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The vibration of drillstrings is, in general, detrimental to the drilling process 
and may induce premature wear and damage of the drilling equipment which eventually 
results in fatigue failures. In this dissertation, a new design of drillstrings is proposed 
for mitigating such undesirable vibrations in an attempt to avoid wear and premature 
failures.  In the new design, the drillstring is provided with optimally designed and 
placed periodic inserts which can be either passive or active. The inserts will make the 
drillstring act as a mechanical filter for vibration transmission. As a result, vibration 
can propagate along the periodic drillstring only within specific frequency bands called 
the ‘pass bands’ and the vibration is completely blocked within other frequency bands 
called the ‘stop bands’. The spectral width of these bands can be tuned actively 
according to the nature of the external excitation which can be either passive or active.  
The inserts are introduce impedance mismatch zones along the vibration transmission 
path to impede the propagation of vibration along the string.  The design and the 
location of the inserts will be optimized to confine the dominant modes of vibration of 
the drillstring within the stop bands generated by the periodic arrangement of the inserts 
in order to completely block the propagation of the vibration. 
 The theory governing the operation of this new class of drillstrings is developed 
to describe the complex nature of the vibration encountered during drilling operations.  
The developed model will account for the bending, torsional, and axial vibrations of 
the drillstring while operating under the influence of "slip-stick" frictional torques 
between the drill-bit at the rock surface, "bit-bounce" which make the drill-bit to 
intermittently lose contact with the rock surface, and the motion of the bit in the Bore-
Hole Assembly “bit in BHA”. 
 Experimental prototypes of the periodic drillstrings are built and tested under 
various operating conditions to demonstrate the feasibility and effectiveness of the 
concept of periodic drillstring in mitigating undesirable vibrations.  The experimental 
results are used to validate the developed theoretical model in order to develop a 
scalable design tool that can be used to predict the dynamical behavior of this new class 
of drillstrings.   

Keywords: periodic shafts, periodic drillstrings, periodic inserts with internal 
resonance, theory and experiments 
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CHAPTER 1: INTRODUCTION 
 

1.1.  Background / Literature Review  

1.1.1. Background 
 

In most applications involving drillstrings with emphasize on higher speed operation with 
greater misalignment and torque, while reducing weight and cost are very critical to the effective 
operation of practical drillstrings. Because of their high specific stiffness and strength, engineering 
tailoring capability, high fatigue strength and corrosion resistance, composite materials offer a 
significant advantage over their metallic counterpart, and consequently composite materials have 
been applied to modern drillstrings. The demand for drillstrings to operate at higher speeds (near 
and post resonance) necessitates the implementation of a vibration suppression technique. 
 

El Rahab and Wagner (1994) used vibration absorbers consisting of strips evenly 
distributed around the cylinder to control its vibration. Napolitano et al. (1998) designed two co-
cured damped composite torsion shafts using the extension-twist coupling mechanism and 
embedded constraining layer damping, respectively. They demonstrated, experimentally and 
analytically, that both concepts provide significant torsion damping. Hu and Huang (1996) 
developed a general theory for a three-layer damped sandwich shell with viscoelastic core to 
investigate the damping ability of this approach. Later Chen and Huang (2001) applied constrained 
layer damping using axial strips covering the whole length of the cylinder and partially covering 
the circumference. They studied the effect of varying parameters on the damping effectiveness of 
the technique. In their analysis of the forced vibration of a rotating tapered composite shaft, Kim 
et al. (2001) introduced an equivalent viscous damping coefficient to account for external and 
internal damping. Song et al. (2002) presented a dual approach to control the flexure vibration of 
a spinning circular composite shaft. The approach is based on both structural tailoring (passive) 
and adaptive capability using embedded piezoelectric strips that spreads over the entire shaft 
length. They showed the potential of the technique to enhance the dynamic response characteristics 
of the shaft and expand its domain of stability. 

  The dynamical behavior of drillstrings used in the oil or gas industry is very complex and 
needs to be effectively controlled to avoid undesirable destructive potential. The complexity stems 
from the fact that typical drillstrings have diameter-to-length ratios in the order of 10-5 which is less 
than that of the average human hair.  Furthermore, such very slender drillstrings are subjected to 
complex vibrational phenomena that include: torsional relaxation oscillations induced by non-linear 
"slip-stick" frictional torques between the drill-bit at the rock surface, axial vibrations that induce 
"bit-bounce" which make the drill-bit to intermittently lose contact with the rock surface, and 
whirling motion of the drillstring and the motion of the bit in the Bore-Hole Assembly “bit in 
BHA”. 
 A summary of the different modes of vibrations encountered by the drillstrings and the 
associated physical mechanisms contributing to such modes is given by Spanos et al. (2003) and 
Table 1 lists these modes and the corresponding mechanisms as reported by Besaisow and Payne 
(1988).   
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Physical Mechanism Primary Excitation Secondary Excitation 
Mass Imbalance Lateral Axial-Torsional-Lateral 
Misalignment Lateral Axial 
Three-cone bit Axial Torsional-Lateral 
Loose drillstring Axial-Torsional-Lateral  
Rotational walk Lateral Axial-Torsional 
Asynchronous Walk or Whirl Lateral Axial-Torsional 
Drillstring Whip Lateral Axial-Torsional 

 
1.1.2 Literature Review 

 Extensive efforts have therefore been exerted during the past decades to understand the 
underlying physical phenomena governing such complex vibration behavior of the drillstrings in 
order to develop appropriate means for mitigating the resulting destructive effects. These efforts 
include mathematical modeling, simulation, and/or experimental investigation. Examples of these 
efforts include the work of Aarrested et al. (1986), Jansen (1991), Chen and Geradin (1995), Yigit 
and Christoforou (1996-2000), Christoforou and Yigit (1997-2003), Leine et al. (2002), Al-
Hiddabi et al. (2003), Spanos et al., (2003), Khulief and Al-Nasr (2005), Khulief et al. ((2007, 
2008), Khuleif and Al-Sulaiman (2009), Mihajlović et al. (2005-2006), Hoie (2012), Esmaeili et 
al. (2012), Boussaada et al. (2012), Ghasemloonia et al. (2013), and Liu et al. (2014a,b).  
 In 1986, Aarrested et al. presented the first theoretical and experimental investigation of the 
vibration of full-scale drilling rig. In 1991, Jansen modeled the bottom-hole-assembly (BHA) to 
study the nonlinearities due to the interaction between the drillstring and the outer shell. Chen and 
Geradin (1995) presented a finite element model of transverse vibration of drillstrings under axial 
loading.  A linear finite element model has been developed by Khulief and Al-Naser, (2005) to 
predict the buckling loads and critical rotational speeds of drillstrings.  In 1996 and 1998, Yigit 
and Christoforou developed finite element models to study the coupled torsional and bending 
vibration as well as the axial and transverse vibrations of passive drillstrings. In 2000 and 2003, 
their models were extended to simulate the dynamics of drillstrings with active control capabilities.  
Similar attempt has been reported by Al-Hiddabi et al. (2003) to control the nonlinearly coupled 
torsional and bending vibration of drillstrings. The effect of interaction with the bore hole has been 
analyzed theoretically by Christoforou and Yigit (1997) and both theoretically and experimentally 
by Melakhessou et al. (2003).  
The effect of stick-slip and whirl vibrations on the stability and bifurcation of drillstrings were 
studied by Leine et al. (2002) using a two degrees-of-freedom model.  In 2006, Mihajlović et al. 
presented an extensive study of the limit cycles of torsional vibrations of drillstrings subjected to 
constant input torque. Also, the equilibrium points are determined and related stability properties 
are discussed. In 2007, Khulief et al. extended their finite element model to study the dynamics of 
drillstring system in the presence of stick–slip excitations. 
 Several attempts have been carried out to suppress passively the vibration of drillstrings. 
Distinct among these attempts are the nonlinear energy sink approach of Ahmadabadi and Khadem 
(2013), the magnetoreheological damping method of Zhu and Lai (2012), the adjustable vibration 

Table 1- Drillstring excitation mechanisms (Besaisow and Payne, 1988) 
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absorber of Moradi et al. (2012), and the anti-stalling technology (AST) and V-stab vibration 
reduction tools of Aldushaashi (2012). 
  In parallel to these attempts, other active control studies using simple active control 
algorithms have been considered (e.g. Yigit and Christoforou 2000, Sarker et al. 2012).  However, 
these control methods are no longer suitable for handling the complex nature of the drillstring 
dynamics and account adequately for the numerous sources of uncertainties resulting from friction, 
weight-on-hook, as well as interaction models between bit and rocks [Ritto et al. (2009a,b, 2010, 
and 2013)].  Therefore, extensive efforts have been exerted to develop more sophisticated control 
methods that can accommodate parameter uncertainty and reject the effect of disturbances. Among 
these methods are those developed by Al-Hiddabi et al. (2003), Karkoub et al. (2010), Li et al. 
(2011), and Downton (2012).  
 In all the above mentioned studies, the emphasis has been placed on conventional 
drillstrings of uniform cross sections. No attempt has been made to considering radically different 
designs such as periodic drillstrings in spite of the potential of this class of drillstrings in 
minimizing the vibration transmission. It is therefore the purpose of this dissertation to 
introduce the concept of periodic drillstrings, and demonstrate theoretically and 
experimentally its unique mechanical filtering characteristics.  Our efforts will focus on 
developing the theory governing the operation of this new class of drillstrings to account for the 
simultaneous bending, torsional, and axial vibrations.  Experimental prototypes will be built and 
tested to demonstrate the feasibility of the concept of periodic drillstring in mitigating undesirable 
vibrations.  The experimental results will be used to validate the theoretical model in order to 
develop a scalable design tool that can be used to predict the dynamical behavior of this new class 
of drillstrings. 
 

1.1.3. Motivation 

Periodic structures, whether passive or active, are structures that consist of identical 
substructures, or cells, connected in an identical manner.  The periodicity can be introduced either 
by geometrical or material discontinuities as shown in Figure (1.1).  Because of such periodicity, 
these periodic structures exhibit unique dynamic characteristics that make them act as mechanical 
filters for wave propagation. As a result, waves can propagate along the periodic structures only 
within specific frequency bands called the ‘pass bands’ and wave propagation is completely 
blocked within other frequency bands called the ‘stop bands’. The spectral width of these bands 
can be tuned actively according to the nature of the external excitation (Asiri et al., 2005-2006; 
Baz, 2001). 
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Figure (1.1) – Types of passive periodic structures 

The finite element equations of a typical periodic structure can be rewritten as (Asiri et al., 2005-
2006; Baz, 2001): 

1
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   (1.1) 

 

where S and [Tk] denote the state vector = {uL   FL}T and the transfer matrix of the kth cell. Note that the 
transfer matrix relates the state vector at the left end of k+1th cell to that at the left end of the kth cell. Also, 
note that uL and FL define the deflection and force vectors. 
 

Equation (1.1) can also be writes as (Asiri et al., 2005-2006; Baz, 2001): 

    1k kS Sλ+ =        (1.2) 

indicating that the eigenvalue λ  of the matrix [T] is the ratio between the state vectors at two 
consecutive cells. 
 

Therefore, one can draw the following conclusions: 

 i. If 1λ = , then 1k kS S+ = and the state vector propagates along the structure as is.  This 
condition defines a “Pass Band” condition. 

 

and  ii. If 1λ < , then  1k kS S+ < and the state vector is attenuated as it propagates along the 
structure. This condition defines a “Stop Band” condition. 

 

 A further explanation of the physical meaning of the eigenvalue λ  can be extracted by 
rewriting it as: 

    λ  = 
ie eµ α β+=        (1.3) 

 

where µ  is defined as the “Propagation Constant” which has a real part (α ) = the logarithmic 
decay and imaginary part ( β ) = the phase difference between the adjacent cells. 

Asiri et al., 2006 showed that plain struts (rods) can act as wave guides that not only 
transmit completely the vibration from one end to the other but also can amplify the vibration at 
the structural resonances as indicated in Figure (1.2) by the grey lines. Using passive periodic 
struts result in completely blocking the transmission of vibration at frequencies above 600 Hz. 
This is indicated by the blue characteristics in Figure (1.2). This range is extended to almost 0Hz 
when the periodic strut is provided with active control capabilities as shown by the green lines in 
Figure (1.2).   
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The displayed characteristics indicate that the periodic strut behaves as a low pass 
mechanical filter.  Also, the periodic struts generate a non-zero apparent damping, throughout the 
stop band, which is quantified by the parameter α shown in Figure (1.2-b) for plain, passive 
periodic, and active periodic struts. For plain struts,α =0 suggesting that all the vibration will be 
transmitted while α is high for passive periodic struts and much higher and broader for the active 
periodic struts. 

Such unique characteristics can be further emphasized by considering the vibration contour 
plots shown in Figure (1.3) for plain, passive periodic, and active periodic struts at different 
frequency of excitation. 

It is evident that vibration transmission can be effectively blocked by introducing 
periodicity along the structure. We will therefore attempt to extend this well-proven technology 
to drillstrings to minimize their vibrations and extend their service life by avoiding 
premature wear and failure due to excessive and undesirable vibrations. 

 

 

 

 

 

 

 

 

 
 

  

 

. 

 

 

 

 

Figure (1.3) – Vibration contour maps for plain, passive (PPS) and active periodic (APS) 
struts 

Figure (1.2) – Typical characteristics of passive and active periodic structures 

 

Stop band for active periodic struts 

Stop band for passive periodic struts 

(a) 

(b) 
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1.2. Concept of Passive Drillstrings with Periodic Inserts and Periodic Local 
Resonances 

 The concept of the periodic drillstring can best be understood by considering the schematic 
drawings shown in Figures (1.4a) and (1.4b).   

In Figure (1.4a), the periodic drillstring will be provided with optimally designed and 
placed periodic inserts which can be either passive or active.  The passive inserts will introduce 
zones of impedance mismatch along the vibration transmission path to impede the propagation 
through geometrical or material discontinuities.  On the other hand, the active inserts will be 
computer-controlled to tune and enhance the mechanical filtering characteristics of the drillstring. 

 In the passive periodic drillstrings, the design and the location of the inserts will be 
optimized to confine the dominant modes of vibration of the drillstring within the stop bands 
generated by the periodic arrangement of the inserts. 

It is important to note that the concept and filtering characteristics of periodic drillstring is 
particularly suitable for mitigating and blocking the vibration over a wide range of drilling depths 
as shown in Figure (1.4b).  The figure indicates that at shallow drilling depth, the drillstring 
dominant natural frequency is usually high and is bound to lie inside the stop band.  But, as the 
drilling depth becomes deeper, the drillstring becomes longer and softer, hence is likely to vibrate 
at higher amplitudes. But, if the periodic inserts are designed properly, either passively or actively, 
then the corresponding dominant natural frequency can still be maintained confined within the 
stop band. Hence, the expected severe vibrations can be completely blocked.  This is unlike the 
current passive or active conventional drillstrings which are tuned to operate effectively only at 
one operating condition (either speed or drilling depth). 

A promising new direction would be achieved by augmenting the periodic drillstring with 
“local resonance” capabilities in order to extend its “stop band” characteristics to low frequency 
zones. Such capabilities will enable operating the drillstrings at low speeds which in turn will result 
in reducing the induced vibrations.  This class of periodic drillstrings will consist of a conventional 
drillstring with periodic inserts that have cavities which house resonating masses connected to the 
cavity wall by springs and dampers. The macroscopic dynamical properties of the resulting 
periodic drillstrings depend on the resonant properties of substructures which contribute to the rise 
of interesting effects such as broad stop band characteristics which can be adjusted by tuning of 
the local resonance sources.  Figure (1.4) shows typical schematic drawings of a drillstring 
structure with periodic inserts fitted with local sources of resonances. 

 
The potential application spectrum of the proposed new class of periodic drillstrings is 

envisioned to be beneficial to improving the quality and the state-of-the-art of drilling operations 
both in land and in sea.  Furthermore, this spectrum is only limited by our imagination. 
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(a)                            (b)                            (c) 

Figure (1.4) : Schematic drawings and characteristics of conventional and periodic 
drillstrings 

 

Figure (1.4c) shows a special class of periodic structures with local sources of resonances.  
This class of structures have been introduced because of their unusual response to elastic wave 
propagation as has been recently reported, for example, by Liu et al. (2005), Milton and Willis 
(2007), Huang and Sun (2011), Zhou and Hu (2013), and Hussein and Frazier (2013).   

This class of structures is distinctly different from conventional periodic structures as 
shown in Figure (1.5).  In conventional periodic structures, as shown in Figure (1.5a), the unit cell 
consists of spring-mass assembly. Figure (1.5b) displays the second class of structures which has 
periodic assembly of mass-in-mass and spring assembly whereby the internal mass-spring 
subassembly acts as a local source of internal resonance.  The macroscopic dynamical properties 
of the resulting periodic structures depend on the resonant properties of substructures which 
contribute to the rise of interesting effects such as broad stop band characteristics. 
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(a) - conventional periodic structure 

 

 

 

 

(b)– periodic structure with local resonances 
(Milton and Willis, 2007; Huang and Sun, 2011) 

 
Figure (1.5) - Periodic structures with and without local resonances  

 
 

A physical realization of the periodic structure with local resonances is reported by Nouh 
et al. (2014) whereby a 1-D metamaterial beam-like configuration is manufactured as displayed in 
Figure (1.6). In the considered configuration, the metamaterial beam is manufactured of assemblies 
of periodic cells with built-in local resonances. Each cell consists of a base beam-like structure 
which is provided with cavities filled by a viscoelastic membrane that supports a small mass to 
form a source of local resonance.  The resemblance between the idealized configuration of Figure 
(1.5b) and its physical realization of Figure (1.6) can be easily seen by comparing the unit cells of 
each configuration. 

 
 

 

 

 

 

 

 

Figure (1.6) – Beam-like structure with periodic sources of local resonances 

Unit Cell 

Unit Cell 
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 The benefit of using structures with periodic sources of local resonances is evident from 
the broad stop band characteristics displayed in Figure (1.7) as reported by Nouh et al. (2014).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1.7) – Stop band characteristics of beam-like structure with periodic sources of 
local resonances (Nouh et al., 2014) 

 Such a concept will be utilized and extended to the application of periodic inserts with 
sources of local resonance to the control of the vibration of rotating shafts and drillstrings. 

 

1.3. SCOPE OF THE DISSERTATION 

 This dissertation aims at extending the current state-of-the-art of the field of periodic 
structures by developing a class of rotating structures with periodic inserts with sources of local 
resonance in order to the control of the vibration of rotating shafts and drillstrings. Such a 
development will constitute the major contribution of this dissertation. 
 
 The development of such a class of structures will involve the development of finite 
element modeling (FEM) to describe the dynamics and vibrations of rotating structures at different 
rotating speeds. The developed FEM will be exercised to generate the equivalent transfer matrix 
method of the rotating structures.  The transfer matrices will be utilized to study the pass and stop 

Stop band 
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band characteristics of the rotating structures as influenced by the design parameters of the local 
sources of resonances. It is envisioned that the proposed class of periodic structures will have 
enhanced ability of operating over frequency bands that are wider than those possible with 
conventional periodic structures. 
 
 The effectiveness of the proposed periodic inserts with local resonances will be 
demonstrated numerically. The predictions of the numerical models will be validated 
experimentally for prototypes of the rotating shafts.  
 
 Comparisons will also be established between the performance of the proposed periodic 
inserts with local resonances and that of conventional periodic inserts in order to emphasize the 
potential and merits of the proposed approach. 
 
 
1.4. ORGANIZATION OF THE DISSERTATION 

 In order to achieve the goals presented in the scope of the dissertation section, this 
dissertation is organized in six chapters. In chapter 1, a brief introduction is presented. In chapter 
2, the development of a finite element model is described to simulate the dynamics and vibration 
of rotating shafts with periodic inserts with local resonances. In chapter 3, the finite element model 
will be utilized to generate the transfer matrix of the unit cell which governs the wave propagation 
through the rotating shaft system.  In chapter 4, the predictions of the finite element models will 
be validated against the predictions of commercial finite element package (ANSYS). In chapter 5, 
further validation of the predictions of the FEM will be carried out against the performance of 
experimental prototype of the rotating shaft.  In chapter 6, a brief summary will be presented of 
the conclusions of the arrived at theoretical and experimental results. Furthermore, a brief 
summary of the future work are outlined in chapter 6. 

 

1.5. SUMMARY 

 This chapter has presented a brief review of the field of the vibration of rotating shafts and 
conventional periodic structures. Furthermore, this chapter has outlined the scope and organization 
of this dissertation where the focus is placed on extending the current state-of-the-art by 
developing a new approach to the vibration control of rotating shafts by using periodic inserts with 
built-in sources of local resonances. Such a development will constitute the major contribution of 
this dissertation.  
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Chapter 2: Finite Element Modeling of Drillstrings with Periodic Sources of 
Local Resonance 

 

2.1. Overview 

 This chapter presents the development of a finite element model to predict the dynamics 
and characteristics of drillstrings and rotating shafts with periodic sources of local resonance such 
as shown in Fig. 2.1. The model development will involve the derivation of expressions of the 
potential and kinetic energies of the shaft assembly. Expressions of the energy dissipated in the 
damping treatments and the work done by all external forces acting on the shaft assembly will also 
be developed. 

 The theory of finite elements with appropriate interpolating functions will be utilized to 
determine the stiffness and mass matrices of the assembly as well as the dissipative forces and 
external forces acting of the shaft system. 

 Lagrange dynamics approach will then be employed to extract the equations of motion of 
the shaft assembly. The resulting equations of motion will be exercised to predict the performance 
characteristics of the shaft assembly at different rotational speeds and design parameters.  Distinct 
between the considered performance characteristics are the model parameters of the assembly, the 
stop and pass band behavior, and Campbell diagram. 

 The predicted characteristics will be validated, in chapter 3, against the predictions of the 
commercial finite element code ANSYS.  Furthermore, the developed finite element model will be 
utilized to extract the transfer matrix of the assembly as will outlined in chapter 4 in order to 
validate the predictions of the stop and pass band behavior of the shaft system. 

 
 

 

 

 

 

 

Figure (2.1) - Drillstring shaft with periodic sources of local resonance 

Rotating Shaft Constraining Layer 

VEM Cell 
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2.2. Finite Element Model 

 
 In this section, the equations of motion of the unit cell of the drillstring assembly, shown 

in Figure (2.2), is developed. 

 

 

 

 

 

 

 

 

 

 

Figure (2.2) - Unit cell of the rotating drillstring with periodic inserts that have built-in 
local resonance 

 

 

2.2.1. Kinetic Energy of the drillstring/Sources of Local Resonance 

A. Kinematics of the Shaft 

 The kinematic of the drillstring shaft can best be understood by considering the geometrical 
configurations of the un-deflected and deflected shafts as displayed in Figure (2.3). Two coordinate 
systems are associated with the shaft. These coordinate systems are the inertial and the body-fixed 
systems (X, Y, Z) and (x’, y’, z’) respectively.  
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                                                Deflected 

 

 

 

 

                                Un-deflected 

Figure (2.3) – Basic geometrical parameters of the drillstring shaft 

 

 A close-up of the deflected shaft as shown in Figure (2.4) displays the position vectors of 
any point P and the C.G. of the shaft cross section G.   

 The figure displays also the different rotations experienced by the shaft around the z,  y, 
and x axes respectively.  These rotations are namely y x,β β and tψ φ= +Ω with φ  and Ω  denoting 

the twist angle of the shaft and spinning speed of the shaft respectively.  Note that the spinning 
speed Ω is assumed constant in this dissertation. 

 Based on the geometry of the deflected configuration, 

   P G P/GR = R + R       (2.1) 

which can be rewritten as follows: 

   ( ) ( )s s su v w y z′ ′ ′ ′+ + + +PR = i j k j k     (2.2) 

where us, vs, ws are the global coordinates of the C.G. of the shaft cross section following its 
deflection.  Also, , ,i j k are unit vectors associated with the global inertial coordinate system.  
Furthermore, y ,z′ ′are the local coordinates of point P relative to the local body-fixed coordinate 
system that has the unit vectors , ,′ ′ ′i j k . 
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Figure (2.4) – Close-up of the parameters of the deflected shaft 

 

Using NASA’s standard Euler angle transformations 3-2-1, then: 

 

[ ]1

0

0

0 0 1

y y

y y

c s

R s c

β β

β β
 
 = − 
 
 

,   [ ]2

0
0 1 0

0

x x

x x

c s
R

s c

β β

β β

− 
 =  
  

,  [ ]3

1 0 0
0
0

R c s
s c
φ φ
φ φ

 
 =  

−  

 (2.3) 

Then, total transformation matrix [R]: 

 [ ] [ ][ ][ ]3 2 1R R R R= , and  [ ] 1R −
′   

   ′ =   
   ′   

i i
j j
k k

.   (2.4)   

Using the following approximations which are based on small angle deflections: 

then 1 0 1x x yc , s , c ,β β β= = = and 0ysβ = .  With these approximations, equation (2.4) 

reduces to:  
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[ ]
( ) ( )
( ) ( )1

1 x y x y

y x y x y

x

s c c s

R s c c s

s c

β φ β φ β φ β φ

β β β φ φ β β φ φ

β φ φ

−

 − +′            ′ = = + −     
      ′ −      
 

i i i
j j j
k k k

  (2.5) 

 

Substituting equation (2.5) into equation (2.2), it reduces to: 

 

( ) ( )

{ } { }

{ } { }
( ) ( )
( ) ( )

( ) ( )

0

1

0

s s s

s s s

x y x y

s s s y x y x y

x

s x y x y

u v w y z

u v w y z

s c c s

u v w y z s c c s

s c

u s c y c s z

β φ β φ β φ β φ

β β β φ φ β β φ φ

β φ φ

β φ β φ β φ β φ

′ ′ ′ ′= + + + +

′   
   ′ ′ ′= +   
   ′   

 − +        ′ ′= + + −   
    −    
 

 ′ ′= + − + +

P G P/GR = R + R

i j k j k

i i
j j
k k

i i
j j
k k

( ) ( )
[ ]

s x y x y

s

v s c y c s z

w s y c z

β β φ φ β β φ φ

φ φ




 ′ ′+ + + + − 
′ ′+ + +

i

j

k

 (2.6)  

 

 Differentiating equation (2.6) with respect to the time, yields the velocity of point P relative 
to the inertial frame of reference as follows: 

  
( ) { }[ ] 10s s su v w y z R −

×

 
 ′ ′= + + + ×  
  

P G P/GR = R + ω R
i

i j k ω j
k

 

  

    (2.7) 

where ω  is the rotation vector the shaft which can be determined in terms of the Euler angles 

y x,β β and φ  as follows (Baruh, 1999): 
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1

2

3

0 0
0 1

0 1

x

x y x y x

y x yy y

s
c c s

s c c

φ φβω
ω β β β β β
ω β β ββ β

    +Ω +Ω− 
      = + −      

      − −       

 

 

 

 (2.8) 

Using small angle approximation and neglecting the higher order terms, equation (2.8) 
reduces to: 

 

   ( )
1

2

3

x x y

y

or

φω
ω β φ β β
ω β

 +Ω 
   ′ ′ ′≅ ≅ +Ω + +   

   
   

ω i j k



   



  (2.9) 

 

 Combining equations (2.7) and (2.9) yields: 

 

 ( ) ( ) { }

( ) ( )[ ] 1

0s s s x y

s s s x y

u v w y z

u v w z y z y R

φ β β

β β φ φ −

×

  ′ ′ ′ ′ ′ ′ ′= + + + +Ω + + × + 

 
      ′ ′ ′ ′= + + + − − +Ω +Ω       
  

P G P/GR = R + ω R

i j k i j k j k

i
i j k j

k

 

  

  

   

  

 (2.10) 

Expanding equation (2.10) yields: 

( )

( )
( ) ( )
( ) ( )

s s s

x y y x

y x y

x x y

u v w

z y z y

z y z y

z y z y

β β β β

β β β φ φ

β β β φ φ

+ +

 ′ ′ ′ ′+ − − Ω + Ω 
 ′ ′ ′ ′+ − − − +Ω + Ω 
 ′ ′ ′ ′+ − + Ω − +Ω 

PR = i j k

i

j

k



  

 

  

  

    (2.11) 

  

 

 B. The Kinetics Energy of the Shaft 

 The kinetic energy of the shaft can be determined from: 
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( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

2 2 2

0

2

2

2

2 2 2 2 2 2

0

1
2

1
2

1
2

1
2

1
2

1
2

s s
V

L

s s s s s

s x y y x
V

s y x y
V

s x x y
V
L

s s s s x y

T . dV

A u v w dx

z y z y dV

z y z y dV

z y z y dV

u v w z

ρ

ρ

ρ β β β β

ρ β β β φ φ

ρ β β β φ φ

ρ β β φ

=

= + +

 ′ ′ ′ ′+ − − Ω + Ω 

 ′ ′ ′ ′+ − − − +Ω + Ω 

 ′ ′ ′ ′+ − + Ω − +Ω 

 ′≅ + + + + +

∫

∫

∫

∫

∫

∫

P PR R 

  

 

  

  

  

   ( )

( ) ( ) ( )

2 2 2

2 2 2 2 2 2 22 2x y x y

y y

z y z y dVβ β β β φ

′ ′+ Ω

′ ′ ′ ′+ + Ω − Ω+ Ω 
 

  (2.12) 

Note that as: 

  2 2
d d

V V
I y dA, I z dA,ρ ρ′ ′= =∫ ∫ and ( )2 2

p
V

I y z dAρ ′ ′= +∫  

Then,  

( )

( ) ( )

2 2 2

0

2 2 2 2 2

2 2

1
2

1 1
2 2

1 1
2 2

s s s s

s s

L

s s s s s s

d x y d x y

P x y P P P

T A u v w

I I

I I I I dx

ρ

β β β β

β β φ φ

= + +

+ + + + Ω

− Ω + + Ω + Ω

∫   

 

  

    (2.13) 

where ρs is the shaft density, As is the shaft cross sectional area, L is the length of the shaft element, 
Id is the diametrical mass moment of inertia, and Ip is the polar mass moment of inertia. Note that 
subscript s is used to denote the shaft. 

Note that the term P x yI β β− Ω  defines the kinetic energy due to gyroscopic forces. 

 

 C. The Kinetics Energy of the Constraining Layer 

 The kinetic energy Tc of the constraining layer can be determined in a similar manner as 
the shaft from: 
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( )

( ) ( )

2 2 2

0

2 2 2 2 2

2 2

1
2

1 1
2 2

1 1
2 2

c c c c c c

c c c c c c

L

c c c c c c

d x y d x y

P x y P c P P c

T A u v w

I I

I I I I dx

ρ

β β β β

β β φ φ

= + +

+ + + + Ω

− Ω + + Ω + Ω

∫   

 

  

    (2.14) 

where uc, vc, wc are the global coordinates of the constraining layer. Also, ρc is the density of the 
constraining layer, Ac is its cross sectional area, L is the length of the constraining layer element, 

cdI is the diametrical mass moment of inertia, and 
cPI  is the polar mass moment of inertia. 

 Furthermore, 
c cy x,β β  and cφ  denote the Euler angles of the constraining layer. 

 Hence, the total kinetic energy of the element is given by: 

     total s cT T T= +       (2.15) 

 

2.2.2. Potential Energy of the Shaft/Internal Sources of Resonance Element 

A. Stresses and Strains in the shaft and constraining Layer 

 The axial, tangential, and shear strains ( , ,xx x rxθε γ γ ) at the neutral surface of the shaft are 
displayed in Figure (2.5). 

 

 

 

 

 

 

 

 

 

Figure (2.5) – The stress components acting of the shaft element 

τxr 

σxx 

τxθ 

τθr 

τθx σθθ 
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 The displacement field of the shaft element can be described by considering the kinematics 
of deflected and undeflected shafts shown in Figure (2.6). 

 

 

 

 

 

 

 

 

 

 

Figure (2.6) – Kinematics of the deflected and undeflected shaft element 

 

As    P G P/GR = R + R       for the undeflected shaft  (2.16) 

and    ′ ′ ′P G P/GR = R + R  for the deflected shaft   (2.17) 

 

But, from equation (2.5), the vector ′P/GR  can be written in terms of P/GR as follows: 

[ ]
( ) ( )
( ) ( )1

1 x y x y

y x y x y

x

s c c s

R s c c s

s c

β φ β φ β φ β φ

β β β φ φ β β φ φ

β φ φ

−

 − +
 
 ′ = = + −
 
− 
 

P/G P/G P/GR R R  (2.18) 

Using the small angle approximation, equation (2.18) reduces to: 

01 0 0
0 1 0 0
0 0 1 0

y x

y

x

β β

β φ

β φ

−   
   ′ = + −   
    −    

P/G P/GR R    (2.19) 

Z 

X
 

P' 

G' r'P 

r'G 

r'P/G Deflected 

Undeflected 
P 

G 

rP 

rG 

rP/G 
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Or  
0

0

0

y x

y

x

β β

β φ

β φ

− 
 ′ = + − 
 − 

P/G P/G P/GR R R
    (2.20) 

 

Subtracting equation (2.16) from equation (2.17) and using equation (2.20), yields: 

 

  ( ) ( )
0

0

0

y x

y

x

β β

β φ

β φ

− 
 ′ ′− = − + − 
 − 

P P G G P/GR R R R R   (2.21) 

Or  

0

0

0

y x

y

x

x
y
z

β β

β φ

β φ

−   
   + −   

  −   

su = u      (2.22) 

where ( )′= −s P Pu R R , ( )′= −G Gu R R , and 
x
y
z

 
 =  
  

P/GR . 

Expanding equation (2.22) yields: 

    s x yu u z y ,β β= + −  

    s shear yv v x zβ φ= + −  

and    s shear xw w x y .β φ= − +      (2.23) 

where us, vs, ws are the incremental displacement components of vector rP and u, vshear, wshear are 
the incremental displacement components of the vector rG. 

 

 From equation (2.23), the strain field can be extracted as follows: 

   yx
xx

u z y ,
x x x

ββε
∂∂ ∂

= + −
∂ ∂ ∂
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    1
2

shear
xy y

v v z
x x x

φγ β∂ ∂ ∂ = = − + − ∂ ∂ ∂ 
, 

    1
2

shear
xz x

w w y ,
x x x

φγ β∂ ∂ ∂ = = + + ∂ ∂ ∂ 
     

and     0 0 0yy zz yz, , .ε ε γ= = =       (2.24) 

 

 It is more convenient to express the strain field in the cylindrical coordinates using the 
following transformation equation: 

( )

2 2

2 2

2 2

1 0 0 0 0 0

0 0 2 0

0 0 2 0
0 0 0 0

0 0 0

0 0 0 0

xxxx

yy

zzrr

xyx

r yz

xr xz

n m nm

m n nm
n m

mn mn m n

m n

θθ

θ

θ

εε
εε
εε
γγ

γ γ
γ γ

          −             =    −       − −             

   (2.25) 

 

where m cosθ=  and n sinθ= .   

 

 Let y r cosθ= and z r sinθ= , then equations (2.24) and (2.25) gives: 

 

yx
xx

u r sin r cos
x x x

ββε θ θ
∂∂ ∂

= + −
∂ ∂ ∂

 ,    (2.26) 

1
2x y x

v wsin cos sin cos r
x x xθ

φγ β θ β θ θ θ∂ ∂ ∂ = + − + + ∂ ∂ ∂ 
,  (2.27) 

   1
2xr x y

w vsin cos s in cos ,
x x

γ β θ β θ θ θ∂ ∂ = − − + ∂ ∂ 
   (2.28) 

and   0 0rr , ,θθε ε= = and 0r .θγ =       (2.29) 

 

The constitutive equations of the shaft, in the cylindrical coordinate system, are given by: 



22 
 

   
( )

( )
( )
2 1

0 0
1 2

0 1 0
2 1

0 0 1

x x

x x

rx rx

E
θ θ

υ
υσ ε

τ γ
υ

τ γ

− 
 −        =   +     

    
 
 

   (2.30) 

B. Stresses and Strains in the VEM Layer 

 The shear strains the VEM layer can be written as: 

  ( ) ( ) ( )1v s c s c
x s c s y c y s x c x

v
u u r r cos r r sin

hθγ β β θ β β θ = − + − − −    (2.31) 

and   ( ) ( ) ( )1v s c s c
rx v s c s y c y s x c x

v
r r r sin r r cos

h
γ φ φ β β θ β β θ = − + − + −    (2.32) 

 

2.3. Mass and Stiffness Matrices of the Shaft/Local Sources of Resonance Element 

A. Mass Matrix 

The mass matrix of the shaft/local sources of resonance element is determined by 
modifying the shape function matrices defined in Appendix 2A to match the parameters of the 
shaft and the constraining layer such that: 

 For the Shaft:  

{ }
ss uu N = ∆  , { }

xss Nθφ  = ∆  , [ ]{ }s vsv N= ∆ ,    

 [ ]{ }s wsw N= ∆ , { }
ysxs Nθβ  = ∆  , and { }

zsys Nθβ  = ∆    (2.33) 

For the Constraing Layer:  

{ }
cc uu N = ∆  , { }

xcc Nθφ  = ∆  , [ ]{ }c vcv N= ∆ ,    

 [ ]{ }c wcw N= ∆ , { }
ycxc Nθβ  = ∆  , and { }

zcyc Nθβ  = ∆    (2.34) 

The above shape functions are used to extract the mass matrix of the shaft/constraining 
layer assembly from the expression of the shaft and the constraining layer kinetic energies given 
by equations (2.13) and (2.14) as follows: 
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{ } [ ] [ ] [ ] [ ] [ ] [ ]( )
{ }

{ } { }

0

0

1
2

e

s xs xs ys ys xs xs

e

xs ys

L
T T T T

s s s us us vs vs ws ws

TT T
d Ps

L TT
Ps

T A N N N N N N

I N N N N I N N dx

I N N dx

θ θ θ θ θ θ

θ θ

ρ= ∆ + +

           + + + ∆              

  − ∆ Ω ∆   

∫

∫







  (2.35) 

and,   

{ } [ ] [ ] [ ] [ ] [ ] [ ]( )
{ }

{ } { }

0

0

1
2

e

c xc xc yc yc xc xc

e

xc yc

L
T T T T

c c c uc uc vc vc wc wc

TT T
d Pc

L TT
Pc

T A N N N N N N

I N N N N I N N dx

I N N dx

θ θ θ θ θ θ

θ θ

ρ= ∆ + +

           + + + ∆              

  − ∆ Ω ∆   

∫

∫







 (2.36) 

Combining equations (2.35) and (2.36) yields: 

 
{ } [ ] [ ] { } { } [ ] [ ] { }

{ } { }

1 1
2 2

T T
s c s c

T
xys xyc

T M M I I

I I

θ θ

θ θ

= ∆ + ∆ + ∆ + ∆      

    − ∆ + ∆    

   



   (2.37) 

where 

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )
0

0

e

e

L
T T T

s s s us us vs vs ws ws

L
T T T

c c c uc uc vc vc wc wc

M A N N N N N N dx,

M A N N N N N N dx,

ρ

ρ

= + +

= + +

∫

∫

 

[ ]
0

e

s xs xs ys ys xs xs

L TT T
s d PsI I N N N N I N N dxθ θ θ θ θ θ θ

            = + +              
∫  

[ ]
0

e

c xc xc yc yc xc xc

L TT T
c d PcI I N N N N I N N dxθ θ θ θ θ θ θ

            = + +              
∫ , 

, 



24 
 

0

e

xs ys

L T
xys PsI I N N dxθ θ θ    = Ω     ∫ , 

and   
0

e

xc yc

L T
xyc PcI I N N dxθ θ θ    = Ω     ∫ .     (2.38) 

B. Stiffness Matrix 

The stiffness matrix of the shaft/local sources of resonance element is determined by using 
the following expression of the total potential energy U: 

s c vU U U U= + +        (2.39) 

where Us, Uc, and Uv are the potential energies of the shaft, the constraining layer, and the VEM 
respectively.  These energies are given by: 

   { }1
2

xs

s xs x s rxs x s
V

rxs

U dVθ θ

ε
σ τ τ γ

γ

 
 =  
 
 

∫ ,     (2.40) 

But as,   
( )

( )
( )
2 1

0 0
1 2

0 1 0
2 1

0 0 1

s

sxs xs xs
s

x s x s s x s
s

rxs rxs rxs

E Dθ θ θ

υ
υσ ε ε

τ γ γ
υ

τ γ γ

− 
 −            = =     +       

      
 
 

  (2.41) 

Then, equation (2.40) reduces to: 

  { }1
2

xs

s s xs x s rxs x s
V

rxs

U D dVθ θ

ε
ε γ γ γ

γ

 
 =  
 
 

∫      (2.42) 

where 
( )

( )
( )
2 1

0 0
1 2

0 1 0
2 1

0 0 1

s

s
s

s
s

ED

υ
υ

υ

− 
 − 
 =

+  
 
 
 

. 

Similarly, the potential energy of the constraining layer Uc is given by: 
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  { }1
2

xc

c c xc x c rxc x c
V

rxc

U D dVθ θ

ε
ε γ γ γ

γ

 
 =  
 
 

∫      (2.43) 

where 
( )

( )
( )
2 1

0 0
1 2

0 1 0
2 1

0 0 1

c

c
c

c
c

ED

υ
υ

υ

− 
 − 
 =

+  
 
 
 

. 

   

 Finally, the potential energy of the VEM Uv is given by: 

{ }
0

1 0
2v v x v rxv x v

V
rxv

U G dVθ θγ γ γ
γ

 
 =  
 
 

∫      (2.44) 

Using the shape function matrices defined in Appendix 2A and by equations (2.33) and 
(2.34) as well as combining equations (2.42) through (2.44) yields: 

 

 { } [ ] [ ] [ ] { }1
2

T
s c vU K K K= ∆ + + ∆         (2.45) 

where [ ] [ ]s cK , K , and [ ]vK  are the stiffness matrices of the shaft, the constraining layer, and the 
viscoelastic material. 

 

2.4 Equations of Motion of the Shaft/Local Sources of Resonance Assembly: 

Applying the Lagrangian dynamics on the expressions of kinetic and potential energies 
given by equations (2.37) and (2.45), yields the following equations of motion that govern the 
torsional, axial , and bending vibrations of the shaft/local sources of resonance assembly: 

 

[ ]{ } [ ] [ ]( ){ } [ ]{ } { }M G C K F∆ + Ω + ∆ + ∆ =      (2.46) 
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where [ ] [ ] [ ] [ ]M , G , C , K , { } ,∆ and { }F  are the mass matrix, the gyroscopic matrix, the damping 

matrix, the stiffness matrix, the nodal deflection vector, and the vector of external loads 
respectively. 

 

2.5. Summary 

This chapter has presented the development a finite element model to predict the dynamics 
and characteristics of drillstrings and rotating shafts with periodic sources of local resonance.  The 
model will be utilized as a basis for developing the transfer matrix of a unit cell of the drillstrings 
and rotating shafts with periodic sources of local resonance to investigate the stop and pass band 
characteristics of this class of rotating shafts as will be presented in chapter 4.   

The predictions of the model will be validated experimentally as will be outlined in chapter 
5. 
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APPENDIX 2A 

Timoshenko Beam Theory 

 

2A.1 Kinematics 

 The Timoshenko beam theory accounts for the shear deformation and rotational inertia 
effects of beams. This makes it suitable for describing the behavior of short beams, sandwich 
composite beams or beams subject to high-frequency excitation when the wavelength approaches 
the thickness of the beam. 

A typical Timoshenko beam element is shown in Figure (2A.1). The beam element has two 
bounding nodes , each of which has 6 degrees of freedom (3 translation and 3 rotations). 

 

 

 

 

 

 

 

 

Figure (2A.1) – Timoshenko 2-node beam element 

 

The nodal deflection vector { }∆  is given by: 

  { } { }1 1 1 1 1 1 2 2 2 2 2 2
T

x y z x y zu v w u v wθ θ θ θ θ θ∆ =  (2A.1) 

The linear ( i i iu v w ) and angular ( xi yi ziθ θ θ ) deflections of the ith node are displayed 

in Figure (2A.1). 
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Note that the linear deflections v and w consist of the contributions of the bending and 
shear components such that (Bazoune et al., 2003): 

  bending shearv v v= +       (2A.2) 

Hence,  bending shear
z xy

vv v
x x x

θ γ
∂∂ ∂

= + = +
∂ ∂ ∂

    (2A.3) 

Integrating equation (2A.3) wrt  x, gives: 

 z shearv x vθ= +            (2A.4) 

 

Similarly,   bending shearw w w= +       (2A.6) 

Hence,  bending shear
y xz

ww w
x x x

θ γ
∂∂ ∂

= + = − +
∂ ∂ ∂

   (2A.7) 

Integrating equation (2A.7) wrt  x, gives: 

 y shearw x wθ= − +               (2A.8) 

 

Substituting equations (2A.4) and (2A.8) into equation (2.23), yields: 

s x yu u z y ,β β= + −  

    s shear yv v x z v zβ φ φ= + − = −  

and    s shear xw w x y w y .β φ φ= − + = +    (2A.9) 

 

2A.2 Shape Functions 

 The shape function matrices [Ni] describe the deflection i  inside a shaft element in terms 
of the nodal deflection vector { }∆  as follows: 

   [ ]{ }uu N= ∆ ,  { }
xx Nθθ  = ∆  , [ ]{ }vv N= ∆ ,     

   [ ]{ }ww N= ∆ , { }
yy Nθθ  = ∆  , and { }

zz Nθθ  = ∆    (2A.10) 
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In equation (2A.10), the shape function matrices corresponding to the axial and torsional 
deflections [ ]uN  and 

x
Nθ   are based on linear shape functions such that: 

 [ ]uN = ( )1 0 0 0 0 0 0 0 0 0 0ζ ζ= −       where ex / Lζ =   

and  ( )0 0 0 1 0 0 0 0 0 0 0
x

Nθ ζ ζ  = −        (2A.11) 

where x denotes the local coordinate along the longitudinal axis of the shaft and Le denotes the 
length of the shaft element. 

 The remaining four shape function matrices are based on the classical cubic shape function 
of beams after proper modification to account for the shear correction of Timoshenko beams. 

 For example, for the bending deflection v, the shape function is assumed to be: 

    2 3
1 2 3ov a a x a x a x= + + +     (2A.12) 

Or    { }
0

12 3

2

3

1

a
a

v x x x
a
a

 
 
 =  
 
  

    (2A.13) 

 It is assumed that the shear strain is constant along the element, i.e. 

    xy ocons tan tγ γ= =      (2A.14) 

 The bending moment Mz is related to the shear force Qy by: 

    z
y

dM Q
dx

=       (2A.15) 

where the bending moment Mz and the shear force Qy are given by: 

   z
z zzM EI

x
θ∂

= −
∂

,     (2A.16)  

and   y y xyQ GAκ γ=      (2A.17) 

where EI is the flexural rigidity of the shaft, G is the shear modulus, A is the cross-sectional area, 
and yκ is the shear correction factor  that accounts for the non-uniform distribution of the shear 
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stress over the cross section of the shaft.  Typical values of the shear correction factor are listed 
in Table 2A.1. 

Table 2A.1 - Shear Correction Factor 

Shaft Section Solid Rectangular Solid Circular 
Shear correction factor - κ 

  
ν =Poisson’s ratio 

 

Now, as equation (2A.3) indicates that:  z o
v
x

θ γ∂
= −
∂

, then: 

   2
1 2 32 3z oa a x a xθ γ= + + −     (2A.18) 

Hence, combining equations (2A.16) and (2A.17) gives: 

( )2 32 6z zzM EI a a x= − +     (2A.19) 

Substituting equation (2A.19) into equation (2A.17) gives: 

36o zaγ = − Λ      (2A.20) 

where zz
z

y

EI
GAκ

Λ = . 

 Accordingly, equation (2A.18) reduces to: 

    ( )2
1 2 32 3 6z za a x x aθ = + + + Λ    (2A.21) 

Therefore the constants a0 through a3 can be determined from the components of the nodal 
deflection vector as follows: 

( )

1

2

1 0

1
2 3

2 2
2

3

1 0 0 0
0 1 0 6

1

0 1 2 3 6

zz

e e e

z e e z

v a
a

L L Lv a
aL L

θ

θ

       Λ      =    
    
    + Λ     

  (2A.22) 

 The constants  a0 through a3 are then substituted in equation (2A.12) to give: 
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[ ] [ ]1 2 3 40 0 0 0 0 0 0 0v v v v vN N N N N=   (2A.23) 

and   [ ]1 2 3 40 0 0 0 0 0 0 0
z z z z zN N N N Nθ θ θ θ θ  =   (2A.24) 

where    [ ]( )2 3
1 1 3 2 1v z zN ζ ζ ζ= Φ − + +Φ −    (2A.25) 

   [ ]2 3
2

12 1
2v e z zN L ζ ζ ζ ζ ζ = Φ − + + Φ − 

 
   (2A.26) 

   ( )2 3
3 3 2v z zN ζ ζ ζ= Φ − +Φ     (2A.27) 

[ ]2 3
4

1 1
2v e z zN L ζ ζ ζ ζ = Φ − + − Φ − 

 
   (2A.28) 

( )3
1

6
z z

e
N

Lθ ζ ζ= Φ − +      (2A.29) 

   [ ]( )2 3
2 1 4 3 1z z zNθ ζ ζ ζ ζ= Φ − + + +Φ −    (2A.30) 

   ( )2
3

6
z z

e
N

Lθ ζ ζ= − Φ − +      (2A.31) 

( )2
4 2 3z z zNθ ζ ζ ζ= Φ − + +Φ     (2A.32) 

where    1
1z

z
Φ =

+Φ
   and  2

12 zz
z

y e

EI
GALκ

Φ =    (2A.33) 

 

 In a similar manner, it can be easily shown the shape function matrices for w and yθ are 

give by 

 

[ ] [ ]1 2 3 40 0 0 0 0 0 0 0w w w w wN N N N N=   (2A.34) 

and   1 2 3 40 0 0 0 0 0 0 0
y y y y yN N N N Nθ θ θ θ θ   =     (2A.35) 

where    [ ]( )2 3
1 1 3 2 1w y yN ζ ζ ζ= Φ − + +Φ −    (2A.36) 
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   [ ]2 3
2

12 1
2w e y yN L ζ ζ ζ ζ ζ = Φ − + + Φ − 

 
  (2A.37) 

   ( )2 3
3 3 2w y yN ζ ζ ζ= Φ − +Φ     (2A.38) 

[ ]2 3
4

1 1
2w e y yN L ζ ζ ζ ζ = Φ − + − Φ − 

 
   (2A.39) 

( )3
1

6
y y

e
N

Lθ ζ ζ= Φ − +      (2A.40) 

   [ ]( )2 3
2 1 4 3 1y y yNθ ζ ζ ζ ζ= Φ − + + +Φ −    (2A.41) 

   ( )2
3

6
y y

e
N

Lθ ζ ζ= − Φ − +      (2A.42) 

( )2
4 2 3y y yNθ ζ ζ ζ= Φ − + +Φ     (2A.43) 

where    1
1y

y
Φ =

+Φ
        and          2

12 yy
y

z e

EI
GALκ

Φ =    (2A.44) 
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Chapter 3: Modeling of a Drillstrings with Periodic 
Local Sources of Resonance Using ANSYS 

 

3.1. Overview: 

 This chapter presents the potential application of the concept of rotating shaft with periodic 
local sources of resonance to oil well drillstrings.  Such an effort aims at demonstrating the 
effectiveness of the proposed concept in simultaneously controlling the axial, bending, and 
torsional modes of vibration of practical drillstrings particularly at low excitation frequencies.  
Such effectiveness stems from the ability of the periodic local sources of resonance in shifting the 
zones of the stop bands to low frequencies which are compatible to the frequencies experienced 
by practical drillstrings. 

 It is important to note that with such low frequency filtering capabilities of the periodic 
local sources of resonance, the proposed concept constitutes a major contribution to the area of 
mitigating the vibration of drillstrings. 

 In this chapter comparisons will be established between the filtering characteristics of the 
periodic local sources of resonance and conventional passive inserts in order to demonstrate the 
merits and practicality of the proposed concepts. 

 The effect of the design parameters of the inserts and the local sources of resonance on the 
location and bandwidth of the stop band zones will be investigated in great details.  In this regard, 
the practical configuration of the drillstring studied extensively by Khulief and co-workers (2005, 
2007, 2008, and 2009) is considered as the basis for comparison between conventional uniform 
drillstrings and drillstrings provided with passive inserts and inserts with built-in sources of local 
resonance. 

 

3.2. Finite element model for Drillstring 

 3.2.1 Parameters of Considered Drillstring 

The drillstring model considered by Khulief and co-workers (2005, 2007, 2008, and 2009) 
has the characteristics listed in Table 3.1. 

Table 3.2 lists the main physical and geometrical parameters of the periodic inserts and 
Table 3.3 displays the corresponding values of the parameters of the inserts with the sources of 
local resonance. 

In Table 3.4, the properties of the considered VEM intermediate layer are included. 
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Table 3.1 – Main physical and geometrical parameters of the drillstring under 
consideration (Khulief and co-workers (2005, 2007, 2008, and 2009) 

SPECIFICATIONS VALUE 

Drill Pipe  
Length (Lp) 1000 m 
Outer Diameter (Do) 0.127m 
Inner Diameter (Di) 0.095 m 
Materials 
Density (ρ) 7850 kg/m3 

Modulus of Elasticity (E) 210 GPa 
Shear Modulus (G) 77.9 GPa 

 

Table 3.2 - Main physical and geometrical parameters of the considered periodic inserts  

SPECIFICATIONS VALUE 

Periodic Inserts  
Width (W) 0.25 m 
Outer Diameteri (Doi) 0.2286m 
Inner Diameteri (Dii) 0.127 m 
Materials 
Density (ρ) 7800 kg/m3 

Modulus of Elasticity (E) 210 GPa 
Poisson’s ratio (ν) 0.365 
Loss factor (η) 2E-5 

 

Table 3.3 - Main geometrical parameters of the considered periodic inserts with 
sources of local resonance (3 layers: inner steel ring, VEM, Outer steel ring) 

SPECIFICATIONS VALUE 

Inner Layer  
Width (W) 0.2500  m 
Outer Diameteri (Doi) 0.1524 m 
Inner Diameteri (Dii) 0.1270 m 
Intermediate Layer 
Outer Diameteri (Doi) 0.1905 m 
Inner Diameteri (Dii) 0.1524 m 
Outer Layer 
Outer Diameteri (Doi) 0.2286 m 
Inner Diameteri (Dii) 0.1905 m 
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Table 3.4 - Main physical parameters of the considered VEM Intermediate layer of 
the periodic inserts  

SPECIFICATIONS VALUE 

Case # 1  
Constant Storage Modulus (E') 15E3, 5E4, 10E4, 15E4 N/m2 
Loss Factor (η) 0.10 
Poisson’s ratio (ν) 0.49 
Density (ρ) 1,100 kg/m3 

Case#2 
Variable Storage Modulus (E') 15E4-75E4, 15E3-75E3 N/m2 
Loss Factor (η) 0.1 
Poisson’s ratio (ν) 0.49 
Density (ρ) 1,100 kg/m3 

 
 

 3.2.2 Details of the Finite Element Model 

The finite element model, developed using ANSYS for the drillstring was composed of 

two types of elements. The first element type was beam elements BEAM188 (3D, 2-Node element) 

with six degrees of freedom per node (ux, uy, uz, θx θy θz). This type of elements is one of ANSYS 

new-technology elements, in which arbitrary cross sections can be assigned. The beam elements 

were used to model the drill-pipe and the drill-collar. In the current case, the cross section used for 

both the drill-pipe and drill-colar were of an annulus with internal/external diameters of 0.095 m 

and 0.127 m respectively. For the drill-collar, the diameters were 0.095 m and 0.235 m 

respectively. The drill-pipe length was 1000 m divided into 1440 elements, while the drillcolar 

length was 200 m and was divided into 288 elements. The second type of elements used in the 

finite element model was for the periodic collars. These were modeled using shell elements 

SHELL281 (8-Node Structural Shell Elements) with six degrees of freedom per node (ux, uy, uz, θx 

θy θz). The shell thickness used was 0.25m, which represents the periodic collar thickness. The 

collars were mounted in different periodic arrangements (60, 120 and 180 equi-spaced collars). 

Constraining functions were enforced in the finite element model to constrain the degrees of 

freedom of the inner collar radii nodes to the matching degrees of freedom of the beam nodes at 

that location. The rotation and translation of the entire drillstring were constrained at the two ends.  
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A pre-stressed sequential static-modal-harmonic analysis procedure was developed. 

During the first simulation phase (static analysis), the effect of gravitational force was included 

and the stress and strain matrices were retained for further modal-harmonic analysis. A Full Modal 

analysis was carried out to calculate the mode shapes and the natural frequencies extending to the 

harmonic excitation range of interest. Once complete a Mode-Superposition Harmonic analysis 

was carried out utilizing the mode shapes and element stress and strain results to calculate the 

dynamic response of the entire drillstring subject to axial, bending forces and torsional moment 

near the lower end. This particular modeling procedure was adopted to be able to capture 

accurately the dynamic response of the drillstring without skipping any modes, if a stepped-sine 

harmonic analysis was directly implemented.   

  Figures (3.1a) and (3.1b) display the finite element models of shafts with conventional 

periodic inserts and inserts with built-in sources of local resonance. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) – conventional periodic inserts       (b) – Inserts with sources of local resonance 

 

Figure (3.1) – Finite element models of shafts with conventional periodic inserts and inserts 
with built-in sources of local resonance 
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3.2.3 Dynamic Characteristics of Uniform Shaft and Shafts with Conventional 
Periodic Inserts 

Figure (3.2) displays a comparison between the frequency response characteristics of a 
conventional drillstring and a drillstring with 60 passive periodic inserts.  The figure shows the 
simultaneous performance characteristics of the drillstrings in the torsional, axial and transverse 
directions.   

It can be seen that the passive periodic inserts are effective in generating stop bands only 
in the transverse directions.  These stop bands extend to frequencies as low as 5 Hz.  However, the 
inserts are totally ineffective in mitigating the vibration in both the axial and torsional directions. 

 Figure (3.3) displays the corresponding comparisons between the frequency response 
characteristics of a conventional drillstring and a drillstring with 120 passive periodic inserts.   
Also, Figure (3.4) show the comparisons when the drillstring is provided with 180 passive periodic 
inserts. 

 Figures (3.3) and (3.4) suggest that increasing the number of the passive periodic inserts 
results in defining clearly the zones of the stop bands and in increasing the spectral width of these 
stop bands.   

 

 

 

 

 

 

 

 

 

 

  

 

Figure (3.2) - Comparisons between the frequency response characteristics of a 
conventional drillstring and a drillstring with 60 passive periodic inserts 
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Figure (3.3) - Comparisons between the frequency response characteristics of a 
conventional drillstring and a drillstring with 120 passive periodic inserts 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.4) - Comparisons between the frequency response characteristics of a 
conventional drillstring and a drillstring with 180 passive periodic inserts 
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3.2.4 Dynamic Characteristics of Uniform Shaft and Shafts with Periodic Local 
Sources of Resonance 

Figure (3.5) displays a comparison between the frequency response characteristics of a 
conventional drillstring and a drillstring that has 120 periodic inserts with sources of local 
resonance (LR).  The figure shows the performance characteristics of the drillstrings in the 
torsional vibrations for different values of frequency independent (i.e. constant) storage modulus 
of the VEM of the inserts.   

It can be seen that the periodic inserts with LR resonance are now effective in generating 
stop bands in the torsional direction.  These stop bands extend to frequencies as low as 5 Hz when 
the storage modulus of the VEM is as low as 15 KPa.  However, the stop band location and spectral 
width increase as the storage modulus of the VEM increases. 

 Figure (3.6) displays the corresponding comparisons between the axial frequency response 
characteristics of a conventional drillstring and a drillstring with 120 periodic inserts with LR 
sources.   Also, Figure (3.7) show the comparisons when the drillstring is vibrating in the transverse 
direction. 

 Figures (3.5) through (3.7) demonstrate the effectiveness of the periodic inserts with LR in 
simultaneously mitigating the vibration in the torsional, axial, and transverse directions. 

 

  

 

 

 

 

 

 

 

 

 

Figure (3.5) - Comparisons between the torsional frequency response characteristics of a 
conventional drillstring and a drillstring with 120 periodic LR inserts for VEM with 

constant storage moduli. 
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Figure (3.6) - Comparisons between the axial frequency response characteristics of a 
conventional drillstring and a drillstring with 120 periodic LR inserts for VEM with 

constant storage moduli. 

 

 

 

 

 

 

 

 

 

 
 

Figure (3.7) - Comparisons between the transverse frequency response characteristics of a 
conventional drillstring and a drillstring with 120 periodic LR inserts for VEM with 

constant storage moduli. 
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Figures (3.8) through (3.10) display comparisons between the frequency response 
characteristics of a conventional drillstring and a drillstring that has 120 periodic inserts with 
sources of local resonance (LR) for different values of frequency-dependent (i.e. variable) storage 
modulus of the VEM of the inserts.  In Figure (3.8), the comparisons are established for the 
torsional vibrations whereas in Figure (3.9), the comparisons are presented for the axial vibrations.  
Figure (3.10) displays the comparisons for the transverse vibrations. 

It can be seen that the periodic inserts with LR resonance become more effective in 
mitigating the vibration in all directions when the inserts are provided with frequency-dependent 
moduli of the VEM as compared to VEM with constant storage moduli. The developed stop bands 
are observed to extend over wider frequency bandwidths for all the three directions of vibration. 
Also, it is further observed that the stop band locations and spectral widths increase as the storage 
modulus of the VEM is increased as reported for the case of VEM with constant storage moduli. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.8) - Comparisons between the torsional frequency response characteristics of a 
conventional drillstring and a drillstring with 120 periodic LR inserts for VEM with 

variable storage moduli. 
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Figure (3.9) - Comparisons between the axial frequency response characteristics of a 
conventional drillstring and a drillstring with 120 periodic LR inserts for VEM with 

variable storage moduli 

 

 

 

 

 

 

 

 

 

 
Figure (3.10) - Comparisons between the transverse frequency response characteristics of a 

conventional drillstring and a drillstring with 120 periodic LR inserts for VEM with 
variable storage moduli 
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Figures (3.11) through (3.13) display comparisons between the frequency response 
characteristics of a conventional drillstring and a drillstring that has different number of periodic 
inserts with sources of local resonance (LR) for a particular frequency independent (i.e. constant) 
storage modulus of the VEM of the inserts equal to 150 KPa.  In Figure (3.11), the comparisons 
are established for the torsional vibrations whereas in Figure (3.12), the comparisons are presented 
for the axial vibrations.  Figure (3.13) displays the comparisons for the transverse vibrations. 

It can be seen that the periodic inserts with LR resonance become more effective in 
mitigating the vibration in all directions as the number of inserts is increased. However, small 
number of inserts tends to produce stop bands at low frequencies whereas large number of inserts 
results in higher frequency stop bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.11) - Comparisons between the torsional frequency response characteristics of a 
conventional drillstring and a drillstring with periodic LR inserts for different number of 

inserts when the VEM has constant storage modulus 
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Figure (3.12) - Comparisons between the axial frequency response characteristics of a 
conventional drillstring and a drillstring with periodic LR inserts for different number of 

inserts when the VEM has constant storage modulus 

 

 

 

 

 

 

 

 

 

 
Figure (3.13) - Comparisons between the transverse frequency response characteristics of a 
conventional drillstring and a drillstring with periodic LR inserts for different number of 

inserts when the VEM has constant storage modulus 

0 10 20 30 40 50 60
10-15

10-10

10-5

Ax
ia

l N
C

=6
0

Conventional - LR Effect of NC @ Const(E)=15e4

 

 

Conventional LR

0 10 20 30 40 50 60
10-15

10-10

10-5

Ax
ia

l N
C

=1
20

0 10 20 30 40 50 60
10-15

10-10

10-5

Ax
ia

l N
C

=1
80

Frequency - Hz

0 10 20 30 40 50 60
10-15

10-10

10-5

Tr
an

s 
NC

=6
0

Conventional - LR Effect of NC @ Const(E)=15e4

 

 

Conventional LR

0 10 20 30 40 50 60
10-15

10-10

10-5

Tr
an

s 
NC

=1
20

0 10 20 30 40 50 60
10-15

10-10

10-5

Tr
an

s 
NC

=1
80

Frequency - Hz



45 
 

Figures (3.14) through (3.16) display comparisons between the frequency response 
characteristics of a conventional drillstring and a drillstring that has different number of periodic 
inserts with sources of local resonance (LR) for a particular frequency dependent (i.e. variable) 
storage modulus of the VEM of the inserts.  In Figure (3.14), the comparisons are established for 
the torsional vibrations whereas in Figure (3.15), the comparisons are presented for the axial 
vibrations.  Figure (3.16) displays the comparisons for the transverse vibrations. 

It can be seen that the periodic inserts with LR resonance become more effective in 
mitigating the vibration in all directions as the number of inserts is increased. However, small 
number of inserts tends to produce stop bands at low frequencies whereas large number of inserts 
results in higher frequency stop bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.14) - Comparisons between the torsional frequency response characteristics of a 
conventional drillstring and a drillstring with periodic LR inserts for different number of 

inserts when the VEM has variable storage modulus 
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Figure (3.15) - Comparisons between the axial frequency response characteristics of a 
conventional drillstring and a drillstring with periodic LR inserts for different number of 

inserts when the VEM has variable storage modulus 

 

 

 

 

 

 

 

 

 

 
 

Figure (3.16) - Comparisons between the transverse frequency response characteristics of a 
conventional drillstring and a drillstring with periodic LR inserts for different number of 

inserts when the VEM has variable storage modulus 
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3.3. Modal Characteristics of Drillstrings and Inserts with Local Resonance 

Figure (3.17) displays a sample of the orbits of the drillstring with uniform shaft for the 
first three modes of vibrations which are: 0.0325 Hz, 0.0675 Hz, and 0.111 Hz respectively. 

 

 

 

 

 

(a) – f = 0.0325 Hz 

 

 

 

 

 

(b) – f = 0.0675 Hz 

 

 

 

 

 

(c) f = 0.111 Hz 

Figure (3.17) - Orbits of the drillstring at the first three modes 

 

Figure (3.18) displays a sample of the different mode shapes of the inserts with LR . Note 
that these modes are much higher than those of the uniform shaft.  This indicates that the local 
resonance of the inserts become effective in mitigating the vibration of the drillstring when the 
modes of the inserts coincide with those of the shaft.  Under these conditions, the inserts act as 
local vibration absorbers.  
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(a) - first torsional mode: 18.52 Hz      (b) -  first bending mode: 22.75 Hz 

 

 

 

 

 

 

 

                       (c) - second bending mode: 22.75 Hz      (d) - first axial mode: 30.55 Hz 

 

 

 

 

 

 

 

(e)  - first rubber mode: 180.17 Hz 

Figure (3.18) - Modes of vibration of the inserts with local resonance  



49 
 

3.4. Campbell Diagrams of the Drillstrings   

 The Campbell diagram represents the natural frequency versus the rotation speed of the 
drillstring characteristics. The diagram displays the evolution of the natural frequencies 
corresponding to the different mode of vibration as a function of the rotation speed of the shaft. 
The diagram is named after Wilfred Campbell who introduced the concept in 1924. 

 Figure (3.19) shows the Campbell diagrams for the drillstring with uniform shaft at axial 
loads of 0 and 0.15MN. 

 

 

 

 

 

 

 

 

 

(a) -  Faxial = 0 N 

 

 

 

 

 

 

 

 

 

(b) - Faxial = 0.15 MN 
Figure (3.19) – Campbell diagrams for drillstrings with uniform shaft 
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Figure (3.20) shows the Campbell diagrams for the drillstring with 120 plain periodic 
inserts at axial loads of 0 and 0.15MN. 

 

 

 

 

 

 

 

 

 

 

(a) -  Faxial = 0 N 

 

 

 

 

 

 

 

 

 

 

(b) - Faxial = 0.15 MN 
 

Figure (3.20) – Campbell diagrams for drillstrings with 120 periodic plain inserts 
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Figure (3.21) shows the Campbell diagrams for the drillstring with 120 periodic inserts 
with LR at axial loads of 0 and 0.15MN. 

 

 

 

 

 

 

 

 

 

 

(a) Faxial = 0 N 

 

 

 

 

 

 

 

 

 

 

(b) Faxial = 0.15 MN 
 

Figure (3.21) – Campbell diagrams for drillstrings with 120 periodic inserts with LR 
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 Figures (3.19), (3.20), and (3.21) indicate that the addition of the inserts did alter 
significantly the natural frequencies of the drillstrings and the natural frequencies remain 
essentially constant for the considered range of spinning speeds.  Furthermore, the difference 
between the forward and backward frequencies of all the three configurations of the drillstrings is 
rather insignificant.  

However, when an axial load is applied to the drillstrings, the natural frequencies drop 
considerably as the spinning speed is increased. 

 

3.5. Summary   

 This chapter has presented a finite element modeling of conventional drillstrings and 
drillstrings with periodic inserts that have built-in sources of local resonance (LR).  The developed 
models aim at demonstrating the effectiveness of the drillstrings with periodic LR inserts in 
simultaneously controlling the axial, bending, and torsional modes of vibration of practical 
drillstrings particularly at low excitation frequencies.  Such effectiveness stems from the ability of 
the periodic local sources of resonance in shifting the zones of the stop bands to low frequencies 
which are compatible to the frequencies experienced by practical drillstrings. 

 The favorable filtering characteristics of the drillstrings with periodic LR inserts are 
achieved when the VEM are tuned to have storage moduli that can coincide with the frequencies 
of the drillstrings. Stop bands are obtained at frequencies as low as 5 Hz which makes the 
application of the proposed concept practical for many of the existing drillstrings. 
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Chapter 4: Band Gap Characteristics of a Drillstrings with Periodic  
Local Sources of Resonance 

 
4.1. Overview 

 Periodic structures, whether passive or active, are structures that consist of identical 
substructures, or cells, connected in an identical manner as shown in Figs. 1 and 2. Because of 
their periodic nature, these structures exhibit unique dynamic characteristics that make them act as 
mechanical filters for wave propagation. As a result, waves can propagate along the periodic 
structures only within specific frequency bands called the ‘‘Pass Bands’’ and wave propagation 
can be completely blocked within other frequency bands called the ‘‘Stop Bands.’’ The spectral 
width and location of these bands are fixed for passive periodic structures, and tunable in response 
to the structural vibration for active periodic structures. 
 

The theory of periodic structures was originally developed for solid state applications 
(Brillouin, 1946) and extended, in the early seventies, to the design of mechanical structures 
(Mead, 1970 and Cremer et al., 1973). Since then, the theory has been extensively applied to a 
wide variety of structures such as spring-mass systems (Faulkner and Hong, 1985), periodic beams 
(Mead, 1971 and 1975), stiffened plates (Sen Gupta, 1970), ribbed shells (Mead and Bardell, 1987) 
and space structures. Apart from their unique filtering characteristics, the ability of periodic 
structures to transmit waves, from one location to another, within the pass bands can be greatly 
reduced when the ideal periodicity. 

 
In this chapter, the theory of periodic structures will be applied to structures with periodic 

inserts that have built-in local sources of resonance in an attempt to shift the zones of stop bands 
to lower frequencies.  In this regards, the wealth of the new literature will be capitalized on. 
Examples of such recent publications include the work of Nouh et al. (2014 and 2015). 

 
 

4.2. Analysis of Periodic Drillstrings using Transfer Matrix Method 

The equation of motion of the element can be written accordingly as: 

[ ]{ } [ ]{ } { }e e e e
T TM K F∆ + ∆ =      (4.1) 

where {F} is the force vector that includes the effect of interactions with the well walls and rock 
formation.  Equation (4.1) can be written as: 

   
{ } { }

{ }{ }
e e eLL LR LL LR

eRL RR RL RR ee

e ee e e e
L L L

e e e e ee
RRR

FM M K K

FM M K K

      ∆ ∆       + =        
∆∆               





  (4.2) 
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where Mij and Kij  are appropriately partitioned matrices of the mass and stiffness matrices.  Also, 
{ }e∆  and {F} define the deflection and force vectors with subscripts Le and Re denoting the left 
and right sides of the eth element.   

 For a sinusoidal excitation at a frequencyω , equation (4.2) can be rearranged to assume 
the following form: 

1

1

1 1

1 1

{ } { }

{ } { }
LR LL LRe e

e eRR LR LL RL RR LR

e e
d d dL L

L Ld d d d d d

K K K

F FK K K K K K
+

+

− −

− −

 −   ∆ ∆   =     
− −        

 (4.3) 

where 
ijdK are the elements of the partitioned dynamic matrix 2[ ] [ ] [ ]T

e e e
d TK K Mω= − . 

 Graphically, equation (4.3) can be represented as shown in Figure (4.1). 

 

     

 

 

 

 

 

In a more compact form, equation (4.3) can be written as:   

                                                       1 [ ]e e eS T S+ =       (4.4) 

where Se and [Te] denote the transfer matrix of the drillstring and the state vector 

{ }{ } { }
e e

Te
e L LS F= ∆ . 

  The transfer matrix can be used, as described in section 3.1, to determine the pass and stop 
band characteristics of the drillstring.  

 

i. Passive Periodic drillstring: 
 

Considering a unit cell of the periodic drillstring as shown in Figure (4.2), then the dynamic 
characteristics of the individual substructure (a or b) can be described by the transfer matrices [Sa] 
and [Sb], which can be obtained from equation (4.4). 

 

 

Element 

(e) 
 

 

Element 

(e+1) 

Interface 

Figure (4.1) – Interaction between two neighboring periodic shaft elements 
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Combining the transfer matrices of the substructures a and b, yields the transfer matrix [T] 
for the unit cell as follows: 

     [T] = [Tb] [Ta]      (4.5) 

 

The pass and stop bands characteristics of the periodic drillstring can then be determined 
by investigating the eigenvalues of the transfer matrix [T] for different combinations of the 
longitudinal rigidities and physical properties of the segments a and b.   

 

   

 

       

 

 

                       (a) -  Geometrical discontinuity                         (b) – material discontinuity 

 
Figure (4.2) –Unit cell of passive periodic shaft 

 

          
 From equation (4.4), the transfer matrix relates the state vector at the left end of e+1th cell to that 
at the left end of the eth cell. Also, note that uL and FL define the deflection and force vectors. 

 

Equation (4.4) can also be written as (Asiri et al., 2005-2006; Baz, 2001): 

    1e eS Sλ+ =        (4.6) 

indicating that the eigenvalue λ  of the matrix [T] is the ratio between the state vectors at two 
consecutive cells. 
 

Therefore, one can draw the following conclusions: 

 i. If 1λ = , then 1e eS S+ = and the state vector propagates along the structure as is.  This 
condition defines a “Pass Band” condition. 

and  ii. If 1λ < , then  1e eS S+ < and the state vector is attenuated as it propagates along the 
structure. This condition defines a “Stop Band” condition. 
 

 A further explanation of the physical meaning of the eigenvalue λ  can be extracted by 
rewriting it as: 

La 

Lb 

a 

b 

Substructure 

La 

Lb 

a 

b 

Substructure 
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    λ  = 
ie eµ α β+=        (4.7) 

 

where µ  is defined as the “Propagation Constant” which has a real part (α ) = the logarithmic 
decay and imaginary part ( β ) = the phase difference between the adjacent cells. 
 

ii. Stop and Pass Bands of a Passive Periodic Drillstring: 
 

Considering a drillstring that has the main geometrical and physical characteristics listed 
in Table (4.1). 

  

Table (4.1) - The main geometrical and physical characteristics of a drillstring  
 

Parameter 
 

 

Value 
Total length  500 m 
Outer diameter (do) 0.0635 m 
Inner diameter (di) 0.0543 m 
Cell length (lb) 4 m 
Collar outer diameter (dc) 0.2 m 
Collar length (la) 1 m 
Material Steel 
Young’s modulus 207 GPa 
Density 8,010 kg/m3 

Poisson’s ratio 0.3 
Number of cells 20 

 

 Figure (4.3a) shows the pass and stop bands of the passive drillstings experiencing axial 
and torsional vibrations.  It is evident that the torsional mode experiences a pass band between 0-
8Hz while the axial mode has a wider pass band between 0-25Hz. 
 
 The effects of these pass and stop bands on the drillstring’s frequency response, due to 
uniform sinusoidal excitation at its free end, are  exhibited in Figures (4.3b) and (4.3c) for the axial 
and torsional vibrations respectively. 
 
  

The figures display comparisons between the frequency response of the uniform and 
periodic drillstrings to emphasize the importance of using the periodic design in blocking multi-
modes of vibration in the axial and torsional directions. Such vibration blocking occurs over broad 
frequency bands. 

 



57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.3) –Stop and pass bands of a unit cell of a passive periodic shaft 
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iii. Effect of Stick-Slip Characteristics of a Passive Periodic Drillstring: 
 

The effect of the stick-slip conditions is simulated by the nonlinear characteristics of the 
friction coefficient which represents the interaction between the drillstring and the rocks. Such a 
characteristics is shown in Figure (4.4) and has its basis in the work of Yigit and Christoforou 
(2006).  In their work, the friction coefficient µ  is assumed to be given by: 

2tanh
1o γ

αφµ µ φ νφ
βφ

 
= + + + 



 



    (4.8) 

where the parameters , , , ,oµ α β γ and ν are determined experimentally. 

 In Figure (4.4), , , , ,oµ α β γ  and ν are assumed to be 0.04, 1, 1, 1, and 0. 

 

 

 

 

 

 

 

 

 

Figure (4.4) –Dimensionless coefficient of friction of the drillstring 

 

 The effect of the nonlinear stick-slip characteristics of the drillstring on its time response 
is shown in Figure (4.5). The figure displays comparisons between the responses of the uniform 
and periodic drillstrings to demonstrate the effectiveness of using the periodic design in attenuating 
multi-modes of vibration in the axial and torsional directions.    

 The figure indicates clearly that the use of the periodic drillstring has resulted in lowering 
the peak amplitudes of vibration and the dominant frequency content of the response as compared 
to the uniform drillstring. The effect is more significant in the torsional direction as evident in 
Figure (4.5b).  
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Figure (4.5) –Comparison between the time response of the periodic and uniform 
drillstrings due to stick-slip conditions 

 

4.3. The Stop and Pass Bands of Drillstrings with Periodic LR inserts 

 In this section, the stop and pass bands of damped drillstrings with periodic LR inserts are 
determined using an approach which is compatible with damped-gyroscopic systems while 
maintaining the concept of Bloch wave propagation in periodic structures.  In this approach, the  
dispersion curves of damped periodic materials are determined based on real wavenumbers versus 
complex frequencies. The obtained characteristics would relate to wave propagation admitting 
attenuation due to energy dissipation.  

 Such an approach has not been considered before in the literature particularly for 
gyroscopic systems.  

Furthermore, this section will present also a novel approach to the analysis of Bloch waves 
in periodic systems with viscoelastic damping which has not been considered at all in the literature. 
Specifically, the viscoelastic damping is described in the time domain in a manner which is 
compatible with the finite element formulation. 

In order to develop the proposed approach, two cases will be considered whereby the 
viscoelastic damping is described in the frequency domain by the complex modulus and in the 
time domain by the Golla-Hughes-McTavish model. 

i. Using the Complex Modulus: 
 
In this case, the finite element model of a unit cell of the drillstring with periodic LR 

inserts can be written as follows: 
 
   ( )R IMu Cu K iK u f+ + + =       (4.9) 
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where M, C, KR, and KI denote the mass, gyroscopic, real stiffness, and imaginary stiffness 
respectively. Also f and u define the forcing function acting on the drillstring and the resulting 
nodal deflection vector, respectively. The two components KR, and KI arise from the complex 
modulus description of the viscoelastic damping treatment, 

 The nodal deflection vector of a unit cell u is defined as: 

     { }T
b i Lu u u u=      (4.10) 

where , ,b iu u and Lu denote the boundary, internal, and lower deflection vectors as shown in 
Figure (4.6).   

 

 

   

 

       

 

Figure (4.6) –Degrees of freedom of a unit cell of passive periodic shaft 
 

This vector is condensed to support Bloch wave propagation. Hence, the displacements at the 
boundaries are related as follows: 

     ikL
L bu e u−=       (4.11) 

where k and L denote the wave number and the length of the unit cell, respectively. 

 

 Hence, define an independent nodal deflection vector u  such that: 

{ }T
b iu u u=       (4.13) 

The deflection vectors u and u are related as follows: 

    u T u=       (4.14) 

where T is a transformation matrix such as: 

    0
0 0

TikLI e IT
I

− 
=  
 

     (4.15) 
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 Substituting Eqs. (4.14) and (4.15) into Eq. (4.9), it reduces to: 

   ( )R IM u C u K iK u f+ + + =      (4.16) 

where *M T M T= , *C T C T= , *
R RK T K T= , *

I IK T K T= and *f T f= . 

 Eqn. (4.16) is now cast in the following state-space form (Meirovitch 2010; Hussein 2009; 
and Hussein and Fraizer 2010): 

00 0
0

M M
y y

fKM C
−     

+ =     
   

     (4.17) 

where { }Ty u u=  and R IK K iK= + .   Assuming the state-space solution: 

    ˆty e yλ=        (4.18) 

This solution leads to the following eigenvalue problem: 

    
0 0

ˆ 0
0

M M
y

KM C
λ

 −   
+ =        

    (4.19) 

which can be rewritten in the following compact and standard form: 

    ˆ ˆAy yλ=        (4.20) 

With the matrix A given by: 

    
10 0

0
M M

A
KM C

−
−   

= −    
  

     (4.21) 

Note that all the entries of the matrix A are function of the dimensionless wave number kL.  Then, 
the eigenvalues of the matrix A can be determined for different values of the wave number kL.   
The eigenvalues sλ are complex and generally assume the following form: 

    ( )s s rs dskL iλ ζ ω ω= − ±  s =1,.., n   (4.22) 

With , ,s rsζ ω and dsω denote the damping ratio, undamped resonant frequency, and damped 
resonant frequency, respectively. 

Hence, damped resonant frequency and the damping ratio can be extracted as follows: 

    ( )( )ds simag kLω λ=         (4.23) 

and     ( )( )
( )

s
s

s

real kL
kL
λ

ζ
λ

= −       (4.24) 
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 Plotting the resonant frequency dsω against the wave number kL, gives the dispersion 
characteristics of the unit cell of the drillstring with LR inserts. It further defines the zones of stop 
and pass bands as will be illustrated. 

 

Numerical Example: 

 For the drillstring described in Table 4.1, consider that the viscoelastic material used in the 
LR inserts has a complex modulus given by: 40 6(1 1 )vG E i= +  indicating a storage modulus of 
40E6 Pa and loss factor η=1 as shown in Figure (4.7). Note that the experimental data of the 
viscoelastic material are corresponding to DYAD606 (Soundcoat, Inc., NY). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.7) - Complex Modulus Model 
(           Experimental            Complex Modulus Model) 

 

 

 Then, the dispersion characteristics of the system are as shown in Figures (4.8) and (4.9) 
for loss factor η=0 and 1, respectively. 
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 40 6(1 0 )vG E i= +   

 

 

 

 

 

 
 

Figure (4.8) –Dispersion characteristics of a unit cell of passive periodic  
shaft with periodic LR insert (η=0) 

 

 

40 6(1 1 )vG E i= +  

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.9) –Dispersion characteristics of a unit cell of passive periodic  
shaft with periodic LR insert (η=1) 
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Figure (4.8) emphasizes that the stop and pass bands are in agreement with those generated 
by the transfer matrix approach as displayed in Figure (4.3a).   

It is also important to note that the dispersion characteristics give the interaction between 
the spatial and spectral parameters on the width of the stop and pass bands,  

 
 

ii. Using the Golla-Hughes-McTavish model 
 

  The Golla-Hughes-MacTavish (GHM) model is developed by Golla and Hughes in 1985.  
The model describes the shear modulus of viscoelastic materials with a second order differential 
equation unlike the first order differential equations used to describe the Maxwell, Kelvin-Voigt, 
Poynting-Thomas, and Zener models.  Such a distinction makes it easy to incorporate the dynamics 
of the viscoelastic materials into finite element models of vibrating structures. 

 
According to the GHM formulation, the shear modulus G of viscoelastic materials can be 

written in Laplace domain as 
 

( ) 







++

+
+= ∑

=

N

n nnn

nn
n ss

ssGsG
1

22

2

0 2
21

ωωζ
ωζα     (4.25) 

 
 

where G0 is the equilibrium value of the modulus, i.e., the initial value of G( 0ω = ), and s is the 
Laplace domain variable.  The parameters nn ζα ,  and nω  are obtained from curve fitting the 
complex modulus data for a particular viscoelastic material at a given temperature.  The summation 
may be thought of as representing the material modulus as a series of mini-oscillators (second 
order equations) as suggested by Golla and Hughes (1985).  These terms are a representation of 
the internal variables necessary to describe the characteristics of the viscoelastic materials.  The 
number of terms kept in the expansion is determined by accuracy needed to replicate the real 
behavior of the material. In many cases only two to four terms are necessary. 
 

 Note that the viscoelastic material is represented by a spring-mass-damper assembly which 
is connected in parallel with another spring K  as shown in Figure (4.10).  Note that K represents 
the stiffness of the viscoelastic material under static conditions (i.e. at zero frequencyω ).   

 
 
 
 
 



65 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4.10) – Equivalent system of the GHM model 

 

 
 The finite element equation of the unit cell after introducing the Bloch wave assumption is 
as given by Eqn. (4.16) as follows: 
 
    M u C u K u f+ + =        (4.26) 

 Let   
2 2

1 2
1 22 2 2 2

1 1 1 2 2 2
 ,  , ........

2 2
z u z u

s s s s
ω ω
ζ ω ω ζ ω ω

= =
+ + + +

    

 

Note that zi defines an “internal degree of freedom” (IDOF) which describes the motion 
of a VEM modeled by a single mini-oscillator.  More IDOFs would be added when the VEM is 
modeled by N mini-oscillators. The addition of these damping IDOFs increases the size of the 
equations of motion of the structure considerably.  Application of classical model reduction 
techniques, such as Guyan reduction, is essential to reduce the size of the structure/VEM model to 
include only the structural degrees of freedom in order to enhance the computational efficiency. 
 

Then,  

M 
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In a compact form, Eqn. (4.27) can be rewritten as: 
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The internal degrees of freedom of the viscoelastic material z are condensed using the 
“Static Condensation Method”.  This leads to: 
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                         1

uz zz zz uzK u K z or z K K u R u−= = =                       (4.29)                                                                                                         
   

 

 

Hence, the full order state vector {X} can be written, in terms of { u } as  

    { } R

u I
X u T u

z R
   

= = =   
   

       (4.30) 

 
 The system equation of motion (4.28) can be cast in the following compact form: 

{ } { } { } { }T T TM X C X K X F+ + =      (4.31) 

where: 

1 2

0 0
, ,

0 0

(1 ....)
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T T
v v
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K K f
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   

 + + + −  
= =   

−    

 

Using the transformation equation (4.30) reduces the compact system equation of motion 
(4.31) to: 

  { } { } { } { }R R R RM u C u K u F+ + =       (4.32) 

where: 

, , , { }
0

T T T T
R R T R R R T R R R T R R R

f
M T M T C T C T K T K T and F T

 
= = = =  

 
 

Eqn. (4.32) is now cast in the following state-space form: 

0 0 0
0

R R

RR R R

M M
y y

FM C K
−     

+ =     
    

    (4.33) 

where { }Ty u u=  .   Assuming the state-space solution: 

    ˆty e yλ=        (4.34) 
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This solution leads to the following eigenvalue problem: 

    
0 0

ˆ 0
0

R R

R R R

M M
y

M C K
λ

−    
+ =    

    
    (4.35) 

which can be rewritten in the following compact and standard form: 

    ˆ ˆAy yλ=        (4.36) 

With the matrix A given by: 

    
10 0

0
R R

R R R

M M
A

M C K

− −   
= −    

   
    (4.37) 

Note that all the entries of the matrix A are function of the dimensionless wave number kL.  Then, 
the eigenvalues of the matrix A can be determined for different values of the wave number kL.   
The eigenvalues sλ are complex and generally assume the following form: 

    ( )s s rs dskL iλ ζ ω ω= − ±  s=1,..,n    (4.38) 

With , ,s rsζ ω and dsω denote the damping ratio, undamped resonant frequency, and damped 
resonant frequency, respectively. 

Hence, damped resonant frequency and the damping ratio can be extracted as follows: 

    ( )( )ds simag kLω λ=         (4.39) 

and     ( )( )
( )

s
s

s

real kL
kL
λ

ζ
λ

= −       (4.40) 

 Plotting the resonant frequency dsω against the wave number kL, gives the dispersion 
characteristics of the unit cell of the drillstring with LR inserts. It further defines the zones of stop 
and pass bands as will be illustrated. 

 

Numerical Example: 

 For the drillstring described in Table 4.1, consider that the viscoelastic material used in the 
LR inserts has a single mini-oscillator GHM model given by:  

          
2

2 2

25 6 1
2v

s sG E
s s

ωα
ω ω

 +
= + + + 
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where 39, 11,875 / ,rad sα ω= =  and s is the Laplace complex number. Note that the 
experimental data of the viscoelastic material are corresponding to DYAD606 (Soundcoat, Inc., 
NY).  The model is shown in Figure (4.11). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4.11) – GHM Model of the damping treatment with One mini-oscillator 
(           Experimental            GHM Model) 

 

Then, the dispersion characteristics of the system are as shown in Figures (4.12) and (4.13) 
for α=0 and 39, respectively. 

 

 

 

 

 

 

Figure (4.12) –Dispersion characteristics of a unit cell of passive periodic  
shaft with periodic LR insert (GHM model with α=0) 
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Figure (4.13) –Dispersion characteristics of a unit cell of passive periodic  
shaft with periodic LR insert (GHM model with α=39) 

 

 

iii. Effect of Slip and Stick Conditions 
 

The effect of the nonlinear stick-slip characteristics of the drillstring on its time response 
is shown in Figure (4.14). The figure displays comparisons between the responses of the drillstring 
with periodic LR inserts when α=0 and 39 to demonstrate the effectiveness of using the periodic 
design in attenuating multi-modes of vibration in the axial and torsional directions.    

 The figure indicates clearly that the use of the periodic drillstring has resulted in lowering 
the peak amplitudes of vibration and the dominant frequency content of the response as compared 
to the uniform drillstring. The effect is more significant in the torsional direction as evident in 
Figure (4.14b). 
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Figure (4.14) –Comparison between the time response of drillstrings with periodic LR 
Inserts (α=0 and 39) due to stick-slip conditions 

 
 

4.4 Summary 

 This chapter has presented the theory of periodic structures in an attempt to determine the 
pass and stop band characteristics of these structures using the transfer matrix approach and the 
Bloch wave propagation theory.   The transfer matrix method is applied to undamped periodic 
drillstrings whereas the Bloch wave theory is employed for drillstrings with damped LR inserts.
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 Chapter 5: Experimental Characteristics of a Drillstrings with Periodic  

Local Sources of Resonance 

5.1 Overview: 

This chapter presents an experimental realization of the proposed concept of rotating shaft 
with periodic local sources of resonance.   

The experimental performance characteristics of a prototype of the rotating shaft with 
periodic local sources of resonance are determined under different operating conditions.   These 
characteristics are utilized to validate the predictions of the theoretical finite element model of the 
shaft assembly.  

Furthermore, the experimental results are determined also for uniform shafts in order to 
provide basis for establishing the merits and effectiveness of the shaft with periodic local sources 
of resonance in attenuating the structural vibration. 

 

5.2 Experimental Setup 

The experimental setup of rotating shaft with periodic local sources of resonance is shown 
schematically in Figure (5.1) and photographically in Figure (5.2). 

 

 

 

 

 

 

 

 

 

(a) - shaft 

Figure (5.1) – Schematic drawing and geometrical parameters of the experimental shaft 
and the inserts with local sources of resonance 
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(b) – inner ring of insert 

(c) – outer ring of insert 
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Figure (5.2) – Photograph of the experimental shaft setup 

 

 The spacing between the inner and outer rings of the periodic inserts with local sources of 
resonance is filled with 0.0625” thick VEM which is made from DYAD 606, (from Soundcoat Deer 
Park, NY 11729).  The damping characteristics of DYAD 606 are displayed in Figure (5.3). The 
VEM has thermal shift factor αT given by: 

( ) ( )
( )

0
10

0

12
291 67T

T T
log

. T T
α

−
= −

+ −
 

where T denotes the operating temperature and T0 defines the reference temperature (taken as 
T0=80oC). 

 The periodic inserts are manufactured by 3D stereolithography and a sample of these 
inserts is shown in Figure (5.4) from ABSplus-P430 (Stratasys.com, Eden Prairie, MN).  The 
material has Young’s modulus of 2.2 GPa, density of 1,040 kg/m3, loss factor of 0.0046-0.0053, 
and glass transition temperature of 108oC. 
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Figure (5.3) – Damping characteristics of the VEM core of the periodic inserts 

 

 

 

 

 

 

 

 

 

 

Figure (5.4) – Prototype of the periodic insert with local source of resonance as 
manufactured by stereolithography. 

 Figure (5.5) shows a photograph of the shaft with the periodic inserts and Figure (5.6) 
displays a photograph of the motor drive system and the position laser sensor respectively. 
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Figure (5.5) – Photograph of the periodic insert with local source of resonance as 
manufactured by stereolithography. 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.6) – Photograph of the motor drive system and the laser sensor 

The specifications of the laser sensor, LM 200 (ANL2535REC), are listed in Figure (5.7). 
The sensor is manufactured by RAMCO, West Des Moines, Iowa 50265. 

Periodic Insert 

Shaft 

Motor 

Laser Sensor 
Y direction 

 

Periodic Insert Laser Sensor 
Z direction 



76 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.7) - Specifications of the shaft deflection laser sensor, LM 200 (ANL2535REC)  
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5.3 Experimental Results 

 The frequency response of the shaft with periodic insert with local source of resonance 
generated using an electromechanical shaker (LDS – V4-08, Burel and Kjaer) which excites the 
shaft through a sleeve located near the lower fixed end of the shaft as shown in Figure (5.8).  The 
response of the shaft is monitored using the laser sensor (LM 200 - ANL2535REC), which is 
located near the upper end of the shaft as indicated in Figure (5.8). 

 The shaft used in this study is manufactured from carbon fibers with density 1,400 kg/m3 
and Yong’s modulus 80 GPa (ACP Composites, Livermore, CA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) – schematic drawing    (b) – The FEM 

Figure (5.8) – Locations of the excitation and vibration measurement of the shaft/periodic 
sources of local resonance 
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 The specifications of the electromechanical shaker are listed in Table 5.1. 

 

Table 5.1 - Specifications of the electromechanical shaker  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (5.9) displays the frequency response of the shaft that has 10 periodic inserts with 
local resonance as compared to a uniform shaft.  
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Figure (5.9) – Frequency response of a uniform shaft at 0 rpm  

 

 

 

 

 

 

 

 

 

 

 

Figure (5.10) – Frequency response of a uniform shaft at 750 rpm  
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Figure (5.11) – Frequency response of a uniform shaft at 1500 rpm  

 

 

 

 

 

 

 

 

 

 

 

Figure (5.12) – Frequency response of a shaft that has 9 periodic inserts with local 
resonance as compared to a uniform shaft at 0 rpm. 
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Figure (5.13) – Frequency response of a shaft that has 9 periodic inserts with local 
resonance as compared to a uniform shaft at 750 rpm. 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.13) – Frequency response of a shaft that has 9 periodic inserts with local 
resonance as compared to a uniform shaft at 1500 rpm. 
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5.4. Modal Characteristics of the Shaft 

 Table 5.2 lists the natural frequencies of the uniform shaft as predicted by MATLAB FEM 
and ANSYS in comparison with the experimental results. It is evident that there is close 
agreements between the predictions of the finite element models and the experimental results. 

 Figure (5.14) displays the mode shapes corresponding to the first three natural frequencies 
of the uniform shaft 

 

Table 5.2 – Comparison between the natural frequencies of the uniform shaft as determined by 
MATLAB FEM, ANSYS and experimentally 

Mode 1 2 3 

MATLAB FEM - Hz 51.97 170.70 334.30 
ANSYS – Hz 50.43 165.20 320.50 

Experimental - Hz 51.00 171.00 336.50 
 

 

 

 

 

 

(a) – First mode (50.42 Hz)    (b) - Second mode (165.20 Hz) 

 

 

 

 

  

 

(c) – Third mode (320.50 Hz) 

Figure (5.14) – The mode shapes of the first three natural frequencies of the uniform shaft  
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Figure (5.14) displays the frequency response of the uniform shaft as predicted by the finite 
element at speed of zero rpm.   

 

 

 

 

 

 

 

 

 
 

 

 

Figure (5.15) - Frequency response of the uniform shaft as predicted by the finite element 
at speed of zero rpm 

 

Figure (5.16) displays the finite element of the periodic shaft with local sources of 
resonance. 

 

 

 

 

 

 

Figure (5.16) – Finite element of the periodic shaft with local sources of resonance. 
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 Figures (5.17) and (5.18) display the frequency response of periodic shaft with local 
sources of resonance which are made of ABS and steel respectively. 

 The displayed results indicate that the use of the steel sources of local resonance has 
resulted in extending the stop bands to lower frequencies. 

 

 

 

 

 

 

 

 

 

Figure (5.17) – Effect of number of periodic sources of ABS local resonance on the 
frequency response of the periodic shaft. 

 

 

 

 

 

 

 

 

 

 

Figure (5.18) – Effect of number of periodic sources of steel local resonance on the 
frequency response of the periodic shaft. 
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5.5. Modified Design of the Shaft with Periodic Steel Sources of Local Resonance  

 According to the computations presented in section 5.4, the experimental shaft is provide 
with a set of steel inserts/Dyad 606 VEM/ABS constraining layer as shown in Figures (5.19) and 
(5.20). 

 

 

 

 

 

 

 

 
 

Figure (5.19) – Modified prototype of the periodic insert with local source of resonance as 
manufactured by stereolithography. 

 

 

 

 

 

 

 

 

 

 

Figure (5.20) – Photograph of the shaft with modified periodic insert/local source of 
resonance assembly 
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The frequency response characteristics of the uniform shaft are determined using the 
excitation procedure outlined in Figure (5.8).  These characteristics are shown in Figure (5.21).  It 
can be seen that the shaft experiences continuous vibration over the considered frequency band 
from 0-200Hz. This band represent a continuous “Pass Band”.   

 

 

 

 

 

 

 

 
 

Figure (5.21) – Frequency response of the uniform shaft  
  

The above characteristics are compared with those of the shaft when it is provided with 5 
periodic LR inserts as displayed Figure (5.22).     

 

 

 

 

 

 

 

 

 

Figure (5.22) – Frequency response of the shaft with 5 periodic LR inserts 
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It can be seen from Figure (5.22) that the response exhibits a very wide “stop band” 
extending from 55Hz-126Hz.  This demonstrated clearly the effectiveness of the proposed concept 
in mitigating the vibration experienced by the drillstring particularly if it is excited within the stop 
band. 

 

Figure (5.23) displays comparison between the frequency responses of a shaft with 5 
periodic LR inserts and a shaft with periodic inserts to emphasize the importance of including the 
VEM in the sources of LR to achieve effective vibration characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.23) – Comparison between the frequency responses of a shaft with 5 periodic LR 
inserts and a shaft with periodic inserts 
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has been replaced by steel instead of ABS as the finite element predictions shown in Figures (5.17) 
and (5.18) demonstrated that the use of steel rings is more effective than the ABS rings. 

The experimental results are presented for modified inserts with LR to demonstrate clearly 
the effectiveness of the proposed concept in mitigating the vibration experienced by the drillstring 
particularly if it is excited within the stop band. 

Furthermore, it has been demonstrated through comparisons between the frequency 
responses of a shaft with 5 periodic LR inserts and a shaft with periodic inserts that it is important 
to include the VEM in the sources of LR to achieve effective vibration mitigation characteristics. 
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Chapter 6:  Conclusions and Future Recommendations 

 
 
6.1 Overview 
 
 This chapter summarizes the conclusions arrived at and the recommended future work 
which may be need to expand the utility of the concepts proposed in this dissertation.   
 

 Included also in this chapter are the major contributions of the dissertation in relation to 
the current state-of-the-art. 
 
 
6.2. Conclusions 
  
 This dissertation has presented a novel extension of the current state-of-the-art of the field 
of periodic structures by developing a class of rotating structures with periodic inserts with sources 
of local resonance in order to the control of the vibration of rotating shafts and drillstrings. Such a 
development constitutes the major contribution of this dissertation. 
 
 The development of such a class of structures involved the development of a finite element 
model (FEM) to describe the dynamics and vibrations of rotating structures at different rotating 
speeds. The developed FEM is exercised to generate the equivalent transfer matrix method of the 
rotating structures.  The transfer matrices are utilized to study the pass and stop band characteristics 
of the rotating structures as influenced by the design parameters of the local sources of resonances 
under undamped conditions. For damped conditions, the theory of Bloch wave theory is employed 
to study the effect of the wave number on the resonant frequencies and damping ratio of the unit 
cell. Such an approach is also utilized to extract the shop bands of the drillstring with LR inserts. 
 

It is demonstrated that the proposed class of periodic structures have enhanced ability of 
operating over frequency bands that are wider than those possible with conventional periodic 
structures. 
 
 The effectiveness of the proposed periodic inserts with local resonances are demonstrated 
numerically.  The predictions of the numerical models have also been validated experimentally for 
prototypes of the rotating shafts.  
 
 Comparisons have also been established between the performance of the proposed periodic 
inserts with local resonances and that of conventional periodic inserts in order to emphasize the 
potential and merits of the proposed approach. 
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 In chapter 2, the development of a finite element model is presented to describe the 
dynamics and vibration of rotating shafts with periodic inserts with local resonances. The model 
development involved the derivation of expressions of the potential and kinetic energies of the 
shaft assembly. Expressions of the energy dissipated in the damping treatments and the work done 
by all external forces acting on the shaft assembly have also been developed and integrated with 
the expressions of the potential and kinetic energies using the Lagrange dynamics approach.  This 
approach is employed to extract the equations of motion of the shaft assembly. The resulting 
equations of motion are exercised to predict the performance characteristics of the shaft assembly 
at different rotational speeds and design parameters.  The emphasis is placed on determining the 
model parameters of the assembly, the stop and pass band behavior, and Campbell diagram. 
 The predicted characteristics are validated, in chapter 3, against the predictions of the 
commercial finite element code ANSYS.  The established comparisons aim at demonstrating the 
effectiveness of the drillstrings with periodic LR inserts in simultaneously controlling the axial, 
bending, and torsional modes of vibration of practical drillstrings particularly at low excitation 
frequencies.  Such effectiveness stems from the ability of the periodic local sources of resonance 
in shifting the zones of the stop bands to low frequencies which are compatible to the frequencies 
experienced by practical drillstrings. 

 The favorable filtering characteristics of the drillstrings with periodic LR inserts are 
achieved when the VEM are tuned to have storage moduli that can coincide with the frequencies 
of the drillstrings. Stop bands are obtained at frequencies as low as 5 Hz which makes the 
application of the proposed concept practical for many of the existing drillstrings 

Furthermore, the developed finite element model has been utilized to extract the transfer matrix 
of the assembly as is outlined in chapter 4 in order to validate the predictions of the stop and pass 
band behavior of the shaft system.  The transfer matrix method is applied to undamped periodic 
drillstrings whereas the Bloch wave theory is employed for drillstrings with damped LR inserts. 

  In chapter 5, further validation of the predictions of the FEM will be carried out against 
the performance of experimental prototype of the rotating shaft.  The obtained experimental results 
are presented for modified inserts with LR to demonstrate clearly the effectiveness of the proposed 
concept in mitigating the vibration experienced by the drillstring particularly if it is excited within 
the stop band. 

Furthermore, it has been demonstrated through comparisons between the frequency 
responses of a shaft with 5 periodic LR inserts and a shaft with periodic inserts that it is important 
to include the VEM in the sources of LR to achieve effective vibration mitigation characteristics. 

 
6.3. Future Recommendations 
 
 Although this dissertation has offered a major extension to the state-of-the art in the field 
of mitigation of the vibration of drillstrings, it has presented new opportunities for extending this 
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work in many directions to ensure the practical application and successful transition to the oil 
fields.  

Among the potential directions is the natural extension of the presented work is the need 
to integrate the developed finite element model with active control means to ensure tenability of 
the proposed concept to various operating conditions and speeds.   

 
Further work is needed to study the effect of the nonlinear interactions between the 

drillstring and the rock formation of the system stability.  Studying the effect of the loading and 
operating conditions on the orbits of the drillstring and its convergence to attraction manifolds and 
avoiding any undesirable chaotic vibrations is essential to prove the viability of the proposed 
concept. Such investigations should be supported both from theoretical and experimental points of 
views. 

 
The effect of the rotation speed of the drillstring on its vibration and stop band 

characteristics has to be demonstrated experimentally and theoretically.  Further interest should 
focus on studying the effect of axial loading on the vibration, orbits, and stop band characteristics. 

 
Parametric studies are needed to investigate the effect of the design parameters of the LR 

inserts on the vibration, orbits, and stop band characteristics. 
 

 More comparisons should be established between the vibration of conventional drillstring 
and conventional periodic drillstings in order to quantify the merits and effectiveness of the 
proposed concept of periodic drillstring with inserts that have built-in sources of local resonance. 

  
 
6.4. Major Contributions of the Dissertation 

 This dissertation has presented the concept of drillstrings with periodic inserts that have 
built-in sources of local resonance along with their performance characteristics.  

The comprehensive presentation of the periodic drillstrings through mathematical 
modeling and experimental realization and evaluation emphasizes the following major 
contributions of the work to the current state-of-the-art of vibration mitigation of drillstrings: 

1. The concept of drillstrings with periodic inserts that have built-in sources of local 
resonance is original and has not been considered at all in the open-literature for 
application to drillstrings. 

2. The comprehensive theoretical and experimental demonstration of the effectiveness of 
the concept of drillstrings with periodic inserts that have built-in sources of local 
resonance in mitigating the low-frequency vibration of drillstrings is one of the major 
contributions of this dissertation. 
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3. The ability of the periodic inserts that have built-in sources of local resonance in the 
simultaneous control of the torsional, axial and transverse bending vibrations is another 
important contribution of the dissertation. 
 

6.5.  Summary 

This chapter has summarized the conclusions arrived at and the recommended future work 
which needs to be carried out to ensure practical application and technology transfer of the 
proposed concepts.  The dissertation has successfully demonstrated theoretically and 
experimentally the viability of the proposed concept of drillstrings with periodic LR inserts in 
effectively mitigating the vibration of the drillstings in the axial, torsional, and bending modes.  

In this chapter several directions of future work are proposed to naturally extend the presented 
work both experimentally and theoretically. These future directions aim at gaining better insight 
in the fundamental behavior of the drillstring and broaden the understanding of the underlying 
physical phenomena involved in the operation of the drillstring with periodic inserts that have 
built-in sources of local resonances.  

The chapter has included also are the major contributions of the dissertation in relation to the 
current state-of-the-art. 
 

  



93 
 

REFERENCES 
 
 
Aarrestad T. V., Tonnesen H. A., and Kyllingstad A., “Drillstring Vibrations: Comparison 
Between Theory and Experiments on a Full-Scale Research Drilling Rig,” Proceedings of 
SPE/ADC 14760 Drilling Conference, February 10-12, Dallas, TX, 1986. 
Ahmadabadi Z. N. and Khadem S. E., Self-excited oscillations attenuation of drill-string system 
using nonlinear energy sink, Proceedings of the Institution of Mechanical Engineers, Part C: 
Journal of Mechanical Engineering Science, Vol. 227, No. 2 pp.230-245, 2013. 
Aldushaishi M. F., “Investigation of drillstring vibration reduction tools”, Master Thesis, 
Missouri University of Science and Technology, 2012 
Al-Hiddabi S. A., Samanta B. and Seibi A., “Non-linear control of torsional and bending 
vibrations of oilwell drillstrings “, Journal of Sound and Vibration, Vol. 265, No. 2, pp. 401-415, 
2003. 
ANSI/IEEE, 1987, “Standard on Piezoelectricity,” ANSI/IEEE STD No. 176-1987. 
Asiri S., Baz A., and Pines D., “Active Periodic Struts for a Gearbox Support System”, Journal 
of Smart Materials and Structures, Vol. 15, pp. 1707–1714, 2006. 
Asiri S., Baz A., and Pines D., “Periodic Struts for Gearbox Support System”, Journal of 
Vibration and Control, Vol. 11, No. 6, pp. 709-721, 2005. 
Baz, A. “Active Control of Periodic Structures”, ASME Journal of Vibration and Acoustics, Vol. 
123, pp. 472-479, 2001. 
Bazoune A., Khulief Y. A., and Stephen N. G., “Shape Functions of Three-Dimensional 
Timoshenko Beam Element”, Journal of Sound and Vibration, Vol. 259, No. 2, pp. 473-480, 2003. 
Besaisow A. and Payne M., “A Study of Excitation Mechanisms and Resonances Inducing 
Bottomhole-Assembly Vibrations”, SPE Drilling Engineering, Vol. 3, No. 1, 93–101, 1988. 
Boussaada I., Mounier H., Niculescu S. I. and Cela A., “Analysis of drilling vibrations: a time-
delay system approach”, Paper# ThA1.4, 2012 20th Mediterranean Conference on Control & 
Automation (MED), Barcelona, Spain, July 3-6, 2012 
Chen L. H. and Huang S. C., "Vibration attenuation of a cylindrical shell with constrained layer 
damping strips treatment," Computers and Structures, Vol. 79, 2001, pp. 1355-1362. 
Chen S. L. and Géradin M., “ An improved transfer matrix technique as applied to BHA lateral 
vibration analysis “, Journal of Sound and Vibration, Vol.185, No. 10  , pp. 3-106,1995. 
Christoforou A. P. and Yigit A. S., “Fully coupled vibrations of actively controlled drillstrings“, 
Journal of Sound and Vibration, Vol. 267, No. 5, pp. 1029-1045, 2003.  
Choi S. H., Pierre C. and Ulsoy A. G. “ Consistent modeling of rotating Timoshenko shafts 
subject to axial loads”, ASME Journal of Vibration and Acoustics, Vol. 114, pp. 249-259,1992.  
Christoforou A. P. and Yigit A. S., “ Dynamic modeling of rotating drillstrings with borehole 
interactions“, Journal of Sound and Vibration, Vol. 206, No. 2, pp. 243-260, 1997. 
Downton G.C., “Challenges of modeling drilling systems for the purposes of automation and 
control”, Paper# FrPIT3.2, Proceedings of the 2012 IFAC Workshop on Automatic Control in 
Offshore Oil and Gas Production, Norwegian University of Science and Technology, Trondheim, 
Norway, May 31 - June 1, 2012 
El-Raheb M. and Wagner P., "Damped response of shells by a constrained viscoelastic layer," 
ASME Journal of Applied Mechanics, Vol. 53, 1994, pp. 902-908. 



94 
 

Esmaeili A. , Elahifar B. ,  Fruhwirth R.K., and Thonhauser G. , Axial vibration monitoring 
in laboratory scale using CDC miniRig and vibration sensor sub, 2012 IEEE International 
Instrumentation and Measurement Technology Conference (I2MTC),  13-16 May 2012, pp. 512- 
517, 2012. 
Ghasemloonia A., Rideout D. G. and Butt S. D., “Coupled transverse vibration modeling of 
drillstrings subjected to torque and spatially varying axial load”, Proc. IMechE Part C: J. 
Mechanical Engineering Science, Online 2013. 
Ghoneim H., and Lawrie D. J., “Analysis of flexural vibration of a composite drive shaft with a 
cylindrical constrained layer damping”, Smart Structures and Materials 2004, edited by K.W. 
Wang, Proc. Of SPIE Vol. 5386, pp.132-140, 2004. 
Golla D. F., and Hughes P. C., “Dynamics of Viscolelastic Structures-A Time Domain Finite 
Element Formulation”, ASME Journal of Applied Mechanics, Vol. 52, pp. 897-600, 1985. 
Hoie B., “Drillstring oscillations during connections when drilling from a semi-submersible 
platform”, Master Thesis, Stavanger University, Stavanger, Norway, 2012. 
Hu Y. C. and Huang S. C., "A linear theory for three-layer sandwich shell vibration," ASME 
conference, Active Control of Vibration and Noise, DE-Vol 93, 1996, pp. 229-238. 
Huang H. H., and Sun C. T., “A study of band-bang phenomena of two locally resonant acoustic 
metamaterials”, Proc. of IMechE Part N: J. of Nanoengineering and Nanosystems, Vol. 224, pp. 
83-92, 2011. 
Hussein M. I., and Frazier M. J., “Metadamping: An emergent phenomenon in dissipative 
metamaterials”, Journal of Sound and Vibration, Vol. 332, pp. 4767-4774, 2013. 
Hussein M. I.,”Theory of damped Bloch waves in elastic media," Physical Review B, Vol. 80, p. 
212301, December 2009. 
Hussein M. I. and Frazier M. J., “Band structure of phononic crystals with general damping," 
Journal of Applied Physics, Vol. 108, p. 093506, November 2010. 
Jansen J. D. and van den Steen L., ”Active damping of self-excited torsional vibrations in oil 
well drillstrings “, Journal of Sound and Vibration, Vol. 179, No. 4, , pp. 6-668, 1995. 
Jansen J. D., “Non-linear rotor dynamics as applied to oilwell drillstring vibrations“, Journal of 
Sound and Vibration, Vol. 147, No. 1, pp. 115-135, 1991. 
Karkoub M., Zribi M., Elchaar L., and Lamon L., “Robust μ -synthesis controllers for 
suppressing stick-slip induced vibrations in oil well drillstrings”, Multibody System Dynamics, 
Vol. 23, pp. 191–207, 2010. 
Khulief Y. A. and Al-Naser H., “Finite element dynamic analysis of drillstrings“,  Finite 
Elements in Analysis and Design, Vol. 41 ,  No. 13,  pp. 1270 - 1288 , 2005. 
Khulief Y.A., Al-Sulaiman F.A., and Bashmal S., “Vibration analysis of drillstrings with self-
excited stick-slip oscillations”, Journal of Sound and Vibration, Vol. 299, No. 3, pp. 540–558,  
2007. 
Khulief Y.A., Al-Sulaiman F.A., and Bashmal S., “Vibration analysis of drillstrings with string–
borehole interaction, Proc. IMechE Part C: J. Mechanical Engineering Science, Vol. 222, pp. 
2099-2110, 2008. 
Khulief Y.A. and Al-Sulaiman F.A., “Laboratory investigation of drillstring vibrations”, Proc. 
IMechE Part C: J. Mechanical Engineering Science, Vol. 223, pp. 2249-2262, 2009. 
Kim W., Argento A., and Scott R. A., "Forced vibration and dynamic stability of a rotating 
tapered composite Timoshenko shaft: bending motions in end-milling operations," Journal of 
Sound and Vibration, Vol. 246 (4), 2001, pp. 563-600. 



95 
 

Leine R. I., van Campen D. H., Keultjes W. J. G., “Stick-slip Whirl Interaction in Drillstring 
Dynamics”, Journal of Vibration and Acoustics, Vol. 124, pp. 209-220, 2002. 
Li L., Zhang Q., and Rasol N., “Time-varying sliding mode adaptive control for rotary drilling 
system”, Journal of Computers, Vol. 6, No. 3, pp. 564-570, 2011. 
Liu Z., Chan C. T., and Sheng P., “Analytic model of phononic crystals with local resonances”, 
Phys. Rev. B, 71 (2005) 014103. 
Liu, X., Vlajic, N., Long, X., Meng, G., and Balachandran, B., "State-Dependent Delay 
Influenced Drill-String Oscillations and Stability Analysis," ASME Journal of Vibration and 
Acoustics, Vol. 136(5), pp. 051008-1-051008-9, 2014a. 
Liu, X., Vlajic, N., Long, X., Meng, G., and Balachandran, B., "Coupled Axial-Torsional 
Dynamics in Rotary Drilling with State-Dependent Delay: Stability and Control," Nonlinear 
Dynamics, Vol. 78, pp. 1891-1906, 2014b. 
Meirovitch L., Fundamentals of Vibration, Waveland, Long Grove, IL, 2010 
Melakhessou H., Berlioz A., and Ferraris G., “A Nonlinear Well-Drillstring Interaction Model,” 
ASME Journal of Vibration and Acoustics, Vol. 125, No. 1, pp. 46-52, 2003. 
Mihajlovic N., van de Wouw N., Hendriks  M. P. M. and Nijmeijer H.,  “Friction-induced limit 
cycling in flexible rotor systems: An experimental drill-string set-up”, Journal Nonlinear 
Dynamics, Vol. 46, No. 3,  pp. 273-291, 2006. 
Mihajlovic N., “Torsional and Lateral Vibrations in Flexible Rotor Systems with Friction” Ph.D. 
Dissertation, Eindhoven: Technische Universiteit Eindhoven, 2005. 
Milton G. W., and Willis J. R., “On modifications of Newton’s second law and linear continuum 
elastodynamics”, Proc. R. Soc. A , Vol. 463, pp. 855–880, 2007. 
Moradi H., Bakhtiari-Nejad F. and Sadighi M., Suppression of the bending vibration of drill 
strings via an adjustable vibration absorber, International Journal of Acoustics and Vibration, Vol. 
17, No. 3, pp. 155163, 2012. 
Napolitano K. L., Grippo W., Kosmatka J. B., and Johnson C. D., "A comparison of two 
cocured damped composite torsion shafts," Composite Structures, Vol. 43, 1998, pp. 115-125. 
Qin Q. H. and Mao C. X., “Coupled Torsional-Flexural Vibration of Shaft Systems in Mechanical 
Engineering-I. Finite Element Model”, Computers & Structures, Vol. 58. No. 4, pp. 835-843. 1996 
Ritto T. G., Sampaio R., and Soize C., “Drill-string nonlinear dynamics accounting for drilling 
fluid”, 30º CILAMCE-Iberian-Latin-American Congress on Computational Methods in 
Engineering, Armação dos Búzios, RJ : Brazil, 2009a. 
Ritto T.G., Soize C., and Sampaio R., “Nonlinear dynamics of a drill-string with uncertain model 
of the bit-rock interaction”, International Journal of Non-Linear Mechanics, Vol. 44, No.8, pp. 
865-876, 2009b. 
Ritto T.G., Soize C., and Sampaio R., “Stochastic dynamics of a drill-string with uncertain 
weight-on-hook”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 
32, No. 3, pp.250-258, 2010. 
Ritto T.G., Escalante M.R., Sampaio R., Rosales M.B., Drill-string horizontal dynamics with 
uncertainty on the frictional force, Journal of Sound and Vibration, Vol. 332, No.1, pp. 145-153, 
2013. 
Sarker M. M., Rideout D. G., and Butt S. D., “Advantages of an LQR controller for stick-slip 
and bit-bounce mitigation in an oilwell drillstring”, Paper# IMECE2012-87856, Proceedings of 
the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE2012 
November 9-15, 2012, Houston, Texas, USA. 



96 
 

Singh S. P., and Gupta K., "Composite shaft rotordynamic analysis using a layerwise theory," 
Journal of Sound and Vibration, Vol. 191(5), 1996, pp. 739-756. 
Smith N., “Vibration of a hollow cylindrical shells with partial constrained layer damping”, M.Sc., 
Rochester Institute of Technology, Rochester, NY, 2004. 
Song O., Limbrescu L., and Jeong N-H, "Vibration and stability control of smart composite 
rotating shaft via structural tailoring and piezoelectric strain actuation," Journal of Sound and 
Vibration, Vol. 257(3), 2002, pp. 503-525. 
Spanos P.D., Chevallier A.M., Politis N. P. and Payne M.L., “Oil and Gas Well Drilling: A 
Vibrations Perspective”, The Shock and Vibration Digest, Vol. 35, No. 2, pp. 85–103, 2003. 
Toso M., Baz A. and Pines D., “Active vibration control of periodic rotating shafts”, paper# 
IMECE2004-61514, Proceedings of IMECE, 2004 ASME International Mechanical Engineering 
Congress, Anaheim, CA, November 2004. 
Utkin, V., Sliding Modes in Control Optimization, Springer-Verlag, Berlin, 1992. 
van de Vrande B. L., van Campen D. H., and de Kraker A., “An Approximate Analysis of Dry-Friction-
Induced Stick-Slip Vibrations by a Smoothing Procedure”, Nonlinear Dynamics 19: 157–169, 1999. 
Yang T. Y., Finite Element Structural Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 
1986. 
Yigit A. S.  and Christoforou A. P., “Coupled torsional and bending vibrations of actively 
controlled drillstrings “, Journal of Sound and Vibration, Vol. 234, No.1, pp. 67-83, 2000. 
Yigit A. S.  and Christoforou A. P., “Coupled torsional and bending vibrations of drillstrings 
subject to impact with friction”, Journal of Sound and Vibration, Vol. 215, No. 1, pp. 167-181, 
1998.     
Yigit A. S. and Christoforou A. P., “Coupled axial and transverse vibrations of oil well 
drillstrings “, Journal of Sound and Vibration, Vol.195, No. 29, pp. 617-627, 1996. 
Zhu X. Z., He Y. D., Chen L., and Yuan H. Q., Nonlinear dynamics analysis of a drillstring-bit-
wellbore system for horizontal oil well, Advanced Science Letters, Vol. 16, No. 1, pp. 13-19, 2012. 
Zhu X. and Lai C. Design and performance analysis of a magnetorheological fluid damper for 
drillstring, International Journal of Applied Electromagnetics and Mechanics, Vol. 40, No. 1, 
pp.67-83, 2012. 
 

 


	ABSTRAC1_2016_F
	Chapter 2: Finite Element Modeling of a Drillstring with Periodic
	Sources of Local Resonance      12
	Chapter 3: Modeling of a Drillstring with Periodic
	Sources of Local Resonance using ANSYS    34
	Chapter 4: Band Gap Characteristics of a Drillstring with Periodic
	Sources of Local Resonance      59
	4.1 Overview         59
	Chapter 5: Experimental characteristics of a Drillstring with Periodic
	Sources of Local Resonance      78

	Hajid_Dissertation_Vibration of Rotating Shaft with Periodic Constrained Layer Damping Treatments_8_19_2016_Final_C1_C6
	CHAPTER 1: INTRODUCTION
	Chapter 2: Finite Element Modeling of Drillstrings with Periodic Sources of Local Resonance
	2.1. Overview
	This chapter presents the development of a finite element model to predict the dynamics and characteristics of drillstrings and rotating shafts with periodic sources of local resonance such as shown in Fig. 2.1. The model development will involve the...
	The theory of finite elements with appropriate interpolating functions will be utilized to determine the stiffness and mass matrices of the assembly as well as the dissipative forces and external forces acting of the shaft system.
	Lagrange dynamics approach will then be employed to extract the equations of motion of the shaft assembly. The resulting equations of motion will be exercised to predict the performance characteristics of the shaft assembly at different rotational sp...
	The predicted characteristics will be validated, in chapter 3, against the predictions of the commercial finite element code ANSYS.  Furthermore, the developed finite element model will be utilized to extract the transfer matrix of the assembly as wi...
	2.2. Finite Element Model
	Local Sources of Resonance Using ANSYS
	Chapter 4: Band Gap Characteristics of a Drillstrings with Periodic
	Figure (4.2) –Unit cell of passive periodic shaft
	Figure (4.6) –Degrees of freedom of a unit cell of passive periodic shaft
	Figure (4.8) –Dispersion characteristics of a unit cell of passive periodic
	shaft with periodic LR insert (η=0)
	Figure (4.9) –Dispersion characteristics of a unit cell of passive periodic
	Figure (4.12) –Dispersion characteristics of a unit cell of passive periodic
	shaft with periodic LR insert (GHM model with α=0)
	Figure (4.13) –Dispersion characteristics of a unit cell of passive periodic
	shaft with periodic LR insert (GHM model with α=39)

	In chapter 2, the development of a finite element model is presented to describe the dynamics and vibration of rotating shafts with periodic inserts with local resonances. The model development involved the derivation of expressions of the potential ...
	The favorable filtering characteristics of the drillstrings with periodic LR inserts are achieved when the VEM are tuned to have storage moduli that can coincide with the frequencies of the drillstrings. Stop bands are obtained at frequencies as low ...
	Furthermore, the developed finite element model has been utilized to extract the transfer matrix of the assembly as is outlined in chapter 4 in order to validate the predictions of the stop and pass band behavior of the shaft system.  The transfer mat...
	More comparisons should be established between the vibration of conventional drillstring and conventional periodic drillstings in order to quantify the merits and effectiveness of the proposed concept of periodic drillstring with inserts that have bu...


