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DNA sequencing is used to read the nucleotides composing the genetic material

that forms individual organisms. As 2nd generation sequencing technologies offering

high throughput at a feasible cost have matured, sequencing has permeated nearly

all areas of biological research. By a combination of large-scale projects led by

consortiums and smaller endeavors led by individual labs, the flood of sequencing

data will continue, which should provide major insights into how genomes produce

physical characteristics, including disease, and evolve. To realize this potential,

computer science is required to develop the bioinformatics pipelines to efficiently

and accurately process and analyze the data from large and noisy datasets. Here,

I focus on two crucial bioinformatics applications: the assembly of a genome from

sequencing reads and protein-coding gene prediction.

In genome assembly, we form large contiguous genomic sequences from the

short sequence fragments generated by current machines. Starting from the raw

sequences, we developed software called Quake that corrects sequencing errors more



accurately than previous programs by using coverage of k-mers and probabilistic

modeling of sequencing errors. My experiments show correcting errors with Quake

improves genome assembly and leads to the detection of more polymorphisms in re-

sequencing studies. For post-assembly analysis, we designed a method to detect a

particular type of mis-assembly where the two copies of each chromosome in diploid

genomes diverge. We found thousands of examples in each of the chimpanzee, cow,

and chicken public genome assemblies that created false segmental duplications.

Shotgun sequencing of environmental DNA (often called metagenomics) has

shown tremendous potential to both discover unknown microbes and explore com-

plex environments. We developed software called Scimm that clusters metagenomic

sequences based on composition in an unsupervised fashion more accurately than

previous approaches. Finally, we extended an approach for predicting protein-coding

genes on whole genomes to metagenomic sequences by adding new discriminative

features and augmenting the task with taxonomic classification and clustering of

the sequences. The program, called Glimmer-MG, predicts genes more accurately

than all previous methods. By adding a model for sequencing errors that also allows

the program to predict insertions and deletions, accuracy significantly improves on

error-prone sequences.
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Chapter 1

Background

Every individual organism has a genome consisting of deoxyribonucleic acid

(DNA) in structures called chromosomes that serve as the instructions for forming

that individual. DNA provides an elegant template on which natural selection can

act and has allowed the evolution of an incredible diversity of organisms. Elucidating

the mechanisms by which DNA performs this function is the major goal of genome

biology research.

Over the last 20 years, technologies have emerged to read the sequence of nu-

cleotides composing a strand of DNA. The first large-scale application of sequenc-

ing used a method developed by Frederick Sanger that is based on replicating the

DNA in the presence of altered nucleotides that halt the elongation of the growing

strand [1]. After sorting the halted fragments by length, one can read the original se-

quence from the final altered nucleotides. In a process called whole-genome shotgun

sequencing, the entire genome is randomly fragmented into smaller pieces, which

are then size-selected for sequencing. To obtain longer range information about the

genome, one can perform paired-end sequencing where a read is sequenced from

both ends of a DNA fragment. The pair of reads are then referred to as mates.

In 1995, the first full genome of a free-living organism was published for the

bacterium Haemophilus influenzae Rd [2]. As sequencing technology has evolved, a
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chromosome

fragments

reads

Figure 1.1: In whole-genome shotgun DNA sequencing, the chromosomes are fragmented, e.g.

by sonication, and fragments of the desired size are extracted. The ends of these fragments are

read by the sequencing machine. Often fragments much larger than the length of a read are chosen

so that sequencing both ends of the fragment establishes a distance constraint between the two

reads.

large number of full genomes have been sequenced, the most publicized being that

of the human genome [3]. These genome projects typically consist of the following:

After sequencing, one must reconstruct the full chromosomes from the short frag-

ment reads computationally in a process called genome assembly. Next, one would

annotate features of the genomic sequence such as the protein-coding genes. Finally,

one might compare the organism’s genome to previously published genetic sequence

to further understanding of how that genome and others have evolved.

The computational requirements of these different aspects of genome analysis

spawned the field of bioinformatics. Genome biology datasets, such as whole-genome

shotgun sequencing reads, are often large and full of experimental noise. Computer

science is needed to effectively manage and analyze the data in order to put it in

2



a tractable form for biologists. For example, as mentioned above, the first step

after sequencing a new organism is to assemble the reads to reconstruct the chromo-

somes. Genome assembly benefits from the application of advances from a subfield

of computer science focused on string algorithms. Further, predicting the locations

of genes in the reconstructed sequences can be tackled using machine learning al-

gorithms. Bioinformatics methods related to these two instrumental problems —

genome assembly and gene prediction — are the focus of this thesis.

1.1 Genome assembly

When sequencing a new organism, our goal is to recreate the entire genome

as a string of nucleotides. By repeating the sequencing experiment many times,

we make it likely that every part of the genome is covered by multiple reads [4].

The genome assembly problem is to reconstruct large contiguous segments of the

chromosomes from the sequencing reads, while avoiding mistakes that create false

sequence. A popular and successful framework for solving the assembly problem

breaks it up into three steps called overlap, layout, and consensus.

First, to understand the relationships between the reads, we determine where

they overlap. Because the sequencing process is inexact, the reads will contain

errors where a false nucleotide was substituted for the true one, a false nucleotide

was inserted, or a true nucleotide was deleted. Thus, we must allow for mismatches

and gaps in the overlap alignments. A naive approach that computed an alignment

using dynamic programming [5] for every pair of N reads with length L would require

3



chromosome

reads

overlap graph

Figure 1.2: Overlaps between sequencing reads can be used to construct a graph where each

read is a vertex and each overlap is an edge. Because we must compute overlaps on both ends of

the reads, these edges must be bidirectional. The proper assembly is a path that visits all of the

vertexes while obeying the bidirectionality constraints.

O(N2L2) computation time. A common heuristic first builds a hash table on k-mers

(substrings of length k) mapping each individual k-mer to a list of its appearances

in the reads. The k-mer size should be chosen so that reads that overlap share a

k-mer. Then we can filter the number of alignments computed by focusing only on

pairs of reads that share a k-mer.

In the layout stage, the overlaps are used to form a graph where each read is

represented by a vertex and overlaps between reads become edges (see Figure 1.2).

Note that in a perfect overlap graph, the true assembly is a Hamiltonian path, vis-

iting each read vertex exactly once. In practice, this has little use both because

the Hamiltonian path problem is NP-complete [6] and also because overlapping al-

gorithms will struggle to generate a perfect graph because of sequencing errors.

Unfortunately, many other combinatorial algorithms one might like to perform on

4



the overlap graph to assemble the reads are also NP-Hard [7]. Instead we must

rely on heuristics to assemble most datasets, where the goal is to form contiguous

stretches of sequence called contigs that are as large as possible without introducing

errors. For example, an early approach called Phrap uses a greedy algorithm to

merge overlapping reads [8]. Later approaches work to simplify the overlap graph

by removing transitive edges that are implied by closer overlaps and merging unam-

biguously connected vertexes [9, 10]. After forming contigs from the overlap graph,

the consensus step uses the reads to make a final base call at each position in the

contig.

De Bruijn graphs offer an alternative algorithmic formulation to the overlap

and layout stages of the assembly problem that has certain advantages [11]. To

build a de Bruijn graph of the reads, one must choose a k-mer size, form a vertex

for every k-mer, and draw an edge between two k-mer vertexes when those k-mers

are adjacent in one of the reads. Thus, the graph can be built in linear time in

the number and lengths of the reads, avoiding the potential quadratic time of an

overlap computation step. In theory, the genome can then be assembled by finding a

Eulerian path, i.e. one that visits every edge in the graph once, which can be found in

linear time in the number of edges. In practice, repeats and errors sufficiently muddle

the graph so that rarely is the true genome represented by a unique Eulerian path.

Nevertheless, de Bruijn graph-based assemblers that perform substantial additional

work to eliminate erroneous paths in the graph have proven successful [12,13].

When paired-end sequencing has been performed, the assembled contigs can

be further arranged into scaffolds by incorporating the distance constraints between

5



A R B R C

A

B

R

C

Figure 1.3: The prevalence of repetitive segments of in the genome complicate the assembly

problem. Here a repeat R is interleaved with the unique segments A, B, and C. In a scaffolding

stage, paired-end read connections between the unique segments should be sufficient to properly

layout the genome. In this simple case, the unique Eulerian tour of the graph also describes the

true assembly, but the situation is rarely so clear with real genomes and data.

.

reads implied by the original fragment sizes. The relevant computational problems

for handling these constraints in the case of errors are NP-hard [14], so again heuris-

tics must be used. Most strategies first try to identify repeat contigs based on their

greater read coverage and conflicting mate pair information so that unique contigs

can be arranged first [15]. One approach that works well in practice scores each pair

of unique contigs as a candidate to be linked based on the closeness and coverage of

their mated reads and uses a greedy algorithm to gradually form scaffolds [16].

A completed assembly consists of reads merged into contigs and contigs linked

into scaffolds. The larger these are, the more useful the assembly will be for ge-

nomics analysis. Larger contigs and scaffolds will generally collect more sequence

and more genomic features, such as protein-coding genes. They also allow the ge-

6



nomic context of these features to be analyzed, such as cis-regulatory elements [17].

Finally, multiple genomes can be aligned and compared more accurately with larger

sequences. However, the goal of constructing large contigs and scaffolds trades off

against the goal of avoiding assembly errors that create false sequence. Because

of imperfect data and the use of heuristic-based assembly algorithms, downstream

analysis should always consider mis-assemblies [18].

1.2 Gene prediction

Genome assembly describes the genomic sequence, but we also want to un-

derstand how it encodes functions. Protein-coding genes are DNA segments that

are transcribed to mRNA and translated into proteins. They perform many impor-

tant functions in the cell, such as giving the cell structure, catalyzing biochemical

reactions, and transferring information. The gene prediction problem is to identify

the positions of all protein-coding genes, and thus their amino acid sequences, in an

unlabeled sequence. Here we focus on prokaryotic gene prediction. Eukaryotic gene

prediction has additional complexities related to the splicing out of introns from

mRNA transcripts.

Certain properties of genes make this task possible. Every gene begins with

one of three start codons and ends with one of three stop codons. Because the gene’s

DNA sequence ultimately translates to amino acids via a triplet code, coding se-

quence has compositional constraints that differentiate it from noncoding sequence.

Markov chain models capture this composition well by modeling the distribution of

7



a nucleotide in the sequence conditionally on a previous window (e.g. the previous

nucleotides in a codon). To begin translation, the ribosome binds upstream of the

gene’s start codon. Signatures of this ribosomal binding site (RBS), such as the

Shine-Dalgarno sequence [19], are also useful for detecting genes.

By modeling these gene features in supervised machine learning algorithms,

we can discriminate between coding and noncoding sequence [20]. One popular

approach is based on open reading frames (ORFs), or stretches of sequence without a

stop codon. First, we use a training set of known genes to learn models for each gene

feature. Given a new sequence, we extract every ORF pair of start and stop codons

and score their coding potential using the ratio of the likelihood that the sequence

came from our coding versus noncoding models. Finally, we find the set of genes

with the greatest score satisyfing a maximum overlap constraint (e.g. 50 bp) [21].

Alternatively, we can segment the genome using structured prediction algorithms

such as hidden Markov models containing coding and noncoding states [22]. Current

methods are very accurate, predicting genes with 99% sensitivity [23].

An accurate set of gene predictions is imperative to understanding the organ-

ism and can be used in the following ways. Comparing the gene sequences to a

database of known proteins can place those genes in an evolutionary context. It can

also assign functional annotations if orthologues have been functionally character-

ized [24]. Similarly, comparing the genes to each other to identify paralogues may

suggest how the genome evolved. Finally, examining the organization of the genes,

e.g. as operons [25], helps us understand how the genome encodes the organism’s

expression patterns.

8



1.3 2nd-generation sequencing

Recently, a class of 2nd-generation sequencing technologies have emerged that

offer far greater throughput at a cost per nucleotide that is orders of magnitude less

than Sanger sequencing [26]. 454 Life Sciences [27] and Illumina [28] offer two of

the most popular technologies and share a number of features. Both grow many

strands of DNA in parallel and detect the incorporation of altered nucleotides by

the emission of light [29, 30]. Both technologies deliver shorter reads than Sanger

sequencing, currently ∼500 bp for 454 and ∼150 bp for Illumina, making some

applications such as genome assembly more difficult. On the other hand, one can

obtain much greater coverage of the genome, which is generally very useful.

For whole-genome shotgun, 2nd-generation sequencing has been fully embraced

as the decreased cost per nucleotide has lowered the bar for sequencing a new or-

ganism. However, the characteristics of each technology have needed to be carefully

handled. For example, mistakes in 454 reads tend to be mis-calls of the number of

nucleotides in a long homopolymer run, thus introducing insertions or deletions into

the read [30]. Alternatively, Illumina reads rarely have insertions or deletions, but

will frequently have substitution errors, particularly towards the end of the read [29].

Bioinformatics methods need to be adjusted to best make use of this new type of

data. For example, de Bruijn graph-based assemblers have proven useful because

they avoid computing overlaps in the larger sets of short reads.

Nevertheless, the decreased cost of sequencing (see Figure 1.4) has truly put

it in the hands of the masses, which is revolutionizing the way biological research is
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performed. Large scale consortiums, like that for the human genome, are generally

no longer needed to sequence individual organisms, but have instead focused on

sequencing lots of genomes. For example, recently launched projects include the

1000 Genomes Project to discover all common variation in the human genome [31]

and the Cancer Genome Atlas to sequence the tumors and germlines of cancer

patients to uncover the genetic basis of the disease [32]. The Genome 10K Project

plans to sequence a huge catalogue of vertebrates [33]. Furthermore, as a wider

variety of sequencing machines become available, sequencing will become a feasible

tool for smaller individual labs as well. 2011 is expected to bring the release of

a “compact and economical instrument” called the MiSeq from Illumina [34] and

the “simpler, faster, more cost effective and scalable” PGM Sequencer from Ion

Torrent [35].

In addition to whole-genome shotgun, high-throughput sequencing has been

co-opted for other genome research applications. RNA-Seq attempts to capture and

sequence an individual’s mRNA in order to describe the transcriptome and mea-

sure the expression of individual transcripts [37]. ChIP-Seq aims to discover DNA

sequences in the genome bound by a certain protein by crosslinking the protein to

the DNA, pulling down the protein with an antibody, and sequencing the DNA [38].

These experiments and many others are quickly becoming standard tools for inter-

rogating genomes in different ways. And each has introduced its own set of com-

putational challenges in order to efficiently extract maximal biological information

from the experiment.
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Figure 1.4: Though the cost of sequencing scaled with Moore’s Law between 2001 and 2007,

roughly decreasing by a factor of two every two years, it has since accelerated with the advent of

2nd-generation technologies. To effectively process and analyze the upcoming flood of sequencing

data, bioinformatics innovation will be imperative. [Figure produced by NHGRI [36]]
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1.4 Metagenomics

Another novel application of sequencing is metagenomics, in which genetic ma-

terial is sampled from free-living microbial communities for analysis [39]. Individual

experiments generally seek to discover what organisms exist in the sample and in

what proportions. Then sampling across space and time can be used to compare

communities and study their dynamics.

Early experiments focused on the targeted sequencing of well-studied marker

genes (such as 16s rRNA) that could then be easily compared to previously se-

quenced versions of those genes [40]. As the cost has decreased, shotgun sequencing

of environmental DNA has become a more attractive option for many purposes.

Initial applications highlighted the fantastic potential, such as the ability to assem-

ble substantial portions of unculturable organisms [41] and discover an enormous

number of new genes [42, 43]. However, they also made clear how difficult compu-

tational analysis of environmental shotgun sequencing reads can be. Frequently, an

assembly of the reads will be highly fragmented [44], and the origin of most reads

will be unidentifiable via BLAST search [43]. Thus, innovative bioinformatics will

be crucial to make the most of metagenomics.

1.5 Summary

The development of sequencing and other high-throughput experiments have

poised the field of biology for an incredibly exciting period of research. The data

generated over the next few years will give researchers the ability to answer major
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questions regarding how genomes produce physical characteristics and how they

have evolved. Instrumental to these analyses will be computer science research to

produce the software and algorithms needed to accurately and efficiently process

the experimental data. In this thesis, I introduce a series of bioinformatics methods

towards this goal.

When trying to assemble 2nd-generation sequencing reads, processing the raw

data to ensure that the algorithms’ assumptions are satisfied has become arguably as

important as the quality of the algorithms used. For example, preprocessing of the

reads to correct sequencing errors has become standard for de Bruijn graph-based

assemblers [13,45,46]. Chapter 2 describes a method to detect and correct sequenc-

ing errors in high-throughput datasets based on coverage of k-mers that improves

accuracy by probabilistic modeling of the errors. After the assembly has finished,

work still remains to validate the result and confirm that the input data fit the as-

sumptions made and the assembler’s heuristics did not cause obvious problems. For

example, in a heterozygous region of the genome where the two chromosomes have

many differences, the assembler may construct two separate contigs covering the

region and then place them nearby, creating the illusion of a segmental duplication.

Chapter 3 describes a method to detect this mis-assembly and its application to

the chimpanzee, chicken, cow, and dog genomes where thousands of mis-assemblies

were found and analyzed.

As sequencing is applied to new areas, bioinformatics methods must be rede-

veloped or designed from scratch to support the characteristics of the data and the

questions biologists are interested in. Metagenomic sequencing has fantastic poten-
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tial as a tool for studying complex microbial environments, but needs computational

support to realize that potential. A natural first question that a researcher would

want to ask about their dataset is what organisms are in the mixture and in what

abundances. Chapter 4 describes an unsupervised sequence clustering method able

to effectively bring together sequences from related organisms and separate those

that differ. Similarly to whole-genome projects, researchers are also interested in

finding the protein-coding genes on metagenomic sequences. Chapter 5 describes

the challenges associated with metagenomics gene prediction and a method that ad-

dresses each of them to produce more accurate predictions than all other programs.
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Chapter 2

Quake: quality-aware detection and correction of sequencing errors

All sequencing technologies generate imperfect data such that the reads ob-

tained will inevitably contain sequencing errors. These errors complicate down-

stream bioinformatics tasks such as genome assembly and mapping reads to a ref-

erence genome. However, given sufficient coverage of the genome, the errors can be

detected and often even corrected back to the true sequence.

This chapter describes work done with Michael Schatz and Steven Salzberg to

develop an improved method for error correction in high coverage datasets generated

by the Illumina sequencing technology. Our method, called Quake, detects errors

by looking for k-mers that appear very few times in the reads. Quake then corrects

these errors using probabilistic modeling of sequencing errors and an efficient search

through the space of correction sets in order of decreasing likelihood. Quake achieves

greater correction accuracy than previous methods on simulated reads and improves

genome assembly and variant detection on real data. The following manuscript was

published in November 2010 in Genome Biology [47].

2.1 Rationale

Massively parallel DNA sequencing has become a prominent tool in biological

research [26, 48]. The high-throughput and low cost of 2nd-generation sequencing
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technologies has allowed researchers to address an ever-larger set of biological and

biomedical problems. For example, the 1000 Genomes Project is using sequencing

to discover all common variations in the human genome [31]. The Genome 10K

Project plans to sequence and assemble the genomes of 10,000 vertebrate species [33].

Sequencing is now being applied to a wide variety of tumor samples in an effort to

identify mutations associated with cancer [32, 49]. Common to all of these projects

is the paramount need to accurately sequence the sample DNA.

DNA sequence reads from Illumina sequencers, one of the most successful of

the 2nd-generation technologies, range from 35-125 bp in length. Although sequence

fidelity is high, the primary errors are substitution errors, at rates of 0.5-2.5% (as

we show in our experiments), with errors rising in frequency at the 3’ ends of reads.

Sequencing errors complicate analysis, which normally requires that reads be aligned

to each other (for genome assembly) or to a reference genome (for detection of mu-

tations). Mistakes during the overlap computation in genome assembly are costly:

missed overlaps may leave gaps in the assembly, while false overlaps may create am-

biguous paths or improperly connect remote regions of the genome [50]. In genome

re-sequencing projects, reads are aligned to a reference genome, usually allowing

for a fixed number of mismatches due to either SNPs or sequencing errors [51]. In

most cases, the reference genome and the genome being newly sequenced will differ,

sometimes substantially. Variable regions are more difficult to align because mis-

matches from both polymorphisms and sequencing errors occur, but if errors can

be eliminated, more reads will align and the sensitivity for variant detection will

improve.
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Fortunately, the low cost of 2nd-generation sequencing makes it possible to

obtain highly redundant coverage of a genome, which can be used to correct se-

quencing errors in the reads before assembly or alignment. Various methods have

been proposed to use this redundancy for error correction; for example, the EULER

assembler [11] counts the number of appearances of each oligonucleotide of size k

(hereafter referred to as k-mers) in the reads. For sufficiently large k, almost all

single-base errors alter k-mers overlapping the error to versions that do not exist in

the genome. Therefore, k-mers with low coverage, particularly those occurring just

once or twice, usually represent sequencing errors. For the purpose of our discussion,

we will refer to high coverage k-mers as trusted, because they are highly likely to

occur in the genome, and low coverage k-mers as untrusted. Based on this princi-

ple, we can identify reads containing untrusted k-mers and either correct them so

that all k-mers are trusted or simply discard them. The latest instance of EULER

determines a coverage cutoff to separate low and high coverage k-mers using a mix-

ture model of Poisson (low) and Gaussian (high) distributions, and corrects reads

with low coverage k-mers by making nucleotide edits to the read that reduce the

number of low coverage k-mers until all k-mers in the read have high coverage [45].

A number of related methods have been proposed to perform this error correction

step, all guided by the goal of finding the minimum number of single base edits (edit

distance) to the read that make all k-mers trusted [13,46,52,53].

In addition, a few alternative approaches to error correction should be men-

tioned. Past methods intended for Sanger sequencing involve multiple sequence

alignments of reads rendering them infeasible for short read datasets [16, 54, 55].
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More recently, a generalized suffix tree of the reads was shown to be an effective

data structure for detecting and correcting errors in short reads [56, 57]. De Bruijn

graph-based short read assemblers [12, 13, 45, 46, 58] perform substantial error cor-

rection of reads in the de Bruijn graph. For example, short dead end paths are

indicative of a sequencing error at the end of a read and can be removed, and “bub-

bles” where a low coverage path briefly diverges from and then reconnects to high

coverage nodes are indicative of sequencing errors at the middle of a read and can

be merged. Finally, a number of methods have been proposed to cluster reads and

implicitly correct sequencing errors in data where the targets vary in abundance

such as sequencing of small RNAs or 16s rRNA [59–62].

Although methods that search for the correct read based on minimizing edit

distance will mostly make the proper corrections, edit distance is an incomplete

measure of relatedness. First, each position in a sequencing read is assigned a

quality value, which defines the probability that the basecall represents the true

base. Though questions have been raised about the degree to which quality values

exactly define the probability of error [63], newer methods for assigning them to

base calls demonstrate substantial improvements [64–68], and for our purpose of

error correction, the quality values can be useful even if they only rank one base

as more likely to be an error as another. We should prefer to edit a read at these

lower quality bases where errors are more likely, but edit distance treats all bases

the same regardless of quality. Furthermore, specifics of the Illumina technology

cause certain miscalls to be more likely than others. For example, bases are called

by analysis of flourescent output from base-incorporating chemical reactions, and
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A and C share a red detection laser while G and T share a green detection laser.

Thus, A and C are more likely to be mistaken for each other than for G or T [63].

Edit distance treats all error substitutions as equally likely.

In this chapter, we introduce a new algorithm called Quake to correct substi-

tution errors in sets of DNA sequencing reads produced as part of >15x coverage

sequencing projects, which has become commonplace thanks to the efficiency of

2nd-generation sequencing technologies. Quake uses the k-mer coverage framework,

but incorporates quality values and rates of specific miscalls computed from each

sequencing project. In addition, Quake incorporates a new method to choose an

appropriate coverage cutoff between trusted k-mers (those that are truly part of

the genome) and erroneous k-mers based on weighting k-mer counts in the reads

using the quality values assigned to each base. On simulated data using quality

values from real reads, Quake is more accurate than previous methods, especially

with relatively long Illumina reads. Correcting reads guided by edit distance alone,

without the use of quality values, results in many more improperly corrected reads.

These reads are then chimeric, containing sequence from two distinct areas of the

genome, which can be a major problem for assembly software.

Finally, we explore the impact of error correction with Quake on two impor-

tant bioinformatics applications- de novo assembly and detection of variations with

respect to a reference genome. Even a sophisticated assembler such as Velvet [12],

which performs its own error correction using the assembly graph, benefits from

pre-processing the reads with Quake. SOAPdenovo [46], a parallel assembler ca-

pable of assembling mammalian-size datasets, also produces better assemblies after

19



error correction. For variant detection, correcting errors before mapping reads to

a reference genome results in more reads aligned to SNP locations and more SNPs

discovered. Note that Quake and other correction methods that rely on coverage

of k-mers are inappropriate for applications where low coverage does not necessary

implicate a sequencing error such as metagenomics, RNA-Seq, and ChIP-Seq.

Quake is freely available as open source software from our website [69] under

the Perl Artistic License [70].

2.2 Results and Discussion

2.2.1 Accuracy

The two goals of error correction are to cleanly separate reads with errors

from reads without errors and to properly correct the reads with errors. To assess

Quake’s ability to accurately complete these tasks, we simulated sequencing reads

with errors from finished genomes (using an approach comparable to the “Maq sim-

ulate” program [71]) and compared Quake’s corrections to the true reference. For

each dataset, we categorized reads and their corrections into four outcomes. As

positive outcomes, we counted the number of reads that were properly corrected to

their original state or trimmed such that no errors remained. As negative outcomes,

we counted the number of reads mis-corrected producing a false sequence or left

uncorrected even though they contained errors. Reads were simulated by chooosing

a position in the reference genome, using the quality values from an actual Illu-

mina sequencing read, and changing the nucleotides according to the probabilities
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defined by those quality values. Dohm et al. measured the bias in Illumina specific

nucleotide to nucleotide miscall rates by sequencing reads from Helicobacter aci-

nonychis and Beta vulgaris, aligning them to high quality reference genomes, and

counting the number of each type of mismatch in the alignments [63]. At simulated

errors, we changed the nucleotide according to these frequencies.

To compare Quake’s accuracy to that of previous error correction programs,

we corrected the reads using EULER [45], Shrec [56], and SOAPdenovo [46] on a 4

core 2.4 GHz AMD Opteron machine. Quake and the other k-mer based correction

tools used k = 15. SOAPdenovo’s error correction module does not contain a

method to choose the cutoff between trusted and untrusted k-mers, so we tried

a few appropriate values and report the best results. We similarly tried multiple

values for Shrec’s strictness parameter that is used to help differentiate true and

error reads via coverage. These are very sensitive parameters, and leaving them to

the user is a critical limitation of these programs. Alternatively, EULER and Quake

determine their parameters automatically using the data.

Table 2.1 displays the average of the accuracy statistics after 5 iterations

of simulated 36 bp reads to 40x coverage (5.5M reads) from E. coli 536 [Gen-

Bank:NC 008253]. Quality value templates were taken from the sequencing of E.

coli K-12 substrain MG1655 [SRA:SRX000429]. The datasets contained an average

of 1.17M reads with errors. Of the reads that Quake tried to correct, 99.83% were

corrected accurately to the true sequence. Quake properly corrected 88.3% (90.5%

including trims) of error reads, which was 6.9% more reads than the second best

program SOAPdenovo, made 2.3x fewer mis-corrections than SOAPdenovo, and al-
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Corrections Trim corrections Mis-corrections Errors kept Time (min)

Quake 1035709.4 26337.0 1744.0 5537.0 14.2

SOAPdenovo 969666.4 120529.0 3912.8 9288.4 12.4

Shrec 964431.8 0.0 165422.0 41733.6 87.6

Table 2.1: Simulated E. coli 36 bp reads at 40x coverage averaged over five runs. For each method,

we counted the number of reads that were properly corrected to their original state (Corrections),

trimmed such that no errors remained (Trim corrections), mis-corrected to false sequence (Mis-

corrections), and contained errors but were kept in the set (Errors kept). Quake corrects more

reads while mis-correcting fewer reads and keeping fewer reads with errors than all programs.

lowed 1.8x fewer reads with errors. The 5265.4 error reads that Quake keeps have

errors that only affect a few k-mers (at the end of the read), and these k-mers hap-

pen to exist elsewhere in the genome. We could not successfully run EULER on

these short reads.

We performed the same test using 5 iterations on 40x coverage (1.6M reads)

of 124 bp reads from E. coli 536. Most of these reads had very low quality suffixes

expected to contain many errors. Quake handled these reads seamlessly, but the

other programs produced very poor results. Thus, we first trimmed every read r to

the length

l = arg max
x

|r|∑
i=x

(t− qi) (2.1)

By setting t = 3, we mainly trim nucleotides with quality value 2 off the ends of the

reads, but will trim past a higher quality base call if there are a sufficient number

of nucleotides with quality ≤2 preceding it. On this data (where full results are

displayed in Table 2.2), Quake is 99.9% accurate on reads that it tries to correct.
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Corrections Trim corrections Mis-corrections Errors kept Time (min)

Quake 283769.4 6581.2 243.0 393.6 11.8

SOAPdenovo 276770.4 2942.6 7019.4 5490.2 16.9

Shrec 165942.7 0.0 33140.3 96626.7 97.1

EULER 228316.4 16577.4 3763.0 414.8 6.9

Table 2.2: Simulated E. coli 124 bp reads at 40x coverage averaged over five runs. Column

descriptions are the same as Table 1. Quake corrects more reads while mis-correcting far fewer

reads and keeping fewer reads with errors than all programs.

Of the 297K error reads, Quake corrected 95.6% (97.9% including trims), 2.5%

more than SOAPdenovo, the second most effective program. However, SOAPdenovo

makes many more mistakes on the longer reads by mis-correcting 28.9x more reads

and keeping 11.9x more reads with errors in the set. Shrec and EULER correct far

fewer reads and mis-correct more reads than Quake.

To demonstrate Quake’s ability to scale to larger genomes, we simulated 325

million 124 bp reads from the 249 Mbp human chromosome 1 (version hg19), which

provided 34x coverage after trimming. Due to the larger size of the sequencing tar-

get, we counted and corrected 18-mers in the reads. Of the 15.23M reads containing

errors, Quake corrected 12.83M (84.2%) and trimmed to a correct prefix another

0.82M (5.4%). Because we could not successfully run SOAPdenovo using 18-mers,

we corrected using 17-mers, a reasonable choice given that the authors of that soft-

ware chose to correct reads using 17-mers for the entire human genome [46]. Quake

corrected 11% more reads than SOAPdenovo, reduced mis-corrections by 64%, and

kept 15% fewer error reads. EULER produced very poor correction results, e.g. cor-
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recting less than half as many reads as Quake with more mis-corrections and error

reads kept. On a dataset this large, Shrec required more memory than our largest

computer (256 GB).

Relative to the 124 bp simulated reads from E. coli, Quake’s attempted cor-

rections were accurate at a lower rate (99.02%) and Quake kept more error reads

in the dataset (1.11M, 7.27%). This is caused by the fact that the human genome

contains far more repetitive elements than E. coli, such as the LINE and SINE retro-

transposon families [72]. The more repetitive the genome is, the greater the chance

is that a sequencing error will merely change one trusted k-mer to another trusted

k-mer, hiding the error. To quantify this property of the two genomes, we computed

the percentage of all possible single base mutations to k-mers in each genome which

create k-mers that also exist in the genome. In E. coli 536, this is true for 2.25% of

15-mer mutations, and in chromosome 1 of the human genome, it is true for 13.8%

of 18-mer mutations. Increasing the k-mer size does little to alleviate the problem

as still 11.1% of 19-mer mutations are problematic. Nevertheless, allowing a small

percentage of error reads may not be terribly problematic for most applications. For

example, genome assemblers will notice the lower coverage on the paths created by

these reads and clean them out of the assembly graph.

2.2.2 Genome assembly

In de novo genome assembly, the goal is to build contiguous and unambiguous

sequences called contigs from overlapping reads. The traditional formulation of the
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(a)

(b)

Figure 2.1: Detecting alignments of short reads is more difficult in the presence of sequencing

errors (represented as X’s). (a) In the case of genome assembly, we may miss short overlaps between

reads containing sequencing errors, particularly because the errors tend to occur at the ends of the

reads. (b) To find variations between the sequenced genome and a reference genome, we typically

first map the reads to the reference. However, reads containing variants (represented as stars) and

sequencing errors will have too many mismatches and not align to their true genomic location.

assembly problem involves first finding all overlaps between reads [9], taking care

to find all true overlaps between reads sequenced from the same genome location

and avoid false overlaps between reads sequenced from remote regions [50]. Because

of sequencing errors, we must allow mismatches in the overlap alignments to find

all true overlaps, but we cannot allow too many or false overlaps will be found

and fragment the assembly. With short reads, we must allow a short minimum

overlap length, but in the presence of sequencing errors, particularly when these

errors tend to occur at the ends of the reads, we may frequently overlook true

overlaps (see Figure 2.1). A de Bruijn graph formulation of the assembly problem

has become very popular for short reads [12, 13, 45, 46], but is very sensitive to

sequencing errors. A substantial portion of the work performed by these programs

goes towards recognizing and correcting errors in the graph.

Having established the accuracy of Quake for error correction on simulated
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data, we measured the impact of Quake on genome assembly by assembling the

reads before and after error correction. One assembly is better than another if it is

more connected and more accurately represents the sequenced genome. To measure

connectedness, we counted the number of contigs and scaffolds in the assembly larger

than 50 bp as well as the N50 and N90 for each, which is the contig/scaffold size

for which 50% (90%) of the genome is contained in contigs/scaffolds of equal or

larger size. Fewer contigs/scaffolds and larger N50 and N90 values signify that the

reads have been more effectively merged into large genomic sequences. In addition,

we counted the number of reads included in the assembly because greater coverage

generally leads to better accuracy in consensus calling. When a reference genome

was available, we used it to validate the correctness of the assembly. We aligned

all scaffolds to the reference using MUMmer [73] and considered scaffolds that did

not align for their entire length (ignoring 35 bp on each end) at >95% identity to

be mis-assembled. We also counted the number of single base differences between

the reference and otherwise properly assembled scaffolds. Finally, we computed the

percentage of reference nucleotides covered by some aligning scaffold.

Velvet is a widely used de Bruijn graph-based assembler that performs error

correction by identifying graph motifs that signify sequencing errors [12], but does

not use a stand-alone error correction module like EULER [45] or SOAPdenovo [46].

Thus, we hypothesized that Quake would help Velvet produce better assemblies. To

test this hypothesis, we corrected and assembled 152x (20.8M reads) coverage of 36

bp reads from E. coli K12 substrain MG1655 [SRA:SRX000429]. We used Velvet’s

option for automatic computation of expected coverage and chose the de Bruijn
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Contigs N50 N90 Scaffolds N50 N90 Breaks Miscalls Cov

Uncorrected 398 94,827 17,503 380 95,365 23,869 5 456 0.9990

Corrected 345 94,831 25,757 332 95,369 26,561 4 315 0.9992

Table 2.3: Velvet assemblies of E. coli 36 bp paired end reads at 152x coverage. After correcting

the reads, more reads are included in the assembly into fewer contigs and scaffolds. N50 and N90

values were computed using the genome size 4,639,675 bp. The N50 value was similar for both

assemblies, but N90 grew signficantly with corrected reads. Correcting the reads also improved

the correctness of the assembly producing fewer mis-assembled scaffolds (Breaks) and miscalled

bases (Miscalls) and covering a greater percentage of the reference genome (Cov).

graph k-mer size that resulted in the best assembly based on the connectedness and

correctness statistics discussed above.

Table 2.3 displays the assembly statistics for E. coli with Velvet. Quake cor-

rected 2.44M (11.7%) and removed 0.57M (2.8%) reads from the dataset. After

correction, 0.75M (3.8%) more reads were included in the assembly, which con-

tained 13% fewer contigs and 13% fewer scaffolds. Though this significant increase

in connectedness of the assembly does not manifest in the N50 values, which are

similar for both assemblies, the contig N90 increases by 47% and the scaffold N90

increases by 11%. With respect to correctness, the corrected read assembly con-

tained one fewer mis-assembled scaffold and 31% fewer mis-called bases, and still

covered slightly more of the reference genome. This improvement was consistent in

experiments holding out reads for lesser coverage of the genome (data not shown).

As the coverage decreases, the distributions of error and true k-mers blend together

and the choice of cutoff must carefully balance making corrections and removing

27



useful reads from low coverage regions. On this dataset, the minimum coverage at

which the assembly improved after correction using Quake was 16x.

We also measured Quake’s impact on a larger assembly with longer reads by

assembling 353.7M Illumina reads, all of them 124 bp in length, from the alfalfa

leafcutting bee Megachile rotundata, with an estimated genome size of 300 Mbp.

(Contact the corresponding author for details on data access.) Assembly was per-

formed with SOAPdenovo [46] using a de Brujin graph k-mer size of 31 and the “-R”

option to resolve small repeats. Assembly of the raw uncorrected reads was quite

poor because of the very low quality suffixes of many of the 124 bp reads. Thus, we

compare assembly of quality trimmed reads (performed as described above), reads

corrected using Quake, and trimmed reads corrected with SOAPdenovo’s own error

correction module. Quake and SOAPdenovo corrected using 18-mers and a coverage

cutoff of 1.0.

Correcting errors in the reads had a significant affect on the quality of the

assembly as seen in Table 2.4. In the Quake assembly, >123K fewer contigs were

returned as contig N50 grew by 71% and contig N90 more than doubled compared

Table 2.4 (following page): SOAPdenovo assemblies of Megachile rotundata 124 bp paired

end reads. We trimmed the reads before correcting with SOAPdenovo, which greatly improved

its performance on our experiments with simulated data. The “Trimmed only” column includes

reads trimmed before and during SOAPdenovo correction. Quake trims reads automatically during

correction. Correcting the reads reduces the number of contigs and scaffolds, increases the contig

sizes, and allows the assembler to include more reads. Quake corrects more reads than SOAPdenovo

which results in a slightly better assembly.
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to the standard approach of only trimming the reads before assembly. Similarly to

the simulated reads, Quake is able to correct more reads than SOAPdenovo, which

leads to 1.5% more reads included in the assembly than SOAPdenovo and slightly

more than the assembly of uncorrected reads. Improvements to the connectedness

statistics compared to SOAPdenovo were modest. Surprisingly, although nearly

2.5x fewer scaffolds were returned after error correction with Quake, scaffold N50

remained virtually the same and N90 slightly decreased. We investigated a few

possible explanations for this with inconclusive results; e.g. scaffold sizes did not

improve substantially after adding back mate pairs excluded due to uncorrectable

errors. Because N50 and N90 can be somewhat volatile and the scaffolds in the E.

coli assembly above did improve after error correction, this is potentially an artifact

of this particular dataset, i.e. the library sizes used with respect to the repeat

structure of the genome.

2.2.3 SNP detection

A second application of short reads that benefits from error correction is de-

tection of variations, such as single nucleotide polymorphisms (SNPs). In such

experiments, the genome from which the reads are sequenced differs from a refer-

ence genome to which the reads are compared. The first step is to align the reads to

the reference genome using specialized methods [51] that will only allow a few mis-

matches between the read and reference, such as up to two mismatches in a recent

study [74]. A read containing a SNP will start with one mismatch already, and any
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additional differences from the reference due to sequencing errors will make align-

ment difficult (see Figure 2.1). Furthermore, the distribution of SNPs in a genome

is not uniform and clusters of SNPs tend to appear [75]. Reads from such regions

may contain multiple SNPs. If these reads contain any sequencing errors, they will

not align causing the highly polymorphic region to be overlooked.

To explore the benefit that error correction with Quake may have on SNP

detection, we randomly sampled reads representing 35x from the E. coli K12 reads

used above. To call SNPs, we aligned the reads to a related reference genome (E.

coli 536 [GenBank:NC 008253]) with Bowtie [76] using two different modes. We first

mapped reads allowing up to two mismatches to resemble the SNP calling pipeline in

a recent, large study [74]. We also mapped reads using Bowtie’s default mode, which

allows mismatches between the reference and read until the sum of the quality values

at those mismatches exceeds 70 [76]. We called SNPs using the SAMtools pileup

program [77], requiring a Phred-style base call quality ≥40 and a coverage of ≥3

aligned reads. Having a reliable reference genome for both strains of E. coli allowed

us to compare the SNPs detected using the reads to SNPs detected by performing

a whole genome alignment. To call SNPs using the reference genomes, we used the

MUMmer utility dnadiff which aligns the genomes with MUMmer, identifies the

optimal alignment for each region, and enumerates SNPs in aligning regions [73].

We treat these SNPs as the gold standard (though there may be some false positives

in improperly aligned regions) in order to compute recall and precision statistics for

the read-based SNP calls.

In the first experiment, 128K additional reads of 4.12M aligned after correcting
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Method Reads mapped SNPs Recall Precision

Two mismatch uncorrected 3.39M 79748 0.746 0.987

Two mismatch corrected 3.51M 80796 0.755 0.987

Quality-aware uncorrected 3.56M 85071 0.793 0.984

Quality-aware corrected 3.55M 85589 0.798 0.984

Table 2.5: We called SNPs in 35x coverage of 36 bp reads from E. coli K12 by aligning the reads

to a close relative genome E. coli 536 with Bowtie using both a two mismatch and quality-aware

alignment policy and calling SNPs with SAMtools pileup. SNPs were validated by comparing the

E. coli K12 and E. coli 536 reference genomes directly. Under both alignment policies, correcting

the reads with Quake helps find more true SNPs.

with Quake, of which 110K (85.8%) aligned to SNPs, demonstrating the major

benefit of error correction before SNP calling. As seen in Table 2.5, with these reads

mapped, we discovered more SNPs and recall increased at the same level of precision.

Supporting the hypothesis that many of these newly discovered SNPs would exist

in SNP-dense regions, we found that 62% of the new SNPs were within 10 bp of

another SNP, compared to 38% for the entire set of SNPs. On the uncorrected reads,

Bowtie’s quality-aware alignment policy mapped 165K (4.9%) more reads than a two

mismatch policy. Similarly, many of these new alignments contained SNPs, which

led to more SNPs discovered, increasing recall with only a slight drop in precision.

Using the quality-aware policy, slightly fewer reads mapped to the reference after

error correction because some reads that could not be corrected and were removed

could still be aligned. However, 33.7K new read alignments of corrected reads were

found, which allowed the discovery of 518 additional SNPs at the same level of
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precision. Thus, error correction of the reads using Quake leads to the discovery of

more true SNPs using two different alignment policies.

In order to demonstrate the ability of Quake to scale to larger datasets and

benefit re-sequencing studies of humans, we corrected 1.7 billion reads from a Ko-

rean individual [SRA:SRA008175] [78]. This set includes 1.2B 36 bp reads and

504M 75 bp reads. Quake corrected 206M (11.9%) of these reads, trimmed an

additional 75.3M (4.4%), and removed 344M (19.9%). Before and after error correc-

tion, we aligned the reads to the human genome (NCBI build 37) and called SNPs

with Bowtie allowing two mismatches and SAMtools as described above (though

requiring the diploid genotype to have quality ≥40 implicitly requires coverage ≥4).

Because some putative SNPs had read coverage indicative of a repeat, we filtered

out locations with read coverage greater than three times the median coverage of

19, leaving 3,024,283 SNPs based on the uncorrected reads. After error correction,

we found 3,083,481 SNPs, an increase of 2.0%. The mean coverage of these SNPs

was 20.1 reads, an increase of 4.8% over the coverage of these locations in the align-

ments of uncorrected reads, which should provide greater accuracy. Thus, Quake

helps detect more SNPs in larger diploid genomes as well.

2.2.4 Data quality

Our experiences correcting errors in these datasets allowed us to assess the

quality of the sequencing data used in a number of interesting ways. First, as has

previously been established, nucleotide-specific error rates in Illumina sequencing
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Figure 2.2: The observed error rate and predicted error rate after nonparametric regression are

plotted for adenine by quality value for a single lane of Illumina sequencing of Megachile rotundata.

The number of training instances at each quality value are drawn as a histogram below the plot.

At low and medium quality values, adenine is far more likely to be miscalled as cytosine than

thymine or guanine. However, the distribution at high quality is more uniform.
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reads are not uniform [63]. For example, adenines were miscalled far more often

as cytosine than thymine or guanine in Megachile rotundata (see Figure 2.2). As

exemplified in the figure, error rates also differ significantly by quality value. While

miscalls at adenines were highly likely to be cytosines at low quality, errors were

closer to uniform at high quality positions in the read. Finally, error rates varied

from lane to lane within a sequencing project. For example, the multinomial samples

of nucleotide to nucleotide miscall rates for every pair of six lanes from the Megachile

rotundata sequencing reads differed with unquestionably significant p-values using

two sample chi square tests.

As sequencing becomes more prevalent in biological research, researchers will

want to examine and compare the quality of an instance (single lane, machine run,

or whole project) of data generation. Error correction with Quake provides two

simple measures of data quality in the number of reads corrected and the number of

reads removed. Furthermore, Quake allows the user to search for biases in the data

like those described above using bundled analysis scripts on the log of all corrections

made. Thus, researchers can detect and characterize problems and biases in their

data before downstream analyses are performed.

2.3 Conclusions

The low cost and high throughput of 2nd-generation sequencing technologies

are changing the face of genome research. Despite the many advantages of the

new technology, sequencing errors can easily confound analyses by introducing false
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polymorphisms and fragmenting genome assemblies. The Quake system detects and

corrects sequencing errors by using the redundancy inherent in the sequence data.

Our results show that Quake corrects more reads more accurately than previous

methods, which in turn leads to more effective downstream analyses.

One way Quake improves over prior corrections methods is by q-mer counting,

which uses the quality values assigned to each base as a means of weighting each

k-mer. The coverage distributions of error and true k-mers cannot be separated

perfectly according to their number of appearances due to high coverage errors and

low coverage genomic regions. Yet, the choice of a cutoff to determine which k-mers

will be trusted in the correction stage can have a significant affect on downstream

applications like genome assembly. Weighting k-mer appearances by quality puts

more distance between the two distributions because erroneous k-mers generally

have lower quality than true k-mers. Furthermore, with q-mers, the cutoff value

separating the two distributions no longer needs to be an integer. For example, at

low coverage we might use 0.95 as a cutoff, such that k-mers that appear once with

high quality bases would be trusted, but those with lower quality would not. Such

fine-grained cutoff selection is impossible with simple k-mer counting.

Quake includes a sophisticated model of sequencing errors that allows the

correction search to examine sets of corrections in order of decreasing likelihood,

thus correcting the read more accurately. The model also helps to better identify

reads with multiple sets of equally good corrections, which allows the system to avoid

mis-correcting and creating a chimeric read. At a minimum, quality values should

be included in error correction as a guide to the likely locations of sequencing errors.
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In each dataset we examined, the rates at which each nucleotide was mis-called to

other nucleotides were not uniform and often varied according to quality. Adjusting

for these rates provides further improvements in error correction, and distinguishes

our method.

We expect Quake will be useful to researchers intersted in a number of down-

stream applications. Correcting reads with Quake improves genome assembly by

producing larger and more accurate contigs and scaffolds using the assemblers Vel-

vet [12] and SOAPdenovo [46]. Error correction removes many of the false paths

in the assembly graphs caused by errors and helps the assembler to detect over-

laps between reads that would have been missed. Eliminating erroneous k-mers

also significantly reduces the size of the assembly graph, which for large genomes

may be the difference between being able to store the graph in a computer’s mem-

ory or not [46]. In a re-sequencing application, correcting reads with Quake allows

Bowtie [76] to align many more reads to locations in the reference genome where

there is one or more SNPs. Reads containing variants already have differences from

the reference genome; correcting additional differences caused by sequencing errors

makes these reads easier to align and then available as input for the SNP calling

program. Finally, Quake offers a unique perspective into the quality of the data

from a sequencing experiment. The proportion of reads corrected, trimmed, and

removed are useful statistics with which experiments can be compared and data

quality can be monitored. The output log of corrections can be mined for troubling

biases.

On microbial sized genomes, error correction with Quake is fast and unobtru-
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sive for the researcher. On larger datasets, such as a human re-sequencing, it is com-

putationally expensive and requires substantial resources. For the Korean individual

reads, we counted k-mers on a 20-core computer cluster running Hadoop [79], which

required 2–3 days. For error correction, the data structure used to store trusted

k-mers requires 4k bits, which is 32 GB for human if k = 19. Thus, the correction

stage of Quake is best run on a large shared memory machine, where correction is

parallelized across multiple threads using OpenMP [80]. Running on 16 cores, this

took a few days for the Korean individual dataset. Future work will explore alterna-

tive ways to perform this step that would require less memory. This way correction

could be parallelized across a larger computer cluster and made more accessible to

researchers without a large shared memory machine.

K-mer based error correction programs are affected significantly by the cutoff

separating true and error k-mers. Improvements in k-mer classification, such as

the q-mer counting introduced by Quake, improve the accuracy of error correction.

Coverage biases in 2nd-generation sequencing technologies, which are largely inex-

plicable outside of the affect of local GC content, add to the difficulty [63]. Further

characterization of these biases would allow better modeling of k-mer coverage and

better classification of k-mers as true or error. In more repetitive genomes, the prob-

ability increases that a k-mer that is an artifact of an error actually does occur in the

genome. Such k-mers are not really misclassified, but may cause Quake to ignore a

sequencing error. To improve error correction in these cases, the local context of the

k-mer in the sequencing reads must be taken into account. Though this was done

for Sanger read error correction [16, 54, 55], it is not currently computationally and
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algorithmically feasible for high throughput datasets containing many more reads.

Quake’s model for sequencing errors takes into account substantial information

about which types of substitution errors are more likely. We considered using Quake

to re-estimate the probability of a sequencing error at each quality value before using

the quality values for correction. Doing so is difficult because Quake detects many

reads that have errors for which it cannot find a valid set of corrections and pinpoint

the errors’ locations. If Quake re-estimated quality value error probabilities without

considering these reads, the error probabilities would be underestimated. Addition-

ally, the benefit of re-estimation is minimal because quality values are mainly used

to determine the order in which sets of corrections are considered. Alternatively,

passing on more information from the base calling stage, such as the probability

that each individual nucleotide is the correct one, would be very helpful. Quake’s

error model could be made more specific, the need to learn nucleotide specific error

rates would be alleviated, and more accurate error correction could be expected.

2.4 Methods

Quake detects and corrects errors in sequencing reads by using k-mer coverage

to differentiate k-mers trusted to be in the genome and k-mers that are untrust-

worthy artifacts of sequencing errors. For reads with untrusted k-mers, Quake uses

the pattern of trusted and untrusted k-mers to localize the errors and searches for

the set of corrections with maximum likelihood that make all k-mers trusted. The

likelihood of a set of corrections to a read is defined by a probabilistic model of se-
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quencing errors incorporating the read’s quality values as well as the rates at which

nucleotides are miscalled as different nucleotides. Correction proceeds by examining

changes to the read in order of decreasing likelihood until a set of changes making

all k-mers trusted is discovered and found to be sufficiently unambiguous.

2.4.1 Counting k-mers

Counting the number of occurrences of all k-mers in the sequencing reads

is the first step in the Quake pipeline. K must be chosen carefully, but a simple

equation suffices to capture the competing goals. Smaller values of k provide greater

discriminative power for identifying the location of errors in the reads and allow

the algorithm to run faster. However, k cannot be so small that there is a high

probability that one k-mer in the genome would be similar to another k-mer in the

genome after a single nucleotide substitution because these occurrences confound

error detection. We recommend setting k such that the probability that a randomly

selected k-mer from the space of 4k

2
(for odd k considering reverse complements as

equivalent) possible k-mers occurs in a random sequence of nucleotides the size of

the sequenced genome G is ∼0.01. That, is we want k such that

2G

4k
' 0.01 (2.2)

which simplifies to

k ' log4 200G (2.3)

For a ∼5 Mbp such as E. coli, we set k to 15, and for the ∼3 Gbp human genome,

we set k to 19 (rounding down for computational reasons). For the human genome,

40



counting all 19-mers in the reads is not a trivial task, requiring >100GB of RAM to

store the k-mers and counts, many of which are artifacts of sequencing errors. In-

stead of executing this computation on a single large memory machine, we harnessed

the power of many small memory machines working in parallel on different batches

of reads. We execute the analysis using Hadoop [79] to monitor the workflow, and

also to sum together the partial counts computed on individual machines using an

extension of the MapReduce word counting algorithm [81]. The Hadoop cluster

used in these experiments contains 10 nodes, each with a dual core 3.2 gigahertz

Intel Xeon processors, 4 GB of RAM, and 367 GB local disk (20 cores, 40 GB RAM,

3.6TB local disk total).

In order to better differentiate true k-mers and error k-mers, we incorporate

the quality values into k-mer counting. The number of appearances of low coverage

true k-mers and high copy error k-mers may be similar, but we expect the error

k-mers to have lower quality base calls. Rather than increment a k-mer’s coverage

by 1 for every occurrence, we increment it by the product of the probabilities that

the base calls in the k-mer are correct as defined by the quality values. We refer to

this process as q-mer counting. Q-mer counts approximate the expected coverage

of a k-mer over the error distribution specified by the read’s quality values. By

counting q-mers, we are able to better differentiate between true k-mers that were

sequenced to low coverage and error k-mers that occurred multiple times due to bias

or repetitive sequence.
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2.4.2 Coverage cutoff

A histogram of q-mer counts shows a mixture of two distributions— the cov-

erage of true k-mers, and the coverage of error k-mers (see Figure 2.3). Inevitably,

these distributions will mix and the cutoff at which true and error k-mers are differ-

entiated must be chosen carefully [82]. By defining these two distributions, we can

calculate the ratio of likelihoods that a k-mer at a given coverage came from one

distribution or the other. Then the cutoff can be set to correspond to a likelihood

ratio that suits the application of the sequencing. For instance, mistaking low cov-

erage k-mers for errors will remove true sequence, fragmenting a de novo genome

assembly and potentially creating mis-assemblies at repeats. To avoid this, we can

set the cutoff to a point where the ratio of error k-mers to true k-mers is high, e.g.

1000:1.

In theory, the true k-mer coverage distribution should be Poisson, but Illumina

sequencing has biases that add variance [63]. Instead, we model true k-mer coverage

as Gaussian to allow a free parameter for the variance. K-mers that occur multiple

times in the genome due to repetitive sequence and duplications also complicate

the distribution. We found that k-mer copy number in various genomes has a

“heavy tail” (meaning the tail of the distribution is not exponentially bounded)

that is approximated well by the Zeta distribution [83], which has a single shape

parameter. Our full model for true k-mer coverage is to sample a copy number from

a Zeta distribution, and then sample a coverage from a Gaussian distribution with

mean and variance proportional to the chosen copy number.
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Figure 2.3: 15-mer coverage model fit to 76x coverage of 36 bp reads from E. coli. Note that

the expected coverage of a k-mer in the genome using reads of length L will be L−k+1
L times the

expected coverage of a single nucleotide because the full k-mer must be covered by the read. Above,

q-mer counts are binned at integers in the histogram. The error k-mer distribution rises outside

the displayed region to 0.032 at coverage 2 and 0.691 at coverage 1. The mixture parameter for

the prior probability that a k-mer’s coverage is from the error distribution is 0.73. The mean and

variance for true k-mers are 41 and 77 suggesting that a coverage bias exists as the variance is

almost twice the theoretical 41 suggested by the Poisson distribution. The likelihood ratio of error

to true k-mer is 1 at a coverage of 7, but we may choose a smaller cutoff for some applications.
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The error k-mer coverage distribution has been previously modeled as Pois-

son [45]. In data we examined, this distribution also has a heavy tail, which could

plausibly be explained if certain sequence motifs were more prone to errors than

others due to sequence composition or other variables of the sequencing process.

Additionally, by counting q-mers, we have real values rather than the integers that

Poisson models. We examined a few options and chose the Gamma distribution

with free shape and scale parameters to model error q-mer counts.

Finally, we include a mixture parameter to determine which of the two dis-

tributions a k-mer coverage will be sampled from. We fit the parameters of this

mixture model by maximizing the likelihood function over the q-mer counts using

the BFGS algorithm, implemented as the optim function in the statistical language

R [84]. Figure 2.3 shows an example fit to 76x coverage of E. coli. Using the opti-

mized model, we compute the likelihood ratio of error k-mer to true k-mer at various

coverages and set the cutoff to correspond to the appropriate ratio.

2.4.3 Localizing errors

Once a cutoff to separate trusted and untrusted k-mers has been chosen, all

reads containing an untrusted k-mer become candidates for correction. In most

cases the pattern of untrusted k-mers will localize the sequencing error to a small

region. For example, in Figure 2.4a, a single base substitution causes 15 adjacent

untrusted 15-mers. To find the most likely region for the sequencing error(s), we

take the intersection of a read’s untrusted k-mers. This method is robust to a few
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(b)

(c)

(a)

Figure 2.4: Trusted (green) and untrusted (red) 15-mers are drawn against a 36 bp read. In (a),

the intersection of the untrusted k-mers localizes the sequencing error to the highlighted column.

In (b), the untrusted k-mers reach the edge of the read, so we must consider the bases at the edge

in addition to the intersection of the untrusted k-mers. However, in most cases, we can further

localize the error by considering all bases covered by the right-most trusted k-mer to be correct

and removing them from the error region as shown in (c).
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misclassified error k-mers, but not to true k-mers with low coverage that are classified

as untrusted. Thus, if the intersection of the untrusted k-mers is empty (which also

occurs when there are multiple nearby errors) or a valid correction cannot be found,

we try again localizing to the union of all untrusted k-mers.

A few more complications are worth noting. If the untrusted k-mers reach

the edge of the read, there may be more sequencing errors at the edge, so we must

extend the region to the edge, as in Figure 2.4b. In this case and in the case of

multiple nearby sequencing errors, we may also benefit from considering every base

covered by the right-most trusted k-mer and left-most trusted k-mer to be correct,

and trimming the region as in Figure 2.4c. Because this heuristic is sensitive to

misclassified k-mers, we first try to correct in the region shown in Figure 2.4c,

but if no valid set of corrections is found, we try again with the larger region in

Figure 2.4b. Finally, in longer reads we often see clusters of untrusted k-mers that

do not overlap. We perform this localizing procedure and correction on each of these

clusters separately. Altogether, these heuristics for localizing the error in a read

vastly decrease the runtime of the algorithm compared to considering corrections

across the entire read.

2.4.4 Sequencing error probability model

After finding a region of the read to focus our correction efforts on, we want

to search for the maximum likelihood set of corrections that makes all k-mers over-

lapping the region trusted. First, we must define the likelihood of a set of correc-
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tions. Let O = O1,O2,...ON represent the observed nucleotides of the read, and

A = A1,A2,...AN the actual nucleotides of the sequenced fragment of DNA. Given

the observed nucleotides we would like to evaluate the conditional probability of

a potential assignment to A. Assuming independence of sequencing errors at nu-

cleotide positions in the read and using Bayes theorem, we can write

P (A = a|O = o) =
N∏
i=1

P (Oi = oi|Ai = ai)P (Ai = ai)

P (Oi = oi)
(2.4)

Because we compare likelihoods for a single observed read O at a time, P (Oi = oi) is

the same for all assignments to A and is ignored. P (Ai = ai) is defined by the GC%

of the genome, which we estimate by counting Gs and Cs in the sequencing reads.

Let pi = 1 − 10−
qi
10 be the probability that the nucleotide at position i is accurate,

where qi is the corresponding quality value. Also, let Eq(x, y) be the probability

that the base call y is made for the nucleotide x at quality value q given that there

has been a sequencing error. Then P (Oi = oi|Ai = ai) can be specified as

P (Oi = oi|Ai = ai) =


pi if oi = ai

(1− pi)Eqi(ai, oi) otherwise

 (2.5)

Modeling sequencing errors with E allows for biases in base substitution that

are known to exist for the Illumina platform. For example, one study found A to

C was the most frequent error, likely because A and C are detected by one laser

while G and T are detected by another [63]. Making the substitution distribution

conditional upon the quality value allows this substitution bias to vary at different

qualities, which was found to occur for Sanger sequencing [85] and here for Illumina

(see Figure 2.2). Although some work has modeled error distributions conditionally

47



on the position of the nucleotide in the read [86], we assume that quality values

capture this sequencing cycle effect. Recent base-calling algorithms incorporate this

effect on fluorescence intensity measurements explicitly in some way and generate

quality values that satisfy our assumption [64–68].

The error matrices E are estimated from the sequencing reads as follows. First

we initially set Eq(x, y) = 1
3
∀q, x, y and run the algorithm, counting the corrections

by quality value and nucleotide to nucleotide type. During this initial pass, we

only make simple, unambiguous corrections by abandoning low quality reads more

aggressively and using a greater ambiguity threshold (described below). In order

to reduce the variance of our estimate of E, we perform kernel smoothing across

the quality q using a Gaussian kernel [87] with standard deviation 2. Let Cq(x, y)

be the number of times actual nucleotide x was observed as error nucleotide y at

quality value q, Cq(x) be the number of times actual nucleotide x was observed as

an error at quality value q, and N(q;u, s) be the probability of q from a Gaussian

distribution with mean u and standard deviation s. Then E is defined by

Eq(x, y) =

∑
i Cqi(x, y)N(qi; q, 2)∑
i Cqi(x)N(qi; q, 2)

(2.6)

2.4.5 Correction search

Once we can assign a likelihood to a set of corrections and localize the error(s)

to a specific region of the read, we must search for the set with maximum likelihood

such that all k-mers in the corrected read are trusted. We refer to a set of corrections

as valid if all resulting k-mers are trusted. In order to limit the search space, we
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1: function Search(R)
2: P.push({}, 1)
3: while (C, L) ← P.pop() do
4: if Valid(R, C) then
5: return C
6: else
7: i ← lowest quality unconsidered position
8: for nt ∈ [A, C, G, T ] do
9: if R[i] == nt then

10: Cnt = C
11: else
12: Cnt = C + (i, nt)

13: Lnt ← LikelihoodRatio(R, Cnt)
14: if Lnt > likelihood threshold then
15: P.push(Cnt, Lnt)

16: return {}

1

Figure 2.5: Pseudocode for the algorithm to search for the most likely set of corrections that

makes all k-mers in the read trusted. P is a heap-based priority queue that sorts sets of corrections

C by theirlikelihood ratio L. The algorithm examines sets of corrections in decreasing order of

their likelihood until a set is found thatconverts all k-mers in the read to trusted k-mers.

consider only sets of corrections for which the ratio of the likelihood of the corrected

read to the original is above a fixed threshold (default 10−6).

Figure 2.5 outlines the algorithm. To consider sets of corrections in order

of decreasing likelihood, the algorithm maintains a heap-based priority queue P

where each element contains a set of corrections C and the ratio of their likelihood

to the original read’s likelihood L. In each iteration through the main loop, the

algorithm pops the maximum likelihood set of corrections C from the queue P . If

C makes all k-mers in the region trusted, then it returns C. Otherwise, it examines

the next lowest quality read position that has not yet been considered, which we

track with minor additional bookkeeping. For each nucleotide substitution at this

position, we compute a new likelihood and add the updated set of corrections to
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ACGGCCTATTTA

ACGGCCTAATTA

ACGGCCTACTTA ACGTCCTATTTA

ACGTCCTAATTA

ACGTCCTACTTA

ACGGCCTAGTTA

ACGCCCTAGTTA

ACGACCTAGTTA

ACGTCCTAGTTA
Likelihood

observed read:

corrected reads:

actual read:

likelihood threshold:

quality:

Figure 2.6: The search for the proper set of corrections that change an observed read with

errors into the actual sequence from the genome can be viewed as exploring a tree. Nodes in the

tree represent possible corrected reads (and implicitly sets of corrections to the observed read).

Branches in the tree represent corrections. Each node can be assigned a likelihood by our model

for sequencing errors as described in the text. Quake’s algorithm visits the nodes in order of

decreasing likelihood until a valid read is found or the threshold is passed.
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the priority queue if its likelihood ratio is above the threshold. If the queue empties

without finding a valid set of corrections, we abandon the read. This procedure

could alternatively be viewed as searching a tree where nodes are corrected reads

and branches represent corrections (see Figure 2.6).

In practice, we make a few adjustments to this procedure. Reads from repeats

may have multiple sets of valid corrections separated by a small likelihood difference

so that the true correction is ambiguous. Therefore, we actually continue past the

point of finding a valid set of corrections to ensure that another valid set does not

exist within a certain likelihood threshold (default 0.1). As described, the algorithm

will devote a large majority of its computation effort to the lowest quality reads,

which have many potential sets of corrections to consider. In order to balance correc-

tion sensitivity with speed, we pre-screen the error region and immediately abandon

a read if its error region is filled with low quality base calls. More specifically, in our

experiments we found that regions containing ≥13 positions with a probability of

error >1% were difficult or impossible to correct quickly, and these reads are aban-

doned without further effort. For regions containing ≥9 such positions, we increase

the likelihood ratio threshold to 10−3 so that we only consider a limited number of

corrections before giving up.

In order to run Quake on very large datasets (e.g. containing billions of reads),

we must be able to determine very quickly whether a set of corrections makes all

k-mers trusted. We accomplish this by mapping all 4k k-mers to an index in a bit

array that is set to 1 if the k-mer is trusted and 0 otherwise. For 15-mers this bit

array uses just 128 MB of space, while it requires 32 GB for 19-mers, which are
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needed for larger genomes. If memory usage must be reduced, a Bloom filter could

be used to hash the trusted k-mers in <4 GB at the expense of occasional false

positive queries [52].

2.5 List of abbreviations

bp: base pair, K: thousand, M: million, B: billion, MB: megabytes, GB: giga-

bytes, Mbp: megabases, Gbp: gigabases, SNP: single nucleotide polymorphism
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Chapter 3

Detection and correction of false segmental duplications caused by

genome mis-assembly

The primary goal of a genome project is to produce large and accurate seg-

ments from the chromosomes that can then be used to analyze the genome. Because

genome assembly software makes assumptions about the data and uses heuristics

in order to make the problem feasible, sometimes mistakes are made. Additionally,

these errors may be very misleading during downstream analysis of the genome.

This chapter describes work done with Steven Salzberg where we found a

particular type of problematic mis-assembly in many important public vertebrate

genome assemblies. In a heterozygous region of a diploid genome where there are

many differences between the two copies of the chromsome, the assembler may

construct two distinct contigs covering the region and place them nearby in the final

assembly. This gives the illusion of a segmental duplication, which is a well-studied

evolutionary event. We developed a method to detect such mis-assemblies based on

sequence alignment and probabilistic modeling of paired-end read distances. Then

we ran the method on a set of recent genome assemblies and analyzed the prevalence

of mis-assemblies and their consequences. The following manuscript was published

in March 2010 in Genome Biology [88].
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3.1 Background

Ever since the publication of the Drosophila melanogaster genome [89], large-

scale eukaryotic sequencing projects have increasingly used the whole-genome shot-

gun (WGS) strategy to sequence and assemble genomes. Algorithms to assemble

a genome from WGS data have grown increasingly sophisticated, but problems

nonetheless remain, and despite the ever-accelerating pace of “complete” genome

announcements, not a single vertebrate genome is truly complete. While it is widely

known that draft assemblies contain gaps, the extent of errors in published assem-

blies is less well known.

One particular type of error that confounds analysis is an erroneously dupli-

cated sequence. Duplications involving large genomic regions, known as segmental

duplications, have been the subject of intensive study in the human genome [90,91]

and other species (e.g. [92, 93]). Although much effort has gone into avoiding the

problem of artificially collapsing duplicated regions [18], less attention has been paid

to the assembly processes that improperly reconstruct duplicated regions from WGS

data, which is a problem for assembly of diploid organisms. Genome assembly soft-

ware is generally designed as if the sequencing data (“reads”) were derived from

a clonal, haploid chromosome. This was indeed the case for early WGS projects,

which targeted bacteria [2] or archaea [94], but in general is not true for more ge-

netically complex organisms like vertebrates. Diploid organisms inevitably have

differences between their two copies of each chromosome, and these differences com-

plicate assembly. This problem can be alleviated somewhat by choosing highly
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inbred individuals with few differences between chromosomes for sequencing. But

for many species such inbred lines are not available, and for others the inbreeding

has not resulted in the desired homozygosity [95]. Adding further to the confusion

is the fact that virtually all DNA sequence databases (including GenBank, EMBL,

and DDBJ) maintain only a single copy of each chromosome for all species.

When assembling a diploid genome with any significant variation between the

two chromosomes, even the best assembly software may find it difficult to recon-

struct a single sequence for heterozygous regions. As a result, genome projects in

which a highly heterozygous individual was sequenced have documented problems

with assembly, e.g. Anopheles gambiae [96], Candida albicans [97], and Ciona sav-

ignyi [98]. Even with highly inbred strains such as mouse, mis-assemblies due to

heterozygosity have been described [93,99].

Specifically, when two copies of a chromosome diverge sufficiently, an assembler

will create two distinct reconstructions (contigs) of the divergent regions, using reads

from each of the respective copies of the chromosome. If the sequencing project

used paired-end sequences, as is commonly done, then both contigs are likely to

have linking information from these reads to their “mates” in the same surrounding

region. The duplicate contigs might then be placed into the genome at adjacent

locations, possibly with some non-duplicated flanking sequence on either side. The

incorporation of both haplotypes into the genome gives the illusion of a segmental

duplication. In addition, single nucleotide polymorphisms (SNPs) and small indels

captured in the differences between the two haplotype contigs are missed.

Segmental duplications and SNPs have been studied extensively for their im-
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portant role in genome evolution [100–102] and for their associations with dis-

ease [103,104]. Previous attempts to accurately quantify the number of duplications

in the human genome have briefly discussed the likelihood that highly similar (e.g.

>98% identity) apparent intrachromosomal duplications may be erroneous [90, 91].

We hypothesize that many duplicated regions in current, published genome se-

quences are in fact errors due to mis-assembly, and in this chapter we attempt

to identify and quantify the frequency of this type of assembly error. To accurately

detect mis-assembled haplotype sequence, we incorporate the reads’ mate pair in-

formation, a data source that has not been previously used in duplication detection.

Mate pair constraints, coverage data (the number of reads covering a particular

locus in a genome), and read placement data are all valuable tools in validating

assemblies [105–107].

In this chapter, we present a contig-centric analysis of mis-assembled segmen-

tal duplications. Our process begins by aligning every contig in an assembly to

the surrounding sequence (see Methods for details). Those contigs that have strong

similarity to nearby regions – apparent segmental duplications – are analyzed to

determine whether the reads’ mate pairs would be more consistent if the dupli-

cated segments were merged into one copy. In cases where this is true, the genome

can be corrected by re-computing the consensus sequence using all reads, which

then uncovers polymorphisms between the two haplotypes that had previously been

overlooked.
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3.2 Results and Discussion

3.2.1 Genomes

We ran our mis-assembly detection pipeline on the genomes of domestic cow,

Bos taurus (UMD1.6, a precursor to UMD2 where all detected mis-assemblies were

fixed [108]); chimpanzee, Pan troglodytes (panTro2 assembly [109]); chicken, Gal-

lus gallus (galGal3 assembly [110]); and dog, Canis familiaris (canFam2 assem-

bly [111]). These genomes were assembled with three different assemblers: Celera

Assembler [15], Arachne [16], and PCAP [112]. We selected them based on their

large size, biological significance, range of assembly software, and (most critically)

the availability of low level assembly data including the placements of reads in

contigs. We chose to analyze the UMD2 cow assembly over the BCM4 assem-

bly [113,114] because placement of reads in contigs is a requirement of our method

and such information is not available for BCM4.

Table 3.1 displays the results of running our pipeline on these four genomes.

Contigs that align to nearby sequence appear as duplicated contigs, and those that

appear to be erroneous (see Figure 3.1) are summarized in the table as mis-assembled

contigs. For a significant number of apparent duplications, especially in chicken and

chimpanzee, the mate pairs are more consistent when the contig is superimposed on

a nearby duplication, suggesting that the sequence in the contig and the nearby se-

quence represent two slightly divergent haplotypes that belong to the same chromo-

somal position. These results demonstrate that published whole-genome assemblies

of diploid species contain mis-assemblies due to heterozygosity.
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Figure 3.1: Mis-assembled DCC and DOC. Assemblers may mistakenly form two contigs from

the two haplotypes, as shown in (i) where contig A contains heterozygous sequence and contig B

contains homozygous sequence (light) on both sides of a matching heterozygous region (dark) (with

sequencing reads as lines above them). We refer to A as a duplicated contained contig (DCC).

We can identify this situation by finding an alignment between contigs A and B that completely

covers contig A and comparing contig A’s mate pair links in the original location to those same

links when contig A is overlaid on contig B at the location of its alignment, as shown in (ii).

Dashed curves in (i) indicate distances that are significantly shorter (left side of figure) or longer

(right) than expected; solid curves indicate distances that are consistent with specifications. In

the situation shown here, we would designate contig A as an erroneous duplication likely to have

been caused by haplotype differences. Alternatively, heterozygous sequence may be separated into

two contigs that each include some homozygous sequence on opposite ends, as in contigs C and

D in (iii), which we refer to as duplicated overlapping contigs. If a significant alignment exists

between the ends of these contigs and the distances between mate pairs pointing right from contig

C and left from contig D better match their expected fragment sizes when the contigs are joined,

we designate the region as an erroneous duplication and join the contigs as in (iv).
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Gallus gallus Pan troglodytes Bos taurus Canis familiaris

(chicken) (chimpanzee) (cow) (dog)

Assembled genome size 1.00 Gb 2.89 Gb 2.57 Gb 2.33 Gb

DCCs 4418 (7.6 Mb) 5467 (8.0 Mb) 1297 (3.71 Mb) 80 (170 Kb)

Mis-assembled DCCs 2303 (3.61 Mb) 2298 (2.97 Mb) 394 (1.18 Mb) 2 (1.8 Kb)

DOCs 5947 (11.2 Mb) 13571 (14.1 Mb) 1366 (1.88 Mb) 22 (34.7 Kb)

Mis-assembled DOCs 5698 (10.8 Mb) 13159 (13.7 Mb) 1094 (1.09 Mb) 8 (7.9 Kb)

Total mis-assemblies 8001 (14.4 Mb) 15457 (16.7 Mb) 1488 (2.27 Mb) 10 (9.7 Kb)

Table 3.1: Erroneously duplicated sequences in vertebrate genomes. Genome sizes were de-

termined by summing the lengths of all contigs and linked gaps in each assembly. Duplicated

contained contigs (DCCs) include all contigs that aligned to nearby sequence where the contig is

completely contained within another contig, as shown in Fig. 3.1(ii). Mis-assembled DCCs are the

subset of DCCs that we identified by mate pairs as erroneous duplications (assembly errors). Du-

plicated overlapping contigs (DOCs) include all pairs of nearby contigs that overlap at their ends,

followed again by the subset found to have more consistent mate pairs when merged. Contigs that

were not designated as mis-assembled either had consistent mate pairs in their original location,

or else lacked sufficient mate-pair data to make a determination. Note that this analysis used the

UMD 1.6 version of the Bos taurus genome, and based on these results, erroneous duplications

were removed from the published UMD 2.0 assembly.
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Figure 3.2: Erroneous duplication lengths. Contigs from chimpanzee, chicken, cow, and dog that

are classified by our procedure as mis-assembled erroneous duplications were binned by length at

250 bp resolution. The distribution was similar for each individual species.

The four assemblies displayed a wide range of incorrectly assembled haplotype

sequence. The assembly of the dog genome with Arachne had the fewest problems

by far, which we attribute to the extensive post-assembly procedures that were ap-

plied to that genome [115] and to that group’s experience with highly polymorphic

genomes such as Ciona savignyi [98]. We therefore excluded the dog genome from

the remainder of the experiments below. By contrast, chimpanzee and chicken,

assembled with PCAP, contain 16.7 and 14.4 Mb of sequence, spread across thou-

sands of contigs, that appears to represent erroneous segmental duplications. The

cow genome assembly had fewer such regions (2.27 Mb), which are corrected in the

publicly released version of the genome.

The distribution of sizes of mis-assembled contigs in the four genomes is de-
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Figure 3.3: In (i), Contig412.192 is placed in the chimpanzee assembly on chromosome 1 such

that mated reads pointing to the right have compressed mate pair distances and mated reads

pointing to the left have stretched mate pair distances. By moving the 1537 bp contig to a nearby

location where it aligns in its entirety at 98.9%, the distances between mated reads become far

more consistent with their library insert lengths. Thus, Contig412.192 is classified as a spurious

duplication.

picted in Figure 5.1. Most of the contigs are less than 2000 bp, though there are

a few larger contigs up to 28 Kb in cow. The median alignment percent iden-

tity between a falsely duplicated contig and the nearby region to which it aligns is

98.1%. Few contigs align at greater than 99.5%. These statistics were similar in

each genome. Figure 3.3 displays an example spurious duplication in chimpanzee

detected by analyzing mate pairs.

3.2.2 Use of the human genome to check duplications

For the chimpanzee genome, we used the human genome as an independent re-

source to confirm that the contigs we identified as haplotype variants were likely to be

mis-assemblies rather than true duplications. Because the human genome has been

the subject of far more analysis and refinement than any other vertebrate genome,

we made the simplifying assumption that it does not contain any mis-assembled
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segmental duplications. A recent study found that 83% of chimpanzee duplications

are shared by human [116]; thus it is reasonable to assume that a large majority of

the duplicated contigs we found in the chimpanzee assembly should be duplicated

in human as well if they truly are duplications. We aligned all chimpanzee contigs

classified as mis-assembled in Table 3.1 to the human genome (NCBI build 36) us-

ing MUMmer [73]. Many of the sequences contain high-copy repetitive elements,

and to avoid confusion we first ran the program RepeatMasker [117], which screens

the sequence against a database of known interspersed repeats and low complexity

sequence, on the chimpanzee sequences and removed the 2962 contigs (out of 15457)

that were more than 90% masked. Of the remaining 12495 contigs, only 486 (3.9%)

were found in multiple copies in human. This is dramatically lower than the 83%

rate reported in the Cheng et al. study, indicating that most of these contigs are

likely to be single-copy. Furthermore, detection of a chimpanzee contig as multiple

copies in human does not preclude the possibility of a mis-assembly in the location

we identified.

3.2.3 Coverage depth

Another independent check on the accuracy of our mis-assembly detection

method is the depth of coverage by WGS reads. Because WGS reads represent a ran-

dom sample of the genome, the expectation of the coverage at any location is equal

to the global average coverage. We measured coverage using the A-statistic [15],

which computes the log of the ratio of the likelihood that a contig is a single-copy
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segment and the likelihood that it is duplicated. For all duplicated regions, we con-

sidered WGS reads from both of the contigs that were placed in the region covered

by the span of the alignment of the contigs. We found that, for the regions identified

as mis-assembled in Table 3.1, 77.2% of the chicken contigs, 76.3% of the chimpanzee

contigs, and 94.1% of the cow contigs had A-statistics greater than zero, indicating

that they were likely to be single-copy regions; i.e. that they were mis-assembled

and falsely present in two copies.

Read coverage is a strong indicator of duplication, but is subject to consider-

able noise at the sequence lengths considered (see Figure 5.1). As a further check on

our method, we examined several borderline cases where read coverage, as indicated

by the A-statistic, suggested that a contig was duplicated even though our analysis

of mate pairs indicated that it was spurious. In each case, the mated reads associ-

ated with the contig in question strongly suggested a mis-assembly. For example,

Contig438.7 (2983 bp) in the chimpanzee assembly has an A-statistic strongly indi-

cating that it is duplicated. However, the existing placement is supported by only

a single pair of mated reads, while every other mate pair is stretched by ∼61000

bp. If instead we superimpose this contig on Contig 438.13, to which it aligns at

98.6%, 28 mated reads would be the correct distance from one another without a

perceivable bias. Despite the read coverage, mate-pair data show that Contig 438.7

clearly represents a mis-assembly in the current placement. While depth of read

coverage can be a very useful tool for detecting mis-assemblies [105,106], cases like

these where repetitive sequence is mis-assembled can only be detected by using the

mate pairs.
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3.2.4 Genes affected by erroneous duplications

We examined the annotations for the erroneous duplications found by our

method using the NCBI Entrez Gene database [118] as a source for annotation.

This analysis only examined the chicken and chimpanzee assemblies, because the

intermediate UMD1.6 cow assembly used in this study was not annotated. For

chicken, 3459 of the mis-assembled contigs overlap a gene model, and 585 of these

contain protein-coding sequence. In chimpanzee, 6121 contigs overlap a gene model,

with 381 containing coding sequence. A complete list of the particular genes affected

is provided in Additional file 2.

In most cases, contigs containing coding sequence contained one or two exons,

and removing the duplicated region would maintain the consistency of mRNA align-

ments. Specifically, no mRNA contained two copies of the exon even though it is

duplicated nearby. If the exon prediction differed on the two copies of the duplica-

tion, we checked that no exons overlapped or changed order after moving the contig.

In other words, the mRNA alignments support our hypothesis that the duplication

is erroneous. This was the case for 316 of the 381 chimp contigs and 427 of the 585

chicken contigs that contained coding sequence. Figure 3.4 shows an example from

the chimpanzee genome in which an erroneous duplication contains three exons, but

none of the mRNA sequences contain duplicate copies of those exons as might be

expected if the duplication were real.
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Figure 3.4: SCPEP1 consistent mRNA alignments. The screenshot above, taken from the NCBI

Sequence Viewer, displays the gene model for serine carboxypeptidase 1 (SCPEP1) where green

bars represent contigs and mRNA alignments are listed with red bars as alignments to exons. (i)

Contig31.166 contains three putative exons. However, it overlaps neighboring Contig31.165 for all

of its length (7162 bp) at 98.6% identity, and mate pairs indicate that the two contigs came from

the same position. Every mRNA alignment takes a path through the exons such that only one

copy of each duplicated exon is included. When the contig is moved (ii), the extra copies of these

three apparently duplicated exons are removed, but all of the alignments remain consistent.
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Gallus gallus Pan troglodytes Bos taurus Canis familiaris

(chicken) (chimpanzee) (cow) (dog)

Unplaced contigs 25957 (56.8 Mb) 47549 (153 Mb) 133918 (307 Mb) 7551 (75.1 Mb)

Mis-assembled DCCs 8044 (16.3 Mb) 10407 (21.3 Mb) 1793 (4.92 Mb) 2 (2.92 Kb)

Mis-assembled DOCs 663 (1.23 Mb) 2204 (2.96 Mb) 751 (827 Kb) 15 (23.0 Kb)

Table 3.2: In each of the four genome assemblies, a large set of contigs that could not be placed

on the chromosomes exists (summarized in the first row). We aligned these contigs against all

placed contigs and identified those that were contained in placed sequence (DCCs) or overlapped

a placed contig (DOCs). We checked mate pairs for evidence that these contigs should be merged

with the placed contigs. The table shows the number of contigs of each type found to have a

supported placement in the assembly for each alignment type. These unplaced contigs are likely

haplotype variants of the sequence in the placed contigs.

3.2.5 Unplaced contigs

We developed a variation of our haplotype mis-assembly pipeline to identify

likely haplotype variants among the unplaced contigs (those not assigned to a chro-

mosome) in each genome, including dog. We aligned all unplaced contigs to all

placed contigs, identified alignments indicative of a mis-assembly, and checked for

consistent mate pairs for the unplaced contig in the location implied by the align-

ment (see Methods for details). The results are displayed in Table 3.2. As with

the placed contigs, the amount of unplaced haplotype sequence varied considerably

among genomes. In all but the dog genome, a significant number of contigs were

identified as haplotype variants by this procedure.

66



3.2.6 SNPs and indels

The mis-assembled contigs detected by our pipeline represent distinct se-

quences that should have been assembled into a single consensus. We recomputed

the multiple alignment of all reads from both haplotypes for each erroneous dupli-

cation using Seq-Cons [119]. With a new multiple alignment of reads to represent

the region, polymorphisms that went unnoticed when the haplotypes were separated

could be detected. To be conservative, we only count polymorphisms for pairs of

contigs with read coverage indicative of a single-copy segment in order to filter out

mis-assembled repetitive sequence. After filtering for high quality neighboring se-

quence, we report 124432 SNPs and 22960 indels in chimpanzee, 188617 SNPs and

16840 indels in chicken, and 50209 SNPs and 10764 indels in cow. For chimpanzee

and chicken, we submitted these SNPs to the public SNP database dbSNP (submit-

ted SNP numbers 181362056 to 181746453) [120]. To assess the number of novel

SNPs contributed for each organism, we aligned the sequence surrounding each SNP

against entries for that organism in dbSNP. 26451 chimpanzee SNPs, 21646 chicken

SNPs, and 1727 cow SNPs matched entries in the database. Thus, a significant

number of novel polymorphisms would have been lost due to mis-assembly but were

recovered by our pipeline.

3.3 Conclusions

Assembling the genome of a diploid organism remains a formidable task, es-

pecially in the presence of heterozygosity. Most genome sequencing projects to date
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have attempted to create a single reference genome, which has involved merging the

two copies of each chromosome into one consensus sequence. Assembly algorithms

use a variety of strategies to avoid collapsing highly similar copies of repetitive

sequences (e.g. strict requirements for an overlap between two reads), which is of

utmost concern when detecting duplications [90,91]. However, these very same algo-

rithmic techniques can separate two haplotype variants – which ought to be merged

– creating an erroneous duplication. No assembly algorithm yet invented does a

perfect job of balancing these competing goals.

A number of assembly methods have been designed to avoid mis-assemblies

due to haplotype divergence. In Anopheles gambiae, a conservative scaffold layout

algorithm was implemented to reduce placement of redundant sequence [96]. A pro-

cedure to filter out overlaps between reads originating from different chromosomes

was used before assembling Ciona savignyi [98]. For the grapevine genome, scaffolds

that aligned for >40% of their length at high identity were visually inspected and

in most cases, one copy was removed [121]. In the assembly of Candida albicans,

significant heterozygosity and the aggressive assembly strategy of the Phrap assem-

bler created numerous mis-assembled contigs, which needed to be carefully stitched

back together [97].

At the post-assembly analysis stage, a number of reports have indicated prob-

lems with false duplications, but no previous work has reported an algorithmic

solution. For example, two independent assessments of duplications in a previous

build of the human genome reported nearly identical intrachromosomal duplica-

tions [90, 91] and questioned their reliability. More recently, researchers found that
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significant erroneous duplications – due to haplotype differences – permeate nema-

tode genome assemblies [95].

The work described here presents an algorithm to detect erroneous duplica-

tions that are caused by heterozygosity between haplotypes. Our pipeline relies not

only on sequence alignments among contigs but also a novel, detailed analysis of

mate pair constraints that provides fine-scale resolution of the evidence for each

duplication. We ran our pipeline on a set of vertebrate genomes that represent a

sample of different assembly methods. Our results demonstrate some published as-

semblies, including chimpanzee and chicken, are riddled with erroneous duplications,

with >14 Mb of problematic sequence in each. Uncovering these mis-assemblies re-

quires a revision of the amount of sequence covered by segmental duplications in

these genomes. Segmental duplications have proven to be relevant to disease [103]

and integral to studies on genome evolution [100, 101], and proper identification

of duplications is a necessity for investigations into their role in these phenomena.

Our results remove thousands of duplications from the chimpanzee, chicken, and

cow genomes. In most cases, the false duplications described here are highly sim-

ilar, making it appear that they are very recent events, which have been of great

interest, particularly in primates [122,123].

In addition, when the sequences from a heterozygous region are erroneously

assembled into two separate contigs, we lose information about the heterozygosity

in that region. Single nucleotide polymorphisms (SNPs) and insertions/deletions

(indels) are valuable for many reasons, including genotyping, evolutionary analysis,

and the relation of genotype to phenotype [104, 124, 125]. For example, we must
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know which of the SNPs between chimpanzee and humans are due to intra-species

diversity in order to accurately model evolution in the primate lineage [102]. By

recomputing the multiple alignment of reads in the mis-assembled duplications, we

were able to find tens of thousands of additional polymorphisms that were over-

looked in the original analyses of the genomes. In the past, discovery of this number

of polymorphisms has required expensive efforts to sequence many different individ-

uals [124,126,127].

Numerous recent human genome resequencing projects have performed a diploid

assembly where both chromosomes are described [128, 129]. These projects begin

by assembling a single reference genome and then perform a post-processing step

called “haplotype assembly” where the assembly is assumed to be correct and vari-

ations in the consensus multiple alignment of reads are used to pull apart the two

haplotypes for stretches of sequence as long as possible [130–132]. In fact, “haplo-

type assembly” algorithms will not succeed unless the two haplotypes are assembled

into a single contig. Thus, correcting mis-assemblies of haplotype sequence is an

integral first step that has not previously been considered and would certainly re-

sult in longer stretches of haplotype sequence since these regions are replete with

informative variations.

Due to their greatly lower cost and higher throughput, next-generation se-

quencing technologies are rapidly being adopted for large genome projects. The

limitations of short reads in resolving repetitive areas of the genome due to the

absence of reads that cover the entire region have been discussed previously [13],

and resolving haplotype differences will be difficult for similar reasons. Most of
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the programs to assemble short reads incorporate a procedure to attempt to rid

the assembly of these contigs; e.g., by detecting bubbles in the de Bruijn graph of

the reads [12]. However, similar algorithms have been used for many years [133],

but have not been able to rid large genome assemblies of false duplications due

to haplotype differences, as demonstrated here. Accurate assembly of segmental

duplications, and the avoidance of false duplications, is likely to remain a difficult

problem for the foreseeable future.

3.4 Methods

We developed a pipeline to identify mis-assemblies due to haplotype differ-

ences. First, all contigs placed in the assembly are aligned to the surrounding

sequence. Then, those contigs that have strong similarity to nearby regions – ap-

parent segmental duplications – are analyzed using the methods described below to

determine if they are misassembled. The analysis examines the mate pairs of the

reads contained in these contigs to determine whether the assembly would be more

consistent if the apparent duplicates were merged together.

The pipeline requires as input the contig sequences, an AGP file or other de-

scription of the placement of contigs along the chromosomes, placements of reads

within the contigs, and mate pair and library information for the sequencing reads.

In our experiments, ancillary read data was downloaded from the NCBI ftp site.

Contig sequences, AGP files, and read placement information were downloaded from

the ftp sites of the Genome Center at Washington University in St. Louis for chim-
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panzee and chicken, the Broad Institute for dog, and the Center for Bioinformatics

and Computational Biology at the University of Maryland for cow.

3.4.1 Detection of potential haplotype mis-assemblies

Haplotype sequence that is placed twice in the assembly will have one of two

signatures depending on how the flanking homozygous sequence (that is merged by

the assembler) is placed. One possibility, illustrated in Figure 3.1(i), is that a long

contig contains heterozygous sequence surrounded by homozygous sequence on both

sides and another shorter contig contains only the heterozygous sequence. In this

case, the shorter contig will align in its entirety to the heterozygous region in the

longer one. Another possibility, shown in Figure 3.1(iii), is that both contigs contain

matching heterozygous sequence as well as homozygous sequence on opposite ends.

Here, the contigs will align only at their heterozygous ends. We call these cases

mis-assembled duplicated contained contigs (DCCs) and mis-assembled duplicated

overlapping contigs (DOCs) respectively. We restrict our analysis to duplications on

separate contigs. Duplications also occur within a single contig, but these are rarely

mis-assembled single copy sequence because the overlap graph of reads must have

contained an unambiguous path through the two putative copies. Intra-contig mis-

assemblies can be detected by other means, such as by computing the compression-

expansion statistic across the contig [107].

Detection of DCCs and DOCs requires first finding the alignments. We aligned

every contig to other contigs within 50 kilobases (Kb) using the MUMmer pro-
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gram [73]. We chose 50 Kb because this distance includes all common fragment

insert sizes for the four genomes in our study. (Longer inserts based on bacterial

artificial chromosomes were used in some projects, but they represented a small

fraction of the sequence data.) In theory, a smaller distance might suffice, but our

strategy was to identify a superset of possible erroneous duplications and filter the

results in subsequent steps. Alignments that cover >93% of the contig’s length at

>95% identity are saved as DCCs. Alignments of size >300 base pairs (bp) and

>95% identity that are consistent with the layout of DOCs and within 300 bp of

the ends of both contigs are considered as DOCs. Again these parameters were

chosen conservatively to allow more cases to be examined for mate pair consistency.

Lowering them any further resulted in few extra alignments, which then passed the

mate pair tests at a sufficiently decreased rate to cause concerns of false positives.

Most examples found tended towards the ideal problematic case, e.g. 11113 of 13576

(82%) DOCs in chimpanzee had alignments within 10 bp of the ends of the contigs.

DOC alignments were further filtered to only consider cases where the contigs are

placed adjacently on the chromosome or there is a single contig in between that was

classified as a mis-assembled DCC by the tests described below.

3.4.2 Analysis of mate pairs

These contigs, which align closely to a nearby location in the genome, were

then analyzed further using the mate pairs of their reads to determine if they are

true segmental duplications or two divergent haploid copies of the same chromosome
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region. A pair of mated reads is generated by sequencing both ends of a long

fragment of DNA. The size of this fragment determines the distance we expect

between the mated reads in the assembly. If a contig is truly duplicated, then the

distances between mate pairs of relevant reads should better match their fragment

sizes when the contig is in its current location in the assembly. But if the contig

represents an erroneous duplication, we expect a better match when the contig is

merged with the nearby copy. See Figure 3.1 for an illustration.

Within a library of reads, the fragment size is intended to fall within a tight

distribution. The NCBI Trace Archive assumes that the distribution of fragment

sizes within a library is normal and allows for sequencing centers to submit a mean

and standard deviation for the fragment size of every read. However, this is an

approximation (see Figure 3.5) and the real distribution may be considerably skewed

from normal. Therefore we empirically measure the distribution of fragment sizes

from the other reads placed in the assembly, thus alleviating the need to make any

potentially biased assumptions. Though every assembly has its problems, a large

majority of the sequence will be very accurate, and the vast majority of mated reads

will be placed accurately with respect to each other. For each library, we find all

mate pairs placed in the assembly, measure the distance between their 5’ ends, and

construct a histogram of the insert size distribution using a cubic smoothing spline

function to alleviate noise (as implemented with smooth.spline in R with default

parameters [84]). This nonparametric regression of the data does not assume a

model distribution. When there are ample mated reads in the library, the result

is a very accurate measurement of the distribution of fragment sizes, but not all
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Figure 3.5: Re-estimated fragment size distribution. The distribution of fragment sizes for

chimpanzee library G591P4 is plotted above under three models. The normal distribution with

mean and standard deviation given by the NCBI Trace Archive is plotted as “Normal TA”. A

normal distribution re-estimated from the placement of mated reads from the library is plotted as

“Normal re-estimate”. To lessen the effect of outliers, we did an initial estimation of the parameters,

filtered out any mate pair distances that were greater than 4 standard deviations away, and then

estimated the parameters again. “Nonparametric” plots the actual density of mate pair distances

after running a cubic smoothing spline. The actual fragment distribution has a mean of 4500

rather than the 5000 listed in the Trace Archive and is far tighter around the mean than suggested

by the other models. In particular, the “Normal TA” model would have given us a very inaccurate

view of this library, which is one of the largest for chimpanzee with over 2.3 million reads.
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libraries contain a sufficient number of reads. Therefore, for each library, we compute

a Kolmogorov-Smirnov goodness of fit test of the fragment sizes implied by the

library’s mated reads against the normal distribution with parameters given by the

Trace Archive. If we can reject the null hypothesis that the distributions are the

same with a p-value <0.01, we perform the re-estimation procedure above. If not,

which will be the case if there are too few reads, we keep the normal distribution

model.

For each contig, we determined the chromosomal location of each of its relevant

reads and their mates. For a DCC, all reads in the contig with a mate pair outside

of the contig are relevant. For DOCs, only reads with mate links that cross the over-

lap are relevant. Mated reads pointing away from the overlap are assumed to have

had a significant enough influence in determining the size of the adjacent gap that

these gaps, as well as the mate pair distances for reads crossing them, should remain

unchanged. We consider reads with mates in both directions for DCCs because they

are generally smaller and less influential in determining the size of surrounding gaps

and the contigs tend to be considered for more distant and complicating moves than

the DOCs. Both of these methods are imperfect, and ideally we would completely

re-scaffold the region (i.e. position contigs and recompute gaps) and re-map it back

to the chromosome. However, we do not attempt this at this time because different

assembly projects may use many different mapping data types with specialized re-

quirements. Nevertheless, our methods capture the most important information in

the region’s mated reads without having to resort to such a complicated extreme.

Given the library distributions and positions of the relevant mates, we can
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compute the likelihood of the insert sizes at the current contig position and the

alternative, merged location. Each pair of mates is assumed to be independent, and

thus the likelihood of contig c in chromosomal location l is given by

L(c, l) =
∏

r∈reads(c)
P (frag(r, l)|lib(r)) (3.1)

Here reads(c) is the set of relevant reads for c, frag(r, l) is the fragment size

implied by read r and its mate in location l, and lib(r) is the fragment distribution

model for r’s library. If the library has been re-estimated, the function is given by

the smoothed frequency function. If not, the probability is given by the probabil-

ity density function of the normal distribution with the Trace Archive parameters.

Though density functions are reserved for continuous distributions, it serves as an

approximation of discretizing the continuous normal distribution to integer values.

A final complication is that we force a library-specific minimum value on the prob-

ability of any given fragment size. Doing so prevents highly improbable distant

fragment sizes from dominating the likelihood comparison and allows us to include

disoriented mate pairs (e.g. reads pointing away from each other) in the likelihood

by giving them the minimum value. The minimum value was set such that the

cumulative probability of all fragment sizes with probability less than the minimum

value (not including far distant outliers) was .0001. For the normal distribution,

this corresponds to an interval of ∼4 standard deviations.

For each contig that has been flagged as a DCC or DOC, we compute the like-

lihood function defined above at its original location and at the location suggested
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by its alignment to a nearby contig. If the likelihood is greater at the new location,

then the mate pairs suggest that location is more appropriate for the contig and its

reads. We classify such contigs as mis-assembled erroneous duplications.

3.4.3 Unplaced contigs

In addition to the contigs placed on the chromosomes, each of the four genome

assemblies in this study contains a set of contigs that could not be placed. We used a

similar procedure to find unplaced contigs that are likely to be haplotype variants of

sequence that was placed. A stricter set of criteria was used to classify an unplaced

contig as a haplotype variant, because unlike placed contigs, these contigs cannot

be localized to a chromosome region. For each genome, all unplaced contigs were

aligned with MUMmer to all placed contigs. An alignment of 96% identity spanning

94% of the length of the unplaced contig was required to consider it as a DCC and

an alignment of 96% identity spanning 400 bp was required to consider it as a

DOC. Contigs were classified as haplotype variants if at least two mate pairs were

consistent and at least 30% of the mate pairs with a mate outside of the contig were

consistent. Here consistent was defined as having an implied fragment length for

which the probability is greater than the minimum value, with the minimum value

set as above but eliminating 0.05 of cumulative probability (to correspond to being

within ∼2 standard deviations for the normal distribution).
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3.4.4 Haplotype polymorphisms

SNPs and indels are major contributing factors to the variation within a species

and are highly sought after in the human genome [124]. Because two different copies

of each chromosome are sequenced, genome sequencing projects are an incredible

resource for finding SNPs and indels. However, when the homologous sequence from

each chromosome is assembled into two separate contigs, this polymorphism infor-

mation is lost. By detecting and correcting mis-assemblies that create erroneous

duplications, we recover the information. During each of the respective genome

projects, a consensus step to compute a multiple alignment of the reads was per-

formed for each contig with the reads separated. For every pair of contigs designated

as a false duplication by the procedure outlined, the mated reads suggest the contigs

belong together. Thus, we recompute the consensus sequence with all reads cover-

ing the region using the Seq-Cons program [119]. On the new multiple alignment

of reads, we implemented a Bayesian procedure to call SNPs and indels. However,

to be conservative and eliminate the possibility of calling SNPs on mis-assembled

repetitive sequence, we only count polymorphisms for pairs of contigs with read

coverage indicative of a single-copy segment (negative A-statistic [15]).

At each position i in the new consensus sequence, we determine the most

probable genotype G (e.g. AA if both chromosomes have adenine, AG if one chro-

mosome has adenine and the other has guanine). Given the column i of the multiple

79



sequence alignment of reads and using Bayes rule, we write the probability as

P (Gi|reads) =
P (reads|Gi)P (Gi)

P (reads)
(3.2)

We need only concern ourselves with the numerator since the denominator is

the same for every genotype. For each genome, we searched the literature for an

appropriate estimate of the rate of polymorphism to use as the prior probability

of a SNP. Because a sequenced individual is likely to be biased towards less poly-

morphism due to inbreeding, we err on the conservative side. Estimates range from

0.13-0.17% for chimpanzee, [134, 135] so we choose 0.1%. For cow, the rates for a

number of breeds were recently estimated at 0.14-0.27% so we again use 0.1% [136].

The best estimates for chicken resulted from comparing domestic breeds to the wild

reference genome (0.5%) and domestic breeds to each other (0.4-0.5%) [127]. To

account for this inexact estimate and significant inbreeding, we conservatively set

the prior probability of a SNP in chicken to 0.2%. To demonstrate the robustness of

the SNP counts to these numbers, we also report statistics using prior probabilities

that are 50% less than the chosen values in Table 3.3.

We set the prior probability of a homozygous genotype to the frequency of

that base in the rest of the assembled sequence multiplied by one minus the SNP

rate. We set the prior probability of a heterozygous genotype to the proportion of

SNPs with that pair in the public SNP database dbSNP [120] for that organism

multiplied by the SNP rate.

Let each read r extend to cover the entire consensus sequence and contain
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chimpanzee chicken cow

placed SNPs 67529 106691 20165

placed SNPs, prior/2 61550 104765 19172

placed SNPs, NQS 44884 90392 12515

placed SNPs, prior/2, NQS 43278 87940 11974

unplaced SNPs 98446 114840 48020

unplaced SNPs, prior/2 95842 112888 46628

unplaced SNPs, NQS 79548 98225 37694

unplaced SNPs, prior/2, NQS 77592 95929 37046

Table 3.3: Number of SNPs found from recomputing the multiple alignment of reads for hap-

lotype variant contigs using different criteria. The prior probability of a SNP is set to 0.001 for

chimpanzee and cow and 0.002 for chicken based on estimates from the literature. To demonstrate

the robustness of the counts to the prior, we also count the number of SNPs at a prior that is half

of the estimates (0.0005 for chimpanzee and cow and 0.001 for chicken). We also filter SNPs using

a method similar to the widely used Neighborhood Quality Standard (NQS).
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null characters except where the read aligns. Thus, ri refers to the position in the

read that aligns to the ith position in the consensus. Let pi be the probability that

the base called at that position in the read is correct, which is determined by the

quality value. Finally, let reads(i) refer to the set of reads that cover position i in

the consensus. Then the probability of the reads given a homozygous genotype at i

is

P (reads|Gi = g1g1) =
∏

r∈reads(i)
1{ri = g1}pi + 1{ri 6= g1}(1− pi)/3 (3.3)

The first term corresponds to an accurate base call and the second term corre-

sponds to a sequencing error, under the simplifying assumption that the error base

call will be each of the other three bases with equal probability. The probability of

the reads given a heterozygous genotype at i is

P (reads|Gi = g1g2) =
∏

r∈reads(i)
1{ri = g1, g2}

pi + (1− pi)/3

2
+ 1{ri 6= g1, g2}(1− pi)/3

(3.4)

The first term corresponds to a base call that matches one of the bases of

the genotype. Within the first term, ri could have arisen via an accurate base call

or an error from the other possible base. For example, if the genotype is AC, an

observed A could have arisen from sequencing the A chromosome accurately or the

C chromosome inaccurately. The last term represents a sequencing error away from

either base of the genotype.
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We calculate the conditional probability of each genotype given the reads and

choose the most probable genotype at every position. If the genotype is heterozy-

gous, a potential SNP is reported.

Following prior work on resequencing studies to discover SNPs, we filter the

heterozygous sites for high quality surrounding sequence. The Neighborhood Qual-

ity Standard (NQS), calls for the base pair at which the SNP is called to have

quality value ≥20 and the neighboring 5 base pairs on each side to have quality

value ≥15 [126]. Though we are dealing with the reads from the original assembly,

we can apply a similar filter by calculating quality values for each position based on

the conditional probabilities of genotypes and requiring the most probable genotype

to meet the NQS.

Indels are more difficult to model probabilistically. Instead, we report an indel

for every column in the multiple sequence alignment where at least 3 reads have a

gap and at least 3 reads have sequence. Continuous stretches of indel columns are

merged into a single indel event.

3.5 List of abbreviations

WGS: whole-genome shotgun. SNP: single nucleotide polymorphism. Bp:

base pairs. Kb: kilobases. Mb: megabases. DCC: duplicated contained contig.

DOC: duplicated overlapping contig.
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Chapter 4

Clustering metagenomic sequences with interpolated Markov models

The traditional method of sequencing a microbe’s genome involves isolating

the organism in culture, but a large number of interesting free-living microbes can-

not be cultured. Shotgun sequencing of environmental DNA is one way to obtain

genomic sequence from these organisms. However, the sequencing reads produced

by this type of metagenomics experiment require more computational processing to

determine what organisms were found in the mixture. Supervised classification ap-

proaches have proven useful for some well-studied environments, but lacking when

known reference genomes are not close matches for the sequences obtained from the

sample.

This chapter describes work done with Steven Salzberg to develop a composition-

based unsupervised clustering approach to determining the relationships between

metagenomic sequences. Our method, called Scimm, represents clusters by inter-

polated Markov models and then optimizes the clustering objective function with

a variant of the iterative k-means algorithm. Scimm clusters simulated metage-

nomic reads more accurately than previous unsupervised approaches. The following

manuscript was published in November 2010 in BMC Bioinformatics [137].
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4.1 Background

Over the last 15 years, DNA sequencing technologies have advanced rapidly,

allowing sequencing of over one thousand microbial genomes [138]. Still, this ac-

counts for only a sliver of the fantastic diversity of microbes on the planet [139].

Sequencing of environmental DNA (often called metagenomics) has shown tremen-

dous potential to drive the discovery and understanding of the “unculturable major-

ity” of species — the vast number of unknown microbes that cannot be cultured in

the laboratory [140]. Successful metagenomics projects have sequenced DNA from

ocean water sampled from around the world [43], microbial communities in and

on humans [141–144], and acid drainage from an abandoned mine [41]. These and

many other projects (e.g. [145–147]) promise to uncover the true extent of microbial

diversity and give us a better understanding of how these unknown microbes live.

However, progress has been slowed by the difficulty of analysis of metagenomic

data. The output from an environmental shotgun sequencing project is a large set of

DNA sequence “reads” of unknown origin. Because these reads come from a diverse

population of microbial strains, assembly produces a large collection of small contigs

(contiguous stretches of unambiguously overlapping reads) [44,148]. Two important

goals of metagenomics are to determine what species are in the mixture in what

proportions and to assemble substantial portions of individual genomes. A frag-

mented assembly of short sequences makes attaining these goals difficult. Advances

in computational analysis techniques are essential to move the field forward.

To uncover what microbes are in a metagenomic sample, we must determine
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(1) which sequencing reads came from the same microbial strain, and (2) where

those strains fit into the phylogenetic tree of life [149]. Methods to solve these

two problems are related. Clustering methods solve the former problem by binning

sequences into clusters that represent a single taxonomic class. Classification meth-

ods aim to solve the latter problem by assigning a specific taxonomic class to every

sequence.

In some cases, the presence of marker genes like 16S rRNA, which is very

highly conserved across species but has variable regions, can be used to assign a

taxonomic class to sequence fragments [150,151], but this typically pertains to only

a very small percentage of the reads. For example, ∼0.1% of reads in a typical

metagenomics project carry rRNA genes [149]. More general sequence similarity-

based methods align reads with BLAST [152] to known genomes deposited in pub-

lic databases like GenBank [153] and use those alignments to assign a taxonomic

classification [154–156]. However, sequence alignment can only classify reads from

organisms with a close evolutionary relative that has already been sequenced [157].

In most environments, this will not be the case for many of the reads; e.g. 70% of

Sargasso Sea reads had a BLAST hit using “extremely lenient” search parameters,

and only 30% aligned for nearly their whole length [43].

Composition-based methods for clustering and classification use properties of

the DNA sequence such as oligonucleotide frequencies. These “genome signatures”

are influenced by a variety of factors including codon usage, DNA structure, repli-

cation and repair processes, and evolutionary pressures [158–160]. They are fairly

constant within a genome [161–163] and can be useful for inferring phylogenies [164].
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Crucially for the use of genome signatures for clustering and classification, they per-

sist even in conserved [165] or horizontally transferred regions (after a sufficient pe-

riod of time) [166] and remain diverse between species despite shared environmental

pressures and interactions [167]. Composition-based classification methods typically

train on the oligonucleotide frequencies of all known genomes, and then classify se-

quences using supervised machine learning such as kernelized nearest neighbor [168],

support vector machines [169], self-organizing maps [170], and naive Bayesian clas-

sifiers [171]. Phymm, a recently developed composition-based approach developed

in our group [172], trains interpolated Markov models (IMMs) on known genomes

in order to classify sequences.

While supervised learning has proven useful in practice, shortcomings exist.

Methods trained on the genomes in GenBank make an implicit assumption that

those genomes are representative of microbes waiting to be found by metagenomics

projects. This assumption is clearly violated by many if not most metagenomic

samples. Supervised learning methods that tread carefully with respect to the po-

tential biases caused by this assumption can still be useful analytical tools for many

environments. Alternatively, genome signatures can be used for unsupervised clus-

tering by learning the signatures from the set of sequences without the use of known

genomes [167, 173–176]. Such approaches may be required when publicly available

genomes are a poor fit to the data.

As an alternative to oligonucleotide frequencies, Markov chain models have

shown great promise for characterizing genomic content [177], and have been im-

plemented for both supervised classification [172] and unsupervised clustering [174]
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methods. In this chapter, we cluster sequences using interpolated Markov mod-

els (IMMs), a type of Markov chain model that adapts the model complexity to

take advantage of variable amounts of training data. This strategy is well suited to

metagenomics clustering problems, where the amount of sequencing performed and

the relative abundances of the species in the mix can vary widely. Our clustering

framework proceeds similarly to one used to cluster sequences using hidden Markov

models where optimization is performed iteratively by a relative of the k-means

clustering algorithm [178]. We refer to our method as Scimm (Sequence Clustering

with Interpolated Markov Models).

We test Scimm on simulated metagenomic datasets of fragments from mix-

tures of randomly selected known genomes and demonstrate improvement on the

performance of the metagenomic sequence clustering programs CompostBin [173]

and LikelyBin [174]. We also assess the limitations of unsupervised learning on

complex datasets, and describe how a combination of Scimm and Phymm, which

we call PhyScimm, clusters more accurately when useful training data is available.

4.2 Methods

Markov models have proven to be an invaluable tool for sequence analysis [179],

including capturing genome signatures [177]. Here we present a clustering algorithm

called Scimm in which we use interpolated Markov models (IMMs) to model clusters

of sequences. Clustering of sequences is performed using a variant of the k-means

algorithm.
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Kelley and Salzberg

recently developed composition-based approach developed in our
group (?), trains interpolated Markov models (IMMs) on known
genomes in order to classify sequences. Alternatively, genome
signatures can be used for clustering by learning the signatures from
the set of sequences in an unsupervised fashion without the use of
known genomes (????).

While supervised learning has proven useful in practice, shortco-
mings exist. Methods trained on the genomes in GenBank make an
implicit assumption that they are representative of microbes waiting
to be found by metagenomics projects. This assumption is clearly
violated by many if not most metagenomics samples. Supervised
learning methods that tread carefully with respect to the potential
biases caused by this assumption can still be useful analytical tools
for many environments. But unsupervised learning approaches are
required when publicly available genomes are a poor fit to the data.

As an alternative to oligonucleotide frequencies, Markov chain
models have shown great promise for characterizing genomic con-
tent (?), and have been implemented for both supervised classifi-
cation (?) and unsupervised clustering (?) methods. In this paper,
we cluster sequences using interpolated Markov models (IMMs), a
type of Markov chain model that adapts the model complexity to
take advantage of variable amounts of training data. This strategy
is well suited to metagenomics clustering problems, where the size
of the data set and the relative abundances of the species in the mix
can vary widely. Our clustering framework builds upon one used to
cluster sequences using hidden Markov models (?) where optimiza-
tion is performed iteratively by a relative of the k-means clustering
algorithm. We refer to our method as SCIMM (Sequence Clustering
with Interpolated Markov Models).

We test SCIMM on simulated metagenomic datasets of reads from
mixtures of randomly selected genomes and demonstrate improve-
ment on the performance of the previous metagenomic sequence
clustering programs CompostBin (?) and LikelyBin (?). We also
assess the limitations of unsupervised learning on complex data sets,
and describe how a combination of SCIMM and Phymm, which we
call PHYSCIMM, performs better for clustering when useful training
data is available.

2 METHODS
Markov models have proven to be an invaluable tool for sequence ana-
lysis (?), including capturing genome signatures (?). Here we present a
clustering algorithm called SCIMM in which we use interpolated Markov
models (IMMs) to model clusters of sequences. Clustering of sequences is
performed using an iterative variant of the k-means algorithm.

2.1 Interpolated Markov models
A fixed-order Markov chain is a model for generating a sequence of outputs
(in this case, nucleotides in a DNA molecule) in which the ith element in the
sequence has a distribution that is conditional on the previous w elements.
Thus, given a sequence s and a model m, we can compute the probability
that s was generated by m by walking along the sequence and multiplying
the conditional probabilities.

P (s|m) =

|s|Y

i=w+1

Pm(si|si−1si−2...si−w) (1)

IMMs were first used for modeling DNA sequences as part of the Glim-
mer gene finding system (??). IMMs are variable-order Markov chains, and
as such are a strict generalization of fixed-order Markov chains. The variant

!"#$!""#$!$" b P(b)
A .4
C .2
G .2
T .1

Fig. 1. Markov models. In a standard wth-order Markov chain model, the
next base b in the DNA sequence is assigned a probability that is conditio-
ned on the previous w bases (underlined above for w = 6). w should be
chosen so that the data contains a sufficient number of instances of all 4w

substrings of length w. An IMM uses all of the Markov models from order
0 to w and computes the probability of the next base by interpolating among
them. Our version of the IMM takes this a step further: rather than using
the w immediately preceding positions, we use the w most “informative”
preceding positions (shown above with arrows).

of IMMs used in our system, introduced in the Glimmer 2.0 gene finder (?),
allow the nucleotide distributions to be conditional on a subset of indexes
in the preceding size w window (see Figure ??). These indexes are cho-
sen using a mutual information computation to be the most informative for
the distribution of the next nucleotide. Past work has found that increasing
the order of the Markov model (e.g., using a 5th-order model instead of a
2nd-order model) usually leads to more accurate predictions, but the order
of the model is limited by the amount of data available. IMMs dynami-
cally adjust the size of the Markov model based on the data, which allows
them to make the most of whatever information is available. This is particu-
larly useful for clustering of metagenomic sequences where the amount of
sequence from each species may differ widely due to differential abundance
of organisms and the amount of sequencing performed on the sample. For
full details of the training of IMMs and sequence likelihood computations,
see the Glimmer description (??).

2.2 K-means clustering framework
The k-means algorithm is a widely used, simple and effective method for
clustering data points. Points are modeled as having come from k sources,
each represented by a cluster mean. The algorithm begins by initializing
these cluster means, e.g. by randomly choosing k data points. Next, one
repeats the following steps. First, compute the distance between all points
and the k cluster means. Second, assign each point to its nearest cluster.
Finally, recompute the cluster means using the current assignment of points
to clusters. After a number of iterations, one arrives at a stable partitioning of
data points that approximates the minimum sum of distances between data
points and their assigned cluster means.

2.3 SCIMM

SCIMM uses the same general algorithm as k-means, where the data points
are DNA sequences and the cluster models are IMMs. Here the goal is to
find the IMMs that maximize the likelihood of generating the sequences.
The algorithm begins by initializing k IMMs (discussed in detail below).
Then the following steps are repeated. First, for all sequences s and all
IMMs m, compute the likelihood that s was generated by m. Second, assign
each sequence to the cluster corresponding to the IMM that generates it with
greatest likelihood. Finally, re-train the IMMs on the sequences currently
assigned to their corresponding clusters. The algorithm halts when fewer
than 0.1% of the sequences change clusters. This loop is depicted in Figure
??. Over the course of the iterations, the IMMs converge to a set that should
represent the phylogenetic sources.

2.4 Initial partitioning
SCIMM inherits the simplicity and effectiveness of the k-means algorithm,
but also its sensitivity to initial conditions. We found that the likelihood

2

Figure 4.1: In a standard wth-order Markov chain model, the next base b in the DNA sequence

is assigned a probability that is conditioned on the previous w bases (underlined above for w =

6). w should be chosen so that the data contains a sufficient number of instances of all 4w

substrings of length w. An IMM uses all of the Markov models from order 0 to w and computes

the probability of the next base by interpolating among them. Our version of the IMM takes

this a step further: rather than using the w immediately preceding positions, we use the most

“informative” positions (shown above with arrows) of the previous w according to a recursive

mutual information calculation.

4.2.1 Interpolated Markov models

A fixed-order Markov chain is a model for generating a sequence of outputs (in

this case, nucleotides in a DNA molecule) in which the ith element in the sequence

has a distribution that is conditional on the previous w elements. Thus, given a

sequence s and a model m, we can compute the probability that s was generated

by m by walking along the sequence and multiplying the conditional probabilities.

P (s|m) =

|s|∏
i=w+1

Pm(si|si−1si−2...si−w) (4.1)

Alternatively, IMMs are variable-order Markov chains, a strict generalization of

fixed-order Markov chains, and interpolate between multiple models of fixed size via

weights (also referred to as “model averaging”). Past work has found that increasing
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the order of the Markov model (e.g., using a 3rd-order model instead of a 2nd-order

model) leads to more accurate predictions as long as there is sufficient training data.

IMMs dynamically adjust the order of the models based on the data, which allows

them to make the most of whatever information is available. This is particularly

useful for clustering of metagenomic sequences where the amount of sequence from

each species may differ widely due to differential abundance of organisms and the

amount of sequencing performed on the sample. The variant of IMMs used in our

system, introduced in the Glimmer 2.0 gene prediction software [180], is even more

general as it allows the nucleotide distributions to be conditional on a subset of

indexes in the preceding size w window (see Figure 4.1).

To train an IMM on a set of sequences, consider each w+1 sized window in

the sequences and let the distribution of nucleotides at position i in the windows

define random variable Xi. Training creates a probabilistic decision tree using in-

formation gain as the splitting criteria where each node specifies certain nucleotides

at a subset of the window positions and defines a probability distribution for the

final nucleotide in the windows. To construct this tree, first, compute the mutual

information I(Xi;Xw+1) between the final position in the window and positions

i ∈ 1..w. Define the initial split in the tree at the position with the greatest mutual

information. Create branches to new nodes for all four nucleotides at this position.

Next, perform a similar procedure for each branched node considering only win-

dows containing the specific nucleotide at the position chosen. For these windows,

compute the conditional mutual information of the remaining positions and choose

the most informative position for the next split. Repeat this procedure to fill in
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the full decision tree, stopping early on paths where data becomes too sparse. At

some point walking down each path, additional nucleotide positions may fail to be

informative. We recognize this by computing a chi-square test between each node’s

distribution and its parent node’s distribution. If the distributions are sufficiently

similar, we stop branching and interpolate between the node and its parent’s distri-

butions, weighting each one based on the chi-square test result and the number of

training windows mapped to the node.

To compute the likelihood that a novel sequence was generated by this IMM,

consider each window of size w + 1 in the sequence as in Equation 4.1. For each

window, follow a path through the decision tree to a leaf node according to the

nucleotides at the positions defined by the nodes and branches. Score the next nu-

cleotide in the novel sequence using the leaf node’s interpolated probability distri-

bution. More details of the training of IMMs and sequence likelihood computations

can be found in the Glimmer descriptions [21,180].

4.2.2 K-means clustering framework

The k-means algorithm is a widely used, simple and effective method for clus-

tering data points. We review that algorithm before introducing our own approach

to clustering sequences. Points are modeled as having come from k sources, each

represented by a cluster mean. The algorithm begins by initializing these cluster

means, e.g. by randomly choosing k data points. Next, one repeats the following

steps. First, compute the distance between all points and the k cluster means. Sec-
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ond, assign each point to its nearest cluster. Finally, recompute the cluster means

using the current assignment of points to clusters. After a number of iterations, one

arrives at a stable partitioning of data points that approximates the minimum sum

of squared distances between data points and their assigned cluster means.

An alternative formulation of the algorithm leads more directly to our ap-

proach. The k-means algorithm has also been referred to as Classification Expectation-

Maximization (CEM) to optimize the Classification Maximum Likelihood (CML)

criterion for data points generated from k Gaussian distributions with equal vari-

ance and zero covariance mixed in equal proportions [181]. For data points x1...xn

sampled from clusters C1...CK and Gaussian density f parameterized by mean vec-

tors u1...uK , CML is defined as

CML(C, u) =
K∑
k=1

∑
xi∈Ck

log(f(xi;uk)) (4.2)

That is, CML approximates the log likelihood that the cluster models generated

the data points, but with each data point assigned a hard classification to a single

cluster. CML can be further generalized to the case where data points are sampled

from the clusters according to a multinomial distribution parameterized by p1...pK .

Here CEM assigns each data point xi to the cluster Ck that provides the greatest

posterior probability log(pkf(xi;uk)), and CML is defined as

CML(C, p, u) =
K∑
k=1

∑
xi∈Ck

log(pkf(xi;uk)) (4.3)

Using CEM, the CML criterion converges to a local maximum [181].
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Figure 4.2: To initialize the IMMs, we initially partition a subset of the sequences into k clusters

with a previously published method such as CompostBin [173] or LikelyBin [174]. We train an

IMM on each cluster, and then compute the likelihood that each sequence was generated by each

IMM for all sequences and all IMMs. Next, we reassign each sequence to the cluster corresponding

to the IMM which generated it with greatest likelihood. If > 0.1% of the sequences changed

clusters, we repeat the process. Otherwise we consider the clusters to be stable and halt.
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4.2.3 Scimm

Scimm uses the same general algorithm as CEM, where the data points are

DNA sequences and the cluster models are IMMs. Here the goal is to find the IMMs

and multinomial probabilities that maximize the CML criterion, which approximates

the log likelihood that the mixture of cluster models generated the sequences. The

algorithm begins by initializing k IMMs (discussed in detail below). Then the fol-

lowing steps are repeated until convergence. First, for all sequences s and all IMMs

m, compute the log likelihood that s was generated by m. Second, assign each

sequence to the cluster corresponding to the IMM m that maximizes the posterior

probability log(pm)+ log(P (s|m)). Finally, re-train the IMMs on the sequences cur-

rently assigned to their corresponding clusters. This loop is depicted in Figure 5.3.

Over the course of the iterations, the IMMs converge to a set that should represent

the phylogenetic sources.

Because the Maximization step is not straightforward maximum likelihood es-

timation (instead using IMM training’s highly effective heuristics to choose a model

order and interpolate between models), we lose the theoretical guarantee of CML

convergence [181]. In practice, we did not find this to be a problem as the algorithm

converged in all experiments. However, Scimm halts when fewer than 0.1% of the

sequences change clusters in order to reduce computation time because the last few

stages of this procedure tend to shuffle a small number of sequences with a negligible

effect on clustering accuracy.
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4.2.4 Initial partitioning

Scimm inherits the simplicity and effectiveness of the k-means algorithm, but

also its sensitivity to initial conditions. We found that the likelihood landscape is

riddled with local maxima from which the optimization cannot escape. Initially

partitioning the sequences by very simple clustering algorithms yielded insufficient

results.

To improve performance, we tried using previous methods for unsupervised

clustering of metagenomic sequences to initialize the IMMs. We focused on two

particularly successful approaches, LikelyBin and CompostBin. LikelyBin models

sequences using k fixed 2nd-4th order Markov models learned by counting oligonu-

cleotides [174]. Because LikelyBin uses simpler models with far fewer parameters

than IMMs, a Markov chain Monte Carlo algorithm is used to search the parameter

space for the parameters that maximize the likelihood of generating the sequences.

LikelyBin is publicly available [182]. The second approach, CompostBin [173], works

as follows. For each sequence, count oligonucleotide frequencies and project the fre-

quency vectors into three dimensions using principal component analysis. Next,

create a graph where each sequence is represented by a vertex and edges are placed

between a sequence and its six nearest neighbors. Finally, split the sequences into

two partitions by finding a minimum normalized cut in this graph across which few

edges exist [183]. This process is repeated until the desired number of clusters is

reached. Though CompostBin is publicly available [184], we re-implemented the

main unsupervised ideas of the algorithm to better fit in our pipeline and refer
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to our version as CBCBCompostBin. One notable adjustment to the method was

to make the number of nearest neighbors with which to build the graph a func-

tion of the number of sequences, because fewer sequences required a less connected

graph for good performance. Choosing the number of nearest neighbors is a difficult

subproblem of the normalized cut clustering method upon which CompostBin is

based [183]. We found that the function f(n) = 2 + 1
2
bln(n)c, where f returns the

number of nearest neighbors and n is the number of input sequences, worked well

in practice, but did not address this problem in depth because experimental results

demonstrated that Scimm’s accuracy did not depend significantly on the parameter

choice.

To initialize the IMMs for Scimm, we can run either LikelyBin or CBCB-

CompostBin on a random subset of the sequences with a user-specified number of

clusters k and train an IMM on every cluster returned. We used a random subset

because both algorithms can be slow for large data sets, and 2-3 Mb of sequence

was sufficient to train the IMMs to begin the iterative clustering procedure. Because

the two programs approach sequence clustering differently, they tend to succeed on

different datasets — e.g. for mixtures of 10 genomes, the standard deviation of the

difference between LikelyBin’s and CBCBCompostBin’s precision (defined below) is

8.3% and recall is 6.5%. Therefore, we initially partition the sequences with both

LikelyBin and CBCBCompostBin and perform one iteration of Scimm on each. For

each partitioning, we compute the CML criterion and continue iterating on only the

partitioning with the greater value.
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4.2.5 Supervised initial partitioning

As we will show, unsupervised clustering methods are very effective on low

complexity datasets, but less accurate on metagenomic samples with many (e.g.

>20) microbial strains. With more strains, the genome signatures may blend to-

gether and become difficult to properly discern. Alternatively, classification methods

like Phymm are immune to the complexity of the dataset because each sequence is

classified independently of the others [172]. Sequence classifications can be inter-

preted as implying a clustering, for instance by forming clusters from all sequences

classified to the same genus. Therefore, a classification method can also be used to

obtain an initial partitioning for Scimm.

We considered a hybrid of supervised and unsupervised learning referred to as

PhyScimm where we obtained an initial partitioning of the sequences with Phymm.

First, we randomly chose a subset of sequences (again due to computation time

concerns and the sufficiency of a subset), classified the sequences, and clustered at a

certain taxonomic level (family in our tests). Due to misclassification noise, Phymm

will usually return too many clusters. To filter out clusters of misclassified sequences,

we found only keeping clusters containing > 20
k

% of the sequenced bases where k is

the number of genomes in the mixture (e.g. > 1% for 20 genomes) to be a useful

heuristic. Note that Phymm is not limited to returning k clusters, and the number

of clusters returned depends on the strictness of filtering, which the user would need

to specify in a novel environment. After filtering clusters, we moved all unclustered

sequences to an additional cluster, otherwise Scimm tended to incorrectly force
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these sequences into the generally high quality clusters from Phymm classifications.

Finally, we iterated IMM clustering as in the standard Scimm algorithm.

Scimm and PhyScimm are available open source from [185] under the Perl

Artistic License [70].

4.3 Results and Discussion

4.3.1 Simulated reads

To assess the performance of Scimm and PhyScimm, we simulated sequenc-

ing reads from mixtures of 1028 sequenced genomes in GenBank [153] as of 2009

and clustered the reads with each method. The degree to which the diversity of

a random mixture of these genomes is representative of a real metagenomic envi-

ronment has not been explored in depth. We make two points in support of this

experimental setup. First, because certain model and disease-related organisms are

of particular interest to researchers, GenBank contains many clusters of extremely

closely-related genomes that make clustering difficult and may be representative

of a heterogeneous species population from a real metagenomic environment; for

example, 29 Escherichia coli, 16 Salmonella enterica, and 15 Staphylococcus aureus

genomes were included. Second, while the expected clustering accuracy of any single

method on a novel metagenomic environment may not exactly match the statistics

reported in our tests, the simulations still serve to rank Scimm and previous unsu-

pervised approaches based on clustering accuracy.

For each test, we randomly chose k genomes and k corresponding uniformly

99



distributed random numbers in the interval (0,1). We simulated 30000 reads of

length 800 base pairs (bp) so that the percentage of reads from each genome in the

sample was proportional to that genome’s random number. We clustered the reads

with Scimm, LikelyBin, and CBCBCompostBin. LikelyBin runs used 2 MCMC

start points and a 3rd order Markov model. CBCBCompostBin runs used 5-mers.

Clustering accuracy can be quantified using a variety of measures [186]. Se-

quences from the same genome should be placed in the same cluster, which is mea-

sured by recall. Let cij be the number of sequenced nucleotides from genome j

placed in cluster i. Then the recall for genome j is computed as

recall(j) =
maxi cij∑

i cij
(4.4)

Sequences placed in a cluster should belong to the same genome. This is measured

as precision and computed for cluster i as

precision(i) =
maxj cij∑

j cij
(4.5)

In order to obtain global performance statistics, precision and recall were combined

across clusters and genomes by weighting each term by the number of sequenced

nucleotides from the cluster or genome. We also measured accuracy using the ad-

justed Rand index. The Rand index is the proportion of pairs of data points that

are correctly placed together or apart, and the adjusted Rand index modifies this

statistic based on the sizes of the clusters [187].

We tested the unsupervised methods with mixtures of 2, 5, 10, and 20 genomes,

performing 40 trials of each, which resulted in standard deviations of ∼1.0% for

precision and recall and ∼1.5% for adjusted Rand index. Scimm achieved superior
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Fig. 3. Cluster accuracy statistics for unsupervised methods on simulated 800 bp reads from random mixtures of genomes in random proportions. SCIMM

outperforms the other methods on all tests by all measures.

species) to be a useful heuristic. Note that Phymm is not limited to returning
k clusters, and the number of clusters returned depends on the strictness of
filtering, which the user would need to specify in a novel environment. After
filtering clusters, we moved all unclustered sequences to an additional clu-
ster, otherwise SCIMM tended to incorrectly force these sequences into the
clusters that Phymm was confident in. Finally, we iterated IMM clustering
as in the standard SCIMM algorithm. We refer to this mode as PHYSCIMM.

3 RESULTS
To assess the performance of SCIMM, we simulated sequencing
reads from mixtures of completed genomes in GenBank (?). For
each test, we randomly chose k genomes and k corresponding uni-
formly distributed random numbers. We simulated 30000 reads of
length 800 bp so that the percentage of reads from each genome in
the sample was proportional to that genome’s random number. We
clustered the reads with SCIMM, LikelyBin, and CBCBCompost-
Bin. LikelyBin runs used 2 threads and a 3rd order Markov model.
CBCBCompostBin runs used 5-mers.

Clustering accuracy can be quantified using a variety of measu-
res (?). Sequences from the same genome should be placed in the
same cluster, which is measured by recall. Let cij be the number of
reads from genome j placed in cluster i. Then the recall of genome
j is computed as

recall(j) =
maxi cijPk

i=1 cij

(2)

Sequences placed in a cluster should belong to the same genome.
This is measured as precision and computed for cluster i as

precision(i) =
maxj cijPk

j=1 cij

(3)

In order to obtain global performance statistics, precision and recall
were combined across clusters and genomes by weighting each term
by the number of sequenced bases from the cluster or genome. We

Table 1. Varying read length.

Length Precision Recall Adj Rand

400 0.875 0.88 0.71
800 0.90 0.89 0.77
1600 0.95 0.92 0.85

also computed the adjusted Rand index (?). The Rand index is the
proportion of pairs of data points that are correctly placed together
or apart, and the adjusted Rand index modifies this statistic based
on the sizes of the clusters.

We tested the unsupervised methods with mixtures of 2, 5, 10,
and 20 genomes, performing 30 − 50 trials of each, which resulted
in standard deviations of ∼1% for the accuracy statistics. SCIMM

achieved superior performance over the other methods by all mea-
sures, as shown in Figure ??. In addition to having a greater average
adjusted Rand index, SCIMM had the highest adjusted Rand index
for 93% of the trials with 10 genomes and 90% of the trials with 20
genomes, meaning that it improved on LikelyBin’s and CBCBCom-
postBin’s clusterings nearly every time. All methods were able to
effectively partition sequences from two genomes. As the number of
genomes increases, performance degraded, but recall and precision
>80% can be expected for mixtures of up to 10 genomes.

We also examined the effect of sequence length on SCIMM’s
performance (see Table ??), by sampling mixtures of 5 genomes
and varying the length of the simulated reads while holding the
total number of bases constant; e.g., doubling the number of reads
while halving the read size . 2nd generation sequencing technology

4

Figure 4.3: Cluster accuracy statistics for unsupervised methods on simulated 800 bp reads from

random mixtures of genomes in random proportions. Scimm outperforms the other methods on

all tests by all measures.

performance over the other methods by all measures, as shown in Figure 4.3. In

addition to having a greater average adjusted Rand index, Scimm had the highest

adjusted Rand index for 93% of the trials with ten genomes and 90% of the trials

with twenty genomes. All methods were able to effectively partition sequences from

two genomes. As we increased the number of genomes, performance degraded, but

recall and precision >80% on average can be expected for mixtures of up to ten

genomes.

We also examined the effect of sequence length on Scimm’s performance (see

Table 4.1) by sampling mixtures of five and ten genomes and varying the length of

the simulated reads while holding the total number of sequenced bp constant; e.g.

doubling the number of reads while halving the sequence length. Second generation

sequencing technology from Roche/454 produces 400 bp reads, which should be
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Length Genomes Recall Precision Adj Rand

400 5 0.858 0.863 0.689

800 5 0.905 0.886 0.768

1600 5 0.936 0.905 0.817

400 10 0.801 0.756 0.606

800 10 0.869 0.810 0.696

1600 10 0.911 0.821 0.738

Table 4.1: In tests with mixtures of five and ten random genomes in random proportions, in-

creasing read length leads to greater accuracy. Even with 400 bp reads, the clusters are accurate

enough to be useful for some applications.

sufficient for clustering sequences from low complexity environments with five or

fewer strains as precision and recall are >85%. Accuracy continues to improve with

1600 bp fragments in both the five and ten genome tests, suggesting that longer

read lengths or assembly of reads into contigs should be beneficial to metagenomic

analysis.

All computational methods working with DNA sequencing reads must account

for sequencing errors. We expect IMMs to be robust to such errors. A mis-sequenced

nucleotide may affect the probabilities of up to w+1 nucleotides for window size

w. However, the IMM will learn which positions in the window are informative

for the distribution of the next nucleotide, and errors at uninformative nucleotides

will have a negligible effect. Furthermore, even at what are considered high error

rates, sequencing errors are rare enough to not overwhelm the genome signatures

found in the sequences. To measure the effect of sequencing errors, we sampled
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Error rate Recall Precision Adj Rand

0.000 0.869 0.810 0.696

0.005 0.852 0.794 0.672

0.010 0.856 0.780 0.665

0.020 0.861 0.782 0.668

Table 4.2: In tests with mixtures of ten random genomes in random proportions, sequencing errors

lead to decreased accuracy. However, the rate at which accuracy decreases as errors increases is

slow so that Scimm is fairly robust to error rates of 2.0%.

mixtures of ten genomes and mis-called nucleotides in the reads at rates of 0.5%,

1.0%, and 2.0%. Table 4.2 summarizes 40 iterations of this test, such that the

standard deviations of precision and recall are ∼1.0% and adjusted Rand index is

∼1.5%. Though clustering accuracy decreases slightly with errors, increasing the

error rate further has a negligible effect, and altogether Scimm appears to be fairly

robust to sequencing errors.

Unsupervised clustering performance degrades as the number of genomes reaches

twenty or more, but classification methods like Phymm are largely unaffected by

the number of genomes. We re-ran the experiment above using PhyScimm for mix-

tures of 5, 10, and 20 genomes. In order to thoroughly evaluate the performance of

this supervised initial partitioning of the sequences, we performed separate tests of

PhyScimm where Phymm’s trained IMMs were held out if they were based on the

same strain, species, and genus classification as the genomes from which the reads

were simulated. For example, if we held out IMMs at the genus level, no IMMs were
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Clustering metagenomic sequences with interpolated Markov models
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Fig. 4. Cluster accuracy statistics for PHYSCIMM on simulated 800 bp reads from random mixtures of genomes in random proportions. PHYSCIMM strain
indicates that IMMs were held out if they matched the strain of a genome in the sample; similarly with PHYSCIMM-species and PHYSCIMM-genus. PHYSCIMM

outpeforms SCIMM unless IMMs are held out at the genus level and the mixture contains 10 or fewer genomes.

from Roche/454 produces 400 bp reads, which should be suffi-
cient for clustering sequences from low complexity environments
like this one as precision and recall are >87%. Accuracy continues
to improve on 1600 bp fragments (precision 95%, recall 92%, see
Table ??), suggesting that longer read lengths or assembly of reads
into contigs should be beneficial to metagenomic analysis.

Unsupervised clustering performance degrades as the number of
genomes reaches 20 or more, but classification methods like Phymm
are largely unaffected by the number of genomes. Therefore, we re-
ran the experiments above using PHYSCIMM. In order to thoroughly
evaluate the performance of this supervised initial partitioning of
the sequences, we performed separate tests of PHYSCIMM where
IMMs were held out if they were based on the same strain, species,
and genus classification as the genomes from which the simulated
reads were sampled. For example, if we hold out IMMs at the genus
level, no IMMs are used from microbial strains matching the genus
of any of the genomes from which the reads were simulated. When
IMMs from the same genus as those in the sample can be expected,
PHYSCIMM produces accurate clusters (see Figure ??). But when
IMMs are not available from the same genus, performance suffers
and unsupervised clustering appears to be more useful at 10 and
fewer species. With few genomes, accuracy is comparable to unsu-
pervised SCIMM, but the value of PHYSCIMM is readily apparent
at higher genomes counts representing more diverse metagenomic
samples where performance is better than SCIMM even when IMMs
are held out at the genus level.

To measure SCIMM’s performance on more realistic data, we
tested on the FAMeS simulated metagenomic datasets of low
(simLC) and medium (simMC) complexity (?). To create the data-
sets, overr 100 publicly available genomes were selected and reads
from the original sequencing projects of the genomes were ran-
domly included in the set. simMC has slightly more abundant

species than simLC though each mixture is highly diverse as only
three genomes in simLC and five genomes in simMC account for
>3% of the reads. SCIMM does not currently handle mixtures of 800
bp reads from >100 genomes well, so we clustered the Arachne-
assembled contigs, which are provided with the FAMeS data. We
clustered and computed accuracy statistics with SCIMM for k = 5,
10, 20, and 30 clusters, and with PHYSCIMM inferring clusters
at genus level classifications. We filtered clusters containing <1%
of the total bases in the data. Because there is an overlap between
the genomes sampled in these datasets and the genomes on which
Phymm has trained IMMs, we ran PHYSCIMM while holding out
IMMs similar to genomes in the mixture at the strain and species
levels.

On the 2362 contigs of mean size 3417 bp in simLC, SCIMM

achieved useful accuracy (∼80% precision and ∼85% recall) that
varied minimally with the choice of k (see Figure ??). At all values
of k, the abundant species in the mixture were similarly cluste-
red, and as k increased some of the less abundant species began
to form their own clusters. When holding out IMMs from the same
strains, PHYSCIMM achieved very high accuracy (95% precision
and 94% recall), forming strong clusters for the abundant Rhodop-
seudomonas palustris and Bradyrhizobium sp. However, when all
IMMs from genomes matching species in simLC were removed,
PHYSCIMM’s precision dropped to 83%. simMC has 7307 contigs
of mean size 2332 bp. Precision remained high for SCIMM at 87%
for k = 20, but accuracy was far more sensitive to the choice of
k in general. PHYSCIMM maintained its strong performance with
90% precision and 85% recall when IMMs from the same species
were available. The wide species coverage in the data means that
many valuable IMMs are removed when we hold out IMMs at the
species level, and accuracy dropped below that of SCIMM. Thus,
we see again that pure unsupervised clustering is preferable for a

5

Figure 4.4: Cluster accuracy statistics for PhyScimm on simulated 800 bp reads from random

mixtures of genomes in random proportions. PhyScimm-strain indicates that IMMs were held

out if they matched the strain of a genome in the sample; similarly with PhyScimm-species and

PhyScimm-genus. PhyScimm outpeforms Scimm in terms of precision unless IMMs are held out

at the genus level and the mixture contains ten or fewer genomes.
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used from microbial strains matching the genus of any of the genomes from which

the reads were simulated. When IMMs from the same genus as those in the sam-

ple can be expected, PhyScimm produces accurate clusters (see Figure 4.4). But

performance suffers when IMMs are unavailable from the same genus, and unsuper-

vised clustering appears to be more useful in this case at ten and fewer genomes.

With few genomes, accuracy is comparable to unsupervised Scimm, but the value of

PhyScimm is readily apparent on the twenty genome mixture representing a more

diverse metagenomic sample where performance is better than Scimm even when

IMMs are held out at the genus level.

4.3.2 FAMeS

Experiments clustering single datasets can teach us about specific strengths

and weaknesses of the methods and how they can be applied most effectively. To use

more realistic data, we clustered the Arachne-assembled contigs from the FAMeS

simulated metagenomic datasets of low (simLC) and medium (simMC) complexity

[148]. These were created by mixing real reads from the original sequencing projects

of 113 organisms. The contigs are dominated by a few species, but have a long tail

of very low abundance species. We clustered with Scimm using k = 2–6 clusters

and with PhyScimm initializing clusters from genus level classifications assigned to

>1% of the total bp. Because Phymm has trained IMMs for these publicly available

genomes, we held out IMMs similar to organisms in the mixture at the strain and

species levels. In a noisy dataset with many organisms like this one, sequences
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from different strains of the same species are effectively indistinguishable. Thus, we

computed accuracy at the species level for the tests that follow.

The simLC dataset contains 2362 contigs of mean size 3417 bp from 47 different

microbial strains, but is dominated by 1283 contigs from Rhodopseudomonas palus-

tris HaA2 that make up 73.8% of the nucleotides and 617 contigs from Bradyrhi-

zobium sp. BTAi1 that make up 16.3%. The clustering accuracy statistics de-

pend significantly on the arrangement of contigs from these two strains. Because

Rhodopseudomonas palustris HaA2 and Bradyrhizobium sp. BTAi1 are both from

the family Bradyrhizobiaceae and have similar high GC content (66.0% and 64.9%),

separating each strain into its own cluster is difficult. Figure 4.5 displays the results

for both methods. When clustering with Scimm at k = 2 and 3, nearly all contigs

from the same strain were kept together leading to 99% recall, but each cluster

contained a mix of species giving 80% precision. At larger values of k, some reads

from the Bradyrhizobiaceae strains break off into other clusters, reducing the recall,

though at the benefit of increased precision. When holding out IMMs from the same

strains, PhyScimm achieved very high accuracy (95% precision and 94% recall), as

Rhodopseudomonas palustris HaA2 and Bradyrhizobium sp. BTAi1 were mostly

separated from each other because Phymm had a trained IMM for each species.

When IMMs from genomes matching species in simLC were removed, PhyScimm’s

precision dropped to 83%. If the initial clusters are formed from Phymm classifi-

cations at the family level, the Bradyrhizobiaceae strains cannot be separated and

precision also drops to 83%.

SimMC has 7307 contigs of mean size 2332 bp from 51 microbial strains. These
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Figure 4.5: Cluster accuracy statistics for FAMeS Arachne-assembled contigs. We ran Scimm at

a range of values for k, the number of clusters, resulting in consistently high accuracy on the low

complexity simLC dataset and variable accuracy on the medium complexity simMC for reasons

discussed in the text. We ran PhyScimm, ignoring IMMs matching genomes in the mix at the

strain and species levels (PhyScimm-strain and PhyScimm-species above). When some IMMs

from the same species can be expected, accuracy is far greater, demonstrating that clustering with

supervised help relies on models for similar genomes.
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contigs are distributed among the strains slightly more uniformly, but still only six

species account for 99.0% of the nucleotides. These six include two strains each from

the species Rhodopseudomonas palustris and Xylella fastidiosa. Bradyrhizobium

sp. BTAi1 also appears and presents a challenge similar to that described above

for simLC. For k = 2 and 3, Scimm formed strong clusters for the the Xylella

fastidiosa strains and the Bradyrhizobiaceae strains, leading to very high recall. As

we increased k, these strains were split among the clusters, significantly decreasing

the recall (see Figure 4.5). From this experiment and the last one, we see that

clustering performance is best when k is set to the number of dominant phylogenetic

sources. Increased values of k risk splitting a dominant species into multiple clusters

rather than effectively clustering a far less abundant species. Precision did not

increase with more clusters because when the Bradyrhizobiaceae strains split into

multiple clusters, each one contained a mixture of both species. When IMMs from

the same species were available, PhyScimm produced much better clusters with 90%

precision and 85% recall. But, accuracy dropped precipitously when IMMs were held

out at the species level. Thus, we see again that PhyScimm clusters more accurately

if very related genomes are available for training, but pure unsupervised clustering

is preferable for a metagenome containing organisms whose taxa are unsequenced.

Instead of computing accuracy at the species level, we could consider a higher

level in the hierarchy of taxonomic classification, such as the family level. By doing

so, we reward the clustering algorithm for clustering together two sequences that

originated from different strains in the same family, such as Bradyrhizobium sp.

BTAi1 and the Rhodopseudomonas palustris strains. Family level precision is >97%
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in all tests, meaning that generally when Scimm is merging two separate species into

a cluster, they are phylogenetically related.

4.3.3 In vitro-simulated metagenome

To further explore the effectiveness of Scimm and PhyScimm on more re-

alistic data, we clustered sequencing reads from an in vitro-simulated microbial

community [188]. Here, ten microbes were mixed into a simulated metagenome

and sequenced using a number of different protocols and sequencing techniques.

These ten were chosen to cover a wide range of microbial diversity, but also to

include closely related species, specifically two Lactobacillus strains and two Lacto-

coccus strains. The resulting reads were then assigned to their source genome via

BLAST [152] alignments to a database of the ten microbes’ genomes. After combin-

ing classified reads from all non-454 datasets, we obtained 24410 mated reads and

3285 singleton reads.

We clustered the reads with Scimm into 8 clusters for the 8 species in the

data and computed 87% recall and 88% precision at the species level. As expected,

the Lactobacillus and Lactococcus strains each clustered together well. High qual-

ity clusters formed around the medium abundance strains Shewanella amazonensis

SB2B and Myxococcus xanthus DK 1622, but Scimm split reads from the most abun-

dant strain Acidothermus cellulolyticus 11B into mainly two clusters. Meanwhile,

low abundance strains Pediococcus pentosaceus ATCC 25745 and Halobacterium sp.

NRC-1 lacked the data to form their own pure clusters and co-clustered with the
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Lactococcus strains and Acidothermus cellulolyticus 11B respectively. Knowing that

Scimm can struggle with low abundance species and seeing that 2 of the 8 clusters

were effectively unused and contained far fewer reads than the rest, we reduced the

number of clusters to 6. Doing so brought the two Acidothermus cellulolyticus 11B

clusters together and increased the recall to 94%.

Clustering the reads with PhyScimm led to further insight. The level at which

IMMs were held out did not have a significant impact on clustering accuracy for this

dataset, so we discuss the results from holding out IMMs from the same genus as

the strains in the simulated metagenome. We initially clustered sequences using

family classifications that were assigned to >3% of the sequences. Performance

was considerably worse than unsupervised Scimm with a 79% recall and 83% preci-

sion on the 7 clusters. PhyScimm struggled with Acidothermus cellulolyticus 11B

because there are no other trained IMMs in its family Acidothermaceae. Instead,

Phymm assigned its reads to the families Mycobacteriaceae, Microbacteriaceae, and

Propionibacteriaceae. Each of these families belong to the order Actinomycetales,

and so PhyScimm performed far better when initialized using order classifications

(6 clusters with 88% recall and 92% precision). Interestingly, Phymm misclassifies

many reads from the Lactococcus strains, the Lactobacillus strains, and Shewanella

amazonensis SB2B to the order Enterobacteriales, but iterative IMM clustering is

able to effectively separate these species despite a poor initialization.
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4.4 Conclusions

Determining the relationships between sequences is a crucial step in metage-

nomics analysis. In this chapter, we introduce Scimm, an unsupervised sequence

clustering method based on interpolated Markov models (IMMs). Our experiments

show that Scimm clusters sequences more accurately than previous unsupervised

algorithms.

By demonstrating the ability of IMMs to successfully cluster sequences, we

add to the growing evidence of the effectiveness of IMMs for modeling DNA se-

quences [23,172]. Markov chain models have proven to be useful sequence modeling

tools for many bioinformatics applications [179]. The increased modeling sophistica-

tion and ability to handle varying amounts of training data make IMMs preferable

for many of these applications.

We compared two variations of clustering with IMMs. Scimm is purely unsu-

pervised and makes use of the previously published methods LikelyBin and Com-

postBin to initially partition the sequences. PhyScimm partitions the sequences

using supervised Phymm classifications before the unsupervised iterative IMM clus-

tering stage. Supervised learning proved to be a valuable addition to the pipeline

when genomes were available to train on from the same genus as the microbes in the

mixture. Pure unsupervised learning is preferable when the available genomes to

train on are not representative of those from which the sequencing reads originated.

Because the classification accuracy of Phymm is independent of the complexity of

the mixture, supervised learning also improves clustering of complex mixtures of
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twenty or more microbes. Developing more sophisticated combinations of classifica-

tion and clustering methods may prove to be a fruitful line of research.

We believe Scimm and PhyScimm will be valuable tools for researchers seek-

ing to determine the relationships between sequencing reads from a metagenomics

project. For environments with ten or fewer species, unsupervised clustering with

Scimm finds accurate clusters. However, the number of clusters k must be chosen

carefully by the user. Specific knowledge about the environment, especially regard-

ing the number of dominant microbes and their relationships to each other, can

inform the choice of k and impact the utility of a clustering of the environment’s

sequences. Nevertheless, tests on the FAMeS dataset showed that various values of

k can produce useful clusters. Lesser values of k tend to provide greater recall with

lower precision. Greater values of k may decrease recall by dividing a particularly

dominant species into more than one cluster but will usually improve precision.

When the microbes in an environment are thoroughly represented in public

databases, PhyScimm finds even more accurate clusters. PhyScimm is also more

effective for mixtures of twenty or more strains. The user does not need to choose

the number of clusters with PhyScimm, but must choose the classification level

and minimum support to initialize a cluster. The simulated read experiments offer

guidelines for how to set these parameters effectively. Tests with the FAMeS and in

vitro-simulated metagenome datasets demonstrated that incorporating knowledge

about the dominant organisms in the environment can have a significant positive

impact on the clusters.

Metagenomics projects are increasingly turning to less expensive and higher
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throughput second generation sequencing technologies such as those from Roche/454

and Illumina. Clustering of 400 bp read lengths is still reasonably effective for

mixtures of five or fewer strains. Shorter reads, such as the 100-125 bp lengths

currently available from Illumina, cannot be accurately clustered by our methods

for environments with realistic complexity. However, if these reads can be assembled

into larger contigs, then effective clustering of the contigs is possible.

A number of avenues appear worthwhile for further research. A principled

method for setting parameters that affect the number of clusters would certainly

aid researchers using the method. Preliminary sequencing of 16S rRNA or other

marker genes followed by clustering may effectively achieve this goal [151,189]. The

k-means iterative clustering framework used by Scimm works well with a good

initial partitioning of the sequences, but other optimization methods might prove

more robust to the initial conditions and less prone to getting stuck in local maxima.

Because Scimm nearly always improves on the clustering results of LikelyBin and

CBCBCompostBin, there is reason to believe that it would also improve on initial

clusters from more accurate future methods. We excluded an interesting feature

from the original CompostBin in our experiments whereby reads containing infor-

mative marker genes were identified and classified using AMPHORA [151] and the

classifications were used to add supplemental edges to the nearest neighbor graph.

A similar semi-supervised scheme could be implemented in Scimm as well. Finally,

assembly and clustering are both important steps in metagenomics pipelines, and

further exploration of the relationship between the two has the potential to improve

both tasks.
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Chapter 5

Gene prediction with Glimmer for metagenomic sequences

augmented by classification and clustering

Because environmental shotgun sequencing reads come from many popula-

tions of organisms, computational analysis of the data can be difficult, particularly

assembly of the reads. Nevertheless, functional analysis of the metagenome is gen-

erally achievable by predicting genes on the contigs or raw reads. Much can be

learned from the metagenome’s genes, e.g., by comparing them to protein databases

to determine which have known homologues and which are novel.

Current methods for metagenomics gene prediction all use a simple method

based on GC-content to address the major challenge– how should prediction models

be parameterized for each new sequence? This chapter describes unpublished work

with Bo Liu, Art Delcher, and Steven Salzberg to augment the prokaryotic gene

finder Glimmer with classification and clustering of the sequences to parameterize

prediction models. We also add a model to predict indel sequencing errors, which are

prevalent and problematic in reads from the 454 sequencing technology. Glimmer-

MG predicts genes more accurately on simulated and real datasets than all previous

methods.
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5.1 Introduction

Prokaryotic species inhabit an incredibly diverse array of environmental niches

and account for most of the world’s biomass [190–192]. They play an integral role

in many ecosystems, including the human body in which a typical individual carries

10–100 times more prokaryotic cells than human cells [193]. The DNA sequences of

these microorganisms provide us with important information about their identities,

functions and evolution. The traditional method to obtain these sequences was to

select a single microbe of interest, isolate it in culture, and sequence its genome to

high coverage [2].

Because this process is costly and many microbes cannot be cultured, re-

searchers have increasingly turned to sequencing DNA directly from environmen-

tal samples (often referred to as metagenomics) [40, 194]. Metagenomics has been

shown to be an effective tool for exploring natural environments (e.g., acid mine

drainage [41], ocean water [43], and soil [195]) and environments on and within

the human body [141]. With the development of improved sequencing technologies

from companies like 454 Life Sciences and Illumina, DNA sequence reads can be

obtained at increasingly higher throughput and lower cost. As these transformative

technologies further develop, metagenomics will continue to be an important tech-

nique for analyzing genomes of entire communities of microbes in an ever-broadening

collection of environments.

Identifying the protein-coding genes contained in the sequences is a funda-

mental step in any shotgun sequencing analysis, and metagenomics is no different.
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If substantial segments of the genomes can be assembled from the data [?], then

gene prediction helps to functionally annotate the genome. Even if the metagenome

assembly is highly fragmented, many new and interesting genes may still be ex-

tracted [196]. Some metagenomic experiments aim to compare microbial commu-

nities in various environments [197, 198]. In these cases, accurate gene prediction

allows a functional comparison [199,200].

Because sequences coding for genes have statistical properties that differentiate

them from noncoding sequences, computer software can be designed to select open

reading frames (ORFs) that are more similar to known examples of coding than

noncoding sequences based on statistical models [21,22,201]. Sequence composition

is the most important discriminative feature due to the effects of natural selection on

the DNA triplets coding for amino acids in a gene and can be captured by Markov-

chain models. To predict genes on a novel genomic sequence, one would train these

models either on a set of ORFs in the sequence that are highly likely to be genes

or on a full set of genes from a close relative. State of the art methods currently

achieve >99% sensitivity and high precision when predicting known genes [23] on

full chromosome sequences. In metagenomics, we generally have only short sequence

fragments of chromosomes, yet we still wish to find the genes contained in these data.

As environmental shotgun sequencing has become more prevalent, computa-

tional gene prediction approaches have adapted to the particular challenges of these

data. The foremost problem is that, because the sequences represent an unlabeled

sample from a mixture of organisms, training an appropriate prediction model for

a given sequence is difficult. In addition, prediction must be performed on short

117



sequence fragments that frequently capture only part of a gene. A finished genome

assembly will have eliminated nearly all sequencing errors by computing a consensus

base call using the many reads that cover a region. But, metagenomic assembly is

more difficult and will result in many low-coverage contigs as well as unassembled

singleton reads [44, 148], in which sequencing errors will be prevalent and problem-

atic for gene prediction [202].

Despite these challenges, a number of methods for predicting genes in metage-

nomic sequences have been published, reporting varying degrees of success [203–206].

The GC-content of a genome provides a simple but effective way of parameterizing

a predictive model such as a Markov model, and all of these previous methods incor-

porate GC-content into their prediction algorithms. MetaGeneAnnotator [203] also

models the lengths of genes in order to appropriately score partial genes. FragGe-

neScan [206] allows frameshifts within protein coding regions, which allows it to

tolerate insertion or deletion sequencing errors in the fragments.

For these programs, GC-content is a simple way to identify training genomes

that are likely to be evolutionarily related, and whose genes might have similar

sequence composition. This task is highly similar to taxonomic classification of

sequences, which implicitly identifies close relatives, and for which much better

statistics than simple GC-content have been developed [155, 168, 169, 172]. In this

chapter, we explore the use of a more sophisticated classification scheme, based on

the Phymm system [172], to parameterize gene prediction models for metagenomic

sequences. Another related computational problem is unsupervised sequence clus-

tering, in which the relationships between sequences are elucidated via a partition
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of the sequences into clusters, generally without the use of reference (or “training”)

genomes [137, 173, 174]. Clusters have been shown to improve the identification of

translation initiation sites [207]. Below, we use a more advanced clustering method

Scimm [137] to assist in predicting genes via an unsupervised retraining step.

In previous work, our group has demonstrated that the Glimmer gene pre-

diction program is highly effective, routinely identifying >99% of the genes in

most complete prokaryotic genomes [23]. However, Glimmer was not designed for

the highly fragmented, error-prone sequences that typify metagenomic sequencing

projects today. In this chapter, we describe enhancements to Glimmer designed

for metagenomic projects. First we describe several new algorithmic changes that

improve Glimmer’s precision and start-site prediction accuracy while maintaining

its high sensitivity. We then describe a new software pipeline, Glimmer-MG, that

incorporates classification and clustering of the sequences prior to gene prediction.

Glimmer-MG achieves far greater accuracy than previous methods applied to the

same metagenomic data. Glimmer-MG can also predict frameshifts resulting from

insertions and deletions in short sequence fragments, and it achieves high prediction

accuracy on simulated reads with errors. Finally, we demonstrate the Glimmer-MG

pipeline on a set of real 454 reads from the human gut microbiome [208].
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5.2 Methods

5.2.1 Glimmer

Glimmer’s salient feature is its use of interpolated Markov models (IMMs)

for modeling gene composition [21]. IMMs are variable-order Markov-chain models

that maximize the model order for each specific oligonucleotide window based on

the amount of training data available. IMMs then interpolate the nucleotide distri-

butions between the maximum order and one greater. Thus, IMMs construct the

most sophisticated composition model that the training data sequences support. To

segment the sequence into coding and noncoding sequence, Glimmer uses a flexible

open reading frame (ORF)-based framework that incorporates knowledge of how

prokaryotic genes can overlap and upstream features of translation initiation sites

(TIS) like the ribosomal binding site (RBS). Glimmer extracts every sufficiently long

ORF from the sequence and scores it by the log-likelihood ratio of generating the

ORF between models trained on coding versus noncoding sequence. The features

included in the log-likelihood ratio are composition via the IMMs, RBS via a posi-

tion weight matrix (PWM), and start codon usage. Then a dynamic programming

algorithm finds the set of ORFs with maximum score subject to the constraint that

genes cannot overlap for more than a certain threshold, e.g., 50 bp.

5.2.2 Additional features

Glimmer is ineffective on metagenomic sequences because its gene composition

model is trained under the assumption that the sequences all came from a single
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genome. Recent approaches both relax this assumption and add new features used

to discriminate between coding and noncoding sequence. One approach called Meta-

GeneAnnotator (MGA) uses a similar framework to Glimmer by extracting ORFs,

scoring them, and choosing a high scoring set using dynamic programming [203].

MGA incorporates additional gene features, of which we add three — ORF length,

adjacent gene orientation, and adjacent gene distance — to Glimmer-MG. We de-

scribe how to compute models for these features assuming we have gene annotations

to train on from a close evolutionary relative to our genome sequence of interest, an

assumption that will be explained in more detail below.

To model ORF length, we seek probability distributions for the length of cod-

ing and noncoding ORFs. For the coding model, our sample data are the lengths

of annotated genes in the training genome. For the noncoding model, the lengths

of noncoding ORFs that meet a minimum length threshold (75 bp) and a maxi-

mum overlap threshold with a gene (30 bp) are considered. One can estimate the

distributions using a nonparametric method based on the histogram of lengths or a

parametric method where one assumes a well-studied probability distribution and

computes the maximum likelihood parameters [87]. We use both methods to obtain

our estimate. Where training data are plentiful, such as for common gene sizes, a

nonparametric approach offers greater modeling specificity than any parameterized

distribution. But when data are sparse, such as for very long ORFs, the nonpara-

metric approach fails. For example, we cannot assign a useful probability to an

ORF larger than any in our training set though it should obviously receive a large

log-likelihood ratio score. A parameterized distribution can assign meaningful prob-
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Figure 5.1: The distributions for coding and noncoding ORF lengths (in amino acids) from

Deinococcus radiodurans R1 estimated using the Gamma distribution “Gamma”, a smoothed his-

togram “Hist”, and a blend of the first two “Blend” that uses the histogram model for the first

quartile, the Gamma model for the last quartile, and a linear combination in between. The “Hist”

model offers greater specificity for short and medium sized ORFs, but is useless for very long

ORFs, which “Gamma” can model more effectively.

abilities to any length ORF. This helps us choose the right start codon for large

genes by properly rewarding the additional length provided by one start site versus

another downstream. Thus, the length distributions are modeled by a histogram af-

ter kernel smoothing with a Gaussian kernel [87] for the first quartile (as determined

by the raw counts), a Gamma distribution with maximum likelihood parameters for

the last quartile, and a linear combination of the two in between with a linearly

changing coefficient (e.g., Figure 5.1).

ORFs truncated by the end of their fragments require adjustments to the

length model. We know that the total length of a truncated ORF with X bp on

a fragment is at least X and should therefore be scored higher than a full X bp

ORF. We accomplish this by modeling the joint distribution of the length and the
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presence of start and stop codons (described below).

Features computed on pairs of adjacent genes also capture useful information.

For example, genes are frequently arranged nearby in the same orientation to form

transcriptional units called operons [25]. Alternatively, consecutive genes with op-

posing “head-to-head” orientations (where the 5’ ends of the genes are adjacent)

tend to be further apart to allow room for each gene’s respective RBS. We added

two features of adjacent genes: their orientation with respect to each other and

the distance between them. Again, we need distributions for coding and noncoding

ORFs to score a pair of adjacent genes by their log-likelihood ratio. The gene model

uses all pairs of annotated genes. For the noncoding model, we consider noncoding

ORFs that satisfy the length and overlap constraints with their adjacent annotated

genes. For the distances, no parameterized distribution was a good fit for the data

so we rely solely on a smoothed histogram. Because one gene’s start codon often

overlaps another gene’s stop codon due to shared nucleotides, we do not smooth the

histogram for distances implying overlapping start or stop codons.

5.2.3 Truncated length model

Log-likelihood ratio scores for gene length use two probability distributions

that apply to coding and noncoding ORFs. To account for truncated ORFs, we

jointly model the length with the presence of start and stop codons. In our experi-

ence, gene prediction accuracy, particularly for start sites, is highly dependent on an

accurate formulation of this model. Our approach to constructing these probability
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distributions considers that, given detection of an ORF on the fragment, there are

a finite number of places that the fragment could have landed in the genome. Thus,

given the gene length and fragment length, we can compute the probability that we

see the start codon and stop codon on the fragment.

Let S(X,L,R) be the likelihood ratio for an ORF where X is the length and

L and R are binary variables representing the presence of a start or stop codon

at the left and right end of the fragment respectively. Also, let G be a binary

variable representing whether the ORF is a coding or noncoding. Then for an ORF

truncated at the left end with x nucleotides on the fragment, we score the ORF with

the logarithm of

S(x, 0, 1) =
P (X > x,L = 0, R = 1|G = 1)

P (X > x,L = 0, R = 1|G = 0)
(5.1)

Expanding this to specify the exact possible lengths gives

S(x, 0, 1) =

∑
d=x+1

P (X = d, L = 0, R = 1|G = 1)∑
d=x+1

P (X = d, L = 0, R = 1|G = 0)
(5.2)

Applying the definition of conditional probability gives

S(x, 0, 1) =

∑
d=x+1

P (L = 0, R = 1|X = d,G = 1)P (X = d|G = 1)∑
d=x+1

P (L = 0, R = 1|X = d,G = 0)P (X = d|G = 0)
(5.3)

The right term P (X = d|G = g) is defined by our learned distributions for coding

(g = 1) and noncoding (g = 0) ORFs. Given the ORF length, the probability that

it is truncated on either side is independent of its coding potential so G can be
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Figure 5.2: P (L = l, R = r|X = x) scenarios. The solid black arrows show the gene, which is

of length x and must be covered by a minimum gene length m to be detected. The dashed red

lines show examples of reads with length f that would cover the gene with the L and R values

specified. The dotted green lines show the region where a read can start and cover the gene with

L and R values specified. (i) There are x + f − 2m different read start points that would detect

the ORF. (ii) If the read size f is greater than the gene size x, than x −m of these start points

lead to partial genes truncated on the right side. (iii) If f is less than x, there are f −m. (iv)

x− f lead to a partial gene truncated at both ends.
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removed from the left term.

S(x, 0, 1) =

∑
d=x+1

P (L = 0, R = 1|X = d)P (X = d|G = 1)∑
d=x+1

P (L = 0, R = 1|X = d)P (X = d|G = 0)
(5.4)

We can define a probability distribution for start and stop codon presence by con-

sidering the genomic locations from which our fragment may have arisen given that

we discovered the ORF. As shown in Figure 5.2(i), there are x + f − 2m positions

where a fragment of length f could land to detect a minimum of m bp from a gene

of length x. If f > x as in Figure 5.2(ii), x − m fragment positions truncate the

ORF on one end. If f < x as in Figure 5.2(iii), f −m fragment positions truncate

the ORF on one end. Thus, we can write the probability as

P (L = 0, R = 1|X = d) =
min(x, f)−m

x + f − 2m
(5.5)

Because left and right truncation are symmetrical, P (L = 1, R = 0|X = d) and thus

S(x, 1, 0) can be defined similarly. S(x, 0, 0) corresponds to the case where both the

left and right ends of the ORF are truncated. It can be defined using a similar series

of steps where we see that x − f fragment positions produce such an arrangement

as in Figure 5.2(iv).

P (L = 0, R = 0|X = d) =
x− f

x + f − 2m
(5.6)

Also note that when both the start and stop codons do appear on the fragment,

we lose the summations from Equation 5.4 and the left terms cancel, leaving the

expected

S(x, 1, 1) =
P (X = x|G = 1)

P (X = x|G = 0)
(5.7)
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Given the fragment size and gene length probability distributions defined

above, we can easily compute these scores. The model’s dependence on the frag-

ment size f is inconvenient, but necessary. For each dataset, we build models for all

lengths present.

5.2.4 Classification

All previously published approaches to metagenomic gene prediction param-

eterize the gene composition models for each fragment as a function of its GC-

content. For example, MetaGeneMark computes (offline) a logistic regression for

each dicodon frequency as a function of GC-content for a large set of training

genomes and sets its hidden Markov model parameters (online) according to the

GC-content of the metagenomic sequence [205]. For whole genomes, gene compo-

sition model training has traditionally been performed on annotated close evolu-

tionary relatives rather than genomes with similar GC-content [20]. Many methods

for assigning a taxonomic classification to a metagenomic sequence are currently

available [155, 168, 169, 172]. Here we suggest using one of these methods called

Phymm [172] rather than GC-content to find evolutionary relatives of the metage-

nomic sequences on which to train gene composition models. Phymm trains an IMM

on every reference genome in GenBank [209], scores each input sequence with all

IMMs, and assigns a classification at each taxonomic level according to the reference

genome of the highest scoring IMM. Phymm’s IMMs are single-periodic and trained

on whole genomes, in contrast to Glimmer-MG’s IMMs which are 3-periodic and
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trained only on coding sequences.

Thus, before predicting genes, we run Phymm on the input sequences to score

each sequence with each IMM. To train the gene prediction models, we use gene

annotations for the genomes corresponding to the highest scoring IMMs. These

annotations are taken from NCBI’s Reference Sequence (RefSeq) database [210].

Though classification with Phymm is very accurate, the highest scoring IMM is

rarely from the sequence’s exact source genome. For this reason, we found that

training over multiple genomes (e.g., 3) captured a broader signal that improved

prediction accuracy. Though most of the training can be performed offline, the

models over multiple genomes must be combined online for each particular sequence.

In order to realize a reasonable runtime, we must do this quickly. Features such as

the length, start codon, and adjacent gene distributions are easy to combine across

multiple training genomes by simply summing the feature counts.

IMMs cannot be combined quickly and saving trained IMMs for all combina-

tions of 2 or 3 genomes would require too much disk space. In practice, pairs of

genomes with similar composition are far more likely to be top classification hits

together and we can restrict our offline training to only these pairs. We define an

IMM composition distance on genomes X and Y that compares the likelihood that

the genome’s own IMM versus the other genome’s IMM generated its sequence. If

we let MX and MY be the whole-genome Phymm IMMs and PM give the probability

that the IMM M generated the sequence, then we have

DIMM(X, Y ) =
1

|X| log
PMX

(X)

PMY
(X)

+
1

|Y | log
PMY

(Y )

PMX
(Y )

(5.8)
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If X = Y , the ratios are 1 and DIMM = 0. If X and Y are very different, the ratios

and the distance grow large. For each genome, we train Glimmer-MG gene IMMs

on pairs of genomes for the 25 nearest genomes by our distance. If a metagenomic

sequence’s top hits do not contain a pre-trained pair, we default to a gene IMM

trained on the single top classification for the sequence.

Glimmer-MG’s RBS model trains using ELPH [211], a motif finder based on

Gibbs sampling, to learn a 6 bp PWM from the 25 bp upstream of every gene in the

training set. We train these PWMs offline for each individual reference genome, but

like the other features, RBS modeling for metagenomic sequences benefits from the

broader signal obtained by combining over multiple training genomes. Averaging

PWMs for the top 3 Phymm classifications can be done quickly, but dilutes the sig-

nal. Instead, we generalized the RBS model in Glimmer-MG to score the upstream

region of each start codon using a mixture of PWMs in equal proportions. Thus, a

gene’s RBS score is the probability that the best 6 bp motif in the 25 bp upstream

of the start codon was generated by a mixture of 3 PWMs normalized by a null

model based on GC-content to a log-likelihood ratio.

5.2.5 Clustering

On whole prokaryotic genomes, the following prediction pipeline has been ap-

plied successfully. First, train models on a finished and annotated close evolutionary

relative. Make initial predictions, but then retrain the models on them and make a

final set of predictions [20]. By using Phymm to find training genomes, we replicate
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the first step in this pipeline for application to metagenomics. However, retraining

on the entire set of sequences would combine genes from many different organisms

and yield a nonspecific and ineffective model. If the sequences could be separated

by their source genome, retraining could be applied.

We accomplish this goal using Scimm, an unsupervised clustering method for

metagenomic sequences that models each cluster with a single-periodic IMM [137].

After initially partitioning the sequences into a specified number of clusters, Scimm

repeats the following three steps until the clusters are stable: train IMMs on the

sequences assigned to their corresponding clusters, score each sequence using each

cluster IMM, and reassign each sequence to the cluster corresponding to its highest

scoring IMM. While Scimm may not partition the sequences exactly by their source

organism, the mistakes that it tends to make do not create significant problems

for retraining gene prediction models. In cases where Scimm merges sequences

from two organisms together, they are nearly always phylogenetically related at the

family level [137]. Scimm sometimes separates sequences from a single organism

into multiple clusters, but this occurs most often for highly abundant organisms,

in which case there will usually still be enough training data in each cluster to be

informative. The already obtained Phymm classifications imply an initial clustering

at a specified taxonomic level (e.g., family), which can be used as an initial partition

for the iterative clustering optimization in a mode of the program referred to as

PhyScimm [137]. Using PhyScimm also implicitly chooses the number of clusters,

removing this free variable.

After clustering the sequences, we focus on each cluster individually to retrain
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the coding IMM, RBS, and start codon models before making the final predictions

within that cluster. The ORF length and adjacent ORF feature distributions are

more difficult to estimate from short sequence fragments, so we still learn them using

the Phymm classifications to whole annotated genomes. If the cluster is too small,

retraining may not have enough data to capture the gene features, and prediction

accuracy may decrease. We found 80 Kbp of predicted coding sequence was a useful

threshold for retraining. For clusters with less, we do not retrain and instead finalize

the gene predictions from the initial iteration. Accuracy may also decrease if the

cluster is heterogeneous and does not effectively model some of its sequences. For

each sequence, we compute the ratio between the likelihood that the cluster IMM

versus its top scoring Phymm IMM generated the sequence. If the ratio is too low,

we assume that the cluster does not represent this sequence well enough and finalize

its initial predictions. The full pipeline for metagenomic gene prediction is depicted

in Figure 5.3.

5.2.6 Sequencing errors

When predicting genes on the raw sequencing reads or contigs with low cov-

erage, we must contend with sequencing errors. The most prevalent type of error

made by the 454 sequencing technology is an insertion or deletion (indel) at a ho-

mopolymer run. Indels cause major problems for gene prediction by shifting the

coding frame of the true gene, so that a method without a model for these errors

could never predict the true gene. When Glimmer-MG encounters a shifted gene,
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Scimm clusters

Initial Glimmer predictions

Phymm classifications

Final Glimmer predictionsSequences

Figure 5.3: Glimmer-MG pipeline. First, we classify the sequences with Phymm in order to

find related reference genomes to train the feature models. We use these to make initial gene

predictions. Next, we cluster the sequences with Scimm, starting at an initial partition from the

Phymm classifications. Within each cluster, we retrain the models on the initial predictions before

using all information to make the final set of predictions.
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ins del

Original prediction

Error prediction

Gene

Read

Figure 5.4: Depicted above is a common case where indel sequencing errors disrupt gene pre-

dictions. This 454-simulated 526 bp read falls within a gene in the forward direction, but has

an insertion at position 207 and a deletion at position 480. Without modeling sequencing errors,

Glimmer-MG begins to correctly predict the gene (shown in green), but is shifted into the wrong

frame by the insertion (shown in red) and soon hits a stop codon. Downstream, Glimmer-MG

makes another prediction in the correct coding frame, which is also forced into the wrong frame

by the deletion. By allowing Glimmer-MG to predict frameshifts from sequencing errors, the pre-

diction follows the coding frame nearly perfectly. The insertion site is exactly predicted and the

deletion site is only off by 19 bp.
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the most frequent outcome is two predictions, each of which covers half of the gene

up to the point of the indel and then beyond (see Figure 5.4). Such predictions have

limited utility.

While the problems caused by sequencing errors have been known for some

time [148, 202], only recently has a good solution been published in the program

FragGeneScan [206]. FragGeneScan uses a hidden Markov model where each of the

three indexes into a codon are represented by a model state, but allows irregular

transitions between the codon states that imply the presence of an indel in the

sequence. On simulated sequences containing errors, FragGeneScan achieves far

greater accuracy than previous methods that ignore the possibility of errors.

Because Glimmer-MG uses an ORF-based approach to gene prediction, we

must take a more ad hoc approach to building an error model into the algorithm.

When Glimmer-MG is scoring the composition of an ORF using the coding and

noncoding IMMs, we allow branching into alternative reading frames. More specif-

ically, we follow along the sequence and identify low quality base calls (defined

below) that are strong candidates for a sequencing error. At these positions, we

split the ORF into three branches. One branch scores the ORF as is. The other

two switch into different frames to finish scoring, implying an insertion and deletion

prediction. ORFs that change frames are penalized by the log-likelihood ratio of the

predicted correction to the original base call probabilities. A maximum of two indel

predictions per ORF is used to limit the computation time. After scoring all ORFs,

ORFs with the same start and stop codon (but potentially different combinations

of interior indels) are clustered and only the highest scoring is kept. All remaining
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ORFs are pushed to the dynamic programming stage where the set of genes with

maximum score subject to overlap constraints is chosen. However, the algorithm is

further constrained to disallow an indel prediction in a region of overlapping genes.

Focusing on low quality base calls, which typically make up <5–10% of the

sequence, makes the computation feasible. If quality values are available for the

sequences, either from the raw read output or the consensus stage of an assembler,

Glimmer-MG uses them and designates base calls less than a quality value threshold

as potential branch sites. For 454 sequences that are missing quality values, we

designate the final base of homopolymer runs longer than a length threshold as

potential branch sites.

5.2.7 Whole genomes

Although we implemented the additional gene features with metagenomics in

mind, they improve accuracy on whole genomes as well. In Glimmer3.0, the following

pipeline was recommended [23]. First, using a program called long-orfs, find long

non-overlapping ORFs in the sequence with amino acid composition that is typical

of prokaryotic genomes. Train the coding IMM on these sequences, and predict

genes on the genome. On the initial predictions, train the RBS and start codon

models. Finally, make a second set of gene predictions incorporating all models.

For the new whole-genome version, designated as Glimmer3.1, we recommend

a similar scheme. As before, we use long-orfs to train an IMM and predict an initial

set of genes. Without a length model, these initial predictions tend to include many
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erroneous small gene predictions. We use a log-likelihood ratio threshold to filter

out the lowest scoring ones. On the remaining genes, we retrain all models — IMM,

RBS, start codons, length, and adjacency features — before predicting again. To

eliminate any remaining bias from the initial prediction and filtering, we retrain and

predict one final time.

The preceding pipeline is unsupervised, but we can do slightly better on aver-

age by following the Glimmer-MG version and using GenBank reference genomes.

In this pipeline, we first classify the whole genome with Phymm to find similar ref-

erence genomes. Alternatively, a researcher may be able to specify these genomes

based on prior knowledge. We train RBS, start codon, length, and adjacency models

from the RefSeq annotations of these similar genomes as described. For the gene

IMM, accuracy is better if we use long-orfs compared to an IMM trained on relative

reference genomes. After making initial predictions, we retrain the IMM, RBS, and

start codon models before predicting genes a final time.

5.2.8 Simulated metagenomes

We constructed simulated datasets from 1206 prokaryote genomes in Gen-

Bank [209] as of November 2010. Because Glimmer-MG involves clustering the se-

quences, it is important to have realistic simulated metagenomes. For each metagenome,

we randomly chose 50 organisms and included all chromosomes and plasmids. We

sampled organism abundances from the Pareto distribution, a power law probability

distribution that has previously been used for modeling metagenomes [212]. Refer-
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ence genomes included in the metagenome were removed from Phymm’s database

so that the sequences appeared novel and unknown. To simulate a single read, we

selected a chromosome or plasmid with probability proportional to the product of

its length and the organism’s abundance and then chose a random position and

orientation from that sequence. To enable comparison between experiments with

different read lengths and error rates, we simulated 20 metagenomes (i.e. organ-

isms, abundances, read positions, and read orientations) and used them to derive

each experiment’s dataset. We labeled the reads using gene annotations that are

not described as hypothetical proteins from RefSeq [210].

In experiments where we considered sequencing errors, we focused on three pre-

vailing technologies. Two varieties of high-throughput, short read technologies with

very different characteristics have become ubiquitous tools for sequencing genomes,

including metagenomics [26]. The Illumina sequencing platform generates 35–150 bp

length reads with sequencing errors consisting almost entirely of substitutions [63].

The 454 sequencing platform generates 400–550 bp length reads where indels make

up nearly all of the errors [30]. Less popular in recent studies due to greater ex-

pense and lesser throughput is Sanger sequencing with read lengths of 600–1000 bp

and both substitution and indel sequencing errors. We include Sanger sequencing

both because previous programs were designed and tested with the technology in

mind and because the reads resemble contigs assembled from the more prevalent

short read technologies with respect to length and errors tending to occur at the

fragments’ ends.

To imitate Sanger reads, we used the lengths and quality values from real reads
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taken from the NCBI Trace Archive [209] as templates. That is, for each fragment

simulated from a genome as described above, we randomly chose a real Sanger read

from our set to determine the length and quality values of the simulated read. Then

we simulated errors into the read according to the quality values and using a ratio

of five substitutions per indel. To achieve a specific error rate for a dataset, we

multiplied the probability of error at every base by a factor defined by the desired

rate. To generate simulated reads to imitate the Illumina platform, we similarly used

real 124 bp reads as templates, but injected only substitution errors. For 454 reads,

we used a read simulator called FlowSim which closely replicates the 454 stochastic

sequencing process to generate the sequences and their quality values [213]. We

conservatively quality trimmed all read ends to avoid large segments of erroneous

sequence.

5.2.9 Accuracy

We computed accuracy a few ways to capture the multiple goals of gene pre-

diction. Sensitivity is the ratio of true positive predictions to the number of true

genes, and precision is the ratio of true positive predictions to the number of pre-

dicted genes. Because the RefSeq annotations tend to be incomplete after the re-

moval of hypothetical proteins, which are unconfirmed computational predictions,

we consider sensitivity to be the more important measure because “false positive”

predictions may actually be real genes. For all experiments, we computed the sen-

sitivity and precision of the 5’ and 3’ ends of the genes separately. Because there
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is only a single 3’ site, 3’ prediction is generally more valued. There are frequently

many choices for the 5’ end of the gene and a paucity of sequence information to

discriminate between them. Adding to the difficulty, most of the 5’ annotations in

even the high quality RefSeq database are unverified.

In experiments with sequencing errors, indels shift the gene’s frame and sub-

stitutions can compromise the start and stop codons. To measure the ability of the

gene prediction to follow the coding frame, we compute sensitivity and precision

at the nucleotide level. That is, every nucleotide is considered a unit and a true

positive prediction must annotate the nucleotide as coding in the correct frame. A

gene prediction that is correct until a sequencing error indel but predicted in the

wrong frame beyond gets partial credit, whereas a gene prediction that identifies

the error location and shifts the frame of the prediction gets full credit.

5.3 Results

5.3.1 Whole genomes

To evaluate the accuracy of the previous Glimmer3.0 iterated pipeline versus

the proposed Glimmer3.1 and Glimmer-MG, we predicted genes in 12 reference

genomes that cover a wide range of the prokaryotic phylogeny and were previously

used to compare Glimmer3.0 to Glimmer2 [23]. Results for each of these genomes are

displayed in Table 5.1. Note that the low precision values are not a concern because

many genomes have a significant number of hypothetical proteins annotated and

although predicting one of these genes is a false positive by our definition, some of
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them are likely to be real genes.

Glimmer3.1 maintains the high 3’ sensitivity of Glimmer3, but improves the

precision by 1.3% on average mainly by predicting fewer short genes (42 predictions

<150 bp per genome versus 68) due to the length model. Glimmer-MG increases

precision another 1.0% by using additional models, such as for gene length, learned

accurately from close evolutionary relatives in the initial iteration. Glimmer3.1

also significantly improves TIS prediction as 5’ sensitivity increases by 1.3% and

precision by 1.8%. This improvement is attributable to its ability to assign greater

scores to upstream start codons (which are longer genes) and penalize adjacent genes

for unlikely arrangements like long overlaps. Glimmer-MG boosts sensitivity and

precision relative to Glimmer3.1 by another 0.5% and 1.2% respectively.

5.3.2 Simulated metagenomes - perfect reads

To compare Glimmer-MG to previous methods for metagenomics gene pre-

diction, we first predicted genes on simulated metagenomes with perfect read data

without sequencing errors using Glimmer-MG, MetaGeneAnnotator [203], Meta-

GeneMark [205], and FragGeneScan [206]. MetaGeneAnnotator and MetaGeneMark

runs used default parameters, and we set FragGeneScan’s parameters for error-free

sequences. Table 5.2 displays the programs’ averaged accuracies over the 20 simu-

lated metagenomes for each read technology.

Overall Glimmer-MG emerged as the clear best method, achieving the greatest

Table 5.1 (following page): Accuracy on whole genomes. Sens - Sensitivity, Prec - Precision.
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Tech Method 3’ Sens 3’ Prec 5’ Sens 5’ Prec

Sanger Glimmer-MG 0.987 0.702 0.901 0.641

(870 bp) MetaGeneMark 0.969 0.707 0.857 0.625

MetaGeneAnnotator 0.969 0.702 0.846 0.613

FragGeneScan 0.962 0.667 0.823 0.570

454 Glimmer-MG 0.986 0.709 0.918 0.661

(535 bp) MetaGeneMark 0.964 0.718 0.877 0.653

MetaGeneAnnotator 0.966 0.707 0.853 0.625

FragGeneScan 0.959 0.680 0.859 0.609

Illumina Glimmer-MG 0.951 0.685 0.924 0.665

(120 bp) MetaGeneMark 0.901 0.717 0.871 0.693

MetaGeneAnnotator 0.915 0.686 0.839 0.629

FragGeneScan 0.932 0.663 0.904 0.643

Table 5.2: Accuracy on simulated metagenomes with perfect reads. Tech - Sequencing technology,

Sens - Sensitivity, Prec - Precision
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sensitivity for every read length. Glimmer-MG’s 3’ sensitivity was nearly or exactly

2% greater than the second best method in each experiment, and its 5’ sensitivity

was better by margins up to 4.4% for Sanger reads. Glimmer-MG’s precision on the

longer 454 and Sanger reads was just behind MetaGeneMark for 3’ prediction and

exceeds all other programs for 5’ prediction. On Illumina 120 bp reads, MetaGene-

Mark made much fewer predictions than the other programs leading to the greatest

precision (3.2% greater than Glimmer-MG for 3’), but much lower sensitivity (5.0%

less than Glimmer-MG for 3’). FragGeneScan was designed for these short reads

and had better sensitivity than MetaGeneMark or MetaGeneAnnotator, but ∼2%

less accuracy than Glimmer-MG by all measures.

By first classifying the reads, Glimmer-MG can identify sequences that are

likely to use an irregular translation code, such as Mycoplasma bacteria where TGA

codes for tryptophan rather than a stop codon. On the 0.35% of the reads in our

simulated datasets that used irregular codes, Glimmer-MG predicted genes on the

454 reads with 91.1% sensitivity and 55.2% precision compared to the next best

MetaGeneMark’s 65.1% sensitivity and 37.6% precision. This difference was similar

for other read lengths.

To assess the value of clustering and retraining, we also computed accuracy

for Glimmer-MG’s initial predictions. For each read type, retraining increased 3’

sensitivity 0.6–2.0% while slightly decreasing 3’ precision 0.4–0.6%. Illumina 3’ sen-

sitivity increased 2.0% because Phymm is less able to identify appropriate training

genomes to aid the initial predictions; classification accuracy at the genus-level drops

from 73.1% for Sanger reads to 34.3% for Illumina reads. After retraining, 5’ sensi-
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Tech Error rate Glimmer-MG FragGeneScan

Sens Prec Sens Prec

Sanger 0 0.989 0.756 0.977 0.740

(∼870 bp) 0.005 0.971 0.742 0.953 0.699

0.010 0.955 0.731 0.938 0.687

0.020 0.925 0.713 0.914 0.674

454 0 0.988 0.752 0.975 0.735

(∼535 bp) 0.005 0.899 0.679 0.846 0.621

0.010 0.822 0.625 0.778 0.565

0.020 0.711 0.545 0.678 0.501

Illumina 0 0.952 0.686 0.935 0.663

(∼120 bp) 0.005 0.938 0.682 0.923 0.640

0.010 0.927 0.679 0.913 0.632

0.020 0.910 0.673 0.900 0.625

Table 5.3: Accuracy on simulated metagenomes with error reads. Tech - Sequencing technology,

Sens - Sensitivity, Prec - Precision. The read lengths are averages. Accuracy is computed at the

nucleotide level.

tivity increased 1.5–1.9% with a similar level of precision, an improvement expected

based on prior work [207].

5.3.3 Simulated metagenomes - error reads

Real metagenomic sequences will inevitably contain sequencing errors, and

prior work showed that current gene prediction software struggles with these er-
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rors [202]. The recently published method FragGeneScan specifically models indel

sequencing errors, which achieves far greater accuracy than other approaches when

the sequences are short and error-prone [206]. To compare Glimmer-MG to FragGe-

neScan on reads containing errors, we simulated metagenomes as described using

error rates ranging from 0–2%. We allowed Glimmer-MG to predict indels for Sanger

and 454 reads, but not for Illumina. We ran FragGeneScan using predefined model

parameters meant for the sequencing technology and the closest error rate. Ta-

ble 5.3 displays the programs’ averaged accuracies at the nucleotide level over the

20 simulated metagenomes for each read technology and error rate.

Glimmer-MG outperforms FragGeneScan with respect to both sensitivity and

precision on all read lengths and error rates. The improvement is particularly evident

for 454 reads where, for example, Glimmer-MG achieves 4.4% greater sensitivity

and 5.8% greater precision than FragGeneScan at a 1.0% error rate. Glimmer-MG’s

limit of 2 indels per gene does not hinder gene prediction at a higher rate of 2.0%

as accuracy remains greater than FragGeneScan.

Like prior work, our experiments demonstrate the difficulty of predicting genes

on sequences with errors. For 454 reads where indel errors shift the gene frames,

Glimmer-MG sensitivity plummets 9% for even a 0.5% error rate. The decrease in

accuracy for Sanger or Illumina reads, where the errors are mostly from substitu-

tions, should be less worrisome to researchers. Glimmer-MG sensitivity drops ∼2%

for these reads when the error rate increases from 0 to 0.5%.

Modeling indel errors within Glimmer-MG significantly boosts performance

for 454 reads. Without it, Glimmer-MG predicts with 41.9% sensitivity and 43.5%
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precision at a 2.0% error rate, compared to 71.1% and 54.5% with indel predic-

tion. Alternatively, on Illumina reads where the simulated sequencing errors are

entirely substitutions, Glimmer-MG’s indel prediction mode offers no benefit and

slightly decreases precision. Sanger read prediction sees a meaningful 5.7% increase

in sensitivity by modeling indels at a 2.0% error rate.

Comparison between Glimmer-MG initial and final prediction accuracy indi-

cates that sequencing errors increase the value of retraining. For 454 reads, sen-

sitivity increases 0.8% after retraining without errors, and 2.9% with 2.0% errors.

Because retraining occurs on lower precision initial predictions, this result may be

unintuitive. We can explain this as follows. Without sequencing errors, Glimmer-

MG’s predictions are very accurate so that the potential benefit of retraining and

predicting again is limited. However, when there are sequencing errors, predict-

ing coding sequence around indels is far more difficult, and the enhanced ability of

Glimmer-MG’s retrained models to identify coding sequence affects accuracy more

significantly.

We measured both methods’ accuracy predicting indels in the 454 simulated

reads, to determine the degree to which it affects gene prediction accuracy. To do

so, we computed a matching between the predicted and true indels in coding re-

gions and called a pair separated by less than 15 bp a true positive. At a 1.0%

error rate, Glimmer-MG correctly predicted 23.2% of the indels, with a 63.8% pre-

cision. FragGeneScan more readily shifts the gene frame and made 1.9 times more

indel predictions. However, they resulted in fewer true positive predictions than

Glimmer-MG’s predictions (19.2% sensitivity) and far lower precision at 28.4%. For
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indels predicted correctly by both programs, Glimmer-MG’s prediction was 2.3 bp

away from the actual position on average, while FragGeneScan’s was 5.2. Thus, by

focusing on low quality nucleotides in the sequences, Glimmer-MG identifies indel

positions more effectively than FragGeneScan. Sensitivity for both methods may

seem low, but note that, in some cases, the frame of the coding sequence can still

be closely followed without predicting the correct error. For example, two nearby

insertions will generally result in a deletion prediction, which restores the proper

frame more parsimoniously than two insertion predictions.

5.3.4 Real metagenomes

We evaluated the performance of Glimmer-MG on two real metagenomic datasets

from a human gut microbiome study of obese and lean twins [208]. Sample TS28

consists of 303K reads sequenced by the 454 GS FLX Titanium with average length

335 bp, and sample TS50 consists of 550K reads sequenced by the 454 GS FLX

with average length 204 bp. Evaluating prediction accuracy is more difficult for

real metagenomes where there is no gold standard to compare against. We aligned

the translated gene predictions made by Glimmer-MG and FragGeneScan against

the NCBI nonredundant protein database with BLAST [152, 209], and considered

a prediction to be a true positive if it matched a database protein with BLAST

E-value less than 0.001.

Combining the two datasets, Glimmer-MG predicted 853K genes, of which

669K matched a known protein. Glimmer-MG’s sensitivity was 4.5% greater than
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the 640K matches from FragGeneScan’s 820K predictions. Precision has the caveat

that a “false positive” prediction that does not match anything in the database

will often represent a novel gene. Nevertheless, the two methods demonstrated a

similar level of precision, 78.4% and 78.1% for Glimmer-MG and FragGeneScan

respectively. For genes that were predicted by both methods, the aligned portions

of Glimmer-MG predictions were 1.4% longer than those from FragGeneScan. Based

on these results, Glimmer-MG is a better option for predicting genes on this human

microbiome dataset.

5.4 Conclusion

A number of exciting projects over the last few years have demonstrated the

value of environmental shotgun sequencing. As sequencing technologies are refined,

the technique has the potential to make an even greater impact. But because the

reads, having come from populations of usually unknown organisms, are difficult

to analyze, metagenomics bioinformatics, including gene prediction, must improve

in order to realize this potential. For example, projects seeking to discover new

organisms such as the Global Ocean Sampling Expedition [42, 43] need accurate

gene prediction to explore the functional repertoire of the many novel sequences

obtained [196]. Projects focused on more well-known environments are also typically

interested in characterizing the functional capabilities of the microbial communities,

perhaps for comparison [197,198]. Methods to perform such functional comparisons

benefit greatly from accurate identification of genes [199,200].
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In this chapter, we introduced Glimmer-MG for metagenomics gene prediction.

By modeling gene lengths and the presence of start and stop codons, Glimmer-

MG successfully accounts for the truncated genes so common on metagenomic se-

quences. Where previous approaches parameterize prediction models using only the

GC-content of the sequence, Glimmer-MG first classifies the sequences using a lead-

ing taxonomic classifier Phymm and trains models using the results. By clustering

the reads using the unsupervised method Scimm, we elegantly allow retraining of

prediction models on the sequences themselves. Augmenting Glimmer gene predic-

tion with classification and clustering produces the most accurate gene predictions

on our simulated metagenomes.

Sequencing errors in real metagenomics data wreak havoc on gene predic-

tions. In Glimmer-MG, we can predict indels in error-prone sequences by considering

frameshifts at low quality positions. In our experiments with real gut microbiome

reads and simulated metagenomes with multiple types of sequencing technology,

Glimmer-MG predicts genes on error-prone sequences more accurately than all other

methods.

Overall, Glimmer-MG represents a substantial advance in metagenomics gene

prediction, and should prove useful for a variety of applications.
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Chapter 6

Conclusion

The work in this dissertation describes advances for a number of important

computational problems related to the assembly and gene annotation of genomes.

In each case, the biological results made from the analysis of the sequencing data

are improved.

Chapter 2 introduced Quake, a method to detect and correct sequencing errors

in high coverage Illumina datasets. Quake corrects errors more accurately than all

previous approaches, and preprocessing data with it improves assembly and SNP

finding results. The software is open source and available for use by the research

community.

Chapter 3 uncovered a common mis-assembly in major genome assemblies

where heterozygous sequence in diploid genomes was assembled as two contigs, cre-

ating a false duplication. We designed a method to detect these mis-assemblies and

analyzed their impact, thus improving these genome assemblies that are widely used

in comparative genomics.

In Chapter 4, we switched focus from traditional sequencing experiments

to environmental shotgun sequencing, an exciting field in need of bioinformat-

ics advances. The chapter described Scimm, an unsupervised sequence clustering

method, that clusters metagenomics sequences more effectively than previous pro-
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grams. Scimm is available open source for researchers to analyze the composition

of their metagenome.

Chapter 5 presents Glimmer-MG, an enhancement of the Glimmer gene pre-

diction system for metagenomics sequences. By incorporating classification and

clustering of the sequences, as well as modeling sequencing errors, Glimmer-MG

predicts genes more accurately than all other approaches. Finding genes accurately

on metagenomic sequences improves the functional analyses researchers want to

perform on their metagenomic datasets.

As the technologies improve and sequencing becomes a ubiquitous tool for bio-

logical research, the field will depend on bioinformatics to efficiently and accurately

process the data. The methods developed here are currently used by researchers for

this purpose. I hope and expect that this work will also influence the development

of the next generation of bioinformatics tools to meet the challenges posed by new

and improved experiments and push forward this exciting line of research.
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[212] Angly F, Willner D, Prieto-Davó A, Edwards R, Schmieder R, Vega-Thurber
R, Antonopoulos D, Barott K, Cottrell M, Desnues C, et al.: The GAAS
metagenomic tool and its estimations of viral and microbial av-
erage genome size in four major biomes. PLoS Comput Biol 2009,
5(12):e1000593.

[213] Balzer S, Malde K, Lanzén A, Sharma A, Jonassen I: Characteristics of 454
pyrosequencing data—enabling realistic simulation with flowsim.
Bioinformatics 2010, 26(18):i420.

168

[http://cbcb.umd.edu/software/ELPH]

	List of Tables
	List of Figures
	Background
	Genome assembly
	Gene prediction
	2nd-generation sequencing
	Metagenomics
	Summary

	Quake: quality-aware detection and correction of sequencing errors
	Rationale
	Results and Discussion
	Accuracy
	Genome assembly
	SNP detection
	Data quality

	Conclusions
	Methods
	Counting k-mers
	Coverage cutoff
	Localizing errors
	Sequencing error probability model
	Correction search

	List of abbreviations
	Acknowledgements

	Detection and correction of false segmental duplications caused by genome mis-assembly
	Background
	Results and Discussion
	Genomes
	Use of the human genome to check duplications
	Coverage depth
	Genes affected by erroneous duplications
	Unplaced contigs
	SNPs and indels

	Conclusions
	Methods
	Detection of potential haplotype mis-assemblies
	Analysis of mate pairs
	Unplaced contigs
	Haplotype polymorphisms

	List of abbreviations
	Acknowledgements

	Clustering metagenomic sequences with interpolated Markov models
	Background
	Methods
	Interpolated Markov models
	K-means clustering framework
	Scimm
	Initial partitioning
	Supervised initial partitioning

	Results and Discussion
	Simulated reads
	FAMeS
	In vitro-simulated metagenome

	Conclusions
	Acknowledgements

	Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering
	Introduction
	Methods
	Glimmer
	Additional features
	Truncated length model
	Classification
	Clustering
	Sequencing errors
	Whole genomes
	Simulated metagenomes
	Accuracy

	Results
	Whole genomes
	Simulated metagenomes - perfect reads
	Simulated metagenomes - error reads
	Real metagenomes

	Conclusion
	Acknowledgements

	Conclusion
	Bibliography

