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Chapter 1: Introduction

Compilation of programs for distributed memory architectures using message

passing is a vital task with potential for speedups over existing techniques. The

Partitioned Global Address Space (PGAS) parallel programming model automates

the production of message passing code from a shared memory programming model

and exposes locality of reference information to the programmer, thereby improv-

ing programmability and allowing for compile-time performance optimizations. In

particular, programs compiled to message passing hardware can improve in perfor-

mance by aggregating messages and eliminating dynamic locality checks for affine

array accesses in the PGAS model.

Message passing code generation is a difficult task for an optimizing compiler

targeting a distributed memory architecture. These architectures are comprised of

independent units of computation called locales. Each locale has its own set of

processors, cores, memory, and address space. For programs executed on these ar-

chitectures, data is distributed across various locales of the system, and the compiler

needs to reason about locality in order to determine whether a program data access

is remote (requiring a message to another locale to request a data element) or local

(requiring no message and accessing the data element on the locale’s own memory).
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Only a compiler with sufficient knowledge about locality can compile a program in

this way with good communication performance.

Without aggregation, each remote data memory access results in a message

with some non-trivial run time overhead, which can drastically slow down a pro-

gram’s execution time. This overhead is caused by latency on the interconnection

network and locality checks for each data element. Accessing multiple remote data

elements individually results in this run time overhead being incurred multiple times,

whereas if they are transferred in bulk the overhead is only incurred once. Therefore,

aggregating messages improves performance of message passing codes. In order to

transfer remote data elements in bulk, the compiler must be sure that all elements

in question reside on the same remote locale before the message is sent.

The vast majority of loops in scientific programs access data using affine array

accesses. An affine array access is one whose indices are linear combinations of the

loop’s induction variables. For example, for a loop with induction variables i and

j, accesses A[i, j] and A[2i − 3, j + 1] are affine, but A[i2] is not. Loops using

affine array accesses are special because they exhibit regular and predictable access

patterns within a data distribution. Compilers can use this information to decide

when message aggregation can take place.

Existing methods for message passing code generation such as [3, 4] all have

the following steps:

• Loop distribution The loop iteration space for each nested loop is divided

into portions to be executed on each locale (message passing node), called
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iteration space tiles.

• Data distribution The data space for each array is distributed according

to the directive of the programmer (usually as block, cyclic, or block-cyclic

distributions.)

• Footprint calculation For each iteration space tile, the portion of data it

accesses for each array reference is calculated as a formula on the symbolic

iteration space bounds. This is called the data footprint of that array access.

• Message aggregation calculation For each array access, its data footprint

is separately intersected with each possible locale’s data tile to derive symbolic

expressions for the portion of the data footprint on that locale’s data tile. This

portion of the data tile for locales other than the current locale needs to be

communicated remotely from each remote data tile’s locale to the current loop

tile’s locale. Since the entire remote portion is calculated exactly, sending it

in a single aggregated message becomes possible.

Unfortunately, of the steps above, the message aggregation calculation is by

far the most complex. Loop distribution and data distribution are straightforward.

Footprint calculation is of moderate complexity using matrix formulations or the

polyhedral model. However, it is the message aggregation calculation that defies easy

mathematical characterization for the general case of affine accesses. Instead some

very complex research methods [4,5] have been devised that make many simplifying

assumptions on the types of affine accesses supported, and yet remain so complex

that they are rarely implemented in production compilers.
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Although the steps above are primarily for traditional methods of parallel code

generation, polyhedral methods don’t fare much better. Polyhedral methods have

powerful mathematical formulations for loop transformation discovery, automatic

parallelization, and parallelism coarsening. However message aggregation calcula-

tion is still needed but not modeled well in polyhedral models, leading to less capable

ad-hoc methods for it.

It is our belief that message aggregation using tiling is not used in production

quality compilers today because of the complexity of message aggregation calcula-

tions, described above. What is needed is a simple, robust, and widely applicable

method for message aggregation that leads to improvements in performance.

This paper presents modulo unrolling without unrolling (WU), a loop opti-

mization for message passing code generation based on a technique called modulo

unrolling, whose advantage is that it makes the message aggregation calculation

above far simpler. Using modulo unrolling WU, the locality of any affine array ac-

cess can be deduced if the data is distributed in a cyclic or block-cyclic fashion. It is

possible for the optimization to be performed by a compiler to aggregate messages

and reduce a program’s execution time and communication.

Modulo unrolling in its original form, pioneered by [1], was meant to target

tiled architectures such as the MIT Raw machine. Its purpose for tiled architectures

was to allow the use of the compiler-routed static network for accessing array data in

unrolled loops. It was not meant for message passing architectures, nor was it used

to perform message aggregation. It has since been modified to apply to message

passing machines in this work.
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We build on the modulo unrolling method to solve the very difficult problem

of message aggregation for message passing machines inside PGAS languages. In

the PGAS model, a system’s memory is abstracted to a single global address space

regardless of the hardware architecture and is then logically divided per locale and

thread of execution. By doing so, locality of reference can easily be exploited no

matter how the system architecture is organized.

Modulo unrolling WU takes as input a parallel loop containing affine accesses

from arrays distributed cyclically or block-cyclically. It has three steps. First, in

the block cyclic transformation for static disambiguation, the original loop header

is transformed using a strip mining technique to ensure that affine accesses are

statically disambiguated for both block-cyclic and cyclic data throughout the loop.

Next, in the owning expression calculation, loop iterations are assigned to locales

according to the owning expression of the loop in order to ensure that the fewest

number of remote data accesses occur during each loop iteration. Finally, in the

message aggregation step, for each remote affine access that is non-owned in the loop,

the footprint of data that it accesses during the entire loop is calculated statically

and communicated to the owning locale before the loop executes in an aggregate

message. The remote affine accesses inside the loop can now be replaced with

accesses to local storage, thereby eliminating locality checks for each loop iteration.

If any data elements that were communicated to the owning locale are written to

during the loop, another aggregate message sends these elements back to the remote

locale after the loop finishes.

Our evaluation is for Chapel, an explicitly parallel programming language
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developed by Cray Inc. that falls under the PGAS memory model. The Chapel

compiler is an open source project used by many in industry and academic settings.

The language contains many high level features such as zippered iteration, leader

and follower iterator semantics, and array slicing that greatly simplify the imple-

mentation of modulo unrolling WU into the language. In particular, we implement

modulo unrolling WU in Chapel not as a traditional compiler pass or loop transfor-

mation, but as a portion of the Cyclic and Block Cyclic data distribution modules.

This allows us to express the optimization directly using the Chapel language. It

also gives us the ability to reason about the number of locales being used to run

the program. The number of locales is generally unknown at compile time, but the

Chapel language exposes this information to the programmer via built-in constructs

such as the Locales array and numLocales constant.

Although our method is implemented in Chapel, we describe it using pseu-

docode in Chapter 6, showing how it can be adapted to any PGAS language. How-

ever, for other languages the implementation may differ. For example, if the lan-

guage does not use leader and follower iterator semantics to implement parallel for

loops, the changes to those Chapel modules that we present here will have to be

implemented elsewhere in the other PGAS language where forall loop functionality

is implemented.

The rest of this paper is organized as follows. Chapter 2 describes three

Chapel data distributions: Block, Cyclic, and Block Cyclic. Chapter 3 discusses

related work. A brief background on modulo unrolling for tiled architectures [1]

is presented in Chapter 4. Chapter 5 illustrates how message aggregation is ap-
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plied to parallel affine loops using modulo unrolling WU with an example. Chapter

6 formally describes the mathematical transformations of modulo unrolling with-

out unrolling (WU), our communication optimization. Chapter 7 explains how we

adapted modulo unrolling WU into the Chapel programming language. Chapter 8

presents our results.
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Chapter 2: Chapel’s Data Distributions

For applications with extremely large problem sizes, it is imperative that data

is dispersed evenly across all computing nodes (locales). Even data distribution aids

in proper load balancing across locales, ensuring that processing power is optimi-

ally utilized and programs run faster. Data may have sources from a number of

geographical locations, making it infeasible for a complete view of the data to be

available at all locales without constantly communicating data as it is generated.

It may not be possible for a complete set of data to fit on a single node, as is the

case for many three-dimensional physics simulations and computational chemistry

applications that operate on petabytes of data. This observation raises the question:

how can data be distributed across locales of the computing system?

The Chapel programming language allows users to design and implement their

own data distributions according to their specific needs, but the language also comes

equipped with a few basic distributions that are widely used in many applications.

Figures 2.1 - 2.3 illustrate the Chapel data distributions that we explored in this

work: Block, Cyclic, and Block Cyclic. Each figure shows how a two-dimensional 8

x 8 array can be distributed across four locales in Chapel using each distribution.

Figure 2.1 illustrates the Block distribution. Elements of the array are mapped to
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Figure 2.1: Chapel Block distribution example. The two-dimensional
array above is distributed across four locales.
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Figure 2.2: Chapel Cyclic distribution example. The two-dimensional
array above is distributed across four locales.

locales evenly in a dense manner. In Figure 2.2, the Cyclic distribution, elements

of the array are mapped in a round-robin manner across locales. Finally, in Figure

2.3 the Block Cyclic distribution is shown. Here, a number of elements specified

by a block size parameter is allocated to consecutive array indices in a round-robin

fashion. In Figure 2.3, the distribution takes in a 2 x 2 block size parameter. Further

details about Block, Cyclic, and Block Cyclic distributions in Chapel are described

in [6].

The choice of data distribution to use for a program boils down to compu-

tation and communication efficiency. Different programs and architectures may
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Figure 2.3: Chapel Block Cyclic distribution example. The two-
dimensional array above is distributed across four locales.
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require different data distributions. It has been shown that finding an optimal data

distribution for parallel processing applications is an NP-complete problem, even

for one- or two-dimensional arrays [7]. Certain program data access patterns will

result in fewer communication calls if the data is distributed in a particular way.

For example, many loops in stencil programs that contain nearest neighbor compu-

tation will have better communication performance if the data is distributed using

a Block distribution. This occurs because on a given loop iteration, the elements

accessed are near each other in the array and therefore are more likely to reside on

the same locale block. Accessing elements on the same block does not require a

remote data access and can be done faster. However, programs that access array

elements far away from each other will have better communication performance if

data is distributed using a Cyclic distribution. Here, a Block distribution is almost

guaranteed to have poor performance because the farther away accessed elements

are, the more likely they reside on different locales.

A programmer may choose a particular data distribution for reasons unknown

to the compiler. These reasons may not even take communication behavior into

account. For example, Cyclic and Block Cyclic distributions provide better load

balancing of data across locales than a Block distribution when array sizes may be

changed dynamically because in Cyclic and Block Cyclic distributions, the locales

of existing array elements do not change when new array elements are added at

the end of the array. In many applications, data redistribution may be needed if

elements of a data set are inserted or deleted at the end of the array. In particular,

algorithms to redistribute data using a new block size exist for the Block Cyclic
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distribution [8,9]. If an application uses a dynamic data set with elements that are

appended, a Cyclic or Block Cyclic distribution is superior to Block because new

elements are added to the locale that follows the cyclic or block-cyclic pattern. For

Block, the entire data set would need to be redistributed every time a new element

is appended, which can be expensive.

The compiler should attempt to perform optimizations based on the data

distribution that the programmer specified. Our optimization is meant to be applied

whenever the programmer specifies a Cyclic or Block Cyclic distribution. It is not

applied when the programmer specifies a Block distribution.
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Chapter 3: Related Work

Compilation for distributed memory machines has two main steps: loop opti-

mizations and message passing code generation. First, the compiler performs loop

transformations and optimizations to uncover parallelism, improve the granular-

ity of parallelism, and improve cache performance. These transformations include

loop peeling, loop reversal, and loop interchange. Chapel is an explicitly parallel

language, so uncovering parallelism is not needed. Other loop optimizations to im-

prove the granularity of parallelism and improve cache performance are orthogonal

to this paper. The second step is message passing code generation, which includes

message aggregation.

Message passing code generation in the traditional model is exceedingly com-

plex, and practical robust implementations are hard to find. These methods [4, 5,

10, 11] require not only footprint calculations for each tile but also the intersection

of footprints with data tiles. As described in detail in Chapter 1, calculating such

intersections is very complex, which explains the complexity and simplifying limi-

tations of many existing methods. Such methods are rarely if ever implemented in

production compilers.

The polyhedral method is another branch of compiler optimization that seeks
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to speed up parallel programs on distributed memory architectures [3, 12–16]. Its

strength is that it can find sequences of transformations in one step, without search-

ing the entire space of transformations. However, the method at its core does not

compute information for message passing code generation. Message passing code

generation does not fit the polyhedral model, so ad-hoc methods for code genera-

tion have been devised to work on the output of the polyhedral model. However

they are no better than corresponding methods in the traditional model, and suffer

from many of the same difficulties.

Similar work to take advantage of communication aggregation on distributed

arrays has already been done in Chapel. Whole array assignment is the process of

assigning an entire distributed array to another in one statement, where both ar-

rays are not guaranteed to be distributed in the same way. Like distributed parallel

loops in Chapel, whole array assignment suffers from locality checks for every array

element, even when the locality of certain elements is known in advance. In [17],

aggregation is applied to improve the communication performance of whole array

assignments for Chapel’s Block and Cyclic distributions. However, [17] does not ad-

dress communication aggregation that is possible across general affine loops. Whole

array assignment and affine loops in Chapel are fundamentally related because every

whole array assignment can be written in terms of an equivalent affine forall loop.

Yet, the contrapositive statement is not true: most affine loops can’t be modeled

as whole array assignments. Our method for communication aggregation in parallel

loops encompasses more complex affine array accesses than those that are found in

whole array assignments and addressed in [17]. Finally, our work applies to Chapel’s
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Block Cyclic data distribution in addition to Cyclic, whereas the work in [17] does

not.

One of the contribution’s of [17] included two new strided bulk communication

primitives for Chapel developers as library calls, chpl comm gets and chpl comm puts.

They both rely on the GASNet networking layer, a portion of the Chapel runtime.

Our optimization uses these new communication primitives in our implementation

directly to perform bulk remote data transfer between locales. The methods in [17]

are already in the current release of the Chapel compiler.

Work has been done with the UPC compiler (another PGAS language) by [18]

to improve on its communication performance. Unlike our work, which takes as its

input a distributed parallel affine loop, the work in [18] expects to aggregate commu-

nication across an entire program. This method targets fine-grained communication

and uses techniques such as redundancy elimination, split-phase communication,

and communication coalescing (similar to message aggregation) to reduce overall

communication. In communication coalescing, small puts and gets throughout the

program are combined into larger messages by the compiler to reduce the number of

times the per-message startup overhead is incurred. This work’s aggregation scheme

is only applicable to programs with many small, individual, and independent remote

array accesses. This method can’t be used to improve communication performance

across more coarse-grained structures, such as distributed parallel loops. Another

major limitation to this work’s aggregation scheme is that only contiguous data can

be sent in bulk. To aggregate data across an entire loop in a single message when

data is distributed cyclically, which is done in our work, it must be possible to ag-
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gregate data elements that are far apart in memory, separated by a fixed stride. In

contrast, our method can aggregate data distributed cyclically and block-cyclically.

Another communication optimization targeting the X10 language [19] achieves

message aggregation in distributed loops by using a technique called scalar replace-

ment with loop invariant code motion. Here, the compiler copies all remote portions

of a block-distributed array to each locale once before the loop. Then, each locale

can access its own local copy of the array during each loop iteration. While this

method does improve communication performance, it can potentially communicate

extraneous remote array portions that the loop body never accesses. For large data

sets, this could overwhelm a locale’s memory. Modulo unrolling WU communicates

only the remote portions of the distributed array that are used during the loop body.
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Chapter 4: Background on Modulo Unrolling

Modulo unrolling [1] is a static disambiguation method used in tiled architec-

tures that is applicable to loops with affine array accesses. An affine function of a

set of variables is defined as a linear combination of those variables. An affine array

access is any array access where each dimension of the array is accessed by an affine

function of the loop induction variables. For example, for loop index variables i and

j and array A, A[i+2j+3][2j] is an affine access, but A[ij+4][j2] and A[2i2 +1][ij]

are not.

Modulo unrolling works by unrolling the loop by a factor equal to the number

of memory banks on the architecture. If the arrays accessed within the loop are

distributed using low-order interleaving (a Cyclic distribution), then after unrolling,

each array access will be statically disambiguated, or guaranteed to reside on a single

bank for all iterations of the loop. This is achieved with a modest increase of the

code size.

To understand modulo unrolling, refer to Figure 4.1. In Figure 4.1a there is

a code fragment consisting of a sequential for loop with a single array access A[i].

The array A is distributed over four memory banks using a Cyclic distribution. As

is, the array A is not statically disambiguated because accesses of A[i] go to different

18



Figure 4.1: Modulo unrolling example. (a) Original sequential for loop.
Array A is distributed using a Cyclic distribution. Each array access
maps to a different memory bank on successive loop iterations. (b) Fully
unrolled loop. Trivially, each array access maps to a single memory bank
because each access only occurs once. This loop dramatically increases
the code size for loops traversing through large data sets. (c) Loop
transformed using modulo unrolling. The loop is unrolled by a factor
equal to the number of memory banks on the architecture. Now each
array access is guaranteed to map to a single memory bank for all loop
iterations and code size increases only by the loop unroll factor.
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memory banks on different iterations of the loop. The array access A[i] has bank

access patterns 0, 1, 2, 3, 0, 1, 2, 3, ... in successive loop iterations.

A naive approach to achieving static disambiguation is to fully unroll the

loop, as shown in Figure 4.1b. Here, the original loop is unrolled by a factor of 100.

Because each array access is independent of the loop induction variable i, static

disambiguation is achieved trivially. Each array access resides on a single memory

bank. However, fully unrolling the loop is not an ideal solution to achieving static

disambiguation because of the large increase in code size. This increase in code size

is bounded by the unroll factor, which may be extremely large for loops iterating

over large arrays. Fully unrolling the loop may not even be possible for a loop bound

that is unknown at compile time.

A more practical approach to achieving static disambiguation without a dra-

matic increase in code size is to unroll the loop by a factor equal to the number of

banks on the architecture. This is shown in Figure 4.1c and is known as modulo

unrolling. Since we have 4 memory banks in this example, we unroll the loop by a

factor of 4. Now every array reference in the loop maps to a single memory bank on

all iterations of the loop. Specifically, A[i] refers to bank 0, A[i+1] refers to bank 1,

A[i+2] refers to bank 2, and A[i+3] refers to bank 3. The work in [1] shows that an

unroll factor providing this property always exists not only for the code in Figure

4.1, but for the general case of any affine function in a loop. The unroll factor may

not always equal the number of banks, but a suitable unroll factor can always be

computed.

Modulo unrolling, as used in [1] provides static disambiguation and memory
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parallelism for tiled architectures. That is, after unrolling, each array access can be

done in parallel because array accesses map to a different memory banks.
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Chapter 5: Intuition Behind Message Aggregation With An Example

In Chapel, a program’s data access patterns and the programmer’s choice

of data distribution greatly influence the program’s runtime and communication

behavior. This chapter presents an example of a Chapel program with affine array

accesses that can benefit from message aggregation. It also serves to present the

intuition behind how modulo unrolling WU will be used in message aggregation.

The intuition behind why modulo unrolling is helpful for message aggregation

in message passing machines is as follows. Message aggregation requires knowledge

of precisely which elements must be communicated between locales. Doing so re-

quires a statically disambiguated known locale for every array access, even when

that array access refers to a varying address. For example, in a loop A[i] refers to

different memory addresses during each loop iteration. Modulo unrolling ensures

such a known, predictable locale number for each varying array access. This enables

such varying accesses to be aggregated and sent in a single message. We explain our

method of doing so in Chapters 6 and 7.

Consider the Chapel code for the Jacobi-2D computation shown in Figure 5.1,

a common stencil operation that computes elements of a two-dimensional array as

an average of that element’s four adjacent neighbors. We assume that arrays A and
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1   var n: int = 8;!
2   var LoopSpace = {2..n-1, 2..n-1};!
3!
4   //Jacobi relaxation pass!
5   forall (i,j) in LoopSpace {!
6        A_new[i,j] = (A[i+1, j] + A[i-1, j] + !
7 ! ! !          A[i, j+1] + A[i, j-1])/4.0;!
8   }!
9!
10  //update state of the system after the first!
11  //relaxation pass!
12  A[LoopSpace] =  A_new[LoopSpace]; !

Figure 5.1: Chapel code for the Jacobi-2D computation over an 8 x 8
two dimensional array. Arrays A and Anew are distributed with a Cyclic
distribution and their declarations are not shown. During each iteration
of the loop, the current array element Anew[i, j] gets the average of the
four adjacent array elements of A[i, j].
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Figure 5.2: Illustration of message aggregation for the A[i, j−1] affine ar-
ray access of the Jacobi-2D relaxation computation with respect to locale
3. The region LoopSpace follows from Figure 5.1. The striped squares
are the elements of A that have been aggregated. This same procedure
occurs on each locale for each affine array access that is deemed to be
remote for all iterations of the loop. For the whole 8 x 8 Jacobi-2D
calculation, 144 remote gets containing one element each are necessary
without aggregation, but only 16 remote gets containing nine elements
each are necessary with aggregation.
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Anew have already been distributed using a Cyclic distribution over four locales. On

each iteration of the loop, five array elements are accessed in an affine manner: the

current array element Anew[i, j] and its four adjacent neighbors A[i+1, j], A[i−1, j],

A[i, j+1], and A[i, j−1]. The computation will take place on the locale of Anew[i, j],

the element being written to. If arrays A and Anew are distributed with a Cyclic

distribution as shown in Figure 2.2, then it is guaranteed that A[i+ 1, j], A[i− 1, j],

A[i, j + 1], and A[i, j − 1] will not reside on the same locale as Anew[i, j] for all

iterations of the loop. Therefore, these remote elements need to be transferred

over to Anew[i, j]’s locale in four separate messages during every loop iteration. For

large data sets, transferring four elements individually per loop iteration drastically

slows down the program because the message overhead is incurred many times.

We observe that message aggregation of remote data elements is possible over

the entire loop for the Jacobi-2D example. Aggregation will reduce the number of

times the message overhead is incurred during the loop. When the data is distributed

using a Cyclic distribution, all array accesses (including remote accesses) exhibit a

predictable pattern of locality.

Figure 5.2 illustrates this pattern in detail for loop iterations that write to

locale 3. During these iterations ((i, j) = (2, 2), (i, j) = (4, 2), etc.), there are two

remote accesses from locale 1 and two remote accesses from locale 2. The remote

accesses from locale 1 correspond to the A[i, j + 1], and A[i, j − 1] affine array

accesses in Figure 5.1. If we highlight all the remote data elements corresponding

to the A[i, j − 1] access that occur for loop iterations that write to locale 3, we end

up with the array slice A[2..7 by 2, 1..6 by 2], which contains the striped elements in
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Figure 5.2. This array slice can be communicated from locale 1 to a buffer on locale

3 before the loop executes in a single message. Then, during the loop, all A[i, j− 1]

accesses can be replaced with accesses to the local buffer on locale 3.

The previous paragraph showed how aggregation occurs for the A[i, j−1] affine

array access on loop iterations that write to locale 3. This same procedure applies

to the other three remote accesses for locale 3. In addition, this same procedure

applies to loop iterations that write to the remaining locales. Finally, we claim that

this optimization can also be applied to the Block Cyclic distribution, as the data

access pattern is the same for elements in the same position within a block.

In this example, we chose to perform message aggregation with respect to the

element that is written to during the loop. However, this is not always the best

choice for all programs. To get better communication performance, we would like

to assign loop iterations to locales with the most affine array accesses that are local.

The result of this scheme is that elements that are written to during the loop may

be the ones that are aggregated before the loop. If so, it is necessary to write these

elements from the local buffers back to their remote locales. This is done in a single

aggregate message after the loop body has finished.1

If arrays A and Anew are instead distributed using Chapel’s Block or Block

Cyclic distributions as shown in Figure 2.1 and Figure 2.3 respectively, the program

will only perform remote data accesses on iterations of the loop where element

1In Chapel, the programmer has some control over assigning loop iterations to locales. There-

fore, our optimizations uses the programmer’s assignment of loop iterations to locales when per-

forming message aggregation.
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Anew[i, j] is on the boundary of a block. As the block size increases, the number of

remote data accesses for the Jacobi-2D computation decreases. For the Jacobi-2D

computation, it is clear that distributing the data using Chapel’s Block distribution

is the best choice in terms of communication. Executing the program using a Block

distribution will result in fewer remote data accesses than when using a Block Cyclic

distribution. Similarly, executing the program using a Block Cyclic distribution will

result in fewer remote data accesses than when using a Cyclic distribution.

It is important to note that the Block distribution is not the best choice for all

programs using affine array accesses. Programs with strided access patterns that use

a Block distribution will have poor communication performance because accessed

array elements are more likely to reside outside of a block boundary. For these types

of programs, a Cyclic or Block Cyclic distribution will perform better. Chapter 2

explained several reasons why the programmer may have chosen a Cyclic or Block

Cyclic distribution.

27



Chapter 6: Message Aggregation Loop Optimization for Parallel Affine

Loops

This chapter describes our method to transform an affine loop that computes

on cyclically or block-cyclically distributed data into an equivalent loop that per-

forms message aggregation. As described in Chapter 2, our method is not meant

for block distributed data. The proposed method is based on modulo unrolling [1],

described in Chapter 4. Here we describe the method in pseudocode for simplicity

and to show that this method is applicable to languages other than Chapel.

6.1 Modulo Unrolling Without Unrolling

Modulo unrolling increases code size because it unrolls loops by a factor equal

to the number of locales (memory banks) on the system. However, we have devised

an adaptation called modulo unrolling WU for message passing machines that does

not increase code size. To understand it, consider that for parallel machines that use

message passing, static disambiguation can be achieved by using the locale identi-

fier without increasing the code size. Conceptually, an affine loop written in source

code on a message passing machine where data is distributed cyclically among four

locales such as:
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1   forall i in s..e by n {!
2        //affine array expressions!
3        A1[a1*i+b1] = A2[a2*i+b2] + 3;!
4   }!

1   for k in 0..((lcm(B,n)/n)-1) {!
2        forall i in (s+k*n)..e by lcm(B,n) {!
3             //affine array expressions!
4             A1[a1*i+b1] = A2[a2*i+b2] + 3;!
5   }    }!
!
!
1  for k in 0..((lcm(B,n)/n)-1) {!
2     for j in 0..N-1 {!
3        if(f(s+k*n+lcm(B,n)*j)/B mod N == $) {!
4           //fetch elements from affine array expressions!
5   !       //that are not owning expressions of the loop!
6           var buf1 = GET(A2[(s+k*n+lcm(B,n)*j)+b2..e+b2 by N*lcm(B,n)*a2]);!
7           var h = 0;!
8           forall i in (s+k*n+lcm(B,n)*j)..e by lcm(B,n)*N {!
9              //affine array expressions!
10             A1[a1*i+b1] = buf1[h] + 3;!
11             h++;!
12          }!
13          //write buffer elements back if written to during loop!
14  !       if(buf1_is_modified)!
15  !          SET(A2[(s+k*n+lcm(B,n)*j)+b2..e+b2 by N*lcm(B,n)*a2]) = buf1;!
16 }  }  }!
        !

(a)$

(b)$

(c)$

s$=$star+ng$loop$bound$
e$=$ending$loop$bound$
n$=$loop$stride$
B$=$block$size$
N$=$number$of$locales$
$$=$current$locale$iden+fier$

(d)$

Figure 6.1: Steps to transform a parallel affine loop where the data
is distributed cyclically or block-cyclically into an equivalent loop that
performs message aggregation using modulo unrolling WU. (a) Original
distributed parallel loop with two affine array accesses. (b) Loop after
Block Cyclic transformation. After this step, the affine array accesses
in loops with data distributed block-cyclically will be statically disam-
biguated. (c) Loop after the owning expression calculation and message
aggregation steps. In line 6, remote array elements are communicated to
a local buffer before the loop. The affine array access for A2 is replaced
with an access to the local buffer in line 10. In lines 14-15, elements in
the local buffer are written back to the remote locale if they are written
to during the loop. (d) Key of symbolic variables used in the transfor-
mations in parts a-c.
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forall i in 0..99 {

A[i] = B[i+2];

}

becomes statically disambiguated using this observation as follows:

forall i in 0..99 by 4 {

A[i+$] = B[i+2+$];

}

where $ represents the locale identifier. The above is the code that is run

on each locale. This transformation is called modulo unrolling without unrolling

(modulo unrolling WU) since, like modulo unrolling, it can be used for static dis-

ambiguation but on message passing machines instead of tiled architectures. Here,

no unrolling of the loop is necessary.

Figure 6.1 shows how a generalized affine loop, expressed symbolically, can be

transformed by our method in three steps: the Block Cyclic transformation (Figure

6.1a → Figure 6.1b), the owning expression calculation (described in Chapter 6.3),

and the message aggregation (Figure 6.1b → Figure 6.1c).

As shown in Figure 6.1a, our method takes as its input a parallel forall loop

that contains a number of affine array expressions in its loop body. Non-affine

expressions are allowed in the loop body, but they are not optimized. The input loop
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shown in Figure 6.1a is defined by three explicit parameters: the starting loop bound

s, the ending loop bound e, and the loop stride n. The input loop also contains two

implicit parameters based on the data distribution. The number of locales the data

is distributed over is N , and the block size, the number of consecutive array elements

allocated to a single locale, is B. All five parameters are elements of N. The output

of the optimization is an equivalent loop structure that aggregates communication

from all of the loop body’s remote affine array accesses.

6.2 Block Cyclic Transformation

Modulo unrolling as described in [1] guarantees static disambiguation for data

distributed cyclically but not for block-cyclically distributed data. However, we can

think of a Block Cyclic distribution as B adjacent Cyclic distributions, each with

a cycle size that is greater than N . In order to achieve static disambiguation for

the Block Cyclic distribution, we must transform input loops with B > 1 into an

equivalent loop with a loop step size that is a multiple of B.

Lines 1 and 2 of Figure 6.1b show this transformation. We replace the loop

step size on line 1 of Figure 6.1a with the least common multiple of B and n in line

2 of Figure 6.1b. The intuition behind this new step size is that two successive loop

iterations accessing the same position within a block will always be separated by

a fixed stride length that is a multiple of the block size. To maintain the original

meaning of the input loop, an outer for loop is added on line 1 of Figure 6.1b

to handle iterations within each block, and the starting loop bound on line 2 is
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written in terms of the outer loop variable k. After this transformation, all affine

array accesses in the loop with be statically disambiguated. This transformation is

a variant of the well-known strip mining transformation, which has been used for

many other purposes in the literature.

The Cyclic and Block Cyclic distributions are closely related. Any Cyclic

distribution can be thought of as a Block Cyclic distribution with B = 1. If we

apply the transformation in Figure 6.1b to a loop with cyclically distributed data,

we will end up with the original input loop in Figure 6.1a, which is already statically

disambiguated after applying the transformation described in Chapter 6.1.

6.3 Owning Expression Calculation

There may be many affine array accesses in the input loop, each mapped to a

single locale after static disambiguation. For the best communication performance,

we must determine the owning expression for the loop, which is the most common

affine array expression in the loop body. More formally, the owning expression is an

affine function f(i), where i is the loop’s induction variable, that occurs statically the

most number of times in the loop body. We can then use the owning expression to

assign loop iterations to locales. Note that there may be instances where affine array

expressions are found within control flow statements inside the loop body. Here, we

will not know how many times each conditional block will execute at compile time.

For these cases, we can use static profiling methods described in [20] to estimate the

occurrences of affine array accesses within conditional blocks in the loop body.
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As an example of how the owning expression is computed and used, consider

that there are two affine array accesses in Figure 6.1b: A1[a1i+ b1] and A2[a2i+ b2].

Each appears once in the loop body, so either expression can be chosen as the owning

expression for the loop. For the remainder of Figure 6.1, we assume that a1i + b1 is

the owning expression.

Line 3 of Figure 6.1c shows symbolically how the owning expression, which

is an affine function of the loop induction variable i, is used to ensure that loop

iterations are assigned to locales such that most of the affine array accesses are

local. The argument to the owning expression f in line 3 represents the first loop

iteration in each strip-mined portion created in the Block Cyclic transformation. We

evaluate the owning expression at this loop iteration. This yields the array index

that is most accessed during this loop iteration. The locale where this array index

resides should be responsible for handling all iterations in this strip-mined portion

because this way most of the loop body’s affine array accesses will be local.

6.4 Message Aggregation

The final step of the optimization is to communicate the non-owned remote

affine array accesses in a single message before the loop. Figure 6.1c shows this

transformation. The loop nest starting on line 2 symbolically represents which

loop iterations are assigned to the N locales on the system based on the owning

expression calculation (line 3). The array access A2[a2i + b2] is non-owned and

may either be entirely remote or entirely local. If entirely remote (as is assumed
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here), it will require communication. We compute its corresponding remote array

slice in line 6 before communicating the entire array slice to a local buffer. Modulo

unrolling guarantees that all elements in this array slice are remote with respect to

a single locale on the loop iterations that they are used. So, they can be brought

to the current locale $ in one message. Now in lines 8-12, the affine array access

A2[a2i + b2] can be replaced with an access to the local buffer. Lines 14-15 handle

the case that elements brought over in bulk need to be written back to their remote

locale.

6.5 Loops with Multi-Dimensional Array Accesses

The series of transformations described in this chapter and illustrated in Fig-

ure 6.1 all apply to one-dimensional arrays indexed by one loop induction variable.

These transformations can also be generalized to apply to certain affine array ac-

cesses for multi-dimensional arrays. The intuition for this generalization is as fol-

lows. The input affine loop now contains m loop induction variables i1, i2, ... , im.

Similarly, there are now m starting loop bounds, ending loop bounds, loop strides,

and block sizes. The pth block size is now the number of consecutive array elements

allocated to a single locale in dimension p of the array, where 1 ≤ p ≤ m. Each

affine array access in the loop body now contains m affine array expressions where

expression p is an affine function of ip.

Under these assumptions, the transformations described in this chapter need

only be applied to each loop induction variable independently. The owning expres-
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sion calculation now produces an m-tuple of affine array expressions.1 The results

we collect in this work consider one-, two-, and three-dimensional array accesses.

1In our adaptation of modulo unrolling WU in Chapel, the Cyclic distribution can apply the

optimization to loops with multi-dimensional array accesses, but the Block Cyclic distribution

is limited to one-dimensional array accesses because of the current limitations within Chapel’s

existing Block Cyclic implementation that are outside the scope of this work.
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Chapter 7: Adaptation in Chapel

The goal of this chapter is to present our adaptation in Chapel of the modulo

unrolling WU optimization presented in Chapter 6. We also provide a basic under-

standing of zippered iteration and array slicing, two important features in Chapel

used in the optimization’s implementation.

7.1 Chapel Zippered Iteration

Iterators are a widely used language feature in the Chapel programming lan-

guage. Chapel iterators are blocks of code that are similar to functions and methods

except that iterators can return multiple values back to the call site with the use of

the yield keyword instead of return. Iterators are commonly used in loops to traverse

data structures in a particular fashion. For example, an iterator fibonacci(n : int)

might be responsible for yielding the first n Fibonacci numbers. This iterator could

then be called in a loop’s header to execute iterations 0, 1, 1, 2, 3, and so on. Arrays

themselves are iterable in Chapel by default. This is how Chapel can support other

important language features such as scalar promotion and whole array assignment.

Figure 7.1b shows how the original code in Figure 7.1a can be rewritten to use

zippered iteration [21] instead. Zippered iteration is a Chapel language construct
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that allows multiple iterators of the same size and shape to be iterated through

simultaneously. When zippered iteration is used, corresponding iterations are pro-

cessed together. On each loop iteration, an n-tuple is generated, where n is the

number of items in the zippering. The dth component of the tuple generated on

loop iteration j is the jth item that would be yielded by iterator d in the zippering.

Zippered iteration can be used with either sequential for loops or parallel

forall loops in Chapel. Parallel zippered iteration is implemented in Chapel using

leader-follower semantics. That is, a leader iterator is responsible for creating tasks

and dividing up the work to carry out the parallelism. A follower iterator performs

the work specified by the leader iterator for each task and generally resembles a

serial iterator.

7.2 Chapel Array Slicing

Chapel supports another useful language feature known as array slicing. This

feature allows portions of an array to be accessed and modified in a succinct fashion.

For example, consider two arrays A and B containing indices from 1..10. Suppose

we wanted to assign elements A[6], A[7], and A[8] to elements B[1], B[2], and B[3]

respectively. We could achieve this in one statement by writing B[1..3] = A[6..8].

Here, A[6..8] is a slice of the original array A, and B[1..3] is a slice of the original

array B. Line 7 of Figure 7.1b shows examples of two array slices of arrays A and

B respectively.

In Chapel, an array slice can support a range of elements with a stride in some
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1   //(a) Parallel loop with affine array accesses!
2   forall i in 1..10 {!
3        A[i] = B[i+2];!
4   }!
5!
6   //(b) Equivalent loop written using zippered iteration !
7   forall (a,b) in zip(A[1..10], B[3..12]) {!
8        a = b;!
9   }!

 
Figure 7.1: (a) Chapel loop written using a single loop induction variable
i ranging from 1 to 10. The loop contains two affine array accesses. (b)
The same loop written using zippered iterators in Chapel. Instead of a
loop induction variable and a range of values to denote the loop bounds,
two array slices each containing the 10 elements accessed by the loop in
(a) are specified.

cases. For example, in the previous example, we could have made the assignment

B[1..3] = A[1..6 by 2]. This would have assigned elements A[1], A[3], and A[5] to

elements B[1], B[2], and B[3] respectively. Since all array slices in Chapel are arrays

themselves, array slices are also iterable.

Together, array slicing and parallel zippered iteration can express any parallel

affine loop in Chapel that uses affine array accesses. Each affine array access in the

loop body is replaced with a corresponding array slice in the loop header, which

produces the same elements as the original loop.

The example code in Figure 7.1 shows how regular and zippered iteration

versions of the same program have different execution orders but the same result.

There are two affine array accesses A[i] and B[i + 2] in Figure 7.1a. The loop is
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written in a standard way where the loop induction variable i takes on values from

1 to 10. Because the loop is a forall loop, loop iterations are not guaranteed to

complete in a specific order. This loop assigns elements of array B to A such that the

ith element of A is equal to the (i+2)th element of B after the loop finishes. In Figure

7.1b, the same loop is written using zippered iterators. The loop induction variable

i no longer needs to be specified, and each affine array access has been replaced

with an array slice in the zippering of the loop header. It is possible to transform

an affine loop in this fashion even when an affine array access has a constant factor

multiplied by the loop induction variable. The resulting array slice will contain a

stride equal to the constant factor. The two loops in Figure 7.1 are equivalent and

generate the same results, but they differ in their execution.

Because any parallel affine loop can be transformed into an equivalent parallel

loop that uses zippered iteration, we observe a natural place in the Chapel pro-

gramming language in which to implement modulo unrolling WU: the leader and

follower iterators of the Cyclic and Block Cyclic distribution. The leader iterator

divides up the loop’s iterations according to the locales they are executed on and

passes this work to each follower iterator in the zippering. The follower iterator can

then perform the aggregation of remote data elements according to the work that

has been passed to it.
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1   iter CyclicArr.these(param tag: iterKind, followThis, param fast: bool = false) var
2        where tag == iterKind.follower {
3
4   if arrSection.locale.id == here.id then local {
5         //call original fast follower iterator helper for local elements
6   } else {
7     //call original follower iterator helper for nonlocal elements
8        for i in followThis {
9         yield accessHelper(i);
10       }     
11  }  }

(a)$

1   iter CyclicArr.these(param tag: iterKind, followThis, param fast: bool = false) var
2        where tag == iterKind.follower {
3
4   //check that all elements in chunk are from the same locale by examining each dim
5   for i in 1..rank {
6        if (followThis(i).stride * dom.whole.dim(i).stride % 
7            dom.dist.targetLocDom.dim(i).size != 0) {
8             //call original follower iterator helper for nonlocal elements
9    for i in followThis {
10        yield accessHelper(i);
11    }    
12  }    }
13  if arrSection.locale.id == here.id then local {
14       //call original fast follower iterator helper for local elements
15  } else {
16     //allocate local buffer to hold remote elements, compute source and destination      

17       //strides, number of elements to communicate
18 chpl_comm_gets(buf, deststr, arrSection.myElems._value.theData, srcstr, count);
19 var changed = false;
20 for i in buf {
21 var old_i = i;
22      yield i;
23 var new_val = i;
24   if(old_val != new_val) then changed = true;
25 }
26 if changed then 
27           chpl_comm_puts(arrSection.myElems._value.theData, srcstr, buf, deststr, count);
28  }    }

(b)$

Figure 7.2: (a) Pseudocode for the unaltered Cyclic distribution follower
iterator. The code only handles cases when a chunk of work is either
completely local or remote. In the remote case in lines 6-11, remote data
elements are accessed one at a time, resulting in multiple messages. (b)
Pseudocode for the Cyclic distribution follower iterator that has been
modified to perform modulo unrolling WU. Now, the code divides the
remote case in (a) into two separate cases: remote from a single locale
and remote from possibly multiple locales. If the chunk of work is remote
from a single locale, we can perform message aggregation.
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1  iter BlockCyclicDom.these(param tag: iterKind) var where tag == iterKind.leader {
2
3      //calculate blockcyclesize
4       var blockcyclesize = blocksize*numLocales;
5

6       //assign loop iterations to locales
7       coforall locDom in locDoms do on locDom {
8
9   //determine the index of the first element in the locDom
10        var start = locDom.myStarts.low;
11          var tasks = here.numCores;

12
13        //each core on a locale can handle its own chunk of work in parallel
14        coforall core in 0..tasks-1 do
15
16        //serialize the division of work in case there are 

17        //more elements within a block than there are cores
18             for i in core..blocksize-1 by tasks {
19 
20             yield (start+i)..end by blockcyclesize;
21  }  }          }

Figure 7.3: Pseudocode for the Block Cyclic distribution leader itera-
tor that has been modified to perform modulo unrolling WU. Since the
leader iterator now splits up the work in a different way than before
modification, we do not show the original Block Cyclic leader iterator.
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7.3 Implementation

Modulo unrolling WU is implemented into the Chapel programming language

through the Cyclic and Block Cyclic distribution modules, as opposed to being

implemented via traditional compiler passes. Specifically, the follower iterator is

modified in the Cyclic distribution, and both the leader and follower iterators are

modified in the Block Cyclic distribution. Because these modules are written in

Chapel, the optimization can be expressed using Chapel’s higher-level language

constructs, such as zippered iteration and array slicing.

Figure 7.2 shows the Chapel pseudocode representation of the Cyclic follower

iterator before and after it has been modified to perform modulo unrolling WU.

Some coding details are left out for brevity. The follower iterator is responsible for

carrying out the loop iterations that are passed to it by the leader iterator. Because

the follower iterator has no knowledge about how the leader iterator divides up the

loop iterations, this chunk of work can fall into one of three cases. It can either be

entirely local, entirely remote to a single locale, or spread across multiple locales. In

Figure 7.2a, which shows the existing Cyclic follower iterator, the code only handles

cases where the chunk of work followThis is completely local or remote from possibly

multiple locales. If the chunk is local, a helper function responsible for yielding local

elements is called on line 5. If the chunk is remote, each remote element is accessed

individually with its own message, as shown in lines 6-11.

Figure 7.2b shows the Cyclic follower iterator modified to perform modulo

unrolling WU. Now, all three cases are handled. The first case is when the follower
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iterator chunk is remote from possibly multiple locales, and it is handled on lines

5-12. If so, then data elements are still accessed one at a time in the way identical

to the original follower iterator. The second case, where the follower iterator chunk

is completely local, is handled on lines 13-14. Finally, the third case where the

chunk of work is remote to a single locale is handled on lines 15-28. If so, then

it is guaranteed that the elements within the chunk of work are separated by a

fixed stride defined by the Cyclic distribution. This stride information is available

to access from within the follower iterator. Therefore, we can aggregate all remote

elements in that chunk into a single message.

Some details about how the aggregation takes place in the Cyclic follower

implementation follow. The entire chunk of work, specified by the arrSection

pointer, is communicated to the local buf in one message with the chpl comm gets

call on line 18. Then, elements in this buffer are yielded back to the loop following

zippered iteration semantics. The values in buf are compared before and after they

are yielded in order to determine whether or not they were written to in the loop

body. If so, a chpl comm puts call on line 27 is required to write all buf elements

back to the remote locale.

The implementation of modulo unrolling WU into the Block Cyclic distri-

bution is nearly identical to Figure 7.2 with one key addition: the Block Cyclic

leader iterator is also altered so that chunks of work that it creates only contain

elements that reside in the same position within a block. Figure 7.3 shows a Chapel

pseudocode representation of the modified Block Cyclic leader iterator, with some

coding details left out for brevity. Line 5 computes blockcyclesize, the product of
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the block size parameter and the total number of locales. Lines 8-22 assign loop

iterations to locales according to how the leader’s caller is distributed. Each object

locDom referenced on line 8 represents the collection of ranges of elements of the

leader’s caller that reside on a single locale. Using this collection, the index of the

first element of the first block of the leader’s caller, called start is determined, as

shown on line 11. Then, the leader iterator determines the offset within each block,

denoted by i on line 19. The leader iterator also has knowledge of the total size of

its caller, and this is denoted by end. Finally, the leader yields a range containing

a statically disambiguated portion of its caller.

Chapter 6.1 described three steps necessary to perform modulo unrolling WU

– (1) block cyclic transformation for static disambiguation; (2) owning expression

calculation; and (3) message aggregation. In the next three paragraphs, we discuss

how each of those three steps is manifested in the Chapel implementation.

As stated in Chapter 6.2, the block cyclic transformation to ensure static dis-

ambiguation is not required for the Cyclic distribution because a Cyclic distribution

is equivalent to a Block Cyclic distribution with a block size parameter equal to 1,

and this transformation is only required for Block Cyclic distributions with block

sizes greater than 1. However, we explicitly perform the block cyclic transforma-

tion to ensure static disambiguation in the Block Cyclic leader iterator. Each range

yielded by the Block Cyclic leader in line 21 of Figure 7.3 represents one strip mined

portion of the transformed loop in Figrure 6.1.

Both the Cyclic and Block Cyclic leader iterators already assign loop itera-

tions to locales according to the first item in the zippering by convention, so no
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owning expression calculation is necessary. Choosing to assign iterations based on

the first item in the zippering is an accepted convention in the Chapel programming

language that cannot be changed without needing to modify the leader iterators of

other distributions not explored in this work. The only consequence of not directly

implementing the owning expression calculation into the Cyclic and Block Cyclic

leader iterators is that the loop will not minimize the number of remote data accesses

per iteration.

Finally, for both the Cyclic and Block Cyclic distributions, the message aggre-

gation step takes place in the modified follower iterators. Specifically, lines 15-28 of

Figure 7.2 directly correspond to lines 3-6 and 14-16 in Figure 6.1.

We are currently in the process of contributing our source code implementation

of modulo unrolling WU to the trunk repository of the Chapel compiler, maintained

by Cray Inc. We are working very closely with the researchers at Cray to make this

happen.
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Chapter 8: Results

This chapter presents the results of four different experiments: a benchmark

suite evaluation of modulo unrolling WU, a strong scaling experiment, a weak scaling

experiment, and a block size variation experiment.

8.1 Benchmark Suite Evaluation

To demonstrate the effectiveness of modulo unrolling WU in the Chapel Cyclic

and Block Cyclic distributions, we present the results of our benchmark suite evalu-

ation. We have composed a suite of sixteen parallel benchmarks shown in Figure 8.1.

Each benchmark is written in Chapel and contains loops with affine array accesses

that use zippered iterations, as discussed in Chapter 7.2. This ensures that the

leader and follower iterators where modulo unrolling WU is implemented are called.

Our suite of benchmarks contains programs with single, double, and triple nested

affine loops. Additionally, our benchmark suite contains programs operating on one,

two, and three-dimensional distributed arrays. Thirteen of the sixteen benchmarks

are taken from the Polybench suite of benchmarks [22] and are translated from C to

Chapel by hand. The stencil9 benchmark was taken from the Chapel source trunk

directory. The remaining two benchmarks, pascal and folding, were written by our
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Name Lines of 
Code 

Input Size Description Elements per follower 
iterator chunk (Cyclic, 
Block Cyclic) 

2mm 221 128 x 128 2 matrix multiplications (D=A*B; E=C*D) 4 

fw 153 64 x 64 Floyd-Warshall all-pairs shortest path 
algorithm 

2 

trmm 133 128 x 128 Triangular matrix multiply 8 

correlation 235 512 x 512 Correlation computation 16 

covariance 201 512 x 512 Covariance computation 16 

cholesky 182 256 x 256 Cholesky decomposition 16 

lu 143 128 x 128 LU decomposition 8 

mvt 185 4000 Matrix vector product and transpose 250 

syrk 154 128 x 128 Symmetric rank-k operations 8 

fdtd-2d 201 1000 x 1000 2D Finite Different Time Domain Kernel 16000 

fdtd-apml 333 64 x 64 x 64 FDTD using Anisotropic Perfectly 
Matched Layer 

4 

jacobi1D 138 10000 1D Jacobi stencil computation 124, 249 

jacobi2D 152 400 x 400 2D Jacobi stencil computation 2600 

stencil9†  142 400 x 400 9-point stencil computation 2613 

pascal‡  126 100000, 100003 Computation of pascal triangle rows 1563, 781 

folding‡  139 50400 Strided sum of consecutive array 
elements 

394 

 
 

Figure 8.1: Benchmark suite. Benchmarks with no symbol after their
name were taken from the Polybench suite of benchmarks and translated
to Chapel. Benchmarks with † are taken from the Chapel Trunk test
directory. Benchmarks with ‡ were developed on our own in order to
test specific data access patterns. All benchmarks are tested using the
Chapel Cyclic distribution. Only jacobi1D and pascal are tested using
the Chapel Block Cyclic distribution, with block sizes of 4 and 16 respec-
tively. We also measure the maximum number of elements per follower
iterator chunk of work for each benchmark to get a sense of how much
aggregation is possible.
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group. pascal is an additional benchmark other than jacobi1D that is able to test

Block Cyclic with modulo unrolling WU. folding is the only benchmark in our suite

that has strided affine array accesses.

To evaluate improvements due to modulo unrolling WU, we ran our bench-

marks using the Cyclic and Block Cyclic distributions from the trunk revision 22919

of the Chapel compiler as well as the Cyclic and Block Cyclic distributions that

have been modified to perform modulo unrolling WU, as described in Chapter 7.

We measure both runtime and message counts for each benchmark and report the

normalized measurements with respect to the existing Chapel Cyclic and Block

Cyclic distributions. We also compute the geometric means of all normalized run-

times and message count numbers for both distributions to get a sense of how much

improvement, on average, modulo unrolling WU provided for our benchmark suite.

Data was collected on the ten-locale Golgatha cluster at the Laboratory for

Telecommunication Sciences in College Park, Maryland. Each computing node on

the cluster is comprised of two 2.93 GHz Intel Xeon X5670 processors, with 24

GB of RAM. The nodes are connected via an InfiniBand network communication

link. Benchmarks fdtd-apml, syrk, lu, mvt, and trmm were run using eight of the ten

locales because these programs drew too much power and did not complete execution

during data collection when all ten locales were used. The remaining benchmarks

were run on ten locales.

When evaluating modulo unrolling WU used with the Block Cyclic distribu-

tion, we only ran two benchmarks (jacobi1D and pascal) out of our suite of sixteen

because of limitations within the original Chapel Block Cyclic distribution. Many
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of our benchmarks operate on two or three-dimensional arrays and are written us-

ing array slicing. Both array slicing of multi-dimensional arrays and array slicing

containing strides for one-dimensional arrays are not yet supported in the Chapel

compiler’s Block Cyclic distribution. Implementing such features remained outside

the scope of this work. There was no limitation when evaluating modulo unrolling

WU with the Cyclic distribution, and all sixteen benchmarks were tested. Once

these missing features are implemented in the Chapel compiler, then our method

will apply to all of our benchmarks using the Block Cyclic distribution.

Figure 8.2 compares the normalized runtime numbers for the Cyclic and Block

Cyclic distributions with and without modulo unrolling WU. For ten out of the

sixteen benchmarks, we see reductions in runtime when the modulo unrolling WU

optimization is applied to the Cyclic distribution. Both benchmarks tested with the

Block Cyclic distribution with modulo unrolling WU show reductions in runtime.

On average, modulo unrolling WU results in a 36 percent decrease in runtime for

Cyclic and a 53 percent decrease in runtime for Block Cyclic.

Figure 8.3 compares the normalized message count numbers for the Cyclic and

Block Cyclic distributions with and without modulo unrolling WU. For the Cyclic

distribution, nine out of the sixteen benchmarks show reductions in message count 15

percent or greater. Both benchmarks tested with Block Cyclic with modulo unrolling

WU show reductions in message count greater than 15 percent. On average, modulo

unrolling WU results in a 64 percent decrease in message count for Cyclic and a 72

percent decrease in message count for Block Cyclic.

The final column in Figure 8.1 shows the maximum number of data elements

49



Figure 8.2: Runtime data collected for our suite of benchmarks. Each
measurement is normalized to the benchmark’s runtime using the origi-
nal Chapel Cyclic and Block Cyclic distributions. Measurements below
1 indicate that benchmarks that use modulo unrolling WU with the
specified Chapel distribution run faster. The last set of bars reports the
geometric means of all sixteen normalized runtimes per distribution.
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Figure 8.3: Message count data collected for our suite of benchmarks.
Each measurement is normalized to the benchmark’s message count us-
ing the original Chapel Cyclic and Block Cyclic distributions. Measure-
ments below 1 indicate that benchmarks that use modulo unrolling WU
with the specified Chapel distribution run using fewer messages. The
last set of bars reports the geometric means of all sixteen normalized
message counts per distribution.
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per follower iterator chunk of work for each benchmark. These numbers, measured

experimentally, give us a sense of how many data elements can be aggregated into a

single message using modulo unrolling WU. The results of this experiment show that

programs with chunks of work each containing more than a few hundred data ele-

ments see a significant runtime and message count improvement when using modulo

unrolling WU over the original Chapel distributions.

Some detailed observations on Figures 8.2 and 8.3 follow. For six benchmarks

that were run using the Cyclic distribution with modulo unrolling WU, runtimes

were actually slightly slower and message count numbers either slightly increased

or decreased by under 15 percent. Following Figure 8.1, all six of these benchmarks

contain follower iterator chunks of work with few data elements. This suggests

that, although modulo unrolling WU is applicable to these benchmarks, there are

not enough elements to aggregate within each chunk of work to see performance

improvments from message aggregation. Unlike individual remote data memory

accesses (RDMA) that normally occur during each loop iteration, the strided bulk

communication primitives chpl comm gets and chpl comm puts that are used in the

optimization are not hardware optimized and are slower than RDMA when few data

elements are being transferred. However, as the number of data elements per follower

iterator chunk increases, we reach a point where the strided bulk communication

primitives are faster than individual RDMA transfers. The six benchmarks that

used the Cyclic distribution with modulo unrolling WU ran slower because of this

overhead.

Another observation is that the Chapel distributions using modulo unrolling
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WU use more memory than the originals. The optimization yields elements directly

from the local buffer that stores the aggregate message instead of yielding one remote

element at a time. This increase in memory overhead is not unique to our scheme

– any method that aggregates messages will necessary use more memory for the

aforementioned reason. Although we did not directly measure peak memory usage,

this means that each locale on our computer needs at least enough memory to fit the

number of elements per follower iterator chunk for each benchmark (see Figure 8.1).

This amount of memory is strictly a minimum because it is conceivable for multiple

aggregate messages to take up space on a single locale at once, since follower iterator

chunks are yielded in parallel. For very large data sets, this behavior could limit

the cache performance that we would get when running the original distribution’s

follower iterator.

In Chapel, the size of a follower iterator chunk of work used in a parallel

zippered loop is determined by many factors including the program’s input size, the

number of locales that the data is distributed over, the block size parameter (when

data is distributed using the Block Cyclic distribution), and most importantly, the

number of elements in each object of the zippering. This last factor is closely related

to the algorithm of a particular program, and our benchmark suite evaluation has

already tested how modulo unrolling WU performs for a variety of algorithms. The

remaining sections of Chapter 8 illustrate precisely how changing the parameters of

input size, number of locales, and block size affect the performance improvements

of modulo unrolling WU.
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Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.4: pascal strong scaling results. For the Block Cyclic results,
the block size parameter was 4.

8.2 Strong Scaling Experiment

This experiment tests how strong scaling affects the performance improve-

ments of modulo unrolling WU with the Chapel Cyclic and Block Cyclic distri-

butions. Strong scaling is when a problem of the same size is run using a varying

number of locales. Focusing on the following benchmarks – pascal, folding, jacobi2D,

and fdtd-2d – problem sizes stay fixed according to Figure 8.1, but the number of

locales varies from two to eight as we measure runtime and message counts relative

to the existing Chapel distributions. We also measure the number of elements per

follower iterator chunk as a function of the number of locales.

We choose this subset of benchmarks because they achieved the greatest run-

time and communication performance improvements in Chapter 8.1, while still rep-

resenting one- and two-dimensional data structures and strided and non-strided data
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Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.5: folding strong scaling results.

access patterns. In this experiment, pascal is the only benchmark used to measure

strong scaling for the Chapel Block Cyclic distribution.

Figures 8.4 - 8.7 show the strong scaling results for the four benchmarks. We

observe the same two trends in each figure. First, the number of elements per

follower iterator chunk is inversely proportional to the number of locales that the

data is distributed over. This is directly related to the fact that there will be a fewer

number of data elements distributed on each locale as more locales are present

on the system. Second, as the number of locales increases, both the normalized

runtime and message count measurements for modulo unrolling WU increase. This

means that the performance improvement gap between modulo unrolling WU and

the existing Chapel data distributions gets smaller as the number of locales increases.

We attribute the decrease in performance improvement of modulo unrolling WU to

be caused by fewer elements available to be aggregated as the number of locales

increases.
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Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.6: jacobi2D strong scaling results.

In Figures 8.6 and 8.7, which correspond to the strong scaling results for the

jacobi2D and fdtd-2d benchmarks respectively, we observe spikes in the normalized

runtime and message count measurements for some numbers of locales, even though

the overall trend still increases when more locales are added. Both the jacobi2D

and fdtd-2d benchmarks happen to operate on two-dimensional arrays and contain

nearest neighbor computation. When distributing data cyclically in Chapel, by

default the pattern that the Cyclic distribution tries to assign elements to locales

is as “square” or “rectangular” as possible. For example, in Figure 2.2, the two-

dimensional array is distributed over four locales using a 2x2 pattern. However, with

four locales, this same array could have been distributed using a 4x1 or 1x4 linear

pattern. It turns out that for benchmarks similar to jacobiD and fdtd-2d, using a

”rectangular” pattern will result in more remote data accesses per loop iteration

than a linear pattern, leading to a higher improvement when message aggregation is

applied. The spikes we see in Figures 8.6 and 8.7 occur when we distribute the data
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Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.7: fdtd-2d strong scaling results.

over a prime number of locales. In this case, the only pattern to use to distribute

a two-dimensional array over a prime number n locales is a linear pattern of nx1

or 1xn. Note that it is possible to specify such patterns explicitly in Chapel for

composite number of locales.

8.3 Weak Scaling Experiment

This experiment tests how weak scaling affects the relative performance of

modulo unrolling WU with the Chapel Cyclic and Block Cyclic distributions. Weak

scaling is when we run programs on a constant number of locales but vary the input

size as we measure the performance.The same benchmarks used to measure strong

scaling in Chapter 8.2 are also used here to measure weak scaling. Varying the

input size of our benchmarks and keeping the number of locales constant at eight,

we measure the runtimes and message counts normalized to the existing Chapel
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Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.8: pascal weak scaling results. For the Block Cyclic results, the
block size parameter is 16.

distributions. Once again, pascal is the only benchmark used to measure weak

scaling for the Chapel Block Cyclic distribution.

Figures 8.8 - 8.11 show the weak scaling results for the four benchmarks. We

observe some similar trends throughout each benchmark. First, normalized message

counts are inversely proportional to the input size of the benchmark, and this is ev-

ident for both the Cyclic and Block Cyclic distributions. As input size increases, we

observe that the absolute message count measurements continue to increase when

modulo unrolling WU is not used because each remote data access requires its own

message. When modulo unrolling WU is used, absolute message count measure-

ments increase until a maximum and then stop increasing, due to aggregation, even

when input size continues to increase. Normalized runtime also appears to be in-

versely proportional to input size, but a given benchmark’s normalized runtime for

a particular input size is not predictable. Finally, as input size increases, so does the
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Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.9: folding weak scaling results.

number of elements per follower iterator chunk for both the Cyclic and Block Cyclic

distributions, implying that larger input sizes do indeed create a greater opportu-

nity for message aggregation. The number of elements per follower iterator chunk

increases linearly for the pascal and folding benchmarks and quadratically for the

jacobi2D and fdtd-2d benchmarks.

8.4 Block Size Variation Experiment

In this experiment, we focus on the two benchmarks pascal and jacobi1D,

where the Chapel Block Cyclic distribution can be used to distribute data, in order

to assess the effect of block size on the runtime and communication performance

of modulo unrolling WU. We vary the block size parameter (keeping input sizes

constant according to Figure 8.1 and the number of locales constant at eight) as we

measure runtimes and message counts relative to the existing Chapel distributions.
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Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.10: jacobi2D weak scaling results.

Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.11: fdtd-2d weak scaling results.
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Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.12: folding block size variation results.

Normalized Runtime Curves (left y-axis) 

Normalized Message Count Curves (left y-axis) 

Curves Showing # of Elements (right y-axis) 

Figure 8.13: jacobi1D block size variation results.

Figures 8.12 and 8.13 show the results of the block size variation experiment

for the folding and jacobi1D benchmarks, respectively. For both benchmarks, we

observe that as block size increases, the relative performance improvement of modulo

unrolling WU decreases. This is because increasing block size generally decreases

the number of elements per follower iterator chunk, which lowers the amount of

aggregation possible.
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