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A typical embedded sensor system consists of an environmental sensor, data 

storage, and a control circuit (such as a microcontroller). Two main traits desired of 

these embedded sensor systems are small form factor and low power consumption. 

However, due to the diverse nature of the design and applications, monolithic 

solutions incorporating the three main components are often not available on a large 

cost effective scale. 

This work describes a method of integrating heterogeneous circuit 

components into a single module. When combined with efficient operating algorithms 

the system size is reduced and lifetime is extended. Production or custom designed 

component chips are thinned and stacked vertically while interconnects are fabricated 

within the module providing a 3-D integration (3DI) of the system. A Global 

Positioning System (GPS) location recording sensor system is designed with the 

intention of applying the 3DI process to reduce its size and power consumption.  

 

 



 
 
 
 
 
 
 
 
 
 

VERTICALLY INTEGRATED MODULES FOR LOW POWER EMBEDDED 
SENSOR SYSTEMS   

 
 
 

By 
 
 

Christopher Kenneth Bles 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2006 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Neil Goldsman, Chair 
Professor Martin Peckerar 
Professor Reza Ghodssi 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Christopher Kenneth Bles 

2006 

 



ACKNOWLEDGEMENTS 

 

 I would like to thank Mike Khbeis and Dr. George Metze for providing 

technical expertise and assisting with the development of the work presented in this 

thesis. I would also like to thank the Laboratory for Physical Sciences for providing 

facilities and materials to carry out process development. Finally I would like to thank 

Professor Neil Goldsman for directing my thesis and Professors Martin Peckerar, and 

Reza Ghodssi for their membership on my thesis defense committee. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii 



TABLE OF CONTENTS 

Acknowledgements...............................................................................................  ii 

Table of Contents..................................................................................................  iii 

List of Tables……………………………………………………...……………..   v 

List of Figures……………………………………………………...………….....  vi 

1. Introduction 
     1.1 Embedded systems……………………………………...…………...   1 

1.2 3-Dimensional Integration……………………………...……………   3 
     1.3 System design…………………………………………...…………...   4 
 
2. 3-Dimensional Integration 

2.1 Overview……………………………………………………………..   6 
2.2 Wafer Thinning………………………………………………………   9 

2.2.1 Grinding...................................................................................... 10 
2.2.2 Chemical Etching........................................................................ 12 
2.2.3 Chemical Mechanical Polishing................................................. 17 

2.3 Wafer Bonding..................................................................................... 19 
2.3.1 Wafer Direct Bonding Properties................................................ 19 
2.3.2 Bonding Process Conditions....................................................... 21 
2.3.3 SiO2 Bonding.............................................................................. 23 

2.4 Via Etching and Filling........................................................................ 24 
2.4.1 Scallop Free Deep Silicon Etch With Passivation...................... 25 
2.4.2 High Pressure Via Fill................................................................. 27 

2.5 Summary............................................................................................... 29 
 
3. Production Component Applications 

3.1 Overview............................................................................................... 30 
3.2 Die De-packaging and Mapping........................................................... 30 
3.3 Reintegrated Die Wafer (RDW)........................................................... 35 
3.4 3DI Processing...................................................................................... 37 
3.5 Summary............................................................................................... 41 

 
 
 
 
 
 
 
 
 
 

iii 



4. System Design 
4.1 Overview.............................................................................................. 42 
4.2 Hardware.............................................................................................. 42 

4.2.1 Microcontroller........................................................................... 43 
4.2.2 Non-volatile memory.................................................................. 44 
4.2.3 GPS............................................................................................. 46 
4.2.4 RF Communication..................................................................... 49 
4.2.5 Accelerometer............................................................................. 53 
4.2.6 Battery Charger........................................................................... 54 
4.2.7 Voltage Regulator....................................................................... 56 

4.3 Software............................................................................................... 59 
4.3.1 State Machine.............................................................................. 60 

4.4 Summary.............................................................................................. 63 
 
5. Conclusion/Future work 

5.1 Summary............................................................................................. 64 
5.2 Future Work........................................................................................ 65 
5.3 Additional Applications...................................................................... 67 
5.4 Conclusion........................................................................................... 68 

 
Appendix A............................................................................................................ 69 
 
Bibliography.......................................................................................................... 71 
 

 

 

 

 

 

 

 

 

 

 

iv 



List of Tables 
 
Table 2.1 Wafer Grinding Total Thickness Variation....................................... 11 

Table 2.2 Plasma Activation bond energies determined by fracture testing..... 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v 



List of Figures 

Figure 2.1 3DI process flow.............................................................................   8 
 
Figure 2.2 Surface roughness after mechanical grinding................................. 12 

Figure 2.3 Meniscus etcher processing diagram.............................................. 14 

Figure 2.4 a,b Wet processing removal rates. Wafer thickness is  
measured in 2 min and change in thickness is displayed 
for various etch ratio of HNA and volumes.  
Top: HNA=5:5:1, 500ml. Bottom: HNA=3:5:1, 
500ml............................................................................................... 15 

 
Figure 2.5 Drastic increases in wafer TTV with process time using  

aggressive chemistry....................................................................... 16 
 
Figure 2.6 Particle agglomeration on wafer surface as viewed  

through a Nomarsky filter. 50x magnification................................ 18 
 
Figure 2.7 Particle reduction of PAA treated hydrophilic wafer. 50x 

magnification.................................................................................. 18 
 
Figure 2.8 OH bonding to SiO groups after plasma activation........................ 20 
 
Figure 2.9 Void free bond. Un-bonded areas appear in red.  

Image taken by SAM...................................................................... 21 
 
Figure 2.10 1500 Å oxide bonded wafers post baked at 150°C for 48  

hour off-gassing. Light gray color indicates bonded area.  
Right wafer does not have trench pattern. Trenches in the  
left wafer eliminate the formation of bubble voids by H 
offgassing.......................................................................................... 23 

 
Figure 2.11 Severe Ion bombardment during etch process after manual  

chamber clean and maintenance...................................................... 25 
 
Figure 2.12 Extreme passivation oxide growth. Sidewall oxide  

thickness=4740Å on a delaminated 4µm column........................... 26 
 
Figure 2.13 Smooth sidewall deep fine pitch via with sidewall  

passivation. No process damage visible on hardmask  
due to high etch selectivity (dark gray top layer)............................ 26 
 
 

 

vi 



Figure 2.14 Complete Al via fill at 550°C. Discontinuity at the top  
of the left via and cross section of the right via is  
due to fracture induced during wafer cleaving................................ 28 
 

Figure 2.15 Increase in sheet resistance of AlGe alloys as deposition  
temperature rises and Ge precipitates...............................................  28 

 
Figure 2.16 Severe Ge precipitation (25% Ge alloy). Fill  

temperature=450°C.......................................................................... 29 
 
Figure 2.17 Minor Ge precipitation (8 % Ge Alloy). Fill  

temperature=500°C ......................................................................... 29 
 
Figure 3.1 De-packaged CC1100 (left) and M25P80 (right). Each  

component is used in the GPS-RT (see chapter 4).......................... 32 
 
Figure 3.2 De-packaged MSP430F1612 (left) and CAD layout (right)............ 33 
 
Figure 3.3 Elimination of flash memory from PCB surface when  

integrated into a 3DI module........................................................... 34 
 
Figure 3.4 Port B voltage output of de-packaged PIC. Vcc=5.5 V,  

External Oscillator frequency (Fosc) =12MHz................................ 35 
 
Figure 3.5 Post thinning die thickness. Pa1=19.52µm (die height),  

Pa2=3.3µm (acrylic thickness)........................................................ 36 
 
Figure 3.6 Alignment marks in acrylic (left) and metallized die  

test pattern (right). Slight heat deformation visible in  
acrylic. The target patter is 220µm in diameter............................... 37 

 
Figure 3.7 Wax resistance to 5:10:1 HNA etch chemistry. Pre etch  

(left) and post 10 minute etch (right)............................................... 38 
 
Figure 3.8 Die etch edge effects. Edge peak height is approximately  

30µm above die center height. Wax remains unaffected  
by etch chemistry............................................................................. 39 

 
Figure 3.9 Wafer thickness after chemical etching. Center bulk  

removal is greater than edge removal............................................. 40 
 
Figure 3.10 Wafer thickness after CMP (left) shows greater removal  

from the wafer edge. Delta thickness shown right.......................... 40 
 
 

 

vii 



Figure 4.1 EAGLE layout of GPS-RT rev B. Top copper shown in  
red, bottom copper shown in blue, vias shown in green,  
inner layers not visible.................................................................... 43 

 
Figure 4.2 Onboard component communications diagram.  

Red jumpers are connected during roaming operation.  
The RS-232 transceiver allows the roaming unit to  
function as a basestation................................................................. 44 

 
Figure 4.3 Flash memory cross section depicting program (CHE)  

and erase (FN) functions................................................................. 45 
 
Figure 4.4 Navigation message subdivisions [34]............................................ 47 
 
Figure 4.5 GPS drift data (blue) over 10 minutes. 1x10-5°  

latitude = 1.1m. Location outlined in red ...................................... 49 
 
Figure 4.6 RF trace layout on PCB.................................................................. 52 
  
Figure 4.7 Rev. A Transceiver layout. U-turn for power amp  

output trace, lack of proper grounding limit maximum  
power and sensitivity...................................................................... 52 

 
Figure 4.8 RF transceiver layout, components outlined in white,  

copper shown in red, vias in green, dimensions=68mm x 22mm.  
Transmit path = CC1100 (far left), RF switch (center left),  
Power Amp (center right), RF switch to SMA connector  
(far left). Receive path eliminates the power amp with  
50 ohm microstrip line (top)............................................................ 53 

 
Figure 4.9 Battery charging circuit: Blue jumpers are connected  

during charging mode, Red jumpers are connected  
during operation mode. Battery 2 is replaced with a  
short for 3.6V operation................................................................. 56 

 
Figure 4.10 Standard Linear voltage regulator topography (left),  

Low dropout linear regulator (right) [45]...................................... 57 
 
Figure 4.11 Switching regulator operation. [45]............................................... 58 
 
Figure 4.12 GPS-RT rev. B final assembly....................................................... 59 
 
Figure 4.13 GPS-RT roaming unit state machine............................................. 60 
 
Figure 5.1 GPS-RT revision C preliminary layout.......................................... 67 
 

viii 



1. Introduction 

1.1 Embedded Sensor Systems 

 Remote embedded sensor systems are defined as having three main 

components; a sensor which outputs a digital or analog stream of data taken from its 

environment (such as temperature, pressure, or location), a storage method such as a 

static or dynamic random access memory (S/DRAM) or electronically erasable 

programmable memory (EEPROM or flash), and a controller capable of executing a 

closed loop operating code such as a microcontroller (MCU) or microprocessor. The 

CMOS wireless revolution has enabled low cost wireless transceivers allowing for a 

simple means of data transfer and retrieval. Thus radio frequency (RF) transmitters 

are now often included in remote embedded sensor systems.  

 These systems are used in a diverse array of applications. An example of an 

embedded system is a GPS tracking unit. A small device containing a GPS sensor is 

affixed to a subject and records its location over a period of time. Tracking 

endangered species such as sea turtles is one potential use [1]. In this case, location 

data is collected and transmitted via sonar to a remote observer so retrieval of the 

device is not required. Military personnel and emergency responders are additional 

applications for tracking subjects. Knowledge of specific troop locations on a 

battlefield is invaluable in making informed decisions. The risk of casualties from 

friendly fire can be substantially reduced when the “fog of war” is lifted. If an 

emergency first responder is forced to go into a dangerous situation, their location and 

vital signs can be monitored remotely. If the responder comes under duress in a 

hazardous situation, their location and vital signs are readily available. Remote 

1 



embedded systems can also be used in monotonous applications reducing the need for 

human monitoring of subjects such as the weather.  

 The main traits desired of remote sensor systems are small size and long 

lifetime. With a reduced footprint the systems become less obtrusive resulting in 

better observations of their environment. To minimize maintenance, the system must 

be able to operate continuously for extended periods of time with no operator input. 

This requires robust operating code and a substantial battery lifetime. Designing a 

system with 3 Dimensional Integration (3DI) and intelligent control algorithms helps 

achieve the goals of small size and low power consumption.  

Sensor system miniaturization can be achieved with simple means such as an 

ergonomic layout of a system on a printed circuit board (PCB) or using complex 

application specific integrated circuits (ASIC) stacked on top of each other and wire 

bonded to a substrate as in modern cell phones [2]. High end circuits using Silicon on 

Insulator (SOI) technology allow for vertical routing through the substrate to 

underlying circuitry [3]. The ability to stack and connect ICs directly without a PCB 

is a substantial benefit of SOI. The 3DI process attempts to extend this ability to 

standard silicon bulk integrated circuits (IC). The process provides the benefits of 

stacking and interconnecting circuits using the vast catalog of silicon based 

components available commercially off the shelf (COTS). The infrastructure for 

silicon chips vastly exceeds any other semiconductor technology or derivatives [4] so 

a vertical integration process extending to this technology would greatly increase the 

flexibility of embedded systems in general. Stacking chips to reduce component foot 

print and increase inter-chip connectivity is the goal of the 3-dimensional integration 
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(3DI) project. Presenting 3DI with an effective battery management algorithm to 

design a small, long lasting embedded system is the goal of this thesis.  

 

1.2 3-Dimentional Integration 

 The 3DI process described in this work is under development for the purpose 

of creating a multi-chip module in which several ICs are stacked and connections are 

made directly through the bulk of the chip substrate. While the benefits of greater 

internal connectivity require specially designed circuits, the process can also be 

applied to production components, merging two parts into one module. An example 

would be the microcontroller and flash memory combination discussed later. The 

processes developed are divided into three main groups: wafer thinning, wafer 

bonding, and via production. Applications to production components also include die 

de-packaging, qualification and wafer re-integration. 

 Wafer thinning is required to reduce the chip’s bulk such that fine pitch vias 

can penetrate through the substrate and be filled with a conductor. Thinning takes 

place in three phases. A coarse mechanical grind removes the majority of the bulk at a 

high rate. A chemical etch thins the substrate to within several microns of its target 

thickness. Finally a chemical mechanical polishing (CMP) step produces a clean 

mirror finish so the substrate can be bonded to a handle wafer or system stack. 

 Surface activation bonding is employed to create the system wafer stack. No 

bonding medium such as polyimide or benzocyclobutane (BCB) [5] is required. 

Instead a silicon or oxide surface layer is plasma treated to clean the surface of 

particles and native oxide, leaving behind an activated surface ready to accept 
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hydrogen or oxide bonding. When contacted with another active surface, the two 

wafers spontaneously bond without the use of an adhesive that could interfere with 

further processing. 

The via etching process creates high aspect ratio vias through a silicon 

substrate. A highly directional magnetically coupled plasma field bombards the 

silicon through an oxide mask creating fine pitch (1µm) vias with an aspect ratio 

demonstrated at 20:1. The vias are then filled with an aluminum germanium alloy 

under high pressure creating an electrical connection to interconnects below.  

Combining all of these processes creates a stack of various wafers or chips 

acting as a single module. While certain layouts and via connections are only possible 

with custom circuit designs, a hybrid module is also possible with production 

components. The majority of COTS chip packaging material dissolves in acid 

solutions leaving die behind. When possible die are purchased before they are 

packaged. These die are mapped and interconnect layouts are designed based on the 

pad locations. The die are then reintegrated onto a handle wafer for 3DI processing. 

The module is now prepared for use in embedded sensor systems.  

 

1.3 System Design 

 To demonstrate the benefits of the 3DI process, a remote embedded sensor 

system is designed. The system is a remote Global Positioning System (GPS) 

Recorder Transmitter (GPS-RT) tracking unit composed of a microcontroller, 

programmable transceiver, flash memory, GPS module, and an accelerometer. The 

remote unit connects to a base station for operational maintenance and battery 
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charging.  The use of COTS components makes it an ideal platform to examine the 

production applications of 3DI. Two main system components, the flash memory and 

the microcontroller, are de-packaged in preparation for 3DI. Each device is mapped 

and layout patterns are designed. 

 The system’s many components require an effective power management 

algorithm. To extend the operating lifetime all components must have a power down 

feature. In the case of the GPS-RT, the system need only be operational during radio 

communication or when it is in motion with a valid position fix. Based on position 

and accelerometer data, the microcontroller decides which components must be 

active. To minimize power consumption of the microcontroller, the firmware is set up 

as an interrupt driven state machine which defaults to a low power sleep mode. The 

software’s modular implementation allows for quick error recovery during extended 

field operations.  

 The following chapters present each 3DI technology and GPS-RT design 

choice in detail. Experimental results of novel and established processes are included. 

An overall description of 3DI is given to illustrate how each process fits into the 

system design. The relationship of software development to the GPS-RT sensor 

components is discussed.  
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2. 3-Dimensional Integration 

2.1 Overview 

 3DI involves three processing stages; wafer thinning, wafer bonding, and via 

etch/fill. These stages are combined as shown in figure 2.1 to create multilayer 

circuits. After a base layer is prepared, wafer thinning reduces the substrate bulk of 

the second layer to a thickness that is penetrable by the via etch process. The process 

includes gluing a handle wafer to the device wafer, back grinding, chemical etch, and 

chemical mechanical polish (CMP), to reduce substrate thickness to 20µm.. A high 

degree of surface uniformity and no damage to the active circuit from heat or stress to 

the crystal structure are required since active devices are processed. In preparation for 

the bonding stage, the total thickness variation (TTV) across the surface of the wafer 

must be less than +/-1µm and the surface must also be virtually particle free with a 

maximum of 100 particles of 1µm or smaller.  

After thinning, argon plasma treatment activates the substrate for surface 

activation wafer direct (SAWD) bonding to build the wafer stack. Plasma chemistry, 

exposure time, vacuum pressure and native oxide growth affect bond strength. A 

scanning acoustic microscope (SAM) and infra red (IR) camera detect voids in the 

bonding interface and measure crack propagation in fracture testing to determine 

bond strength.  

 A novel high aspect ratio (HAR) via etch process produces fine pitch (1µm) 

vias at a depth of 20µm. Via sidewalls must be scallop free for Al filling eliminating 

technologies such as Bosch deep reactive ion etching (DRIE). A passivation catalyst 

moderates the etch reaction to avoid sidewall pitting from focused ion bombardment 
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in a Trikon magnetic field=0 resonant inductance (M0RI) plasma chamber. A 

passivation layer is simultaneously grown along the sidewall to insulate the via from 

the substrate. To prevent aluminum interconnects from spiking through the sidewall 

and assist the via fill process, a barrier layer of titanium nitride (TiN) is deposited 

throughout the via. The final metallization step deposits an aluminum germanium 

alloy that is forced into the via by plastic deformation under high pressure. A post 

process CMP step planarizes the resulting metal layer for interconnect patterning. 

This chapter describes each of these technologies in detail along with presenting 

achieved process capabilities.   
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Fig 2.1. 3DI process flow 
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2.2 Wafer Thinning 

 The 20µm substrate thinness requirement imposed by the 3DI silicon via etch 

requires a low stress wafer thinning process. Standard production thinning methods 

incorporate a mechanical substrate back-grind with a diamond wheel. A coarse (350-

500 grit) wheel is used for efficient removal and a fine (2000-3000 grit) wheel 

reduces surface roughness and removes damaged crystal planes [6]. Forces applied 

during the grinding process also create sub-surface defects in the wafer [7]. To 

prevent sub-surface damage and provide stress relief of ultra-thin (~25µm) circuits, 

the wafers are chemically etched after the grind. CMP produces a mirror finish on the 

backside of the wafer in preparation for further processing.  

The three phase thinning process consists of a coarse grind, fine chemical 

etch, and finishing polish. Starting with a 650µm wafer, the coarse grind step removes 

up to 525µm with a Strassbaugh 150mm wafer grinder. The etch step uses a 

hydrofluoric, nitric, acetic, and sulfuric acid solution to chemically remove additional 

substrate bulk until the substrate is within a few microns of it’s target thickness. 

Finally a Strassbaugh 6EC CMP tool produces a clean, mirror finish surface to 

prepare the wafer for further 3DI processing steps (including bonding). 

Thickness measurements are taken with a Proforma 300 non contact thickness 

gauge. Two terminals form a parallel plate capacitor where a wafer is inserted. The 

change in permittivity from free space to that of the substrate is related to capacitance 

by: 

d
AC ε=  
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where A is plate area, d is distance between plates and ε  is permittivity of the 

substrate. The resulting capacitance is translated into a thickness measurement of the 

substrate with a resolution of 0.05µm. The system is calibrated with a blank silicon 

wafer of known thickness 672.7µm. TTV and thickness standard deviation are 

calculated from 5 points chosen such that the maximum and minimum thickness of 

the wafer are recorded. Defects such as cracks or bonding voids are not considered in 

thickness characterization. 

 

2.2.1 Grinding 

 Low TTV and efficient bulk removal are benefits of wafer grinding [8]. When 

handle wafers are used (as in 3DI) the resulting TTV of the device wafer is dependant 

on the TTV of the handle wafer and the planarity of the bond [9]. This factor is 

important to consider when developing a technique for re-integrating die for batch 

processing. Variations in die placement will result in die thickness variations as well. 

Additional properties and results of die grinding are discussed in section 3.  

Using industry standard 6” wafer grinding tools the substrate is thinned to 

approximately 125µm. Various bonding techniques (discussed in section 2.3) join the 

device layer to the handle wafer. Low TTV Results of back grinding are shown in 

table 2.1 
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Wafer Bulk Removal (µm) TTV (µm) Bond Type 

1 522 1.6 acrylic 

2 522 2.3 bcb 

3 453 2.2 wax 

4 526 1.65 plasma 

5 527 3.45 plasma 

6 525 2.3 plasma 

7 524 2.4 plasma 

Table 2.1 Wafer Grinding Total Thickness Variation 

 

Average starting stack thickness is 1.3mm and removal is approximately 525µm. 

When comparing average removal to the average TTV (2.27µm), the TTV/removal 

ratio is approximately 0.4%, significantly lower than chemical etch rates discussed in 

section 2.2.2. Surface roughness is measured with an atomic force microscope (AFM) 

which shows a height variation of 260nm, below the 1µm bonding requirement, and a 

linear scoring pattern shown in figure 2.2. Additional techniques such as electrolytic 

in-process dressing (ELID) have been shown to further improve the resulting TTV 

and mitigate surface damage [8].  
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Fig 2.2. Surface roughness after mechanical grinding 

 

2.2.2 CHEMICAL ETCHING 

Various acid solutions are used to chemically etch the silicon substrate. The 

process uses a combination of Hydrofluoric acid (HF) and Nitric acid (HNO3) as the 

reactants and Acetic acid (CH3COOH) as a buffer. The etch chemistry is referred to 

as HNA. The silicon removal is an oxidation reduction reaction in which silicon is 

oxidized becoming SiO2 while nitric acid loses an oxygen atom [11]. 

 
 

2Si + 4HNO3 + 8 HF  2SiO→ 2 + 4HNO2 + 8HF 
Oxidation reduction HF etch 

 
2SiO2 + 4HNO2 + 8HF  2SiF→ 4 + 4HNO2 + 4 H2O 

HF etching of SiO2
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 Several techniques exist to process with HNA including chemical bath 

immersion, spin/spray etchers, and meniscus etchers. Chemical bath immersion 

submerges a wafer into a chemical etch solution. Etching occurs on both sides of the 

wafer. Since wafers must be dipped into the solution, the bottom of the wafer is 

etched for a longer period of time resulting in a wedge shaped profile and an increase 

in TTV. This method is not suitable for post processing of active devices since the 

device side or handle wafer is etched when the stack is fully submerged. Spin/spray 

etchers allow a much higher degree of control. The wafer is held by a high speed 

rotating chuck while a nozzle sprays only the process side with the etch solution. This 

method protects the active layer and carefully controls the chemistry of the solution 

resulting in a well controlled reaction. However, 3DI systems with reintegrated die 

wafers create irregular surfaces at the die edges. The discontinuity disrupts fluid flow 

as the stream crosses the die edges resulting in radial etch striations. 

 The chemical etch is performed with a MATECH Wave Etch wet processing 

system. The main components of the system are a robotic wafer chuck, process 

module, rinse module, dry module, and valve matrix. The device uses diaphragm 

pumps to precisely meter a desired chemical mix into process liquid tanks through a 

valve matrix as shown in figure 2.3. A pneumatically operated circulation pump 

controls the fluid flow in the machine and delivers the chemical mix to the process 

module. The process module consists of a 180 mm x 10 mm bath in which a meniscus 

is formed. The height of the meniscus is constant (approximately 2mm) and limited 

by the flow rate of the circulator pump. Once a stable meniscus is formed, the robotic 

chuck pulls a wafer from a loading cassette and begins exposing the backside of the 
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wafer to the process mixture. A nitrogen gas curtain is formed around the chuck to 

prevent fumes from the reaction from etching the device side of the wafer. Once the 

process is completed the wafer is moved to a rinse module, similar to the process 

module, in which remaining process reactants are rinsed from the wafer. The 

meniscus is created from de-ionized (DI) water fed directly from the facility DI 

supply line. Contaminated rinse water is not recycled and expelled to the facility 

chemical drain. After the wafer is rinsed, it is spun dry and then returned to the 

cassette.  

 
Fig. 2.3 Meniscus etcher processing diagram 

 
 
 In characterizing the HNA meniscus etcher, the relative acid concentrations 

and volume of solution was varied. Although higher temperatures increase the 

reaction rate, reaction temperature is maintained at 30°C for safety reasons. Since the 

HNA chemistry requires dislocated Si ions to react, new mixtures require a 

conditioning period in which the etch rate rises until the solution is saturated. The 

reaction begins to slow (as determined by a decrease in etch rate) as the HF reacts 
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with  SiO2. At a certain point the reaction rate drops by 80%-90% when there is an 

insufficient amount of HF to maintain the reaction as shown at the 10 minute mark of 

figure 2.4a. Replenishing the solution with additional HF increases the etch rate, 

however the new rate is currently unpredictable. The volume of HNA is related 

linearly to the time at which the etch rate drop off occurs. For mixtures with smaller 

percentages of HF, the drop in etch rate is less severe and follows a nearly linear 

trend (figure 2.4b).  
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Fig 2.4 a (top),b (bottom) Wet processing removal rates. Wafer thickness is measured in 2 min and 
change in thickness is displayed for various etch ratio of HNA and volumes. Top: HNA=5:5:1, 500ml. 

Bottom: HNA=3:5:1, 500ml. 

15 



These trends are instrumental in determining etch time. Wafers must be 

continually etched to target thickness and cannot be measured during processing. 

Discontinuous etch processes (in which the wafer is rinsed, dried and measured 

before reaching target thickness) produce charring and burn marks across the process 

side of the wafer, partially due to acid residue buildup after the initial rinse (as 

determined by pH testing of rinse water droplets). Charring is especially severe with 

aggressive chemistries (high HF concentration).  

 TTV displays a somewhat linear trend with time as shown in figure 2.5. The 

best results achieved with continuous etch of die wafers show a TTV of 

approximately 5% of bulk removal. Target bulk removal is generally 100µm meaning 

a resulting TTV of 5µm after chemical etch. CMP Generally increases TTV but in 

this case it will be required to planarize the wafer for bonding. Additional buffers 

such as Sulfuric acid can potentially increase the etch quality of HNA. 

Characterization of the HNA reaction with sulfuric acid is required to produce a 

viable chemical thinning process.  
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Figure 2.5 Drastic increases in wafer TTV with process time using aggressive chemistry. 
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To determine the etch time required to reach a target thickness; a conditioning 

wafer is processed for 10 minutes to initialize the reaction. The removal rate (in 

µm/min) is used to calculate the total required etch time. Etch rate is assumed to 

remain constant for 30 min for each liter of solution based on rate charts in figure 2.4. 

Once the etch rate drop off point is reached the solution is drained and a new batch is 

mixed. The remaining bulk must be removed during CMP to remove etch scarring 

and balance TTV.  

 

2.2.3 Chemical Mechanical Polishing 

 The Strassbaugh 6EC CMP tool consists of a rotating polishing table with a 

nylon micro-fiber surface onto which 70nm particle alumina slurry is dispensed. The 

wafer is held by a rotating polishing head capable of maintaining a constant force on 

the wafer. To attain a high quality polished planar finish requires precise control of 

the polishing slurry. Most silicon polishing is done with alumina or silica based oxide 

slurries which tend to agglomerate into large particles and cause defects in the 

polished surface [13]. To avoid these defects, the slurry solution must be stabilized 

with a surfactant to prevent particle settling. The method of storage and circulation 

also plays a large role in the quality and dispersion of slurry particles in solution. 

Particles are counted with a Tencor Surf-Scan laser particle counter. Total particle 

counts and relative distribution of particle size is measured.  

 The backsides of single-side polish (SSP) wafers are polished (resulting in 

double-side polished, DSP) wafers to evaluate slurry concentrations and polishing 

times. A 15 minute polish at 125 RPM and 10 PSI downforce with Nalco alumina 

17 



slurry dispensed at 150mL/min produces mirror finished wafers with no visual 

defects. Due to improper storage and short shelf life of polishing slurry, severe 

agglomeration of alumina particles results in 1µm particle counts greater than 20,000 

as shown in figure 2.6. To reduce particles without re-engineering slurry dispense 

methods, a post polishing clean with poly-acrylic acid (PAA) increases wafer 

hydrophilicity. A hydrophilic polished surface retains wetness so proper rinse and 

spin-dry operations can be performed before particles dry on the surface. Kanto 

CMP-MO2 (with proprietary ingredients) post-CMP cleaning solution designed to 

remove metal particulates along with a DI rinse in a spinner clean the wafer after 

CMP. Using this process reduced particle counts to fewer than 800 1µm particles, 

dispersed around the edge of the wafer. A clean post CMP surface is shown in figure 

2.7. The particles collect on the wafer edge as water is spun off. To further clean the 

wafers, pre-bonding plasma treatments to remove sub-micron particles and native 

oxide layers are required. 

 
Fig 2.6. Particle agglomeration on wafer surface 
as viewed through a Nomarsky filter. 50x 
magnification. 

 
Fig 2.7. Particle reduction of PAA treated 
hydrophilic wafer. 50x magnification. 

 

 

18 



2.3 Wafer Bonding 

 The wafer bonding process is capable of joining two dissimilar substrates. 

High temperature (over 1000°C) annealing creates covalent bonds between two 

substrates. However, the high temperatures destroy the active layers in 3DI devices so 

an alternate mechanism is required. Various bonding agents such as 

benzocyclobutane (BCB) and polyimide are used in MEMS applications [14]. These 

bonds form at temperatures below 200°C. However, the via process (section 2.4) is 

incompatible with low temperature bonding mediums due to high via process 

temperatures delaminating the bond, increased etch depth requirements and variations 

in etch reactions. 

Direct wafer bonding by surface activation allows sufficient bond strength for 

wafer grinding at low temperatures [6]. This technique is applied in optics to bond 

direct band-gap substrates such as InP to silicon, showcasing the versatility of surface 

activation in joining dissimilar substrates [15]. Silicon on insulator (SOI) technology 

is another example of SAWD bonding [16]. The ability to join two dissimilar 

substrates with no bonding medium makes surface activation an attractive technology 

for 3DI. 

 

2.3.1 Wafer Direct Bonding Properties  

Hydrogen bonds form when a positively charged hydrogen ion (proton) bonds 

with an electro-negative O, N, or F atom. This mechanism joins hydrophilic wafer 

surfaces at room temperature [6] in a configuration shown in figure 2.8. The wafer is 

then annealed at high temperatures (>1000°C) such that H is removed from the bond 
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interface leaving behind Si-O covalent bonds with energies equivalent to the fracture 

strength of the substrate. The high temperatures eliminate the possibility of 

performing this bond on active circuits as required by 3DI. Alternatively, plasma 

treatment before bonding can produce fracture strength bond energies at annealing 

temperatures below 400°C [17].  

Plasma treatment removes the native oxide buildup and small particles that 

interfere with spontaneous bonding. Native oxide removal creates SiO groups at the 

surface of the wafer. OH groups bond to SiO bridging the gap between the wafers. 

Annealing takes place at 200°C for 24 hours to remove hydrogen from the interface 

leaving an oxide bond. 

 

Fig 2.8 OH bonding to SiO groups after plasma activation [8]. 
  

Particles on the bonding surface create voids in the bond several orders of 

magnitude larger than the particle [8], significantly reducing bond strength and yield. 

Care must be taken during wafer handling to mitigate the introduction of particles to 

the bond interface. Ideally, wafers remain under high vacuum after plasma treatment 

and are bonded before being introduced to atmosphere to prevent particle buildup 

before the substrates are bonded. However, when a bonding module is not present on 
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the plasma etching tool, the technician’ s use of a particle hood and wafer tongs 

reduce particle count and increase the bond yield as shown in figure 2.9. 

 
Fig. 2.9. Void free bond. Un-bonded areas appear in red. Image taken by SAM. 

 

2.3.2 Bonding Process Conditions 

 Bonding wafers are sequentially exposed to Argon plasma for surface 

activation. The plasma is created in the M0RI chamber in which the magnetic field 

focuses the plasma toward the target wafer. The magnetic chamber creates a helicon 

plasma field with enhanced ion density over inductively coupled plasma fields. This 

leads to greater energies transferred to the wafer and additional bonding sites for OH 

groups. 

Contacting the two bonding surfaces is performed in a bonding chamber. The 

bonding wave speed is a function of the pressure of gas that is expelled from the 

interface during bonding [18] so the substrates are contacted under high vacuum (1 x 
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10-5 torr). To ensure the entire surface bonds, a pressure of 4500 psi is applied for 2 

minutes by two ultra-planar silicon carbide contact plates.  

 The number of bonds and the energy of each bond determine the bonding 

energy. This can be determined by a razor blade fracture test [8]. A razor blade is 

inserted into the bond at the edge of the wafers and a crack propagates some distance 

through the bond. The bonding energy is a function of crack propagation length L, 

wafer thickness tw, Young’s modulus E=130.2 GPa for <100> Si [19], and razor 

thickness tb. 

4

23

32
3

L
tEt bw=γ  

for wafers of the same thickness and composition. For 6 wafers bonded after 5 min 

exposure to Ar plasma the average bond strength was 173 mJ/m2 shown in table 2.  

 After annealing at 200°C for 24 hours, significant H2 off-gassing created 

voids throughout the wafer. Raising the bonding chamber temperature did not reduce 

this effect. There is no avenue for the H2 to diffuse out of the center of the bonding 

interface on blank wafers. To allow H2 to diffuse out of the bond, a trench pattern is 

required. This trench pattern is etched into a layer of SiO2, which ultimately provides 

insulation for via interconnect metallization. 

 

Wafer 
Wafer Thickness 
(m) 

Razor Thickness 
(m) Crack Length (m) 

Bond Energy 
(J/m^2) 

1 6.55E-04 4.00E-04 0.0473 0.109693395
2 6.39E-04 4.00E-04 0.0403 0.193189996
3 6.58E-04 4.00E-04 0.041 0.196899447
4 6.52E-04 4.00E-04 0.0405 0.201383801
5 6.59E-04 4.00E-04 0.044 0.149259896
6 6.55E-04 4.00E-04 0.0414 0.186820607

 
Table 2.2 Plasma Activation bond energies determined by fracture testing. 
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2.3.3 SiO2 Bonding 

 To provide an avenue for H2 to diffuse out of silicon, a trench pattern is etched 

into a 1500 Å layer of SiO2. The SiO2 is deposited in a Trion plasma enhanced 

chemical vapor deposition (PECVD) tool at 300°C and a rate of approximately 700 

Å/min. 908-35 positive photoresist recipe (Appendix A) is used to pattern a series of 

trenches (1µm wide at a spacing of 5mm horizontal and 2cm vertical) The oxide is 

etched in a C4F8/CH2/Ar plasma chemistry until underlying silicon is exposed and the 

remaining photoresist is burned off. The Argon plasma recipe described in section 

2.3.  

While trenches do not contribute to the bond, the off-gassing void formation is 

significantly reduced as shown in figure 2.10. The additional step of etching 

strategically placed trenches in the passivation oxide without interconnect structure 

interference is necessary to ensure high yield 3DI devices.  

      
Fig 2.10 1500 Å oxide bonded wafers post baked at 150°C for 48 hour off-gassing. Light gray color 
indicates bonded area. Right wafer does not have trench pattern. Trenches in the left wafer eliminate 

the formation of bubble voids by H offgassing. 
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2.4 Via Etching and Filling 

 Bosch deep reactive ion etching (DRIE) is a preferred method of etching deep 

vertical sidewall features into silicon [20] for applications such as micro electro 

mechanical systems (MEMS). The process involves constantly switching between 

etch and passivation chemistries to build a protective sidewall layer that maintains a 

vertical etch profile. Sulfur hexafluoride (SF6) etches silicon for several seconds after 

which C4F8 forms a Teflon-like polymer film on the substrate and within the etched 

gaps. When SF6 is reintroduced, the horizontal surface passivation is removed. The 

sidewall passivation maintains a vertical etch profile. The frequent alternation of etch 

and passivation creates sidewall scallops approximately every 100 Å (depending on 

process parameters) [21]. The irregular sidewall prevents the buildup of a TiN barrier 

layer by ion sputter physical vapor deposition (PVD). The passivated vias require this 

TiN layer to prevent Al spiking, a short circuit when Al breaks through the 

passivation in an attempt to absorb Si. To eliminate scallops from the process, a novel 

deep silicon etch technique is presented. The new technique etches fine pitch (1µm) 

v  

l) interconnects circumvents the need for costly atomic layer deposition (ALD) and 

etal organic chemical vapor deposition (MOCVD) tools to fabricate plated copper 

forcing Al alloys into an oxide passivated, TiN lined 

ias to a depth of at least 20µm with no sidewall scalloping [22]. Use of Aluminum

(A

m

interconnects [23]. A method of 

high aspect ratio via is described. 
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2.4.1 Scallop Free Deep Silicon Etch With Passivation 

 High aspect ratio via etching takes place in a Trikon Omega 201 platform 

with an m=0 resonant induction (M0RI) plasma chamber [22]. The process is carried 

out on 150mm wafers with a 2µm tetraethyl orthosilicate (TEOS) oxide coating. The 

substrate is patterned with the HAR photoresist recipe (Appendix A). C4F8/CH2/Ar 

plasma (with a bias power of 400 watts) is used to etch the via pattern into the TEOS 

layer. The M0RI chamber is powered at 600 watts to focus the plasma. The TEOS 

now serves as a hard mask for SF6/O2/HBr chemistry Si bulk etch. Initial processing 

with this chemistry etched vias with vertical sidewalls damaged by ion bombardment 

as shown in figure 2.11. Insufficient verticality of mask wall profile causes ion 

reflections which are redirected to the side of the via from the initial vertical attack 

angle. 

 
Fig. 2.11. Severe Ion bombardment during etch process after manual chamber clean and maintenance. 
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Introduction of SF4 passivation gas eliminates the effect of ion bombardment. SF4 

acts as an oxide growth promoter (shown in figure 2.12) throughout the feature, 

protecting the sidewall and simultaneously growing insulation between the 

interconnect and substrate bulk. Passivation oxide also grows on the hardmask 

increasing the etch selectivity above 50:1 (Si:hardmask). Results of the via etch are 

shown in figure 2.13. 

 

 
Fig. 2.12 Extreme passivation oxide growth. 
Sidewall oxide thickness=4740Å on a 
delaminated 4µm column. 

 
Fig. 2.13. Smooth sidewall deep fine pitch via 
with sidewall passivation. No process damage 
visible on hardmask due to high etch 
selectivity (dark gray top layer) 

 

1µm via etch plasma is activated with 50 watts bias power and M0RI chamber power 

is increased to 2300 watts to ensure a highly directional etch. Passivation and mask 

species can linger in the chamber and be re-deposited on the substrate. This 

henomenon is known as micro masking and results in deep (>3µm) pitting 

(micrograss) on horizontal surfaces [21].  The micrograss causes the wafer to appear 

charred and hinders metal deposition. Etch chamber oxide clean recipes are carried 

out after each wafer etch to eliminate the appearance of micrograss. 

 

 

p
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2.4.2 High Pressure Via Fill 

 Deposition and fill is carried out in a Trikon Sigma cluster tool fitted with two 

deposition chambers, a high temperature bake chamber, and a high pressure (forcefill) 

chamber. The via fill process begins with PVD of a TiN barrier layer. A 2000 Å seed 

layer of Ti is first deposited on the wafer surface at 400°C under high vacuum. The 

fine pitch deep vias are susceptible to shadow effects where Ti is deposited on the 

 of the via but not along the sidewall. The elim

f sidewall scallops is essential to achieving sufficient coverage on the floor of the 

rs are transported 

 the forcefill chamber. The main mechanism for stress relaxation under high 

ressure and below the melting point of Al is dislocation glide and climb [24]. The 

d pressure increased to 75 MPa for 10 minutes. Al 

lls the

wafer surface and at the bottom ination 

o

via. At this point a small percentage of Ti is re-ionized and is re-deposited along the 

sidewall of the via in a splash effect. The same mechanism assists in the sidewall 

deposition of the TiN layer. TiN is facilitated by the addition of 120 sccm nitrogen 

gas flow during Ti deposition phase. After a 1.1µm deposition, the thickness of the 

sidewall barrier layer (Ti and TiN) is approximately 15nm.  

 Aluminum PVD builds a 3µm layer that bridges 1-2µm via gaps at 350°C 

under high vacuum. The vias remain under high vacuum as the wafe

to

p

temperature is raised to 530°C an

fi  vias by plastic deformation as shown in figure 2.14. 
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Fig 2.14. Complete Al via fill at 530 C. Discontinuity at the top of the left via and 

 cross section of the right via is due to fracture induced during wafer cleaving. 
 
 Germanium is added during Al deposition to reduce the forcefill process 

temperature. Several ratios ranging from 2% - 25% were tested. The fill temperature 

was reduced by 130°C with an 8% Ge alloy. Higher concentrations of Ge and higher 

process temperatures cause precipitation from the alloy. This raises the sheet 

resistivity as shown in figure 2.15 and can create open circuits in the via fill as shown 

in figure 2.16 Via fill depth increases with Ge concentration, and forcefill time and 

temperature. 
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Fig 2.15Increase in sheet resistance of AlGe alloys as deposition temperature rises and Ge 
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Fig 2.16 Severe Ge precipitation (25% Ge 
alloy). Fill temperature=450°C 

Fig 2.17 Minor Ge precipitation (8 % Ge 
Alloy). Fill temperature=500°C 

 
2.5 Summary 

 The processes to vertically integrate a wafer stack have been presented. A 

three step thinning process has the capability to thin wafers to a final thickness of 

20µm. TTV remains too high for bonding with surface activation. Additional 

characterization of chemical thinning with Sulfuric acid as a quality enhancer is 

required. Once the wafers are thinned, they  

bond strengths adequate to survive ad ddition of a trench pattern 

etched in SiO2 allows for H2 off-gassing during bond cure phase and reducing H2 

induced voids. The via etch process has demonstrated deep fine pitch vias with 

scallop free sidewalls. An AlGe metallization fills the vias well below the melting 

point of Al. All of these processes are compatible with reintegrated die wafers. 

 

 

are bonded after Ar plasma activation to

ditio l processing. Ana
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3. Production Component Applications 

 

 To apply 3DI to standard production component chips several new processes 

are developed. Integrating COTS parts requires die removal from plastic packaging. 

Wafer reintegration places de-packed die on a handle wafer allowing discreet 

3.1 Overview 

ponent circuits to be batch processed. The 3DI thinning process requires 

additional protective measures to reduce damage to the active devices during grinding 

d chemical thinning processes. From this point on the reintegrated die wafer 

llows the normal 3DI process flow to create a die stack. This chapter presents 

l component circuits for an embedded 

system to be vertically integrated into a multi chip module. Integrating parts of the 

of applying 3DI to production 

omponents.  

to the die. The die is attached to a substrate with a bonding medium designed to 

com

an

fo

processing techniques which allow individua

GPS-RT (described in chapter 4) is the final goal 

c

 

3.2 Die De-Packaging and Mapping 

 Since latest generation commercial off the shelf (COTS) ICs are not readily 

available as bare die in small quantities, a de-packaging process is required for test 

and development purposes. The component package consists of the die, a carrier such 

as a metal frame, wire bonds, a lead frame, and a ceramic or injection molded 

capsule.  

 COTS packages have undergone significant development to minimize damage 
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reduce die failure mechanisms such as vertical, horizontal, and spalling cracks [25]. 

The die is then wire bonded to the lead frame, most often using thermosonic bonding 

[26]. In this method, a gold ball with the bonding wire attached is bonded to the die 

pads. Ultrasonic energy combined with the capillary technique of thermocompression 

onding at 150°-240°C bonds the ball to the die pad. The wire is then wedge bonded 

fills the package and protects the die. The 

plastic, etched by a nitric and sulfuric acid mix. With the filler removed, the 

b

to the package lead. A plastic encapsulant 

capsule material contains a polymer filler (65-90%), epoxy resin matrix (10-20%), 

crosslinker (5-10%), stress relief agents (2-5%), flame retardant (1-5%), mold release 

agent (0.1-1%), colorant (0.2-0.4%), catalyst , 0.2-0.3%), coupling agent (< 0.2%), 

and ion getters (< 0.2%) [26]. The main component (the filler) is generally some type 

of thermo

package loses structural rigidity and releases the die. Wire bonds are sheared off or 

etched with potassium iodide, a gold etchant.  

 Tools such as the Nisene JetEtch incorporate pumping systems to mix and 

dispense the etch solution on to the package. A system of sockets and gaskets are 

employed to hold the package in place while the die is exposed. Such tools are 

essential for failure analysis since they expose the die without disturbing mechanical 

aspects of the system, with the exception of the encapsulating material. While access 

to this tool is not immediately available, the principal of etching with 90% fuming 

nitric acid is adapted by simply placing the component in a beaker of nitric acid for 

24 hours. Nitric acid readily dissolves the plastic packaging and the adhesive used to 

glue the die to the pad frame. To prevent excess oxidation upon removal from the 

nitric acid, the acid residue is removed with isopropyl alcohol (IPA). The IPA wipe 
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also removes the remaining plastic residue on the surface of the die. Wirebonds do 

not survive the de-packaging process intact however; bonding balls remain attached 

to bond pads. Potassium iodide drops placed on the die remove residual gold after 20 

inutem s. A CC1100 radio and M25P80 flash memory used in the GPS-RT (chapter 4) 

are de-packaged and shown in figure 3.1 

  
Fig 3.1 De-packaged CC1100 (left) and M25P80 (right). Each component is used in the GPS-RT (see 

chapter 4) 
 

 The pad dimensions and spacing are cataloged using image processing 

software. The resulting table is translated into a layout for die testing. When the die 

pad to package pin ratio is 1 to 1, ground pads found by trial and error become the 

key for determining the remaining pin to pad correspondence. However, components 

such as the Chipcon CC1100, have more pads than pins so each pad must be 

individually tested. A fine pad pitch prevents the use of standard DC probes so 

instead, probe cards which arrange 64 or more fine pitch (<50µm) pins within a 5mm 

x 5mm square give access to each pad. The pads are probed and integrated into test 

circuits to be cataloged by trial and error. The dimension and probe data is combined 

to derive a layout as shown in figure 3.2 
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Integrating the MSP430F1612 microcontroller and M25P80 flash memory of 

the GPS-RT is the final goal of applying 3DI to production components. The MSP 

layout dimensions are 13mm x 13 mm while the flash layout dimensions are 9mm x 

5mm. Integrating the two components into a 3DI module eliminates the surface area 

taken by the flash. Additionally routing to the 8 pins on the flash is eliminated along 

with a bypass capacitor. In an example layout similar to the GPS-RT layout, the total 

foot print of the MSP/flash circuit is reduced from 25mm x 15mm to 14mm x 14 mm 

(48% size reduction) as shown in figure 3.3. T

Fig 3.2. De-packaged MSP430F1612 (left) and the derived CAD layout (right) 

wo vias and 71 mm of copper wire 

routing are also eliminated since all connections are now internal. 
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Fig 3.3 Elimination of flash memory from PCB surface when integrated into a 3DI module. 

 

 To ensure die remain functional throughout the de-packaging process, 

PIC16LF867a microcontrollers are programmed with a test code to demonstrate that 

asic functionality is retained. The program sets the PIC I/O ports to oscillate at 

1.25Hz

process produces a 

higher actual yield.  

b

 using an external RC oscillator to drive the clock. The successful test of a de-

packaged PIC proves that no short circuits are created, the onboard flash memory data 

is retained, clock oscillators function, and I/O driver current handling abilities are 

unaffected (tested by using the port to drive an LED). 

 The de-packaged PIC program produces an output square wave at a frequency 

of 1.25 Hz on each I/O pin as shown in figure 3.4. A total of 25 PIC circuits were 

programmed and de-packaged. 17 die functioned properly when probed producing a 

68% yield. However, 12 of the final 12 tests were successful suggesting the initial 

probing method was a source of die failure and the de-packaging 
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Fig 3.4. Port B voltage output of de-packaged PIC. Vcc=5.5 V, External Oscillator 

 

3.3 Reintegrated Die Wafer (RDW) 

 To enable batch processing and thinning of de-packaged die as shown in 

figure 3.5, a method of wafer reintegration is required. The reintegration process 

requires a high degree of repeatability to support 3DI alignment and bonding 

processing. To align die a Finetech Fineplacer flip chip tool with 5µm precision is 

used to place die onto a handle wafer coated with adhesive.  

  The Finetech placer is capable of curing both heat and UV activated 

adhesives. Initial testing with Kaeiobond UV adhesive provided insufficient coverage 

when dispensed pneumatically through a nozzle as dots. Thinned die exhibit visible 

surface roughness similar to the 5 point dispense pattern. To eliminate this source of 

die TTV, a uniform spin dispensable adhesive is required.  

 A Humiseal acrylic adhesive is mixed with acetone (as a solvent) in a 1:1 

ratio. The acrylic is dispensed on the wafer to a uniform thickness of 3µm (Appendix 

A). The standard patterning method with OIR 908-35 positive photoresist (PR) 

osc) =12MHz 

35 



caused the acrylic to crack during post bake steps due to differences in coefficients of 

thermal expansion. NR-1500 PY negative PR eliminates the cracking problem 

(Appendix A). The pattern is subject to deformation when the wafer is heated so all 

post bake steps are eliminated.  

 

Fig 3.5. Post thinning die thickness. Pa1=19.52µm (die height), Pa2=3.3µm (acrylic thickness) 

 

ctional field ensuring an 

A M0RI oxide plasma etch transfers the PR pattern to the acrylic. The 

selectivity of the oxide plasma from the mask (PR) to the acrylic is nearly 1:1. To 

assure a complete etch without destroying the PR, the magnetic coupling capabilities 

of the M0RI focus the oxide plasma into a highly dire

anisotropic etch. RF power is set at 2000 watts with magnetic coil inner power 

reduced to increase the etch reaction on the wafers outer edge. An etch time of 4 

minutes produces clear features across the wafer surface without burning through the 
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PR and scarring the acrylic in the center of the wafer.  Residual PR is burned off 

during die placement. 

 The Finetech Fineplacer has a dual camera alignment system that, with proper 

image calibration, can align metallized components on the acrylic handle wafer with 

10µm precision. Alignment markings on each layer are shown in figure 3.6. This 

exceeds the resolution of the acrylic patterning step which places the lower limit on 

interconnect pad dimensions. Under temperatures above 130°C the acrylic reflows, 

further reducing the resolution of alignment marks. Full thickness die are placed on 

the acrylic at 130°C with a force of 20N. The force parameter is used as opposed to 

absolute position to ensure that die of different thicknesses are placed equal distance 

from the handle wafer. The reintegrated wafer is prepared for 3DI backside thinning 

to reduce all die to the same thickness. 

        
Fig 3.6 Alignment marks in acrylic (left) and metallized die test pattern (right). Slight heat deformation 

 

3.4 3DI Processing 

 The reintegrated die wafer (RDW) process results in gaps at the die edges 

creating an irregular surface. The gaps cause chipping during grinding due to die 

sidewall impacts with the grinding wheel. Sidewall etching and undercutting occurs 

visible in acrylic. The target patter is 220µm in diameter. 
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during the isotropic chemical thinning. Etch reactant droplets form in the gaps 

causing a constant etch of the handle wafer. A gap fill process is required to mitigate 

, all excess wax is removed from the RDW 

leaving behind uniform protective barriers in the cracks between die and on exposed 

regions of the handle wafer.  

these problems. Ideally, the gap fill material would have the same mechanical and 

chemical properties as silicon. Since Si crystal gap growth is not feasible, a viscous 

polymer fill is required with a melting point below that of the acrylic die adhesive to 

prevent alignment shifting. The fill must also be resistant to the etch chemistry to 

prevent damage to the handle wafer. 

 A test wafer coated with synthetic thermoplastic wax survives 10 minutes of 

direct exposure to the etch chemistry with minor etching to uncovered areas and zero 

etching of the wax as shown in figure 3.7. The wax is applied to the RDW before 

thinning takes place. The potential for chipping is reduced since the grinding wheel 

encounters fewer edges. After grinding

     

Fig 3.7. Wax resistance to 5:10:1 HNA etch chemistry. Pre etch (left) and post 10 minute etch (right). 

 

 During chemical etch, the wax fill affects the etch profile of the die. The wax 

prevents a uniform isotropic etch on the side of the die resulting in a lower etch rate 

38 



around the edges. Near the gap fill, etching is reduced resulting in an upward curve of 

up to 30µm on the die as shown in figure 3.8. These edge effects are removed and the 

die planarized during CMP.  

 
Fig. 3.8 Die etch edge effects. Edge peak height is approximately 30µm above die center 

 height. Wax remains unaffected by etch chemistry. 

 As with the standard 3DI chemical etch process, the quality of etch increases 

dramatically when the wafer is run continuously until target thickness is reached. 

Removal is generally greater in the center of the wafer due to increased insulation 

from surrounding die. The insulation retains heat increasing the process temperature 

figure 3.9. The wax gap fill also contributes to die insulation. Small test chips placed 

in a vacant center die location were subject to over etching down to the handle wafer 

when surrounded with excess wax. Overall wafer TTV is reduced to <10% of 

material removed. 

 

and thus the etch reaction in the center of the wafer as shown in the etch profiles of 
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 The final CMP thinning tends toward greater removal around the edge of the 

wafer. The edge removal is due to the rotation of the wafer on the CMP polishing 

 
 
 

table. The outer edge of the wafer rotates faster than the center leading to a higher 

removal rate as shown in figure 3.10. The final TTV of CMP is equivalent to that of 

the etch step. Coupled with a low center point from chemical thinning, the overall 

wafer TTV can be made to balance down to 1µm required by 3DI bonding when 

sufficient material is removed. The remaining 3DI process steps do not differ from 

those described in section 2.  
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Fig 3.9. Wafer thickness after chemical etching. Center bulk removal is greater than edge removal. 
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Fig. 3.10 Wafer thickness after CMP (left) shows greater removal from the wafer edge. Delta thickness 

shown right. 
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3.5 Summary 

 With a protective wax layer on a RDW, 3DI thinning is applied to de-

packaged die in batches. Re-integration allows 3DI processing of any production 

component to be used in a low power embedded system. The production component 

applications of 3DI allow significant size reductions of embedded system PCB 

layouts. Additional development is necessary to determine electrical properties of 

interconnects through COTS chip substrates. 
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4. System Design 

 

4.1 Overview 

 To demonstrate a low power embedded system platform that benefits from 

3DI, a global positioning system recorder transmitter (GPS-RT) is developed. The 

system requirements are: 

A) GPS data point acquisition 
B) Data point retention in non-volatile memory 
C) 2-way wireless communication with a basestation over a 1 mile range 
D) 1 week field operating battery lifetime 

 
To satisfy requirement D, each component chosen to fulfill requirements A-C has a 

low power mode in which current consumption is reduced to the order of 

microamperes. Power consumption is reduced when the main function of the device 

 shut down but basic operations such as data register retention and interrupts remain 

active. The microcontroller software state machine determines which devices are 

activated based on system interrupts. This chapter describes component selection and 

functionality in detail followed by an analysis of the software state machine.   

 

4.2 Hardware  

terface components (switches, connectors, and jumpers) are routed together to build 

ision B evaluation platform (the layout is shown in figure 4.1). Rev 

is

 Eight integrated circuits, four voltage regulators and nearly 100 passive and 

in

the GPS-RT  rev

B is configurable as both a basestation and roaming unit for software development. 

CadSoft Easily Applicable Graphical Layout Editor (EAGLE) version 4.15 is used for 
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manual layout and routing of the system. The software includes schematic, PCB 

layout, and component editors along with configurable design rule checks (DRC) and 

CAM processors for gerber file generation. Each component IC is discussed in the 

following sections.  

 

Fig. 4.1 EAGLE layout of GPS-RT rev B. Top copper shown in red, bottom copper 
 shown in blue, vias shown in green, inner layers not visible 

.2.1 Microcontroller 

Microcontrollers (MCU) are very useful devices for designing embedded 

stems. An extensive array of features is available for nearly every low speed mixed 

gnal application. Operating in the low tens of megahertz, sufficient processing 

ower is available to maintain an embedded system and perform basic data 

k speeds also reduce power consumption due to reduced 

ansistor switching. Additionally, many MCUs offer software configurable low 

 

4
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power modes in which internal circuit blocks (such as oscillators and peripherals) are 

shut down while retaining program data and interrupt capability. 

 A Texas Instruments MSP430F1612 [27] microcontroller is selected for the 

GPS-R ota  bit I/O ports (with interrupt capability on 

ports 1  2),  

PI) bus and a universal synchronous asynchronous receiver transmitter (USART). 

The device is programmed via the IEEE 1149.1 (JTAG) specification which allows 

for in circuit debugging and monitoring of operating code [28]. A hardware 

multiplier, dynamic memory allocation (DMA), 16 bit architecture, and 125ns 

instruction time allow data processing at 8 MHz in addition to performing component 

maintenance. The system component diagram is shown in figure 4.2. 

T. N ble peripherals include six 8

 and  12 bit A/D and D/A converters, and both a serial peripheral interface

(S

 
Fig 4.2. Onboard component communications diagram. Red jumpers are connected during roaming 

operation. The RS-232 transceiver allows the roaming unit to function as a basestation. 
 

4.2.2 Non-Volatile Memory 

 Electronically erasable read only memory (EEPROM, commonly known as 

flash) is a solid state memory that retains data even when powered down. Bits of data 

are stored as a trapped charge on a floating gate of a transistor. Bits are programmed 
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by channel hot electron injection (CHE) [29]. A high voltage field applied to the 

transistor source energizes electrons to the point that some cross the oxide barrier and 

become trapped on the floating gate. This writes a zero to that particular gate. To 

erase the bit, a high negative voltage is applied to the control gate. Electrons trapped 

in the floating gate cross the oxide barrier to the transistor source by Fowler-

Nordheim tunneling [29]. Assisted by the applied field, the electron wave function 

allows it to cross the barrier even without sufficient kinetic energy. The write and 

read functions are shown in figure 4.3  

 
Fig 4.3. Flash memory cross section depicting program (CHE) and erase (FN) functions. 

 
 

 Flash memory has a limited number of write/erase cycles [30]. As defects 

arise in the oxide from crystal irregularities and high energy electron bombardment, 

the potential barrier between the floating gate and the channel is reduced and charge 

begins to leak. Advanced flash memory management software incorporates wear 

leveling functions when managing flash memory based file systems [31]. Initially, the 

emorm y is scanned for corrupt blocks to prevent write attempt failure. Use of block 

modification counters ensures certain sectors (such as the beginning of physical 

memory space) do not sustain excessive wear. Parameters such as data “freshness” 
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and specific block usage cycles determine which block can be erased and which 

should be used to store the next data set. A simpler logging method manages the 

GPS-RT data. As files are created and modified in memory, changes and new files are 

appended to the last written segment. When the data memory is filled sequentially, 

the first blocks are erased and new data is appended starting at the beginning of the 

memory space. The practicality of this method results from each data point requiring 

exactly 64 bytes of memory and no requirements for modifying and re-writing 

particular data. Since pages of memory are segmented by powers of 2, each data point 

will begin at the beginning of a page and subsequent points will completely fill the 

remaining bytes in the page. The need for de-fragmenting is eliminated and only a 

last address pointer is maintained. 

 The ST Microelectronics M25P80 [32], chosen for the GPS-RT, has 1 

megabyte of physical memory. Data is programmed in 256 byte blocks and erased in 

64 kilo  at a 

3V supply voltage. An SPI bus provides data access with additional control pins for 

write protection and data transmission pause functions. Control registers enable the 

4.2.3 GPS 

The GPS network determines geographic location by triangulation based on 

distances between satellite transmitters and earthbound receivers. A digital satellite 

signal containing onboard satellite time and orbital data is modulated with a pseudo 

byte sectors. In power down mode, current consumption is reduced to 1uA

power down mode and report device status (i.e. write/erase progress, block 

protection). 
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random noise (PRN) number, started at a specific time (for example 12:00 am). This 

same PRN sequence started on the receiver at the same time (12:00 am). The PRN 

satellite signal arrives at the receiver approximately 67.3ms later. The exact time of 

flight, and subsequently distance, is calculated by determining the phase difference 

between the PRN sequence running on the receiver and that received from the 

satellite. Four satellites are required to determine a position in 3-D space. When the 

receiver sees 4 PRN sequences, processing engines called correlators can compare the 

signals and correct the errors in receiver time. Complete navigation messages 

(including orbital and health data for all 24 active and 4 inactive GPS satellites) are 

transmitted at 50 bits per second in 25 fr mes containing 1500 bits each shown in a

figure 4.4 [33]. Each frame contains satellite clock data and ephemeris along with a 

partial almanac. Since a receiver requires satellite location (ephemeris) to calculate 

position, the minimum startup time is 30 seconds (frame transmission time). 

 

Fig 4.4. Navigation message subdivisions [34] 
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 The vast amount of processing required to demodulate and decipher incoming 

signals from GPS satellites provides the largest current draw for the Ublox TIM [35] 

series GPS modules. To minimize current draw the system incorporates a sleep 

function to power down the processing unit when a GPS fix calculation is not 

required. In this mode, the previously acquired ephemeris and almanac data are stored 

in the module system RAM while processing elements are shut down. A system timer 

prese

s will represent points within a circle of radius 2.5m centered at the 

ntenna’s true position. From a 10 minute field test in a stationary location, 375 

cquired with a maximum drift error of 6.7m latitude and 8.9m longitude. 

284 po

is t to generate an interrupt which initiates the processor for signal reacquisition 

and position fix calculation. System current consumption on the GPS-RT rev B board 

is reduced by 60 mA when the GPS sleeps. Signal reacquisition upon wakeup 

requires 3 seconds on average (after first fix is calculated). Fast reacquisition is 

possible while ephemeris data stored in onboard memory is valid (up to 2 hours). 

 The TIM-LH module claims a 2.5m circular error probability (CEP) where 

50% of fixe

a

points were a

ints (75%) were located within the CEP assuming the true origin was located at 

the average of all included coordinates. When the same test was run for 2 minutes, 53 

points were acquired with 52 points (98%) within the 2.5m CEP. Maximum drift 

errors were 8.9m latitude and 6.6m longitude shown in blue on the map of figure 4.5. 

The drift errors are used by the software to determine when the GPS-RT is stationary 

(described in section 4.3).  
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Fig 4.5. GPS drift data (blue) over 10 minutes. 1x10-5 degrees latitude = 1.1m.  
Location outlined in red. 

 
 

 

4.2.4 RF Communication 

 The RF section of the GPS-RT contains three components; a transceiver, 

power amplifier, and RF switch. Both transmission and reception occur through the 

same balanced/unbalanced matching network (balun) for the transceiver. The 

10 Minute GPS drift
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switches are required to allow the RF signal to bypass the amplifier for receiving and 

close proximity transmission. 

 A Chipcon CC1100 [36] is the transceiver for the GPS-RT. The CC1100 is a 

highly configurable low power data radio capable of operating in the 300-348MHz, 

400-464MHz and 800-928MHz Industrial Scientific and Medical (ISM) bands. A set 
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of 59 configuration registers are programmed by the microcontroller to set various 

operating modes.  

 To maintain low power operation the radio is configured to sleep when not 

transmitting. To receive packets, the radio periodically enters RX mode to poll for 

transmissions. Upon reception of a valid packet (validated when the correct number 

of bits are received) the radio interrupts the microcontroller and the packet is 

passed during reception by two CEL UPG2009TB RF 

switches [38]. The switches have a high power handling capability (36 dBm) and 

signal isolation (28dB) and a low insertion loss (0.25dB) so the impact on receiver 

sensitivity is minimal. Free space attenuation is given by: 

retrieved and processed in software.  

 Binary frequency shift keying (2-FSK) is enabled at 433 MHz with two data 

rates at an output power of up to 10 dBm. A 250kbps high data rate is used for 

efficient transmission in close proximity while the 1kpbs low data rate was found to 

extend the range by 50% in indoor range testing. The receiver sensitivity is -110dBm 

at a 1.2kbps data rate. 

 To boost the output power of the CC1100 and extend the GPS-RT range to 1 

mile, an RFMD5110g [37] power amp capable of 33dBm output power with a 10dBm 

input at the desired 433MHz is used. The power amp is inserted into the output chain 

during transmission and by

λ
πrLdB

4log20=  

where r = transmission distance, λ= wavelength (0.693m at 433 MHz). Transmission 

over a 1 mile (1600m) results in a signal attenuation of 89.25dB. Theoretically the  
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CC1100 alone can transmit over this range since the link margin: 

ysensitivitnantennagainantennagaipowerinm LRXTXTXL −++=arg  

is 121.8 dB when a 1.8dBi ¼ wave whip antenna is used. The link margin exceeds the 

signal attenuation by 32dB (nearly 2 watts of output power) however, buildings and 

trees in the RF line of sight can attenuate the signal further by 10-20dB per obstacle 

[39]. In a field test, the GPS-RT successfully transmitted a signal between the 

coordinates: (38.9892 N, 76.9355 W), (39.0034 N, 76.94363 W), equivalent to 

1818m through various obstacles (trees, buildings, etc). The measured output power 

of the power amp is 29.5dBm.  

 Layout of the RF chain is critical. The Rev B PCB has 4 layers, the top being 

the component layer and the closest inner layer being ground. RF and digital ground 

are separa nd plane 

encompasses the RF section. The top ground plane reduces interference by 

rminating field lines radiating from the RF transmission strip lines. Vias are placed 

mponents tied to the top RF ground plane have a short 

ted. In addition to the inner ground plane a RF component grou

te

at a 0.1” pitch to ensure all co

path to the inner RF ground to minimize trace capacitance and ensure proper 

matching. Using the MATLAB RF toolbox for a numerical analysis of PCB 

dimensions, a 50 ohm trace width was designed with parameters shown in figure 4.6. 
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Fig. 4.6 RF trace layout on PCB 

 

4.8) 

 
Fig 4.7. Rev. A Transceiver layout. U-turn for power amp ou ut trace, lack of proper grounding limit 

maximum power and sensitivity. 

The conversion to a 4 layer board, linear path for the RF signal, and change to 3.3V 

switching voltage regulator for the power amp increased system power output from 

24.7dBm (revision A radio layout shown in figure 4.7) to 29.5dBm (revision B radio 

layout shown in figure 

tp
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Fig. 4.8. RF transceiver layout, components outlined in white, copper shown in red, vias in green, 

(center right), RF switch to SMA connector (far left). Receive path eliminates the power amp with 50 
ohm microstrip line (top). 

 

4.2.5 Accelerometer 

dimensions=68mm x 22mm. Transmit path = CC1100 (far left), RF switch (center left), Power Amp 

 

configured as a motion sensitive interrupt source. The accelerometer includes a 

software configurable mode in which a high to low transition is sent to port 1 on the 

microcontroller when the programmable threshold acceleration is crossed. This 

allows the GPS to shut down completely while the system is stationary. 

 MEMS accelerometers contain a series of micron scale free motion 

cantilevers. Changes in capacitance between the cantilever and a fixed surface 

correspond to a force (acceleration) in the direction of the cantilevers range of 

motion. Arranging multiple cantilevers orthogonally allows detection of motion in 

three dimensions. Calculating the second integral of accelerometer output is a 

common method of inertial based navigation (dead reckoning). However, advanced 

compensation techniques are required to maintain system stability. Position errors 

begin to oscillate within several seconds of initial calculations [40]. 

 An ST Microelectronics LIS3LV02DQ digital accelerometer [41] is
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 The LIS3 has a 16-bit resolution and the capability to measure up to 2 G’s 

(G=acceleration of gravity=9.8 m/s2) of acceleration in the positive or negative 

direction yielding a total acceleration range is 4 G’s. With the accelerometer placed 

flat, the output should read 0G, 0G, 1G for the x, y, and z axes respectively. A test of 

423 acceleration readings resulted in average values of 2.36 x 10-4,  -8.95 x 10-4,   and 

-1.0118 (standard deviation of 1.45 x 10-3, 1.054 x 10-3, 9.74 x 10-4 G) for the x, y, 

and z axes respectively. While the LIS3’s zero-G offset is factory calibrated, s ss 

induced by the mounting process causes the error shown in the test. Since the device 

and normal deceleration from 20-0mph. Each event was 

found to deviate from the resting average by at least 0.1 G in both the X and Y axes. 

A threshold acceleration of 0.08 G (5000% of the resting average deviation) is used to 

determine when motion has occurred.   

 

4.2.6 Battery Charger 

 Of the common battery chemistries available, lithium ion batteries provide the 

highest energy density. The high potential difference between the positive and 

negative electrodes provides a large cell voltage, approximately thre es that of 

ickel based rechargeable [42 dled Li-ion batteries are not 

subject to memory effects which cause peak voltage drops abnormally fast with 

tre

is used as a motion detector and not an absolute acceleration detector, the offset is of 

little importance so long as it remains constant. To determine a threshold, several 

automobile events were characterized including normal acceleration from 0-20 mph, 

low speed 90 degree turns 

e tim

n ]. Additionally, properly han
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repeated overcharging. Theses benefits along with the highest rechargeable battery 

energy density make Li-ion batteries an ideal choice for the GPS-RT. 

Li-ion batteries have a carbon anode and transition metal cathode between 

which lithium ions are transported across an electrolyte [43]: 

W

  

proper charging techniques are used. The charge reaction produces excess heat to 

en the cell voltage is exceeded. The battery also experiences 

eat dissipation in 

42)1(6
arg/

426 OMLiCLiOLiMC xx
echdis

−+⎯⎯⎯ →←+  

here M is a transition metal (such as Mn or Co) 

Rechargeable Li-ion batteries are susceptible to catastrophic failure if

im

the point of explosion wh

swelling when forcefully over-discharged [44]. To prevent under or over voltages 

most consumer Li-ion batteries have built in protection systems in which monitoring 

circuitry opens the connection to the load or charger [42] when unsafe conditions are 

experienced.  

The Microchip MCP7328 [45] linear charge management system for Li-ion 

batteries prevents damage to the battery by employing a three phase charging 

algorithm. The battery is first preconditioned if an under-voltage condition is detected 

by the sense terminal. This phase uses a low current to minimize h

the low voltage condition. A constant current is then supplied for the main charging 

phase in which the battery voltage reaches the fully charged cell value of 4.2 volts. At 

this point the battery is restored to approximately 70% capacity [42] and a constant 

voltage trickle current (approximately 10% of the peak charge current) restores the 

battery to full capacity. 
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To provide the option of a 5 volt supply to the RF power amp, two battery 

chargers are used to recharge two batteries in parallel as shown with the red jumpers 

of figure 4.9. The combined voltage of two 3.6 volt cells provides 7.2 volts to the 

regulator. 

 
Fig 4.9 Battery Charger circuit: Blue jumpers are connected during charging mode, Red jumpers are 

connected during operation mode. Battery 2 is replaced with a short for 3.6V operation. 
 

4.2.7 Voltage Regulator 

 The two main voltage regulator IC types are linear and switching [46]. The 

PS-RT revision B uses both types to regulate system voltage. A switching regulator 

t requirements of the RF power amp and a linear regulator 

connected to the collectors of a Darlington pair of NPN transistors, driven by a PNP 

with its collector also connected to Vin. A voltage divider at the output provides 

G

is used for the high curren

for the remaining components. The voltage regulator also serves to prevent excess 

current draw which the Li-ion battery is capable of supplying to the point of 

destroying the circuit.  

 In linear regulators a voltage controlled current source (VCC) is powered by 

an input voltage and feedback regulated from the output. The voltage input (Vin) is 
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feedback through a voltage referenced error amplifier. The feedback controls the PNP 

transistor providing a constant output voltage regardless of current in a steady state. 

Capaci

due to change in current 

draw.  

r two base-emitter junctions 

 

tors at the output terminal reduce transient effects by allowing the feedback 

loop more time to correct for sudden spikes in output voltage 

Since the linear regulator input voltage must powe

(NPN Darlington pair) and a collector-emitter junction (PNP) this topology is not 

ideal for a system in which battery size is a limiting factor. Low dropout (LDO) 

regulators modify the linear regulator to use a single transistor to reduce the voltage 

drop across the regulator as shown in figure 4.10. Thus a lower input voltage is 

required to maintain the 3V rail of the GPS-RT. The LDO regulator maintains the 

benefits of fast compensation for varying current loads with output sensing feedback.  

 

[46] 
 

 To provide the high power requirements of the RF power amp, a switching 

regulator is used. The buck (voltage reduction) regulator also uses a transistor to 

control incoming voltage but instead of a linear feedback circuit, a pulse width 

modulated (PWM) sign

Fig. 4.10. Standard Linear voltage regulator topography (left), Low dropout linear regulator (right) 

al feeds current into an LC circuit at the output of the 

regulator. A diode is connected at the voltage output to prevent current flowing to 
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ground

g. As the current decreases with an open switch, the voltage at the diode 

end of the inductor decreases until the diode turns on allowing current flow from the 

inductor to the circuit. This topology is shown in figure 4.11  

 when the PWM signal opens the switch to the input voltage. The LC circuit 

acts as a filter resulting in an output voltage equal to the peak pulse amplitude times 

the duty cycle. The inductor current increases and decreases with the switch closing 

and openin

 
Fig 4.11. Switching regulator operation. [46] 

 
 

ually switches, the output voltage is less stable than 

LDO regulators. To compensate, large value inductors and capacitors are used which 

in turn leads to large sized components on the circuit board. These disadvantages 

make the switching regulator suitable only for the evaluation circuit and RF power 

amp testing and result in the final assembly of revision B, shown in figure 4.12. 

Future revisions will include higher capacity LDO regulators. 

Since the circuit contin

58 



 

Fig 4.12. Final assembly of GPS-RT rev B. 

4.3 Software 

 The MSP430F1612 has a program space of 55 KB flash memory with an 

additional 5 KB of RAM. Coupled with features such as a hardware multiplier, the 

vast program space allows the MCU to perform advanced processing on incoming 

data beyond simple storage and retrieval. This ability is essential for determining 

when to shut down various components. Also, time required for functions such as 

data transmission can be greatly reduced. Since full power RF transmission draws up 

to 2 am

The software is structured as an interrupt driven state machine. To provide 

maximum flexibility for software development, the hardware for revision B can 

function as either a base station (connected to a PC) or a roaming node (for logging 

data). While in base station mode, all components are fully powered and the user has 

access to each device via a command line interface (CLI) run through a serial port in 

a HyperTerminal program. The GPS-RT provides the processing for the text based 

ps, minimizing transmission greatly increases the systems operating lifetime.  
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user interface so no native PC program is needed, aside from the standard 

HyperTerminal. 

The roaming mode however, operates independently. The node switches 

between five states based on its geographic position and radio transmissions. The five 

main states are initialization, sleep, hibernation, transmit, and data processing shown 

in figure 4.13  

 

Fig 4.13. GPS-RT roaming unit state machine. 

 

4.3.1 State Machine 

The initialization state begins by configuring microcontroller peripherals. An 

internal 4 MHz clock and external 32 kHz watch crystal oscillator are enabled. The 

watch crystal maintains a low power, low speed system clock to handle interrupts 

when the MCU is in deep power down mode with the main 4 MHz clock idle. The 
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A/D converter is enabled as a battery voltage monitor and ports 1 and 2 are 

configured to accept interrupts. 

Each component has an initialization script to set its control registers, 

interrupts and communication with the MCU. This stage sets the radio 

communication properties (operating frequency = 433 MHz, modulation = 2-FSK, 

packet size = 64 byte, data rate = 250KBs or 1KBs, checksum handling disabled, and 

valid RX confirmation mode), GPS acquisition properties (data output code = NMEA 

GLL position and time character string, acquisition, transmission and sleep timers), 

and accelerometer measurement (resting drift threshold, power down, and 3-axis 

enabled). The previously e state logs are counted 

al point is appended to the next available free 64 bytes. 

 

process

 stored NMEA coordinates and nod

so each addition

The roaming node then enters the main sleep state where the GPS begins an 

acquisition and sleep cycle. GPS current consumption is reduced by 60mA when in 

sleep mode. Ephemeris data remains valid for up to 2 hours allowing the GPS to “hot 

start” and reacquire a signal in less than 5 seconds (without receiving a complete GPS 

frame). This time determines the lower limit for power consumption during active 

logging. 

When a valid GPS position string is received, the MCU enters the data

ing state, storing the position in memory and determining whether or not the 

roaming node has changed position. An initial position is stored in MCU RAM to 

minimize access to flash memory historical positions. Subsequent incoming positions 

are received and compared to the position in RAM. If new positions are within the 

drift range of the receiver, the timestamp on the new position is compared to the 

61 



timestamp stored in RAM. If 2 or more minutes have elapsed with new positions 

remaining within the established drift margin (chosen to be 5m based on the TIM-LH 

datashe

ng GPS data and the state machine enters hibernation. To ensure an 

exit from this state the accelerometer is calibrated to provide the resting acceleration 

measurement. Adding 0.1G to this measurement results in the motion detection 

threshold for system wakeup. Hibernation begins with accelerometer calibration. The 

average of 10 x-axis readings becomes the baseline from which the motion detection 

threshold is calculated. If 3 sequential calibration attempts fail to establish a mean 

value within the drift margin, the device is determined to be in motion. The state 

machine exits hibernation and enters sleep mode upon accelerometer wakeup or 

calibration failure. 

The transmission state is initiated by a radio interrupt indicating a packet has 

been received. Packets sent out by the base station are queries or system commands 

requiring a response. T ted 255 times or until 

a response is received from the roaming node. The roaming node also requires 

lect data types including complete memory downloads and 

data ra

et and acquired data), the node enters the hibernation state. If the node 

position has changed, processing completes and the system returns to sleep. 

When the system determines position has not changed, there is no need to 

continue recodi

he base station request packets are repea

acknowledgement for se

te switching. Other packets are sent one time and the node returns to the low 

power state that received the interrupt.  

A command line interface (CLI) protocol is available for user base station 

operation. Each component can be configured from the CLI in addition to 
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downloading data stored in flash. The CLI includes a remote node in which each 

command is relayed to a roaming node, allowing for remote maintenance of all 

functio

improvem

 

 

 

 

ns available during base station mode.  

 

4.4 Summary 

 A low power remote embedded system was developed to store GPS data in 

flash memory and respond to radio requests over a 1 mile range with the goal of a 1 

week operating lifetime. The GPS-RT incorporates many power saving features and 

accomplishes the goal of transmitting data over a 1 mile RF link. A battery solution 

has not been finalized so various parameters such as GPS and radio sleep time are 

undetermined but configurable to accommodate a 2 amp hour battery. Further 

ents to the GPS-RT include a size reduction possible by combining the 

microcontroller and flash memory into a single 3DI module.  
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5. Conclusion 

 

5.1 Summary 

 Standard processes adapted for 3DI include thinning and surface activation 

bonding. Silicon wafer thinning for SOI applications includes a mechanical grind and 

CMP polish. For 3DI, a backside chemical etch is introduced as a stress relief for 

active devices present on the topside of the wafer. The combination of excess center 

thinning during chemical etching and increased edge thinning during CMP can be 

combined to reduce overall TTV of the thinned substrate in preparation for SAWD 

bonding. Wafer direct Ar plasma surface activation bonding then builds a 3DI stack 

to be vertically interconnected. 

Along with standard technologies adapted for the specific purpose of 3DI, a 

novel fine pitch via etching and fill process was developed. The via etching process 

creates 1µm diameter vias with a depth of 20µm in bulk silicon substrates. The vias 

are patterned in a 2µm TEOS hard mask and etched with a C4F8/CH2/Ar plasma 

chemistry. The bulk silicon is etched with a SF6/O2/HBr plasma, with each reactive 

plasma magnetically focused for a vertical etch profile with high anisotropy. The use 

of SiF4 as an oxide growth catalyst prevents damage to via sidewalls from ion 

bombardment. Simultaneously, a passivation layer is grown to prevent electrical 

connections from the via fill interconnect to the substrate by Al spiking. The vias are 

filled with an 8% AlGe alloy which endorses plastic deformation below the melting 

point of aluminum.  
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The thinning, bonding and via processes can all be applied to COTS 

component chips when processed as a RDW. A 90% fuming nitric acid soak removes 

die from plastic injection molded packaging. IPA limits post de-packaging oxidation 

nd removes etch residue. A flip chip placing tool positions die face down on a 

ing a 3µm spin deposited acrylic adhesive. Gaps are filled and 

te 

achine software responds to component interrupts to select low power modes and 

ttery lifetime.  

  

.2 Future Work 

While the 3DI via process is fully capable of producing fine pitch high aspect 

tio vias through silicon, resistivity measurements on via interconnects are 

unavailable. An intermediate testing process involving backside metallization of filled 

ent to determine via fill yields and electrical 

nnectivity. The thinning and bonding processes require additional characterization 

efore integration with the via process. Successful thinning has been achieved down 

a

handle wafer us

sidewalls are protected from thinning damage by grinding and chemical etching using 

a low melting point synthetic wax. Die are chemically thinned to 30µm without 

sidewall etching or undercutting. A thinned RDW, after cleaning, is prepared for 

SAWD bonding at which point standard 3DI processing of the stack continues. 

The de-packaged components are all present in the GPS-RT remote low 

power embedded system. Components include a MCU, flash memory, GPS receiver 

and processing module, 1 watt radio transceiver and accelerometer. Each component 

was required to have a software configurable low power mode. The MCU node sta

m

extend ba

5

 

ra

via wafers is currently under developm

co

b
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to 30µm however; CMP finishing steps have not yet provided sufficient reduction of 

ical die etching edge effects. Final RDW wafer TTV remains above the 1µm 

D bonding. Excessive particle counts remain after CMP polishing 

requiring a more comprehensive cleaning step. Currently, a new CMP slurry dispense 

method is under development which will significantly reduce effects of slurry 

agglomeration. A successful RDW bonding process is necessary before thinned de-

packaged die can be tested for electrical functionality.  

 The components on the GPS-RT have been evaluated and are controlled by a 

software state machine for low power operation. A future revision (Rev. C) is 

pending which separates base station and roaming node functionality. Size of the 

roaming node is significantly reduced. Preliminary layouts indicate dimensions of 

1.25” x 3” (figure 5.1). The footprint of the Rev. C roaming unit shown in figure 5.1 

is reduced by 71% over Rev. B. Additional battery monitoring code and radio power 

ramping will further increase the field operating lifetime of the GPS-RT. Roaming 

unit power consumption will be fully characterized using Rev. C. 

chem

threshold for SAW
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Fig. 5.1 GPS-RT revision C preliminary layout 

 

5.3 Additional Applications 

simple sensor systems, the fine pitch interconnects also allow for a high degree of on 

chip connectivity. For m

 While the 3DI process can be applied to create custom multi chip modules for 

odern data intensive computation in which 64 bit busses are 

al interconnects can drastically reduce the 

gnals to chip edges for connections to additional processors. 

ultipl

required for high speed data transfer, vertic

need for routing si

M e processors can be stacked and busses routed directly through the chip. 

Shorter interconnect length leads to a reduction in parasitics, further increasing data 

transfer rates. For high end computing applications involving dozens to thousands of 

processors, an additional routing dimension would significantly reduce metallization 

requirements for common busses and power connections.  
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In addition to reducing circuit footprint, use of thinned die is also beneficial to 

flexible circuits. Instead of fiberglass PCBs, a 50µm sheet of polyimide is used as a 

circuit board. Preliminary metallization techniques allow the patterning of bond pads 

and interconnect traces. De-packaged die are flip chip bonded directly to fine pitch 

bond pads directly on the substrate. Coupled with emerging low profile lithium 

polymer battery technology, complete battery powered embedded systems are 

possible within a thickness of only 1mm.  

 

5.4 Conclusion 

The technologies developed in the 3DI process, its production applications, 

and the GPS-RT all contribute to reducing the size and power consumption of remote 

embedded sensor systems. 3DI technologies presented contribute to high degrees of 

component integration and overall compacting of system hardware. With various 

modifications to the process along with RDW processing, COTS components are 

compatible with 3DI. Integrating these components into a remote embedded system 

designed for low power operation greatly increases the field operating capability and 

applications.  
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APPENDIX A 
 

Karl Suss 6” wafer spinner and contact aligner parameters for wafer dispense and 
exposure 

 
2um Positive Photoresist  
 
Static dispense: 4ml HMDS adhesion promoter  
Spin: 60s, 2000rpm 
Static dispense: 4ml OIR 908-35 positive photoresist  
Spin: 60s, 2000rpm 
Spin: 30s, 1000rpm 
2mm Edge bead remover 
Spin: 10s, 1000rpm 
Pre-bake: 60s, 90C 
Exposure: Vacuum contact, 4s, 385nm, 375W 
Post-bake: 60s, 120C 
Development: OPD4262, 90s 
Hard-bake: 30min, 130

AR via 2um Positive Photoresist 

ion promoter  

Hard-bake: 30min, 130C convection oven 

 
 

C convection oven 
 
H
 
Static dispense: 4ml HMDS adhes
Spin: 60s, 2000rpm 
Static dispense: 4ml OIR 908-35 positive photoresist  
Spin: 60s, 2000rpm 
Spin: 30s, 1000rpm 
2mm Edge bead remover 
Spin: 10s, 1000rpm 
Pre-bake: 90s, 105C 
Exposure: Vacuum contact, 8s, 385nm, 375W 
Post-bake: 90s, 120C 
Development: OPD4262, 60s 

 
Humiseal 3um Acrylic 
 
Static Dispense: 5ml 1:1 (Humiseal:Acetone) 
Spin: 30s, 750rpm 
Post-bake: 240s, 120C 
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3um N
 

Spin: 60s, 2000rpm 

Exposure: Proximity Contact, 7.7s, 385nm, 375W 

Development: RD6, 20s 

 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 

egative Resist 

Static Dispense: 8ml AZ1500PY-NR (negative resist) 

Pre-bake: 60s, 90C 

Post-bake: 60s, 120C 
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