignoring gravity effects. However, the ideas

can be readily extended to soft robots under gravity, as long as the PCC assumption is valid.

Let Xd(t) ∈ R2 be the desired task space trajectory. Then, the tracking error is defined as,

e(t) = X(t)−Xd(t).

The objective of task space trajectory tracking is to drive e(t), ė(t) → 0. To that end, the tracking

error is restricted to thr sliding surface [67],

s(t) =J+(q)ė(t) + J+(q)Λe(t) (3.2)

where, Λ ∈ R2×2 is a positive definite gain matrix and In is the n × n identity matrix. Here,

J+ ≜ J⊤(JJ⊤)−1 ∈ Rn×2 is the pseudo inverse of J and satisfies the property JJ+ = I2. It is

seen that once the trajectories reach s ≡ 0,

ė(t) = −JJ+Λe(t) = −Λe(t)

and hence, the errors will reach the origin exponentially when s ≡ 0.
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Let us define signals, v = q̇ − s and a = q̈ − ṡ. The notation (̂·) is used to denote

the estimated values. Using the linearity in parameters property (Property A.3) of Lagrangian

systems for the system (3.1), the regressor (Y (q, q̇, v, a)) and the parameter (Θ) vector pair for

the estimated systems can be defined,

Y (q, q̇, v, a)Θ̂ =M̂(q)a+ Ĉ(q, q̇)v + B̂v + K̂q + Ĝ(q).

Here, time invariant uncertainties in the mass, stiffness and damping are assumed. The estimated

parameter vector Θ̂ can be written as,

Θ̂ = Θ0 + u (3.3)

where Θ0 is a fixed nominal parameter vector and u is an additional control term which will be

designed for achieving robustness for uncertainty in the model parameters.

The control input τ is defined as,

τ =Y (q, q̇, v, a)Θ̂−Kss (3.4)

where Ks is a positive definite diagonal gain matrix. Using (3.3) in the control input (3.4) and

substituting it in (3.1) yields,

M(q)ṡ+ C(q, q̇)s+Ds+Kss = Y (q, q̇, v, a)(Θ̃0 + u) (3.5)

where Θ̃0 = Θ0 − Θ is the parameter uncertainty which is constant. Suppose the uncertainty is
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bounded such that a constant bound γ ≥ 0 can be found satisfying,

||Θ̃0|| = ||Θ0 −Θ|| ≤ γ. (3.6)

Then, letting ϵ > 0, the control term u is designed as,

u =


−γ Y ⊤s

||Y ⊤s|| if ||Y ⊤s|| > ϵ

−γ
ϵ
Y ⊤s if ||Y ⊤s|| ≤ ϵ

(3.7)

Considering the closed loop system (3.5) with bounded parameter uncertainty as (3.6), the

additional control u defined as (3.7) and the sliding surface (3.2), it can be shown that the tracking

error is uniformly ultimately bounded (u.u.b). This can be done by considering a Lyapunov like

function for the system defined as,

V =
1

2
s⊤M0s

and following the proof given in [74] which is sketched below.

Differentiating V with respect to time and simplifying yields,

V̇ =− s⊤Qs+ s⊤Y2(Θ̃0 + u)

where the skew symmetric property (Property A.2) is utilized and defined Q := D0 + Ks.
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Considering the term s⊤Y2(Θ̃0 + u), observe that if ||Y ⊤
2 s|| > ϵ then,

s⊤Y2(Θ̃0 + u) =(Y ⊤
2 s)

⊤
(
Θ̃0 − γ

Y ⊤
2 s

||Y ⊤
2 s||

)
≤ ||Y ⊤

2 s||
(
||Θ̃0|| − γ

)
< 0.

This implies that V̇ < 0 with respect to s. Note that ||Θ̃0|| ≤ γ and γ ≥ 0. Hence, Θ̃0 ≤ γ
Y ⊤
2 s

||Y ⊤
2 s|| .

Now, if ||Y ⊤
2 s|| ≤ ϵ then,

s⊤Y2(Θ̃0 + u) =(Y ⊤
2 s)

⊤(Θ̃0 + u)

≤(Y ⊤
2 s)

⊤
(
γ
Y ⊤
2 s

||Y ⊤
2 s||

+ u

)
=γ||Y ⊤

2 s|| −
γ

ϵ
||Y ⊤

2 s||2.

The maximum of the R.H.S in the above expression is ϵγ/4 which is achieved when ||Y ⊤
2 s|| =

ϵ/2. Therefore,

V̇ ≤ −s⊤Qs+ ϵγ/4

and see that V̇ < 0 if s⊤Qs > ϵγ/4. Using the bounds on the quadratic form,

λmin(Q)||s||2 ≤ s⊤Qs ≤ λmax(Q)||s||2 where λmin(Q) and λmax(Q) are, respectively, the

minimum and maximum Eigenvlaues of the matrix Q, we have that V̇ < 0 if

λmin(Q)||s||2 > ϵγ/4 or, equivalently

||s|| >
(

ϵγ

4λmin(Q)

)
=: δ.

The u.u.b follows from this result using δ to define the radius of the ultimate boundedness set.
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3.4 Numerical simulations

A three-link planar soft robot with uniform mass distribution is used in this simulation

study. Each link was considered to be identical with a length of Li = 1m, width of Di = 0.05m,

normalized mass of ρi = 5kg, stiffness of ki = 0.5 and damping of βi = 0.05. Matlab/Simulink

was used for the simulations, and for all the simulations, the simulation environment was as in

Section 2.5.1.

For the simulation study, two scenarios were considered. In scenario 1, the desired task

space trajectory was defined as,

xd(t) = −0.9 + 0.8 sin(0.5πt), yd(t) = 1.6 + 0.6 cos(0.5πt)

For the scenario 2, the frequency and the offset of the x-direction is changed at the middle of the

simulation. For the initial 11s, the desired trajectory is the same as in scenario 1. At 11s, the

desired trajectory is changed to

xd(t) = 0.5 + 0.8 sin(0.8πt), yd(t) = 1.6 + 0.6 cos(0.5πt)

until 30s at which point the desired trajectory is changed back to the same as in scenario 1.

The performance of the proposed robust controller for task space trajectory tracking was

tested with a passivity-based adaptive control approach (as in Chapter 2) for both the scenarios.

Moreover, the robust controller and the adaptive controller designed on the basis of the augmented

formulation [22] was tested as well.
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3.4.1 Simulation results

The uncertainty in the segment masses, damping, and stiffness parameters were considered

in the simulations. Therefore, the parameter vector was chosen as Θ = [m1,m2,m3, k, d]
⊤ and

the nominal parameter vector for the robust controller was set to Θ0 = [4, 4, 4, 0.5, 1]⊤. The

bound on uncertainty was found to be γ ≥ 1.858, and it was set to γ = 2.5. The value ϵ = 0.1

and the control gains Ks = 1, Λ = 12 were chosen. For the adaptive controller, the initial

parameter estimation was set to Θ̂(0) = [4, 4, 4, 0.5, 1]⊤. The adaptation gain was Γ = 2 and

gain Ks = 1.

3.4.1.1 Scenario 1

For this scenario, the performance comparison for task space trajectory tracking for the

proposed robust and adaptive controller is illustrated in Figure 3.3. Observe that the adaptive

controller initially has higher errors, but the robust and adaptive controllers eventually have

similar performance. Considering the robust controller, the dynamics model used for the control

derivation has shown negligible effect for the studied case, as seen in Figure 3.4. However, the

controller developed based on the proposed distributed mass model achieved less tracking error

for adaptive control than the augmented formulation-based adaptive controller. From Figure 3.5,

observe that the augmented formulation-based controller exhibits unsteady motions at certain

instances.
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Figure 3.3: Simulation results for scenario 1 illustrating the performance comparison between
robust control and adaptive control.
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Figure 3.4: Simulation results for scenario 1 illustrating the performance comparison of the
robust controllers designed on the basis of the distributed mass model and the augmented
formulation
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Figure 3.5: Simulation results for scenario 1 illustrating the performance comparison of the
adaptive controllers designed on the basis of the distributed mass model and the augmented
formulation
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Figure 3.6: Simulation results for scenario 2 illustrating the performance comparison between
robust control and adaptive control.

3.4.1.2 Scenario 2

For this scenario, observe from Figures 3.6-3.7 that the robust controller designed on the

basis of the distributed mass model performs well with small transients errors when the reference

trajectory is changed. On the other hand, the robust controller designed on the basis of the

augmented formulation becomes unstable due to the sudden change in the reference trajectory

as seen in Figure 3.7. The performance of the adaptive controller is illustrated in Figure 3.8

where satisfactory tracking performance is observed despite higher transient times than the robust

controller.
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Figure 3.7: Simulation results for scenario 2 illustrating the performance comparison of the
robust controllers designed on the basis of the distributed mass model and the augmented
formulation
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Figure 3.8: Simulation results for scenario 2 illustrating the performance comparison of the
adaptive controllers designed on the basis of the distributed mass model and the augmented
formulation
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Figure 3.9: The experimental setup

3.5 Experimental evaluation

This section demonstrates the proposed passivity-based robust controller for task space

trajectory tracking. First, the experimental setup is briefly described and then the results are

presented discussing the insights.

3.5.1 Experimental setup

The experimental setup, as shown in Figure 3.9 is similar to the one that was used in

Chapter 2. The soft robot is a pneumatically actuated three-link pleated type soft robot fabricated

following methods outlined in [75]. To reduce friction, ball transfers were used underneath near

the segment joints. Each segment of the soft robot was measured to be Li = 0.125 m and the

segment masses mi = 0.110 kg were measured prior to joining the segments together. The

material properties of each segment were assumed to be identical. Therefore, for all the segments

identical torsional stiffness of ki = k and damping of di = d were assumed and were identified
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to be ki = 1Nm/rad and d = 0.2Nms/rad.

Six motion capture cameras were used to measure the markers attached at the end of each

segment and used them to estimate the degree of curvatures of the links. The soft robot was

actuated using a pneumatic control unit based on the open source hardware platform [76] with

command inputs (PWM signals) serially transmitted to the control board (Arduino Mega). An

external compressor supplied the compressed air to the unit at a constant pressure of 20psi. The

torque-to-PWM signals mapping was identified by a curve fitting process for each compartment

of the three segments as described in Chapter 2.

3.5.2 Experimental results

The proposed robust controller for tracking a predefined task space reference trajectory

was tested and compared the performance with passivity-based adaptive control. Similarly to

the simulation study, the robust and adaptive controllers designed on the basis of the augmented

formulation were tested.

For the experimental investigation, the parameter vector was chosen as

Θ = [m1,m2,m3, k, d]
⊤ and the nominal parameter vector for the robust controller was set to

Θ0 = [0.075, 0.075, 0.075, 0.75, 1.2]⊤. The bound on uncertainty was found to be γ ≥ 0.588,

and it was set to γ = 1.2 in the controller. The value ϵ = 0.05 and the control gains Ks = 0.3,

Λ = 3.5 were chosen. For the adaptive controller, the initial parameter estimation was set to

Θ̂(0) = [0.075, 0.075, 0.075, 0.75, 1.2]⊤. The adaptation gain was Γ = 0.1 and gains

Ks = 0.3,Λ = 3.5.
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Figure 3.10: Experimental results for task space trajectory tracking illustrating the performance
of the robust vs adaptive control.

The performance comparison between the robust and adaptive controller is shown in

Figure 3.10, and observe that the performance of both controllers is comparable, with the robust

controller having a positional RMSE of 0.028m and the adaptive controller 0.03m. The

performance of the proposed robust controller designed upon the proposed distributed mass

dynamics model is shown in Figure 3.11 along with that of the robust controller designed using

the augmented formulation. Observe that the controller designed utilizing the proposed

distributed mass dynamics model achieves better tracking performance. The performance of the

adaptive control frameworks are illustrated in Figure 3.12, and observe that utilizing the

proposed distributed dynamics model for control has yielded marginally better tracking.
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Figure 3.11: Experimental results for task space trajectory tracking illustrating the performance
comparison of the robust controllers designed on the basis of the distributed mass model and the
augmented formulation
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Figure 3.12: Experimental results for task space trajectory tracking illustrating the performance
comparison of the adaptive controllers designed on the basis of the distributed mass model and
the augmented formulation
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3.6 Summary

In this chapter, an enhanced dynamics model for planar PCC soft robots based on the

Euler-Lagrange formulation was introduced by explicitly considering the mass distribution of

the soft robot. This model captures the inertia effects of the soft robots, which is neglected in

simplified models considering a lumped mass system. Further, a passivity-based robust controller

was designed leveraging this dynamics model and its efficacy was illustrated via simulations and

physical experiments. However, note that due to the limitations set by the physical soft robot

used for the experiments, fast-moving trajectories could not be tested for the proposed controller.
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Chapter 4: Robust Task Space Bilateral Teleoperation of Soft Robots

This chapter introduces a robust task space bilateral teleoperation (RTSBT) framework for

soft robots with dynamic uncertainties in the presence of time delays and external disturbances.

The leader robot is assumed to be a non-redundant rigid manipulator and the follower robot is

assumed to be a redundant spatial soft manipulator under the PCC hypothesis. Passivity-based

robust control is employed to formulate the bilateral teleoperation framework proving the

ultimate boundedness of the bilateral teleoperation system trajectories in the presence of

dynamic uncertainties and constant time delays and further enhancing the control framework by

adding disturbance rejection. The null space velocity of the soft robot is also exploited to

achieve collision avoidance sub-task in the follower environment while achieving task space

synchronization. The proposed control algorithms were implemented in simulations on a spatial

soft robot as well as in physical experiments on a planar soft robot illustrating the efficacy of the

proposed robust teleoperation framework.

4.1 Overview

Bilateral teleoperation of soft robots can be utilized to realize tasks in remote/hazardous

environments by deploying a soft robotic manipulator, as discussed in Chapter 2. Moreover, this

capability of the soft robots alongside their agile and dexterous motions, can be beneficial
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especially for robotic tele-surgery, rehabilitation, inspections in cluttered environments and

operations in extreme conditions such as space exploration among others which a human

operator can guide the soft robot in the remote environment by manipulating a local rigid

robotic manipulator.

This chapter extends the distributed mass dynamics model discussed in Chapter 3.2 to a

3D spatial soft robot. Leveraging that model, a passivity-based robust task space bilateral

teleoperation framework is designed as illustrated in Figure 4.1. Robust control is used to

mitigate any uncertainty in the dynamics as well as any unmodelled disturbances. Different

from the robust joint space teleoperation in [83], this chapter develops robust teleoperators for

task space with the goal of position synchronization. This is especially important in view of

potential applications of soft robots. Moreover, this chapter considers dissimilar systems, the

follower robot being a soft robot and the leader being a rigid robot, and show that task space

position synchronization can be achieved. The ultimate boundedness of the trajectories of the

teleoperation system is proven even under dynamic uncertainties, constant time delays and

unmodelled external disturbances in the presence of passive or non-passive external forces.

Further, the null space velocity tracking of the redundant soft follower robot is utilized to

achieve collision avoidance subtask which is useful for semi-autonomous operations. Different

from Chapter 2 and previous work [73], the passivity-based robust control for task space

bilateral teleoperation framework presented here is able to handle unmodelled uncertainties.

Further, an additional disturbance rejection control added in this chapter will enable robust

teleoperation performance even in the presence of bounded disturbances. Extensive simulations

were conducted for 3D operation of the teleoperation system showing the efficacy of the

proposed RTSBT framework. While the analysis is for a 3D teleoperation system, physical
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Figure 4.1: Control architecture of the bilateral teleoperation system with a rigid leader robot and
a soft follower robot with constant communication delays.

experimentation of the proposed teleoperation framework was conducted on a planar 2D system,

illustrating the utility of the developed RTSBT framework for the planar case as well.

The rest of the chapter is organized as follows. Section 4.2 introduces the enhanced soft

robot model and the rigid robot model. The RTSBT framework is developed in Section 4.3. The

sub-task control is discussed in Section 4.4. The simulation results are presented in Section 4.5

and the experimental results in Section 4.6.

4.2 Spatial distributed mass soft robot model

Consider a spatial in-extensible soft robot as the follower robot assuming PCC [16, 84]

and consider the case wherein the base of the soft robot is fixed. In this section, the kinematics

modelling follows [84], but this chapter considers the soft segments as continuous arc segments

with a circular cross section and considers each and every point on that volume, unlike only

considering specific point of each segments as done in [84]. In other words, this chapter is not

assuming lumped mass, rather considers the soft segments to have a distributed mass. When

compared with [85], the work here adheres to the physical limitation of non-physical torsion of

the arm as detailed by [17, 84]. Moreover, in this section a PCC formulation is considered and

it is assumed that the soft robot is constructed in such a way that it adheres to the have a PCC
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Figure 4.2: A spatial PCC soft robot with n links is illustrated with a closeup is of the ith element.
The bottom left figure illustrates the trasformation between {Sworld} ans {Ssoft}.

such as the one in [86]. The work in this chapter will rely on the passivity-based robust control

framework to handle any unmodelled effects.

4.2.1 Kinematics

The spatial soft robot is assumed to be composed of n in-extensible segments. Each

segment is assumed to have a time-varying CC along the length of the segment. To constitute

the PCC soft robot, these n CC segments are attached so that the resulting curve is differentiable

everywhere. Under the PCC hypothesis, for a spatial segment, two variables, namely the degree

of curvature (θi) and the bending plane angle (ϕi), as shown in Figure 4.2 is sufficient to

describe the segment’s configuration in space. The configuration variables of the soft segments

are defines as qs(t) = [θ1(t), ϕ1(t), θ2(t), ϕ2(t), ..., θn(t), ϕn(t)]
⊤.

Let the global frame of reference {Sglobal} fixed in space such that the gravity is along

negative z-axis. Consider the base reference frame of the soft robot {Ssoft} which is rotated by
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ϕsoft around z axis of the {Sglobal} and αsoft around the new y′ axis. The soft robot is oriented

so that when all the links are straight, the robot aligns with the z-axis of the {Ssoft}. As shown

in Figure 4.2, let the length of the ith segment along its central axis be Li and its cross sectional

diameter Di. The length of each segment is parameterized by s ∈ [0, 1], such that sLi is the

arc length along the segment’s central axis to the point s from the ith segment’s base. At each

point s for any segment i along the soft robot’s body, reference frames {Si
s} are attached, with

the superscript i denoting the considered segment. Moreover, the cross section of the segments is

parameterized by d ∈ [0, 1] and b ∈ [0, 2π] such that dDi/2 is the lateral distance to point (d, b)

on the ith segment from the central axis located at an angle b from the local x axis of frame {Si
s}.

The bending angle αi
s(t) of the reference frame {Si

s} at a point s along the central axis

on the ith segment with reference to the frame {Si
0} can be written as the sum of integral of the

curvature,

αi
s(t) =

∫ s

0

qi(t)dl = qi(t)s.

Moreover, the bending plane of the ith segment is ϕi. However, note that most soft robots are

designed to achieve torsion-free backbones [17], hence requiring a reverse rotation of ϕi around

the local y axis of each frame {Si
s}. Thus the rotation from the base of the ith segment, i.e, from

frame {Si
0} to the reference frame {Si

s} is:

Ri
s = Rz(ϕi)Ry(α

i
s)Rz(−ϕi)
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and the translation is:

tis =


cos (ϕi)Li

∫ s

0
sin (αi

s(t))ds

sin (ϕi)Li

∫ s

0
sin (αi

s(t))ds

Li

∫ s

0
cosαi

s(t)ds

 ,

which defines the homogeneous transformation from {Si
0} to {Si

s},

H i
s =

Ri
s tis

01×3 1

 .

Thus the Cartesian coordinates

(
xi(s,d,b) (t) , y

i
(s,d,b) (t) , z

i
(s,d,b) (t)

)

at a general point P i
s,d,b on the ith segment parameterized by (s, d, b) on the soft robot is given by,

P i
s,d,b = H i

s



dD cos(b)

dD sin(b)

0

1


.

Define the direct forward kinematics hs(qs) : R2n → R3 which maps the configuration
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space to the task space,

hs(qs) =
[
xn(1,0,0) , y

n
(1,0,0) , z

n
(1,0,0)

]⊤
.

Thus, the end effector position and the velocity are defined as, Xs(t) = hs(qs) and Ẋs(t) =

Js(qs)q̇s, where, Js(qs) =
∂hs(qs)
∂qs

∈ R3×2n is the Jacobian matrix.

4.2.2 Dynamics

This section derives the dynamics of the soft robot based on the Euler-Lagrange (E-L)

formalism. It should be noted that in this dynamics derivation, no assumptions are mad on the

mass distribution, such as uniform linear mass density [82] or concentrated masses at discrete

points [22, 43]. Instead, a normalized mass distribution ρi(s, d, b) is considered for each

segment i. However, this formulation assumes that the change in the density due to shape

changes is negligible. In the following, unless different from previously defined dependencies,

the arguments will be suppressed in the expressions due to brevity and clear representation.

Following the E-L method, the inertia matrix Ms(qs) ∈ R2n×2n is evaluated as,

Ms(qs) =
n∑

i=1

∫ 1

0

∫ 1

0

∫ 2π

0

ρi∇qs(P
i
s,d,b)

⊤∇qs(P
i
s,d,b)db dd ds

where ∇qs is the gradient operator ∇qs(·) =
∂(·)
∂qs

. Then the centrifugal and Coriolis terms matrix

Cs(qs, q̇s) ∈ R2n×2n is evaluated using the standard Christoffel symbols [74].
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The gravitational potential energy Pg ∈ R of the soft robot can be calculated by,

Pg =
n∑

i=1

(∫ 1

0

∫ 1

0

∫ 2π

0

gρiz
i db dd ds

)

Therefore the gravity terms vector Gs(qs) ∈ R2n is evaluated as,

Gs(qs) = ∇qs (Pg) .

The elasticity of the soft robot is modeled through a continuous and homogeneous

distribution of infinitesimal springs and dampers along the length of the soft segments [84].

Assuming a linear relationship for elastic parameters, the stiffness and damping terms for the ith

segment are defined as Kiqsi and Bi ˙qsi , respectively. Here Ki ∈ R2×2 and damping Bi ∈ R2×2

are defined as,

Ki =

0 0

0 ki

 , Bi = βi

θ2i 0

0 1



where ki and βi are the stiffness the damping of the ith segment. The total stiffness matrix and

the damping matrix are block diagonal matrices consisted of Ki and Bi.

In the absence of unmodelled external disturbances, the complete dynamics are,

Ms(qs)q̈s + Cs(qs, q̇s)q̇s +Bsq̇s +Ksqs +Gs(qs) = τs − J⊤
s (qs)Fe (4.1)

Here τs ∈ R2n is the control input and physically it is the effective torque applied on the soft links
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causing them to bend with a CC. Fe is the external force applied at the soft robot’s end effector.

4.3 Robust bilateral teleoperation framework

This section develops the RTSBT framework for soft robots considering a rigid leader robot

and a soft follower robot. First the leader robot dynamics are introduced and subsequently the

bilateral teleoperation framework is designed.

4.3.1 The rigid manipulator : leader robot

A classical 3-DoF elbow manipulator (rigid robot)[74] is considered as the leader robot for

the bilateral teleoperation framework. In the absence of external disturbances, the dynamics of

the rigid robot can be written in the Euler-Lagrangian formulation as [74],

Mr (qr) q̈r + Cr (qr, q̇r) q̇r +Gr (qr) = τr + J⊤
r (qr)Fh (4.2)

with qr ∈ R3. Here Mr(qr) ∈ R3×3 is the inertial matrix, Cr(qr, q̇r)q̇r ∈ R3 is the matrix of the

centrifugal and Coriolis terms and Gr(qr) ∈ R3 is the gravitational torque. Here,qr ∈ Rp is the

vector of the relative joint angles, τr ∈ R3 is the control torque, and Fh ∈ R3 is the operator

force at the end effector which is mapped using the Jacobian Jr(qr) = ∂hr(qr)
∂qr

∈ R3×3. The

end effector position and the velocity are defined as, forward kinematics Xr(t) = hs(qr) and

Ẋr(t) = Jr(qs)q̇r.

Remark 4.1 Note that the soft robot dynamics in (4.1) and the rigid robot dynamics in (4.2)

are in the Lagrangian form, and hence they both encapsulates the properties of Lagrangian
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systems such as the skew symmetric property and the linearly parameterizable property [74] (see

Appendix A.2).

The position synchronization is considered as the goal of the RTSBT framework. To that

end, the tracking errors for the leader system and soft follower system are defined as er(t) =

Xs(t − Ts) − Xr(t) and es(t) = Xr(t − Tr) − Xs(t) respectively. Here, communication time

delays Ts and Tr are assumed to be constant. Moreover, it is assumed that the time delays are

bounded such that Ts ≤ T̄s and Tr ≤ T̄r and the round trip delay bound is defined as T̄ = T̄s+ T̄r.

Similar to Chapter 2, the signals sr(t) and ss(t) for the rigid leader and the soft follower

are defined as,

sr = −J−1
r λer + J−1

r ėr,

ss = −J+
s λes + J+

s ės − (In − J+
s Js)ψs (4.3)

where λ ∈ R+ is positive gain. ψs ∈ R3 is the negative gradient of an appropriately defined

convex function which is utilized for the sub-task control. J+
s ≜ JT

s (JsJ
T
s )

−1 ∈ R2n×3 is the

pseudo inverse of Js and satisfies the property JsJ
+
s = I3. The signals vi(t), ai(t) are then

defined as, vi = q̇i − si and ai = q̈i − ṡi, respectively, for i ∈ {r, s}.

Using the properties of Lagrangian systems the regressor (Yi (qi, q̇i, vi, ai)) and parameter

(Θi) vector pair for the estimated systems [74] is defined as,

M̂rar + Ĉrvr + Ĝr =YrΘ̂r

M̂sas + (Ĉs + B̂)vs + K̂qs + Ĝs =YsΘ̂s (4.4)
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where (̂·) indicates the estimates for the corresponding terms. Here, time invariant uncertainties

in the mass of both robots, and stiffness and damping of the soft robot is assumed. The estimated

parameter vectors are niw defined as,

Θ̂s = Θ0
s + us

Θ̂r = Θ0
r + ur (4.5)

where Θ0
s and Θ0

r are fixed nominal parameter vectors and us and ur are additional control terms

which will be designed subsequently for achieving robustness for uncertainty in the model

parameters.

4.3.2 Bilateral teleoperation in the absence of disturbances

This section considers the case when there are no unmodelled disturbances in the systems.

In this case, let the control inputs for the rigid leader and soft follower robots given as,

τr =M̂rar + Ĉrvr + Ĝr −Krsr − JT
r τ̄r

=YrΘ̂r −Krsr − JT
r τ̄r

τs =M̂sas + (Ĉs + B̂)vs + K̂0qs + Ĝs −Ksss − JT
s τ̄s

=YsΘ̂s −Ksss − JT
s τ̄s. (4.6)
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Here Ki for i ∈ {r, s} are positive definite diagonal gain matrices. τ̄i are the coordinating control

torques that are defined as,

τ̄i = kr(−λei + Ẋi)− kJ ėi (4.7)

where kr ∈ R+ and kJ ∈ R+ are positive control gains.

The closed loop dynamics of the system is found by substituting the proposed controls (4.6)

in (4.1)-(4.2) and using (4.4),

Msṡs + Csss +Bss +Ksss = Ys

(
Θ̃s + us

)
− JT

s τ̄s − JT
s Fe

Mrṡr + Crsr +Krsr = Yr

(
Θ̃r + ur

)
− JT

r τ̄r + JT
r Fh (4.8)

where Θ̃i = Θ0
i −Θi is the parameter uncertainty. Suppose the uncertainty is bounded such that

one can find a constant bound γi ≥ 0,

||Θ̃i|| = ||Θ0
i −Θi|| ≤ γi. (4.9)

Following the well-known robust control approach in [80] and letting ϵi > 0, the control terms

ui’s are designed as,

ui =


−γi Y ⊤

i si
||Y ⊤

i si||
if ||Y ⊤

i si|| > ϵi

−γi
ϵi
Y ⊤
i si if ||Y ⊤

i si|| ≤ ϵi

(4.10)

Consider the states of the RTSBT system to be z(t) = [ss, sr, es, er, ės, ėr, Ẋs, Ẋr]
⊤. In
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the following result it is proven that in the absence of any external unmodelled disturbances, the

proposed robust task space bilateral teleoperation framework is uniformly ultimately bounded

(u.u.b) with respect to the states z(t). First consider a Lemma that is useful in the proof.

Lemma 4.1 [87] For a positive-definite matrix Υ, and signals a, b ∈ Rn the following inequality

holds for ∀T > 0:

−2a⊤(t)

∫ t

t−T

b(σ)dσ−
∫ t

t−T )

b⊤(σ)Υb(σ)dσ ≤ Ta⊤(t)Υ−1a(t)

Theorem 4.1 Consider the RTSBT framework (4.8) with additional control law (4.10). If there

exist positive control parameters ϵr, ϵs, Kr, Ks, kp, kJ , nominal parameter vectors Θ0
r , Θ0

s

constant bounds γr, γs ≥ 0 for the uncertainties and λ < 1/T̄ , then in the absence of any

external forces (Fh = Fe = 0), the system trajectories are u.u.b.

Proof of Theorem 4.1 Consider a positive definite storage function,

V1 =λē
⊤kpē+

1

2

∑
i=s,m

(
s⊤i Misi + λe⊤i kJei + 2λ

∫ t

t−T̄i

(
σ − t+ T̄i

)
Ẋ⊤

i (σ)kpẊi(σ)dσ

+

∫ t

t−Ti

Ẋ⊤
i (σ)kJẊi(σ)dσ

)
(4.11)

where ē = Xs(t)−Xr(t) is the undelayed position error. Taking the derivative of V ,

V̇1 =
∑
i=s,m

(
s⊤i Miṡi +

1

2
s⊤i Ṁisi + λe⊤i kJ ėi +

1

2
Ẋ⊤

i kJẊi −
1

2
Ẋ⊤

i (t− Ti)kJẊi(t− Ti)

+ λT̄iẊ
⊤
i kpẊi − λ

∫ t

t−Ti

Ẋ⊤
i (σ)kpẊi(σ)dσ

)
+ 2λē⊤kp ˙̄e (4.12)
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Substituting for Miṡi from the closed loop dynamics,

V̇1 =
∑
i=s,m

(
s⊤i

(
−Cisi −Kisi + Yi(Θ̃i + ui)− JT

i τ̄i

)
+

1

2
s⊤i Ṁisi + λe⊤i kJ ėi +

1

2
Ẋ⊤

i kJẊi

− 1

2
Ẋ⊤

i (t− Ti)kJẊi(t− Ti) + λT̄iẊ
⊤
i kpẊi − λ

∫ t

t−Ti

Ẋ⊤
i (σ)kpẊi(σ)dσ

)
+ 2λē⊤kp ˙̄e− s⊤s Bss

Note that it can be shown that Yi
(
Θ̃i + ui

)
≤ ϵiρi/4. Moreover, using the skew symmetry

property of Lagrangian systems the time derivative of the storage function can be simplified as,

V̇1 ≤
∑
i=s,m

(
− s⊤i Kisi − s⊤i J

T
i (kp (Jisi)− kJ ėi) +

ϵiρi
4

+ λe⊤i kJ ėi +
1

2
Ẋ⊤

i kJẊi

− 1

2
Ẋ⊤

i (t− Ti)kJẊi(t− Ti) + λT̄iẊ
⊤
i kpẊi − λ

∫ t

t−Ti

Ẋ⊤
i (σ)kpẊi(σ)dσ

)
+ 2λē⊤kp ˙̄e− s⊤s Bss

where τ̄i were substituted. Substituting for si and simplifying the inequality will yield,

V̇1 ≤
∑
i=s,m

(ϵiρi
4

− s⊤i Kisi − Ẋ⊤
i kpẊi + 2λe⊤i kpẊi − λ2e⊤i ei + Ẋ⊤

i kJ ėi

+
1

2
Ẋ⊤

i kJẊi −
1

2
Ẋ⊤

i (t− Ti)kJẊi(t− Ti) + λT̄iẊ
⊤
i kpẊi − λ

∫ t

t−Ti

Ẋ⊤
i (σ)kpẊi(σ)dσ

)
+ 2λē⊤kp ˙̄e− s⊤s Bss (4.13)
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Considering 2λe⊤i kpẊi and 2λē⊤kp ˙̄e one can show that,

2λe⊤s kpẊs + 2λe⊤r kpẊr + 2λē⊤kp ˙̄e (4.14)

= 2λkp

(
Ẋ⊤

s (Xr(t− Tr)−Xr) + Ẋ⊤
r (Xs(t− Ts)−Xs)

)
= −2λkp

(
Ẋ⊤

s

∫ t

t−Tr

Ẋr(σ)dσ + Ẋ⊤
r

∫ t

t−Ts

Ẋs(σ)dσ

)
(4.15)

Further consider,

∑
i=s,m

(
Ẋ⊤

i kJ ėi +
1

2
Ẋ⊤

i kJẊi −
1

2
Ẋ⊤

i (t− Ti)kJẊi(t− Ti)
)

= Ẋ⊤
s kJ(Xr(t− Tr)−Xs) + Ẋ⊤

r kJ(Xs(t− Ts)−Xr) +
1

2
Ẋ⊤

s kJẊs +
1

2
Ẋ⊤

r kJẊr

− 1

2
Ẋ⊤

s (t− Ts)kJẊs(t− Ts)−
1

2
Ẋ⊤

r (t− Tr)kJẊr(t− Tr)

=− 1

2
(Ẋs − Ẋr(t− Tr))

⊤kJ(Ẋs − Ẋr(t− Tr))−
1

2
(Ẋr − Ẋs(t− Ts))

⊤kJ(Ẋr − Ẋs(t− Ts))

=− 1

2
ė⊤s KJ ės −

1

2
ė⊤r KJ ėr (4.16)

Using the above simplifications (4.15) - (4.16) in (4.13) results,

V̇1 ≤
∑
i=s,m

(ϵiρi
4

− s⊤i Kisi − Ẋ⊤
i kpẊi − λ2e⊤i ei − ė⊤i kJ ėi + λT̄iẊ

⊤
i kpẊi

− λ

∫ t

t−Ti

Ẋ⊤
i (σ)kpẊi(σ)dσ

)
− 2λkp

(
Ẋ⊤

s

∫ t

t−Tr

Ẋr(σ)dσ + Ẋ⊤
r

∫ t

t−Ts

Ẋs(σ)dσ

)
− s⊤s Bss
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≤
∑
i=s,m

(ϵiρi
4

− s⊤i Kisi + (λT̄i − 1)Ẋ⊤
i kpẊi − λ2e⊤i ei − ė⊤i kJ ėi

)
− s⊤s Bss

− λ

∫ t

t−Ts

Ẋ⊤
s (σ)kpẊs(σ)dσ − 2λkpẊ

⊤
s

∫ t

t−Tr

Ẋr(σ)dσ

− λ

∫ t

t−Tr

Ẋ⊤
r (σ)kpẊr(σ)dσ − 2λkpẊ

⊤
r

∫ t

t−Ts

Ẋs(σ)dσ

With the use of Lemma 4.1 it can be shown that

V̇1 ≤
∑
i=s,m

(ϵiρi
4

− s⊤i Kisi + (λT̄i − 1)Ẋ⊤
i kpẊi − λ2e⊤i ei − ė⊤i kJ ėi

)
− s⊤s Bss

+ λT̄skpẊ
⊤
r Ẋr + λT̄rkpẊ

⊤
s Ẋs.

Thus obtaining,

V̇1 ≤
ϵsρs
4

+
ϵrρr
4

− s⊤s (Ks +B)ss − s⊤r Krsr − λ2e⊤s es − λ2e⊤r er + (λT̄ − 1)Ẋ⊤
s kpẊs

+ (λT̄ − 1)Ẋ⊤
r kpẊr − ė⊤s kJ ės − ė⊤r kJ ėr

where T̄ = T̄s + T̄r. Selecting λ such that λT̄ < 1 will ensure that the coefficient of Ẋ⊤
i Ẋi are

negative. Define ξ = ϵsρs
4

+ ϵrρr
4

. The coefficients of the quadratic terms are collected to the

diagonal matrix Q. Note that Q > 0, and it is bounded by λmin(Q) ≤ ||Q|| ≤ λmax(Q). Here

λmin and λmax are the minimum and maximum eigenvalues of Q, respectively. Thus we have,

V̇1 ≤ −z⊤Qz + ξ ≤ −λmin(Q)||z||2 + ξ

It can be guaranteed that V̇1 < 0 when ||z|| >
(

ξ
λmin(Q)

) 1
2
. Here λmin can be found as λmin =
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min
(
(Ks +B), Kr, λ

2kp, kJ , kp(λ(T̄s + T̄r)− 1)
)
. Therefore, the synchronization errors and

trajectories are ultimately bounded.

Next consider the case when there are bounded external forces applied to the teleoperation

system. First, let us consider the case when the forces are passive.

Definition 4.1 Let ri(t) = Ji(t)si(t) for i ∈ {r, s}. The applied external force on the rigid

leader robot is defined as passive with respect to −rr(t) and human force Fh(t) if there exists a

constant fh ≥ 0 such that ∀rr(t) ∈ R3,∀t > 0 [88],

−
∫ t

0

F⊤
h (σ)rr(σ)dσ ≥ −fh.

Similarly, the external environmental force on the soft follower robot is passive with respect to

rs(t) and environmental force Fe(t) if there exists a constant fe ≥ 0 such that ∀rs(t) ∈ R2n,∀t >

0,

∫ t

0

F⊤
e (σ)rs(σ)dσ ≥ −fe.

The following corollary shows that the teleoperation system remains bounded in the presence of

external forces.

Corollary 4.1.1 Consider the RTSBT framework (4.8) with additional control law (4.10). If

there exist positive control parameters ϵs, ϵr, Ks, Kr, kp, kJ , nominal parameter vectors Θ0
s,Θ

0
r ,

constant bounds γs, γr ≥ 0 for the uncertainties and λ < 1/T̄ , then in the presence of passive

external forces, the trajectories are u.u.b.
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Proof of Corollary 4.1.1 Consider the storage function as before with the addition of storage

function for the passive external forces,

V2 = V1 −
∫ t

0

F⊤
h (σ)rr(σ)dσ +

∫ t

0

F⊤
e (σ)rs(σ)dσ + fe + fe (4.17)

where V1 is defined as in (4.11). Observe that due to the passivity of the external forces V2

is positive definite. Considering the time derivative, V̇2, Note that as soon as the closed loop

dynamics are substituted, the additional terms cancels out and we are left with a time derivative

exactly same as V̇1 in (4.12) and the proof follows.

Let us now consider the case when the external forces are not passive, but bounded. In the

following Corollary it is shown that the trajectories remain ultimately bounded in this case.

Corollary 4.1.2 Consider the RTSBT framework (4.8) with additional control law (4.10). If

there exist positive control parameters ϵs, ϵr, Ks, Kr, kp, kJ , nominal parameter vectors Θ0
s,Θ

0
r ,

constant bounds γs, γr ≥ 0 for the uncertainties and λ < 1/T̄ , then in the presence of non-

passive bounded external forces Fe, Fh such that ||Fe|| ≤ µe, ||Fh|| ≤ µh, the system trajectories

are u.u.b.

Proof of Corollary 4.1.2 Consider the storage function as V1 in (4.11). Following similar steps

as in Theorem 4.1, in the presence of non-passive forces, the derivative of the storage function
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along the system trajectories can be simplified to,

V̇1 ≤ −z⊤Qz + ξ + s⊤s J
⊤
s Fe − s⊤r J

⊤
r Fh

= −z⊤Qz + ξ + (−λes + Ẋs)
⊤Fe − (−λer + Ẋr)

⊤Fh

= −z⊤Qz + ξ + [0, 0,−λFe, λFh, 0, 0, Fe,−Fh]
⊤ z

Using Cauchy–Schwarz inequality and with the bounds ||Fe|| ≤ µe, ||Fh|| ≤ µh,

V̇1 ≤ −λmin(Q)||z||2 + ξ + ||z||
√

(1 + λ2)(F 2
e + F 2

h )

≤ −λmin(Q)||z||2 + ξ(1 + λ2)||z||
√
µ2
e + µ2

h

= −λmin(Q)||z||2 + ξ + ||z||kµ

where the definition for λmin(Q) from proof of Theorem 4.1 is used and define

kµ = (1 + λ2)
√
µ2
e + µ2

h. It can be easily shown that V̇1 < 0 is guaranteed when,

||z|| >
−kµ +

√
k2µ + 4λmin(Q)ξ

2λmin(Q)

from which u.u.b follows. This completes the proof.
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4.3.3 Bilateral teleoperation in the presence of disturbances

This section studies the case in the presence of passive external forces and bounded

disturbance forces ws, wr ∈ R3 acting upon the end effectors of the robots in the teleoperation

system. In this case the system dynamics are,

Msq̈s + Csq̇s +Bq̇s +Kqs +Gs = τs − J⊤
s Fe + J⊤

s ws

Mrq̈r + Crq̇r +Gr = τr + J⊤
r Fh + J⊤

r wr (4.18)

Remark 4.2 In most practical application scenarios these nominal disturbances w0
s , w

0
r are not

known a priori and will be considered to be null and unmodelled. Moreover, especially for soft

robots if these disturbances are not handled the highly deformable nature of the soft body would

render the soft system unstable. On the other hand, it is still a challenge to simultaneously

and comprehensively sense both body posture and interactions with the environment despite the

progress in soft sensor technologies [89]. In this chapter I propose to handle these disturbances

both in rigid leader and soft follower via robust control.

In view of the above remark, for RTSBT in the presence of disturbances the control inputs

(4.6) are modified for the rigid leader and soft follower robots as,

τr =YrΘ̂r −Krsr − J⊤
r τ̄r + J⊤

r ŵr

τs =YsΘ̂s −Ksss − J⊤
s τ̄s + J⊤

s ŵs (4.19)
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where ŵs, ŵr are the estimated disturbance forces. The estimated disturbance is written as,

ŵj = w0
j − δj

where it is assumed that there exists a bounded nominal disturbance w0
j and a bound η > 0

such that ||w0
i − wi|| ≤ η. Moreover, δi is an additional control input designed to dominate the

unknown disturbance defined as,

δi =


−ηi Jisi

||Jisi|| if ||Jssi|| > εi

−ηj Jssiεi
if ||Jssi|| ≤ εi

(4.20)

for εi > 0. The closed loop system is then,

Msṡs + Csss +Bss +Ksss = Ys

(
Θ̃s + us

)
+ J⊤

s (w̃s + δs)− JT
s τ̄s − JT

s Fe

Mrṡr + Crsr +Krsr = Yr

(
Θ̃r + ur

)
+ J⊤

r (w̃r + δr)− JT
r τ̄r + JT

r Fh (4.21)

The stability of the proposed RTSBT in the presence of bounded external disturbances is

discussed in the following result.

Theorem 4.2 Consider the RTSBT framework (4.21) with additional control law (4.20). If there

exist positive control parametersϵs, ϵr, Ks, Kr, kp, kJ , nominal parameter vectors Θ0
s,Θ

0
r ,

constant bounds γs, γr ≥ 0 for the uncertainties, bounded nominal disturbance w0
s , w

0
r ,

constant bounds ηs, ηr > 0 and λ < 1/T̄ , then in free motion (Fe = Fh = 0), the system

trajectories are u.u.b.
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Proof of Theorem 4.2 Consider the storage function same as V1 in (4.11). Following the proof

of Theorem 4.1, the time derivative of the storage function along the system trajectories of (4.21),

V̇1 ≤
∑
i=s,r

(ϵiρi
4

− s⊤i Kisi + (λT̄i − 1)Ẋ⊤
i kpẊi − λ2e⊤i ei − ė⊤i kJ ėi

)
− s⊤s Bss

+ λT̄skpẊ
⊤
r Ẋr + λT̄rkpẊ

⊤
s Ẋs + s⊤s J

⊤
s (w̃s + δs) + s⊤r J

⊤
r (w̃r + δr) .

It can be shown that s⊤i J
⊤
i (w̃i + δi) ≤ εiηi/4. Thus we have,

V̇1 ≤
ϵsρs
4

+
ϵrρr
4

+
εsηs
4

+
εrηr
4

− s⊤s (Ks +B)ss − s⊤r Krsr − λ2e⊤s es − λ2e⊤r er

+ (λT̄ − 1)Ẋ⊤
s kpẊs + (λT̄ − 1)Ẋ⊤

r kpẊr − ė⊤s kJ ės − ė⊤r kJ ėr (4.22)

Same as in Theorem 4.1, selecting λ such that λT̄ < 1 will ensure that the coefficient of Ẋ⊤
i Ẋi

are negative. Define ξ2 = ϵsρs
4

+ ϵrρr
4

+ εsηs
4

+ εrηr
4

. Collecting the coefficients of the quadratic

terms to the diagonal matrix Q2, one can represent

V̇ ≤ −z⊤Q2z + ξ2

and the ultimate boundedness can be shown following the same arguments as in Theorem 4.1.

Now consider the case when there are external passive forces exerted on the human and

remote side.

Corollary 4.2.1 Consider the RTSBT framework (4.21) with additional control law (4.20). If

there exist positive control parametersϵs, ϵr, Ks, Kr, kp, kJ , nominal parameter vectors Θ0
s,Θ

0
r ,

constant bounds γs, γr ≥ 0 for the uncertainties, bounded nominal disturbance w0
s , w

0
r , constant
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bounds ηs, ηr > 0 and λ < 1/T̄ , then in the presence of passive external forces, the system

trajectories are u.u.b.

Proof of Corollary 4.2.1 Consider the storage function same as V2 in (4.17). As noted in the

proof of Corollary 4.1.1, the time derivative of the storage function will become exactly the same

as the one in (4.22) as soon as the closed loop dynamics are substituted and the proof follows.

Next, consider the RTSBT with bounded external disturbances in the presence if

non-passive human and environmental forces.

Corollary 4.2.2 Consider the RTSBT framework (4.21) with additional control law (4.20). If

there exist positive control parameters ϵs, ϵr, Ks, Kr, kp, kJ , nominal parameter vectors Θ0
s,Θ

0
r ,

constant bounds γs, γr ≥ 0 for the uncertainties, bounded nominal disturbance w0
s , w

0
r , constant

bounds ηs, ηr > 0 and λ < 1/T̄ , then in the presence of non-passive external forces, the system

trajectories are u.u.b.

Proof of Corollary 4.2.2 Consider the storage function same as V1 in (4.11). In the presence

of non-passive forces, the derivative of the storage function along the system trajectories can be

simplified to,

V̇1 ≤ −z⊤Q2z + ξ2 + s⊤s J
⊤
s Fe − s⊤r J

⊤
r Fh

= −z⊤Q2z + ξ2 + [0, 0,−λFe, λFh, 0, 0, Fe,−Fh]
⊤ z (4.23)

where Q2 and ξ2 are defined as in the proof of Theorem 4.2. Following similar steps as done in
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the proof of Corollary 4.1.2, it can be shown that V̇1 < 0 when,

||z|| >
−kµ +

√
k2µ + 4λmin(Q2)ξ2

2λmin(Q2)

which completes the proof.

Remark 4.3 Consider the teleoperation is under external forces, for example in the case a

human force is applied such that Fh = KP (Xdes −Xr)−KD(Ẋr) with gains KP , KD to guide

the rigid leader toward a specific target Xdes. Note that the uub results provided above do not

guarantee that the human succeeds in achieving the desired target under this forcing. In this

case, there could be a non-zero force being applied at the leader robot even the position

synchronization between the leader and the follower is achieved as the equilibrium state of the

leader robot under human forces as z → 0 is,

Yr(qr, 0, 0, 0)
(
Θ0

r −Θr + ur
)
= −Jr(qr)TFh.

For a similar instance with an adaptive bilateral teloperator such as the one considered in

Chapter 2 and [67, 73], the equilibrium will be

Yr(qr, 0, 0, 0)
(
Θ̂r(t)−Θr

)
= −Jr(qr)TFh.

Here, unless the parameter estimations have converged to the true values, the human force will

be non-zero. Thus unable to ensure zero-force reflection. In this case, once the position

synchronization is achieved, if the human force is set to zero (Fh = 0) the adaptive teleoperator
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will suffer from a sudden forcing which will drive the positions of the robots to a different state

until the position synchronization is achieved again. However, for the robust teleoperator, due to

the above corollary the loss of forcing does not affect the uub guarantees.

4.4 Sub-task control in null space

In this chapter, the soft follower manipulator is assumed to be redundant considering the

configuration space with regard to the task space. Thus, null(Js) has a minimum dimension

of 2n − 3 which can be exploited to accomplish sub-task control as the task space motion is

unaffected by the link velocity in the null space. This is done by designing the auxiliary function

ψs(t) in (4.3) appropriately as detailed in Appendix A.4. Here the subtask of achieving collision

avoidance of the soft robot is considered.

Remark 4.4 Utilization of the passivity-based robust control for bilateral teleoperation yields

trajectories that are ultimately bounded. The fact that ss is only bounded does not guarantee the

convergence of sub-task tracking errors, but still can ensure boundedness of the errors. Moreover,

it guarantees ψs is bounded. Based on the collision avoidance subtask focused in this chapter, the

boundedness of ψs ensures collision free points of the soft robot do not enter the regions of safe

distance r, provided existence of a collision free configuration and trajectory is feasible. This

can be seen from equations (A.3) and (A.4). Therefore, this guarantees the collision avoidance

sub task control.
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4.5 Numerical simulations

This section presents the simulation results for RTSBT of a three-DoF elbow manipulator

(leader) and a two-link (4DoF) spatial soft robotic manipulator (follower) under gravity g = 9.81

pointing in the negative z-axis of the world frame. The base of the soft robot is fixed by orienting

it down (αworld = π, ϕworld = 0). For the soft robot, each link was considered to be identical

with a length of Li = 1m, cross-sectional diameter of Di = 0.1m, normalized mass of ρi = 1kg,

stiffness of ki = k = 0.4 and damping of βi = β = 0.25. For the elbow manipulator, the

considered the link parameters are shown in Table 1. The home position of the elbow manipulator

was pointing down.

Table 4.1: Link parameters for the leader elbow manipulator

Link ai αi di θi mass
1 0 90◦ 0 qr1 -
2 1m 0 0 qr2 1kg
3 1m 0 0 qr3 1kg

The simulations were run on Matlab Simulink with constant time delays Ts = 0.4s and

Tr = 0.3s, and control gains λ = 1.4, kJ = 0.1, kr = 1 and Ks = Kr = 2.5. These were

constant through all the simulations. The uncertainties were assumed in the mass of both robots,

and stiffness and damping of the soft robot. Thus the parameter vectors were defined as Θs =

[ms1 ,ms2 , k, β]
⊤ and Θr = [mr2 ,mr3 ]

⊤. The nominal parameters for those were chosen as

Θ0
s = [1.25, 1, 0.5, 0.75]⊤ and Θ0

r = [0.5, 0.5]⊤ and the bound on uncertainties was found to be

||Θr−Θ0
r|| < 0.7566, ||Θs−Θ0

s|| < 0.7071. Hence the uncertainty bounds were chosen as γs = 1,

γr = 1 and ϵs = ϵr = 0.01 for robust control. Disturbance forces were added synthetically at the
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soft follower side as,

ws(t) =


0.55 sin(2t) + 0.05 sin(5t) + 0.25 sin(17t)− 0.07 sin(13t) + 0.2 sin(23t)

0.25 sin(t) + 0.15 sin(5t)− 0.15 sin(13t)− 0.47 sin(17t) + 0.17 sin(21t)

0.1 sin(21t)− 0.05 sin(11t) + 0.35 sin(19t)− 0.4 sin(3t) + 0.12 sin(17t)


(4.24)

The nominal disturbance was assumed to be nonexistent w0
s = [0, 0, 0]⊤ with the bound found

to be ||w0
s − ws|| ≤ 1.9264. Hence, the bound ηe = 2 and the control parameter εr = 0.01

was selected. For the leader robot although no disturbance was added in the simulation the

robust control framework with control parameters ηr = 0.1 and εr = 0.1 was employed. The

initial conditions were set as qs(0) = [π/6,−π/6, π/12, π/6]⊤, q̇s(0) = [0, 0, 0, 0]⊤, qr(0) =

[−π/16, π/3, π/12]⊤ and q̇r(0) = [0, 0, 0]. In each of the simulations illustrated below it was

considered that the same teleoperation task is executed by the human operator (i.e., leader robot).

The task will be divided into phases of free motion (no external forces being applied) and forced

motion (human operator exerts forces on the leader robot). The human force was modeled as a

spring-damper forces with spring and damper gains set to 350 N/m and 80 Ns/m respectively in

each x, y, z direction and were bounded |Fhi
| ≤ 25N. The task schedule is shown in Table II.

4.5.1 Comparison with adaptive task space bilateral teleoperation

The performance of the RTSBT framework proposed in this work is compared with an

adaptive bilateral teleoperation framework proposed in Chapter 2 considering the case without

any disturbance forces. In the adaptive task space bilateral teleoperation framework, the

parameter estimation vectors Θ̂i are considered to be time varying estimates of the parameter
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Figure 4.3: Simulation results for adaptive vs robust bilateral teleoperation.
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Table 4.2: Operation schedule of the bilateral teleoperation task

Time interval/ s Operation
0− 5 free motion
5− 15 leader toward [1,−1,−0.5]
15− 20 free motion
20− 30 leader toward [1, 1,−0.5]
30− 35 free motion
35− 45 leader toward [−0.75, 1,−0.5]
45− 50 free motion
50− 60 leader toward [−0.75,−1,−0.5]
60− 65 free motion
65− 75 leader toward [1,−1, 0.5]
75− 80 free motion

vector Θi for i ∈ {s, r}. In this case, the control input for the soft robot was defined as in (4.6)

with the adaptation law for the parameter estimation defined as ˙̂
Θi = −ΓiY

⊤
i si where Γi is a

positive definite symmetric gain matrix. The reader is referred to Chapter 2 for more details on

the passivity-based adaptive task space bilateral teleoperation framework. The simulation used

Θs(0) = Θ0
s, Θr(0) = Θ0

r as the initial parameter estimates and Γr = Γs = 5 as the adaptation

gains, while keeping all the other control parameters as defined above. The comparison results

for the teleoperation task as described above are illustrated in Figure 4.3. Note that there are

jerky motions when the human forces are released (free motion starts) in the adaptive framework

as discussed in Remark 4.3. The robust control framework does not exhibit such behavior.

4.5.2 Robust bilateral teleoperation without sub-task

The first simulation considered the case without utilization of the collision avoidance sub-

task. Results are shown in Figure 4.4. Clearly, the disturbance rejection control is able to handle

the external disturbances and driving the error norms to the bounded set.
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Figure 4.4: Simulation results for RTSBT without sub-task.
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Figure 4.5: Simulation results for RTSBT with collision avoidance sub-task.
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Figure 4.6: Evolution of the angles with and without the sub-task of collision avoidance in the
presence of disturbance.

4.5.3 Robust bilateral teleoperation with collision avoidance sub-task

The sub-task of collision avoidance is utilized in this simulation. The points of interest

were selected as the tip, middle point of the second link and the base of the second link. Three

obstacles (point obstacles) were added in the follower environment with known locations at

[−0.5, 0.5,−0.8]⊤, [0.6, 0.5,−0.2]⊤, [0.6,−0.5,−0.8]⊤. The smallest safe distance for all the

obstacles was set to r = 0.2m and the avoidance distance was set to R = 0.6m. The simulation

results for this case of utilizing the sub-task control for collision avoidance are shown in Figure

4.5. The evolution of the angles with and without the sub-task of collision avoidance in the

presence of disturbance is illustrated in Figure 4.6. A 3D visualization of the soft robot in the

environment with the obstacles and the utilization of the sub-task control for obstacle avoidance

is shown in Figure 4.7.
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a) Teleoperation without the activation of collision avoidance sub-task.

b) Teleoperation with the activation of collision avoidance sub-task.

Figure 4.7: Soft robot visualization for the teleoperation task with and without the activation of
collision avoidance subtask at 6.2s, 25.1s and 51.3s. Panel a) shows the collisions indicated in
yellow blobs. Panel b) illustrates the successful avoidance of collisions with the obstacles for the
same time instances with the subtask control activated. In the plots, the smallest safe distance
r = 0.2m for obstacle regions are indicated in solid globes and the avoidance distance R = 0.6m
is indicated in transparent globes.
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Figure 4.8: Illustration of the wall in the remote environment at y = 0.5m

4.5.4 Robust bilateral teleoperation with hard contact

This scenario considers the environment to have a wall at y = 0.5 as shown in Figure 4.8.

In this simulation, the robots are in free motion from 0 − 5s. Next from 5 − 15s the human

operator moves the rigid leader toward [1,−1,−0.5]⊤. At 15s the human operator starts to move

the rigid leader toward [1, 1,−0.5]⊤ and try to do this task until 25s. During this motion, the soft

follower makes hard contact with the wall around 17s. The position errors do not approach the

origin in this case as seen in Figure 4.9a-b. The forces felt at the leader side is shown in Figure

4.9c and the environment forces as felt at the soft follower robot is shown in Figure 4.9d.

4.6 Experimental Results

The planar version of the proposed robust bilateral teleoperation of soft robots was

experimentally evaluated using a three-link pleated type planar soft follower robot and a virtual

109



a) Evolution of the positions

b) Evolution of the errors between leader-follower

c) Evolution of the human forces to rigid leader

d) Evolution of the environmental forces to soft follower robot

Figure 4.9: Simulation results for the scenario which the soft follower robot contacts with wall.
The interval in which the robot is in contact is highlighted in yellow.
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two-DoF rigid link manipulator(using Matlab/Simulink 2021a in real time using the Simulink

Desktop Real-Time library block). The soft robot control was run on Matlab 2021a on a

different PC. The communication between the two systems, i.e. between the virtual rigid leader

and soft robot was achieved through the TCP/IP protocol over WiFi. The network time delays

were measured to be Tm = Ts = 0.04s. The experimental setup was similar to the one used in

Chapter 2.6, while a slightly modified soft robot design was usd.

The segment lengths along the inextensible middle layer were measured to be Lsi = 0.125

m. The segment masses msi = 0.080 kg were measured prior to joining the segments together.

The material properties of each segment were assumed to be identical and the nominal value

of the torsional stiffness and damping of a segment k = 0.75Nm/rad and d = 0.2 Nms/rad,

respectively, were calculated using a system identification process.

For the virtual rigid robot, the link lengths were chosen as Lm = [0.2, 0.2]⊤m. The masses

and inertia were chosen as mm = [0.2, 0.2]⊤kg and Im = [0.003, 0.003]⊤kgm2 respectively. The

human force was modeled as a spring-damper forces with spring and damper gains set to 150

N/m and 150 Ns/m respectively.

For the soft follower robot, the uncertainty was assumed in the segment masses, end

effector mass, torsional stiffness and torsional damping. Thus the parameter vector was chosen

as Θs = [ms1 ,ms2 ,ms3 , k, d]
⊤. The nominal parameter vector Θ̂0

s = [0.5, 0.5, 0.5, 2, 1]⊤ was set

different from the measured nominal values. The uncertainty in the rigid leader robot was

assumed to be in the rigid robot’s link masses and in the link inertia. Thus the parameter vector

was chosen as Θr = [mr1 ,mr2 , Ir1 , Ir2 ]
⊤. The nominal parameter estimate vector

Θ̂0
r = [0.05, 0.05, 0.001, 0.001]⊤. The control gains were set to λ = 1, kr = 1, kJ = 5 and

Ks = Kr = 2.
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In the experiment, 0-5s is in free motion for both the robots to synchronize. Then, at

t = 5s the human operator exert forces to moves the leader toward Xdes = [0, 0.3]⊤ and at

t = 15s the robots are set to free motion. Then, at 20s the human operator exert a force to moves

the leader to Xdes = [0.1, 0.3]⊤ and again set to free at 30. At t = 35s the leader is moved

toward Xdes = [0.1, 0.2]⊤ and set to free motion at 45s. At t = 50s the leader is moved toward

Xdes = [0.2, 0.2]⊤ and the system is set to operate again in free motion at 60s. Finally At t = 65s

the leader is moved toward Xdes = [0.2, 0]⊤ and the system is set to operate in free motion at 75s.

The performance of the teleoperation system was compared against adaptive control based

bilateral teleoperation framework as in Chapter 4 with the same level of uncertainty with the

control gains for that controller set as Γs = Γm = 0.1, Λs = Λm = 1.1, Krs = Krm = 1,

Ks = Km = 1.5 and Kjs = Kjm = 10. Figure 4.10 illustrates the tracking performance. Figure

4.11 depicts the configurations of the soft robot during the experiment for the robust controller

proposed in this chapter.
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Figure 4.10: Experimental results from planar soft robot teleoperation comparing robust and
adaptive teleoperation frameworks

Figure 4.11: Photo sequence of the experiment for robust teleoperation
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4.7 Summary

This chapter discussed robust task space bilateral teleoepration of soft robots using a rigid

leader robot and a soft follower robot. Passivity-based robust control has been used to develop

task space bilateral teleoperators in the presence of unmodelled external disturbances with

dynamics uncertainty and constant asymmetric time delays. It was shown that the teleoperators

are uniformly ultimately bounded under the influence of passive or non-passive external human

or environment forces. Moreover, the null space velocity tracking of the redundant soft follower

robot was used for achieving collision avoidance sub-task. The efficacy of the proposed

framework is illustrated via extensive simulations and experiments.
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Chapter 5: Adaptive Tracking Control of Soft Robots Using Integrated Sensing

Skins

This chapter studies integrated estimation and control of soft robots. To that end, this

chapter introduces a new method of estimating the degree of curvature of a soft robot using a

stretchable sensing skin, which is a spray-coated piezoresistive sensing layer on a latex

membrane. The mapping from the strain signal to the degree of curvature is estimated by using

a recurrent neural network (RNN). Uni-directional bending as well as bi-directional bending of

a single-segment soft robot is investigated. Moreover, an adaptive controller is developed to

track the degree of curvature of the soft robot in the presence of dynamic uncertainties.

Subsequently, using the integrated soft sensing skin, successful curvature tracking control of the

soft robot is demonstrated experimentally.

5.1 Overview

An important recent focus of the soft robotics community has been the development of

integrated sensors for soft robotic perception (e.g., [52, 58]). Integrated sensing would

potentially enable a soft robot to perceive the world without external sensors. The sensory

signals acquired from integrated sensors can then be utilized for state estimation and in closed

loop control. Several methods have been proposed for developing integrated sensors for soft
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Figure 5.1: The soft sensing skins (a) and the soft robot retrofitted with the sensors (b).

robots [52, 90]. However, only a few sensing technologies have been demonstrated that are

readily amenable to closed loop dynamic control for a wide range of soft robots [58].

This chapter investigates an integrated sensing and control framework for soft robots with

a simple sensing skin that can be easily retrofitted to estimate the degree of curvature and

employing an adaptive tracking controller. While this study considers a planar single-segment

soft robot capable of bi-directional bending with a constant curvature along the length of the

segment, the proposed advances could also be utilized for multi-segment 3D soft robots. The

sensing skin consisted of a piezoresistive sensing layer spray coated onto a latex membrane

[91, 92]. A strip-shaped sensing area was created, and electrical leads were attached at either

end. The sensing skin and the soft robot retrofitted with the sensors are shown in Figure 5.1. A

data driven model, namely a long short term memory (LSTM) network [93], which is a special

RNN, was used to determine the relationship between the sensor signals and the degree of

curvature. Both uni-directional bending and bi-directional bending were investigated. The

utilization of the proposed integrated sensing strategy in an adaptive control framework [61] for
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dynamic tracking control of soft robots is successfully demonstrated in experiments. The

adaptive controller was developed to track the degree of curvature of the soft robot assuming

uncertainty in the dynamic parameters of the soft robot.

To the best of my knowledge, this chapter demonstrates the first steps toward utilizing

retrofitted soft sensor skins for degree of curvature estimation in adaptive tracking control of soft

robots for bi-directional bending. The results semming from this work was partly presented in

[94].

The rest of the chapter is organized as follows. Section 5.2 discuss the related work on

embedded sensing technologies for soft robots. The adaptive tracking control framework is

discussed in Section 5.3. Section 5.4 introduces the soft sensing skin and the soft robot, and

discusses degree of curvature estimation using integrated sensing skins. The experimental

results for curvature tracking control using the integrated sensing are presented in Section 5.5

and the results are discussed in Section 5.6.

5.2 Related work on embedded sensing for soft robots

Over the past decade, a considerable amount of work on developing embedded sensing for

soft robots has emerged. Some studies demonstrated the use of commercially available flex

sensors embedded in a soft robot to measure the bending of the body. In one study [48], the

integration of commercial flex sensors within a soft bending module actuated by pressure-driven

fluidic actuators was attempted. Commercial flex sensors were used in another study [49] to

estimate bending angle through a data-driven approach, in which the bending angle control was

achieved by utilizing the predicted angle in a classical PID controller (heuristically tuned, rather
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than model-based). Flex sensors were also used in soft elastomer composite actuators for

bending angle estimation [50, 51] . The estimates were then utilized in learning based control

frameworks. In another work [95], a flex sensor was used for bending angle estimation, which

was then employed in a back-stepping control algorithm for bending angle tracking. More

recently, a data driven model was proposed to estimate the bending angle from a commercially

available flex sensor as well as the pressure data [96]. The paper demonstrated the use of the

estimates in a model-free static controller for bending angle control.

One drawback of the commercial flex sensors is that they stiffen the soft bodies since the

flex sensors are not as soft as the soft robot body [52, 53]. Specifically, the flex sensors bend

but they do not stretch. Therefore, they are embedded in the non-stretching region at the center

of the robot segment [54]. Flex sensors could not be used in extensible soft robots because

of their lack of stretchability. Thus, some groups have focused on developing soft embedded

sensors that do not impact the mechanical compliance of the soft robots. Such embedded sensors

for estimating soft robot position, actuation pressure, and force sensing have been fabricated

recently [53, 54, 55]. A method to fabricate soft somatosensitive actuators by embedding 3D

printed ionically conductive gels was proposed in [90]. In [97], a McKibben-type actuator with

an embedded soft sensor was fabricated using a self-coagulating conductive Pickering emulsion

and was used in closed loop control for slow movements with considerable error. In [98], a

differential sensing method for the application of soft robot angle sensing using an embedded

coiled conductive polymer fiber was proposed. A closed-loop multidimensional angle control

system based on PID control using the differential sensing method was then developed to verify

the sensing performance. The review paper [56] discusses soft pneumatic actuators fabricated

entirely with additive manufacturing methods and suggests learning based control for soft robots
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with self-sensing capability.

Recent efforts in embedded sensing technology have used polydimethylsiloxane (PDMS)

filled with carbon nanotubes (cPDMS) [52, 57]. The resistance of these polymers increases with

strain [99]. By embedding cPDMSs in the soft robot body and measuring the resistance of these

areas, the bending of the soft body could be estimated. In [52], the authors discussed a strategy

for data-driven multi-modal sensing, namely the robot tip position and exerted force at the tip,

using a cPDMS embedded sensor. The fabrication of cPDMS soft skins and their use for tactile

sensing for haptic visualization was discussed in [57] .

The authors in [58] used off-the-shelf conductive silicone elastomer sheets laser cut into

Kirigami patters and bonded to the soft robot skin as soft piezoresistive silicone sensors. Using

these sensors, the steady state 3D configuration of the soft robot was predicted using a trained

RNN. This strategy has been used for developing data–driven disturbance observers for

estimating external forces on soft robots [59].

5.3 Adaptive curvature tracking controller

This section develops the adaptive control framework for curvature tracking. While the

sensing skin and the experimental results are developed for a single segment soft robot, the

approach is scalable, and hence the general multi segment dynamics and control strategy is

discussed here. The dynamics of the soft robot are formulated as a Lagrangian system through

the dynamically consistent augmented formulation[22] as described in Section 2.2. Specifically,

the PCC model (2.3) will be used in this controller design.

The motivation for developing an adaptive controller is that the estimated model for the
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soft robot in the form of a PCC segment based rigid robot manipulator is not exact. Also the

parameters of the model are not known precisely. Therefore a control mechanism that adapts

the parameters as the soft robot operates would be beneficial for good performance. It should be

noted that the main objective of the controller is to track the desired curvature. If the PCC model

(2.3) is viewed as a rigid manipulator model, one can apply classical methods developed for rigid

robots as shown in [61] to develop the adaptive tracking controller.

Define the degree of curvature error vector as,

q̃s(t) = qs(t)− qd(t)

where qd(t) is the desired curvature. Define the virtual reference trajectory

q̇r(t) = q̇d(t)− λq̃s(t)

and let

s(t) = ˙̃qs(t)− λq̃s(t),

where λ is a positive definite parameter matrix which needs to be tuned.

Denote the equivalent parameter vector of the model as Θs, whose elements are

combinations of the variables mi, Li, Ks, and Ds. Note that the Ks and Ds terms will be

explicitly included in Θs. Using the properties of Lagrangian systems (see Appendix A.2),

define the regressor (Ys (qs, q̇s, q̇r, q̈r)) and parameter (Θs) vector pair for the augmented soft
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robot model,

YsΘs =Msq̈r + (Cs +Ds)q̇r +Ksqs +Gs.

The estimated equivalent parameter vector is denoted by Θ̂s, and hence the estimation error is

defined as Θ̃s = Θ̂s −Θs. Now the control law is proposed as,

τs = YsΘ̂s −KDs, (5.1)

where KD is a gain term that needs to be tuned. The adaptation law with the positive definite

adaptation gain matrix Γc is

˙̂
Θs = −ΓcY

T
s s. (5.2)

The stability of the designed controller (5.1)-(5.2) can be demonstrated using Lyapunov analysis

[61, 74] which is sketched here.

Consider the Lyapunov function candidate

V (t) =
1

2
[sTMss+ Θ̃T

s Γ
−1
c Θ̃s] (5.3)

where Γc is chosen to be a symmetric positive definite matrix. Therefore given the positive

definiteness of Ms (Property A.1), the Lyapunov function candidate is positive definite.
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Differentiating V (t) with respect to time,

V̇ (t) = sTMsṡ+
1

2
sTṀss+

˙̃ΘT
s Γ

−1
c Θ̃s

= sTMs (q̈s − q̈r) +
1

2
sTṀss+

˙̂
ΘT

s Γ
−1
c Θ̃s

= sT (τ − (Cs(qs, q̇s) +Ds) (s+ q̇r)−Ksqs −Gs −Msq̈r) +
1

2
sTṀss+

˙̂
ΘTΓ−1

c Θ̃s

(5.4)

then using the Property A.2, Ṁs − 2Cs is skew symmetric and, substituting the proposed control

law (5.1) and the adaptation law (5.2) in (5.4) yields

V̇ (t) = sT
(
YsΘ̂s −KDs− YsΘs

)
+
(
−ΓcY

T
s s
)T

Γ−1
c Θ̃s

= − sTKDs (5.5)

which shows that V̇ (t) is negative semi-definite. Now invoking Barbalat’s Lemma it can be

shown that the convergence of the tracking error is guaranteed while the system remains globally

stable.

5.4 Integrated sensing

This section discusses the proposed method for degree of curvature estimation using soft

sensing skins retrofitted onto a soft robot. First, the soft sensing skin [91, 92] is described and

the soft robot is characterized. Then the experimental setup is introduced and the approach for

degree of curvature estimation is discussed.
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5.4.1 Soft sensing skin

The soft sensors used in this work were fabricated by spray coating a stretchable

piezoresistive sensing layer in the shape of a strip onto a latex membrane. The coating consisted

of a latex host filled with exfoliated graphite (EG). Electromechanical connections to the

sensing layer were made using carbon fiber yarn attached with the same latex/EG solution

serving as a “glue” [91]. A top coating of latex was added to protect the sensing layer from

mechanical damage. Further, adhesive tape was used at the ends of the sensor strips to protect

the electromechanical connections of the sensor. The carbon fiber yarn was joined to a copper

wire by winding the copper wire around the carbon fiber yarn and then using a heat-shrink

tubing to secure the joint.

Upon stretching the sensor, the resistance of the film increases. The response of these

sensors is substantially linear over a large range of strain [100], and the gauge factor (GF), or

sensitivity, is on the order of 10 (∆R/R = GF*ϵ, where ∆R is the change in resistance, R is the

original resistance, and ϵ is the strain).

Two stretchable sensing skins were retrofitted over the soft robot, one on each side, to

measure strain when the segment was bending. Figure 5.1 (a) shows an image of the soft sensing

skins. Figure 5.1 (b) shows the skins over the outer surface of an actuated segment, mechanically

held in place using rectangular rings around the un-actuated ends of the segment; these rings are

typically used to hold the markers for the motion capture system, and here served both functions.

Two voltage divider circuits were used to measure the resistance of the sensing skins, and an

Arduino board serially transmitted these as analog signals, which are referred to as “raw strain

signals”.
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(a) (b)

Figure 5.2: Soft robot retrofitted with the stretchable sensing skins. The compartments of the soft
robot and the sensing skins are labeled in panel (a). Panel (b) shows the degree of curvature and
the markers placed for the motion capture (MoCap) system.

5.4.2 The soft robot

The soft robot used in this chapter is the same soft robot described in Section 2.6.1.1,

except that only the distal segment was actuated. The base of this distal segment was fixed and

the segment was constrained to move on a horizontal table. This actuated single-segment is

referred to as the soft robot for this study. The segment had two compartments, named A and

B as shown in Figure 5.2, that were individually actuated pneumatically, and were assumed to

deform with a constant curvature along the length of the segment under the applied pressure. The

middle layer of the segment (the joint between the two chambers) was inextensible due to the

restrained material layer.

The segment length along the inextensible middle layer was measured to be L1 = 124 mm.

The segment mass m1 is uncertain due to the retrofitting the soft sensing skin on the original

design, for which the segment mass 0.110 kg was measured prior to joining the segments together.
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Figure 5.3: The experimental setup for testing the soft sensing skins

5.4.3 Experimental setup

The experimental setup, shown in Figure 5.3, consisted of the single-segment soft robot

retrofitted with the sensing skin, the pneumatic actuation unit, an Arduino board to acquire the

sensor skin strain signal, an OptiTrack motion capture system for ground truth measurements, and

an i7 16GB RAM Windows 10 laptop to train the neural networks and run the control algorithm

on MATLAB 2019a. Before each experiment, either data collection or control, two cycles of

inflating and deflating each compartment for 5 s intervals were carried out to eliminate first cycle

effects in the elastomers.

5.4.4 Degree of curvature estimation

The degree of curvature estimation is considered for two cases. First, uni-directional

bending of the soft robot with the utilization of a single soft sensing skin on one side. Second,

bi-directional bending utilizing both skins on two sides. It is assumed that the soft robot
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Figure 5.4: The Neural Network architecture used in this work

segment has the same curvature along its length (CC assumption). A data driven approach was

used to identify the relationship between the strain signals from the sensors and the degree of

curvature. Specifically, an RNN named Long Short Term Memory (LSTM) network [93] is

utilized to learn the time series mapping.

For both the scenarios, the same network architecture designed using the MATLAB Deep

Learning Toolbox was used. A dropout layer with a rate of 0.1 after the input layer was used to

prevent over-fitting and make predictions more robust to noise. Next, an LSTM layer was used.

The number of hidden units for the this layer was selected to be as small as possible to prevent

overfitting via a validation set. Then a fully connected layer was added to compute the outputs.

The network architecture of the LSTM network used in this work is shown in Figure 5.4.

For the uni-directional bending case, the actuator signal (PWM signal) for the actuated

compartment A and the raw strain signal from the soft sensing skin A were the inputs to the

network. For the bi-directional bending case, the actuator signals for both compartments and

the raw strain signals from the two sensing skins were the inputs. The networks’ output was the

degree of curvature. The degree of curvature measured using the motion capture (MoCap) system

was used as the ground truth when training the networks. Both the networks were trained using

the Adam optimizer. L2 regularization with the default value (0.0001) was used. Further, two

separate validation sets were used: an α-validation set with a frequency of 25 and patience of 5 to
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Figure 5.5: Learned model test set performance: Uni-directional bending

minimize over-fitting by early stopping, and a β-validation set for selecting the number of hidden

units for the LSTM layer by manually inspecting the root mean squared error (RMSE) value for

the β-validation set after the training had stopped.

5.4.4.1 Uni-directional bending

For testing the uni- directional bending, only the compartment A of the soft robot was

actuated, and the strain signals from the soft sensing skin retrofitted on the compartment A were

used. Eight experiments were conducted to collect data for training. A random actuation pattern

was generated at a rate of approximately 1 Hz to actuate the soft robot and each experiment was
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run for a period of 2−3 minutes. For each experiment, the actuation signal, the strain signal, and

the actual degree of curvature were recorded at a rate of 85 Hz. The collected data were joined

together later to constitute the total data set, which consisted of 115, 410 data points. This data

set was then divided into a training set of 80, 786 points and two validation sets, α, β-validation

sets, of 17, 312 points each, from which the network was trained. The optimum number of hidden

units for the LSTM layer was 30.

Once the RNN was learned, the degree of curvature estimation performance was evaluated

in real time for a random actuation pattern. The predicted degree of curvature by the LSTM

network superimposed with the actual values for this experiment are illustrated in Figure 5.5

along with the raw strain signals and the actuation signals. The RMSE for this test experiment

was 0.86◦.

5.4.4.2 Bi-directional bending

For this case both compartments A and B were actuated, and the strain signals from both

the sensing skins were used. The training data set was collected at a rate of 60 Hz by conducting

seven experiments using randomly generated actuation patterns at a varying rate of 1−4 Hz. The

cumulative length of the experiments was 30 mins, resulting in a total data set that consisted of

107, 090 data points. This data set was then divided into a training set of 74, 962 points and two

validation sets, α, β-validation sets, of 16, 064 points each, from which the network was trained.

The optimum number of hidden units for the LSTM layer was 30.

The degree of curvature estimation performance of the learned model was evaluated in real

time for a random actuation pattern. The predicted degree of curvature by the LSTM network
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Figure 5.6: Learned model test set performance: Bi-directional bending
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superimposed with the actual values for this experiment are illustrated in Figure 5.6 along with

the raw strain signals and the actuation signals. The RMSE for this test experiment was 1.95◦.

5.5 Experimental results

This section illustrates the efficacy of the integrated sensing strategy for dynamic tracking

control of soft robots using the adaptive control framework (5.1)-(5.2) for degree of curvature

tracking. The results are reported for both uni-directional and bi-directional bending. The

tracking errors are computed and related to the degree of curvature ground truth measured by

the MoCap system.

Uncertainty was assumed in the segment mass, torsional stiffness and torsional damping.

Thus the parameter vector was chosen as Θs =
[
m1L2

1, Ks, Ds

]⊤. The initial parameter estimates

Θ̂s(0) = [0.6, 0.1, 0.1]⊤ were set different from the measured nominal values. The control gains

were constant throughout the experiments and were set to Γ = 1.2, λ = 3.2, KD = 0.8.

5.5.1 Uni-directional bending

Here only the sensor strain signals from the skin retrofitted onto compartment A and the

actuator signals for compartment A were used for degree of curvature estimation via the learned

model, although both the compartments were allowed to be actuated. Two experiments were

conducted, one with a low frequency target trajectory, and the other with a high frequency target

trajectory. For the low frequency target, the desired degree of curvature was set to qd(t) =

(π/8)− (π/9) cos (πt/12). The results are shown in Figure 5.7 wherein the tracking RMSE was

4.35◦, and the estimation RMSE was 2.78◦. The results for the high frequency trajectory tracking
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Figure 5.7: Uni-directional low frequency target trajectory tracking

0 5 10 15 20 25 30 35 40 45 50 55 60

0

10

20

30

40

50

(a) Tracking performance

0 5 10 15 20 25 30 35 40 45 50 55 60

-10

0

10

20

(b) Error plot

Figure 5.8: Uni-directional high frequency target trajectory tracking

are shown in Figure 5.8, where qd(t) = (π/8) − (π/9) cos (πt/3). In this case the tracking and

estimation RMSE was found to be 4.09◦ and 2.27◦ respectively.

5.5.2 Bi-directional bending

Here both compartments were actuated, and strain signals from both the sensing skins

were used for degree of curvature estimation via the learned model for bi-directional bending.

Two experiments were conducted, one with a low frequency target trajectory and one with a

high frequency target trajectory. For the low frequency target, the desired degree of curvature
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Figure 5.9: Bi-directional low frequency target trajectory tracking
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Figure 5.10: Bi-directional high frequency target trajectory tracking

was set to qd(t) = (π/6) sin (πt/6). The results are shown in Figure 5.9, in which the tracking

and estimation RMSE was found to be 5.05◦ and 3.79◦ respectively. The results for the high

frequency trajectory tracking are shown in Figure 5.10, where qd(t) = (π/6) sin (πt/4). Here the

tracking RMSE was 5.10◦ and the estimation RMSE was 3.73◦.

5.6 Discussion

The experimental results exhibit the successful utilization of the retrofitted soft sensing

skin for the degree of curvature estimation for adaptive tracking control of a desired curvature
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trajectory. The uni-directional bending illustrates the use of a single soft sensing skin for degree

of curvature estimation when the soft robot only bends in a certain direction. This capability is

useful for sensing and estimation of soft segments, such as in wearable robots, that have only a

single compartment and only bend in a one direction. The bi-directional experiments demonstrate

the use of two sensing skins retrofitted on the two compartments of the soft robot for curvature

estimation. The bi-directional bending is especially important in soft robot manipulation.

Considering both the uni-directional and bi-directional bending, the capability of the

integrated sensing skins to estimate the curvature for slow as well as fast manipulations are

shown, and the fast response of the sensors are reflected in the satisfactory tracking of the target

trajectory. In the starting of the experiments the higher tracking error maybe due to uncertain

parameters which in time gets better due to parameter adaptation.

5.7 Summary

This chapter demonstrated the use of integrated sensing for dynamic control of soft robots

under the PCC modeling hypothesis. The soft sensing skins proposed in this work could be

retrofitted to many soft robots, and the degree of curvature estimation can be learned using an

LSTM network, only requiring the strain signals from the sensing skin and the actuator inputs.

Moreover, an adaptive controller was designed to track a desired degree of curvature trajectory.

The satisfactory degree of curvature tracking using the adaptive controller for low and high

frequency target trajectories demonstrates that the proposed soft skins are capable of estimating

the degree of curvature robustly for inclusion in a dynamic control framework.
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Chapter 6: Passivity-Based Task Space Control of Hybrid Rigid-Soft (HyRiSo)

Robots with Parametric Uncertainty

This chapter introduces a novel robotic system, coined as a hybrid rigid-soft (HyRiSo)

robot composed of serially attached rigid and soft links for dexterous and precise motion. Due

to the heterogeneous modes of actuation for the revolute joints and soft link bending, it is

challenging to design an integrated controller for this class of robots. This chapter demonstrates

that the well-known passivity-based adaptive and robust controllers can be utilized to address

this challenge. Specifically, these controllers are used for task space tracking in the presence of

uncertain stiffness, damping and actuation parameters in complex environments. Numerical

examples are provided using a 2-rigid-2-soft HyRiSo robot illustrating the efficacy of these

frameworks.

6.1 Overview

Despite the progress, it is challenging to achieve precise motion control of complex multi-

link soft robots in a large workspace. It has been observed that increasing the length of the soft

links induces workspace warping and makes the control problem harder [101]. While modern

day rigid robots do not suffer from these challenges due to their precision, they lack the dexterity

for completing task space operations, especially in cluttered environments [102]. On the other
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hand, the new class of robots discussed in this chapter, the integrated hybrid rigid-soft (HyRiSo)

robots, integrates the dexterity of a soft manipulator with the payload capacity and precision of a

rigid robot.

In a previous related study, the authors in [14] proposed a control framework to control a

rigid arm with an extruding soft manipulator used for berry picking. However, the rigid links and

the soft link were separately controlled in this work- kinematic inversion was utilized to control

the rigid portion of the arm to reach a specific pose while a reinforcement learning policy was

used for the soft link to reach the target position. While the performance was satisfactory, it was

slow and required several user commands. An important observation for proposed class of hybrid

robots is that heterogeneous actuation modalities are utilized for the revolute joints and the soft

links. Thus, incorporating the uncertain actuator mapping from the pressure/current variables

to the realized torques is important in the proposed control framework. Hence, developing a

model-based integrated dynamic controller would be beneficial for fast autonomous operation as

well as to understand the behavior of the HyRiSo robot and to provides guarantee for stability

and performance. Furthermore, as there could be uncertainties arising in the dynamic parameters

of the robot, stiffness and damping terms of the soft links as well as lack of knowledge of the

actuator mapping, it would be desirable to design controllers that are robust to such uncertainties.

There have been several fundamental advancements to address the challenge of parametric

uncertainty in classical rigid robotic control. Several adaptive control laws for rigid robots that

adapts to the parameter uncertainty has been proposed over the years [61, 79, 103, 104]. Robust

controllers that are robust to uncertainty as well as the unmodelled disturbances have also been

proposed [80, 81]. In [105], the authors introduced an adaptive controller for handling

uncertainty in dynamic, kinematic as well as actuator parameters. In [106], the authors proposed
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an adaptive control framework to compensate for actuator failure in cooperative robots with

uncertain parameters. Recently, the soft robotics community has also made progress in trying to

handle the uncertainty in the control design. Among the few works, curvature space adaptive

control of soft robots using an augmented model has been proposed used in our previous work

[94] as presented in Section 5.3. A recent study by the authors in [44] have used adaptive

control for curvature tracking of a 3D soft robot. Task space adaptive control for soft robots was

presented in Section 2.3 and was extended for a bilateral teleoperation framework in our

previous work [73]. Several robust control approaches have also been proposed for soft robots

[45]. Recently, in [46], a nonlinear adaptive position and stiffness controller for pneumatic soft

robots was proposed.

However, an integrated control framework that addresses the model and actuation

uncertainties in the class of HyRiSo robots is yet to be explored. To that end, in this chapter,

first, the HyRiSo robot is proposed and then passivity-based adaptive and robust controllers for

task space trajectory tracking are designed for this class of robots. Moreover, as the task space

operation involve sub-tasks such as conforming to joint/curvature limits and collision avoidance

with obstacles, the null space velocity is exploited to design sub-tasks to handle these issues and

demonstrate the dexterity of the HyRiSo robot.

The main contributions of this chapter is to propose the integrated hybrid-rigid-soft

(HyRiSo) robot for dexterous task space manipulation and to develop passivity-based adaptive

and robust controllers for this new system in the presence of parametric uncertainty in system

dynamics as well in the actuator mapping. Additionally, the efficacy of HyRiSo robot for task

space manipulation is demonstrated by exploiting the system redundancy to enable tracking in

the presence of complex obstacles, joint limits, and unmodeled disturbances. This work was
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presented partly in [107].

The rest of the chapter is organized as follows. Section 6.2 introduces the novel hybrid

robot model. Next, Section 6.3 discusses the control design of the passivity-based adaptive

controller and the robust controller. Finally, the numerical examples with simulation results are

illustrated in Section 6.4.

6.2 The HyRiSo robotic system

This section introduces the novel robotic system proposed in this chapter - a fully actuated

planar HyRiSo robot which is composed of rigid links as well as soft links.

6.2.1 Dynamics

Let us consider a robotic system with nr rigid links and ns soft links serially connected

together forming an open chain of ns + nr links. In the general setting, all the joints, rigid &

rigid, rigid & soft and soft & soft to be revolute joints are considered. The soft links are assumed

to be non-extensible and have a constant curvature (CC) [16]. In general, the hybrid robotic

system will have α = nr + 2ns configuration variables for the system, namely the revolute joint

angles (for all nr + ns links), and the degree of curvature of the ns soft links. Those are denoted

as qi, with i = 1, 2, ..., α and collect them to the vector q = [q1, q2, ..., qα]
⊤ ∈ Rα. It should be

noted that, in certain hybrid robot designs, one can also consider fixed joints between the rigid &

soft or soft & soft links. Two representative HyRiSo robots are shown in Figure 6.1.

In this chapter it is assumed that the rigid links are uniform and the masses mi, with

i ∈ {rigid link indices} are lumped at the centroid of the links. To accommodate motors at the
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(a) RSRRSS HyRiSo robot (b) RRRRSS HyRiSo robot

Figure 6.1: Two examples of HyRiSo robots composed of rigid (R) links (blue) and CC soft
(S) links (red) modelled using the augmented formulation [22] are illustrated. The lumped link
masses mi (brown), lumped motor masses mmi

(pink) and the lumped end effector mass m∗

(green) are also shown here. The RSRRSS design (a) considers a fully fledged HyRiSo robot
with three rigid and three soft links with all actuated revolute joints. The RRRRSS design (b)
considers a HyRiSo robot with four rigid and two soft links with fixed joints between rigid & soft
and soft & soft links.

revolute joints, assume the motor masses mmi
, with i ∈ {revolute joint indices} to be lumped at

the revolute joints. Also assume that the end effector mass m∗ to be lumped at the hybrid robot’s

tip. Moreover, as the soft links are assumed to be CC, the augmented formulation [22] as

described in Section 2.2 is used to model the soft links. Using this formulation, the moment of

inertias of the soft links are neglected since rotational kinetic energy is much smaller than the

translational energy components [108]. The soft links masses mi, with i ∈ {soft link indices}

are at the center of the main chord connecting the ends of the soft link. The dynamics of
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HyRiSo in the Lagrangian form is then written as,

M(q)q̈ + C(q, q̇)q̇ +Dq̇ +Kq +G(q) = τ (6.1)

where M(q) ∈ Rα×α is the inertia matrix, C(q, q̇)q̇ ∈ Rα is the Coriolis and centrifugal terms,

G(q) ∈ Rα is the gravity vector and τ ∈ Rα is the control input vector. D ∈ Rα×α and K ∈

Rα×α are the damping and stiffness matrices respectively, which are assumed to be positive semi-

definite diagonal matrices. Note that only the entries corresponding to the soft link will be non-

zero in these damping and stiffness matrices. Here, as only the planar case is considered, the task

space of the robot is considered to be R2, and hence HyRiSo is a redundant robot.

6.2.2 Actuator mapping via a transmission matrix

This section briefly discusses the implications of the actuator mapping via a transmission

matrix. Assume a linear actuator mapping for the hybrid robot, τ = Ap, where A ∈ Rα×α is the

positive definite diagonal transmission matrix that maps the actuator signals p ∈ Rα to the

control torque τ . In HyRiSo robot, the actuator signals (p) that need to be sent to the actuation

units could be, for example, the current signals for motor torques or the pressure signals for

pneumatic actuation for bending. While calibrating and obtaining the exact parameters for

motor actuation can be done easily, obtaining these parameters for soft links is cumbersome. In

the soft links, the torques applied by the soft links could be order of magnitude less than the

torques applied by the motors. This poses challenges in practical implementations due to

incorrect calibration. Moreover, the actuator parameters could change over time (albeit very

slowly) due to several factors such as changes in the temperature [105]. Therefore, incorporating
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the actuator parameters and accounting for their uncertainty in the control design is of

paramount importance. In several prior work that considered uncertainty in the actuator

parameters, for example in [105], the authors have used a separate parameter update law to

update uncertain actuator parameters along with other parameter update laws for uncertain

dynamics and kinematics.

This chapter notes a simple way to incorporate the actuator parameters as suggested in

[46, 109]. Using the relationship of the actuator mapping for the torque on (6.1) we obtain,

A−1 (M (q) q̈ + C (q, q̇) q̇ +Dq̇ +Kq +G (q)) = p,

and defining M0 = A−1M , C0 = A−1C, D0 = A−1D, K0 = A−1K and G0 = A−1G one can

rewrite,

M0(q)q̈ + C0(q, q̇)q̇ +D0q̇ +K0q +G0(q) = p. (6.2)

Note that, since M , C and G are linear in the dynamic parameters (see Property A.3), so is M0,

C0 andG0 as pre-multiplication byA−1 is a linear operation. Therefore,M0, C0 andG0 are linear

in suitably selected parameters which are nonlinearly related with the dynamic parameters and

the actuator mapping parameters.

Therefore, the Property A.3 can be extended to the system (6.2) such that for any

differentiable vector γ ∈ Rα there exists a regressor Y2(q, q̇, γ, γ̇) ∈ Rα×β2 and a constant
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parameter vector Θ2 ∈ Rβ2 such that

M0(q)γ̇ + C0(q, q̇)γ +D0(q)γ +K0q +G0(q) = Y2(q, q̇, γ, γ̇)Θ2.

Example 6.1 Consider a simple planar HyRiSo robot system with one rigid link and one soft

link with the actuator mapping A = diag(a1, a2) operating on the horizontal plane. The

elements of the inertia matrix M(q) ∈ R2 of this robot can be written as,

M11 = m1ϕ1(L, q) + m2ϕ2(L, q) + I1, M12 = M21 = m2ϕ3(L, q) and M22 = m2ϕ4(L, q),

where ϕi(L, q)’s are the regressor terms, which are nonlinear functions of the link lengths

L = [L1, L2]
⊤ and the configuration variables q = [q1, q2]

⊤. These are defined explicitly in the

Appendix A.5. For simplicity let us consider only the masses of the two links m1,m2 and the

moment of inertia of the rigid link I1 as inertial parameters. Since the Christoffel symbols are

functions of elements of the inertia matrix, no additional parameters are required for the C

matrix. Considering the stiffness K and damping D matrices, let the stiffness of the soft link k

and the damping of the soft link d be considered as parameters (as noted in the Section 6.2.1,

the stiffness and damping of the rigid link joint is null). Also, gravity terms are not considered as

only the planar horizontal case is studied. Now, with the dynamics represented as in (6.1) the

parameter vector becomes Θ = [m1, I1,m2, k, d]
⊤ with the corresponding regressor Y . On

pre-multiplying the dynamics with the inverse of the transmission matrix to obtain the dynamics

in the form (6.2), observe that the elements in M0,

M011 = (m1/a1)ϕ1(L, q) + (m2/a1)ϕ2(L, q) + (I1/a1), M012 = (m2/a1)ϕ3(L, q),
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M021 = (m2/a2)ϕ3(L, q) and M022 = (m2/a2)ϕ4(L, q). Consequently, inspecting C0 as well,

the inertial parameters in this case become m1

a1
, I1

a1
, m2

a1
and m2

a2
. The parameters related to the

stiffness and damping matrices are given as k
a2

and d
a2

. Hence the new parameter vector is

Θ2 = [m1

a1
, I1
a1
, m2

a1
, m2

a2
k
a2
, d
a2
]⊤ with the corresponding regressor Y2.

6.3 Passivity-based control for HyRiSo robots

This section presents the design of two passivity-based controllers, an adaptive controller

and a robust controller, for task space trajectory tracking for HyRiSo robot. The proposed

controllers are developed based on the Lagrangian formulation of the HyRiSo robots as given by

(6.1), and follow similar ideas as provided in [61, 80]. However, the treatment for task space

trajectory tracking closely relates to the methods implemented in Section 2.3.

Consider the direct forward kinematics h(·) : Rα → R2 which maps the configuration space

to the task space. Thus, the end effector position and the velocity are defined as, X(t) = h(q)

and Ẋ(t) = J(q)q̇, where, J(q) = ∂h(q)
∂q

∈ R2×α is the Jacobian matrix. Let Xd(t) be the desired

reference task space trajectory. Then, the tracking error is defined as,

e(t) = X(t)−Xd(t).

In order to drive the tracking error to approach origin, the system trajectories are restricted to the

sliding surface,

s(t) =J+(q)ė(t) + J+(q)Λe(t)−
(
Iα − J+(q)J(q)

)
ψs(t) (6.3)
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where, Λ ∈ R2×2 is a positive definite gain matrix. ψs(t) ∈ Rα is the negative gradient of an

appropriately defined convex function which is utilized for the sub-task control (see Appendix

A.4). Here, J+ ≜ J⊤(JJ⊤)−1 ∈ Rα×2 is the pseudo inverse of J and satisfies the property

JJ+ = Iα where Iα is the α × α identity matrix. It is seen that as once the trajectories reach

s = 0,

ė(t) = −JJ+Λe(t) + J(Iα − J+J)ψs = −Λe(t) (6.4)

and hence, the errors will reach the origin when s = 0.

Let us define signals, v = q̇ − s and a = q̈ − ṡ. Assuming uncertainty in the parameters,

let us use the notation (̂·) to denote the estimated values and (̃·) to denote the estimation error.

Using the extended Property A.3 of Lagrangian systems for the system (6.2), the regressor

(Y2 (q, q̇, v, a)) and parameter (Θ2) vector pair for the estimated systems is defined as,

Y2(q, q̇, v, a)Θ̂2 =M̂0(q)a+ Ĉ0(q, q̇)v + D̂0v + K̂0q + Ĝ0(q). (6.5)

Here time invariant uncertainties in the dynamic terms, stiffness, damping and actuator

parameters are assumed. Thus, the parameter vector Θ2 is a constant.
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6.3.1 Passivity-based adaptive control

Following the adaptive control approach [61], the control input for the HyRiSo robot is

defined as,

p =Y2(q, q̇, v, a)Θ̂2 −Kss (6.6)

where Ks is a positive definite diagonal gain matrix.

The dynamics of the closed loop system can be found by substituting the proposed control

(6.6) in the HyRiSo robot dynamics (6.1), and using (6.5),

M0(q)ṡ+ C0(q, q̇)s+D0s+Kss = Y2(q, q̇, v, a)Θ̃2 (6.7)

where Θ̃2 = Θ̂2 −Θ2. Let the adaptation law for the parameter estimation defined as,

˙̂
Θ2 = −ΓY ⊤

2 s (6.8)

where Γ is a positive definite symmetric gain matrix that needs to be tuned.

Theorem 6.1 Consider the closed loop system (6.7) with the parameter adaptation law (6.8) and

sliding surface (6.3). In the absence of any external wrenches, the task space position error (e)

and velocity error (ė) asymptotically reach the origin while the parameter estimation error (Θ̃2)

remains bounded.
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Proof of Theorem 6.1 Consider a Lyapunov like function for the system defined as,

V =
1

2

(
s⊤M0s+ Θ̃⊤

2 Γ
−1Θ̃2

)
≥ 0

Differentiating V with respect to time yields,

V̇ =
1

2
s⊤Ṁ0s+ s⊤M0ṡ+ Θ̃⊤

2 Γ
−1 ˙̃Θ2

=
1

2
s⊤Ṁ0s+ s⊤

(
−C0s−D0s−Kss+ Y2Θ̃2

)
+ ˙̃Θ⊤

2 Γ
−1Θ̃2

Using the skew symmetry property (Property A.2) and using the chosen adaptation law (6.8) we

obtain,

V̇ = −s⊤D0s− s⊤Kss ≤ 0.

As V ≥ 0 and V̇ ≤ 0, limt→∞ V is finite. Therefore, s ∈ L2 and s, Θ̃ ∈ L∞. From (6.7), noting

the properties of Lagrangian systems, observe that ṡ ∈ L∞. Therefore, since s ∈ L2 and ṡ ∈ L∞,

it can be shown that s→ 0 as t→ 0. Now from (6.4), e, ė→ 0 once s = 0.

6.3.2 Passivity-based robust control

Following the robust control approach in [80], and based off the adaptive control design,

the control input as (6.6) is used with the parameter estimation vector Θ̂2 now chosen as,

Θ̂2 = Θ0 + u (6.9)
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where Θ0 is a fixed nominal parameter vector and u is an additional control term which will be

designed for achieving robustness for uncertain parameters. Hence, now no adaptation for the

estimation of parameters are done.

Thus, using (6.9) in the control input (6.6) and substituting it in the HyRiSo robot dynamics

(6.1) yields,

M0(q)ṡ+ C0(q, q̇)s+D0s+Kss = Y2(q, q̇, v, a)(Θ̃0 + u) (6.10)

where Θ̃0 = Θ0 − Θ2 is the parameter uncertainty which is constant. Suppose the uncertainty is

bounded such that a constant bound ρ ≥ 0 can be found satisfying,

||Θ̃0|| = ||Θ0 −Θ2|| ≤ ρ. (6.11)

Then, letting ϵ > 0, the control term u is designed as,

u =


−ρ Y ⊤

2 s

||Y ⊤
2 s|| if ||Y ⊤

2 s|| > ϵ

−ρ
ϵ
Y ⊤
2 s if ||Y ⊤

2 s|| ≤ ϵ

(6.12)

Theorem 6.2 Consider the closed loop system (6.10) with bounded parameter uncertainty as

(6.11), the additional control u defined as (6.12) and the sliding surface (6.3). Then, the tracking

error is uniformly ultimately bounded (u.u.b)).
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Proof of Theorem 6.2 Consider a Lyapunov like function for the system defined as,

V =
1

2
s⊤M0s

Differentiating V with respect to time yields,

V̇ =
1

2
s⊤Ṁ0s+ s⊤M0ṡ

=
1

2
s⊤Ṁ0s+ s⊤

(
−C0s−D0s−Kss+ Y2(Θ̃0 + u)

)
=− s⊤Qs+ s⊤Y2(Θ̃0 + u)

where the skew symmetric property is utilized and Q := D0 + Ks which is a positive definite

diagonal matrix. Considering the term s⊤Y2(Θ̃0 + u), observe that if ||Y ⊤
2 s|| > ϵ then,

s⊤Y2(Θ̃0 + u) =(Y ⊤
2 s)

⊤
(
Θ̃0 − ρ

Y ⊤
2 s

||Y ⊤
2 s||

)
≤||Y ⊤

2 s||
(
||Θ̃0|| − ρ

)
< 0.

which implies that V̇ < 0 with respect to s. Note that ||Θ̃0|| ≤ ρ and ρ ≥ 0. Hence, Θ̃0 ≤ ρ
Y ⊤
2 s

||Y ⊤
2 s|| .

Now, if ||Y ⊤
2 s|| ≤ ϵ then,

s⊤Y2(Θ̃0 + u) =(Y ⊤
2 s)

⊤(Θ̃0 + u)

≤(Y ⊤
2 s)

⊤
(
ρ
Y ⊤
2 s

||Y ⊤
2 s||

+ u

)
=ρ||Y ⊤

2 s|| −
ρ

ϵ
||Y ⊤

2 s||2.
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The maximum of the R.H.S in the above expression is ϵρ/4 which is achieved when ||Y ⊤
2 s|| = ϵ/2.

Therefore,

V̇ ≤ −s⊤Qs+ ϵρ/4

and see that V̇ < 0 if s⊤Qs > ϵρ/4. Using the bounds on the quadratic form,

λmin(Q)||s||2 ≤ s⊤Qs ≤ λmax(Q)||s||2 where λmin(Q) and λmax(Q) are, respectively, the

minimum and maximum eigenvalues of the matrix Q, we have that V̇ < 0 if

λmin(Q)||s||2 > ϵρ/4 or, equivalently

||s|| >
(

ϵρ

4λmin(Q)

)
=: δ.

The u.u.b follows from this result using δ to define the radius of the ultimate boundedness set.

6.4 Numerical simulations

This section presents numerical simulation results illustrating the efficacy of the proposed

passivity-based controllers for the proposed HyRiSo robots. First, the HyRiSo robot parameters

are introduced and the simulation results are discussed subsequently.

6.4.1 The HyRiSo robot parameters

A four DoF HyRiSo robot is employed on the horizontal plane. The robot is composed of

two rigid links and two soft links where the first two links are rigid and the last two links are soft.

The joints between rigid & soft and soft & soft links are considered to be fixed. The lengths of the
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manipulators are L = [1, 1, 1, 1]⊤m. The masses of the links are m = [0.3, 0.3, 0.51, 0.51]⊤kg.

Ignoring the base motor as it does not contribute to the dynamics, the motor mass at the rigid-

rigid joint is mm = 0.1kg. The end effector mass is m∗ = 0.25kg. The moment of inertia of the

rigid links is given as I = [0.025, 0.025]⊤kg m2. The stiffness of the two links k = 0.03N/m, and

the damping of the two links d = 0.05 Ns/m was assumed to be the same. The base of the robot

is attached to the environment at the origin. Considering the actuator mapping, it is assumed

that the two motor signals for the two revolute joints have the same scaling and the two bending

signals for the two soft links have the same scaling, but different from that of the motor signals.

Hence, define A = diag(a1, a1, a2, a2) with a1 = 2 and a2 = 0.1.

The parameter vector was chosen as Θ2 = [m1

a1
, I1

a1
, mm

a1
, m2

a1
, I2
a1
, m3

a1
, m3

a2
, m4

a1
, m4

a2
, m∗

a1
, m∗

a2
,

d
a2
, k

a2
]⊤ with the nominal values chosen as Θ̂2(0) = 0.05 113×1 = Θ0. Here 113×1 is a 13 × 1

vector containing 1 as all entries. With this selection the uncertainty bound can be found as

||Θ̃0|| ≤ 7.576, and ρ = 8 is used in the robust controller along with ϵ = 0.1. For the adaptive

controller the adaptation gain Γ = 2.75 and the control gain Ks = I were chosen for all the

scenarios. The tracking gain Λ = 18 I2 was used in the adaptive controller, and Λ = 12 I2 in the

robust controller. The initial pose of the HyRiSo robot was q(0) = [− π
16
,−π

6
, π
5
, π
3
]⊤ with zero

initial velocities for all the simulations.

6.4.2 Simulation results

Two scenarios are considered - the first scenario is task space trajectory tracking of an

oblique circle shape in an uncluttered environment and the second scenario is task space

trajectory tracking of line segments in a cluttered environment. In both these scenarios the
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adaptive controller and the robust controller are tested under different conditions that will be

discussed subsequently in the scenario descriptions.

6.4.2.1 Trajectory tracking of an oblique circle shape in uncluttered

environment

In this scenario the reference trajectory Xd(t) = [xref (t), yref (t)]
⊤ is defined as,

xref (t) = − 0.75 + 1.75 sin(0.25πt)

yref (t) = 2.5 + cos(0.25πt)

Two simulated experiments were considered, one in which no external disturbance was involved

and another with a constant disturbance of F = [−2, 1]⊤N on the robot tip appearing at t = 8s

and remaining till the end of the simulation. The simulation results for these experiments are

illustrated in Figure 6.2 and Figure 6.3. The tracking errors are shown in Figure 6.4. Observe

that the two controllers have comparable performance in the experiment without any external

disturbance. However, as soon as the external disturbance is introduced, the adaptive controller

performs poorly while the robust controller performs similar to the experiment without any

disturbances.
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(a) Adaptive controller (b) Robust controller

Figure 6.2: Performance of the HyRiSo robot utilizing the designed controllers for trajectory
tracking in an uncluttered environment in the absence of disturbance. The configuration plots on
the top illustrates the initial pose in blue, end pose in purple and intermediate poses in gray. The
reference trajectory is plotted in red and the actual tip trajectory is overlaid in green.
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(a) Adaptive controller (b) Robust controller

Figure 6.3: Performance of the HyRiSo robot utilizing the designed controllers for the trajectory
tracking in an uncluttered environment. In this simulation a disturbance force of F = [−2, 1]⊤N
was applied to the tip of the robot at t = 8s and continued to be applied till the end.
The configuration plots on the top illustrates the initial pose in blue, end pose in purple and
intermediate poses in gray. The reference trajectory is plotted in red and the actual tip trajectory
is overlaid in green.
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(b) Errors with a constant disturbance after t = 8s

Figure 6.4: Trajectory tracking errors for tracking an oblique circle.
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Table 6.1: Reference trajectory for collision avoidance scenario

Time / s Reference trajectory ( Xd(t) ) / m

0 ≤ t < 2 [−0.75, 3.25]⊤

2 ≤ t < 5.75 [−0.75 + 0.2(t− 2), 3.25]⊤

5.75 ≤ t < 17 [0, 3.25− 0.2(t− 5.75)]⊤

17 ≤ t < 27 [0.2(t− 17), 1]⊤

27 ≤ t < 32 [2, 1 + 0.2(t− 27)]⊤

32 ≤ t < 37 [2− 0.2(t− 32), 2]⊤

37 ≤ t ≤ 40 [1, 2− 0.2(t− 37)]⊤

6.4.2.2 Trajectory tracking of line segments in a cluttered environment

In this scenario, the environment has two obstacles placed at X1 = [0.5, 1.5]⊤ and X2 =

[1.5, 1.5]⊤. The smallest safe distance for both the obstacles was set to r = 0.3m and the

avoidance distance was set to R = 0.7m. The base of the first and second soft links and the mid

point of the second (last) soft link were selected as the points on the robot to avoid obstacles. The

reference trajectory in this scenario was defined as in Table 6.1.

Figure 6.5 illustrates the performance of the HyRiSo robot utilizing the designed controllers

without activating the subtask control of collision avoidance. It is clearly seen that the robot

collides with the obstacles in this case. However, one can assume that this simulation illustrates

the trajectory tracking of line segments if the environment was uncluttered. Figure 6.6 illustrates

the efficacy of the sub task control which avoids any collisions with the obstacles while achieving

trajectory tracking. This also showcases the dexterity of the HyRiSo robot. The tracking errors

for these simulations are illustrated in Figure 6.7.
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(a) Adaptive controller (b) Robust controller

Figure 6.5: Performance of the HyRiSo robot utilizing the passivity-based controllers for
trajectory tracking in the cluttered environment without the use of the sub-task for collision
avoidance. The configuration plots on the top illustrates the initial pose in blue, end pose in
purple and intermediate poses in gray. The reference trajectory is plotted in red and the actual tip
trajectory is overlaid in green. The obstacles are shown by black circles.
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Figure 6.6: Performance of the HyRiSo robot utilizing the passivity-based controllers for
trajectory tracking amongst obstacles in the environment with the use of the sub-task control
for collision avoidance. The configuration plots on the top illustrates the initial pose in blue, end
pose in purple and intermediate poses in gray. The reference trajectory is plotted in red and the
actual tip trajectory is overlaid in green. The obstacles are shown by black circles.
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Figure 6.7: Trajectory tracking errors for the simulated experiments in the cluttered environment.
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6.5 Summary

In this chapter, a novel robotic system coined as a hybrid rigid-soft (HyRiSo) robot, was

introduced. This robot is composed of rigid links and soft links serially attached together. This

class of robots are particularly interesting as they possess enhanced dexterity properties thanks

to the additional soft links in the system. The hybrid nature of the robot introduces uncertainties

in the parameters. An important note is that the heterogeneity in the mode of actuation for the

revolute joints and the soft links. Hence, the uncertain actuator mapping plays an important

role in controlling the class of hybrid robots. To that end, two passivity-based controllers, an

adaptive controller and a robust controller were developed in this work to remedy this challenge.

The efficacy of the proposed hybrid robotic system with the designed controllers was illustrated

using numerical examples showcasing task space trajectory tracking in challenging workspace

environments.
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Chapter 7: Swing up Control of a Soft Inverted Pendulum

This chapter introduces a novel soft robotic system, which is a soft inverted pendulum

with a revolute joint at the base. This is an underactuated system since the revolute joint is not

actuated. The soft body is hypothesized to be of constant curvature and it is actuated. Motivated

by swing up controllers for classical underactuated systems, a switching based swing up and

stabilization control of the proposed soft robot system is studied. The simulation results are

depicted to illustrate the effectiveness of the proposed control approach for the soft inverted

pendulum system.

7.1 Overview

Recently, research efforts have largely focused on developing modeling and control

frameworks for soft robots [5, 22]. However, the main challenge has been to robustly control

soft systems taking into account the highly underactuated nature of the soft robots. The study of

control frameworks for underactuated soft robots can benefit from the corresponding

development in underactuated rigid robots, which in the past four decades led to extensive

advances, impacting industrial manipulators, wheeled and flying vehicles, and locomotion

systems, among others.

As a first step toward understanding how the softness impacts the control performance of
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Figure 7.1: Illustration of the swing up control of SIPR. Here the initial position is shown in blue
and the final position in red. The intermediate positions are shown in gray.

an underactuated soft inverted pendulum system, in this chapter, a novel soft system inspired by

the classical inverted pendulum - soft inverted pendulum with revolute base (SIPR) is introduced.

Essentially, this is a non-extensible soft bodied pendulum which is equipped with a revolute joint

at the base. The soft body’s curvature, which is hypothesized to be constant along its length, is

actuated. This simplifying assumption made in this study allows the soft robot’s curvature space

to be fully actuated. However, the revolute joint is not actuated. Thus, the angular acceleration

of the soft pendulum cannot be controlled directly making the SIPR system an underactuated

mechanical system. It should be noted that the system considered in this chapter is different from

the recently introduced soft inverted pendulum with affine curvature [35], wherein the base was

considered to be fixed. In [110], the authors considered a soft appendage mounted on a rotating

base with a torque input at the base with no actuation to the soft body. These are fundamentally

different from the system considered in this chapter as this chapter considers a soft inverted

pendulum with an unactuated base and an actuated soft body.
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The dynamics of the SIPR system are derived using the recent results of Della Santina et

al., in [34, 35]. This system can be viewed as an extension of the prevailing rigid robot template

models (e.g. acrobot and pendubot) for testing nonlinear control strategies. Although the

structure of the dynamics of the SIPR system is similar to that of the classical acrobot [111], it is

more complex and highly nonlinear.

In view of the classical control problem for rigid underactuated robots, this chapter

investigates the swing up control of the SIPR and the stabilization of the SIPR in its vertical

upright position, as illustrated in Figure 7.1, initializing from below the horizontal level. To the

best of our knowledge, the system considered here is novel, and is a first provably correct

controller development for the swing up problem for any soft robot. The results discussed in this

chapter was presented in [112].

In general, control of nonlinear underactuated systems, has been a challenging problem

[113, 114]. This is more so, as the control algorithms developed for fully actuated robots cannot

be directly utilized to control underactuated mechanical systems [113, 115]. In the literature, the

researchers have considered specific underactuated systems such as the pendubot [116], acrobot

[111], cart-and-pole system [117] and bipedal robots [118], and have developed controllers case-

by-case for these systems. While all these are rigid systems, recently, an underactuated soft

inverted pendulum with affine curvature has been analysed in [35], and an energy shaping control

of a soft robot with in-plane disturbances has been developed in [119].

Swing up control for the class of acrobots and gymnist robots using partial feedback

linearization was proposed in [111, 120, 121]. In this method the inherent nonlinearities are

canceled before the control design. This requires the exact knowledge of the system parameters.

Also, such a linearization step might cancel out desirable nonlinear properties of the system as
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well. This is more concerning in the case of soft robotics because the primary idea of using the

soft robots is to make use of the natural nonlinear properties of these type of robots [122].

Lozano et al., have proposed control algorithms for the same class of robots considering the

total energy of the system [117]. As this energy-shaping approaches does not require high gains,

it can potentially preserve the compliance of soft systems in the closed loop system.

Other potential methods to control such under-actuated systems include interconnection

and damping assignment based control [123, 124]. Recently, an energy shaping method

circumventing the solution of partial differential equations was introduced in in [125]. However,

the underlying assumptions in their work, precluded the utilization for considered SIPR system.

The main contribution of this chapter is in the swing up and upright stabilization for the

introduced novel SIPR system. The swing up control algorithm proposed here closely follows the

methodology outlined in [116] which was developed to control the well known Pendubot [126].

An energy-based approach was used to develop the proposed control design. For stabilizing the

soft pendulum in the vertical upright position, the control is switch to a linear quadratic regulator

(LQR) when the swing up control guides the system to the region of attraction of the desired

equilibrium. The simulation results are also presented illustrating the efficacy of the proposed

control method for the novel SIPR system.

The rest of the chapter is organized as follows. Section 7.2 introduces the soft robot model.

The swing up control is developed in Section 7.3. Then, the simulation results are presented in

Section 7.4.
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7.2 The soft robotic system

In this section, first, the kinematics of the of the considered SIPR system is discussed.

Then, the dynamics model of the system is introduced and its properties such as the equilibrium

points and the total energy of the system are discussed.

7.2.1 Kinematics

Let us consider the SIPR system, a planar non-extensible soft robot with CC [16] that has a

revolute joint at its base as shown in Figure 7.2. Let the length of the soft robot along the central

axis be L and thickness D. Following the characterization in [35], the positions along the central

axis of the soft robot is parameterized by s ∈ [0, 1] such that Ls is the arc length along the robot’s

central axis to the point s from the base. The lateral points at each position is parameterized by

d ∈ [−0.5, 0.5] such that Dd is the lateral distance to the point d from the central axis. At each

point s along the soft robot’s body, reference frames {Ss} are attached where as the base frame

{S̄0} is fixed in space. These frames can be used to describe any point on the soft robot along

with the parameters (s, d).

Using the CC hypothesis, the configuration variables of this system are selcted as the degree

of curvature of the soft robot q0(t) ∈ R1 and the base rotation of the soft robot θ(t) ∈ S1. Note

that the degree of curvature q0(t) and the radius of curvature r(t) has the relationship q0(t)r(t) =

L. Moreover, due to practical reasons it is assumed that the material properties will only allow

q0 ∈ [−nπ, nπ] for some finite n > 0. For concise representations, the configuration variables

are collected to q(t) = [q0(t), θ(t)]
⊤.

The orientation αs(t) of the reference frame {Ss} at point s along the central axis with
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Figure 7.2: Exaggerated illustration of the SIPR. The central axis is shown in dashed red line.
The non-extensible length of the soft is L and the width is D.

reference to the base frame {S̄0}, can be written as the sum of integral of the curvature and the

base rotation,

αs(t) = θ(t) +

∫ s

0

q0(t)dl

= θ(t) + q0(t)s.

Thus the Cartesian coordinates (xs,d (t) , ys,d (t)) at a general point parameterized by (s, d) on the

soft robot is given by,

xs,d(t) = Dd cosαs(t)− L

∫ s

0

sinαs(t)ds

ys,d(t) = Dd sinαs(t) + L

∫ s

0

cosαs(t)ds.
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7.2.2 Dynamics

The dynamics of the soft robotic system were derived using a similar approach as in [34, 35]

assuming a uniform mass distribution ρ(s, d) ≡ m. In the following, where obvious, the time

arguments will be suppressed in the expressions due to brevity and clear representation.

For the SIPR system, the inertia matrix M(q0, θ) ∈ R2×2 is evaluated as,

M(q0, θ) =

∫ 1

0

∫ 0.5

−0.5

m∇q(xs,d, ys,d)
⊤∇q(xs,d, ys,d)dd ds

where ∇q is the gradient operator ∇q(·) = ∂(·)
∂q

. Then the centrifugal and Coriolis terms matrix

C(q0, θ, q̇0, θ̇) ∈ R2×2 is evaluated using the standard Christoffel symbols [74].

The gravitational potential energy Pg ∈ R of the SIPR system is given by,

Pg =

∫ 1

0

∫ 0.5

−0.5

mg(xs,d sin (ϕ) + ys,d cos (ϕ))dd ds

where ϕ defines the direction of the gravitational field which in this work ϕ = 0. Therefore the

gravity terms vetcor G(q0, θ) ∈ R2 is evaluated as,

G(q0, θ) = ∇q (Pg) .

The explicit terms for M(q0, θ), C(q0, θ, q̇0, θ̇) and G(q0, θ) are given in the Appendix A.6.
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Finally, adding the stiffness and damping terms the complete dynamics are,

M(q)q̈+C(q, q̇)q̇+Bβq̇+Kkq+G(q) =

 τ

0

 (7.1)

where the stiffness Kk =
(
k 0
0 0

)
and damping Bβ =

(
β 0
0 0

)
. Note that, only the degree of freedom

associated with the curvature has damping and stiffness, and the base rotation is free.

Suppressing the arguments due to space and substituting for stiffness Kk and damping Bβ ,

the dynamics (7.1) can be re-written as,

q̈0
θ̈

 = M−1

τ
0

−M−1

C

q̇0
θ̇

+

βq̇0
0

+

kq0
0

+G


and for concise representation defining f11, f12, f21, f22 accordingly,

q̈0 = f11τ + f12

θ̈ = f21τ + f22. (7.2)

7.2.3 Equilibria

The soft robot model (7.1) has two equilibrium points for τ = 0. One is (qo, θ, q̇0, θ̇) =

(0, 0, 0, 0) which is the unstable vertical upright equilibrium positions. The other (qo, θ, q̇0, θ̇) =

(0, π, 0, 0) is the bottom-down stable equilibrium position. In this chapter, the bottom-down

position should be avoided and the upright position should be reached.
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7.2.4 Energy

Total energy of the SIPR system is given by,

E =
1

2
q̇⊤Mq̇+

1

2
q⊤Kkq+ Pg

=
1

2

 q̇0

θ̇


⊤

M

 q̇0

θ̇

+
1

2
kq20 +

Lgm

q20
(cos θ − q0 sin θ + cos (q0 − θ)) (7.3)

Now, differentiating the total energy (7.3) with respect to time and using (7.1) yields,

Ė =q̇⊤Mq̈+
1

2
q̇⊤Ṁq̇+ q̇⊤Kkq+ q̇⊤G

=q̇⊤


 τ

0

−Cq̇−Bβq̇−Kkq−G

+
1

2
q̇⊤Ṁq̇+ q̇⊤Kkq+ q̇⊤G

=q̇⊤

 τ

0

− q̇⊤Bβq̇

=τ q̇0 − βq̇0
2 (7.4)

where the skew symmetric property (Property A.2) of the Lagrangian systems is used.

7.3 Swing up control

This section develops the swing up control to bring the SIPR system near the vertical

upright position. To that end, an energy-based swing up control inspired by [116] is used.
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7.3.1 Control design

Recall that the control objective is to reach the top upright position

(qo, θ, q̇0, θ̇) = (0, 0, 0, 0). The total energy of the system in this configuration is,

Ed =
mgL

2
.

Now let us consider the following three conditions,

c1) E = Ed, c2) q0 = 0, c3) q̇0 = 0. (7.5)

If the above conditions c1) − c3) are satisfied, then substituting L.H.S and R.H.S in (7.3) with

explicit terms (see Appendix A.6) yields,

mgL

2
=
m(D2 + 4L2)θ̇2

24
+
Lgm cos θ

2

resulting in the homoclinic orbit,

αθ̇2 =
gL

2
(1− cos θ) (7.6)

where α = m(D2+4L2)
24

. This will ensure that the soft pendulum will rotate clockwise or counter-

clockwise until it reaches (θ, θ̇) = (0, 0). Therefore, for (q0, q̇0) = (0, 0), if the system can

be driven to the above homoclinic orbit, it will solve the objective of “swinging up”. Once the

system reaches near the top upright position the control can be switched to a stabilizing controller.
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This chapter considers an LQR for this purpose and it is discussed in Appendix A.7.

In view of the control objective for the “swing up”, let us define the error in energy

Ẽ = E − Ed

and, the errors in degree of curvature and rate of change of degree of curvature as q̃0 = q0−0 = q0

and ˙̃q0 = q̇0 − 0 = q̇0, respectively. Following [116], we shall seek a Lyapunov based control by

selecting the Lyapunov function candidate,

V (q, q̇) =
keẼ

2

2
+
kdq̇0

2

2
+
kpq0

2

2
(7.7)

with ke, kd, kp > 0 constant gains. Then differentiating V we get,

V̇ = keẼĖ + kdq̇0q̈0 + kpq0q̇0

= keẼ(τ q̇0 − βq̇0
2) + kdq̇0q̈0 + kpq0q̇0

= q̇0

(
keẼ(τ − βq̇0) + kdq̈0 + kpq0

)
.

Let us now choose the control to satisfy,

−q̇0 =
(
keẼ(τ − βq̇0) + kdq̈0 + kpq0

)
(7.8)

=
(
keẼ(τ − βq̇0) + kd(f11τ + f12) + kpq0

)
= τ(keẼ + kdf11) + (−keẼβq̇0 + kdf12 + kpq0)
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and therefore let,

τ =

(
−q̇0 + keẼβq̇0 − kdf12 − kpq0

)
(keẼ + kdf11)

. (7.9)

This yields,

V̇ = −q̇20 ≤ 0

which is negative semi-definite. The stability for this selection of the Lyapunov function

candidate will be proved using the Lasalle’s invariance principle subsequently in Theorem 7.1.

Observe that, here the control law (7.9) will have no singularities provided that,

(keẼ + kdf11) ̸= 0 ∀t ≥ 0. (7.10)

which holds if,

kd
ke

> max
q

(
|Ẽ|
|f11|

)
(7.11)

Note that since f11 is the (1, 1) element of M−1 (inverse of the inertia matrix) and the inertia

matrix M is bounded (Property A.1), f11 is bounded.

Also note that the control will produce no action if the soft robot is in either of the

equilibrium positions. Hence, in order to exclude being stuck in the undesirable bottom-down
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equilibrium, it is required that,

|Ẽ| < |Ed − Ebottom| = mgL = c. (7.12)

Since V̇ ≤ 0, the Lyapunov function candidate V is non increasing and therefore the condition

for Ẽ will hold if the initial conditions are such that V (0) ≤ c2/2 for ke ≥ 1.

7.3.2 Stability analysis

This section presents the main result in Theorem 7.1 and use similar arguments as in

[116, 117] to prove the stability using LaSalle’s invariance principle.

Theorem 7.1 Let the initial conditions are such that |Ẽ| < c and V (0) ≤ c2

2
for the choice of

Lyapunov function candidate (7.7). Then, with appropriately chosen ke, kd, kp > 0 and satisfying

the condition (7.11), the control law,

τ =

(
−q̇0 + keẼβq̇0 − kdf12 − kpq0

)
(keẼ + kdf11)

(7.13)

will drive the SPIR system (2.3) to the invariant set given by

Q =

{
(q0, θ, q̇0, θ̇) : q0 ≡ 0, q̇0 ≡ 0, αθ̇2 =

gL

2
(1− cos θ)

}
⋃{

(q0, θ, q̇0, θ̇) : (q0, θ, q̇0, θ̇) = (ϵ, 0, ϵ, 0), |ϵ| < ϵ∗
}

where α = m(D2+4L2)
24

and ϵ∗ is arbitrarily small.
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Proof of Theorem 7.1 LaSalle’s invariance principle is used to show that the controller is

stable. Since V̇ = −q̇20 ≤ 0, V is non-increasing. Therefore q0, q̇0, θ, θ̇ are bounded. Further, Ẽ

is bounded. Let the set Ω be the compact set where every solution for the soft robot system (2.3)

remains in the same for all future time. Let Γ ∈ Ω such that Γ = {(q0, θ, q̇0, θ̇) : V̇ ≡ 0}. Let

Q ∈ Γ be the largest invariant set in Γ. LaSalle’s Invariance Principle ensures that every

solution starting in Ω approaches Q as t → ∞. In the following, the largest invariant set Q is

computed using the steps in [116].

Considering Γ, V̇ ≡ 0 which implies q̇0 ≡ 0. This implies that q0 = constant and q̈0 ≡ 0.

Also, V is constant. Therefore from (7.7) Ẽ is constant. This implies that either Ẽ = 0 or Ẽ ̸= 0.

From control design (7.8) we obtain that,

0 = keẼτ + kpq0. (7.14)

Now, from (7.14), if Ẽ = 0, then q0 = 0 which means that since it was considered q̇0 = 0, the

conditions c1)− c3) in (7.5) are satisfied and the trajectory belongs to the homoclinic orbit (7.6).

Next, considering Ẽ constant and Ẽ ̸= 0, the condition (7.14) implies that τ is constant.

Since V is nonincreasing,

V =
keẼ

2

2
+
kpq

2
0

2
≤ V (0)

kpq
2
0

2
≤ V ≤ V (0)√

kp|q0| ≤
√

2V (0)
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From (7.14),

keẼτ = −
√
kp
√
kpq0

ke|Ẽτ | =
√
kp
√
kp|q0| ≤

√
kp
√
2V (0)

ke|Ẽτ | ≤
√
kpc

|Ẽτ | ≤
√
kp

ke
c.

Therefore, one can select kp and ke appropriately such that, |Ẽτ | will be small implying that τ is

small since |Ẽ| is bounded.

Now consider that, since q̇0 ≡ 0, q0 is constant. Considering the base rotation, it should

be either constant (i.e, θ̇ = 0) or rotating (i.e, θ̇ ̸= 0). If θ̇ ̸= 0 (rotating) then it will impose a

gravity induced torque to the soft robot body that will change the degree of curvature q0, which

contradicts the fact that the curvature q0 = constant. Therefore, it is concluded that θ̇ ≡ 0 and

hence θ is a constant. Note that the curvature and the base rotation are stationary (i.e, q0 =

constant and θ = constant) only if τ is exactly compensating gravity and the stiffness induced

forces. It was earlier obtained that τ is chosen to be small. If q0 is far from 0 then, τ will always

be large to compensate for the stiffness. Therefore, q0 has to be close to zero. For small τ ,

then θ = 0 (upright) or θ = π (bottom-down). Since θ = π is excluded considering the initial

conditions, wit can be concluded that θ is close to zero. Thus, both |q0| < ϵ∗ and |θ| < ϵ∗ for

ϵ∗ arbitrarily small. Moreover, if τ = 0, q̇0 = 0, q̈0 = 0 and q0 = 0, using (7.2) it can be easily

shown that θ ≡ 0.

Therefore, it is concluded that the largest invariant set Q is given by the set satisfying the

homoclinic orbit (7.6) with q0 ≡ 0 and q̇0 ≡ 0, and the interval (q0, θ, q̇0, θ̇) = (ϵ, 0, ϵ, 0) where

171



|ϵ| < ϵ∗ with ϵ∗ arbitrarily small. This completes the proof.

7.4 Simulation results

The simulation results for the combined swing up control and upright stabilization are

presented in this section. This section considered a soft robotic system with length L = 1 m,

width D = 0.1 m, mass m = 2 kg, stiffness k = 0.5 Nm/rad and damping β = 0.1 Nms/rad.

The simulations were performed in MATLAB 2019a using the ode45 function. For the swing up

control, kp = 1.1, kd = 1.25 and ke = 3 was used.

Considering the LQR, the computed gain was K = [−84.74,−251.19,−23.54,−65.46].

The region of attraction (ROA) for the LQR was computed using numerical simulation applying

the controller at different initial conditions on the following ranges: q0 ∈ [−1.5, 1.5],

θ ∈ [−1.5, 1.5], q̇0 ∈ [−5, 5] and θ̇ ∈ [−5, 5]. Here q0, θ are in radians and q̇0, θ̇ are in rad/s.

First, the performance of the swing up control with the initial conditions (qo, θ, q̇0, θ̇) =

(π/72, π/1.2, 0, 0) is illustrated showing that as the curvature is getting closer to zero, the base

rotation will remain swinging and it converges to a homoclinic orbit as in Figure 7.3. Note that

the base rotation θ ∈ S1 thus θ wraps around on itself every 2π. Therefore, once converged, the

equilibrium points at the start and end of the orbit are the same.

Next, the simulation results are presented for the swing up control and stabilization at the

upright position using LQR. Once the swing up control takes the system to the ROA, the control

is switched to the LQR and the soft robot is stabilized in the upright position. The results are

shown in Figure 7.4. Here also the system was initialized (qo, θ, q̇0, θ̇) = (π/72, π/1.2, 0, 0).

Around 9.35s the control switches to LQR as indicated in the Figure 7.4.
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Figure 7.3: Illustration of the simulation results for swing up only starting from (qo, θ, q̇0, θ̇) =
(π/72, π/1.2, 0, 0). The phase plot shows that the trajectory is converging to a homoclinic orbit.
The horizontal lines on the phase plot are due to the fact that θ ∈ S1.
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Figure 7.4: Simulation results for combined control of swing up and LQR are shown here. The
control is switched from swing up to LQR around 9.35s.

7.5 Summary

A novel underactuated soft robotic system- soft inverted pendulum with revolute base

(SIRP) was introduced in this chapter. The soft robot was considered to have a constant

curvature which was actuated while the base was allowed to rotate freely. The dynamics of the

system were derived and a switching based control was developed. For swing up, an

energy-based control method was developed and for stabilization of the soft system at the

upright unstable equilibrium an LQR was used. The stability of the proposed control approach

was analyzed and simulation results were presented to illustrate the efficacy of the proposed

control framework.
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Chapter 8: Output Partial Feedback Linearization for Soft Inverted Pendulum

This chapter proposes a general control architecture for the swing-up and stabilization of

underactuated mechanical systems and its application to stabilize the SIPR at its upright

equilibrium. This is achieved by employing output partial feedback linearization (OPFL) and

linear control. First, a suitable output, namely the center of mass angle for the considered

underactuated system, is chosen. Next, OPFL is done to stabilize the origin of the output

dynamics, neglecting possible disturbance forces from a simultaneous additional control action.

An LQR is then designed using this output partial feedback linearized system around the upright

equilibrium point. Using numerical examples, it is shown that the region of attraction is

increased significantly compared to a nominal LQR without the OPFL step. Simulation results

are presented for the SIPR, illustrating the efficacy of the proposed control method. Further, in

the Appendix A.8 simulation results are presented for two additional underactuated systems, the

Reaction Wheel Pendulum and Acrobot, showing the general applicability of the proposed

control architecture.

8.1 Introduction

The SIPR is an underactuated mechanical system as discussed in Chapter 7. An

underactuated mechanical system has fewer independent control inputs than the number of
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generalized coordinates (degrees of freedom - DoFs) [74]. This underactuation is mainly due to

the nature of the dynamics of the system, such as in quadcopters [127], or by design, such as in

theoretically motivated low order example systems like SIPR in Chapter 7, Acrobot [111], Ball

and Beam system [128] and Cart-pole system [117]. The underactuation can also be due to

actuator failure in an otherwise fully actuated system [129]. In general, control of nonlinear

underactuated systems is a challenging problem as the number of actuators is less than the DOFs

to be controlled, and many nonlinear control methods for traditional fully actuated systems are

not directly applicable [114, 115].

In underactuated systems resembling inverted pendulums (e.g., SIPR, Acrobot, Pendubot,

Cart-pole), the primary control approach involves a two-step process [130]. Initially, the system

is swung up from its downward position using a swing-up controller, such as using partial

feedback linearization [130] and energy-based methods [117]. Subsequently, a balancing

controller is engaged to maintain the pendulum upright. This balancing controller is often

designed through linearization or gain scheduling [131]. Recall that in Chapter 7, an

energy-based swing up controller and an LQR for swinging up and stabilizing the SIPR system

was used.

Recent efforts have been on methods to achieve swing up and stabilization using a single

continuous controller to avoid switching between controllers. To that end, a nonlinear optimal

control-based swing up and stabilization of the Acrobot via a stable manifold approach is

proposed in [132]. In [133], a nonlinear controller using quotient manifolds is proposed to

locally asymptotically stabilize the Acrobot in the neighborhood of the upwards position and

increasing the domain of attraction by tuning to include the lower equilibrium point so that the

controller can achieve both swing-up and balancing. The authors in [134] proposed a controller
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for the swing up and balancing of an Acrobot based on an equivalent input-disturbance

approach. While these are designs of controllers for specific underactuated systems, [135]

considers the utilization of backstepping for the problem of stabilization of a class of

underactuated systems whose inertia matrix is dependent only on the actuated configuration

variables (Class-I underactuated systems according to the definition in [131]). However, the

backstepping approach requires the system to be represented in the cascade normal form [131],

which is nontrivial. Authors in [124] proposed an Interconnection and Damping Assignment

(IDA-PBC) approach to swing up and balance without switching between controllers. However,

this method requires solving a set of partial differential equations (PDEs), which is generally a

challenging problem. In recent work, the authors in [125] proposed an energy-shaping swing-up

controller to avoid solving PDEs. However, both of these control frameworks are only

applicable for a class of underactuated systems whose inertia matrix is dependent only on the

unactuated configuration variables (Class-II underactuated systems [131]).

This chapter focuses on the SIPR system and observe that it is in the class of Class-I

underactuated systems. To that end, in view of developing a general strategy to advance soft

robotics as well as control of underactuated systems at large, this chapter analyzes the Class-I

underactuated systems and proposes a simple control architecture that enlarges the ROA of a

linear controller (e.g., LQR) for these underactuated systems linearized around a desired

equilibrium. Specifically, the swing-up and stabilizing problem of pendulum-like Class-I

underactuated systems is investigated. The proposed control framework consists of two

simultaneous control inputs to the system. The first is an OPFL based control computed for

swinging up the system. The second is a linear controller (LQR in this analysis) computed by

linearizing the output partial feedback linearized system around the desired upright equilibrium.
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Note that when deriving the OPFL-based control, only the nominal system is considered

neglecting the LQR control input.

The main contribution of this chapter is in the development of the simultaneous control

strategy to enlarge the ROA of a linear controller for swing up and stabilization of Class-I

underactuated systems circumventing the need for switching based control or needing to

transform the system into cascade normal form. It is also possible to utilize the proposed control

instead of the widely used LQR control as the switched controller for stabilization after

employing a swing-up controller. Moreover, an extensive numerical analysis is performed on the

SIPR system showing that the proposed control framework enlarges the linearized controller’s

ROA compared to implementing a linearized controller without the OPFL control. Additionally,

numerical examples are presented on two more Class-I underactuated systems- Reaction Wheel

Pendulum (RWP) and Acrobot [111] in Appendix A.8 illustrating the efficacy of the proposed

control framework for simultaneous control of swing-up and stabilization of different

underactuated mechanical systems in the considered class.

The rest of the chapter is organized as follows. Section 8.2 defines the nonlinear

underactuated mechanical system. The control design is discussed in Section 8.3 and the

numerical simulations for the SIPR are presented in Section 8.4. Finally, the chapter is

summarized in Section 8.5.

8.2 The class of underactuated system

The variables that appear in the inertia matrix of the system are called shape variables

[131]. A system is defined as a Class-I underactuated system if and only if the shape variables
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are actuated. SIPR is such a system. Additional examples of such systems are the Acrobot

[111], RWP [136] and the Translational Oscillator with Rotational Actuator (TORA) system

[137]. Letting the configuration variables of the system be q(t) = [q1(t), q2(t)]
⊤ ∈ R2, the

dynamics of these underactuated systems can be represented as,

m11(q2)q̈1 +m12(q2)q̈2 + h1(q1, q2, q̇1, q̇2) = 0 (8.1)

m21(q2)q̈1 +m22(q2)q̈2 + h2(q1, q2, q̇1, q̇2) = τ(t) (8.2)

with inertia terms mi,j ∈ R for i, j = 1, 2 and h1, h2 ∈ R collecting the terms such as centripetal,

Coriolis, and gravity. Observe in the dynamics that the shape variable is q2(t) and it is actuated

by the control input τ(t) ∈ R. Thus, it is in Class-I underactuated form. Note that, a slight

modification in the notation used for the SIPR in Chapter 7 is done in this chapter by defining the

base rotation θ = q1 and degree of curvature q0 = q2 for the dynamics to be written in the above

form.

In this chapter Class-I underactuated systems are analyzed with an emphasis on

pendulum-like systems that can be swung up and stabilized since our main focus is on swing up

and stabilizing the SIPR system. From a general stand point, it is considered that the dynamics

of these systems are formulated such that [0, 0]⊤ is the upright equilibrium point. Moreover,

when obvious, the parameter dependencies are excluded for conciseness in the subsequent

sections and the control architecture is developed considering a general Class-I underactuated

system.

179



Figure 8.1: The control system architecture.

8.3 Control design

The objective of the control design is to swing up and drive pendulum-like Class-I

underactuated systems to the upright equilibrium point qd = [0, 0]⊤. In this chapter, a new

control architecture is proposed by employing an OPFL-based control and a LQR around the

linearized system. The control system is illustrated in Figure 8.1. Specifically, the control torque

τ(t) is considered as a combined torque consisting two separate control torques

τ(t) = τ0(t) + τq(t).

Here τ0 is the control term derived from an OPFL-based controller neglecting τq, using the

nominal dynamics,

m11q̈1 +m12q̈2 + h1 = 0

m21q̈1 +m22q̈2 + h2 = τ0 (8.3)
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Figure 8.2: Center of mass angle of a system

The other control term, τq, is derived using LQR by linearizing the dynamics,

m11q̈1 +m12q̈2 + h1 = 0

m21q̈1 +m22q̈2 + h2 − τ0 = τq (8.4)

around the desired upright equilibrium qd.

In the remainder of this section, the control derivation is discussed. First, the output signal

is identified and then the OPFL control and the LQR input are introduced.

8.3.1 Output

Consider as the output a signal y(q1, q2) ∈ R for which the desired upright equilibrium

point qd = [0, 0]⊤ is a solution to y(q1, q2) = 0. Moreover, it it assumed that y(q1, q2) is at

least twice differentiable with a relative degree 2. To that end, the center of mass (COM) angle

as shown in Figure 8.2 is an obvious candidate for the output signal. In fact, in this chapter the

COM angle is used as the output in the presented numerical examples.
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8.3.2 Output partial feedback linearization control

The OPFL control is derived from the nominal dynamics (8.3), neglecting the control input

τq. First, rewrite (8.3) in the normal form [138] for clarity in the presentation. Using,

τ0 = h2 −
m21

m11

h1 + M̄u2 (8.5)

where u2(t) ∈ R is an additional outer loop control and M̄ =
(
m22 − m12m21

m11

)
yields the normal

form

m11q̈1 = −h1 −m12u2, q̈2 = u2. (8.6)

Considering the output y(q1, q2) and differentiating it yields ẏ = J1q̇1 + J2q̇2 where

J1(q1, q2) =
∂y
∂q1

and J2(q1, q2) = ∂y
∂q2

. Computing the second derivative of y(q1, q2) yields,

ÿ = J1q̈1 + J2q̈2 + J̇1q̇1 + J̇2q̇2.

and substituting for q̈1, q̈2 from (8.6) yields,

ÿ = J̄u2 + η.

Here J̄ = J2 − J1m21

m11
and η = J̇1q̇1 + J̇2q̇2 − J1h1

m11
.
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Let the outer loop control a and define the control law

u2 = J̄+(a− η) (8.7)

where J̄+ is the pseudo inverse. This will drive the output dynamics to ÿ = a. Choosing the

outer loop control as

a = −kpy − kdẏ (8.8)

with control gains kp, kd > 0 will exponentially stabilize the output at the origin considering the

nominal dynamics.

8.3.3 The linear controller (LQR)

Let the state vector, x(t) ∈ R4 with state variables x1 = q1, x2 = q2, x3 =, q̇1, x4 = q̇2 and

input u(t) = τq(t). One can write the state equations ẋ = f(x) with elements,

ẋ1 = x3, ẋ2 = x4, ẋ3 = J̄+a+

(
1

M̄

)
u− J̄+η,

ẋ4 = −
(
m21

m22

J̄+

)
a−

(
m21

m22

1

M̄

)
u+

(
m21

m22

J̄+η − h2
m22

)

where the dynamics given in (8.4) have been used with the control τ0 as given in (8.5) along with

the control u2 as in (8.7). The outer loop control a is defined as in (8.8).

Linearizing ẋ = f(x) around the reference equilibrium x0 = [0, 0, 0, 0]⊤ and the reference
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input u0 = 0, the linear time-invariant system is obtained as,

ẋ(t) = Ax(t) +Bu(t)

where A = ∂f
∂x

∣∣
(x0,u0)

∈ R4×4 and B = ∂f
∂u

∣∣
(x0,u0)

∈ R4×1. For stabilization at the upright

equilibrium, the LQR problem can be formulated,

min
u

∫ T

0

1

2

(
x⊤Qx+Ru2

)
dt

to find the control input u(t) which is of the form,

u(t) = −(R−1B⊤P)x(t) = −Kx(t). (8.9)

Here R > 0 and P is the solution to the algebraic Riccati equation A⊤P+PA−PBR−1B⊤P+

Q = 0 where Q is a positive semidefinite matrix. Thus, with the use of τq = u = −Kx as derived

above, the origin of the linearized system is asymptotically stable. Hence, from Lyapunov’s

indirect method [139], it can be established that the origin of the nonlinear system is locally

asymptotically stable.

Remark 8.1 Only local asymptotic stability of the origin if guaranteed by employing the LQR

for the linearized system with the control from the OPFL step. However, it is observed that the

proposed approach enlarges the ROA considerably compared to using LQR without the OPFL

input. This chapter presents numerical examples illustrating this claim, wherein the formal proof

of this claim is left for future work.
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Figure 8.3: The soft inverted pendulum with a revolute base (SIPR).

8.4 Numerical analysis of OPFL based control for SIPR

In this section, the proposed control architecture is applied for swing up and stabilization of

the SIPR system. The performance is compared with a nominal LQR without the OPFL control

input. The numerical simulations were run on Matlab 2022b using ode45 as the ODE solver.

Applying the derivation method given in Chapter 7 for the SIPR as shown in Figure 8.3

with base rotation q1(t) and curvature q2(t), the dynamics of the SIPR is found as

m11q̈1 +m12q̈2 + h1 = 0

m21q̈1 +m22q̈2 + h2 = τ
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with the mass terms,

m11 =
mD2

12
+

2mL2

q32
(q2 − sin q2)

m12 =
mD2

24
+
mL2

4q42

(
1− cos q2 − q2 sin q2 +

q22
2

)
m21 = m12

m22 =
mD2

36
+

2mL2

q52

(
q2 − 2 sin q2 + q2 cos q2 +

q32
6

)
.

Here h1 and h2 collects the centripetal, Coriolis, gravity, stiffness (k) and damping (β) terms as,

h1 =c11q̇1 + c12q̇2 + g1 + kq1 + βq̇1

h2 =c21q̇1 + c22q̇2 + g2

with centripetal and Coriolis terms,

c11 = −L
2m q̇2
q24

(
2 q2 − 3 sin q2 + q2 cos q2

)
c12 = −L

2m

q25

(
4q̇22 + q22 (1 + cos q2 )( q̇1 + q̇2)− 4q̇2 cos q2 − q2 sin q2 (3q̇1 + 4q̇2)

)
c21 =

L2m q̇1
q24

(
2 q2 − 3 sin q2 + q2 cos q2

)
c22 =

L2m q̇2
3 q23

(
3
(
10− q22

) sin q2
q32

− 12 + 18 cos q2
q22

− 1

)
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and the gravity terms,

g1 =− Lgm (sin (q1)− sin (q2 + q1) + q2 cos (q1))

q22

g2 =
2Lgm (cos (q2 + q1)− cos (q1) + q2 sin (q1))

q23
+
Lgm (sin (q2 + q1)− sin (q1))

q22
.

The output function in this example is the COM angle of the soft link y(t) = ψ(t).

Obtaining ψ referring to Figure 8.3 will be briefly discussed. Due to the constant curvature

assumption, the link can be considered as an arc. Hence, the COM, G, of the soft link with

respect to the center of the curve O is located at a distance OG = r sin(q2/2)
(q2/2)

. Since the radius

r = L/q2 the COM distance is,

b :=
2L sin(q2/2)

q22
.

Now the angle α can be found as,

α(q2) = atan
(

b sin(q2/2)

r − b cos(q2/2)

)
= atan

(
1− cos(q2)

q2 − sin(q2)

)
.

Thus the angle of the COM w.r.t the vertical axis is,

ψ = (π/2− α) + q1 = π/2 + atan
(
cos(q2)− 1

q2 − sin(q2)

)
+ q1.
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Thus, with the output defined as y = ψ, the Jacobians, in this case, will be

J1 = 1, J2(q2) =
2 cos (q2) + q2 sin (q2)− 2

2 cos (q2) + 2 q2 sin (q2)− q22 − 2
.

Parameters used for the SIPR system are m = 2, L = 1, D = 0.1, k = 0.5, β = 0.1 and

g = 9.81. The control gains kp = 2.5× 104 and kd = 5× 102 are used for the OPFL controller.

For the LQR in (8.9) Q = I4×4 and R = 1× 106 are used and obtained the LQR gain

K = [−1.09,−0.36,−3.62,−1.36].

For comparison, the nominal LQR gains were computed using Q = I4×4 and R = 1 × 105 and

obtained

Knom = [−26.46,−8.82,−6.80,−2.50]

implementing the control as τ = −Knomx in (8.2).

The ROA slice at q1 − q2 plane was done considering the region q1, q2 ∈ [−2π, 2π] with

q̇1 = q̇2 = 0 to find the ROA numerically. The ROA for the unrestricted torque case is illustrated

in Figure 8.4a, and the case with torque saturation at 50Nm is illustrated in Figure 8.4b. For

the unrestricted case, observe that the ROA is increased by over 100-fold (10578.1%) using the

proposed method, while for the torque saturated case, the proposed method enlarges the ROA by

60-fold (6377.3%). In the SIPR system, the ROA of the nominal LQR is extremely limited, and

using the proposed method significantly enlarges the ROA for swing-up and stabilization.

An unrestricted torque simulation is illustrated in Figure 8.5 starting from initial conditions
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a) Unrestricted torque.

b) Torque saturated at 50Nm.

Figure 8.4: ROA slice for the SIPR for q1, q2 ∈ [−2π, 2π] when q̇1 = q̇2 = 0.
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(−π
6
, π
2
, 0, 0) which is within ROAs of both the controllers. Note that in this case, the torques are

indeed within the saturation limits. The swing up and balancing of the SIPR initializing from the

downward equilibrium point (π, 0, 0, 0) with unrestricted torque is illustrated in Figure 8.6a-c.

Note that this point is within the ROA of the proposed method but outside that of the nominal

LQR controller. Thus, the LQR diverges, and unstable behavior is observed. The torque saturated

behavior of the proposed method for this case is illustrated in Figure 8.6a,d.

8.5 Summary

This chapter proposes a control method for the swing up and stabilization of the SIPR by

developing the control architecture considering general Class-I underactuated mechanical

systems by employing OPFL control and a linear control (LQR) simultaneously. Using

numerical simulations on the SIPR system, it is shown that the ROA is increased significantly

compared to a nominal linear controller without the OPFL input. In the case of unrestricted

torque input, it is shown in numerical simulations that the considered systems can be swung up

from the bottom-down equilibrium and stabilized at the upright equilibrium only using the

proposed control method. However, the system’s actuator has to provide a large impulsive input,

as observed in the simulations. One way to achieve this is to initially load the actuator, enabling

it to exert this sudden input. The case when the torque is saturated was also numerically

investigated and observed that this limitation reduces the ROA; however, the observed ROA is

still larger than that of a nominal linear controller without the OPFL step. Note that the

proposed control approach could also be an alternative to the commonly used LQR method

when transitioning to the stabilization phase after employing a dedicated swing-up controller.
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b) Torque evolution for the proposed method.
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Figure 8.5: Simulation results for SIPR for initial conditions (−π
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, 0, 0) which is inside both

ROAs.
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d) Torque evolution for the proposed method with saturated input.

Figure 8.6: Simulation results for SIPR with initial conditions (π, 0, 0, 0).
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Chapter 9: Conclusions

This dissertation discussed dynamic control of dexterous soft robotic systems addressing

uncertainty mitigation and robust stabilization of soft robotic systems, utilization of stretchable

soft sensors for closed-loop control of soft robots, dexterous and precise manipulation of hybrid

rigid-soft robots, and swing-up and stabilization of underactuated soft robots. First, a summary

of contributions of this dissertation is given below. Then, some significant dissertation limitations

are pointed out and potential future research directions are noted.

9.1 Summary of contributions

Chapter 2 detailed the development of a passivity-based adaptive controller for achieving

task space trajectory tracking in soft robots. Furthermore, it introduced an adaptive bilateral

teleoperation framework designed for a system featuring a non-redundant rigid leader

manipulator alongside a redundant PCC soft follower manipulator. These adaptive controllers

were effective in ensuring task space tracking for the soft robot and synchronization between the

robots, even in scenarios with time-invariant parameter uncertainties affecting either the leader

or soft follower side. Specifically, the task space position errors were shown reaching the origin

asymptotically. Within the bilateral teleoperation framework, the redundancy present in the soft

follower manipulator was utilized to accomplish sub-task objectives, such as adhering to
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curvature limits while simultaneously tracking the position of the leader robot. Both simulation

and experimental results substantiated strong performance in terms of task space tracking and

task synchronization. Notably, the bilateral teleoperation framework revealed high immersion in

the remote environment due to the projected force feedback. This work on utilizing

passivity-based adaptive control approaches for soft robots were investigated for the first time,

in this dissertation. The results on the adaptive task space bilateral teleoperation framework

from this chapter was presented in part at [73].

In Chapter 3, an enhanced dynamics model for planar PCC soft robots was introduced using

the Euler-Lagrange formulation. This model takes into explicit account the mass distribution of

the soft robot, thus capturing the significant inertia effects often omitted in simplified models

that treat the robot as a lumped mass system. Building upon this dynamics model, a passivity-

based robust controller was developed for task space tracking proving the task space errors were

uniformly ultimately bounded. The effectiveness of the proposed controller was demonstrated

through simulations and physical experiments. This dissertation explored the passivity-based

robust control for soft robot control for the first time.

In Chapter 4, the robust task space bilateral teleoperation of soft robots was explored,

employing a rigid leader robot and a soft follower robot. To achieve this, passivity-based robust

control techniques were utilized, which are particularly effective in the presence of unmodeled

external disturbances, dynamics uncertainty, and constant asymmetric time delays. The focus is

on creating task space bilateral teleoperators that remain stable under the influence of passive or

non-passive external forces, whether they stem from a human operator or interactions with the

environment. Specifically, the theoretical results in this chapter proves the system trajectories

are uniformly ultimately bounded. Additionally, the redundancy in the soft follower robot was
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exploited via null space velocity tracking to enable collision avoidance as a sub-task within the

teleoperation framework. The effectiveness of this approach is demonstrated through extensive

simulations and physical experiments, highlighting its practical utility. This work on proposing

a passivity-based robust bilateral teleoperation for task space synchronization of a dissimilar

leader-follower system is a significant advancement in the controls literature.

In Chapter 5, the application of integrated sensing for dynamic control of soft robots,

operating under the PCC modeling hypothesis was showcased. The innovative soft sensing skins

introduced in this research are adaptable and can be potentially retrofitted to a wide array of soft

robots. Furthermore, an LSTM network was employed to learn the estimation of the degree of

curvature, relying on strain signals from the sensing skin and actuator inputs. Additionally, a

passivity-based adaptive controller was designed to track a desired degree of curvature trajectory

in the presence of parameter uncertainty. The adaptive controller ensures that the curvature

errors reach the origin asymptotically. The favorable performance observed in the degree of

curvature tracking for both low and high-frequency target trajectories attests to the robustness of

the proposed soft skins in estimating curvature and holds promise for integration within a

dynamic control framework. This was the first time such an integrated sensing and control

framework was demonstrated. The results stemming from this chapter was presented in part at

[94].

In Chapter 6, a novel robotic system known as a hybrid rigid-soft (HyRiSo) robot was

introduced. This robot was comprised of a combination of rigid and soft links serially

connected. These robots are particularly intriguing due to their enhanced dexterity, resulting

from including soft links within the system. However, the hybrid nature of this robot introduces

parameter uncertainties, mainly due to the heterogeneous actuation modes of the revolute joints
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and the soft links. Consequently, uncertain actuator mapping becomes critical in controlling

such hybrid robots. In response to this challenge, two passivity-based controllers: adaptive and

robust were devised. These controllers were designed to address the complexities of the hybrid

robot’s uncertain actuation system and other uncertainties. The effectiveness of the proposed

hybrid robotic system, along with these controllers, was demonstrated through numerical

examples that showcased the system’s capability for task space trajectory tracking, even within

challenging workspace environments. The results from this chapter was presented at [107].

In Chapter 7, a unique underactuated soft robotic system called the SIPR: soft inverted

pendulum with a revolute base was introduced. This soft robot was designed with an actuated

constant curvature soft body, while its base joint had the freedom to rotate freely. The system’s

dynamics were derived and a control strategy was devised based on switching techniques. For

the swing-up phase, an energy-based control method was developed, and to stabilize the soft

system at the unstable upright equilibrium, an LQR approach was applied. A thorough stability

analysis of the proposed control methodology was conducted and simulation results were

presented demonstrating this control framework’s effectiveness. The results stemming from this

chapter was presented in part at [112].

In Chapter 8, a continuous control method was developed for the swing-up and

stabilization of the SIPR system without switching between controllers. This control

architecture was devised with consideration for general Class-I underactuated mechanical

systems by simultaneously applying an output partial feedback linearization control and a linear

control method, such as LQR. It should be noted that the stability guarantees are only local as

the control is derived considering a linearized system near the upright equilibrium. Through

numerical simulations involving the SIPR system, a significant increase in the ROA compared to
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using a standard linear controller without the OPFL input was demonstrated. In scenarios where

the torque input is not restricted, our simulations revealed that the SIPR could be effectively

swung up from the bottom-down equilibrium and stabilized in the upright position solely

through the proposed control approach. However, it’s worth noting that in such cases, the

actuator must provide a substantial impulsive input, as observed in our simulations. One

approach to achieving this is initially loading the actuator, enabling it to deliver the required

sudden input. Additionally, numerical investigations were conducted with torque saturation

constraints, which showed that while this limitation does reduce the ROA, the observed ROA

remains larger than that of a nominal linear controller without the OPFL component. Notably,

the proposed control methodology could also serve as an alternative to the commonly used LQR

method during the transition to the stabilization phase after employing a dedicated swing-up

controller.

9.2 Limitations and future research directions

One obvious limitation in the work discussed in this dissertation is that all the controllers

were designed based on dynamics models, which were developed assuming the soft robot to be

PCC. While the PCC assumption holds for the systems considered here, especially for the planar

cases without loading, it may fail upon significant external loading or self-weight. These

limitations open up an intriguing opportunity to develop dynamics models for soft robots,

relaxing the PCC hypothesis. Several researchers have already started exploring this avenue by

proposing affine curvature models [85], polynomial curvature models [34], models based on

Euler curves [140] to name a few. However, it is not well understood what level of fidelity
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should the dynamics model capture for it to be computationally amenable yet accurate enough

to generate repeatable, precise motion control of soft robots. Moreover, due to the limitation of

actuation, all the degrees of freedom/ curvature modes of these higher-order models can’t be

actuated. Therefore, a potential future research direction from this dissertation is investigating

robust stabilization of higher-order highly underactuated soft robots.

Considering the utilization of integrated sensing for the control of soft robots, as

investigated in Chapter 3, the current technologies only provide sensing for the simplified PCC

model. However, to utilize integrated sensing in higher-order models, the soft sensors need to be

able to measure the curvature at a higher degree, such as a polynomial curve or an Euler curve.

To that end, another future research direction stemming from this dissertation is investigating a

distributed sensing approach with a learning-based curvature estimation that could enhance the

curvature measurements.

Considering the swing-up control of SIPR, as discussed in Chapter 5, the experimental

validation was only limited to a simulation study. While the simulation results were exceptional

for the assumed CC model, challenges were faced when experimentally evaluating the proposed

controller in a physical system. Actuator saturation was observed, i.e., the actuation unit cannot

provide the required torques due to the limits in the actuation unit. Further, the revolute joint at the

base is not frictionless as assumed in the control derivation. Moreover, the CC assumption might

fail due to torques induced by self-weight. The system parameters, which were found by system

identification, might be uncertain. These limitations prompt exciting future research directions.

Given the actuator saturation problem, one possible future direction is to pursue an alternate

energy-based control approach for soft robots modeled as under-actuated systems inspired by the

works in [111], which employs a partial feedback linearization step followed by passivity-based
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switching control that includes actuator saturation in the control design. However, the key here is

to note that for the partial feedback linearization step [138], dynamic and kinematic uncertainty

can destabilize the overall system. Hence, it is also essential to investigate robust and adaptive

control of under-actuated systems to address dynamic and kinematic uncertainty in the system.

To that end, a control strategy such as the adaptive task-space regulation of rigid-link flexible-

joint robots with uncertain kinematics in [141] can be used to gain insight into developing an

improved controller.

Revisiting the physical experimental investigations discussed in this dissertation, actuation

delays, actuator saturation, and hysteresis effects were noted. These effects were overcome in this

dissertation by carefully tuning a lower-order controller for the pneumatic actuator unit. However,

this approach limits the motions of the soft robots; thus, the full potential of the manipulation

capabilities can’t be achieved. Therefore, future research addressing this limitation in actuation

is paramount to realize the dexterous motions enabled by the designed controllers for the soft

robotic systems.
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Appendix A: Preliminaries and Supplementary Material

A.1 Stability

In this section the definitions are provided for the stability notions [74, 139] used in this

dissertation .

Definition A.1 Given the nonlinear system ẋ(t) = f(x(t)), suppose that x = 0 is an equilibrium.

Then the solution x(t) = 0 is:

• stable: if and only if, for any epsilon > 0 there exist δ = δ(ϵ) > 0 such that ||x(t0)|| < δ

implies ||x(t)|| < ϵ for all t > t0.

• asymptotically stable: if x = 0 is stable and, in addition, ||x(t0)|| < δ implies ||x(t)|| → 0

as t→ ∞.

• unstable: if it is not stable.

Definition A.2 A solution x(t) for the nonlinear system ẋ(t) = f(x(t)) is said to be uniformly

ultimately bounded (u.u.b), if there exist constants a, b > 0 and a time T = T (a, b) such that

||x(t0)|| ≤ a implies that ||x(t0)|| ≤ b, for all t ≥ t0 + T . In this case the ultimate bound is b.

Definition A.3 The equilibrium x = 0 of the system ẋ(t) = f(x(t)) is exponentially stable if

there are constants α, γ > 0 such that ||x(t)|| ≤ α||x(t0)||e−γt for all t > 0.
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A.2 Lagrangian systems

Important properties of the Lagrangian systems that has been utilized in the dissertation is

discussed here. Consider the robot dynamics expressed in the general Lagrangian form as,

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = τ (A.1)

where M(q) is the inertia matrix, C(q, q̇) is the Coriolis/centripetal torque matrix and τ is the

generalized force vector. N(q, q̇) is the vector that collects gravity terms and other dynamic

effects including the stiffness and damping terms.

The robot dynamics described as Lagrangian systems (A.1) posses the following fundamental

properties [74, 142]:

Property A.1 M(q) is symmetric and positive definite and bounded- i.e there exist positive

constants λa and λb such that λa ⩽M(q) ⩽ λb

Property A.2 Under an appropriate definition of C(q, q̇)q̇, such as defined using Christoffel

symbols, the matrix Ṁ(q)− 2C(q, q̇)q̇ is skew symmetric.

Property A.3 For any differentiable vector γ ∈ Rα the Lagrangian dynamics are linearly

parameterizable. Therefore there exists a regressor Y (q, q̇, γ, γ̇) ∈ Rα×β and a constant

parameter vector Θ ∈ Rβ such that M(q)γ̇ + C(q, q̇)γ +N(q, q̇) = Y (q, q̇, γ, γ̇)Θ

Property A.4 For q, q̇, γ ∈ Rn there exists kc ∈ R+ such that the centrifugal and Coriolis

forces/torques are bounded by |C(q, q̇)γ| ⩽ kc|q̇||γ|.
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A.3 2 DoF planar rigid elbow manipulator

Figure A.1: The 2 DoF planar rigid elbow manipulator

Here the dynamics of the 2-DOF rigid robot used in the simulation study and in the

experimental investigation of the bilateral teleoperation framework in Chapter 2 is discussed. It

is assumed that the robot is on the horizontal plane, thus ignoring the gravity terms. The

dynamics of the planar rigid manipulator in the Lagrangian form is,

 Mm11 Mm12

Mm21 Mm22


 q̈m1

q̈m2

+

 Cm11 Cm12

Cm21 Cm22


 q̇m1

q̇m2

 =

 τ1

τ2

− J⊤Fext
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with the inertia matrix terms,

Mm11 = 0.25mm1L
2
m1

+mm2

(
L2
m1

+ 0.25L2
m2

+ Lm1Lm2 cos qm2

)
+ Im1 + Im2

Mm12 =Mm21 = mm2

(
0.25L2

m2
+ Lm1Lm2 cos qm2

)
+ Im2

Mm22 = 0.25mm2L
2
m2

+ Im2

and the Coriolis /centripetal terms

Cm11 = −0.5mm2Lm1Lm2 sin qm2 ˙qm2

Cm12 = −0.5mm2Lm1Lm2 sin qm2 (q̇m1 + q̇m2)

Mm21 = 0.5mm2Lm1Lm2 sin qm2 q̇m1

Cm22 = 0

Here, J⊤ is the Jacobian defined as,

J⊤ =

 −Lm1 sin qm1 − Lm2 sin(qm1 + qm2) −Lm2 sin(qm1 + qm2)

Lm1 cos qm1 + Lm2 cos(qm1 + qm2) Lm2 cos(qm1 + qm2)


and Fext is the external force (human force).
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Following the textbook [74], the inertia terms of the rigid robot is found as,

Θ1 = 0.25mm1L
2
m1

+mm2

(
L2
m1

+ 0.25L2
m2

)
+ Im1 + Im2

Θ2 = 0.5mm2Lm1Lm2

Θ3 = 0.25mm2L
2
m2

+ Im2

Now, using the linearity in parameters property (Property A.3), one can write the dynamics as,

Y (qm, q̇m, q̈m)Θ =

 τ1

τ2

− J⊤Fext

where

Y (qm, q̇m, q̈m) =

 q̈m1 cos(qm2)(2q̈m1 + q̈m2)− sin(qm2)(q̇
2
m1

+ 2q̇m1 q̇m2) q̈m2

0 cos(qm2)q̈m2 + sin(qm2)q̇
2
m1

q̈m1 + q̈m2



and Θ = [Θ1,Θ2,Θ3]
⊤.
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A.4 Sub-task control in null space

A given robot is redundant, if the robot’s degrees of freedom (α) is greater than the

dimension of the task space p. Thus, null(J) has a minimum dimension of (α − p) which can

be exploited to accomplish a desired sub-task control as the task space motion is not affected of

the link velocity in the null space. This is done by designing an auxiliary function ψs(t)

appropriately. The sub-task error is defined as the null space velocity tracking error of the

auxiliary function ψs(t) [143],

eN(t) = (Iα − J+J)(q̇ − ψs(t)).

It is observed that when the signal s(t) (in (2.4), (6.3)) is projected on to the null space of J ,

(Iα − J+J)s(t) =(Iα − J+J)J+Λe+ (Iα − J+J)q̇ − (Iα − J+J)(Iα − J+J)ψs

=(Iα − J+J)(q̇ − ψs(t))

=eN (t).

Here the properties (Iα − J+J)J+ = 0 and (Iα − J+J)(Iα − J+J) = (Iα − J+J) of the pseudo

inverse J+ are utilized. Thus, observe that as s→ 0, eN → 0.

The auxiliary function can be designed in such a way that taking the negative gradient of a

convex function f(qs) as,

ψs = − ∂

∂q
f(q), (A.2)
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whose minima leads to the desired state. When there are multiple sub-tasks, the auxiliary

function is the summation of the negative gradients.

This dissertation considers the sub-tasks of achieving collision avoidance of the soft/HyRiSo

robot and accounting for joint/curvature limits.

A.4.1 Collision avoidance

In this subtask, consider the location of an obstacle in the environment to be X0. To avoid

pointsXsj , j ∈ Ω on the robot (Ω is the set of points on the robot designed for collision avoidance)

colliding with the obstacle, the convex function for the collision avoidance sub-task is defined as,

f 0
obsj(q) =

(
min

{
0,
d2j0 −R2

d2j0 − r2

})2

where dj0 = ||Xsj −X0|| is the distance between a point Xsj on the robot and the obstacle X0.

Here R is the avoidance distance and r is the smallest safe distance of dj0. The objective of this

avoidance function is to guarantee that dj0 remains greater than the safe distance r by changing

the configuration of the robot in the null space. Now, the auxiliary function is,

ψ0
sj
= −

[
∂f 0

obsj(q)

∂q1

∂f 0
obsj(q)

∂q2
...

∂f 0
obsj(q)

∂qα

]⊤
(A.3)
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with

∂f 0
obsj(q)

∂qi
=
∂f 0

obsj(q)

∂Xsj

∂Xsj

∂qi
(for i = 1, 2, ..., α)

=



0 if dj0 ≥ R

4
[
(R2−r2)(d2j0−R2)

(d2j0−r2)3

] (
Xsj −X0

)⊤ ∂Xsj

∂qi

if r < dj0 < R

not defined if dk0 = r

0 if dk0 < r.

(A.4)

In different applications there could be multiple points on the robot for collision avoidance (Xsj ,

j ∈ Ω) as well as multiple objects (Xk, k = 1, 2, ..,m) in the environment. In that case, the

auxiliary function for collision avoidance is the summation, ψs =
∑m

k=1

∑
j∈Ω ψ

k
sj
.

A.4.2 Joint angle/curvature limits

For the joint angle/curvature limit sub-task the convex function is defined as,

fjoint(q) = Πα
j=1

((
1

qmax
j − qj

)(
1

qj − qmin
j

))

where qj is the joint angle/degree of curvature of the jth link with j = 1, 2, ..., α. Here qmax
j

and qmin
j denote the maximum and minimum allowable joint/degree of curvature limits of the jth

link. The corresponding auxiliary function for this sub-task can be easily found using (A.2).
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A.5 HyRiSo robot example

In this appendix the details of the hybrid robot considered in the Example 6.1 is discussed

briefly. Using the usual definitions, the dynamics of the robot in the form of (6.1) is given by,

 M11 M12

M21 M22


 q̈1

q̈2

+

 C11 C12

C21 C22


 q̇1

q̇2

+

 0 0

0 d


 q̇1

q̇2



+

 0 0

0 k


 q1

q2

 =

 τ1

τ2


with,

M11 =m1ϕ
M
1 (L, q) +m2ϕ

M
2 (L, q) + I1

M21 =M12 = m2ϕ
M
3 (L, q)

M22 =m2ϕ
M
4 (L, q)

where,

ϕM
1 (q,L) = 1

4 q2
2 ( (L2 sin(q1+q2)−L2 sin(q1)+2L1 q2 cos(q1))

2+L2
2 (cos(q1)−cos(q1+q2)+2 q2 sin(q1))

2 )

ϕM
2 (q,L) = L2

1

ϕM
3 (q,L) = L2 sin( q2

2 )( 2L2 sin( q2
2 )+L1 q2 cos( q2

2 )+L2 q2 cos( q2
2 )+L1 q2 cos(2 q1+ q2

2 )−L2 q2 cos(2 q1+ q2
2 ))

4 q2
2

− L2 (2 sin( q2
2 )−q2 cos( q2

2 ))(L1 sin(q1+ q2
2 ) cos(q1)−L2 cos(q1+ q2

2 ) sin(q1))
2 q2

2

ϕM
4 (q,L) = − L2

2 (2 cos(q2)+2 q2 sin(q2)−q2
2−2)

4 q2
4

.
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The elements

C11 =m1ϕ
C
1 (L, q, q̇) +m2ϕ

C
2 (L, q, q̇)

C12 =m2ϕ
C
3 (L, q, q̇)

C21 =m2ϕ
C
4 (L, q, q̇)

C22 =m2ϕ
C
5 (L, q, q̇)

are defined using the Christoffel symbols. For a1, a2 > 0, let the transformation matrix,

A =

 a1 0

0 a2

 .

Now the dynamics in the form of (6.2) is,

 M11

a1

M12

a1

M21

a2

M22

a2


 q̈1

q̈2

+

 C11

a1

C12

a1

C21

a2

C22

a2


 q̇1

q̇2



+

 0 0

0 d
a2


 q̇1

q̇2

+

 0 0

0 k
a2


 q1

q2

 =

 p1

p2

 .
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A.6 Soft inverted pendulum dynamics

In this appendix, the explicit expressions for the inertia matrix M(q0, θ), Corriolis and

centrifugal terms matrix C(q0, θ, q̇0, θ̇) and gravity terms vector G(q0, θ) are provided in Section

7.2. Also, for what concerns to be division by q0, the limiting case q0 → 0 for these expressions

is provided explicitly.

Mass matrix:

M(q0, θ) =

 M11 M12

M21 M22



where

M11 =
m
(
72L2 q0 +D2 q0

5 + 12L2 q0
3 − 144L2 sin (q0) + 72L2 q0 cos (q0)

)
36 q05

M12 =M21 =
m
(
24L2 +D2 q0

4 + 12L2 q0
2 − 24L2 cos (q0)− 24L2 q0 sin (q0)

)
24 q04

M22 =
m
(
24L2 q0 +D2 q0

3 − 24L2 sin (q0)
)

12 q03

with the limiting case,

lim
q0→0

M =


m

(
D2+ 9L2

5

)
36

m (D2+3L2)
24

m (D2+3L2)
24

m (D2+4L2)
12

 .

Corriolis and centrifugal terms matrix:

C(q0, θ, q̇0, θ̇) =

 C11 C12

C21 C22


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where

C11 = −
mL2q̇0

(
12 q0 − 30 sin (q0) + 3 q0

2 sin (q0) + 18 q0 cos (q0) + q0
3
)

3 q06

C12 =
mL2θ̇ (2 q0 − 3 sin (q0) + q0 cos (q0))

q04

C21 = −mL
2 ( 4 q̇0+q02 q̇0+2 q02 θ̇−4 q̇0 cos(q0)−4 q0 q̇0 sin(q0)−3 q0 θ̇ sin(q0)+q02 q̇0 cos(q0)+q02 θ̇ cos(q0) )

q05

C22 = −mL
2q̇0 (2 q0 − 3 sin (q0) + q0 cos (q0))

q04

with the limiting case,

lim
q0→0

C =

 0 0

0 0

 .

Gravity terms vector,

G(q0, θ) = Lgm


(2 cos(ϕ+q0+θ)−2 cos(ϕ+θ)+q0 sin(ϕ+θ)+q0 sin(ϕ+q0+θ))

q03

− (sin(ϕ+θ)−sin(ϕ+q0+θ)+q0 cos(ϕ+θ))
q02



with the limiting case,

lim
q0→0

G =

 −Lgm sin(ϕ+θ)
6

−Lgm sin(ϕ+θ)
2

 .
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A.7 Linear Quadratic Regulator (LQR) for SIPR

The LQR to stabilize the SIPR in the upright equilibrium is discussed here. Let the state

vector, x(t) = [q0(t), θ(t), q̇0(t), θ̇(t)]
⊤ and control input u(t) = τ(t). Then linearizing around

the upright equilibrium (qo, θ, q̇0, θ̇) = (0, 0, 0, 0), τ = 0 one gets the linear time invariant system,

ẋ(t) = Ax(t) +Bu(t)

where A ∈ R4×4 is the system matrix and B ∈ R4×1 is the input matrix. Using A and B matrices

one can show that this system is controllable.

For stabilization at the vertical upright position, the LQR problem is formulated as,

min
u

∫ T

0

1

2

(
x⊤Qx+Ru2

)
dt

to find the control u(t) which is of the form,

u(t) = −(R−1B⊤P)x(t) = −Kx(t).

Here R > 0 and P is the solution to the algebraic Riccati equation,

A⊤P+PA−PBR−1B⊤P+Q = 0

where Q is a positive semidefinite matrix. In this work, Q = I4×4 and R = 1 was chosen and the

gain K was found using MATLAB command lqr(A,B,Q,R).
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A.8 Additional numerical examples for OPFL based swing up and stabilization

of underactuated systems

In this appendix, numerical examples for utilizing the proposed control architecture for

swing up and stabilization introduced in Chaper 8 is presented for two other Class-I

underactuated systems, 1) RWP system, and 2) Acrobot.

A.8.1 The Reaction Wheel Pendulum

Figure A.2: The Reaction Wheel Pendulum (RWP).

The dynamics of the RWP as in FigureA.2 can be written as,

m11q̈1 +m12q̈2 + g1(q1) = 0

m21q̈1 +m22q̈2 = τ

where, m11 = m1l
2
c1 + I1 + I2, m12 = m21 = m22 = I2 and g1(q1) = − (m1lc1 +m2l2) g sin(q1).

The output is defined as y(t) = ψ(t) = q1(t) considering the COM angle for the RWP. The

Jacobians in this case will be J1 = 1, J2 = 0. The parameters were chosen as m1 = m2 = 1,
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I1 = I2 = 1, l1 = 1 and lc1 = 0.5. Control gains kp = 250 and kd = 100 were used for the

OPFL controller. For the LQR input, τq = Kx, as in (8.9) the gain K = [−433.71,−31.62,

−171.26,−64.86] with Q = I4×4 and R = 10−3 was calculated. For the nominal LQR Q = I4×4

and R = 10−3 was used and obtained the gain Knom = [−549.97,−31.62, −214.47,−57.45]

implementing the control as τ = −Knomx in (8.2).

For clarity in illustration, a slice of the ROA at q1 − q2 plane for the proposed method and

the nominal LQR for trajectories starting from zero velocity positions is presented. Two cases

were considered , i. when the applied torque τ is unrestricted (FigureA.3a) and ii. when the

torque is saturated at 50Nm (FigureA.3b). While for practical initializations q1, q2 ∈ [−2π, 2π]

and q̇1 = q̇2 = 0, the ROAs are identical, it is seen that the proposed method has increased

the ROA for the swing up and stabilization of the RWP in extreme cases. In the unrestricted

torque case, the ROA increase is 45%, and in the saturated case, the ROA increase is 42.9% in

the numerically analyzed range for the considered parameters.

FigureA.4a-c illustrates an unrestricted torque simulation for RWP starting from initial

conditions (−11π, 20π, 0, 0), which is inside both controllers’ ROAs. In this case, the

performance is similar for both the controllers. However, note the sudden high torque at the start

of both controllers. The torque saturated simulation for the same is illustrated in FigureA.4d-e.

Additionally a simulation when the system initialized at an extreme point (−11π, 3π, 0, 0),

which lies in the proposed method’s ROA but outside the nominal LQR’s ROA is also

illustrated. The results are illustrated in FigureA.5a-c for the unrestricted case. It can be seen

that the proposed method can swing up and stabilize the RWP at the origin while the nominal

LQR diverges and stabilizes at a different equilibrium. The torque saturated simulation for this

case using the proposed method is illustrated in FigureA.5d-e.
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a) Unrestricted torque input.

b) Saturated torque input at 50Nm.

Figure A.3: ROA slice for RWP for q1, q2 ∈ [−40π, 40π] when q̇1 = q̇2 = 0.
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b) Torque evolution for the proposed method with unrestricted input.
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c) Torque evolution for the nominal LQR with unrestricted input.
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e) Torque evolution with saturated input.

Figure A.4: Simulation results for RWP with initial conditions (−11π, 20π, 0, 0).

216



0 5 10 15 20 25 30

-30

-20

-10

0

a) Evolution of angles with unrestricted input.

0 5 10 15 20 25 30

-3

-2

-1

0

10
4

0 5 10 15 20 25 30

0

200

400

600

800

b) Torque evolution for the proposed method with unrestricted input.
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c) Torque evolution for the nominal LQR with unrestricted input.
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d) Evolution of angles for the proposed method with saturated input
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e) Torque evolution for the proposed method with saturated input.

Figure A.5: Simulation results for RWP with the initial conditions (−11π, 3π, 0, 0).
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A.8.2 The Acrobot

Figure A.6: The Acrobot.

The dynamics of the Acrobot as in FigureA.6 can be written as,

m11q̈1 +m12q̈2 + c1 + g1 = 0

m21q̈1 +m22q̈2 + c2 + g2 = τ

with the mass terms,

m11 = m1l
2
c1 +m2

(
l21 + l2c2 + 2l1lc2 cos q2

)
+ I1 + I2

m12 = m21 = m2

(
l2c2 + l1lc2 cos q2

)
+ I2

m22 = m2l
2
c2 + I2

centripetal and Coriolis terms,

c1 = −m2l1lc2 sin q2
(
2q̇1q̇2 + q̇21

)
, c2 = m2l1lc2q̇

2
1
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and gravity terms,

g1 = − (m1lc1 +m2l1) g sin q1 −m2lc2g sin (q1 + q2)

g2 = −m2lc2g sin (q1 + q2) .

The output function for the Acrobot is chosen as the COM angle from the vertical y(t) =

ψ(t). The COM (x̄, ȳ) is found using composite parts method

x̄ = −m1lc1 sin q1 +m2 (l1 sin q1 + lc2 sin(q1 + q2))

(m1 +m2)

ȳ =
m1lc1 cos q1 +m2 (l1 cos q1 + lc2 cos(q1 + q2))

(m1 +m2)

and the COM angle is found as ψ(t) = π/2− atan
(
ȳ
x̄

)
. Thus, with the defined output y(q1, q2) =

ψ, the Jacobians are J1 = 1 and

J2 =
m2lc2 (m2lc2 +m2l1 cos q2 +m1lc1 cos q2)

(l1m2 + lc1m1)
2 + 2lc2 (l1m2 + lc21m1) cos q2 +m2

2l
2
c2

The parameters used were m1 = 1,m2 = 2, l1 = 1, l2 = 1.5, lc1 = 0.5, lc2 = 0.75,

I1 = 0.2, I2 = 1 and g = 9.81. The control parameters kp = 2.5 × 104 and kd = 1 × 103

for the OPFL controller were chosen. For the LQR in (8.9), using Q = I4×4 and R = 1e

the LQR gain was calculated as, K = [−137.27,−52.55,−613.22,−293.44]. For comparison,

the nominal LQR gains were computed using Q = I4×4 and R = 10−3 and obtained the gain

Knom = [−399.53,−149.89,−173.75,−77.36].

The ROA slice at q1 − q2 plane is presented as done in the RWP example considering the
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initial conditions q1, q2 ∈ [−2π, 2π] with q̇1 = q̇2 = 0. The ROA for the unrestricted torque case

is illustrated in FigureA.7a, and the case with torque saturation at 50Nm is illustrated in

FigureA.7b. It is observed that the proposed method significantly enlarges the ROA in the

unrestricted case with an increase of over 50-fold (5151.3%). For the torque-saturated case, the

ROA increase is almost 30-fold (2955.2%).

An unrestricted torque simulation is illustrated in Figure A.8a-c starting from initial

conditions (−π
7
, 3π

8
, 0, 0) which is within ROAs of both the controllers. The torque-saturated

simulation for the proposed method is illustrated in Figure A.8d-e. In Figure A.9, the simulation

results for the Acrobot initialized from the downward equilibrium point (−π, 0, 0, 0) with

unrestricted torque is illustrated. Note that this point is within the ROA of the proposed method

but outside that of the nominal LQR controller. However, this point is not within the ROA of the

proposed method if torque is saturated at 50Nm. To illustrate the torque saturated behavior of

the proposed method, a simulation initialized from (−π
2
, 0, 0, 0) is considered, which is within

the ROA of the proposed method and it is illustrated in FigureA.10.
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a) Unrestricted torque input

b) Saturated torque input at 50Nm

Figure A.7: ROA slice for Acrobot for q1, q2 ∈ [−2π, 2π] with q̇1 = q̇2 = 0.
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b) Torque Evolution for the proposed method with unrestricted input.
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c) Torque Evolution for the nominal LQR with unrestricted torque input.
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e) Torque Evolution for the proposed method with saturated torque input.

Figure A.8: Simulation results for Acrobot with initial conditions (−π
7
, 3π

8
, 0, 0) which is inside

both ROAs.

222



0 100 200 300 400 500 600 700

-10

-5

0

5

a) Evolution of angles for the proposed method.
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b) Evolution of angles for LQR showing unstable behavior.
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c) Torque evolution for the proposed method.

Figure A.9: Simulation results for Acrobot with unrestricted torque input for initial conditions
(−π, 0, 0, 0).
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b) Torque evolution for the proposed method with saturated input.

Figure A.10: Simulation results for Acrobot with initial conditions (−π
2
, 0, 0, 0) when torque is

saturated at 50Nm.
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