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The solution of many problems in engineering and science is enabled by the

availability of a fast algorithm, a significant example being the fast Fourier trans-

form, which computes the matrix-vector product for a N × N Fourier matrix

in O(N log(N)) time. Related fast algorithms have been devised since to evalu-

ate matrix-vector products for other structured matrices such as matrices with

Toeplitz, Hankel, Vandermonde, etc. structure.

A recent fast algorithm that was developed is the fast multipole method

(FMM). The original FMM evaluates all pair-wise interactions in large ensembles

of N particles in O(p2N) time, where p is the number of terms in the truncated

multipole/local expansions it uses. Analytical properties of translation opera-

tors that shift the center of a multipole or local expansion to another location



and convert a multipole expansion into a local expansion are used. The original

translation operators achieve the translation in O(p2) operations for a p term

expansion. Translation operations are among the most important and expensive

steps in an FMM algorithm. The main focus of this dissertation is on developing

fast accurate algorithms for the translation operators in the FMM for Coulombic

potentials in two or three dimensions.

We show that the matrices involved in the translation operators of the FMM

for Coulombic potentials can be expressed as products of structured matrices.

Some of these matrices have fast transform algorithms available, while for others

we show how they can be constructed. A particular algorithm we develop is

for fast computation of matrix vector products of the form Px, P 0x, and PP 0x,

where P is a Pascal matrix.

When considering fast translation algorithms for the 3D FMM we decompose

translations into an axial translation and a pair of rotations. We show how a fast

axial translation can be performed. The bottleneck for achieving fast translation

is presented by the lack of a fast rotation transform. A fast rotation algorithm

is also important for many other applications, including quantum mechanics,

geoscience, computer vision, etc, and fast rotation algorithms are being developed

based on the properties of spherical harmonics. We follow an alternate path by

showing that the rotation matrix R can be factored in two different ways into

the product of structured matrices. Both factorizations allow a fast matrix-vector

product. Our algorithm efficiently computes the coefficients of spherical harmonic

expansions on rotation.

Numerical experiments confirm that the new O(p log p) translation operators

for both the 2D and 3D FMMhave the same accuracy as the original ones, achieve



their asymptotic complexity for modest p, and significantly speed up the FMM

algorithms in 2D and 3D. We hope that this thesis will also lead to promising

future research in establishing fast translation for the FMM for other potentials,

as well as applying the transforms in other applications such as in harmonic

analysis on the sphere.
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Chapter 1

Introduction

The Fast Multipole Method (FMM) is an algorithm originally proposed by Rokhlin

[Rokhlin83] as a fast scheme for accelerating the numerical solution of the Laplace

equation in two dimensions. It was further improved by Greengard and Rokhlin

when it was applied to particle simulations [Greengard87, Greengard88]. It eval-

uates pair wise interactions (force or potential) in large ensembles of N particles

in O(N) time. This is an improvement over the O(N2) time required by direct

methods. Since the invention of the FMM, It has been used in a wide variety

of applications , such as computational astronomy, molecular dynamics, fluid

dynamics, radar scattering, etc.

The FMM combines several ideas in harmonic analysis, series expansions,

multiscale analysis based on hierarchical decomposition of space, and transla-

tion operators to achieve its efficiency. Usually the force or potential of the field

charges are expressed as truncated multipole or local expansions with p terms,

where p depends on the desired precision. It achieves linear complexity through

the summation of long range interactions by using multipole and local expansions.

It relies on analytical properties of translation operators that shift the center of

multipole or local expansion to another location and convert a multipole expan-
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sion into a local expansion. Translations of various types are the most important

and expensive steps in an FMM algorithm. Straightforward translation operators

achieve the translation in O(p2) operations for a p term expansion. The cost of

this operation has been the main obstacle to performance of most existing FMM

implementations.

Several researches have addressed this difficulty to increase the efficiency of

the FMM. Petersen et al [Petersen94] have pointed out that since the convergence

rate of an expansion depends on the distance of translation, the number p of terms

in the expansions should not be kept constant in the process of the translation of

the expansions. For example, a smaller number p of terms could be used when

the translation is done for distant boxes in the interaction list. This observation

leads to a procedure that they call the "very fast multipole method" (VFMM)

which continues to use O(p2) translation operators. Elliot and Board have used

fast Fourier transform to reduce the cost of the multipole to local translation

step from O(p2) to O(p log p) [Elliott96]. However, this method incurs a big

increase in memory requirement and stability problems, and requires substantial

modification of a standard FMM implementations [White96]. Another approach

suggested by White and Head-Gordon achieves O(p3/2) complexity by rotating

the coordinates such that the translation is always along the z axis [White96]. The

implementation of this procedure is straightforward and it reduces memory usage,

but is still sub-optimal. The most successful approach is by Rokhlin, Greengard,

et al in [Cheng99, Greengard97, Hrycak98]. They build approximate diagonal

operators to reduce the cost of translations. This method is highly effective, it

reduces the cost of the largest part of the multipole-to-local translation. However,

these still achieve translations with an asymptotic complexity of O(p3/2) with a
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smaller coefficient, and furthermore, they are complicated to implement.

In this dissertation, we present fast, efficient, and accurate translation opera-

tors for the potentials φX0
(X) = − log(||X−X0||) and 1

||X−X0|| that are governed

by, respectively, the two and three dimensional Laplace equations,

∇2φ(x) =
∂2φ

∂xi∂xi
= 0. (1.1)

The potentials are usually referred to as Coulombic or gravitational potentials.

They are closely related to a number of important problems such as celestial

mechanics, plasma physics, fluid dynamics, and molecular dynamics.

1.1 Main ideas and results

For potentials governed by the Laplace equation, we present new factored forms

for the translational operators as products of diagonal matrices and constant

matrices. These constant matrices, which are independent of the translation

distance, can further be decomposed as products of "matrices with structure"

or "structured matrices". This allows fast matrix-vector multiplication. The

resulting constant matrices from the translation operators can be very helpful in

bringing down the cost of FMM computations.

Since our decomposition includes a constant part, we can think of a number of

different strategies to exploit them. This can open some possible future research

opportunities to find the best factorization. We present several different factor-

izations of these matrices and have implemented ones that are free of numerical

instabilities. More specifically, in two dimensions, the constant matrices from

the translation operators are the Pascal matrix, its transpose, or the product of

the Pascal matrix and its transpose. They are further factored as the product of
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diagonal matrices and Toeplitz (or Hankel) matrices. In three dimensions, it is

known that the translation operators can be factored as the product of rotation

matrices and coaxial translation matrices [White96, Greengard97]. We, for the

first time, further factor the coaxial translation matrices into products of diagonal

matrices and constant matrices. The constant matrices are factored into struc-

tured matrices such as Toeplitz matrices or Hankel matrices in a similar way to

the two dimensional case. For the rotation matrices, it is known that matrices

of this type can be factored into the product of constant matrices and diagonal

matrices [Edmonds60]. We again find ways to factor these constant matrices

arising from the rotation matrices into products of structured matrices. These

representations allow multiplication with these matrices in O(p log p) operations.

This rotation matrix is extensively used in areas such as quantum mechan-

ics, geoscience, computational biology, computer vision, etc. A new fast rotation

transform, based on this factorization, could be very useful to speed up compu-

tations in these applications.

1.2 Outline of the dissertation

The dissertation is organized in the following way:

Chapter 2 introduces fast matrix-vector products for structured matrices, and

briefly explains the ideas behind the fast algorithms for these matrices. It thus

provides necessary background information. There exist known issues regarding

numerical stability problem for some of the fast matrix-vector product algorithms.

We delay the discussion of this issue and will devote a whole chapter, Chapter 9,

to discuss techniques and implementation details that solve the stability issues

that may arise in our algorithms.
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Chapter 3 develops fast algorithms for matrix-vector products, Px,P 0x,(PP 0)x,

where P is a Pascal matrix, P 0 is its transpose, and x is a vector.

Chapters 4 and 5 deal with potential problems in two dimensional space. More

specifically, Chapter 4 explains background material including potential fields in

2D, related multipole expansions, and translation operators and their matrix

forms. It also gives a formal description of FMM algorithm and its detailed com-

plexity analysis, motivates the need to develop fast efficient translation operators,

and describes previous work that has been done on the translation operators.

Chapter 5 develops a few new factored forms for the translation operators that

enable us to do fast translation. The chapter ends with a complexity analysis of

these more efficient operators.

Chapter 6 deals with potential problems in three dimensional space. It

presents all the background material needed by the FMM including what is a

multipole expansion of a potential field, translation operators, error bound of the

truncated translation operators. It describes the difference between the FMM

in 3D and that in 2D, motivates the need to develop fast translation operators,

and describes previous work that has been done on the translation operators

in 3D, including exponential expansions based translation, and rotation based

translations.

Chapter 7 introduces the rotation transform of the spherical harmonics ex-

pansion and reviews the previous work. It then presents two new different fac-

torizations of the rotation matrix. From one of the factorization, it develops a

fast algorithm for the rotation transformation. It presents a complexity analysis

of the rotation transform at the end.

Chapter 8 presents a few new factored forms of the coaxial translation opera-
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tors. These factorizations combined with the fast rotation transform lead to fast

translation operators. The chapter ends with complexity analysis of the FMM

with the new translation operators.

Chapter 9 presents implementation details of the new efficient operators in

2D and 3D to achieve accuracy, stability, and efficiency.

Chapter 10 presents numerical results to demonstrate the actual performance

of the new translation operators.

Chapter 11 reaches conclusions and discusses future work.

6



Chapter 2

Fast Matrix-Vector Product for Structured

Matrices

In the process of developing new fast algorithms for translation operators and ro-

tation operators, we have encountered the task of doing fast matrix-vector prod-

uct for Toeplitz matrices, Hankel matrices, and Vandermonde matrices, which

belong to a big class of matrices, namely, the structured matrices. In this chap-

ter we introduce some fast algorithms on the matrix-vector product for these

matrices. We will give the complexity of these algorithms, make comments on

the stability of Vandermonde matrices and leave the stability issues of other ma-

trices to a later chapter, Chapter 9.

The multiplication of a matrix and a vector arises in many problems in engi-

neering and applied mathematics. For a dense matrix A of size n× n, to compute

its product Ax with an arbitrary input vector x requires O(n2) work by standard

matrix-vector multiplication. In many applications, n is very large, and more-

over, for the same matrix, the multiplication has to be done over and over again

with different input vectors, for example, in iterative methods for solving linear

systems. In such cases, one seeks in various classes of applications to identify

7



special properties of the matrices in order to reduce the computational work.

One special class of matrices are the structured matrices. They often appear in

communications, control, optimization, and signal processing, etc. The multipli-

cation of any of these matrices with any arbitrary input vector can often be done

in O(n logk n) time, where usually 0 · k · 2, depending on the structure.

Definition 2.1. A dense matrix of order n × n is called structured if its entries

depend on only O(n) parameters.

Examples of structured matrices include Fourier matrices, Circulant matrices,

Toeplitz matrices, Hankel matrices, Vandermonde matrices, etc.

In this chapter we will collect some known useful results about them. It

is very interesting to observe that the main focus of this dissertation, the fast

multipole method, is an efficient algorithm for a class of structured matrices,

the entries of which depend on function of two set of O(N) points; however, the

translation operators, one of the core elements of the fast multipole method rely

on algorithms for these structured matrices.

2.1 Fourier matrices

The most important class of matrices in all fast algorithms are the Fourier ma-

trices.

8



Definition 2.2. A Fourier matrix of order n is defined as the following

Fn =



1 1 1 · · · 1

1 ωn ω2n · · · ωn−1
n

1 ω2n ω4n · · · ω
2(n−1)
n

· · · · · · · · · · · · · · ·

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)(n−1)
n


, (2.1)

where

ωn = e−
2πi
n , (2.2)

is an nth root of unity.

It is well known that the product of this matrix with any vector is the so-called

discrete Fourier transform, which can be done efficiently using the so-called fast

Fourier transform (FFT) algorithm [Cooley65]. Notice that Fourier matrix is a

unitary matrix, that is, FnF
∗
n = I, therefore, the conjugate transpose F ∗n is also a

unitary matrix. The corresponding efficient matrix-vector product is the inverse

fast Fourier transform (IFFT) [Van92, Golub96].

Theorem 2.3. The FFT and IFFT can be done in O(n log n) time.

A proof can be found in [Cooley65] or [Van92].

This theorem is the basis for a number of other efficient algorithms, for ex-

ample, the product of a circulant matrix and a vector.
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2.2 Circulant matrices

Definition 2.4. A matrix of the form

Cn = C(x1, ..., xn) =



x1 xn xn−1 · · · x2

x2 x1 xn · · · x3

x3 x2 x1 · · · x4

· · · · · · · · · · · · · · ·

xn xn−1 xn−2 · · · x1


(2.3)

is called a circulant matrix.

It is easy to see that a circulant matrix is completely determined by the entries

in the first column. All other columns are a shift of the previous column. It has

the following important property.

Theorem 2.5. Circulant matrices Cn(x) can be diagonalized by the Fourier ma-

trix,

Cn(x) = F ∗n · diag(Fnx) · Fn, (2.4)

where x = (x1, ..., xn)0.

A proof can be found in [Bai2000]. Given this theorem, we can easily have

the following fast algorithm.

Given a circulant matrix Cn, and a vector y, the product

Cny (2.5)

can be computed efficiently in the following four steps:

1. compute f =FFT(y),

2. compute g =FFT(x),
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3. compute the element wise vector-vector product h = f. ∗ g,

4. compute z =IFFT(h) to obtain Cny

Since the FFT and the IFFT can be done in O(n logn) time, Cny can be

obtained in O(n log n) time [Bai2000, Lu98].

2.3 Toeplitz matrices

After we know how to do the fast matrix-vector product for circulant matrices, it

is easy to see the algorithm for the Toeplitz matrix, since a Toeplitz matrix can

be embedded into a circulant matrix. As we mentioned in the beginning of the

chapter, we will need to compute the product of a Toeplitz matrix and a vector

fast in later chapters 3, 5, 7, 8 to develop new fast algorithms on fast translation

operators and rotation operators.

Definition 2.6. A matrix of the form

Tn = T (x−n+1, · · · , x0, ..., xn−1) =



x0 x1 x2 · · · xn−1

x−1 x0 x1 · · · xn−2

x−2 x−1 x0 · · · xn−3

· · · · · · · · · · · · · · ·

x−n+1 x−n+2 x−n+3 · · · x0


(2.6)

is called a Toeplitz matrix.

A Toeplitz matrix is completely determined by its first column and first row.

The entries of Tn are constant down the diagonals parallel to the main diagonal.

It arises naturally in problems involving trigonometric moments. Sometimes we
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denote a Toeplitz matrix with first column vector

c =

·
c0 c1 c2 ... cp−1

¸0
(2.7)

and first row vector

r =

·
c0 r1 r2 ... rp−1

¸
(2.8)

by

Toep(c, r0) = Toep



c0

c1

c2
...

cp−1

,

c0

r1

r2
...

rp−1


(2.9)

One important property of Toeplitz matrices is described in the following theorem

[Bai2000, Kailath99].

Theorem 2.7. The product of any Toeplitz matrix and any vector can be done

in O(n logn) time.

Proof. Given a Toeplitz matrix Tn and a vector y, to compute the product Tny,

a Toeplitz matrix can first be embedded into a 2n × 2n circulant matrix C2n as

follows

C2n =

 Tn Sn

Sn Tn

 , (2.10)

where

Sn =



0 x−n+1 x−n+2 · · · x−1

xn−1 0 x−n+1 · · · x−2

xn−2 xn−1 0 · · · x−3

· · · · · · · · · · · · · · ·

x1 x2 x3 · · · 0


. (2.11)
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Then Tny can be multiplied as

C2n ·

 y

0n×n

 =
 Tn Sn

Sn Tn

 ·
 y

0n×n

 =
 Tny

Sny

 , (2.12)

which can be implemented to be done in O(n log n) time.

The way to compute the product of a Toeplitz matrix and a vector fast is

clear from the above proof. In later Chapters 3, 5, 7, and 8, we will repeatedly

use this property of a Toeplitz matrix to build efficient translation operators. We

will address later in Chapter 9 the associated numerical instability problems for

the product of this matrix and a vector.

2.4 Hankel matrices

Definition 2.8. A matrix of the form

Hn = H(x−n+1, · · ·, x0, · · · , xn−1) =



x−n+1 x−n+2 x−n+3 · · · x0

x−n+2 x−n+3 x−n+4 · · · x1

x−n+3 x−n+4 x−n+5 · · · x2

· · · · · · · · · · · · · · ·

x0 x1 x2 · · · xn−1


(2.13)

is called a Hankel matrix.

A Hankel is completely determined by its first column and last row. The

entries of Tn are constant along the diagonals that are perpendicular to the main

diagonal. It arises naturally in problems involving power moments. It has the

following property [Golub96].
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Theorem 2.9. The product of any Hankel matrix and any vector can be done in

O(n logn) time.

Proof. Notice that if

Ip =



0 0 · · · 0 1

0 0 · · · 1 0

· · · · · · · · · · · · · · ·

0 1 · · · 0 0

1 0 · · · 0 0


, (2.14)

is the backward identity permutation matrix, then IpHn is a Toeplitz matrix for

any Hankel matrix Hn, and IpTn is a Hankel matrix for any Toeplitz matrix Tn.

The product Hny for any vector y can be computed as follows [Kailath99]: first

compute the product (IpHn)̇y of a Toeplitz matrix IpHn and vector y as in (2.12),

then apply the permutation to the vector (IpHn)̇y to have P (PHn)̇y, which is

what we want since Ip = Itp = I−1p .

In Chapters 3, 5, and 8, we will repeatedly use this property of a Hankel matrix

to build efficient translation operators. The fast computation of the product of

a Hankel matrix and a vector is clear from the above proof.

2.5 Vandermonde matrices

Definition 2.10. Suppose {xi, i = 0, 1, ..n} ∈ Cn+1, a matrix of the form

V = V (x0, x1, ..., xn) =



1 1 · · · 1

x0 x1 · · · xn

· · · · · · · · · · · ·

xn0 xn1 · · · xnn


(2.15)
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is called a Vandermonde matrix.

A Vandermonde matrix is completely determined by its second row. All rows

are powers of the second row from the power 0 to power n. It is a fact that

detA =
nY

i,j=0,i>j

(xi − xj) (2.16)

so a Vandermonde matrix is nonsingular if and only if the (n + 1) parameters

x0, x1, ..., xn are distinct. In this dissertation we impose this requirement when-

ever we need the inverse of this matrix.

A Fourier matrix is a special case of Vandermonde matrix. Its transpose

arises naturally in polynomial evaluations or polynomial interpolations. There

exist efficient algorithms for fast matrix-vector product for a Vandermonde ma-

trix, its transpose, its inverse, and the transpose of its inverse. All of them

are of complexity O(n log2 n)̇, although there are associated stability problems

[Driscoll97, Moore93]. The basic idea is to factor the matrices into products of

sparse matrices, Toeplitz matrices and the like, so that the FFT can be applied to

speed up the computations. We state these facts as a theorem below. The details

can be found in [Driscoll97, GohbergL94, GohbergC94, Lu98, Moore93, Pan92].

Theorem 2.11. The product of any Vandermonde matrix, its transpose, its in-

verse, or the transpose of its inverses with any vector is of complexity O(n log2 n).

In our later chapters, we give representations of the translation operators in

factored forms in terms of Vandermonde matrices. There exist a number of al-

gorithms for the product of a Vandermonde matrix and a vector and techniques

to overcome the instability problems associated with the algorithm [Driscoll97,

Moore93]. However, in this dissertation we do not use those factored repre-
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sentations involving Vandermonde matrices in our implementations due to the

complexity and instability of the algorithms.
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Chapter 3

Fast Algorithms for Matrix-vector Products of

the Pascal Matrix and its Relatives

In this chapter we present a few fast methods to compute the product of a Pascal

matrix or its related matrix and a vector, which is crucial for developing fast

algorithms for translation operators in FMM. We will postpone the discussion of

the stability problem related to fast translation operators until Chapter 9.

3.1 Pascal matrix

The Pascal triangle arises in binomial expansion, probability, combinatorics and is

familiar since high school . It also arises naturally in this thesis in our development

of fast translation operators in 2D and rotation operators in 3D. Pascal was not

the first to create his triangle. It has been discovered in China, Europe, and

India. In China, it has been known as "Yang Hui’s triangle" .
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Definition 3.1. A Pascal matrix is of the form

P =



1 0 0 0 · · · 0

1 1 0 0 · · · 0

1 2 1 0 · · · 0

1 3 3 1 · · · 0

...
...

...
...

. . .
...

C0
p−1 C1

p−1 C2
p−1 C3

p−1 · · · Cp−1
p−1


, (3.1)

where Cm
n =

n!
(n−m)!m! is the binomial coefficient.

Notice that the entries in Pascal matrix are those in Pascal triangle; they are

also coefficients of the binomial expansion.

3.2 Decomposition of Pascal matrix

It is easy to verify the following identity which we will use in our implementation

of the fast algorithms.

Theorem 3.2. The Pascal matrix P can be decomposed as,

P = diag(v1) · T · diag(v2), (3.2)

where vectors

v1 =



1

1

2!

3!

...

(p− 1)!


, v2 =



1

1
1!

1
2!

1
3!

...

1
(p−1)!


, (3.3)
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and the matrix

T =



1 0 0 · · · 0

1 1 0 · · · 0

1
2!

1
1!

1 · · · 0

1
3!

1
2!

1
1!

· · · 0

...
...

...
. . .

...

1
(p−1)!

1
(p−2)!

1
(p−3)! · · · 1


(3.4)

is a Toeplitz matrix.

Proof. Notice that the (n,m) entry Pnm of the Pascal matrix is

Pnm =

 Cm−1
n−1 if n ≥ m

0 if n < m
, (3.5)

where Cm−1
n−1 =

(n−1)!
(n−m)!(m−1)! . That is, every entry in n-th row of the Pascal matrix

has a common factor (n − 1)!, and every entry in m-th column of the Pascal

matrix has a common factor 1
(m−1)! . We can take out the common factor (n− 1)!

of the n-th row and common factor 1
(m−1)! of the m-th column, and multiply from

left side by a diagonal matrix which is the identity, except that the n-th entry in

the diagonal is (n− 1)!, and multiply from right side by a diagonal matrix which

is the identity, except that the m-th entry in the diagonal is 1
(m−1)! . This can be

done for every row and column. Therefore we have factored the Pascal matrix

into products of matrices with a Toeplitz matrix T in the middle and p diagonal

matrices on the left of T , and p diagonal matrices on the right of T . Multiplying

the diagonal matrices on the left and the right respectively, we end up with the

diagonal matrices diag(v1) and diag(v2).
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With the notation for Toeplitz matrix introduced earlier, T can be written as

T = Toep



1

1

1
2

1
6

...

1
(p−1)!

,

1

0

0

0

...

0


(3.6)

From this lemma, It is clear that the multiplication of a Pascal matrix P and a

vector x can be done in three steps: first calculate the element-wise multiplication

of u = v1. ∗ x, which requires p multiplications. Then calculate the product

w = Tu of Toeplitz matrix T and vector u as (2.12), which requires O(p log p)

work by theorem 2.7. And finally calculate another element-wise multiplication

of v1. ∗ w to obtain the product Px. Therefore we have the following.

Theorem 3.3. The multiplication of a p × p Pascal matrix and a p vector can

be done in O(p log p) operations.

The properties stated in the above lemma and theorem are repeatedly used

in later Chapters 5 and 7 to build efficient translation operators and rotation

operators.

While we will use the above decomposition to build fast algorithms for the

product of the Pascal matrix and a vector, we found some other ways to factor

the matrix which we state here.

3.2.1 Alternate decomposition 1

Lemma 3.4. The Pascal matrix P can be decomposed as the following,

P = V 2 ∗ V 1−1, (3.7)
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where

V 1 =



1 1 1 1 · · · 1

x1 x2 x3 x4 · · · xp

x21 x22 x23 x24 · · · x2p

x31 x32 x33 x34 · · · x3p
...

...
...

...
. . .

...

xp−11 xp−12 xp−13 xp−14 · · · xp−1p


(3.8)

V 2 =



1 1 1 · · · 1

(x1 + 1) (x2 + 1) (x3 + 1) · · · (xp + 1)

(x1 + 1)
2 (x2 + 1)

2 (x3 + 1)
2 · · · (xp + 1)

2

(x1 + 1)
3 (x2 + 1)

3 (x3 + 1)
3 · · · (xp + 1)

3

...
...

...
. . .

...

(x1 + 1)
p−1 (x2 + 1)

p−1 (x3 + 1)
p−1 · · · (xp + 1)

p−1


(3.9)

are Vandermonde matrices, and {xi, i = 1, 2, · · · , p} are distinct numbers.

Proof. Because P is a matrix with binomial coefficients, it is easy to see that

PV1 = V2. (3.10)

Notice that {xi, i = 1, 2, · · · , p} are distinct numbers and can be arbitrary. Hence

V1 is nonsingular and its inverse exists. Thus we have

P = V2 ∗ V
−1
1 . (3.11)

From Theorem 2.11, we know that a Vandermonde matrix and its inverse can

be multiplied by vectors in O(p log2 p) time. This decomposition also allows fast

matrix-vector product for the Pascal matrix. However, it is slower than the pre-

vious decomposition. Furthermore, many existing algorithms for Vandermonde
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matrices are not stable (see [Moore93] and [Driscoll97]). Therefore we will not

use it in this work, instead we leave it to our future work.

3.2.2 Alternate decomposition 2

Lemma 3.5. A Pascal matrix can be decomposed as the product of p−1 matrices

P = A1 ∗A2 ∗ · · · ∗Ap−1 (3.12)

where

Ai =



1 0 0 0 · · · 0 0

0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

...
...

. . . . . . · · ·
...

...

0 0 0 1 1 0 0

...
...

...
...

. . . . . .
...

0 · · · 0 0 · · · 1 1



(3.13)

with p number of 1’s as its diagonal entries, and i number of 1’s as its sub-diagonal

entries starting from the position (p, p− 1).

Proof. We will prove this by mathematical induction.

It is trivial for p = 2.

Now assume that for p = n,

P (n) = A
(n)
1 ∗A(n)2 ∗ · · · ∗A(n)n−1, (3.14)

where P (n) is the Pascal matrix of size n × n, and A
(n)
i is Ai as defined in (3.13)

of size n × n. For p = n+ 1, we need to prove that

P (n+1) = A
(n+1)
1 ∗A(n+1)2 ∗ · · · ∗A(n+1)n . (3.15)
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It is easy to see that

A
(n+1)
i =

 1 0

0 A
(n)
i

 for i = 1, 2, · · · , n− 1. (3.16)

That is, we need to prove

P (n+1) =

 1 0

0 A
(n)
1

 ∗
 1 0

0 A
(n)
2

 ∗ · · · ∗
 1 0

0 A
(n)
n−1

 ∗A(n+1)n . (3.17)

By assumption, we have 1 0

0 A
(n)
1

 ∗
 1 0

0 A
(n)
2

 ∗ · · · ∗
 1 0

0 A
(n)
n−1

 =
 1 0

0 P (n)

 . (3.18)

Therefore, we need only to prove that

P (n+1) =

 1 0

0 P (n)

 ∗A(n+1)n . (3.19)

It is easy to see that the entries in the first column of both sides are one’s, the

entries in the first row of both sides are the same. For all other entries, we need

to prove that

P
(n+1)
ij = P

(n)
(i−1)(j−1) + P

(n)
(i−1)j (3.20)

This is trivial for all entries in the upper triangular part of the matrices since

all entries are zeroes. This is also true for the entries of the diagonal since

P
(n)
(i−1)j = 0, and P

(n+1)
ij and P

(n)
(i−1)(j−1) are all one’s. What is left to prove is the

lower triangular part of the matrices. We know

P
(n+1)
ij = Cj−1

i−1 , (3.21)

and

P
(n)
(i−1)(j−1) + P

(n)
(i−1)j = Cj−2

i−2 + Cj−1
i−2 = Cj−1

i−1 . (3.22)
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Therefore for p = n+ 1, we have

P (n+1) = A
(n+1)
1 ∗A(n+1)2 ∗ · · · ∗A(n+1)n . (3.23)

This completes the proof.

This decomposition would requireO(p2) operations for matrix-vector product,

but these are all additions and there are no multiplications. This may be suitable

for some architectures.

3.3 Relatives of a Pascal matrix

We have shown some fast multiplication algorithm for a Pascal matrix and a

vector in the last section. We will show similar algorithms for some matrices

related to a Pascal matrix in this section.

3.3.1 The transpose of a Pascal matrix

We first consider the transpose of a Pascal matrix. It can be decomposed the

same way as a Pascal matrix. Indeed, applying the transpose to different decom-

positions (3.2), (3.7), and (3.12) of the Pascal matrix, we would obtain decom-

positions which allow fast matrix-vector products. Therefore we also have the

following theorem similar to Theorem 3.3.

Theorem 3.6. The multiplication of the transpose of a Pascal matrix and a

vector can be done in O(p log p) operations.

Proof. Follows from Theorem 3.3.
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3.3.2 The product of the Pascal matrix and its transpose

The next matrix that is related to a Pascal matrix is

PP =



1 1 1 1 · · · C0
p−1

1 2 3 4 · · · C1
p

1 3 6 10 · · · C2
p+1

1 4 10 20 · · · C3
p+2

...
...

...
...

. . .
...

C0
p−1 C1

p C2
p+1 C3

p+2 · · · Cp−1
2p−2


. (3.24)

Decomposition 1

The following lemma says that the Cholesky decomposition of the matrix PP is

product of the Pascal matrix times the transpose of the Pascal matrix.

Lemma 3.7. The matrix PP is the product of the corresponding Pascal matrix

and its transpose,

PP = P ∗P0 (3.25)

Proof. For any pair of numbers (i, j), i = 0, 1, · · · , p− 1, j = 0, 1, · · · , p − 1, we

need to prove that

PPij =

p−1X
k=0

PikP
0
kj, (3.26)

where PPij is the (i, j)-th entry of the matrix PP , Pik is the (i, k)-th entry of the

matrix P , and P 0
kj is the (k, j)-th entry of the matrix P

0. This is equivalent to

Ci
i+j =

min(i,j)X
k=0

Ck
i C

k
j . (3.27)

This is a well-known identity in the theory of combinatorics [Edelman].
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To prove it, we need the following identity

Ck
i = Ci−k

i , (3.28)

which is true by definition of the binomial coefficients. We know to select i objects

from a total of (i + j) objects, there are Ci
i+j ways. A equivalent selection can

also be done in three steps. First divide the total (i+ j) objects into two groups

with i objects and j objects. Then select i − k objects from the group with i

objects, there are Ci−k
i ways to do the selection; and select k objects from the

group with j objects, there are Ck
j ways to do the selection. Finally we put them

together to have i objects out of a total of (i + j) objects. In each selection, k

has to be less than or equal to i and j. The number of ways to select using this

process is
min(i,j)X
k=0

Ck
i C

k
j . (3.29)

A number of proofs can be found in [Edelman]. This implies all decomposi-

tions that admit fast matrix-vector product for the Pascal matrix can be applied

to matrix PP , since we can first apply them to P 0 and then to P .

Decomposition 2

We also have the following factorization.

Lemma 3.8. The matrix PP can be decomposed as the following,

PP = diag(v) · H · diag(v), (3.30)
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where

v=



1

1
1!

1
2!

1
3!

...

1
(p−1)!


, and H =



0! 1! 2! · · · (p− 1)!

1! 2! 3! · · · p!

2! 3! 4! · · · (p+ 1)!

3! 4! 5! · · · (p+ 2)!

...
...

...
. . .

...

(p− 1)! p! (p+ 1)! · · · (2p− 2)!


(3.31)

is a Hankel matrix.

Proof. This lemma can be proved in a way similar to the proof of (3.2). Notice

that the (n,m) entry PPnm of the matrix PP is

Pnm = Cn
n+m. (3.32)

where Cn
n+m = (n+m)!

n!m!
. That is, every entry in n-th row of the matrix has a

common factor 1
n!
, and every entry in m-th column of the Pascal matrix has a

common factor 1
m!
. We can take out the common factor 1

n!
of the n-th row and

common factor 1
m!
of the m-th column, and multiply from left side by a diagonal

matrix which is the identity, except that the n-th entry in the diagonal is 1
n!
,

and multiply from right side by a diagonal matrix which is the identity, except

that the m-th entry in the diagonal is 1
m!
. This can be done for every row and

column. Therefore we have factored the Pascal matrix into products of matrices

with a Hankel matrix H in the middle and p diagonal matrices on the left, and p

diagonal matrices on the right. Multiplying the diagonal matrices on the left and

the right respectively, we end up with the diagonal matrices diag(v) and diag(v).

It is clear from the lemmas above that the multiplication of the matrix PP

and any vector x can be either done by successively apply P 0 and P to x, or first
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calculate the element-wise vector product of v. ∗ x, then apply Hankel matrix H

to the product, finally with the obtained vector, do another element-wise vector

product with v to arrive the result of PP · x. In either process, the involved

matrices are either Toeplitz matrices or Hankel matrices. By Theorems 2.7, and

2.9, we have the following.

Theorem 3.9. The multiplication of matrix PP and any vector can be done in

O(p log p) operations.

Although we can use both decompositions to build our fast translation op-

erators, the first one is less efficient than the second one. The reason is that

the cost of the product of a Toeplitz matrix and a vector is the same as that

of a Hankel matrix and a vector, and the first one requires two multiplications

of a Toeplitz matrix and a vector. We will use the second decomposition in our

implementations.

In this chapter we have discussed how to multiply the Pascal matrix and

its related matrices to a vector efficiently through matrix decomposition. These

decompositions will be repeatedly used in building fast translation operators in

2D in Chapter 5 and fast rotation operators in 3D in Chapter 7. Notice that

the entries of the Pascal matrix have very different magnitudes of numbers, and

there can exist instability problems if the decomposition is implemented naively.

We will discuss the instability problems related to the translation operators in

2D and 3D, and how to avoid them, in Chapter 9.
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Chapter 4

The Fast Multipole Method in Two Dimensions

In this chapter we follow the work of Greengard of the fast multipole method

(FMM) in his dissertation [Greengard88]. The purpose is to establish the ideas

about the FMM, translation involved, and representation of those operations as

matrices. In Chapter 5, we will provide decomposition of these matrices to speed

up the translation step. We will also provide a complexity analysis of the FMM.

In this chapter we start with representation of a potential field in two dimen-

sions as a multipole expansion in a complex plane. Then we provide known results

on how to calculate the coefficients of a new multipole/local expansion that re-

sults from translating an existing multipole/local expansion, and coefficients of a

local expansion resulting from the translation of an existing multipole expansion,

and rewrite them as translation operators in the form of matrix-vector product.

Next we present the fast multipole method (FMM), derive related error analysis

and analyze the complexity of the algorithm. Finally, we review some of the

previous work that has been done to improve the complexity of the translation

operators and hence reduce the overall complexity of the algorithm. A lot of ma-

terial here such as multipole expansion of a field, translation theorems, the FMM

algorithm, and the complexity analysis can be found in Greengard’s disserta-
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tion [Greengard88]. A similar complexity analysis can be found in [Greengard97]

for three dimensions. We present a slightly different error bound (4.30) in the

multipole to local translation theorem.

4.1 Potential field in a complex plane

In two dimensions, the potential at (x, y) ∈ R2 due to a point charge of intensity

q at (x0, y0) is given by:

φ(x, y) = −q log
³p

(x− x0)2 + (y − y0)2
´
. (4.1)

If we view a point (x, y) in two dimensional space as a point in the complex plane,

z = x + iy, then we may express the potential at z due to a single point charge

q at z0 as:

φ(z) = −qRe (log(z − z0)) , (4.2)

where Re(z) is the real part of a complex number z. Following standard practice,

we will in this dissertation refer to

φ(x, y) = q log(z − z0) (4.3)

as the potential due to a charge.

4.2 Multipole expansions

Suppose a point charge of intensity q is located at z0. The potential at any point

z is φ(z) = q log(z − z0). Using the fact that

log(z − z0) = log(z) + log
³
1−

z0
z

´
(4.4)
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Figure 4.1: m charges in a disk centered at c with radius r

and the expansion

log(1− w) = (−1)
∞X
k=1

wk

k
, (4.5)

for any w such that |w| < 1, we have the following useful expansion centered at

the origin, convergent for any z such that |z| > |z0|,

φ(z) = q

Ã
log(z)−

∞X
k=1

1

k

³z0
z

´k!
. (4.6)

More generally, we can have the following multipole expansion convergent at any

point z outside a disk centered at point c, with radius |z0 − c|,

φ(z) = q

Ã
log(z − c)−

∞X
k=1

1

k

µ
z0 − c

z − c

¶k
!
. (4.7)

Start with this expansion, we can easily obtain the multipole expansion for a

field containing m charges. The formal description is in the following theorem.
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Theorem 4.1. [Greengard88] (Multipole Expansion) Suppose that

φ(z) =
mX
i=1

qi log(z − zi) (4.8)

is the potential due to a set of m charges of strengths {qi, i = 1, . . . ,m} located at

points {zi, i = 1, . . . ,m}, with |zi − c| < r. Then for any z ∈ C with |z − c| > r,

the potential φ(z) can be expressed as

φ(z) = Q log(z − c) +
∞X
k=1

ak
(z − c)k

, (4.9)

where

Q =
mX
i=1

qi and ak =
mX
i=1

−qi(zi − c)k

k
. (4.10)

Furthermore, for any p ≥ 1, the error of truncating the infinite summation to p

terms is given by¯̄̄̄
¯φ(z)−Q log(z − c)−

pX
k=1

ak
(z − c)k

¯̄̄̄
¯ · A

1− | r
z−c |

¯̄̄̄
r

z − c

¯̄̄̄p+1
, (4.11)

where

A =
mX
i=1

|qi|. (4.12)

The proof of this theorem can be found in [Greengard88]. With this theorem,

we can use a single multipole expansion to express the potential due to multiple

charges inside a disk. See figure 4.1.

4.3 Translation operators for the two dimen-

sional Laplace equation and their matrix forms

In this section we will provide three multipole translation theorems that describe

the translation operators required by the FMM. While they can be found in the
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Figure 4.2: Multipole to Multipole Translation

literature [Greengard88], a modified error bound in Theorem 4.4 is presented,

and in addition we rewrite the results in matrix form.

Theorem 4.2. [Greengard88] (Translation of a Multipole Expansion) Suppose

that

φ(z) = a0 log(z − z0) +
∞X
k=1

ak
(z − z0)k

(4.13)

is a multipole expansion of the potential due to a set of m charges of strengths

{qi, i = 1, . . . ,m}, located inside the circle D of radius R with center at z0. Then

for z outside of the circle D1 of radius (R+ |z0|) and center at the origin,

φ(z) = a0 log(z) +
∞X
n=1

bn
zn

, (4.14)

where

bn = −
a0z

n
0

n
+

nX
k=1

akz
n−k
0 Cn−k

n−1 , (4.15)
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with Ck
n the binomial coefficients. Furthermore, for any p ≥ 1, the error of

truncating the infinite summation to p terms is given by¯̄̄̄
¯φ(z)− a0 log(z)−

pX
n=1

bn
zn

¯̄̄̄
¯ ·

 A

1−
¯̄̄
|z0|+R

z

¯̄̄
 ¯̄̄̄ |z0| +R

z

¯̄̄̄p+1
, (4.16)

with A defined by (4.12).

Proof. The coefficients {bn, n = 1, ...p} are easily obtained by reexpanding the

Laurent series (4.13) around the origin using

ak
(z − z0)k

=
ak
zk

∞X
n=0

Cn
n+k−1

³z0
z

´n
. (4.17)

For the error bound, observe that for a given set of charges, due to the uniqueness

of the multipole expansion, the coefficients {bn, n = 1, ...p} directly computed

using the multipole expansion theorem are the same as the ones obtained if

we first compute the coefficients {ak, k = 1, ...p} using the multipole expansion

theorem, and then compute the coefficients {bn, n = 1, ...p} from {ak, k = 1, ...p}

as in this theorem. That is, two different ways result in the same error. Therefore

the error bound follows from the Multipole Expansion Theorem 4.1.

Remarks:

1. Note that the error bound estimates the true error of the shifted multipole

expansion from the potential induced by particles. It includes not only

the difference between the shifted expansion and the original truncated

expansion, but also the error caused by truncating the multipole expansion

(4.13). Even it does not cause any error in the FMM, a comment made

by Greengard after the theorem in [Greengard88] could be misleading. He

states that "we may shift the center of a truncated multipole expansion

without loss of precision". This could cause an improper understanding
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of this error bound. If we look at error bound (4.16) and error bound

(4.11) and consider the fact that {bn, n = 1, ..., p} only depends on {an, n =

0, 1, ..., p}, it is easy to get the wrong impression that final error of this

shifted expansion stays the same. It is clear from the figure (4.2) that the

term | |z0|+R
z
| in (4.16) is greater than the term | r

z−c |, which is
R

|z−z0| here, in

(4.11).

2. Since our main interest is on speedup of the translations, for simplicity and

without any change in the computational complexity, we are going to drop

the first term due to a0 log(z − z0) in our later formulas. We can rewrite

coefficients of the new expansion in terms of those of the old expansion in

matrix form as follows, 

b1

b2

b3

b4
...

bp


= SS(z0) ·



a1

a2

a3

a4
...

ap


(4.18)

where

SS(z0) =



1 0 0 0 · · · 0

C1
1z0 1 0 0 · · · 0

C2
2z
2
0 C1

2z0 1 0 · · · 0

C3
3z
3
0 C2

3z
2
0 C1

3z0 1 · · · 0

...
...

...
...

. . .
...

Cp−1
p−1z

p−1
0 Cp−2

p−1z
p−2
0 Cp−3

p−1z
p−3
0 Cp−4

p−1z
p−4
0 · · · 1


. (4.19)
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3. The multipole translation operator is the multipole-to-multipole translation

operator. It is easy to see that the translation of a multipole expansion

requires O(p2) work.

Theorem 4.3. [Greengard88] (Translation of a Local Expansion) Suppose that

φ(z) =

pX
k=0

ak(z − z0)
k (4.20)

is a local expansion centered at z0. Then

φ(z) =

pX
n=0

bnz
n (4.21)

is a local expansion centered at the origin, where

bn =

pX
k=n

ak(−z0)
k−nCn

k . (4.22)

Proof. If we expand the polynomial and combine like terms, we can easily get

the results.

remarks:

1. Similarly we can rewrite the coefficients of the new expansion in terms of

those of the old expansion in matrix form as follows,

b0

b1

b2
...

bp


= RR(z0) ·



a0

a1

a2
...

ap


, (4.23)
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Figure 4.3: Multipole To Local Translation

where

RR(z0) =



1 −z0 z20 −z30 · · · (−z0)p

0 1 −2z0 3z20 · · · p(−z0)p−1

0 0 1 −3z0 · · · C2
p−1(−z0)

p−2

0 0 0 1 · · · C3
p−1(−z0)

p−3

...
...

...
...

. . .
...

0 0 0 0 · · · 1


, (4.24)

is the local-to-local translator, or local translation matrix.

2. A translation of a local expansion requires O(p2) work.

Theorem 4.4. [Greengard88] (Conversion of a Multipole to Local Expansion)

Suppose that

φ(z) = a0 log(z − z0) +
∞X
k=1

ak
(z − z0)k

(4.25)
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is a multipole expansion of the potential due to a set of m charges of strengths

{qi, i = 1, . . . ,m} located inside the circle D1 of radius R1 with center at z0 and

that |z0| > R1 + R2. Then this multipole expansion converges inside the circle

D2 of radius R2 centered about origin. For z inside of the circle D2 which lies

outside of D1, the potential can be expressed by the following local expansion:

φ(z) =
∞X
n=0

bnz
n, (4.26)

where

bn =
1

zn0

∞X
k=1

ak
(−z0)k

Cn
n+k−1 −

a0
nzn0

∗ δ(n) + (1− δ(n)) ∗ a0 log(−z0), (4.27)

with

δ(n) =

 0 for n = 0

1 for n 6= 0
. (4.28)

Furthermore, for any p ≥ 1, the error of truncating the infinite summation to p

terms is given by

|φ(z)−
pX

n=0

bnz
n| ·

 A

1−
¯̄̄

z
|z0|−R1

¯̄̄
 ¯̄̄̄ z

|z0| − R1

¯̄̄̄p+1
, (4.29)

with A defined by (4.12). In FMM, bn, n = 0, 1, ..., p, are calculated by setting

ak = 0, for k = m+ 1, ...,∞. Let us in this case denote bn by b0n. Then we have

the following error bound,

|φ(z)−
pX

n=0

b0nz
n| ·

A

1− | z
|z0|−R1 |

¯̄̄̄
z

|z0| − R1

¯̄̄̄p+1
+

A

1−
¯̄̄

R1
z−z0

¯̄̄ ¯̄̄̄ R1
z − z0

¯̄̄̄m+1
. (4.30)

Proof. The first part can be proved in a similar way to the proof for the multipole

to multipole translation. We only prove the last error bound.

From the error bound of the multipole expansion (4.16), it is easy to see that¯̄̄̄
¯φ(z)− a0 log(z − z0)−

mX
k=1

ak
(z − z0)k

¯̄̄̄
¯ <

∞X
k=m+1

|ak|

|z − z0|k
<

A

1−
¯̄̄

R1
z−z0

¯̄̄ ¯̄̄̄ R1
z − z0

¯̄̄̄m+1
.

(4.31)
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This truncation is equivalent to letting ak = 0, k = m + 1,m + 2, · · · in (4.27).

We then have,

|φ(z)−
pX

n=0

b0nz
n| =

¯̄̄̄
¯φ(z)−

pX
n=0

(
1

zn0

mX
k=1

ak
(−z0)k

Cn
n+k−1−

a0
nzn0

∗ δ(n) + (1− δ(n)) ∗ a0 log(−z0))z
n

¯̄̄̄
(4.32)

·

¯̄̄̄
¯φ(z)−

pX
n=0

(
1

zn0

∞X
k=1

ak
(−z0)k

Cn
n+k−1−

a0
nzn0

∗ δ(n) + (1− δ(n)) ∗ a0 log(−z0))z
n

¯̄̄̄
+¯̄̄̄

¯
pX

n=0

Ã
1

zn0

∞X
k=1

ak
(−z0)k

Cn
n+k−1

!
zn−

pX
n=0

Ã
1

zn0

mX
k=1

ak
(−z0)k

Cn
n+k−1

!
zn

¯̄̄̄
¯ (4.33)

·

Ã
A

1− | z
|z0|−R1 |

! ¯̄̄̄
z

|z0| − R1

¯̄̄̄p+1
+

∞X
k=m+1

¯̄̄̄
ak

(−z0)k

¯̄̄̄ ∞X
n=0

¯̄̄̄
z

z0

¯̄̄̄n
Cn
n+k−1 (4.34)

·

Ã
A

1− | z
|z0|−R1 |

! ¯̄̄̄
z

|z0| − R1

¯̄̄̄p+1
+

∞X
k=m+1

¯̄̄̄
ak

(−z0)k

¯̄̄̄
1³

1−
¯̄̄
z
z0

¯̄̄´k (4.35)

·

Ã
A

1− | z
|z0|−R1 |

! ¯̄̄̄
z

|z0| − R1

¯̄̄̄p+1
+ (4.36)

A

1−
¯̄̄

R1
z−z0

¯̄̄ ¯̄̄̄ R1
z − z0

¯̄̄̄m+1
. (4.37)

remarks:

1. Note that this bound estimates the error of the truncated local expansion

from the exact potential induced by particles. It includes three sources of
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error, the error caused by truncating the multipole expansion, the error

caused by translation of the multipole expansion, and the error due to

conversion of the multipole expansion to a local expansion. That is to say,

this is the only error bound needed in the final error analysis of the FMM.

2. For simplicity, we drop the first term a0 log(z − z0) in our later formulas.

We can rewrite the coefficients of the new expansion in terms of those of

the old expansion in matrix form as follows,

b0

b1

b2

b3
...

bp−1


= SR(z0) ·



a1

a2

a3

a4
...

ap


, (4.38)

where the matrix SR(z0) depends only on the translation vector z0, and it

is given by

SR(z0) =



−z0−1 z0
−2 −z0−3 · · · (−1)pz0−p

−z0−2 2 z0
−3 −3 z0−4 · · · (−1)pC1

p z0
−p−1

−z0−3 3 z0
−4 −6 z0−5 · · · (−1)pC2

p+1 z0
−p−2

−z0−4 4 z0
−5 −10 z0−6 · · · (−1)pC3

p+2 z0
−p−3

...
...

...
. . .

...

−z0−p C1
pz
−p−1
0 −C2

p+1z0
−p−2 · · · (−1)pCp−1

2p−2 z0
−2p+1


.

(4.39)

where SR(z0) is the multipole-to-local translation matrix.

3. A conversion of a multipole expansion to a local expansion is O(p2) work.
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Figure 4.4: Well-separated case

The Fast Multipole Method (FMM) relies on these three operators to per-

form all of the necessary manipulations. It is clear from the formulas that each

translation requires O(p2) operations if calculated directly.

4.4 What is the fast multipole method?

Before introducing the FMM, we first demonstrate the main idea with a special

case [Greengard88], and then the nonadaptive scheme of the well known tree

codes [Barnes86]. We show that the multipole expansion can be used to speed

up evaluation of potential interactions. Then the FMM follows naturally.
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4.4.1 A special case

Suppose that sources of strengths {qi, i = 1, ...,m} are located at the points

{xi, i = 1, ...,m} ∈ C and we need to evaluate the potential at the points {yi, i = 1, ..., n} ∈

C. We also assume that there exist points x0, y0 ∈ C and a positive real number r

such that |xi−x0| < r, i = 1, ...,m, |yj−y0| < r, j = 1, ..., n, and |x0−y0| > 3r,

in which case we say that {xi} and {yi} are well-separated. The potential at eval-

uation points {yj} due to the sources at points {xi} can be computed directly

by

φ(yj) =
mX
i=1

qi log(yj − xi), j = 1, ...n. (4.40)

It is easy to see that this requires O(nm) operations. On the other hand we can

use multipole expansion to reduce the number of operations to O(m) +O(n).

First we use Theorem 4.1 (Multipole Expansion) to calculate the coefficients

of a p-term multipole expansion of the potential due to the charges at the points

{xi, i = 1, ...,m} about x0, where p is determined by a desired precision � accord-

ing to the following inequality

|φ(z)−Q log(z − x0)−
pX

k=1

ak
(z − x0)k

| · (
A

1− | 1
2
|
)(
1

2
)p+1 < �, (4.41)

that is, p is of order − log2(�). This requires O(mp) operations. Evaluating the

above multipole expansion at all points {yj, j = 1, ..., n} requires O(np) opera-

tions. If p << n, the total number of operations is O(m + n). For m = n, this

method of calculation requires O(n) operations, while the direct method requires

O(n2) operations.
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Figure 4.5: Four levels of box hierarchy

4.4.2 Nonadaptive tree codes

Notice that in the previous case, we require the source points and evaluation

points to be well-separated, so that the whole set of source points are viewed as

one cluster and the induced potential is expressed as a single multipole expansion.

Usually this is not the case. However, we can subdivide the whole computation

domain containing all the sources of the system into hierarchical boxes. Then we

would have a lot of clusters of well-separated points, and could use the above

method to efficiently calculate the interactions between clusters and particles

which are far away and handle the interactions with particles which are nearby

directly. This is the central strategy of the "tree codes".

To illustrate the main idea, we assume that the source points are fairly ho-
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mogeneously distributed in a square so that adaptive refinement is not required.

A hierarchy of boxes which refine the computational domain is constructed as

follows. We start with the entire computational domain as level 0, or root. Level

0 is subdivided into four equal square child boxes which form level 1, and each

of these has the level 0 box as its parent. Then each of the boxes at level 1 is

again subdivided into four child boxes, the resulting sixteen boxes are considered

as level 2. Recursively, we obtain level 3, 4,..., until the number of levels of re-

finement is roughly log4N , where N is number of particles in the system. We

call the four boxes at level l + 1 obtained by subdivision of a box at level l its

children. This imposes a natural tree structure on this box hierarchy. Two boxes

are said to be neighbors if they are at the same level and share a boundary point.

Two boxes are said to be well-separated if they are at the same level and are not

neighbors. Interaction list of a box i at level l is the children of the neighbors of

i’s parent which are well-separated from box i (Figure 4.6).

It is clear that there are no pairs of well-separated boxes at levels 0 and 1.

There are a number of well-separated pairs of boxes at level 2. For each one of

the sixteen boxes at level 2, the multipole expansion around the center of the box

is created to approximate the potential induced by the sources contained in the

box. We can use the computed multipole expansion to calculate the interaction

between the particles in all well-separated boxes (that is, any pair of boxes that

are not neighbors in this case). Then, for each particle contained in a level 2

box, it remains to compute the interactions between particles contained in its

box ’s neighbors, and this is done recursively. First each level 2 box is refined to

create level 3. For a given level 3 box, it is easy to see that other level 3 boxes

that can be interacted with by means of multipole expansion are those defined as
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Figure 4.6: Interaction list for box i
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members of its interaction list since those boxes that are outside the neighbors of

the parent are already computed. Again what is left to be computed is between

particles contained in neighboring boxes at level 3. This process is repeated from

level 3 to level 4, from level 4 to level 5, until the finest level is reached. From

the nature of this recursive process, for each particle we still have the particles

contained in its box’s neighbors to be interacted with, this is finally computed

by direct calculation.

The amount of work at each level to create all expansions is approximately

O(Np) operations since a p-term multipole expansion is obtained for each particle

at each level, where p ≈ logc
1
�
and c = 3√

2
. And the total amount of work at

each level to evaluate is about 27Np operations since for each particle, there are

at most 27 boxes whose multipole expansion are computed. And the final direct

computation requires about 9N operations. So the total work is approximately

28Np log4(N) + 9N .

4.4.3 The fast multipole method

Note that in the whole process of tree codes, only the multipole expansion theorem

is involved. At every level, all multipole expansions for all boxes are constructed

directly from particles. There is no connection between the different levels. In

the FMM, three translation operators are used to calculate interactions between

clusters.

The FMM mainly consists of two passes — an upward pass and a downward

pass. In the upward pass, the multipole expansions for all boxes at the finest level

are first formed. Theorem 4.2 is then used to construct the multipole expansions

for all boxes at the next higher level — for each parent box, shift the centers of
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all four child boxes to the center of the parent and add the coefficients together

to obtain the expansion for the parent box; this is done recursively until level 2

is reached. In the downward pass, the local expansion for level 1 is initialized to

zero first; then Theorems 4.3 and 4.4 are used to construct local expansions for

all boxes at level 2 from the local expansions at level 1; This is done recursively

from level 2 to level 3, level 3 to level 4, and so on, until the finest level is reached.

Before we start the formal description of the algorithm, we introduce some

notation. Φl,i is the p-term multipole expansion about the center of the box i at

level l, describing the potential field outside box i’s neighbors due to all particles

contained inside the box i. Ψl,i is the p-term local expansion about the center of

the box i at level l, describing the potential field induced by all particles outside

box i’s neighbors. Ψ̃l,i is the p-term local expansion about the center of the box

i at level l, describing the potential field induced by all particles outside the

neighbors of box i’s parent.

Algorithm

Initialization. Choose precision to be desired � and the number of levels

n ≈ log4N . Set the length of multipole and local expansions to p ≈ log(
1
�
). Then

the number of boxes at the finest level is 4n, and the number of particles per box

is s ≈ N
4n
, since we still assume the sources are fairly homogeneously distributed

in a square. Set up the hierarchical data structure and sort all points into the

boxes at the finest level.

Upward Pass

step 1

For each box i at the finest level n, use Theorem 4.1 to form p-term multipole

expansion Φn,i, representing the potential field induced by all particles in the box.
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Figure 4.7: Step 2. Multipole to multipole translation
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Figure 4.8: Step 3. Local to local translation

49



Figure 4.9: Step 3. Multipole to local translation at level 2
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Figure 4.10: Step 3. Multipole to local translation
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Record the coefficients of each expansion for all 4n boxes.

step 2

For levels l = n− 1, n− 2, ..., 2,

For each box j at level l, use Theorem 4.2 to shift the centers of multipole

expansions of its four child boxes to the center of box j and merge them to form

Φl,j which represents the potential field induced by all particles in box j, or all

particles in its four child boxes. see figure 4.7.

Downward Pass

Set Ψ1,1 = Ψ1,2 = Ψ1,3 = Ψ1,4 = 0.

step 3

For levels l = 2, 3, ...n,

For each box j at level l, use Theorem 4.3 to shift the center of local

expansion Ψl−1 of j0s parent box to the center of box j to form Ψ̃l,j. See figure

4.8.

Use Theorem 4.4 to convert the multipole expansions of all boxes that is

in the interaction list of box j to a local expansion about the center of box j, and

add all these to Ψ̃l,j to form Ψl,j, which represent the potential field induced by

all particles outside box j0s neighbors. See figure 4.9 and figure 4.10.

step 4

For boxes j = 1, 2, ...4n at the finest level,

For each particle at box j, evaluate Ψn,j at the particle position.

step 5

For boxes j = 1, 2, ...4n at the finest level,

For each particle at box j, evaluate the interactions with particles in j0s

neighbor boxes directly.
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4.5 Error analysis

It is obvious that the local translation operator in Theorem 4.3 is exact and that

the truncated operators described in Theorem 4.1 and Theorem 4.4 introduce

errors into the expansions. Even though it is equally obvious that the trun-

cated multipole expansion operator described in Theorem 4.2 introduces error

in the same way, there sometimes is a misconception that it causes no error

[Greengard88]. The key point to make no mistake in the error analysis is to re-

alize that although truncated operators in Theorems 4.1 and 4.2 cause errors, all

the errors can be estimated using the single error bound (4.30) given in Theorem

4.4.

For a particular evaluation location y, the error of computed potential at this

point caused by the entire system is

E(y) =

¯̄̄̄
¯
NX
i=1

φ(y, xi)−
NX
i=1

φ̂(y, xi)

¯̄̄̄
¯ , (4.42)

where φ(y, xi) is the potential at point y induced by a particle at point xi and

φ̂(y, xi) is the computed potential. From the process of the FMM, we know that

the particles in the neighbor boxes of the box containing y at the finest level are

handled directly, therefore there is no error in these calculations. All the rest of

particles are contained in boxes that belong to different level of interaction lists.

Let us denote by ILl the interaction list for the box that contains point y at level

l, Pb the set of all particles contained in box b. We have,

E(y) =

¯̄̄̄
¯
NX
i=1

³
φ(y, xi)− φ̂(y, xi)

´¯̄̄̄¯
·

¯̄̄̄
¯

nX
l=2

X
b∈ILl

X
i∈Pb

³
φ(y, xi)− φ̂(y, xi)

´¯̄̄̄¯ (4.43)
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Recall that in the FMM, there are errors in steps 1, 2, and 3, but the total

error in the final local expansions Ψn,j is controlled by (4.16).

E(y) ·
nX
l=2

X
b∈ILl

Ã P
i∈Pb |qi|

1− | z
|z0|−R1 |

¯̄̄̄
z

|z0| − R1

¯̄̄̄p+1
(4.44)

+

P
i∈Pb |qi|

1−
¯̄̄

R1
z−z0

¯̄̄ ¯̄̄̄ R1
z − z0

¯̄̄̄p+1 (4.45)

·
nX
l=2

X
b∈ILl

X
i∈Pb

|qi| ∗ C ∗

Ã
2
1
2

4− 2
1
2

!p

,

where C = 2
1
2 + 1 is a constant. So the total error for the entire system is

E(y) · C
NX
i=1

|qi|

Ã
2
1
2

4− 2
1
2

!p

. (4.46)

Of course, this error bound is very conservative, even though it is rigorous.

4.6 Discussion of complexity of the FMM

We present complexity analysis in this section. It is mostly following the work

of Greengard and Rokhlin [Greengard88, Greengard97]. Suppose there are total

N particles in the system. The FMM consists of two parts. The number of

operations required for part one, the initialization step — construction of the

data structure of the FMM algorithm, is usually O(N logN). The number of

operations required for part two, the computational steps — the upward pass and

downward pass, is O(N) for a fixed p ≈ logc(
1
�
), where c =

√
2

4−√2 (from (4.46) if

we want a fixed precision, then p ≈ logc(
N
�
). The resulting algorithm can be of

complexity of O(N logN) or O(N log2N)). In practice, the cost of the second

part dominates the total cost, the CPU time of the first part compared with that
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of the second part is negligible. Furthermore, the FMM is sometimes used as

part of an iterative method to calculate a matrix-vector product. In this case,

the initialization is done only once in the first step of the iterative method; the

upward pass and downward pass steps are repeated for each iteration. An efficient

second part is central to reduce the overall complexity. The complexity of each

step of the second part of FMM is discussed next.

In step 1, for each particle, the potential induced by it is expressed as a p-term

expansion about the center of the box that contains it at the finest level. The

number of operations required at this step is O(Np).

In step 2, each translation requires O(p2) operations. For level l, there are

4l boxes, and for each box, it requires four translations. So the total number of

operations is the order of

n−1X
l=2

4 ∗ 4l ∗ p2 =
nX
l=3

4l ∗ p2 =
43 − 4n+1

1− 4
p2 ≈

4

3
4np2 =

4

3

N

s
p2. (4.47)

In step 3, the local translation operator and the multipole to local translation

operator are used. They both require O(p2) operations. At level l, there are 4l

boxes, and for each box, it requires one local translation and at most 27 multipole

to local translations. The operation count in this step is approximately

nX
l=2

4l ∗p2+
nX
l=2

4l∗p2∗27 =
42 − 4n+1

1− 4
∗28∗p2 ≈

4

3
∗4n∗28p2 =

112

3

N

s
p2. (4.48)

In step 4, each particle requires one evaluation of a p-term local expansion.

This step requires O(Np) operations.

In step 5, each particle in a box at the finest level interacts with particles con-

tained at its 9 neighboring boxes. There are about s particles per box. Therefore

this step requires O(9Ns) operations.
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The total cost for all five steps is approximately

2Np+
116

3

N

s
p2 + 9Ns. (4.49)

It is clear that the total complexity can be optimized by appropriately se-

lecting the parameter s. With s ≈
√
348
9

p, the total number of operations is

approximately 40Np.

It is clear that the major obstacle to achieving reasonable efficiency at high

precision is the cost of translation operators. There have been several improve-

ments proposed [Hrycak98] since the original FMM appeared. We will discuss

them in the next section.

4.7 Previous work on two dimensional transla-

tion operators

From the process of the FMM, it is easy to see that all translation operator are

very expensive with complexity of the order of O(p2). And the multipole to local

translation operator is used 27 times almost for all boxes in all hierarchical boxes.

These are the main steps that slow down the speed of the FMM. To remedy this

situation, Hrycak and Rokhlin [Hrycak98] constructed a new analytical appara-

tus, which diagonalizes most translation operators. The key idea is to represent

the potential as a complex exponential through integral and quadrature, thus to

reduce the linear but dense multipole to local translation operator to a diagonal

one. We briefly record the core idea employed in that paper below.

They considered the potential 1
z−z0 . First the potential can be represented as
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an integral. If z and z0 are complex numbers such that Re(z − z0) > 0, then

1

z − z0
=

Z ∞

0

e−x(z−z0)dx (4.50)

Then this integral is approximated by the following formula using finite quadra-

ture,

Z ∞

0

e−x(z−z0)dx ∼
qX

k=1

ωke
−xk(z−z0) (4.51)

with ωk, xk chosen to minimize the error of the approximation. Thus, the poten-

tial of a unit charge at the point z0 can be approximated by a linear combination

of exponentials as follows

1

z − z0
∼

qX
k=1

ωke
−xk(z−z0) =

qX
k=1

ωke
−xk(w−z0)e−xk(z−w) (4.52)

for any w in a certain domain. Suppose

φ(z) =
mX
i=1

qi
z − zi

(4.53)

is a potential due to a set of m charges of intensity {qi, i = 1, ...m} located at

the locations {zi, i = 1, ...m} in a certain domain. By (4.52), it is easy to see

φ(z) =
mX
i=1

qi
z − zi

˜

qX
k=1

cke
−xk(z−w), (4.54)

where the coefficients ck is defined as

ck = ωk

mX
i=1

qie
−xk(w−zi) for all k = 1, 2, ...q. (4.55)

Therefore, the potential φ can be expanded as a linear combination of exponen-

tials e−xk(z−w), centered at w. Now that the translation operator is diagonal is

obvious— for another point w̃, the potential φ can be expanded as

φ(z) ˜

qX
k=1

c̃ke
−xk(z−w̃), (4.56)
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where

c̃k = cke
−xk(w̃−w) for all k = 1, 2, ...q. (4.57)

For the classical Laguerre quadrature, the integral requires 56 nodes for 15 digit

approximation, 28 nodes for 7 digit approximation and 14 nodes for 3 digit ap-

proximation. Hrycak and Rokhlin [Hrycak98] used better designed quadratures

in [RokhlinS98]. It requires 8 nodes for 3 digit approximation, 16 nodes for 7

digit approximation and 33 nodes for 15 digit approximation.

With these preparations, multipole expansions can be easily converted into

exponential expansions and exponential expansions into local power series expan-

sions.

Another technique in the same paper [Hrycak98] to reduce the computational

complexity of the algorithm is based on the fact that the centers of four child boxes

with the same parent are located symmetrically around the center of their parent.

Recall that in the second step of the upward pass, for each box, four multipole

expansions associated with its four child boxes are shifted to the center of the

box to form a multipole expansion. A straight forward implementation requires

4p2 operations per parent box. The theorem that describes the technique and

the number of operations is recorded below.

Theorem 4.5. Suppose that zk = 1+i√
2
R ∗ ik, here i = (−1)

1
2 , and

Φk(z) =

pX
n=1

akn
(z − zk)k

(4.58)

is a p-term multipole expansion of the potential due to a set of charges located

inside the circle of radius R centered at zk, k = 1, 2, 3, 4. Then for z outside the

circle of radius 2R and centered at the origin,
4X

k=1

Φk(z) =

pX
l=1

bl
zl
, (4.59)
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where

bl =
4X

k=1

lX
j=1

Cj−1
l−1 z

l−j
k akj . (4.60)

Furthermore, the coefficients b1, b2, ...bp can be computed in p2 + 3p operations.

For proof, see [Hrycak98].

In summary, in the second step of the upward pass, the operation count is

reduced to
n−1X
l=2

4l ∗ (p2 + 3p) ≈
1

3

N

s
(p2 + 3p). (4.61)

And in the first step of the downward pass, the operation counts is reduced to

nX
l=2

4l ∗ p2 +
nX
l=2

4l ∗ (4pq + 27q + 4pq) ≈
4

3

N

s
(p2 + 8pq + 27q). (4.62)

The total cost is

2Np+
1

3

N

s
(5p2 + 8pq + 27q + 3p) + 9Ns. (4.63)

We can see that the operation cost is greatly reduced compared to the operation

counts 2Np+ 116
3

N
s
p2+9Ns of the original translation operators. Here q depends

on the precision required.
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Chapter 5

Efficient Translation Operators in Two

Dimensions

From the previous chapter, we know that reducing the complexity of the trans-

lation operators is of fundamental importance to the FMM. In this chapter we

present new efficient translation operators based on matrix decompositions, dis-

cuss how the complexity of these operators is reduced. We will not discuss how

to achieve accuracy with the stability problems associated with them, and how

to efficiently implement them, instead we will leave these issues to Chapter 9

where they will be treated with a same technique. Throughout this dissertation,

we use diag([x1, x2, · · · , xn]0) to denote a diagonal matrix of order n × n with

{x1, x2, · · · , xn} as its diagonal entries.

5.1 Decomposition of translation operators in

two dimensions

In this section we present several different ways to represent these three transla-

tion matrices and discuss how the number of operations for processing them can
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be reduced.

5.1.1 Multipole translation matrix

It is straightforward to see that a truncated multipole-to-multipole translation

matrix (SS(z)) can be represented as the product of three matrices as in the

following lemma.

Lemma 5.1.

SS(z) = diag



1

z

z2

z3

...

zp−1


· P · diag



1

z−1

z−2

z−3

...

z1−p


(5.1)

where

P =



1 0 0 0 · · · 0

1 1 0 0 · · · 0

1 2 1 0 · · · 0

1 3 3 1 · · · 0

...
...

...
...

. . .
...

C0
p−1 C1

p−1 C2
p−1 C3

p−1 · · · Cp−1
p−1


(5.2)

is a Pascal matrix.

Proof. This lemma can be proved in a way similar to the proof of (3.2). Notice

that the (n,m) entry SSnm of the matrix SS(z) is

SSnm =

 Cm
n z

n−m if n ≥ m

0 if n < m
. (5.3)
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It is easy to see that every entry in n-th row of the matrix has a common factor zn,

and every entry in m-th column of the matrix has a common factor z−m. We can

take out the common factor zn of the n-th row and the common factor z−m of the

m-th column, and multiply from left side an identity matrix with the n-th entry

in the diagonal replaced by zn and multiply from right side an identity matrix

with the m-th entry in the diagonal replaced by z−m. This can be done for every

row and column. Therefore we have factored the Pascal matrix into products of

matrices with a Pascal matrix P in the middle and p diagonal matrices in the

left, and p diagonal matrices in the right. Multiplying the diagonal matrices in

the left and the right respectively, we have the decomposition we wanted.

In this lemma a constant matrix P, which is independent of the translation

parameter z, is isolated from the translation matrix. This is the starting point

of this research. Similar properties are later discovered for all other translation

operators in 2D and all translation operators in 3D. After these properties are

found, we are facing the multiplication of the constant matrix and a vector. This

motivates us to find ways to represent the constant matrix. With a constant

matrix, we can precompute or even approximate the matrix with some structured

matrices which admit fast product before the real calculation. Indeed, we have

shown a number of ways to decompose this Pascal matrix exactly in Chapter 3.

Following results in Chapter 3, we have the following theorem.

Theorem 5.2. Translation of a multipole expansion can be done in O(p log p)

operations.

Proof. It is clear from the previous lemma that a multipole translation involves

three matrix-vector multiplications, two of which involve diagonal matrices and

one that involves a Pascal matrix. From Chapter 3 we know that a Pascal matrix
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can be multiplied by a vector in O(p log p) time. Therefore, the total cost requires

O(p log p) operations.

Exponential series

A multipole translation operator can also be expressed as an exponential of a

matrix. This is inspired by the property,

SS(z1 + z2) = SS(z1) ∗ SS(z2), (5.4)

and can be obtained by differentiate the matrix SS(z). This could be used to

approximate the translation operator with a few terms when |z| is very small.

SS(z) = eHz =
∞X
n=0

Hn

n!
zn (5.5)

where

H =



0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 2 0 · · · 0 0

0 0 3 · · · 0 0

...
...
...
. . .

...
...

0 0 0 · · · p− 1 0


(5.6)

The details can be found in [Call93].

5.1.2 Local translation matrix

Similar to the multipole translation matrix, a truncated RR(z) matrix can be

represented as the product of three matrices as in the following lemma.
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Lemma 5.3.

RR(z) = diag



1

−z−1

z−2

−z−3

...

(−z)1−p


· P0 · diag



1

−z1

z2

−z3

...

(−z)p−1


(5.7)

This lemma can be proved in exactly the same way as (5.1). We omit its

proof. Again in this lemma a constant matrix P 0, which is independent of the

translation parameter z, is isolated from the translation matrix. We have shown a

number of ways, which allow fast product, to decompose the transpose of a Pascal

matrix in Chapter 3. Therefore we also have the following similar theorem.

Theorem 5.4. Translation of a local expansion can be done in O(p log p) opera-

tions.

Proof. It is clear from the previous lemma that a local translation involves three

matrix-vector multiplications, two of which involve diagonal matrices and one

that involves the transpose of a Pascal matrix. From Chapter 3 we know that

the transpose of a Pascal matrix can be multiplied by a vector in O(p log p) time.

Therefore, the total cost requires O(p log p) operations.

5.1.3 Multipole to local translation matrix

A truncated SR(z) matrix can be also represented as the product of three ma-

trices as in the following lemma.
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Lemma 5.5.

SR(z) = diag



1

z−1

z−2

z−3

...

z1−p


· PP · diag



−z−1

z−2

−z−3

z−4

...

(−z)−p


(5.8)

where

PP =



1 1 1 1 · · · C0
p−1

1 2 3 4 · · · C1
p

1 3 6 10 · · · C2
p+1

1 4 10 20 · · · C3
p+2

...
...

...
...

. . .
...

C0
p−1 C1

p C2
p+1 C3

p+2 · · · Cp−1
2p−2


(5.9)

This lemma can be proved in exactly the same way as (5.1). We omit its

proof. Again in this lemma a constant matrix PP, which is independent of the

translation parameter z, is isolated from the translation matrix. We have shown

a number of ways, which allow fast product, to decompose the matrix PP in

Chapter 3. Therefore we also have the following similar theorem.

Theorem 5.6. Translation of a multipole expansion to a local expansion can be

done in O(p log p) operations.

Proof. It is clear from the previous lemma that a multipole to local translation

involves three matrix-vector multiplications, two of which involve diagonal ma-

trices and one that involves the matrix PP . From Chapter 3 we know that the
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matrix PP can be multiplied by a vector in O(p log p) time. Therefore, the total

cost requires O(p log p) operations.

We have factored out a constant matrix in each of the three translation ma-

trices. This is a key step. Its importance can never be overstated in this research,

since for a constant matrix, we can almost always come up with a number of dif-

ferent ways to represent it, which can speed up the matrix-vector product. This

can open some further research opportunities.

5.2 Complexity analysis.

From Theorems 4.2, 4.3, and 4.4, we know that order of all three original trans-

lation operators is of the order of O(p2). A direct implementation of these op-

erators involving a straightforward complex matrix-vector product requires 8p2

flops. Our efficient implementation of the same operations based on matrix de-

composition involving the fast Fourier transform reduces number of operations

in matrix-vector product to 20p log 2p flops, with one precomputed FFT. That is

O(p2) operations in the original algorithm is reduced to approximately 5
2
p log(2p)

operations in the new algorithm. Let us see how this would affect the overall

complexity.

We know the total cost of the original algorithm for all five steps is approxi-

mately

2Np+
116

3

N

s
p2 + 9Ns, (5.10)

where s is the maximum number of particles per box at the finest level. With

s ≈
√
348
9

p, the total number of operations is approximately

40Np. (5.11)
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In our new algorithm, the total cost would be

2Np+
116

3

N

s
∗
5

2
p log(2p) + 9Ns. (5.12)

With s ≈ (870p log(2p))0.5

9
, the improved count is approximatelyÃ

2 + 60

s
log(2p)

p

!
Np. (5.13)

That is when p = 12, the two algorithms should break even. For increased

precision of about 15 digits, from error bound (4.46), we need p = 55. The number

of operations in current algorithm is 1265N , while the number of operations in

the old algorithm is 2200N . For more extended precision, the new algorithm

should show more advantages than the old one. We would like to note that

choosing a proper parameter s, which determines number of levels in the data

structure, has a major effect over the efficiency of the program. For example, in

the original algorithm proposed in [Greengard88], if s is chosen to be 1, for p = 55,

the number of operations is 1.1709 ∗ 105N ; and if new translation operators are

used, then the number of operations should improved to 3.6173∗104N . Since the

error bound (4.46) is very conservative, the number p of terms required is much

smaller for the desired accuracy in the real calculation. Numerical experiments

also indicate that the FMM with the new fast translation operators are faster

than what theoretical analysis predicts. For numerical results, see Chapter 10.

5.3 Alternative strategy for computing the in-

teraction list

In Theorem 4.5, note that zk = 1+i√
2
R ∗ ik. The essential point in this theorem

to reduce the complexity is that the centers of child boxes can be expressed as
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Figure 5.1: Lists of 4 boxes in an interaction list whose centers form a square

zk = z ∗ ik. That is, this trick can be similarly employed to the multipole to

local translation operator to reduce the operation count of conversion of a full

interaction list of a box from 27p2 to 15p2+12p. (Look at figure 5.1, sixteen boxes

in a full interaction list are labelled with numbers 1,2,3,4. Centers of four boxes

with the same number inside form a square. Therefore there are four squares

that can utilize this trick.).
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Chapter 6

The FMM in Three Dimensions

In this chapter we follow the work of Greengard of the fast multipole method

(FMM) in his dissertation [Greengard88]. The purpose is to establish the ideas

about the FMM in 3D, translation involved, and representation of those opera-

tions as matrices. In Chapters 7 and 8, we will provide decomposition of these

matrices to speed up the translation step. We will also provide a complexity

analysis of the FMM with the accelerated translation operations.

In this chapter we first present how to represent a potential field in three

dimensional space as a multipole expansion. Then we give results on how to

calculate the coefficients of a new multipole/local expansion that results from

translating an existing multipole/local expansion, and coefficients of a local ex-

pansion resulting from the translation of an existing multipole expansion, and

rewrite them as translation operators in the form of matrix-vector product. Next

we are ready to discuss the differences between the FMM in two dimensions

and the FMM in three dimensions, and analyze the complexity of the algorithm.

Finally, we review previous work that has been done to improve the complex-

ity of the translation operators and hence reduce the overall complexity of the

algorithm. A lot of material here such as the multipole expansion of a field, spher-
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ical harmonics, translation theorems, and the FMM algorithm can be found in

Greengard’s dissertation [Greengard88]. The complexity analysis can be found in

[Greengard97]. We use a different definition of spherical harmonics from that in

Greengard and Rokhlin ’s work [Greengard88, Greengard97]. We also present a

slightly different error bound (6.42) for the multipole to local translation theorem.

6.1 The series expansion of a potential field in

three dimensional space

In three dimensions, the potential at P = (x, y, z) ∈ R3 due to a point charge of

unit intensity at P0 = (x0, y0, z0) is given by:

φ(x, y, z) =
1

R
, (6.1)

where R = kP − P0k =
p
(x− x0)2 + (y − y0)2 + (z − z0)2, denoting the dis-

tance between points P and P0.

A series expansion for the potential at P in terms of its distance r from the

origin O will lead us to a multipole expansion[Kellogg53]. A natural coordinate

system of choice to express distance from the origin would be a spherical coordi-

nate system. Let P = (r, θ, φ) and P0 = (r0, θ0, φ0) in the spherical coordinates

system. The law of cosines yields

R2 = r2 + r20 − 2rr0 cos γ, (6.2)

where γ is the angle between the rays OP and OP0, and satisfies

cos γ = cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0). (6.3)
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The potential at P of a unit particle at P0 can be rewritten

1

R
=

1

r

q
1− 2r0

r
cos γ +

r20
r2

(6.4)

Now set r0
r
= µ and cos γ = u, then

1

R
=

1

r
p
1− 2uµ+ µ2

(6.5)

But (1− 2uµ+ µ2)−
1
2 is the generating function of Legendre polynomials,

1p
1− 2uµ+ µ2

=
∞X
n=0

Pn(u)µ
n (6.6)

where Pn is the Legendre polynomial of degree n, and µ < 1. So for r > r0, we

have the multipole expansion

1

R
=
1

r

∞X
n=0

Pn(cos γ)
³r0
r

´n
=

∞X
n=0

rn0Pn(cos γ)
1

rn+1
. (6.7)

Similarly for r < r0, we have the local expansion

1

R
=
1

r0

∞X
n=0

Pn(cos γ)

µ
r

r0

¶n

=
∞X
n=0

rnPn(cos γ)
1

rn+10

. (6.8)

Using the property of the Legendre polynomials that Pn(cos γ) · 1, we easily

obtain the following two error bounds,¯̄̄̄
¯ 1R −

pX
n=0

rn0Pn(cos γ)
1

rn+1

¯̄̄̄
¯ ·

1

r − r0

³r0
r

´p+1
, for r > r0; (6.9)¯̄̄̄

¯ 1R −
pX

n=0

rnPn(cos γ)
1

rn+10

¯̄̄̄
¯ ·

1

r0 − r

µ
r

r0

¶p+1

, for r < r0. (6.10)

Now let us define the spherical harmonics of degree n and order m

Y m
n (θ, φ) = (−1)

m

s
(n−m)!

(n+m)!
Pm
n (cos θ)e

imφ, (6.11)
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where Pm
n (x) are the associated Legendre functions, which can be defined by

Rodrigues’s formula

Pm
n (x) = (1− x2)m/2 d

m

dxm
Pn(x), for m > 0, (6.12)

and

P−mn (x) = (−1)m
(n−m)!

(n+m)!
Pm
n (x). (6.13)

The associated Legendre polynomial Pn(x) can be produced from

Pm
n (x) =

(1− x2)m/2

2nn!

dn+m

dxn+m
(x2 − 1)n, for m = −l, · · · ,−1, 0, 1, · · · , l. (6.14)

The associated Legendre functions satisfy the following recursion

(n−m+ 1)Pm
n+1 = (2n+ 1)xP

m
n (x)− (n+m)Pm

n−1(x), (6.15)

and

Pm+2
n = 2 (m+ 1)

x

(1− x2)
1
2

Pm+1
n (x)− (n−m)(n+m+ 1)Pm

n (x). (6.16)

The spherical harmonics are given a variety of definitions in the literature, our de-

finition agrees with that of Edmonds [Edmonds60], except for a factor
¡
2n+1
4π

¢1/2
.

We note as well that for m < 0 this definition disagrees with that used by Green-

gard and Rokhlin [Greengard88, Greengard97, Cheng99] by a factor (−1)m. Using

the spherical harmonic addition theorem

Pn(cos γ) =
nX

m=−n
(−1)mY −mn (θ0, φ0)Y

m
n (θ, φ), (6.17)

we have the multipole expansion,

1

R
=

∞X
n=0

rn0
1

rn+1

nX
m=−n

(−1)mY −mn (θ0, φ0)Y
m
n (θ, φ). (6.18)

Therefore it is straightforward to form a multipole expansion for a field con-

taining a set of k charges. The formal description is in the following theorem

[Greengard88].
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Theorem 6.1. (Multipole Expansion) Suppose that

Φ(z) =
kX
i=1

qi
kPi − Pk

(6.19)

is the potential due to a set of k charges of strengths {qi, i = 1, . . . , k} located at

points {Pi = (ri, θi, φi), i = 1, . . . , k}, with |ri| < a. Then for any P = (r, θ, φ) ∈

R3 with |r| > a, the potential Φ(z) can be expressed as the following

Φ(z) =
∞X
n=0

nX
m=−n

Mm
n

rn+1
Y m
n (θ, φ), (6.20)

where

Mm
n =

kX
i=1

(−1)mqi ∗ r
n
i ∗ Y

−m
n (θi, φi) . (6.21)

Furthermore, for any p ≥ 1, the error of truncating the infinite summation to

order p is given by¯̄̄̄
¯Φ(z)−

pX
n=0

nX
m=−n

Mm
n

rn+1
Y m
n (θ, φ)

¯̄̄̄
¯ · A

r − a
(
a

r
)p+1, (6.22)

where

A =
kX
i=1

|qi|. (6.23)

Its proof can be found in [Greengard88].

With this theorem, we can use a single multipole expansion to express the far

field potential due to multiple charges inside a sphere.

Note that in 3D we have p2 terms of coefficients in the expansions as opposed

to p terms of coefficients in the 2D case.
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6.2 Translation operators in the three dimen-

sional Laplace equation and their matrix forms

In this section we will provide three modified multipole translation theorems given

in [Greengard88] and [Cheng99], which are key to the FMM algorithm.

Theorem 6.2. (Translation of a Multipole Expansion) Suppose that a set of N

charges of strengths {qi, i = 1, . . . , N} are located at points {Pi, i = 1, ..., N}

inside the sphere S of radius a with center at Q = (ρ, α, β) and that for any point

P = (r, θ, φ) outside the sphere S, the potential due to these charges is given by

multipole expansion

Φ(P ) =
∞X
n=0

nX
m=−n

Om
n

r0n+1
Y m
n (θ

0, φ0), (6.24)

Where P−Q = (r0, θ0, φ0). Then the potential at any point P outside of the sphere

S1 of radius (a+ ρ) with center at the origin can be expressed as,

Φ(P ) =
∞X
j=0

jX
k=−j

Mk
j

rj+1
Y k
j (θ, φ), (6.25)

where

Mk
j =

jX
n=0

min(k+j−n,n)X
m=max(k+n−j,−n)

Ok−m
j−n (−1)

mAm
n A

k−m
j−n ρ

nY −mn (α, β)

Ak
j

, (6.26)

with

Am
n =

1p
(n−m)!(n+m)!

. (6.27)

Furthermore, for any p ≥ 1, the error of the truncated series is given by¯̄̄̄
¯Φ(P )−

pX
j=0

jX
k=−j

Mk
j

rj+1
Y k
j (θ, φ)

¯̄̄̄
¯ ·

Ã PN
i=1 |qi|

r − (a+ ρ)|

!µ
a+ ρ

r

¶p+1

. (6.28)
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Its proof can be found in [Greengard88] and [Cheng99].

Remark: We can rewrite coefficients of the new expansion in terms of those

of the old expansion in matrix form as follows,

M = SS(ρ, α, β) ∗O (6.29)

where

M =

·
M0
0 M−1

1 M0
1 M1

1 ... M−p
p M−p+1

p M−p+2
p ... Mp

p

¸0
, (6.30)

O =

·
O0
0 O−11 O0

1 O1
1 ... O−pp O−p+1p O−p+2p ... Op

p

¸0
, (6.31)

and SS(ρ, α, β) is the dense matrix mapping the multipole expansion coefficients

vector O into the shifted multipole expansion coefficients vector M .

Theorem 6.3. (Translation of a Local Expansion) Suppose that

Φ(P ) =

pX
n=0

nX
m=−n

Om
n r

0nY m
n (θ

0, φ0) (6.32)

is a local expansion centered at Q = (ρ, α, β), Where P = (r, θ, φ), and P −Q =

(r0, θ0, φ0). Then the local expansion centered at origin is

Φ(P ) =

pX
j=0

jX
k=−j

Lk
j r

jY k
j (θ, φ), (6.33)

where

Lk
j =

pX
n=j

k−j+nX
m=k−n+j

Om
n (−1)

n−j Ak
jA

m−k
n−j ρ

n−jY m−k
n−j (α, β)

Am
n

, (6.34)

with Am
n defined by (6.27).

Its proof can be found in [Greengard88] and [Cheng99].
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Remark: We can rewrite coefficients of the new expansion in terms of those

of old expansion in the matrix format as follows,

L = RR(ρ, α, β) ∗O (6.35)

where

O =

·
O0
0 O−11 O0

1 O1
1 ... O−pp O−p+1p O−p+2p ... Op

p

¸0
, (6.36)

L =

·
L00 L−11 L01 L11 ... L−pp L−p+1p L−p+2p ... Lp

p

¸0
, (6.37)

and RR(ρ, α, β) is the dense matrix mapping the local (regular) expansion co-

efficients vector O into the shifted local (regular) expansion coefficients vector

L.

Theorem 6.4. (Conversion of a Multipole to a Local Expansion) Suppose that a

set of N charges of strengths {qi, i = 1, . . . , N} are located at points {Pi, i = 1, ..., N}

inside the sphere S1 of radius R1 with center at Q = (ρ, α, β) and ρ > R1 + R2.

Suppose further that the potential at any point P outside the sphere S1 due to

these charges is given by multipole expansion

Φ(P ) =
∞X
n=0

nX
m=−n

Om
n

r0n+1
Y m
n (θ

0, φ0), (6.38)

Where P − Q = (r0, θ0, φ0). Then the potential at any point P = (r, θ, φ) inside

of the sphere S2 which lies outside of the sphere S1 centered at the origin with

radius R2 can be expressed as,

Φ(P ) =
∞X
j=0

jX
k=−j

Lk
j r

jY k
j (θ, φ), (6.39)
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where

Lk
j =

∞X
n=0

nX
m=−n

Om
n (−1)

n+kAm
n A

k
jY

m−k
j+n (α, β)

Am−k
j+n ρ

j+n+1
, (6.40)

with Am
n defined by (6.27). Furthermore, for any p ≥ 1, the error of truncating

the infinite summation is given by¯̄̄̄
¯Φ(P )−

pX
j=0

jX
k=−j

Lk
j r

jY k
j (θ, φ)

¯̄̄̄
¯ ·

Ã PN
i=1 |qi|

ρ− R1 − r

! ¯̄̄̄
r

ρ− R1

¯̄̄̄p+1
. (6.41)

In FMM, Lk
j , j = 0, 1, · · · , p, k = −j, · · · ,−1, 0, 1, · · · , j, are calculated by trun-

cating Om
n , that is , O

m
n = 0, for n = p+ 1, · · · . Let us in this case denote Lk

j by

L̂k
j , we have the following error bound,¯̄̄̄

¯Φ(P )−
pX

j=0

jX
k=−j

L̂k
j r

jY k
j (θ, φ)

¯̄̄̄
¯ ·

Ã PN
i=1 |qi|

ρ− R1 − r

! ¯̄̄̄
r

ρ− R1

¯̄̄̄p+1
+ (6.42)Ã PN

i=1 |qi|

ρ− R1 − r

! ¯̄̄̄
R1
ρ− r

¯̄̄̄p+1
A proof of this theorem can be found in [Greengard88] and [Cheng99]. The

last inequality can be proved in a way similar to that in 4.30.

remarks:

1. Note that the bound (6.42) estimates the error of the final shifted truncated

expansion from the true potential. Thus this bound is all we need in the

error analysis.

2. We can rewrite coefficients of the new expansion in terms of those of old

expansion in matrix form as follows,

L = SR(ρ, α, β) ∗O (6.43)

where
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O =

·
O0
0 O−11 O0

1 O1
1 ... O−pp O−p+1p O−p+2p ... Op

p

¸0
, (6.44)

L =

·
L00 L−11 L01 L11 ... L−pp L−p+1p L−p+2p ... Lp

p

¸0
, (6.45)

and SR(ρ, α, β) is the dense matrix mapping the multipole (singular) expansion

coefficients vector O into the shifted local (regular) expansion coefficients vector

L.

The Fast Multipole Method (FMM) relies on these three linear operators

to perform all of the necessary manipulations. It is clear from the formulas

that the matrices representing these operators are dense, so that each translation

would require O(p4) operations if we apply the corresponding matrix to truncated

expansion with O(p2) coefficients. This is usually the primary obstacle to good

performance of most existing FMM implementations.

6.3 The fast multipole method

Now that we have all the necessary translation operators we are ready to describe

the FMM in three dimensions. Despite the increased mathematical complexity

of the three-dimensional case, the framework of the FMM algorithm in three

dimensions is the same as in two dimensions. It also has two parts, the construc-

tion of the data structure, and the computational step — two passes, five steps.

We do not repeat the whole algorithm, instead we just note the modifications

needed here. In three dimensions, the computational box is a cube that contains

the whole computational domain. Therefore each box at level l will be equally

subdivided into eight child cube boxes at level l+1 instead of four square boxes.
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In general, the number of neighbors of a box increases from 9 to 27 and the size

of the interaction list increases from 27 to 189.

Since the radius of the sphere that encloses a cube of length 2a, which is 30.5a,

is bigger than the radius of the circle that encloses a square of length 2a, which is

20.5a, the error decays muchmore slowly, like (0.76)p. Further, the current number

of terms is p2, therefore the number of terms needed is a much bigger number.

In the original FMM proposed in Greengard’s thesis [Greengard88], he suggested

to increase the neighbor list to include "second nearest neighbor", so that boxes

which interact via multipole expansions are separated by at least two intervening

boxes of the same size. The error then decays faster, like (0.4)p. However, the

number of neighbors increases from 27 to 125 and the size of the interaction list

increases from 189 to 875. This proves to be too much of a burden to the FMM.

Later more efficient new translation operators are developed [Greengard97], the

FMM uses the scheme with 27 neighbors and 189 as the size of interaction list

for a box.

6.4 Error analysis

The error analysis can be done in a similar way to that of the two dimensional

case. The key is to realize that although truncated operators in Theorems 6.1

and 6.2 cause errors, all the errors can be estimated using the single error bound

(6.42) given in Theorem 6.4.

For a particular evaluation location y, the error of computed potential at this

point caused by the entire system is

E(y) =

¯̄̄̄
¯
NX
i=1

φ(y, xi)−
NX
i=1

φ̂(y, xi)

¯̄̄̄
¯ , (6.46)
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where φ(y, xi) is the potential at point y induced by a particle at point xi and

φ̂(y, xi) is the computed potential. From the process of the FMM, we know that

the particles in the neighbor boxes of the box containing y at the finest level are

handled directly, therefore there is no error in these calculations. All the rest of

particles are contained in boxes that belong to different level of interaction lists.

Let us denote by ILl the interaction list for the box that contains point y at level

l, Pb the set of all particles contained in box b. We have,

E(y) =

¯̄̄̄
¯
NX
i=1

³
φ(y, xi)− φ̂(y, xi)

´¯̄̄̄¯
·

¯̄̄̄
¯

nX
l=2

X
b∈ILl

X
i∈Pb

³
φ(y, xi)− φ̂(y, xi)

´¯̄̄̄¯ (6.47)

Recall that in the FMM, there are errors in steps 1, 2, and 3, but the total

error in the final local expansions Ψn,j is controlled by (6.42). Denote respectively

R1, ρ, r in the error bound (6.42) at level l by Rl, ρl, rl. We have

E(y) ·
nX
l=2

X
b∈ILl

Ã P
i∈Pb |qi|

ρl − Rl − rl

¯̄̄̄
rl

ρl − Rl

¯̄̄̄p+1
+ (6.48)

P
i∈Pb |qi|

ρl − Rl − rl

¯̄̄̄
Rl

ρl − rl

¯̄̄̄p+1!
(6.49)

·
nX
l=2

X
b∈ILl

P
i∈Pb |qi|

(2− 30.5)al

µ
30.5

4− 30.5

¶p+1

·
nX
l=2

P
b∈ILl

P
i∈Pb |qi|

(2− 30.5)2−l

µ
30.5

4− 30.5

¶p+1

. (6.50)

Assuming particles are homogeneously distributed and with same magnitude of

the intensities, and ignoring the boundary effect, we have in general,

X
b∈ILl

X
i∈Pb

|qi| ·
C1N

8l−2
, (6.51)
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for some constant C1 · 1. Therefore,

E(y) ·
nX
l=2

C1N2
l

(2− 30.5)8l−2

µ
30.5

4− 30.5

¶p+1

(6.52)

·
nX
l=2

64C1N

(2− 30.5)4l

µ
30.5

4− 30.5

¶p+1

. (6.53)

So the total error for the entire system is

E(y) · CN

µ
30.5

4− 30.5

¶p+1

, (6.54)

where C = 16C1
3(2−√3) is a constant. Of course, this error bound is very conservative,

even though it is rigorous.

6.5 Complexity of the FMM

We now go on to analyze complexity. These results are adapted from [Greengard97].

Suppose there is a total of N particles in the system. Set the number of levels

to n ≈ log8N and the length of multipole and local expansions to p2 ≈ (log(1
�
))2.

Then the number of boxes at the finest level is 8n, and the number of particles

per box is s ≈ N
8n
. We conclude that the number of operations required for the

initialization of the FMM algorithm is again usually O(N logN) and the num-

ber of operations required for the computational steps, i.e. the upward pass and

downward pass, is O(N) for a fixed p ≈ logc(
1
�
), where c =

√
3

4−√3 . ( Similar to

(4.46), if we want a fixed precision, then p ≈ logc(
N
�
). The resulting algorithm

can be of complexity of O(N log2N) or O(N log4N).) It is again true that the

cost of the computational step dominates the total cost. An efficient second part

is central to reduce the total complexity. The complexity of each step of the

second part of FMM is analyzed in detail as the following.
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In step 1, for each particle, the potential induced by it is expressed as a p2-

term expansion about the center of the box that contains it at the finest level.

The number of operations required at this step is O(Np2).

In step 2, each translation requires O(p4) operations. For level l, there are

8l boxes, and for each box, it requires 8 translations. So the total number of

operations is the order of

n−1X
l=2

8 ∗ 8l ∗ p4 =
nX
l=3

8l ∗ p4 =
83 − 8n+1

1− 8
p4 ≈

8

7
8np4 =

8

7

N

s
p4. (6.55)

In step 3, local translation operator and multipole to local translation operator

are used. They both require O(p4) operations. At level l, there are 8l boxes, and

for each box, it requires one local translation and at most 189 multipole to local

translations. The operation count in this step is

nX
l=2

8l ∗ p4 +
nX
l=2

8l ∗ p4 ∗ 189 =
82 − 8n+1

1− 8
∗ 190 ∗ p4 ≈

8

7
∗ 8n ∗ 190p4 =

1520

7

N

s
p4.

(6.56)

In step 4, each particle requires one evaluation of a p2-term local expansion.

This step requires O(Np2) operations.

In step 5, each particle in a box at the finest level interacts with particles

contained at its 27 neighboring boxes. And there are about s particles per box.

Therefore this step requires O(27Ns) operations.

The total cost for all five steps is approximately

2Np2 +
1528

7

N

s
p4 + 27Ns. (6.57)

It is clear that the total complexity can be optimized by selecting an ap-

propriate parameter s. With s ≈
q

1528
189

p2, the total number of operations is

approximately 156Np2.
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It is clear that the major obstacle to achieving reasonable efficiency at high

precision is the cost of translation operators. There have been several improve-

ments proposed [GreengardL88, Cheng99] since the original FMM appeared. We

will discuss them in next section.

6.6 Previous work on three dimensional trans-

lation operators

In this section we first introduce the Euler angles for the rotation group [Edmonds60]

to prepare some mathematical preliminaries. Then we describe how to represent

each of these three translation matrices as a product of a rotation matrix, a coax-

ial translation matrix and another rotation matrix. It is well known that applying

a rotation matrix or a coaxial translation matrix to an arbitrary vector requires

only O(p3) operations. Therefore, this approach reduces the cost of translation

operators from O(p4) to O(p3) [White96]. Finally the exponential representation

(or "plane wave" expansions ) as described in the two-dimensional space to diag-

onalize the multipole-to-local translation is presented, which further reduces the

complexity of multipole to local translation operators.

6.6.1 The Euler angles

It is often very convenient to use the Euler Angles to link a set of three mutually

perpendicular axes (x, y, z) (called frame of reference S, always assuming right-

handed frame of axes) to a new set of three mutually perpendicular axes (x̂, ŷ, ẑ)

(called frame of reference Ŝ) due to a rotation about the fixed origin. In the

present case a new set of axes with specified ẑ direction, which is along the
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Figure 6.1: Rotation-based translations

vector starting from the center of the desired multipole or local expansion to the

center of the original multipole or local expansion, can be obtained by performing

three rotations about two of the three axes. The Euler angles (αβγ) are described

by a sequence of three rotations of vectors:

1. A rotation α(0 · α < 2π) about n1 = (0, 0, 1),written as Rz(α).

2. A rotation β(0 · β · π) about n2 = (− sinα, cosα, 0), written as Ry0(β).

3. A rotation γ(0 · γ < 2π) about n3 = (cosα sinβ, sinα sinβ, cos β) written

as Rz00(γ).

The effect of such rotations of the frame of reference is denoted by operator

R( αβγ). So we can formally express the effect of such rotations of the frame of
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reference upon the spherical harmonics Y m
n (θ, φ) as the following equation:

R(αβγ)Y m
n (θ, φ) = Y m

n (θ̂, φ̂). (6.58)

It is easy to see that R(β00)Y m
n (θ, φ) = Y m

n (θ, φ−β). Therefore, when a rotation

about z-axis is performed, the resulting vector consisting of the coefficients of the

new multipole or local expansion can be obtained by multiplying a diagonal ma-

trix D(β00), where D( αβγ) is the matrix corresponding to the rotation R(αβγ).

The matrix of D(αβγ) acting on j-th degree of spherical harmonics is denoted

by D(j)(αβγ), or D(j). We shall also write

D
(j)
m0m(0β0) = d

(j)
m0m(β). (6.59)

Therefore

D
(j)
m0m(αβγ) = eim

0γd
(j)
m0m(β)e

imα. (6.60)

6.6.2 Rotation-based translations

We denote the special cases of the matrices of the coaxial translations by SS(ρ),

RR(ρ), SR(ρ), which shift a distance ρ in the z-direction. From [Cheng99], we

know that,

Lemma 6.5.

SS(ρ, α, β) = D(−β00)D(0− α0)SS(ρ)D(0α0)D(β00), (6.61)

RR(ρ, α, β) = D(−β00)D(0− α0)RR(ρ)D(0α0)D(β00), (6.62)

SR(ρ, α, β) = D(−β00)D(0− α0)SR(ρ)D(0α0)D(β00). (6.63)

It is clear that the cost of these operators implemented as the factorization of

the above matrices is

O
¡
p2
¢
+O

¡
p3
¢
+O

¡
p3
¢
+O

¡
p3
¢
+O

¡
p2
¢
. (6.64)
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Therefore the total computational cost of the FMM is approximately

2Np2 +
1528

7

N

s
3p3 + 27Ns. (6.65)

With s ≈
√
10696
21

p
3
2 , the cost becomes

2Np2 + 270Np
3
2 . (6.66)

6.6.3 Exponential representation

Very similar to the two-dimensional case, exponential representation is constructed

to reduce the cost of multipole to local translation operator [Cheng99, GreengardL88].

The key idea is the same as in two dimensions, it is to represent the potential as

plane wave expansion through integral and quadrature, thus to reduce the linear

but dense multipole to local translation operator to a diagonal one.

They considered the potential 1
R
= 1

kP−P0k at a evaluation location P = (x, y,z)

induced by a unit charge at P0 = (x0, y0,z0). First the potential can be represented

as an integral when (z − z0) > 0, then

1

R
=
1

2π

Z ∞

0

e−λ(z−z0)
Z 2π

0

eiλ((x−x0) cosα+(y−y0) sinα)dαdλ (6.67)

Then this integral is approximated by the following formula using finite quadra-

tures. Thus, the potential of a unit charge at the point z0 can be approximated

by a linear combination of exponentials or plane waves as the following

¯̄̄̄
¯̄ 1R −

s(�)X
k=1

ωk

Mk

MkX
j=1

e−λk(z−z0)eiλk|(x−x0) cosαj,k+(y−y0) sinαj,k|

¯̄̄̄
¯̄ < � (6.68)

with the integers s(�) and triplets {Mk, ωk, λk, k = 1, 2, ...s(�)} all depend on �,

and αj,k =
2πj
Mk
. Now the rest process are very similar to the two dimensional
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process. It is clear now potential can be represented as exponential expansions

and their translations are diagonal. Theorems are provided that multipole expan-

sions can be converted into exponential expansions and exponential expansions

into local expansions. Combining these with the fact that an interaction list can

be partitioned into six directional lists, each of which can be processed at once,

a fast multipole to local translation operator results.
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Chapter 7

Fast Rotation Transform

7.1 Introduction

From the previous chapter, we know that translation operators can be decom-

posed as the product of coaxial translations and rotations. We will develop a

fast algorithm for coaxial translations in the next chapter. In this chapter we de-

velop a fast algorithm for the rotation operation, which we call the fast rotation

transform.

Such fast transforms are also important in other scientific disciplines, such as

quantummechanics, geoscience, and computer vision, where there is increased in-

terest in high-degree spherical harmonic expansions. A lot of literature is devoted

to computing the matrix elements fast using recurrence relations [Gumerov2001,

Risbo96, Choi99]. The computations involved are extremely costly. This fast

rotation transform will greatly improve the situations.

Driscoll and Healy [Driscoll94] developed a fast algorithm to compute spher-

ical harmonic ("Fourier") transforms and convolutions on the 2-sphere, which

is related to this. Their algorithm can be used to produce the coefficients of

spherical harmonic expansion of a function by sampling points on sphere. Our
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algorithm can be used to compute the coefficients of a multipole/local expansion

on rotation transform.

To make this chapter independent, first, we repeat necessary information

about the rotation group SO(3) and spherical harmonics. After this, we present

results on decomposing the rotational matrix that allow fast matrix-vector prod-

uct. Then we discuss the complexity of the fast rotation transform.

We define a rotation about a given axis to be the one that carries a right-

handed screw in the positive direction along that axis. As mentioned before,

the Euler angles are the most convenient way to parameterize the rotation group

SO(3). Given any two sets of right-handed frame of axes, S1 and S2, sharing a

common origin, we can always find the Euler angles (αβγ) so that we can rotate

frame S1 into frame S2 as follows,

1. A rotation α (0 · α < 2π) about n1 = (0, 0, 1), written as Rz(α).

2. A rotation β (0 · β · π) about n2 = (− sinα, cosα, 0), written as Ry0(β).

3. A rotation γ (0 · γ < 2π) about n3 = (cosα sinβ, sinα sinβ, cosβ) written

as Rz00(γ).

The effect of such rotations of the frame of reference is denoted by operator

R(αβγ) = Rz00(γ)Ry0(β)Rz(α). Let us consider a function f : R3 → C under

frame S1, or y = f(r, θ, φ), where y ∈ C. After rotation R(αβγ), we would have

f(r, θ0, φ0). This can be expressed formally by

R(αβγ)f(r, θ, φ) = f(r, θ0, φ0). (7.1)

For example, the effect of such rotations of the frame of reference upon the

spherical harmonics Y m
n (θ, φ) can be expressed as the following equation:

R(αβγ)Y m
n (θ, φ) = Y m

n (θ̂, φ̂). (7.2)
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It is easy to see that R(β00)Y m
n (θ, φ) = Y m

n (θ, φ − β) since a rotation about z

axis only changes the angle φ, not θ. Therefore, when a rotation about z-axis is

performed, the resulting vector consisting of the coefficients of the new multipole

or local expansion can be obtained by multiplying a diagonal matrix D(β00)

to the vector of the coefficients of the original expansion, where D(αβγ) is the

matrix corresponding to the rotation R(αβγ). The following lemma is needed

to reduce the representation of the group SO(3) on a linear space L2(S2) into a

sum of irreducible representations, where L2(S2) is a linear space spanned by an

orthonormal basis consisting spherical harmonics

Lemma 7.1. Under any rotation, each spherical harmonic of degree n is trans-

formed into a linear combination of the spherical harmonics of the same degree

n, that is,

R(αβγ)Y m
n (θ, φ) =

nX
l=−n

Y l
n(θ, φ). (7.3)

The (2n+ 1) spherical harmonics Y l
n, −n · l · n form a invariant space under

rotation.

A proof can be found in [Edmonds60].

The matrix D(αβγ) acting on j-th degree of spherical harmonics is denoted

by D(j)(αβγ), or D(j). We shall also write

D
(j)
m0m(0β0) = d

(j)
m0m(β). (7.4)

Combining all these facts, we have

D
(j)
m0m(αβγ) = eim

0γd
(j)
m0m(β)e

imα. (7.5)
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7.2 Decomposition of the rotational matrix

It is clear from (7.5) that in order to reduce the order of the complexity of the

rotation matrix we need only treat D(0β0). The entries of this matrix are given

by the following formula [Edmonds60]:

d
(j)
m0m(β) =

·
(j +m0)!(j −m0)!
(j +m)!(j −m)!

¸ 1
2

∗ (7.6)X
σ

Cj−m0−σ
j+m Cσ

j−m(−1)
j−m0−σ(cos

β

2
)2σ+m

0+m(sin
β

2
)2j−2σ−m

0−m(7.7)

A similarity transformation may be employed to express a D(0β0) in terms of

a rotation about the z-axis, i.e. a D(β00), which is diagonal (see [Edmonds60]):

D(0β0) = D(−
π

2
00)D(0−

π

2
0)D(β00)D(0

π

2
0)D(

π

2
00). (7.8)

Hence we need only treatD(0π
2
0) andD(0− π

2
0), which are constant matrices.

It is easy to see that

D(0−
π

2
0) = D(0

π

2
0)0. (7.9)

Let us consider the case when β = π
2
. From (7.6), the entries of this rotation

matrix can be simplified as the following,

d
(j)
m0m =

µ
1

2

¶j ·
(j +m0)!(j −m0)!
(j +m)!(j −m)!

¸ 1
2 X

σ

Cj−m0−σ
j+m Cσ

j−m(−1)
j−m0−σ. (7.10)

7.2.1 Decomposition 1

Theorem 7.2. This matrix can be factored as the following,

D(j)(0
π

2
0) = diag(v1) ∗ diag(v2) ∗ rot180(P ) ∗ diag(v3) ∗ diag(v2) ∗ P ∗ diag(v4),

(7.11)
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where v1(m) = [(j +m)!(j −m)!]−
1
2 , v2(m) = (−1)j+m, v3(m) = [2−m], v4(m) =

[(j +m)!(j −m)!]
1
2 , m = −j, · · · , 0, · · · j, P is Pascal matrix

P =



C0
0 0 0 ... 0

C0
1 C1

1 0 ... 0

C0
2 C1

2 C2
2 ... 0

... ... ... ... ...

C0
2j C1

2j C2
2j ... C2j

2j


, (7.12)

and rot180(P ) is a matrix resulted from rotating Pascal matrix 180 degree,

rot180(P ) =



C2j
2j ... C2

2j C1
2j C0

2j

... ... ... ... ...

0 ... C2
2 C1

2 C0
2

0 ... 0 C1
1 C0

1

0 ... 0 0 C0
0


. (7.13)

Proof. Let us verify this identity.

First from (7.10) it is easy to show that

(−1)m
0
d
(j)
m0m

µ
(j +m0)!(j −m0)!
(j +m)!(j −m)!

¶1/2
= (−1)m d

(j)
mm0

µ
(j +m0)!(j −m0)!
(j +m)!(j −m)!

¶1/2
.

(7.14)

For the pair (m0,m), we know d
(j)
m0m. We need only to compute it on the right

side. We compute the corresponding entry, which is denoted by am0m, of the

matrix

2j ∗ rot180(P ) ∗ diag(v3) ∗ diag(v2) ∗ P, (7.15)

and then multiply out the rest of diagonal matrices. The entries in the row

corresponding to m0 in the matrix rot180(P ) are

RPm0t =

 0 if t < m0

Cj−t
j−m0 if t ≥ m0

. (7.16)
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The entries in the column corresponding to m in matrix P are

Ptm =

 0 if t < m

Cj+m
j+t if t ≥ m

. (7.17)

We have

am0m =
X

j≥t≥max(m,m0)

(−2)j−tCj−t
j−m0C

j+m
j+t , (7.18)

which is the coefficient of xj+m in (1 + x)j+m
0
(1− x)j−m

0
and is the same as

2j
µ
(j +m0)!(j −m0)!
(j +m)!(j −m)!

¶1/2
d
(j)
m0m. (7.19)

Therefore, we have

d
(j)
m0m = 2

−j
µ
(j +m0)!(j −m0)!
(j +m)!(j −m)!

¶−1/2
am0m (7.20)

which completes the proof.

Remark: In this decomposition, we have factored the rotation matrix into

products of diagonal matrices, a Pascal matrix, and the rotation of Pascal matrix.

Therefore from Chapter 3, we know that for each j, the matrix-vector product

D(j)(0π
2
0)x for any vector x, costs O((2j + 1) log(2j + 1)) operations. We will

base our implementation of the fast rotation transform on this decomposition of

the rotation matrix.

7.2.2 Decomposition 2

It can be easily verified that the following is also true.

Theorem 7.3. This matrix can also be factored as the following,

D = (
1

2
)j ∗ diag(v1) ∗ V1 ∗ diag(v2) ∗ V

−1
2 ∗ diag(v3), (7.21)
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where v1(m) = [(j +m)!(j −m)!]−
1
2 , v2(m) = [(1− xm)

2j], v3(m) = [(j +m)!(j −m)!]
1
2 ,

V1 =



1 1 ... 1

1+x1
1−x1

1+x2
1−x2 ... 1+xn

1−xn

... ... ... ...³
1+x1
1−x1

´n−1 ¡
1+x2
1−x2

¢n−1
...

³
1+xn
1−xn

´n−1


, (7.22)

and

V2 =



1 1 ... 1

x1 x2 ... xn

... ... ... ...

xn−11 xn−12 ... xn−1n


, (7.23)

and {xi, i = 1, 2, · · · , p} are distinct numbers.

Proof. From the proof of the previous theorem, it is easy to see that

diag(v1)
−12jD ∗ diag(v3)

−1V2 = V1 ∗ diag(v2). (7.24)

Notice that {xi, i = 1, 2, · · · , p} are distinct numbers, and hence V2 is invertible.

Thus we have our desired decomposition.

Since V1 and V2 are Vandermonde matrices, and the product of any Vander-

monde matrix of order n × n and any vector of order n can be done in time

complexity O(n log2 n) as mentioned before. Even though this factorization also

admits a fast matrix-vector product, we are not going to implement it due to the

speed and stability issues of algorithms for fast multiplication of a Vandermonde

matrix and a vector.
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7.3 A fast rotation algorithm

In this section we present a fast rotation algorithm based on equations (7.5),

(7.8), and (7.11) and leave the implementation and stability issues to Chapter

9. Given any two right-hand screw coordinate systems S1 and S2 that share

a common origin, and a finite spherical harmonic expansion of a band-limited

function f(θ, φ),

f(θ, φ) =

p−1X
n=0

nX
m=−n

anmY
m
n (θ, φ) (7.25)

in a coordinate system S1. We can compute the coefficients

{bnm, n = 0, 1, · · · , p− 1, m = −n. · · · , 0, · · · , n} (7.26)

of the spherical harmonic expansion of the function f(θ0, φ0) in S2 from

{anm, n = 0, 1, · · · , p− 1, m = −n. · · · , 0, · · · , n} (7.27)

as follows. Suppose that the rotation required from S1 to S2 is R(αβγ).

Algorithm 7.4. for j = 0, 1, 2, · · · , p− 1,

1. Compute x(1)j∗ = D(j)(00(α+ π
2
))aj∗, where aj∗ is the vector of the (2j + 1)

coefficients of the j-degree harmonic expansion

2. Compute x(2)j∗ = D(j)(0π
2
0)x

(1)
j∗ , using equation (7.11).

3. Compute x(3)j∗ = D(j)(00β)x
(2)
j∗ .

4. Compute x(4)j∗ = D(j)(0− π
2
0)x

(3)
j∗ , using the transpose of the equation (7.11).

5. Compute bj∗ = D(j)(00(γ − π
2
))x

(4)
j∗ .

end
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7.4 Complexity

We analyze the complexity of the matrix-vector product for the rotational matrix

for the first decomposition. Since both a Pascal matrix and its rotation can be

factored into products of two diagonal matrices and one Toeplitz matrix. Each

Toeplitz matrix of order n requires O(10n log(2n)) flops besides a precomputed

FFT. Therefore, for each j, the matrix-vector productD(j)(0π
2
0)x(j) for any vector

x(j), costs O(40(2j + 1) log(4j + 2)) flops. Thus, for the matrix-vector product

D(0π
2
0)x for any vector x, it costs approximately

p−1X
j=0

O(40(2j + 1) log(4j + 2)) ≈ O(40p2 log(4p− 2)). (7.28)

For the whole rotation, it costs approximately 80p2 log(4p− 2).
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Chapter 8

Efficient Translation Operators in Three

Dimensions

Now we know how to represent each of these three translation matrices as a

product of a rotation matrix, a coaxial translation matrix and another rotation

matrix. In this chapter we present a new matrix factorization based on these

representations and show how to further reduce number of operations. We de-

compose the coaxial translation matrix to improve the efficiency of a product

with it from O(p3) to O(p2 log p). Recalling that we have developed algorithms

in previous chapter to reduce the complexity of a rotation operation from O(p3)

to O(p2 log p), we obtain a scheme to reduce the cost of 3-D translation operators

from O(p4) to O(p2 log p).

8.1 Factorization of the coaxial translation ma-

trices

Let us consider the translation operator when the translation is done along the

z-axis, that is, we consider the coaxial translations SS(ρ), RR(ρ), SR(ρ).

97



Figure 8.1: An efficient rotation based translation

8.1.1 Multipole translation

When multipole translation is done along the z-axis, the equation (6.26) becomes

simpler,

Mk
j =

j−|k|X
n=0

Ok
j−nA

k
j−nA

0
nρ

n

Ak
j

. (8.1)

The matrix format is for k = −p,−p+ 1, ...,−1, 0, 1, ..., p,

M (k) = SS(k)(ρ) ∗O(k) (8.2)

where

M (k) = [ Mk
|k| Mk

|k|+1 Mk
|k|+2 ... Mk

p
]0, (8.3)

O(k) = [ Ok
|k| Ok

|k|+1 Ok
|k|+2 ... Ok

p
]0, (8.4)
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and

SS(k)(ρ) =



A00A
k
|k|

Ak
|k|

0 0 ... 0

A01A
k
|k|

Ak
|k|+1

ρ
A00A

k
|k|+1

Ak
|k|+1

0 ... 0

A02A
k
|k|

Ak
|k|+2

ρ2
A01A

k
|k|+1

Ak|k|+2
ρ

A00A
k
|k|+2

Ak
|k|+2

... 0

... ... ... ... ...

A0
p−|k|A

k
|k|

Ak
p

ρp−|k|
A0
p−|k|−1A

k
|k|+1

Ak
p

ρp−|k|−1
A0
p−|k|−2A

k
p−2

Ak
p

ρp−|k|−2 ...
A00A

k
p

Ak
p


.

(8.5)

This matrix can be factorized as in the following lemma.

Lemma 8.1.

SS(k)(ρ) = diag



1

ρ

ρ2

...

ρp−|k|


∗ SS(k)(1) ∗ diag



1

1
ρ

1
ρ2

...

1
ρp−|k|


, (8.6)

where

SS(k)(1) =



A00A
k
|k|

Ak|k|
0 0 ... 0

A01A
k
|k|

Ak|k|+1

A00A
k
|k|+1

Ak
|k|+1

0 ... 0

A02A
k
|k|

Ak|k|+2

A01A
k
|k|+1

Ak
|k|+2

A00A
k
|k|+2

Ak
|k|+2

... 0

... ... ... ... ...

A0
p−|k|A

k
|k|

Ak
p

A0
p−|k|−1A

k
|k|+1

Ak
p

A0
p−|k|−2A

k
p−2

Ak
p

...
A00A

k
p

Ak
p


(8.7)

is a constant matrix.

Proof. Notice that for column i, i = 0, 1, · · · , p − |k| , of matrix SS(k)(ρ), there

is a common factor 1
ρi
; and for row j, j = 0, 1, · · · , p − |k| , of matrix SS(k)(ρ),

there is a common factor ρj. Therefore we have this factorization.

It can be further factored as in the following lemma.
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Lemma 8.2.

SS(k)(ρ) = diag



1/Ak
|k|

ρ/Ak
|k|+1

ρ2/Ak
|k|+2

...

ρp−|k|/Ak
p


∗MM ∗ diag



Ak
|k|

Ak
|k|+1/ρ

Ak
|k|+2/ρ

2

...

Ak
p/ρ

p−|k|


, (8.8)

where

MM =



A00 0 0 ... 0

A01 A00 0 ... 0

A02 A01 A00 ... 0

... ... ... ... ...

A0p−|k| A0p−|k|−1 A0p−|k|−2 ... A00


, (8.9)

is a Toeplitz matrix, which admits fast matrix vector multiplication.

Proof. Notice that for column i, i = 0, 1, · · · , p− |k| , of matrix SS(k)(1), there is

a common factor Ak
|k|+i; and for row j, j = 0, 1, · · · , p− |k| , of matrix SS(k)(1),

there is a common factor 1
Ak
|k|+j

. We factor SS(k)(1) as the products of three

matrices, matrix MM sandwiched by two diagonal matrices. Then we multiply

out the diagonal matrices on each side to arrive the factorization in this lemma.

Theorem 8.3. The truncated matrix vector product (8.2) for each k can be done

in time O((p− |k|) log(p− |k|)). The whole set of coefficients M can be obtained

in O(p2 log p) time.

Proof. From the previous lemma, to multiply matrix SS(k) (ρ) with any vector

requires three matrix-vector products, which involve two diagonal matrices and
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one Toeplitz matrix. We know the matrix-vector product for a Toeplitz matrix

requires O((p − |k|) log(p − |k|)) operations, while the product for a diagonal

matrix requires O(p − |k|) operations. Therefore the matrix-vector product for

each SS(k) (ρ) can be done in O((p− |k|) log(p− |k|)) operations. Thus the whole

set of coefficients M can be obtained in
pX

k=−p
O((p− |k|) log(p− |k|)) = O(p2 log p) (8.10)

time.

8.1.2 Local translation

When local translation is done along z − axis, the equation (6.34) becomes sim-

pler,

Lk
j =

pX
n=j

Ok
nA

k
jA

0
n−jρ

n−j

(−1)n+jAk
n

. (8.11)

The matrix format is for k = −p,−p+ 1, ...,−1, 0, 1, ..., p,

L(k) = RR(k)(ρ) ∗O(k) (8.12)

where

L(k) = [ Lk
|k| Lk

|k|+1 Lk
|k|+2 ... Lk

p
]0, (8.13)

O(k) = [ Ok
|k| Ok

|k|+1 Ok
|k|+2 ... Ok

p
]0, (8.14)

and

RR(k)(ρ) =



A00A
k
|k|

Ak
|k|

−
A01A

k
|k|

Ak|k|+1
ρ

A02A
k
|k|

Ak|k|+2
ρ2 ...

A0
p−|k|A

k
|k|

(−1)p+|k|Akp ρ
p−|k|

0
A00A

k
|k|+1

Ak|k|+1
−

A01A
k
|k|+1

Ak|k|+2
ρ ...

A0
p−|k|−1A

k
|k|+1

(−1)p+|k|+1Akp ρ
p−|k|−1

0 0
A00A

k
|k|+2

Ak|k|+2
...

A0
p−|k|−2A

k
p−2

(−1)p+|k|+2Akp ρ
p−|k|−2

... ... ... ... ...

0 0 0 ...
A00A

k
p

Akp


. (8.15)
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This matrix can be similarly factored as in the following lemma.

Lemma 8.4.

RR(k)(ρ) =diag



1

1
ρ

1
ρ2

...

1
ρp−|k|


∗RR(k)(1) ∗ diag



1

ρ

ρ2

...

ρp−|k|


(8.16)

where 

A00A
k
|k|

Ak|k|
−

A01A
k
|k|

Ak
|k|+1

A02A
k
|k|

Ak
|k|+2

...
A0
p−|k|A

k
|k|

(−1)p+|k|Ak
p

0
A00A

k
|k|+1

Ak
|k|+1

−
A01A

k
|k|+1

Ak
|k|+2

...
A0
p−|k|−1A

k
|k|+1

(−1)p+|k|+1Ak
p

0 0
A00A

k
|k|+2

Ak
|k|+2

...
A0
p−|k|−2A

k
p−2

(−1)p+|k|+2Ak
p

... ... ... ... ...

0 0 0 ...
A00A

k
p

Ak
p


(8.17)

is a constant matrix.

This lemma can be proved in the same way as that of the corresponding

lemma for the multipole translation. We omit it here.

It can be further factored as in the following lemma.

Lemma 8.5.

RR(k)(ρ) = diag



Ak
|k|

−Ak
|k|+1/ρ

Ak
|k|+2/ρ

2

...

Ak
p/(−ρ)

p−|k|

...


∗ LL ∗ diag



1/Ak
|k|

−ρ/Ak
|k|+1

ρ2/Ak
|k|+2

...

(−ρ)p−|k|/Ak
p

...


, (8.18)
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where

LL =



A00 A01 A02 ... A0p−|k|

0 A00 A01 ... A0p−|k|−1

0 0 A00 ... A0p−|k|−2

... ... ... ... ...

0 0 0 ... A00


, (8.19)

is again a Toeplitz matrix.

This lemma can be proved in the same way as that of the corresponding

lemma for the multipole translation. We omit it here.

Theorem 8.6. The truncated matrix vector product (8.12) for each k can be done

in time O((p − |k|) log(p − |k|)). The whole set of coefficients L can be obtained

in time O(p2 log p).

This theorem can be proved in the same way as that of the corresponding

theorem for the multipole translation. We omit it here.

8.1.3 Multipole to local translation

When multipole to local translation is done along the z-axis, the equation (6.40)

becomes simpler,

Lk
j =

pX
n=|k|

Ok
nA

k
nA

k
j

(−1)n+kA0j+nρ
n+j+1

. (8.20)

The matrix format is for k = −p,−p+ 1, ...,−1, 0, 1, ..., p,

L(k) = SR(k)(ρ) ∗O(k) (8.21)

where

L(k) = [ Lk
|k| Lk

|k|+1 Lk
|k|+2 ... Lk

p
]0, (8.22)
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O(k) = [ Ok
|k| Ok

|k|+1 Ok
|k|+2 ... Ok

p
]0, (8.23)

and

SR(k)(ρ) =



Ak
|k|A

k
|k|

(−1)2|k|A0
2|k|ρ

2|k|+1
Ak
|k|+1A

k
|k|

(−1)2|k|+1A0
2|k|+1ρ

2|k|+2 ...
Ak
pA

k
|k|

(−1)p+kA0|k|+pρp+|k|+1
Ak
|k|A

k
|k|+1

(−1)2|k|A0
2|k|+1ρ

2|k|+2
Ak
|k|+1A

k
|k|+1

(−1)2|k|+1A0
2|k|+2ρ

2|k|+3 ...
Ak
pA

k
|k|+1

(−1)p+kA0|k|+p+1ρp+|k|+2
Ak
|k|A

k
|k|+2

(−1)2|k|A0
2|k|+2ρ

2|k|+3
Ak
|k|+1A

k
|k|+2

(−1)2|k|+1A0
2|k|+3ρ

2|k|+4 ...
Ak
pA

k
|k|+2

(−1)p+kA0|k|+p+2ρp+|k|+3

... ... ... ...

Ak
|k|A

k
p

(−1)2|k|A0|k|+pρ|k|+p+1
Ak
|k|+1A

k
p

(−1)2|k|+1A0|k|+p+1ρp+|k|+2
...

AkpA
k
p

(−1)p+kA02pρ2p+1


.

(8.24)

We will use the same trick of the multipole translation on the multipole to local

translation. All lemmas and theorem can be proved similarly. We only list the

results and omit their proofs.

The matrix SR(k)(ρ) can be factored as in the following lemma.

Lemma 8.7.

SR(k)(ρ) = (−1)k ∗ diag



ρ−|k|−1

ρ−|k|−2

ρ−|k|−3

...

ρ−p−1


∗ SR(k)(1) ∗ diag



ρ−|k|

ρ−|k|−1

ρ−|k|−2

...

ρ−p


(8.25)

where

SR(k)(1) =



Ak
|k|A

k
|k|

(−1)|k|A0
2|k|

Ak|k|+1A
k
|k|

(−1)|k|+1A0
2|k|+1

Ak
|k|+2A

k
|k|

(−1)|k|+2A0
2|k|+2

...
AkpA

k
|k|

(−1)pA0|k|+p
Ak
|k|A

k
|k|+1

(−1)|k|A0
2|k|+1

Ak|k|+1A
k
|k|+1

(−1)|k|+1A0
2|k|+2

Ak
|k|+2A

k
|k|+1

(−1)|k|+2A0
2|k|+3

...
AkpA

k
|k|+1

(−1)pA0|k|+p+1
Ak
|k|A

k
|k|+2

(−1)|k|A0
2|k|+2

Ak|k|+1A
k
|k|+2

(−1)|k|+1A0
2|k|+3

Ak
|k|+2A

k
|k|+2

(−1)|k|+2A0
2|k|+4

...
AkpA

k
|k|+2

(−1)pA0|k|+p+2

... ... ... ... ...

Ak
|k|A

k
p

(−1)|k|A0|k|+p
Ak
|k|+1A

k
p

(−1)|k|+1A0|k|+p+1
Ak
|k|+2A

k
p

(−1)|k+2|A0|k|+p+2
...

AkpA
k
p

(−1)pA02p


(8.26)
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is a constant matrix.

It can be further factored as in the following lemma.

Lemma 8.8.

SR(k)(ρ) = (−1)k ∗ diag



Ak
|k|ρ

−|k|−1

Ak
|k|+1ρ

−|k|−2

Ak
|k|+2ρ

−|k|−3

...

Ak
pρ
−p−1


∗ML ∗ diag



Ak
|k|(−ρ)

−|k|

Ak
|k|+1(−ρ)

−|k|−1

Ak
|k|+2(−ρ)

−|k|−2

...

Ak
p(−ρ)

−p


,

(8.27)

where

ML =



1
A0
2|k|

1
A0
2|k|+1

1
A0
2|k|+2

... 1
A0|k|+p

1
A0
2|k|+1

1
A0
2|k|+2

1
A0
2|k|+3

... 1
A0|k|+p+1

1
A0
2|k|+2

1
A0
2|k|+3

1
A0
2|k|+4

... 1
A0|k|+p+2

... ... ... ... ...

1
A0|k|+p

1
A0|k|+p+1

1
A0|k|+p+2

... 1
A02p


, (8.28)

is a Hankel matrix.

Theorem 8.9. The truncated matrix vector product (8.21) for each k can be done

in time O((p − |k|) log(p − |k|)). The whole set of coefficients L can be obtained

in time
pX

k=−p
O((p− |k|) log(p− |k|)), (8.29)

which is O(p2 log p).

The coaxial translation operators are factored into product of diagonal matri-

ces and Toeplitz/Hankel matrices. The translation operators could be unstable if

it is implemented directly based these factorizations. We will leave the instability

and implementation issues to next chapter.
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8.2 Complexity analysis

From Theorems 6.2, 6.3, and 6.4, we know that order of all three translation oper-

ators is of the order of O(p4). A direct implementation of matrix-vector products

with these operators requires roughly 8p4 flops. Our efficient implementation of

the same operations based on matrix decomposition involves fast Fourier trans-

form which reduces number of operations in matrix-vector product to roughly

170p2 log 4p flops. That is O(p4) operations in the original algorithm is reduced

to approximately 85
4
p2 log(4p) operations in the new algorithm. Let us see how

this would affect the total complexity.

We know the total cost of the original algorithm for all five steps is approxi-

mately

2Np2 +
1528

7

N

s
p4 + 27Ns. (8.30)

With s ≈
q

1528
189

p2, the total number of operations is approximately 156Np2. In

our current new algorithm, the total cost would be

2Np2 +
1528

7

N

s
∗
85

4
p2 log(4p) + 9Ns. (8.31)

With s ≈
(228480p2 log(4p))

0.5

21
, the improved count is approximately

2Np2 + 410
p
log(4p)Np. (8.32)

According to this result, the break even p is 5. In general, the new translation

operators should significantly speed up the computations. If the same accuracy is

required, the parameter p should be bigger in the three-dimensional case than that

in the two-dimensional case. It implies that the new operators are indispensable

for three dimensions. We would like to note as in the two-dimensional case that
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choosing a proper parameter s, which determines number of levels in the data

structure, has a major effect over the efficiency of the program.
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Chapter 9

Stability Issues and Implementation

We have developed efficient algorithms for the product of the p× p Pascal matrix

or its related matrices and a vector in Chapter 3. Based on these algorithms in

Chapter 3, we have developed new fast algorithms for the translation operators

in 2D in Chapter 5 and in 3D in Chapters 7 and 8. We demonstrated that all

translation operators in the 2D and 3D FMM could be decomposed as products

of structured matrices and therefore each of them requires only O(p log p) op-

erations. If implemented naively, these algorithms have a common problem of

numerical instability, even though they are very fast. In this chapter we discuss

the implementation of these fast algorithms and modifications required to achieve

numerical stability. We first describe the algorithm to compute the product of a

Toeplitz matrix and a vector in O (p log p) time. Next we show how to implement

efficient algorithms for the product of the Pascal matrix or its related matrices

and a vector. We introduce a parameter α into the implementation to achieve

stability. Then we present details on implementation of translation operators for

the 2D and 3D FMM. We demonstrate the effectiveness of this parameter α with

an example of the multipole translation operator in 2D. We will also show the ef-

fectiveness of this parameter α with numerical experiments for FMM calculations
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in the next chapter.

9.1 Implementation of fast multiplication of a

Toeplitz matrix and a vector

A Toeplitz matrix is completely determined by its first column and first row.

Denote a Toeplitz matrix with first column vector

c =

·
c0 c1 c2 ... cp−1

¸0
(9.1)

and first row vector

r =

·
c0 r1 r2 ... rp−1

¸
(9.2)

by Toep(c, r0). We want to compute the product

ỹ = Toep(c, r0) ∗ x̃ (9.3)

in O (p log p) time, given Toep(c, r0) and x̃ is a vector with length p. This can be

achieved by first embedding Toep(c, r0) into a 2p× 2p circulant matrix C2p, since

y =

 ỹ

...

 = C2p ·

 x̃

0

 ≡
 Toep Sp

Sp Toep

 ·
 x̃

0

 =
 Toep · x̃

Sp · x̃

 (9.4)

and

Sp =



0 cn−1 ... c2 c1

rn−1 0 ... c3 c2

... ... ... ... ...

r2 r3 ... 0 cn−1

r1 r2 ... rn−1 0


. (9.5)
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Then the product y = C2p · x can be formed in the following four steps where u

is the vector ·
c0 c1 ... cn−1 0 rn−1 ... r1

¸0
, (9.6)

and x =

·
x̃0 0 0 ... 0

¸0
is the expanded vector of x̃ with p zeros,

1. f =FFT(x),

2. g =FFT(u),

3. h = f. ∗ g, here h is a vector from the element-wise multiplication of the

vectors f and g.

4. y =IFFT(h).

Then ỹ is obtained from first p components of y.

9.2 Pascal matrix and its relatives

A fast algorithm for computing the product of a Pascal matrix and a vector is

based on the decomposition (3.2). Given a Pascal matrix P of size p × p, we can

factor it into

P = diag(v1) · T (cp, r0p) · diag(v2), (9.7)

where

v1 =

·
1 1! 2! 3! · · · (p− 1)!

¸0
, (9.8)

v2 =

·
1 1! 1

2!
1
3!
· · · 1

(p−1)!

¸0
, (9.9)

cp =

·
1 1! 1

2!
1
3!
· · · 1

(p−1)!

¸0
, (9.10)

rp =

·
1 0 0 · · · 0

¸
. (9.11)
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For a vector

a =

·
a0 a1 a2 ... ap−1

¸0
, (9.12)

the product

Pa = diag(v1) · T (cp, r0p) · diag(v2) · a (9.13)

requires three matrix-vector products, two of which involve diagonal matrices,

one of which involves Toeplitz matrix. Therefore the product Px can be done in

O(p log p) time instead of O(p2) time required by straightforward matrix-vector

product. A naive implementation of the above method shows that the preci-

sion gets worse as p gets bigger. The reason for this is that the entries in the

Toeplitz matrix and the vector v2 are of very different magnitudes, varying ap-

proximately from 1 to 1
(p−1)! . When we compute the matrix-vector product, we

need to compute the FFT of the two vectors

u =

·
1 1! 1

2!
1
3!
· · · 1

(p−1)! 0 0 · · · 0

¸0
, (9.14)

x =

·
a0 1!a1

1
2!
a2

1
3!
a3 · · · 1

(p−1)!ap−1 0 0 · · · 0

¸0
. (9.15)

For a large p, when we compute the FFT of u and x, the final result would be

the same if we simply treat the entries such as 1
(p−1)! as zeros, and this causes

the numerical instability. Therefore we need to find a way to increase the effect

of entries of smaller magnitude by bringing all nonzero terms in u and x to the

same magnitude. This can be done by multiplying or dividing the entries by some

constant factors and still preserving the same structure, viz. a Toeplitz matrix.

Indeed, the Pascal matrix can be expressed by introducing a new parameter α as

follows,

P (α) = diag(v1(α)) · Toep
£
cp(α), r

0
p

¤
· diag(v2(α)), (9.16)
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where

v1(α) =

·
1 1

α
2
α2

6
α3

... (p−1)!
αp−1

¸0
, (9.17)

v2(α) =

·
1 α

1
α2

2
α3

6
... αp−1

(p−1)!

¸0
, (9.18)

cp(α) =

·
1 α

1
α2

2
α3

6
... αp−1

(p−1)!

¸0
. (9.19)

With this factorization, it is possible to implement a fast, numerically stable

algorithm by selecting a proper value of α.

Now we need to select a proper α so that the magnitude of maximum and

minimum of the nonzero entries in the vector v2(α) and cp(α) are at the same

level. The Fast Fourier transform is applied to the two vectors

x(α) =

·
a0

αa1
1

α2a2
2

α3a3
6z3

... αp−1ap−1
(p−1)! 0 0 ... 0

¸0
(9.20)

and

u(α) =

·
1 α 1

2
α2 1

6
α3 ... 1

(p−1)!α
p−1 0 0 ... 0

¸0
. (9.21)

Assuming all entries of a =
·
a0 a1 a2 ... ap−1

¸0
are of the same magnitude,

the entries in x(α) and the entries in u(α) are of the same magnitude. So we

can choose one proper value α so that all nonzero entries of x(α) and u(α) are

as close as possible.

Let us consider the function f(m) = αm

m!
, m = 0, 1, 2, ..., p−1 and we want the

maximum and minimum of this function to be as close as possible. If α ≥ p− 1,

then fmin = 1, and fmax =
αp−1
(p−1)! . In this case, we should choose α = p − 1.

If 1 · α < p − 1, then when 0 · m · α, fmin = 1, and fmax =
α[α]

([α])!
; when

α < m · p− 1, fmin = αp−1
(p−1)! , and fmax =

α[α]

([α])!
. Comparing these two cases, it is

easy to see that the proper value of α should be 1 · α < p − 1 and we need to
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select α such that

min
α
(max(

αα

α!
,
αα(p− 1)!

αp−1α!
)). (9.22)

Using Stirling’s formula,

αα

α!
≈

ααeα

(2π)0.5αα+0.5
=

eα

(2πα)0.5
; (9.23)

and

αα(p− 1)!

αp−1α!
≈

αα(2π)0.5(p− 1)p−1+0.5eα

αp−1(2π)0.5αα+0.5ep−1
=

r
p− 1

α

µ
p− 1

αe

¶p−1
eα. (9.24)

So when p−1
αe
≈ 1, we would achieve our objective, that is, when

α ≈
p− 1

e
, (9.25)

the magnitude of the nonzero entries of x(α) and u(α) are about the closest. This

can provide us an initial value for the proper value of α.

Since the fast translation operators in 2D and 3D involve the Pascal matrix,

its relatives and other Toeplitz matrices, the effectiveness of this technique of

introducing a new parameter α to bring stability to the fast algorithms is demon-

strated through its implementation in these fast translation operators. We will

show an example with the fast multipole translation operator: how the parameter

α varies affects the accuracy of the translation operator in next section. We will

discuss the values of p for which this technique can be used in the end of this

chapter and show its effectiveness in Chapter 10.

We would also like to note that the modification does not have much effect

on the complexity of the operator: once p is known (e.g. from the error bound),

we can precompute cp(α) and the FFT of u(α) and store it before we start the

computation of the matrix-vector product. The vectors x(α) and v1(α) can be

computed from cp(α). For a fixed p, we can even precompute and test a few
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values of α so that we achieve numerical stability. This is often required in the

implementation of the fast translation operators later on.

Since for the transpose matrix P 0 of the Pascal matrix and the matrix PP,

the product of the Pascal matrix P and its transpose P 0, the corresponding

decompositions are very similar and the process to introduce the parameter α is

the same, we can do it in the same way as for the Pascal matrix.

9.3 Implementation of the fast translation op-

erators in 2D

9.3.1 Multipole translation operator

The multipole translation operator is expressed through matrices using (4.18).

Combining (5.1) and (3.2), we have the following,

SS(z) = diag(v1) · Toep



1

1

1
2

1
6

...

1
(p−1)!

,

1

0

0

0

...

0


· diag(v2) (9.26)

Where

v1 =

·
1 z 2z2 6z3 ... zp−1 (p− 1)!

¸0
, (9.27)

and

v2 =

·
1 1

z
1
2z2

1
6z3

... z−p+1
(p−1)!

¸0
. (9.28)
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The multipole translation operator computes a product b = SS(z) · a for a given

multipole expansion coefficient vector

a =

·
a1 a2 a3 ... ap

¸0
. (9.29)

The cost of direct implementation of this operator is O(p2). Let us consider an

efficient implementation.

Note that the multiplication of a diagonal matrix by a vector can be done

in O(p) time and the product of a Toeplitz matrix and a vector can be done in

O(p log p) time. Thus we can compute the product b = SS(z)a in O(p log p) time.

From (5.1), we can see that a Pascal matrix is present in the multipole trans-

lation operator. So it has the same problem as the Pascal matrix. We only need

to apply the same technique to this translation operator.

The multipole translation operator can be expressed by introducing a new

parameter α as follows,

SS(z) = diag(v1) · Toep



1

α

α2

2

α3

6

...

αp−1
(p−1)!

,

1

0

0

0

...

0


· diag(v2), (9.30)

where

v1 =

·
1 z

α
2z2

α2
6z3

α3
... zp−1(p−1)!

αp−1

¸0
, (9.31)

and

v2 =

·
1 α

z
α2

2z2
α3

6z3
... αp−1

(p−1)!zp−1

¸0
. (9.32)
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Then with a properly selected α, we can apply the fast algorithm to the product

of a Toeplitz matrix and a vector.

To compute the product, the fast Fourier transform is applied to two vectors

x =

·
a1

αa2
z

α2a3
2z2

α3a4
6z3

... αp−1ap
(p−1)!zp−1 0 0 ... 0

¸0
(9.33)

and

u =

·
1 α 1

2
α2 1

6
α3 ... 1

(p−1)!α
p−1 0 0 ... 0

¸0
. (9.34)

If in vector x, we assume that ak
zk
˜O(1) (see Theorem 4.1, ak =

Pm
i=1

−qi(zi−c)k
k

, and

|zi − c| < z), then the entries in x and the entries in u are of the same magnitude.

We can select a proper value α in the same way as the case for the Pascal matrix

so that the numerical stability is achieved. We show with a numerical experiment

(see figure 9.1) that as α changes, the accuracy of the operator changes. It shows

that choosing a proper value of α is an effective way to obtain accurate result.

More discussion about the relation between the accuracy and number p of terms

can be found in the numerical result chapter.

9.3.2 Local translation operator

The local translation operator is expressed by matrices as in equation (4.23).

It acts by computing a product b = RR(z) · a for a given multipole expansion

coefficient vector

a =

·
a0 a1 a2 ... ap−1

¸0
. (9.35)
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Figure 9.1: As α changes, the accuracy of the operator changes. In this experi-

ment, we set p = 61, z0 = 0.4, z = 2.0, that is, a multipole expansion centered

at point z0 = 0.4 with 61 terms and randomly generated 61 numbers as its co-

efficients are evaluated at point z = 2.0. This evaluation is taken as the true

value. The error showed in graph is the difference between the true value and

the value evaluated at the same point of the translated multipole expansion using

the fast algorithm with the parameter α. It shows with a proper value of α, the

fast algorithm can produce very accurate result, which is even better than the

straightforward implementation of the translation operators (this is not showed

in this graph, but showed in the same experiment).
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From (5.7) and (3.2), we have,

RR(z) = diag(v3) · Toep



1

0

0

0

...

0

,

1

1

1
2

1
6

...

1
(p−1)!


· diag(v4), (9.36)

where

v3 =

·
1 − 1

z
1
2z2

− 1
6z3

... (−z)−p+1
(p−1)!

¸0
, (9.37)

and

v4 =

·
1 −z 2z2 −6z3 ... (−z)p−1 (p− 1)!

¸0
. (9.38)

The cost of direct implementation of this operator is O(p2). An efficient imple-

mentation of this operator, which is also of the time complexity of O(p log p), can

be done very similarly to the implementation of multipole translation operator.

The local translation operator can be implemented based on the following,

RR(z) = diag(v3) · Toep



1

0

0

0

...

0

,

1

α

α2

2

α3

6

...

αp−1
(p−1)!


· diag(v4), (9.39)

where

v3(α) =

·
1 −α

z
α2

2z2
− α3

6z3
... αp−1

(p−1)!(−z)p−1

¸0
, (9.40)
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and

v4(α) =

·
1 − z

α
2z2

α2
− 6z3

α3
... (−z)p−1(p−1)!

αp−1

¸0
, (9.41)

with α selected as in (9.25).

9.3.3 Multipole to local translation operator

Similarly, the multipole to local translation operator is expressed by matrices as

in equation (4.38). It is to compute a product b = SR(z) · a for a given multipole

expansion coefficient vector

a =

·
a1 a2 ... ap

¸0
. (9.42)

It is well known that if

Ip =



0 0 · · · 0 1

0 0 · · · 1 0

...
...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0


, (9.43)

is the backward identity permutation, then for any Hankel matrix H, IpH is a

Toeplitz matrix, for any Toeplitz matrix T , IpT is a Hankel matrix [Kailath99].

It is also true that Ip = I 0p = I−1p . Therefore, from equations (5.8) and (3.30), we
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have,

SR(z) = diag(v5) · Ip · Toep



(p− 1)!

(p− 2)!

(p− 3)!

...

1!

0!

,

(p− 1)!

p!

(p+ 1)!

...

(2p− 3)!

(2p− 2)!


· diag(v6), (9.44)

where

v5 =

·
1 1

z
1
2z2

1
6z3

... z−p+1
(p−1)!

¸0
, (9.45)

and

v6 =

·
− 1

z
1
z2

− 1
2z3

1
6z4

... (−z)−p
(p−1)!

¸0
. (9.46)

The cost of direct implementation of this operator is O(p2). An efficient imple-

mentation of this operator, which is also of the time complexity of O(p log p), can

be done very similarly to the implementation of multipole translation operator.

The multipole to local translation operator can be implemented based on the

following,

SR(z) = diag(v5) · Ip · Toep



(p−1)!
αp

(p−2)!
αp−1

(p−3)!
αp−2

...

1!
α2

0!
α

,

(p−1)!
αp

p!
αp+1

(p+1)!
αp+2

...

(2p−3)!
α2p−2

(2p−2)!
α2p−1


· diag(v6), (9.47)

where

v5(α) =

·
1 α

z
α2

2z2
α3

6z3
... αp−1

(p−1)!zp−1

¸0
, (9.48)
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and

v6(α) =

·
−α

z
α2

z2
− α3

2z3
... αp

(−z)p(p−1)!

¸0
, (9.49)

and α is selected as in (9.25).

9.4 Implementation of the fast rotation algo-

rithm in 3D

In this section we consider the implementation of Algorithm 7.4 (fast rotation

algorithm) based on factorizations (7.5), (7.8), and (7.11). This algorithm basi-

cally involves three different types of rotation: D(00α), D(0π
2
0), D(β00). Two of

theseD(00α), andD(β00) are rotation about z-axis, which amounts to a product

of a unitary diagonal matrix and a vector; there should pose no difficulty in the

implementation. Next we discuss D(0π
2
0).

Recall that

D(j)(0
π

2
0) = diag(v1) ∗ diag(v2) ∗ rot180(P ) ∗ diag(v3) ∗ diag(v2) ∗ P ∗ diag(v4),

(9.50)

where v1(m) = [(j +m)!(j −m)!]−
1
2 , v2(m) = (−1)j+m, v3(m) = [2−m], v4(m) =

[(j +m)!(j −m)!]
1
2 , m = −j, · · · , 0, · · · j, P is Pascal matrix, and rot180(P ) is a

matrix resulted from rotating Pascal matrix 180 degree. We can take out factor

(j!)−1 from all entries in matrix diag(v1) and factor (j!) from all entries in matrix

diag(v4) and multiply these two factors together to reduce possible numerical

problems.

It is easy to verify that

rot180(P ) = Ip ∗ P ∗ Ip, (9.51)
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where Ip is the backward identity permutation matrix. Therefore we have only to

deal with the matrix-vector product for the Pascal matrix, which we have done

before.

9.5 Implementation of the fast coaxial transla-

tion operators in 3D

9.5.1 Multipole translation operator

The multipole translation operator is expressed by matrices as in equation (8.2).

It acts by computing the products for k = −p,−p+ 1, ...,−1, 0, 1, ..., p,

M (k) = SS(k)(ρ) ∗O(k) (9.52)

where

M (k) = [ Mk
|k| Mk

|k|+1 Mk
|k|+2 ... Mk

p
]0, (9.53)

O(k) = [ Ok
|k| Ok

|k|+1 Ok
|k|+2 ... Ok

p
]0. (9.54)

From (8.8), we have

SS(k)(ρ) = diag



1/Ak
|k|

ρ/Ak
|k|+1

ρ2/Ak
|k|+2

...

ρp−|k|/Ak
p


· Toep



1

1

1
2

1
6

...

1
(p−|k|)!

,

1

0

0

0

...

0


· diag



Ak
|k|

Ak
|k|+1/ρ

Ak
|k|+2/ρ

2

...

Ak
p/ρ

p−|k|


. (9.55)

The cost of direct implementation of this operator is O(p2). Since the multiplica-

tion of a diagonal matrix by a vector can be done in O(p) time and the product of
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a Toeplitz matrix and a vector can be done in O(p log p) time, we can implement

this product with an algorithm of time complexity of O(p log p).

Noticing again that the entries in the Toeplitz matrix and two diagonal ma-

trices are of very different magnitudes, we need to make modifications, which is

very similarly to the implementation of multipole translation operator in 2D, to

this factorization of matrix as the following,

SS(k)(ρ) = diag



1
Ak|k|

ρ
αAk

|k|+1

ρ2

α2Ak|k|+2

...

ρp−|k|
αp−|k|Akp


· Toep



1

α

α2

2

α3

6

...

αp−1
(p−|k|)!

,

1

0

0

0

...

0


· diag



Ak
|k|

αAk
|k|+1/ρ

α2Ak
|k|+2/ρ

2

...

αp−|k|Ak
p/ρ

p−|k|


.

(9.56)

In this factorization, we can also take out factor Ak
|k| from all entries in the last

diagonal matrix and factor 1
Ak
|k|
from all entries in the first diagonal matrix and

multiply these two constant factors together.

9.5.2 Local translation operator

The local translation operator is expressed by matrices as in equation (8.12). It

acts by computing the products for k = −p,−p+ 1, ...,−1, 0, 1, ..., p,

L(k) = RR(k)(ρ) ∗O(k) (9.57)

where

L(k) = [ Lk
|k| Lk

|k|+1 Lk
|k|+2 ... Lk

p
]0, (9.58)

O(k) = [ Ok
|k| Ok

|k|+1 Ok
|k|+2 ... Ok

p
]0, (9.59)
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From (8.18), we have

RR(k)(ρ) = diag



Ak
|k|

−Ak
|k|+1/ρ

Ak
|k|+2/ρ

2

...

Ak
p/(−ρ)

p−|k|


· Toep



1

0

0

0

...

0

,

1

1

1
2

1
6

...

1
(p−|k|)!


· diag



1/Ak
|k|

−ρ/Ak
|k|+1

ρ2/Ak
|k|+2

...

(−ρ)p−|k|/Ak
p


.

(9.60)

The cost of direct implementation of this operator is O(p2). Since the multiplica-

tion of a diagonal matrix by a vector can be done in O(p) time and the product of

a Toeplitz matrix and a vector can be done in O(p log p) time, we can implement

this product with an algorithm of time complexity of O(p log p).

Noticing again that the entries in the Toeplitz matrix and two diagonal ma-

trices are of very different magnitude, we need to make modifications, which is

very similarly to the implementation of local translation operator in 2D, to this

factorization of matrix as the following,

RR(k)(ρ) = diag



Ak
|k|

−αAk
|k|+1/ρ

α2Ak
|k|+2/ρ

2

...

αp−|k|Ak
p/(−ρ)

p−|k|


· Toep



1

0

0

0

...

0

,

1

α

α2

2

α3

6

...

αp−1
(p−|k|)!


· diag



1
Ak
|k|

−ρ
αAk

|k|+1

ρ2

α2Ak
|k|+2

...

(−ρ)p−|k|
αp−|k|Ak

p


.

(9.61)

In this factorization, we can also take out factor Ak
|k| from all entries in the first

diagonal matrix and factor 1
Ak
|k|
from all entries in the last diagonal matrix and

multiply these two constant factors together.
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9.5.3 Multipole to local translation operator

Similarly, the multipole to local translation operator is expressed by matrices

as in equation (8.21). It acts by computing the products for k = −p,−p +

1, ...,−1, 0, 1, ..., p,

L(k) = SR(k)(ρ) ∗O(k) (9.62)

where

L(k) = [ Lk
|k| Lk

|k|+1 Lk
|k|+2 ... Lk

p
]0, (9.63)

O(k) = [ Ok
|k| Ok

|k|+1 Ok
|k|+2 ... Ok

p
]0, (9.64)

It is well known that if

Ip =



0 0 · · · 0 1

0 0 · · · 1 0

...
...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0


, (9.65)

is the backward identity permutation, then for any Hankel matrix H, IpH is a

Toeplitz matrix. Therefore, from (8.27), we have

SR(k)(ρ) = (−1)k · diag(v1) · I(k)p · Toep(c, r0) · diag(v2), (9.66)

where

v1 =



Ak
|k|

ρ|k|+1

Ak
|k|+1

ρ|k|+2

Ak
|k|+2

ρ|k|+3

...

Ak
p

ρp+1


, v2 =



Ak|k|
(−ρ)+|k|
Ak|k|+1
(−ρ)|k|+1
Ak|k|+2
(−ρ)|k|+2

...

Akp
(−ρ)p


, c =



α|k|+p+1
A0|k|+p

1
A0|k|+p−1

· · ·

1
A0
2|k|+1

1
A0
2|k|


, r =



1
A0|k|+p

1
A0|k|+p+1

· · ·

1
A02p−1

1
A02p



0

(9.67)
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The cost of direct implementation of this operator is O(p2). Since the multiplica-

tion of a diagonal matrix by a vector can be done in O(p) time and the product of

a Toeplitz matrix and a vector can be done in O(p log p) time, we can implement

this product with an algorithm of time complexity of O(p log p).

Noticing again that the entries in the Toeplitz matrix and two diagonal ma-

trices are of very different magnitudes, we need to make modifications, which is

very similarly to the implementation of local translation operator in 2D, to this

factorization of matrix as the following,

SR(k)(ρ) = (−1)k · diag(v1(α)) · I(k)p · Toep(c(α), r(α)0) · diag(v2(α)), (9.68)

where

v1 =



αAk
|k|

ρ|k|+1

α2Ak|k|+1
ρ|k|+2

α3Ak|k|+2
ρ|k|+3

...

αp−|k|+1Ak
p

ρp+1


, v2 =



Ak|k|
(−ρ)+|k|
αAk

|k|+1
(−ρ)|k|+1
α2Ak|k|+2
(−ρ)|k|+2

...

αp−|k|Akp
(−ρ)p


, c =



α−|k|−ρ−1
A0|k|+p

α−|k|−ρ
A0|k|+p−1

· · ·

α−2|k|−2
A0
2|k|+1

α−2|k|−1
A0
2|k|


, r =



α−|k|−ρ−1
A0|k|+p

α−|k|−ρ−2
A0|k|+p+1

· · ·

α−2p
A02p−1

α−2p−1
A02p



0

(9.69)

In this factorization, we can also take out factor Ak
|k| from all entries in the first

diagonal matrix, factor Ak
|k| from all entries in the last diagonal matrix, and factor

1
A0
2|k|
from the Toeplitz matrix and multiply these three constant factors together.

9.6 Further discussion of the stability

We discuss how we can further address the stability problem in case of high

precision requirement. In 2D as we will demonstrate in numerical experiments in

the next chapter, with number p of terms used in all multipole/local expansions
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equal to 21, we achieve 15 digit accuracy. It is also shown that the introduction

of parameter α works well for p = 49 (in our numerical experiments, we use

α = p
3e
). This implies that we could reach 30 digit accuracy for the 2D case with

this strategy, which is more than enough for any applications.

In three dimensional space, as demonstrated in our numerical experiments (see

Table 10.5) the same strategy proves to stabilize the fast translation operators.

The FMM with the fast translation operators produces the same accuracy as the

FMM with the original translation operators with the number of terms in the

expansions up to 400. In practice, the fast translation operators are stable.

That said, we would like to explore what we can do when this strategy stops

working. It will eventually stop working since the entries will be of very different

magnitudes with some large number p. In this case the corresponding Toeplitz

matrix could be subdivided into blocks of little Toeplitz matrices, each of which

consists elements of similar magnitude, therefore the above method could be

used on each block to help to bring stability to the computation with the same

complexity. Furthermore, if we view each Toeplitz block as one entry in the whole

matrix, the whole matrix is a Toeplitz matrix again as the following,

...
...

...
...

...
...

...
...

· · · A0 A−1 A−2 A−3 A−4 A−5 · · ·

· · · A1 A0 A−1 A−2 A−3 A−4 · · ·

· · · A2 A1 A0 A−1 A−2 A−3 · · ·

· · · A3 A2 A1 A0 A−1 A−2 · · ·

· · · A4 A3 A2 A1 A0 A−1 · · ·

· · · A5 A4 A3 A2 A1 A0 · · ·

...
...

...
...

...
...

...
...



(9.70)
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where {Ai, i = ...,−2,−1, 0, 1, 2...} are Toeplitz matrices. Therefore fast algo-

rithm could be applied to each of the individual matrix as well as the whole

matrix.
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Chapter 10

Numerical Results

The original translation operators (Chapters 4, 6) and the more efficient new

translation operators (Chapter 5, 7, 8, 9) for the two and three dimensional

coulombic potential are implemented and used with the black box FMM program

developed in C++ by Gumerov, Duraiswami, and Borovikov [Gumerov2003].

In the implementation of the new translation operators, the FFTW package

[Frigo2003] developed by Frigo and Johnson is used to perform the fast Fourier

transform. Numerical experiments have been carried out on a personal computer

with a Pentium III 931 MHz processor.

The results of our experiments are summarized in the following tables and

graphs with all timings (wall clock time) given in seconds. The intensity of the

particles for simplicity reason is taken to be 1.

10.1 Results for two dimensions

In the first experiment, the number of terms used in all expansions is 21, which is

the number that results in double precision accuracy, and the maximum number

of particles in a box (clustering parameter s) at the finest level is set in a way
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so that it yields the optimal number of levels for all calculations. The results

are reported in Table 10.1. The first column is the number N of particles in the

simulation. The next three columns show the wall clock time Tnew, Told, Tdirect

respectively for the FMM algorithm with new translation operators, the FMM

algorithm with original translation operators, and the direct calculation. Each

integer in the parenthesis next to the wall clock time is the number of levels in

the data structure which results the fastest calculation. The fifth and the sixth

columns present the relative errors Enew, Eold of the FMM algorithm with the

new and old translation operators, with direct calculations are used to determine

the relative error via the formula

E = max
i=1,...N

¯̄̄
φi − φ̃i

¯̄̄
¯̄̄
φ̃i

¯̄̄ , (10.1)

where φi is the value of the potential at the ith particle position obtained from

the FMM algorithms, and φ̃i is the value obtained from direct calculations. This

error formula is much stricter than the l2 norm.

From the table, we see that the algorithm using the new translation operators

has the same magnitude of relative error as the one using the original translation

operators. Since the CPU time for direct calculations are much higher than the

other two methods, we only plotted the CPU times of the FMM with new and

old translation operators and first few timings of the direct calculations. From

the graph, we see that the algorithm with the new translation operators are

about twice faster than the one with the original translation operators for a fixed

number of terms of p = 21.

In the second experiment, the numberN of particles is 8192, and the clustering

parameter s is set to be 40 (Tables 10.2). The first column in the table is the

number p of the terms in the multipole or local expansions. The second and the
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third columns contain the CPU times Tnew, Told of the FMM using the new and

old translation operators, respectively. The last two columns contain the relative

error for these two calculations.

From the table, we can see that the two different translation operators in-

troduce the same amount of error, and p = 21 is sufficient for double precision.

Increasing the value of p beyond this does not raise the accuracy, since machine

precision is already reached. For higher precision, we need not only to increase

p, but also need to do all calculations in extended precision. Here, one purpose

is to verify that the new efficient operators are capable of producing highly accu-

rate results if we condition the operators properly even though there exist large

numbers (e.g., of magnitude ~ 1062) as well as small numbers (O(1)) in the de-

composed matrices. From the second set of graphs (figure 10.3, 10.4), we can

see that the curve of CPU time versus p for the old translation operators is a

parabola. Indeed the curve can be well approximated by

Told = 0.0369p
2 + 0.0126p+ 4.0920. (10.2)

Told = 0.0402p
2 − 0.0007p+ 12.0596. (10.3)

The curve of CPU time versus p for the new translation operators can be approx-

imated by a straight line as follows,

Tnew = 0.1633p+ 4.3553 (10.4)

Tnew = 0.1588p+ 11.9252. (10.5)

(The fit holds except at three values of p for the new operators. The reason

for these three p = 35, 39, 47 is that the FFT lengths for the multipole to local

translation operator are 68, 76, and 92, which contain the factors 17, 19, and 23,
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Figure 10.1: Timing results (wall clock time) in 2D for the direct calculations and

the FMM using the old translation operators and the new translation operators

with number of terms in all expansions is p = 21 and the optimal number of levels

in each calculation is selected so that each calculation is the fastest possible. The

data plotted in this figure are the same as the data given in table 10.1.

respectively, each of which is not optimal in the FFT calculation.). This implies

that in the case of high precision computation, as the value of p gets larger, the

FMM with the new translation operators is far more efficient than that with the

old translation operators. In this experiment, when p = 17, the new algorithm

uses only half of the time used by the original one; when p = 25, it uses one-third

the time; and when p = 29, it uses one-fourth of the time; when p = 49, it uses

one-eighth of the time.
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Figure 10.2: Log-log plot of the same data as in last figure. Timing results

(wall clock time) in 2D for the direct calculations and the FMM using the old

translation operators and the new translation operators with number of terms in

all expansions is p = 21 and the optimal number of levels in each calculation is

selected so that each calculation is the fastest possible. From this graph, it is

clear that direct calculations are O(N2), while both FMM calculations are O(N),

with the FMM with the new translation operators has a smaller coefficient than

that of the old translation operators.
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N Tnew(levels) Told(levels) Tdirect Enew Eold

512 0.282 (3) 0.344 (2) 0.219 1.94348e− 015 2.45679e− 015

1024 0.641 (3) 0.984 (3) 0.906 3.04228e− 015 3.04228e− 015

2048 1.547 (4) 2.407 (3) 3.578 4.65273e− 015 4.34731e− 015

4096 3.328 (4) 5.781 (4) 15.219 6.95426e− 015 6.95426e− 015

8192 7.609 (5) 12.5 (4) 70.016 8.96796e− 015 9..41502e− 015

16384 15.265 (5) 28.25 (5) 281.172 1.33988e− 014 1.36313e− 014

32768 33.297 (6) 58.141 (5) 1130.34 2.00279e− 014 2.09988e− 014

65536 65.531 (6) 125.61 (6) 4501.7 2.80928e− 014 2.82561e− 014

131072 140.843 (7) 253.563 (6) 18002.4 4.59491e− 014 4.63124e− 014

262144 276.64 (7) 528.14 (7) ∗ ∗ ∗

Table 10.1: Timing results (wall clock time) in 2D for the direct calculations and

the FMM using the old translation operators and the new translation operators

with number of terms in all expansions is p = 21 and the optimal number of levels

in each calculation is selected so that each calculation is the fastest possible. The

data given in this table are the same as the data plotted in figure 10.1 and 10.2.
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Figure 10.3: Timing results (wall clock time) for 2D with fixed number of particles

N = 8192 and cluster parameter s = 40. The data plotted in this figure are the

same as the data given in Table 10.2
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Figure 10.4: Timing results (wall clock time) for 2D with fixed number of particles

N = 16384 and cluster parameter s = 40. The data plotted in this figure are the

same as the data given in Table 10.3 .
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p Tnew Told Enew Eold

5 5.172 5.078 5.3701E − 05 5.3701E − 05

7 5.516 6.063 2.3504E − 07 2.3504E − 07

9 5.781 7.25 3.6499E − 08 3.6499E − 08

11 6.218 8.719 1.1580E − 09 1.1580E − 09

13 6.437 10.454 3.1867E − 11 3.1867E − 11

15 6.828 12.579 3.0385E − 12 3.0388E − 12

17 7.093 14.954 5.6928E − 14 5.6928E − 14

19 7.438 17.61 1.0647E − 14 9.7717E − 15

21 7.796 20.593 8.9680E − 15 9.3052E − 15

23 8.219 23.968 1.0145E − 14 9.2772E − 15

25 8.406 27.391 9.1240E − 15 9.2772E − 15

27 8.813 31.344 9.1226E − 15 9.2772E − 15

29 9.094 35.657 1.0731E − 14 9.2772E − 15

31 9.391 39.937 9.1226E − 15 9.2772E − 15

33 9.5 44.656 8.8133E − 15 9.2772E − 15

35 12.75 49.719 9.5864E − 15 9.2772E − 15

37 10.312 55.047 2.0832E − 14 9.2772E − 15

39 14.406 60.734 1.0398E − 14 9.2772E − 15

41 11 66.641 1.7394E − 14 9.2772E − 15

43 11.422 72.859 4.0149E − 14 9.2772E − 15

45 11.86 79.421 1.5406E − 14 9.2772E − 15

47 17 86.157 9.1142E − 14 9.2772E − 15

49 12.359 93.344 5.0979E − 14 9.2772E − 15

Table 10.2: Timing results (wall clock time) for 2D with fixed number of particles

N = 8192 and cluster parameter s = 40. The timing given in this table are plotted

in Figure 10.3 137



p Tnew Told Enew Eold

5 12.719 13.062 5.3933E − 05 5.3933E − 05

7 13.188 14.312 2.1549E − 07 2.1549E − 07

9 13.406 15.125 3.5302E − 08 3.5302E − 08

11 13.828 16.765 1.2355E − 09 1.2355E − 09

13 14.156 18.672 2.8376E − 11 2.8377E − 11

15 14.5 20.969 3.2839E − 12 3.2842E − 12

17 14.672 23.578 6.8581E − 14 6.8321E − 14

19 15.016 26.484 1.4722E − 14 1.3631E − 14

21 15.313 29.718 1.3399E − 14 1.3631E − 14

23 15.875 33.25 1.3963E − 14 1.3631E − 14

25 15.859 37.141 1.3631E − 14 1.3631E − 14

27 16.344 41.375 1.3995E − 14 1.3631E − 14

29 16.593 45.828 1.3918E − 14 1.3631E − 14

31 16.86 50.703 1.4182E − 14 1.3631E − 14

33 17.032 55.782 1.5135E − 14 1.3631E − 14

35 20.188 61.344 1.4399E − 14 1.3631E − 14

37 17.734 67.016 2.1599E − 14 1.3631E − 14

39 21.766 73.094 2.0007E − 14 1.3631E − 14

41 18.469 79.797 2.0181E − 14 1.3631E − 14

43 18.86 86.422 3.9793E − 14 1.3631E − 14

45 19.188 93.516 1.8615E − 14 1.3631E − 14

47 24.375 100.907 1.3358E − 13 1.3631E − 14

49 19.704 108.64 4.8065E − 14 1.3631E − 14

Table 10.3: Timing results (wall clock time) for 2D with fixed number of particles

N = 16384 and cluster parameter s = 40. The timing given in this table are

plotted in Figure 10.4 138



10.2 Results for three dimensions

The settings for the experiments in 3D are similar to that in two dimensions.

The same relative error formula is used.

From table 10.4 and figure 10.5, we see that the FMMwith the old translation

operators or the new translation operators have the same good accuracy with 121

terms retained in the expansion. The FMM in 3D is much slower than that in 2D

for two reasons: a) the interaction list in 3D most time consists of 189 boxes while

in 2D it has only 27 boxes; b) the number of terms used in the expansion in 3D is

much more than that in 2D. The FMMwith the new and old translation operators

is faster that the direct calculation for large number of particles. The FMM with

old translation operators often can not compete with the direct calculation when

the number of particles are relatively small. The FMM with the new translation

operators often are two times faster than that with the old translation operators;

It breaks even with the direct calculation for a reasonable number of particles.

From figure 10.7 and table 10.5, it is obvious that the CPU time for the FMM

with the old translation operators is a second order polynomial in p2, that is

O(p4), while the CPU time for the FMM with the new translation operators is

O(p2 log p), where p2 is the number of terms in all multipole/local expansions in

3D. Indeed the curves can be well approximated by

Told = 0.0014p
4 − 0.0519p2 + 15.8037. (10.6)

Tnew = 0.0336p
2 + 15.7909. (10.7)

It is easy to see that both have the same order of accuracy. It confirms that

the break-even p is 4, and for higher accuracy, the number of terms grows larger,
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Figure 10.5: Timing results (wall clock time) in 3D for the direct calculations and

the FMM using the old translation operators and the new translation operators

with number of terms in all expansions is p2 = 121 and the optimal number of

levels in each calculation is selected so that each calculation is the fastest possible.

The data plotted in this figure are the same as the data given in table 10.4.

140



102 103 104 105
10-1

100

101

102

103

104

105

Number of particles (N)

C
P

U
 ti

m
e 

(s
ec

on
ds

)
New translation
Old translation
Direct calculation

Figure 10.6: Log-log plot of the same data as in last figure. Timing results

(wall clock time) in 3D for the direct calculations and the FMM using the old

translation operators and the new translation operators with number of terms in

all expansions is p2 = 121 and the optimal number of levels in each calculation

is selected so that each calculation is the fastest possible. From this graph, it is

clear that direct calculations are O(N2), while both FMM calculations are O(N),

with the FMM with the new translation operators has a smaller coefficient than

that of the old translation operators.
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N Tnew(levels) Told(levels) Tdirect Enew Eold

400 2.797 (2) 14.719 (2) 0.25 4.39601e− 009 4.39566e− 009

800 3.266 (2) 15.375 (2) 0.984 3.95576e− 09 3.95769e− 009

1600 5.235 (2) 16.875 (2) 2.719 1.91777e− 09 1.91865e− 009

4000 18.906 (2) 30.5 (2) 26.25 3.54763e− 09 3.5483e− 009

8000 75.234 (2) 88.14 (2) 105.641 1.75868e− 09 1.75752e− 009

12000 175.922 (2) 186.094 (2) 223.203 1.52882e− 09 1.52884e− 009

16000 305.469 (2) 308.141 (2) 382.672 1.59152e− 09 1.59146e− 009

20000 367.953 (3) 498.5 (2) 713.688 2.06895e− 09 1.86678e− 009

24000 414.172 (3) 674.922 (2) 845.078 2.25412e− 09 1.90272e− 009

28000 469.906 (3) 898.156 (2) 1339.41 1.57744e− 08 3.4595e− 009

32000 534.031 (3) 1179.33 (2) 1591.27 1.14218e− 08 3.44941e− 009

36000 604.203 (3) 1476.73 (2) 2531.98 8.24206e− 09 3.43159e− 009

48000 872 (3) 2078.97 (3) 3461.5 5.37855e− 09 5.3784e− 009

64000 1336.13 (3) 2537.84 (3) 7376.8 4.21805e− 09 4.21818e− 009

80000 2002.81 (3) 3155.61 (3) 12308.6 4.16503e− 09 4.16509E − 09

Table 10.4: Timing results (wall clock time) in 3D for the direct calculations and

the FMM using the old translation operators and the new translation operators

with number of terms in all expansions is p2 = 121 and the optimal number of

levels in each calculation is selected so that each calculation is the fastest possible.

The data given in this table are the same as the data plotted in figure 10.5 and

10.6.
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Figure 10.7: Timing results (wall clock time) in 3D for the FMM using the old

translation operators and the new translation operators with N = 4000 and

s = 120. The data plotted in this figure are the same as the data given in Table

10.5

the new translation operators become increasingly more efficient than the old

translation operators.
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p2 Tnew Told Enew Eold

9 16.093 15.453 7.01992e− 04 7.01992e− 004

16 16.547 17.031 1.78884e− 04 1.78884e− 004

25 18.797 16.828 4.13579e− 05 4.13579e− 005

36 17.75 17.484 5.61547e− 06 5.61547e− 006

49 18.469 18.703 9.08662e− 07 9.08662e− 007

64 17.703 21.031 2.29129e− 07 2.29129e− 007

81 18.265 24.703 2.1003e− 08 2.1003e− 008

100 19.937 26.641 1.22377e− 08 1.22384e− 008

121 20.016 31.75 3.54973e− 09 3.5483e− 009

144 20.375 38.047 2.9289e− 10 2.94224e− 010

169 21.125 48.016 2.35364e− 10 2.34372e− 010

196 21.719 59.625 7.25083e− 11 7.16183e− 011

225 22.687 73.313 8.8203e− 12 7.51667e− 012

256 24.047 92.203 3.48925e− 12 3.3386e− 012

289 25.594 115.75 3.48706e− 12 1.76288e− 012

324 27.078 143.781 7.25795e− 12 7.20734e− 012

361 26.984 178.531 4.0068e− 11 1.56376e− 011

400 29.218 224.312 1.98628e− 10 1.73987e− 011

Table 10.5: Timing results in 3D with fixed number of particles N = 4000 and

cluster parameter s = 120. The data given in this table are the same as the data

plotted in Figure 10.7
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Chapter 11

Conclusion and Future Work

The efficient translation operators for Coulombic potentials in two or three di-

mensions have been developed. The complexity of the FMM is improved to

O(p log pN), where p is the number of terms retained in the multipole/local ex-

pansions. Numerical experiments indicate that for 2D, when optimal clustering

parameter for both algorithms are selected, the new translation operators speed

up the whole algorithm by a factor of two to three. For 3D, the new transla-

tion operators speed up the algorithm even more. From the complexity analysis,

for calculations requiring higher precision, the truncation number p has to be

larger, the new translation operators will speed up the algorithm even more sig-

nificantly. In the process of developing new translation operators, two type of

fast algorithms has been developed. One is for the Pascal matrix, its transpose,

and the product of these two to perform the matrix-vector multiplications. The

other is to efficiently compute the new coefficients of a field given as a spherical

harmonic expansion under rotation transformation.

We have identified constant matrices in the translation operators. Acceler-

ating the matrix-vector product for these constant matrices will speed up the

translation operators, thus improving the complexity of the whole algorithm.
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Some future work can be devoted to this.

The fast rotation transform can be applied to the potential governed by the

three dimensional Helmholtz equation as well. We need only to develop simi-

lar coaxial translation operators for it to achieve O(p log p) complexity for the

corresponding translation operators.
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