
Challenges of Navigational Queries: Finding

Best Paths in Graphs

Louiqa Raschid1, Maŕıa-Esther Vidal2, Yao Wu1, Marelis Cardenas2, and
Natalia Marquez2

1 University of Maryland
{louiqa,yaowu}@umiacs.umd.edu

2 Universidad Simón Boĺıvar
{mvidal,mcardenas,nmarquez}@ldc.usb.ve

Abstract. Life science sources are characterized by a complex graph
of overlapping sources, and multiple alternate links between sources. A
(navigational) query may be answered by traversing multiple alternate
paths between an origin and target source. Paths may be character-
ized by several metrics, including the cardinality of objects of the target
source(TOC), the cost of query evaluation of a plan for the path, and the
user’s preference for specific paths. Our challenge is finding the best paths
among the set of all solutions, AllPaths, that meet some user specified
ranking criteria. If the user ranking criteria is strict, then the problem is
to find the Top K paths. If the user wants a trade-off of several metrics,
then the problem is to find the Skyline paths that are not dominated by
other paths. NSearch is a naive solution. BFSrchOpt is a heuristic best-
first search strategy. It uses a metric to rank partial solutions (subpaths)
and (local) metrics to guide graph traversal, and produces BFPaths. We
compare the precision and recall of BFPaths compared to the Top K%
or Skyline of AllPaths. We study the impact of graph properties on the
behavior of BFSrchOpt. BFSrchOpt can be orders of magnitude faster
than NSearch.

1 Introduction

During the past few years, the number of biomolecular Web accessible sources
has increased rapidly. For a particular molecular concept, e.g., gene or protein,
there may be several sources, each of which may have several links to other Web
sources. To integrate data across these sources, users traverse alternate links and
paths through sources. Given a navigational query, the space of possible paths
can be exponential in the number of sources and links that are relevant to the
query [11]. Further, once paths have been identified, the user still has to explore
all the results in the target sources, e.g., all the publications linked to some
protein. Since this is a time intensive exercise, it is important to support a user
and try to identify the best paths to answer a navigational query.

Suppose we consider a specific path. The number of target objects in the
target source reached along the path is one metric characterizing the path. Sci-
entists also have their own preferences for a specific source or link. For example,

if a user wants information on proteins he may specify a preference for Swis-
sProt over PIR. User preference is another metric for this path. Since data is
distributed across remote sources and there are delays, or charges for accessing
servers, the evaluation may vary among the different paths. The diversity of
metrics that describe a path results in the user having to solve a difficult task of
selecting the best through life science sources. When the search space is large,
then this is both, difficult and expensive.

The challenge that we address in this paper is quickly finding the paths that
can provide answers to a navigational query, and then finding the best paths from
among the set of all paths AllPaths. If the user has a strict ranking criterion
based on a specific metric for the paths, then the problem can be modeled as a
Top K search. However, if the user is interested in multiple metrics that are not
comparable, e.g., cost and user preference, then the problem is to quickly find
the Skyline paths that are not dominated by other paths in AllPaths, for these
metrics.

We consider the problem of a navigational query which is expressed as an
extension to a regular expression. A query is answered by a set of paths from
an origin source to a target source. The user also specifies a metric to solve the
Top K problem, or a tradeoff of several metrics to solve a Skyline problem.

We analytically determine an upper bound on the number of paths for a
variety of graphs and demonstrate that the search space of paths cannot be
efficiently explored by an exhaustive algorithm. For comparison purposes we use
a naive search NSearch [10] based on a Deterministic Finite Automaton (DFA)
for a query. It exhaustively enumerates the space of the paths for the query and
tries to produce all solutions in AllPaths.

This paper presents the BFSrchOpt algorithm that implements a first-best
strategy to traverse the space of sources and links, guided by the DFA of the
query. It uses a heuristic designed to rank and minimize the number of possibil-
ities considered at each point. Thus, it reduces the time needed to produce good
paths. For the Top K problem with a strict ranking on a metric, BFSrchOpt will
output the first K paths traversed. For the tradeoff of several metrics and the
Skyline problem, BFSrchOpt will identify a set of non-dominated source paths.
We use a divide and conquer based algorithm presented in [8], to identify the
set of non-dominated paths.

We use three metrics: target object cardinality (TOC), evaluation cost, and
user preference (UP). We consider the Top K problem for each metric and the
Skyline problem for the tradeoff of the three metrics. We present the results of
an experimental evaluation of BFSrchOpt for a diversity of synthetic graphs. We
also consider pseudo-real graphs that reflect the metrics of some real sources at
NCBI, NIH. We compare the behavior of the Top K or Skyline of paths produced
by BFSrchOpt with respect to the Top K or Skyline of AllPaths, if we can
generate them. We report on the number of paths produced by the BFSrchOpt
when the different metrics are considered. We use precision and recall for this
comparison. We study the effect of the shapes of the graphs, the size of the
graphs, and metrics describing the links. The precision and recall of BFSrchOpt

are both high across all graphs and indicate uniformly good behavior across a
wide range of graphs and metrics. BFSrchOpt outperformed the computation
time of NSearch, often by multiple orders of magnitude.

The paper is organized as follows: in Section 2 we motivate the problem using
an example. Section 3 describes our approach. Section 4 describes a naive solution
and presents BFSrchOpt. Section 5 presents the results of an experimental study.
Section 6 compares our proposed approach with respect to related work. Finally,
in section 7, we give our conclusions.

2 Motivating Example

In Figure 1, a subset of sources at the National Center for Biotechnology Infor-
mation (NCBI)(http://www.ncbi.nlm.nih.gov) is presented. Sources are associ-
ated with logical concepts, Gene, Protein, Sequence, Publication. Each source
has some objects stored within, each having zero or more links to objects in the
other sources.

(Protein)

PubMed (Publication)

OMIM (Gene)

Nucleotide
(Sequence)

Protein

Fig. 1. A source graph for OMIM and NCBI data sources (and corresponding scientific
entities)

Path TOC Cost UP
P1:OMIM → PubMed 4112 4584 0.75
P2:OMIM → Nuc → PubMed 5891 3512 0.9
P3:OMIM → Protein → PubMed 6612 3851 0.9
P4:OMIM → Nuc → Protein → PubMed 5847 5000 0.50
P5:OMIM → Protein → Nuc → PubMed 5800 12379 0.7

Table 1. Five paths from OMIM to PubMed

Suppose a scientist needs to interrogate these sources, and retrieve all pub-
lications that are linked to gene instances. To answer this query, a set of source
paths in Figure 1 from OMIM to PubMed will be explored. Table 1 lists the five
source paths connecting the origin source OMIM and the target source PubMed.
Each path is described by the number of publication entries that are reached fol-
lowing the path or cardinality of target objects (TOC), the cost in milliseconds

for retrieving these objects from the sources (Cost) 3, and the user preference
(UP). These metrics will be discussed in detail later.

Even with this small number of sources in Figure 1 there are 5 paths. As
the number of paths in the solution increases, the user may be interested in a
recommendation of the best paths, based on their chosen metrics. Suppose the
user wanted to see the top K=3 paths and the metric was user preference UP.
Then, the best 3 paths are P2, P3 and P1, where P2 and P3 have the highest
value.

On the other hand, a user may consider all three metrics to be equally im-
portant. In this case the two solutions P2 and P3 are identical on UP, but they
are incomparable with respect to TOC and Cost since the TOC for P3 is greater
than P2, and P3 has higher cost. Then, P2 and P3 are the non-dominated paths.
They will be in the Skyline.

3 Querying Life Science Sources

In this section, we introduce our life science data model and query language.
Second, we present a theoretical analysis of the size of the resulting space of
source paths. Third, we define the Top K and Skyline problems. Finally, we
describe three metrics that can characterize a source path.

3.1 Data Model

Life science sources may be modeled at three levels: the physical level, the object
level and the logical level. The logical level is represented by a directed Logical
Graph, where nodes correspond to logical classes, C, e.g., protein, gene, publica-
tion, and edges represent relationships between logical classes. The physical level
corresponds to the actual data sources S and the links LS that exist between
them. An example of data sources and links is shown in Figure 1. The physical
level is modeled by a directed Source Graph. An Object Graph is a graph (O, LO),
where O is a set of objects and LO is a set of links between objects. φ maps a
logical class in C U {ǫC} (a wildcard) to the set of sources in 2S that implement
it; the wildcard ǫC is mapped to all the sources in S. mO is a mapping from each
object in O to some source S.

3.2 Query Language and Semantics

The query language is an (extended) regular expression over the alphabet of C,
and ǫC represents any logical class. The BNF is in Figure 2. The result of the
evaluation of a query Q is two sets of simple paths Sp and So. Each path in Sp

corresponds to a path in the Source Graph that implements Q. Each path in So

is a path in the Object Graph that implement some path in Sp. Details in [9,
10].

3 Numbers presented in Table 1 correspond to a sample of the data from the NCBI
sources.

Regular expressions express navigational queries. For example, a scientist
may be interested to Retrieve all publications (p) linked to proteins (r); this is
expressed as (r.p). Class r can be interpreted by either NCBI Protein or Swiss-
Prot. Class p can be interpreted by PubMed. Suppose that there is a link from
NCBI Protein to PubMed, and a link from Swiss-Prot to PubMed. Therefore
both links, (Protein → PubMed) and (Swiss-Prot → PubMed), are paths in Sp

that implement (r.p).
Consider a query Retrieve publications linked to genes via any number of

intermediate sources (paths of any length ≥ 2); it is (g.ǫ+.p). If we answer this
query using the SourceGraph of Figure 1, there will be five paths from OMIM to
PubMed in the solution Sp. We note that in general a user will be interested in
applying selection criteria to identify specific proteins or genes or publications in
specific sources. For simplicity we do not consider such extensions in this paper.

Finally, the query language allows the user to select either the Top K option
(value K and specific metric) or the Skyline option (the set of metrics to be
considered for the tradeoff). The metrics are TOC, UP and Cost, and will be
described later.

Query := Query Ranking
| “(” Query “)”| “(“Query”)∗”
| Query “|” Query | Query . Query
| ǫC | ClassName

Ranking := empty | TopK | Skyline
TopK := Top K Metric
K := integer
Skyline := Skyline tradeOff Metrics
Metrics := Metric “,” Metric | Metric “,” Metrics
Metric := “min” | “max” MetricName
MetricName:=“TOC”| “UP” | “Cost”

Fig. 2. The Syntax of the Query Language

3.3 The Size of the Search Space

To motivate the importance of the problem of efficiently traversing the search
space, we discuss the size of the search space. We consider a number of graphs,
ranging from a binary tree, a chain tree to a DAG. All graphs considered are
acyclic, otherwise we would have an infinite search space. Let n be the number
of nodes in the graph (tree); this is the number of nodes in the Source Graph.

Let l be the length of the regular expression. We consider when the regular
expression (RE) allows (does not allow) the ∗ to represent paths of unspecified

binary chain general
SG and RE complete DAG

tree tree tree

ε free RE-allow * O(n2) O(n2) O(n2) O(

�
n
2

�
·

1
n

�
2(n − 1)

n − 1

�
)

* free RE-allow ε O(l · n) O(n − l + 1) O(l · n) O(

�
n
l

�
· (l!))

general RE-allow * and ε O(n2) O(n2) O(n2) O(

�
n
2

�
·

1
n

�
2(n − 1)

n − 1

�
)

Table 2. Search space for different RE and SG

length. We also consider when RE allows (does not allow) the wild card ǫ. Recall
that a wildcard would match against any of the class labels of some set E.

Table 2 reports on the upper bound of the number of paths in the search
space corresponding to different classes of RE and for different types of the SG.
We note that the highest cardinality is for REs that allow ∗ for the DAG.

If there is a ∗ in RE, then all paths in the source graph could satisfy RE. In
a tree type source graph, there is exactly one path between each pair of source
nodes. For a DAG type graph, the number of paths between any pair becomes
Catalan number series, and there are at most

�
n

2

�
pairs. If there is no ∗ in RE,

then the number of paths is a function of the length of the RE.

3.4 Two Best Path Problems

Top K Given a query Q, a Source Graph SG, a metric M and an integer K,
the Top K problem is identifying the K paths S′

p={p1,. . . ,pk}, with the highest
ranking for M .

For example, a user may be interested only on the top 3 paths that mini-
mize the cost of retrieving publications reached from genes via any number of
intermedia sources; using our language this is specified as follows:

(g.ǫ+.c Top 3 min Cost).

If we evaluate the query against source in Figure 1, then the result will be
the paths P1, P2 and P3 from Table 1.

Skyline Given a query Q, a Source Graph SG, and the tradeoff of a set of metrics
SM all equally important for the ranking, the Skyline problem is identifying
the non-dominated set of source paths S′

p={p1,. . . ,pj}, where paths in S′

p have
the highest ranking for the metrics SM and all paths are incomparable for the
metrics.

Suppose a user is interested in paths that maximize the numbers of pub-
lications reached from genes via any number of intermediate sources and that
minimize the cost. The query is as follows: (g.ǫ+.c Skyline tradeOff max TOC,
min Cost).

Considering the source in Figure 1, we will find out that source paths P3 and
P2 are better than any other path, but that they are incomparable, i.e., none of

them is better than the other in terms of TOC and Cost. Then, both P3 and P2

are the top paths and will comprise the answer to the Skyline Problem.
A set of non-dominated paths consists of all paths that are not dominated

in all the metrics by any other path in the sense of Pareto optimality. This set
is also called Pareto set or Skyline [5, 13]. The problem of finding a set of non-
dominated solutions is referred in the literature as the maximal vector problem
[8, 5]. In [8] a theoretical algorithm based on a divide and conquer strategy was
presented. The algorithm established that the maximal vector problem is o(n2),
where n is the size of the set of vectors. Fortunately, the divide and conquer is
not as expensive and its average cost is O(mnlogn), where m is the number of
dimensions of the vectors, and n is the size of the set of vectors.

3.5 Source Path Metrics

A source path p in a Source Graph can be characterized by a number of metrics.
In this paper, we consider three metrics, namely, the cardinality of the target
objects (TOC), the cost of evaluating a path (Cost), and a metric to represent
user’s preferences (UP).

Target Object Cardinality The Target Object Cardinality (TOC) is defined
as the number of distinct objects that are reached in the target (final) source
of the path [18]. TOC can be computed by evaluating a set of join operations
or by sampling all the objects paths into the Object Graph. This can be quite
expensive and here we present an estimation of TOC. Consider a path p through
sources S1, S2, . . . , Sn, TOC for p is defined as follows:

TOC(p) = c(Sn)tocf(n) (1)

The tocf(i) is a factor representing the probability that an object in Si can
be reached from some object in S1. The value of tocf(i) for a path from S1 to S2

is trivially defined as tocf(2) = lim(S1,2)/c(S2), where lim(Si, i+1) corresponds
to the number of data objects in Si+1 that have at least one incoming link from
objects in Si, and c(Si+1) represents the cardinality of source Si+1.

To compute tocf(i + 1) we compute the probability that an object is not
reached for some tocf(i), and then we use that to compute the probability that
it is reached. An object x in Si+1 receives on average δin

i+1 = l(Si,i+1)/lim(Si,i+1)
edges from objects in Si. If at least one of these δin

i+1 objects in Si is reached
from some object in S1, then we will reach x. Similarly, an object x will not be
reached if all δin

i+1 objects in Si are not reached from some object in S1. The
expression tocf(i + 1) is recursively defined in terms of tocf(i) as follows:

tocf(i + 1) = (lim(Si,i+1)/c(Si+1)(1 − (1 − tocf(i))δin
i+1) (2)

where, δin
i+1 = l(Si,i+1)/lim(Si,i+1), and l(Si,i+1) is the number of links from all

data objects of source Si pointing to data objects of Si+1.

User Preference The user preference metric defines the preference of a user
for a path in terms of her preferences for the sources and links in the path. We
assume users provide an absolute score between 0.0 and 1.0 to measure their
preferences for all the sources implementing class C or all links between sources
that implement a logical link between classes Ci and Cj . Table 3 shows a simple
example. Note that we expect that users will provide such rankings specific to
certain queries, e.g., if the user is interested in some subset of proteins that are
associated with “apoptosis”, then she will express a preference for that particular
subset. We expect that user preferences will be updated as queries are evaluated
and users examine the results obtained.

Logical Physical UP
Protein SwissProt 0.8
Protein PIR 0.6
Protein PDB 0.75
Gene → Protein OMIM → SwissProt 0.8
Gene → Protein OMIM → PIR 0.9
Gene → Protein OMIM → PDB 0.5

Table 3. User Preferences

Let UPs(Si) be the user preference for a source Si and let UPl(Si, Si+1) be the
user preference for a link; both are a value in the range [0.0 - 1.0]. Then, the user

preference for a path is
∑n−1

i=1 1/n× (min(UPs(Si), UPl(Si, Si+1), UPs(Si+1))

Cost of Evaluating a Plan for a Path This metric estimates the cost of
evaluating a path p in terms of the intermediate objects generated during the
evaluation of the path p [18]. We consider that each link from Sj to Sj+1 in a
path p, can be either implemented as a hashJoin(Sj,j+1) or a navJoin(Sj,j+1),
and we measure the cost of the path, considering that one implementation of
the links is given. Then, cost of path corresponds to the sum of the costs of the
evaluation of each link in the query.

A hashJoin(Sj,j+1) requires a hash table to distinguish the objects that sat-
isfy the join condition, and the cost of hashJoin(Sj,j+1) is defined as follows [14]:

cost(hashJoin(Sj,j+1)) = 3(c(Sj) + c(Sj+1)
The cost of hashJoin(Sj,j+1) and hashJoin(Sj+1,j) is the same. On the other

hand, a navigational join (navJoin(Sj,j+1)) traverses all the objects in Sj+1 that
are linked to an object in Sj. The cost of a navigational join is similar to the cost
of a nested loop join [14], and it is defined as follows: cost(navJoin(Sj,j+1) =
c(Sj) + c(Sj) × c(Sj+1). The cost of navJoin(Sj,j+1) and navJoin(Sj+1,j) may
not be the same since the number of objects in Sj and Sj+1 may be different.

4 Best Paths Algorithms

In this section we describe our algorithm in detail. We begin describing a naive
approach, second, we present some basic assumptions, and finally, we propose
the BFSrchOpt algorithm.

4.1 Naive Solution

A naive solution for the problem of producing the Top K source paths, can be
performed in three steps: a) produce all the source paths that implement a query
using NSearch, b) probe the ranking function for each path, and c) output the K
paths with the highest scores. This can be done as described in [17]. If the trade-
off of the metrics is considered, then the set of non-dominated paths should be
returned. This naive approach requires an exhaustive search of the source paths
in the Source Graph, a sequential scan of the complete set of paths to compute
the metric values, and the ranking of the complete set of paths. As we showed
in the previous section, the number of source paths can be exponential on the
size of the graph, and a complete probing at query time is clearly unacceptable
in most cases.

In previous research in [10] we presented the algorithm NSearch that is based
on a deterministic finite state automaton (DFA) that recognizes a regular expres-
sion. The NSearch algorithm runs in polynomial time in the size of the graph, if
the graph is cycle-free and all paths are cycle-free. If d is the maximum number
of sources that can precede a source in the SG, and b is the maximum length
of (cycle free) paths satisfying the regular expression, then O(db) is an upper
bound for NSearch.

4.2 A Best First Strategy

The naive solution presented in the previous subsection, requires to explore
the complete space of paths to produce the first solution. In large spaces, this
behavior is not acceptable. To address this problem, we propose the BFSrchOpt
algorithm that implements a best first strategy that produces top source paths
relatively fast. Figure 3 shows algorithm BFSrchOpt.

Basic Principles BFSrchOpt traverses the space of paths using a DFA that
represent the regular expression or query. At each step of the search, BFSr-
chOpt ranks and chooses the K best subpaths (Top K Problem) or the set of
non-dominated subpaths (Skyline Problem). It expands these subpaths using
sources that are ranked using local metrics. The divide and conquer based algo-
rithm proposed in [8], is used at each step to identify the set of non-dominated
subpaths. The BFSrchOpt uses the following four local metrics. Each local met-
ric was defined to maximize/minimize the values of its corresponding metric, for
example, ltoc(Sj) allows to rank the sources that maximize the TOC, and so on.

– Top K for TOC: ltoc(Sj)=((1 − tocf(j − 1))δin
Sj).

– Top K fro Cost: lcost(Sj)= the minimum of hashJoin(Sj−1,j), navJoin(Sj−1,j),
and navJoin(Sj,j−1).

– Top K for UP: lup(Sj)= the minimum of UPs(Sj) and UPl(Sj−1, Sj).
– Skyline for TOC-Cost-UP: ltoc-lcost-lup: maximizes ltoc(Sj) and lup(Sj) and

minimizes lcost(Sj)

To avoid considering only locally optimal subpaths, BFSrchOpt chooses also
a number of subpaths that decrease the metric measure. Thus, if p is the sub-
path, identified for the current transition t, that has the greatest metric value,
then, BFSrchOpt will choose subpaths pi, different from p, that decrease the
metric value. The probability of choosing pi is given by a Boltzmann factor:
e−((f(pi)−f(p))/T), where f denotes the metric and T is a function that rep-
resents how far the transition t is from a final state in the DFA. The value
T decreases as the BFSrchOpt gets closer to final states in the DFA, and the
probability of choosing a majority of good solutions gradually increases. This
technique to choose subpaths is similar to the one used in the meta-heuristic
Simulated Annealing to avoid becoming trapped in a local minima.

Algorithm BFSrchOpt

INPUT: DFA: A deterministic finite state automaton for the query. SG: Source Graph. φ:
Mapping from logical concepts to set of sources. K: The number of subpaths considered in
each iteration. SM: Metrics. TradeOff: Boolean. LM: Local Metrics.
OUTPUT: FINAL: a set of Top paths.

1. INITIALIZE:
(a) Assign Empty to FINAL.
(b) Create stack OPEN of subpaths, where a subpath s is a list of pairs, (Si, ti). A ti is

a transition of the DFA and it is a triple (i,f,e), where, i is the initial state, f is the
final state, e is a class label in E. Initialize OPEN with a subpath with a singleton
pair in the list, corresponding to the first transition of the DFA, where i is the start
state of the DFA.

2. RANK: If TradeOff identify the non-dominated subpaths in OPEN; Else, use metrics
in SM to choose the top K paths in OPEN.

3. SEARCH: While OPEN is not empty
(a) Select the highest ranking subpath of OPEN, sh=p1,...,pl, and consider the last pair

pl=(Sl,tl) where Sl is a source, and tl is a transition.
(b) EXPAND:

i. Create a stack OPENSOURCES for those sources S′ ∈ φ(e), where e is the
label in transition tl and there is a link (Sl,S′) in SG.

ii. Rank OPENSOURCES using the local metrics in LM.
iii. While OPENSOURCES is not empty

A. Select the highest ranking source S′.
B. If f , the final state of tl is a final state in the DFA, then push sh to FINAL.

Else, create a pair (S′, tnext), where tnext is the transition to follow tl in
the DFA. Append this pair to sh in OPEN.

C. If TradeOff or the cardinality of FINAL is K, EXIT;
Else RANK.

4. EXIT return FINAL;

Fig. 3. Algorithm BFSrchOpt

5 Experiments

We report on an extensive comparison of NSearch and BFSrchOpt for a variety
of graphs where we vary the type of graph (wheel, ring, general) and the size of
the graph (cardinality of nodes and edges) and other metrics of the graph, e.g.,
source and link cardinality, target source image and origin source participation.
We include pseudo-real graphs that reflect the metrics of real sources at NCBI.

We generate AllPaths, all solutions to the query, when it is possible, and se-
lect the Top 25 % of AllPaths, labeled Top25%Paths, using: TOC, UP and Cost.
In the case of the tradeoff, Skyline corresponds to the set of non-dominated so-
lutions in AllPaths. Since the number of paths can be exponential in the size
of the graph, NSearch may fail to exhaustively enumerate the whole space of
paths. We modify the NSearch and BFSrchOpt algorithms to run for a number
of iterations, where an iteration corresponds to a node visited during the search.
We run NSearch and BFSrchOpt for some fixed number I of iterations and gen-
erate NPaths and BFPaths. We compare the precision and recall of NPaths and
BFPaths with respect to Top25%Paths and Skyline. The precision of BFPaths
reflects the efficiency of BFSrchOpt in traversing the graph. A high precision or
high efficiency indicates that BFSrchOpt made good decisions while traversing
the graph to generate paths. The recall of BFPaths reflects the performance of
BFSrchOpt and how close it is to the optimal solution. A high recall or high
performance indicates that BFSrchOpt made good decisions in solving in the
problem of identifying good paths.

We ran all our experiments on a machine equipped with two Pentium III
processors running at 950 MHz, 1GB of RAM, Linux Fedora Core Release 1 and
Java 1.4. In some cases where the graph was very large, we could not compute
AllPaths in a reasonable running time. In such cases, we compare the quality of
BFPaths and NPaths and the running time to produce them.

To summarize our results, the precision and recall of BFSrchOpt is high
across all experiments and indicate uniformly good behavior across a wide range
of graphs. The varying Metrics and Local Metrics all performed well. The metric
Cost appeared to have a moderately significant impact in some cases. This may
be because it is a monotone function. BFSrchOpt outperformed the computation
time of NSearch, often by multiple orders of magnitude. We now present detailed
experimental results.

5.1 Experiment 1: Performance for a Variety of Graph Shapes

We study BFSrchOpt and NSearch when the shape of the source graph SG
changes. Recall that each node in SG is a source containing data objects and that
each object has links in the Object Graph OG to objects in other sources. The
number of nodes and edges and the shape of SG may impact the performance
of both algorithms. Table 4 reports on the number of nodes and edges for each
SG, and the minimum, maximum, average and the standard deviation for the
indegree and outdegree of the nodes in the synthetic graphs. These graphs were
randomly generated following a uniform distribution.

We evaluate the complex query ”aǫ∗b” on three shapes for SG, ring, wheel
and general. The total number of paths satisfying the query, AllPaths, for each
of the three source graphs is reported in Table 5. We run the algorithms for
I iterations and report on the number of paths produced by BFSrchOpt and
NSearch, namely BFPaths and NPaths. We consider three metrics Target Object
Cardinality (TOC), Cost, User Preference (UP), to rank BFPaths. BFSrchOpt
can explore up to K subpaths at each step; we report results for values of K=25%

Ring General Wheel

Nodes 39 84 118
Edges 66 253 226
In-Degree (1,5,1,1.1) (0,10,3,2.1) (1,12,1,2.1)
Out-Degree (0,6,1,1.3) (0,21,3,5.1) (0,14,1,2.8)

Table 4. Parameter settings for graphs of Experiment One

and 100%. We also report on the Skyline paths produced by BFSrchOpt using
the trade-off of these 3 metrics.

Ring General Wheel

Iterations 3000 5000 2000
AllPaths 677 1145 875
NPaths 12 36 31

BFPaths K=100%
TOC 594 1004 314
Cost 594 1004 306
UP 594 1004 219

BFPaths K=25%
TOC 170 287 219
Cost 170 287 219
UP 76 286 78

BFPaths Skyline
TOC-Cost-UP 169 286 218

Table 5. A Comparison of Solutions Allpaths, NPaths and BFPaths for Experiment
One

As seen in Table 5, as K increases, BFSrchOpt produces more paths. With
K=100%, BFSrchOpt generates almost all paths in AllPaths for the Ring and
General SG. It does not perform as well on the Wheel SG and produces at most
314 or 40% of AllPaths. We note that in comparison, NSearch is unsuccessful in
producing many paths, for e.g., it only produces 12 out of 677 possible paths in
AllPaths for the Ring SG.

Ring General Wheel
Running Time BFSrchOpt K=100%

TOC 3373 4006 5174
Cost 4518 3696 3277
UP 4477 3603 2972

Running Time BFSrchOpt Skyline
TOC-Cost-UP 4223 3693 3296

Running Time NSearch
1390300 16597990 2663218

Table 6. Running Time (msec) for BFSrchOpt K=100%, BFSrchOpt Skyline and
NSearch for Experiment One

Table 6 reports on the time for I iterations for BFSrchOpt with K=100%,
BFSrchOpt Skyline and NSearch. As can be seen, BFSrchOpt outperforms NSearch,
and in some cases the performance improvement is several orders of magnitude.

Finally, we compare the precision and recall of BFPaths and NPaths com-
pared to AllPaths. In Figure 4, we show the precision (a) and recall (b) of
BFPaths for the 3 metrics TOC, Cost and UP, with K=25% of the size of All-
Paths and the Skyline of BFPaths, compared to AllPaths. Our first observation
is that the precision and recall values are uniformly good for BFPaths across all
graph shapes. The precision varies from between 60 to 100%. Also, Figure 4 re-
ports on the precision (c) and recall (d) of NPaths. The precision is surprisingly
good, and in the case of the Wheel SG, it outperforms BFSrchOpt for K=25%.
However, the recall is uniformly poor compared to BFPaths; in all cases the
recall for NPaths ranges from 0 to 15 %.

Ring General Wheel
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

(a) Precision BFSrchOpt K=25% and Skyline
Ring General Wheel

0

0.2

0.4

0.6

0.8

1
R

ec
al

l

(b) Recall BFSrchOpt K=25% and Skyline

Ring General Wheel
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

(c) Precision NSearch and Skyline
Ring General Wheel

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(d) Recall NSearch and Skyline

TOC
Cost
UP
Skyline

Fig. 4. Precision (a) and Recall (b) of BFSrchOpt K=25% and BFSrchOpt Skyline;
and Precision (c) and Recall (d) of NSearch wrt AllPaths and Skyline. Experiment One

To summarize, BFSrchOpt has good precision and recall across all graphs
and significantly outperforms NSearch.

5.2 Experiment 2: Performance for Varying (Pseudo-Real) Graph
Sizes

We consider three general graphs G1, G2 and G3 for the source graph SG, of in-
creasing size. They represent pseudo-real graphs. The graph G1 was constructed
to reflect the object graph metadata of NCBI sources that implement the logical
concepts gene, nucleotide, citation and protein. Then, a graph Gi + 1 was gener-
ated from Gi by adding nodes and edges, while maintaining the same metadata
as Gi. Table 7 reports on the number of nodes and edges for each graph and

G1 G2 G3

Nodes 21 40 80
Edges 79 140 280
In-Degree (0,14,3,3.8) (0,20,3,4.11) (0,30,3,4.87)
Out-Degree (0,8,3,2.5) (0,15,3,3.65) (0,23,3,4.52)

Table 7. Parameter setting for pseudo-real graphs of Experiment Two

the minimum, maximum, average and the standard deviation for the indegree
and the outdegree of objects in the pseudo-real source graphs.

We evaluate the complex query ”gǫ∗n”. The algorithms are run for 950 iter-
ations for G1 and G2 and for 6000 iterations for G3 since this is a large graph.
Table 8 reports on the cardinality of Allpaths; as can be seen, it is over 8500
for G3. The cardinality of NPaths and BFPaths for K=25%, K=50% and Sky-
line are shown. For these graphs, NSearch appears to perform much better than
reported in the previous experiment. For G3, NSearch produces slightly more
paths compared to BFSrchOpt with K=50%.

G1 G2 G3

Iterations 950 950 6000

AllPaths 1144 1655 8503

NPaths 247 328 2873
BFPaths K=50%

TOC 398 361 2766
Cost 344 247 1575
UP 283 245 1700

BFPaths K=25%
TOC 286 361 2126
Cost 286 247 1667
UP 217 245 1441

BFPaths Skyline
TOC-Cost-UP 217 245 1565

Table 8. A Comparison of Solutions AllPaths, NPaths and BFPaths for Experiment
Two

Table 9 reports on the running time for these experiments. BFSrchOpt out-
performs NSearch by at least one order of magnitude.

Figure 5 reports on the precision (a) and recall (b) for BFPaths for K=100%
and BFSrchOpt Skyline, and it also reports on the precision (c) and recall (c)
for NSearch.

We note recall for BFpaths and NPaths have similar behavior, and that BF-
Paths outperforms NPaths for precision. We note that the metric Cost appears to
lead to excellent behavior of BFSrchOpt. Given that the Cost metric is monotone
these results indicate that BFSrchOpt was able to produce local top subpaths,
that conduced to the top paths.

To summarize, for the general graphs of this experiment, BFPaths and NPaths
showed similar behavior, with BFPaths outperforming NPaths moderately. We

Running Time BFSrchOpt K=100%
Metric G1 G2 G3

TOC 995 1485 64020
Cost 855 1068 42112
UP 707 1101 46051
Running Time BFSrchOpt Skyline

TOC-Cost-UP 749 1128 45651
Running NSearch

G1 G2 G3

5496 9958 747335

Table 9. Running Time (msec) for BFSrchOpt K=100%, BFSrchOpt Skyline and
NSearch for Experiment Two

G1 G2 G3
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

(a) Precision BFSrchOpt K=100% and Skyline
G1 G2 G3

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(b) Recall BFSrchOpt K=100% and Skyline

G1 G2 G3
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

(c) Precision NSearch and Skyline
G1 G2 G3

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(d) Recall NSearch and Skyline

TOC
Cost
UP
Skyline

Fig. 5. Precision (a) and Recall (b) of BFPaths K=100% wrt AllPaths; and Precision
(c) and Recall (d) of NPaths wrt AllPaths. Experiment Two

observe that BFSrchOpt was able to exploit the metric Cost for these graphs.
Further, the running time of BFSrchOpt is at least one order of magnitude better
than NSearch.

5.3 Experiment 3: Performance on Very Large Graphs

We compare BFSrchOpt and NSearch for a very large graph, i.e., it is not feasible
to compute AllPaths. Table 10 reports on the graph parameter settings.

General

Nodes 64
Edges 328
In-Degree (0,15,5,4.5)
Out-Degree (0,16,5,4.9)
Iterations 2500
NPaths 298

BFPaths K=100%
TOC 184
UP 184
Cost 184

BFSrchOpt Skyline
TOC-Cost-UP 184

Table 10. Parameter settings for Experiment Three

We evaluate the complex query ”hǫ∗m”. We ran the experiment for 2500
iterations. We note that NSearch generated about a third more paths compared
to BFSrchOpt for K=100%. However, if we consider the running time reported
in Table 11, we observe that the NSearch performance is at least 3 orders of
magnitude worse compared to BFSrchOpt. In other words, NSearch performs a
significant amount of computation to produce a moderate increase in the car-
dinality of NPaths. We could not compare precision and recall since we could
not generate AllPaths. We did however, compare the TOC, Cost, UP and the
trade-off. We have observed that they have similar metrics.

General
Running Time BFSrchOpt K=100%
TOC 405
Cost 353
UP 400
Running Time BFSrchOpt Skyline

TOC-Cost-UP 367
Running Time NSearch

376298

Table 11. Running Time (msec) for BFSrchOpt K=100%, BFSrchOpt Skyline, and
NSearch for Experiment Three

To summarize, in very large graphs, BFSrchOpt has running time at least
3 orders of magnitude better than NSearch. NSearch does produce a moderate
increase of paths compared to BFPaths. However, the paths that are produced
seem to have similar quality with respect to the TOC, Cost and UP trade-off.

6 Related Work

The problem of evaluating top K queries has been extensively studied [2, 1, 7].
Additionally, the problem of finding a set of non-dominated solutions is referred
in the literature as the maximal vector problem [8] and a variety of algorithms
has been proposed [8, 3, 5]. Typically, these two types of approaches share the
challenge of identify the top objects among a set, and minimize the number of
probes. We also address the problem of producing the top paths, but in our case
the objects to be ranked are not given as an input. BFSrchOpt has to explore
the space of the source paths that implement a query and at the same time,
probe which of them could comprise the top final set.

Many strategies or meta-heuristics have been proposed to solve the problem
of graph searching [15]. We propose the use of a first best strategy to produce
the top source paths relatively fast. However, we plan to implement other strate-
gies as Simulated Annealing or Tabu Search and study their performance and
effectiveness with respect to the BFSrchOpt.

Finally, multi-objective optimization for database queries has been previ-
ously studied [4, 6, 12, 13, 16, 19]. The trade-off of execution cost versus delay in
producing the results was studied in [16] in the context of the Mariposa wide
area DBMS. More recently the trade-off of execution cost versus coverage was
studied in [4, 12, 19] in the context of Internet sources with overlapping cover-
age. [6] studied the trade-off between the accuracy of results versus the index
space needed to provide approximate answers to queries. Our problem is similar
to [12, 16, 19], in that they also developed heuristics to rank sources. However,
prior research assumed that the set of all sources that could answer the query
(with different coverage or delay or cost) was known a priori. The BFSrchOpt
addresses the problem of traversing the space of paths and identifying the ones
that may reach it to the Top source paths.

7 Conclusions and Future Work

We prepared an extensive evaluation of BFSrchOpt on a variety of graph shapes
and sizes, on very large graphs, and on pseudo-real graphs. In all cases, the
precision and recall of BFSrchOpt is high to moderate across all experiments
and indicate uniformly good behavior across a wide range of graphs. While the
four variants of the Metrics all performed well, the Cost metric seemed to have
the best behavior. BFSrchOpt outperformed the computation time of NSearch,
often by multiple orders of magnitude.

In future work, we will test BFSrchOpt on both artificial worlds and real
world data from NCBI. We will extend BFSrchOpt to include some randomized

strategies in selecting subpaths. This may help it overcome some of the limita-
tions that were observed, where BFSrchOpt did not generate all the paths.

References

1. N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-accesible
databases. Proceedings of ICDE, 2002.

2. K. Chen-Chuan and S. Hwang. Minimal probing: Supporting expensive predicates
for top-k. Proceedings of SIGMOD, 2002.

3. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. Proceed-
ings of ICDE, 2003.

4. A. Doan and A. Halevy. Efficiently ordering query plans for data integration. In
Proceedings of the ICDE, 2002.

5. P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data
sets. Proceedings of Very Large Data Bases, VLDB, 2005.

6. S. Guha, D. Gunopulos, N. Koudas, D. Srivastava, and M. Vlachos. Efficient
approximation of optimization queries under parametric aggregation constraints.
In Proceedings of the VLDB, pages 778–789, 2003.

7. I. Ilyas, R. Shah, W. Aref, A. Scott, and A. Elmagarmid. Rank-aware query
optimization. Proceedings of SIGMOD, 2004.

8. H. Kung, F. Luccio, and Preparata. On finding the maxima of a set of vectors.
JACM, 1975.

9. Z. Lacroix, Parekh K, and M.E. Vidal. Bionavigation: Selecting optimum paths
through biological resources to ev aluate ontological navigational queries. Proceed-
ings of the DILS Conference, 2005.

10. Z. Lacroix, L. Raschid, and M.E. Vidal. Efficient techniques to explore paths in
life science data sources. Proceedings of the DILS Conference, 2004.

11. Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph
databases. In Proceedings of the International Conference on Very Large Data
Bases, pages 185–193, 1989.

12. Felix Naumann. Quality-driven Query Answering for Integrated Information Sys-
tems, volume 2261 of Lecture Notes on Computer Science (LNCS). Springer Verlag,
Heidelberg, 2002.

13. Christos H. Papadimitriou and Mihalis Yannakakis. Multiobjective query optimiza-
tion. In Proceedings of the ACM Symposium on Principles of Database Systems
PODS01, 2001.

14. Ramakrishnan and Gehrke. Database Management Systems. Springer Verlag, 2003.
15. S.Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

1995.
16. M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and

A. Yu. Mariposa: a wide-area distributed database system. The VLDB Journal,
5(1):048–063, 1996.

17. P. Tsaparas. Using non-linear dynamical systems for web searching and ranking.
Proceedings of PODS, 2004.

18. M. Vidal, L. Raschid, and J. Mestre. Challenges in selecting paths for navigational
queries: Trade-off of benefit of path versus cost of plan. Proceedings of the Workshop
on Web and Databases, WebDB, 2004.

19. R. Yerneni, F. Naumann, and H. Garcia-Molina. Maximizing coverage of mediated
web queries. Stanford University Technical Report, Computer Science Department,
2000.

