

Favorite Folders:
A Configurable, Scalable File Browser

Bongshin Lee, Benjamin B. Bederson
Computer Science Department

Human-Computer Interaction Lab
University of Maryland

College Park, MD 20742, USA
Tel: 1-301-405-7445

E-mail: {bongshin, bederson}@cs.umd.edu

ABSTRACT
Microsoft Windows Explorer, the most widely used file
browser in Microsoft Windows, shows almost all directories
in the file system. However, most users usually access only a
subset of the directories in their machine. If the file browser
shows only the directories users are interested in, they can
select the directory they want more easily and quickly.

This paper introduces a configurable, scalable file system
explorer that reduces selection time by showing only the
directories users want to see. We give users an easy way to
hide directories behind a special ellipsis node. In addition,
those hidden directories are one click away.

We present a preliminary field study conducted to validate
the concept of Favorite Folders and a theoretical model to
predict the performance times.

KEYWORDS: Windows Explorer, file browser, adaptive
interfaces, customizable interfaces

INTRODUCTION
A typical modern computer has a complex file system
structure, involving many directories. As users are added to
a multi-user machine and over time, the file system structure
becomes more complex. However, a particular user may be
interested in only some of these directories. Yet, the most
widely used file browser in Microsoft Windows, Windows
Explorer (Figure 1), provides the user with a fixed view of
the file system structure. It displays nearly all directories in
the file system, distracting the user and making the task of
selecting a directory cumbersome.

There have been a number of adaptive systems to improve
selection performance by providing a small subset of all
alternatives as with Microsoft Office’s adaptive menus.
Researchers advocating adaptive systems believe that they
are creating something lifelike and smart and assume users
would be attracted to adaptive systems [12]. In addition,
adaptive systems have the advantage that they don’t require
additional work by the user to set it up. However, users may
experience a loss of control and frustration because the
adaptive systems are unpredictable.

Figure 1. Windows Explorer vs. Favorite Folders

We have developed a technique we call Favorite Folders
(Figure 1) that offers similar functionality but keeps the user
in control by providing an easy-to-understand adaptable,
customizable interface.

In this paper, we describe the design and implementation of
Favorite Folders, which allows users to easily and quickly
access the directories most relevant to them (typically, they
are the ones most frequently accessed). In this paper, we use
the term ‘favorite folders’ to denote those directories that a
user would like to see. We introduce a manual strategy
enabling users to specify themselves whether or not they
want to see a directory.

We then explain how we implemented Favorite Folders as
an explorer bar for Microsoft Internet Explorer to provide a
display area adjacent to the browser pane. It stores necessary
information in a relational database and indexes directories
by name for fast access. Therefore, it provides fast search
capabilities for directories. It watches the file system to
update the view properly whenever the file system changes.

We have conducted a preliminary field study intended to
validate the concept of Favorite Folders and to get an idea of
what users think about Favorite Folders and how users
manage and access their file systems in order to inform us
future directions. In addition, we describe a model to predict
the amount of time saved by the use of Favorite Folders.

RELATED WORK
There have been a number of research and commercial
products to improve performance by making frequent tasks
easier or providing small subsets out of all alternatives.

Sears and Shneiderman created split menus, which splits a
menu into two sections. Frequently selected items are placed
in the top section and infrequently selected items in the
bottom section. They described how a logarithmic model
applies to high-frequency items, and a linear model to
low-frequency items. They found performance times were
reduced by 17% to 58% [11].

Debevc, Meyer, and Svecko described an adaptive short list
for documents on the web. Their work presents the user with
a small set of sites that represents the most commonly used
sites based on the user’s history of web use. The adaptive
short list is automatically maintained and updated by a
decision algorithm. For the most common documents, users
get the desired documents quickly because they don’t have
to go through the entire list. [2]

Miah, Karageorgou and Knott presented a technique for
automatically adapting toolbars to user needs. They
calculated a toolbar’s importance from the three variables:
time of creation, time elapsed since last interaction, and the
frequency of interaction to determine which toolbar would
be displayed. [9]

Kaasten and Greenberg developed a revisitation system
integrating back, history and bookmarks in web browsers
[5]. Their work is based on the following two observations –
(1) about 60% of the web pages a person sees are revisits and
(2) recency is an excellent predictor of what pages a person
is likely to revisit [13]. All visited web pages are organized
as a recency-ordered history list, with duplicate pages shown
only in their latest position. Therefore, users can expect to
find a page they had recently visited near the top of the list.

Microsoft also introduced adaptive interfaces for Office
2000 and the Programs submenu of the Windows Start
menu. When users first start any office program, the menus
and toolbars display basic commands and buttons. As users
work with the program, the commands and buttons that users
use most often are stored as personalized settings and
displayed on menus and toolbars. Users can look for a menu
command that doesn't appear by clicking the arrows at the
bottom of the menu or hovering over them for a few seconds.
The menu expands to show more commands. Any command
that users click on the expanded menu is added immediately
to the personalized (short) version of the menu. The program
stops showing a command on the short version of the menu
if users stop using it for a while. [15]

Although the adaptive interfaces provide short versions of
the menus by showing only basic and frequently used
commands, they often cause a loss of control and their
behavior is hard to predict because they automatically decide
which menu options to show. In fact, users can only guess
the underlying algorithms based on the behaviors of the
adaptive interfaces. Hence, users are often frustrated when
the systems don’t work as they expected. To address these
problems, we have developed a technique that offers similar
functionality but keeps the user in control by providing an
easy-to-understand adaptable, customizable interface.

McGrenere, Baecker, and Booth designed an adaptable
interface, which can be personalized by the user for heavily
featured productivity software. They point out that menus
and toolbars have grown quickly as windows applications
such as the word processor and the web browser are getting
more complex. They proposed a personal interface adaptable
by the user with an easy-to-understand adaptation
mechanism. Their system keeps the user in control by
providing an adaptable interface, which can be personalized
based on the user’s need. [8] Their idea is similar to the
manual strategy presented in this paper.

However, menus and toolbars do not grow as users use the
application like file systems that get bigger as users use their
machines. Menus are no match for file system structure in
size. Furthermore, their customization process needs four
steps to add a function: 1) Press ‘Modify Interface’ button to
open a dialog, 2) Press ‘Add’ button to switch to full
interface, which has all the menus and toolbar buttons, 3)
Select the toolbar button you wish to add, and 4) Press ‘OK’

button to confirm your selection. Therefore, their approach
is not applicable for the file system browser.

FAVORITE FOLDERS
Favorite Folders is a new customizable Windows file system
browser, only showing users the favorite folders by default.

Customization, in general, is a process where users alter a
software environment according to individual specifications.
Although more and more programs are customizable by the
end user, many people do not take advantage of the
customization feature if the customization process is
complex or if it takes time to learn and perform the
customization. Similarly, users are not likely to spend time
annotating all directories in the file system for future benefit
if it cannot be done easily. We propose a new interface
enabling users to customize the program with minimal effort
and immediate benefits.

Hidden Folders
An ellipsis is a mark (...) indicating an omission. To hide
irrelevant directories, Favorite Folders introduces a special
ellipsis node in the directory tree structure. It is a virtual
container hiding items that are not shown. The existence of
the ellipsis node indicates that there are hidden directories.
Opening the ellipsis node redisplays those hidden items. It
makes the Favorite Folders design unique because users can
see all directories in the file system immediately without
switching to the regular interface.

 (a) Regular (b) Multiple ellipses (c) One ellipsis

Figure 2. Two styles of ellipsis node

Since directories are displayed in alphabetical order, our
system provides two ways to hide irrelevant directories as
shown in Figure 2. One way is to preserve the hidden
directory’s original location. In this case, even though each
contiguous sequence of items is hidden in one ellipsis node,
hiding multiple directories can end up with several ellipsis
nodes. If the directory to be shown and the directory to be
hidden alternate, Favorite Folders would be crowded with
the ellipsis nodes. Instead, we store all hidden items in one
ellipsis node and place the ellipsis node at the bottom of the
list as is done in the Microsoft adaptive menus.

Manual Strategy
One of the key issues with the Favorite Folders design is
how to choose the favorite folders to be shown. Since what a
user wants is impossible to predict perfectly and it changes
over time, we believe that the best way is to enable users to
fully control the behavior of the program. In Favorite
Folders, users specify themselves whether they want to see a
directory or not.

If the customization process is complex or if it takes t ime to
learn and perform the customization, users are unlikely to
make use of such features. To minimize user effort, we put a
check box at the left of the directory name as shown in
Figure 3. With a single click, users can hide the irrelevant
directories.

When users first select a directory, the program displays all
of its subdirectories. When users uncheck the irrelevant
directory, Favorite Folders hides it within the ellipsis node
and only displays the directories still checked.

To be a favorite folder, a directory and all of its ancestors
must be checked. If users uncheck a directory, then it and all
of its descendents are no longer considered a favorite folder.

It is important to note that Favorite Folders doesn’t require
users to annotate all directories before they use the system.
Favorite Folders integrates the annotation process into the
user’s navigation and supports updating of favorite folders
incrementally. Whenever users find an irrelevant directory
either by browsing or by searching, they can hide it with a
single click and immediately get a better view having a
smaller number of alternatives. We expect that some users
will be willing to spend some time setting up the favorite
folders. We also expect that it will not take much time to
reach a stable state in which the favorite folders are almost
set up and therefore there will be little need for users to
check/uncheck directories after some initial use period.

Users can hide the check boxes to save space after Favorite
Folders reaches a stable state. Figure 3 shows Favorite
Folders with and without check boxes. We can see that they
are much shorter than the Folders view in Windows Explorer
in Figure 1.

Figure 3. Favorite Folders . Check box visibility is

controlled through a context menu.

IMPLEMENTATION
Explorer Bar
Favorite Folders was implemented in C# as an Explorer Bar,
an interface element introduced with Microsoft Internet
Explorer 4.0 to provide a display area adjacent to the
browser pane. It is basically a child window within the
Internet Explorer window, and it can be used to display
information and interact with the user [14].

Internet Explorer provides several standard Explorer Bars,
including Favorites, History and Search. In particular, the
Windows Explorer is a program containing the special
‘Folders’ explorer bar by default. Favorite Folders is also
implemented as an explorer bar to use Windows Explorer’s
built-in functionalities such as copy and delete. Favorite
Folders not only controls the explorer but also catches events
from the explorer to synchronize itself with the browser
pane. Navigating among folders in the Favorite Folders
changes the browser pane and navigating among folders in
the browser pane changes the selection in the Favorite
Folders window. Therefore, it is quite similar to Windows
Explorer. Favorite Folders is launched as shown in Figure 4.

Figure 4. Selecting Favorite Folders in the

Windows Explorer

Index Database
To decide which directories are shown, Favorite Folders
uses a flag associated with each directory. Favorite Folders
stores that flag in a relational database and indexes
directories by name for fast access and search. Since the file
system structure is hierarchical, parent-child relationships
are stored, too. Table 1 shows the schema of the directory
table.

Field Description

Id Directory id

Name Directory name

Parent Parent directory id

Lastaccess Last access time

Favorite Favorite flag

Ancestorfav Ancestors favorite flag

Table 1. Directory Table Schema

The favorite field represents whether the directory itself is
checked or not. As mentioned before, to be a favorite folder,
a directory and all of its ancestors should be checked. Since
it is slow to check whether a directory is a favorite folder or
not by examining its ancestors’ favorite fields recursively,
we flattened the database with an ancestorfav field,
representing whether all of its ancestors are checked or not.

When users check/uncheck a directory, Favorite Folders
recursively sets the ancestorfav field of all of its descendents
to true/false. Then, it can be determined if a directory is
“favorite” by checking both favorite and ancestorfav fields
are true, which makes the ‘within favorites search’ described
in the following section fast.

With check boxes

Without check boxes

This hierarchy flattening introduces one last complexity.
Changing a single check mark can have a big impact on the
database as that folder’s entire subtree has to be updated.
This process can be quite time consuming, so we
implemented a separate thread to update the database. This
means that when a check box is changed, while the interface
reflects the change immediately, it can take several seconds
for the database to get updated and if a search is done during
this time, the recent changes are not reflected in the search
results. This could be fixed by delaying searches until
database updates have been completed. A related issue is
that we use Microsoft Access to store the database, and
Access doesn’t support multi-threaded access. We therefore
had to synchronize all access to the database – but our
implementation does not synchronize across processes
which means that only one instance of Favorite Folders can
be run at a time. This could be fixed in the future by using a
threaded database or by implementing a database access
server that synchronizes database access across processes.

We also implemented a small utility program to index the
directories in the file system. The program enables users to
choose the drives they want to index since users may not
want to index some drives such as cd-rom and network
drives, which may be temporary or may have many
irrelevant directories. This implies that there could be
directories which are not indexed yet. Therefore, there are
three states for a directory: (1) indexed favorite folder, (2)
indexed non-favorite folder, and (3) non-indexed folder.
These non-indexed directories can be indexed later when the
user browses them or by rerunning the utility program. By
default, all indexed directories are favorite folders at first.

If users browse the indexed directories, Favorite Folders
retrieves child directories from the database. If users browse
the non-indexed directories, Favorite Folders retrieves child
directories from the file system and then indexes them into
the database so that the next time when the user selects the
same directory, necessary information can be retrieved from
the database.

Directory Search
Since every favorite folder is indexed by name in the
database, Favorite Folders provides fast search.

The ‘within favorites search’ is the search restricted to the
favorite folders. Users can also search for indexed but
non-favorite folders in the file system with ‘everywhere
search’.

There are a few trade-offs between Favorite Folders search
and Windows search. The search results in Favorite Folders
highlight the results and shows them in context.. Then, after
the search, it automatically selects the first search result
directory so that its contents show in the browser pane. It is
more useful when the search has only one result. On the
other hand, Windows search can search for not only

directories but also files. It also provides advanced features
such as searching for files containing specific text or
modified recently. Figure 5 shows both search results with
“Explorer” keyword done by Favorite Folders search and
Windows search.

Figure 5. Favorite Folders Search
 vs. Windows Search

Auto completion can make the search faster. Favorite
Folders stores the words users searched for before and
provides the first match in the database whenever users type
a character in the input box. For example, when users first
try to find ‘Explorer’, they have to type the whole string.
However, next time when users want to find it again after
they type ‘E’, the program fills the input box with the
keyword ‘Explorer’.

Favorite Folders search is especially useful when users
already know the location of a directory. Users can access a
directory simply by searching for it instead of opening the
directories in the path from the root. In other words, Favorite
Folders search can serve as a shortcut.

Favorite Folders search also makes it easy to set up the
favorite folders. When users perform a search, the search
results may include irrelevant directories if their names
contain the keyword. Users can exclude them from favorite
folders by unchecking them. In addition, if users want to
change a non-favorite folder to a favorite folder, they can
find it by ‘everywhere search’.

File System Watching
It is necessary to update Favorite Folders properly when
users or other programs change the file system structure. For
example, directories can be deleted from the command

prompt, new directories can be made when users extract a
zip file to a folder, or users can change the directory name in
Windows Explorer’s browser pane. To catch up with all
these changes we implemented a file system watcher. The
watcher is launched when the user starts Windows and
updates the database when the file system changes.

Constraints
For various reasons, Favorite Folders has some technical
limitations.

Because of limitations in the Windows Explorer API, we can
not launch Windows Explorer with Favorite Folders opened
by default, or add a toolbar button to Windows Explorer’s
toolbar.

In addition, Windows Explorer intercepts some keyboard
messages including backspace. So we disabled renaming
since it is so inconvenient to rename directories without the
backspace key. Instead, users have to use the browser pane
in Windows Explorer.

As described in the previous section, only one instance of
Favorite Folders can be run at a time. Finally, Favorite
Folders is not fully compatible with samba-mounted Unix
drives. First, the file system watcher cannot catch changes in
the Unix file system because its underlying mechanism is
provided by Microsoft Windows. Second, because directory
names are not case-sensitive in Windows, Favorite Folders
cannot distinguish Unix folders that are the same except for
capitalization.

EVALUATION
While the two authors of this paper use Favorite Folders
themselves, we attempted to further validate the concept of
Favorite Folders by conducting a preliminary field study.
We chose not to run a controlled laboratory study because
for Favorite Folders to be effective, users have to care
enough about the directory structure to be willing to put in
time to customize it. Furthermore, one of the things we
wanted to investigate was whether users would in fact be
willing to spend time to customize their directory structure
in the first place.

We did not expect that the results of this study would
provide a definitive understanding of whether Favorite
Folders is better than Windows Explorer. Rather, we hoped
to get an idea of how users think about the Favorite Folders
concept and how they manage and access their file systems
in order to plan for future directions.

We recruited 5 volunteers who: 1) primarily use a single
Windows PC; and 2) use Windows Explorer regularly.
Three of the subjects were computer science graduate
students, one of the subjects was a biologist, and one of the
subjects was a computer science research scientist. We
helped them set up Favorite Folders on their machines and

gave them brief instructions. They were asked to use
Favorite Folders in their ordinary setting for one week, from
Monday to Friday. We collected participants’ usage
information, which directories they selected, expanded,
searched and so on. We also asked them to fill out a simple
questionnaire at the end of the week.

Logged Information
Our main interests were how much time users saved by
hiding irrelevant directories when they select a directory,
and how much time they were willing to spend customizing
Favorite Folders. To compute the expected savings of
directory selection time based on the logarithmic model,
which will be described later, we recorded the original
number of candidate directories in Windows Explorer and
the number of candidate directories in Favorite Folders.

However, the model doesn’t include the scroll t ime, which is
quite important. To compare the number of scrolls, we also
recorded the height of the tree widget, the original location
of the target item in Windows Explorer and the location of
the target item in Favorite Folders. When a user opens a
node in the tree widget, if all children do not fit in the tree
widget, the tree widget automatically moves the node to the
top to show as many children as possible. Therefore, if we
know the target location and the height of the tree widget,
then we know whether users need to scroll or not.

Results
After using Favorite Folders for one week, subjects were
asked to rate their satisfaction. While the results were not
analyzed statistically because the study contained a small
number of subjects and one week was not long enough, we
learned some important facts and saw some interesting
trends.

Mean ratings for Favorite Folders are shown in Table 2.
Users indicated that Favorite Folders is easy to learn how to
use. Two users indicated that Favorite Folders search is
more useful than Windows search but others indicated the
opposite. Their preference depends on whether they mainly
search for files or directories. Users also indicated that
Favorite Folders is easy to use and it is easy to set up the
favorite folders by checking/unchecking the check boxes.
However, two users stated that they often clicked on the
check box by mistake, which caused a folder to be hidden
and hence wasted their time repairing the mistake. For the
same reason, one user stated that he did not feel in control of
this system.

One important thing we found was that some users already
had found their own ways to organize the directory structure
to support hiding of infrequently accessed folders. For
example, one user usually makes directories named “old”
and hides segregated directories in them, which reduced the
need for Favorite Folders. However, we can see that those
folders serve as the ellipsis nodes. Therefore, if we put it in

another way, this is evidence of the necessity of the ellipsis
nodes. The other user keeps her most used files in folders
with direct shortcuts on her desktop. As the desktop
directory is physically nested within the Documents and
Settings folder it actually gets harder to get to with Favorite
Folders because it is so nested. For these reasons, they did
not think that Favorite Folders saved them much directory
selection time.

Favorite Folders was easy to learn how to use 5.8

Favorite Folders search is more useful than
Windows search 4

Favorite Folders was easy to use 5.2

It was easy to set up favorite folders by
checking/unchecking the check boxes

5.8

It was worth my time to set up favorite folders 5.2

I felt in control of this system when I was using it 5

It seemed like Favorite Folders saved directory
selection time

5.6

Table 2. Average satisfaction ratings.

(1=Disagree, 7=Agree)

It is important to note that the number of times the user had
to scroll using Favorite Folders was less than that of
Windows Explorer as we expected. Table 3 shows the
number of scrolls for both. User 5 made Explorer very tall
and so never had to scroll. We can see that the number of
scrolls for two uses drastically decreased.

User# # of
selections

of scrolls
in WE

of scrolls
in FF

1 68 13 (19%) 0 (0%)

2 237 29 (12%) 0 (0%)

3 100 5 (5%) 2 (2%)

4 156 8 (5%) 3 (2%)

5 81 0 (0%) 0 (0%)

Table 3. Number of Scrolls

Usability Problems
While we expected the users would use Favorite Folders
regularly, several things discouraged users from using
Favorite Folders consistently.

Users often access directories and files from open and save
dialogs from applications without using Explorer directly. In
addition, some users search for files rather than directories
and Favorite Folders doesn’t support searching for files.

Users frequently forgot to switch to Favorite Folders when
they launched Windows Explorer. Unfortunately, there was
no way to force Windows Explorer to start with Favorite
Folders open, or add a button to Windows Explorer’s
toolbar.

Favorite Folders is a little slower than Windows Explorer
because it has to query the database to get necessary
information. One user preferred Windows Explorer because
Windows Explorer is faster, he has been using it for a long
time, and his folders are well organized, so favorite folders
did not offer him much of a benefit.

As we mentioned earlier, Favorite Folders did not provide
all the functionality of Windows Explorer. However, most of
these technical problems are not indicative of flaws in the
concept of Favorite Folders. In fact, one user explicitly
stated that he definitely would use Favorite Folders very
much, if the idea could be merged into Windows Explorer
more seamlessly.

MODEL
When we introduce a new interface, it is important to predict
the benefits of the new interface because users may be
reluctant to switch to a new system. Here we describe a
model to predict the amount of time saved when users use
Favorite Folders. Since we haven’t conducted a controlled
experiment yet, actual values for constants used to describe
the model are not presented.

We can treat the file system hierarchy as an ordered
hierarchical menu although the size is usually much bigger.
Selecting a folder is the same as users choosing a menu item
when they already know the name of the item.

Several models have been developed to predict the amount
of time necessary to select an item from a menu [6, 7, 10,
11]. We can classify them into two categories: linear or
logarithmic. Landauer and Nachbar’s logarithmic model is
based on the Hick-Hyman law for choice reaction time and
on Fitts' law for movement time [6]. We also describe a
model based on those two laws.

The Hick-Hyman law states that

bkct log+=

where b is the number of response alternatives, c and k are
constants, and t is the average response time [3, 4]. This law
holds very generally for situations in which people are
required to react to any one of many items. The main
question with respect to the application of the Hick-Hyman
law to folder choice is whether the response time for folder
selection is determined by a choice among responses, or by
the time for visual scan-and match processes [6]. Since the
folder names are sorted in alphabetic order, it is not
necessary to search them sequentially to find the target item.
We apply the Hick-Hyman law to our model assuming that

the response time for folder selection is determined by a
choice among subdirectories.

Fitts’ law states that

w
d

kct log+=

where d is the distance moved and w is the width of the
target, c and k are constants, and t is the movement time. For
folder selection, since the width of the target is the height of
a directory node, it is essentially equal regardless of a
directory. The average distance from the parent to the item is
proportional to the number of alternatives (subdirectories).
Thus, for folder selection, Fitts’ law gives

bkct log''+=

The selection time is the sum of the choice reaction time and
the movement time. If we apply both the Hick-Hyman and
Fitts’ laws, it is a linear function of logb.

We need the following values to predict the amount of time
to be saved by switching to Favorite Folders from a
Windows Explorer. For simplicity, we assume that the
hierarchy is symmetric (i.e., a balanced tree), we do not
count the ellipsis nodes as subdirectories, and we do not
account for scrolling. This last simplification is one which
results in a bias in favor of Windows Explorer since Favorite
Folders reduced the amount of scrolling needed. So, any
benefit found for Favorite Folders would like be larger in
actual use.

• b: the number of subdirectories

• p: the percentage of favorite folders

• l: the path length of a directory
(e.g. directory d = d1d2…dl)

• f: the percentage of favorite folders selections
For Windows Explorer, we always choose one out of b
subdirectories. The average amount of time necessary to
choose one directory with Windows Explorer is as follows:

bkcWEt log)(+=

where c and k are constants.

For Favorite Folders, we have two cases: (1) the target
directory is a favorite folder and (2) the target directory is
not a favorite folder. If the target directory is a favorite
folder, it is already shown in the list and the number of
alternatives is b * p . The average amount of time necessary
to choose a favorite folder is as follows:

bpkcFFt ff log)(+=

If the target directory is not a favorite folder, it is hidden in

the ellipsis node. Therefore, users first have to figure out that
the directory they want is hidden, which takes bpkc log+ .

Then, users have to expand the ellipsis node. Last, they have
to select the target item, which takes bkc log+ . The
average amount of time necessary to choose a non-favorite
folder is as follows:

bkbpkcFFt ff loglog2)(++=∧

Then, the amount of time necessary to open a directory with
Favorite Folders is as follows:

)log)(1()log(
)loglog2)(1()log()(

bkcfbpkc
bkbpkcfbpkcfFFt

+−++=
++−++=

where c and k are same constants above.

To open a directory whose path length is l, we have to open l
directories included in the path. Hence, the expected savings
is

))log()log((*avings bpkcbkcflsExpected +−+=

Let us compute the expected savings for one user with real
data gathered in the field study. The percentage of favorite
folders (p) was 0.414723, and the percentage of favorite
folders selection (f) was 0.911765 ˜ 0.91.

First, we examine the time needed to open a directory with
Windows Explorer. The average number of subdirectories
(b) was 20.17647. Whether we select a directory being a
favorite folder or not, the necessary time to select it is c +
k log20.17647 ˜ c + 4.33k .

Then we examine the time needed to open a directory with
Favorite Folders. The average number of subdirectories (b)
was 8.367647. If we choose a favorite folder, the time
needed is c + k log8.367647 ˜ c + 3.06k . If we choose a
non-favorite folder, the time needed is c + k log8.367647 + c
+ k log20.17647 ˜ 2c + 7.39k . The average time needed with
Favorite Folders is 0.91 * (c + 3.06k) + 0.09 * (2c + 7.39k) =
1.09c + 3.45k .

The average expected time to be saved or lost to open each
directory in the path with the Favorite Folders is .88k –
0.09c . Since the average path length (l) was 2.678571 ̃ 2.68,
the total expected benefits is 2.36k - 0.24c . Table 4 shows
the expected savings per selection in percentage depending
on the constants c and k , based on empirical results of
previous studies [4, 11].

 c = .1 c = .2

k=.2 17% 15%

k=.4 19% 17%

Table 4. Expected Savings

We see that the total average time saved when accessing the
favorite folders is reduced when the non-favorite folders are
accessed. However, if we only look at the time saved when
accessing the favorite folders, we can save 1.27k amount of
time for each access. It means that users can perform
frequent things faster.

Expected Savings
To compute more reasonable expected savings, we take into
account scroll time and how much time users spend to
customize Favorite Folders. We estimate times to scroll and
click on a check box based on the Keystroke-Level Model
[1]. One scroll consists of pointing to a target, mental
preparation, button press, and drawing line. This operation
takes 3.79 seconds. Single clicking on a check box consists
of pointing to a target, mental preparation, and button press.
It takes 2.73 seconds.

Selecting a directory in the tree widget is more difficult than
selecting a menu item because users have to click either on
the small plus sign or on the text. We use the slope value k
= .3, which is a little larger than the value from the earlier
work by Sears and Shneiderman [11]. We chose the
conservative value c = .2 based on the work by Hyman [4].
The number of subdirectories (b) was 2 0.8, the percentage of
favorite folders (p) was 38%, and the percentage of favorite
folders selections (f) was 92.5%. On average, users would
spend 234.2 seconds with Windows Explorer, to select 128.4
directories. They spent 132.8 seconds to select 118.8
favorite folders and spent 28.9 seconds to select 9.6
non-favorite folders. In many cases, we expect actual time
spent could be longer. The average expected savings
considering scroll time is 72.5 seconds.

Users clicked the check boxes 97.4 times to set up the
favorite folders, which took 265.9 seconds. Assuming users
reach a stable state after one week and click 10% as many
check boxes in following weeks, they could save 3477.51
seconds in one year. The savings would be even larger if the
software was used more often.

FUTURE WORK
To verify the model we described, a controlled experiment
needs to be conducted. Expected savings depends on the
constants c and k . We can get the constants used to describe
the model through the experimental results.

Fix Usability Problems
Participants showed positive feedbacks about the concept of
Favorite Folders. However, they preferred Windows
Explorer because Favorite Folders has several usability
problems. Some of these are impossible to fix, but most
could be addressed. For example, it would make Favorite
Folders more usable if we enable users to search for files in
addition to folders and show the containing directories in the
Favorite Folders view.

Multiple Views Based on Roles
The main idea of Favorite Folders is that users are usually
interested in the same small portion of the whole file system.
We also expect that the directories users want to access will
vary according to what they are doing. For example, students
taking two classes may want to access different directories
when they are doing projects for each class. It would be
useful to provide different views of the file system based on
the user’s roles.

CONCLUSION
Between our own experience using Favorite Folders and the
small amount of data we gathered from our user study, we
maintain our belief that the idea of letting users manually
specify a single bit whether a folder is a “favorite” or not is a
good one. At the same time, it is also clear that this approach
is not for everyone. To summarize, we think the following
elements are necessary to make the favorite folders concept
work in practice:

• Interface must be integrated into every place that users
access files (explorer, dialog boxes, etc.)

• Interface must be extremely fast to use and require no
more than one click to specify whether a folder is a
favorite, and no more than one click to access folders that
have been identified as non-favorites.

• Interface must be very responsive, and no slower than the
alternative interfaces.

• It must be possible to turn off the favorite interface for
users that do not want it.

While we have focused on the concept of letting the user
specify a favorite bit in the context of file systems, it is clear
that the same approach could be generalized to menus and
other places where there are many items to be selected from
and some are more commonly selected than others. The
application to menu selection is particularly interesting
because if offers a direct replacement for the adaptive
solution currently implemented by Microsoft Office with
potential benefits and similar functionality.

ACKNOWLEDGMENTS
We would like to thank our fellow members of the HCIL.
We are especially grateful to volunteer participants for their
time and effort.

REFERENCES
1. Card, S. K., Moran, T. P., and Newe ll, A. The

keystroke-level model for user performance time with
interactive systems. Communications of the ACM, 1980,
pp. 396-410

2. Debevc, M., Meyer, B., and Svecko, R. An adaptive
short list for documents on the World Wide Web.
Proceedings of the 1997 International Conference on
Intelligent User Interface, 1997, pp. 209-211.

3. Hick, W. E. On the rate of gain of information.
Quarterly Journal of Experimental Psychology, 4,
1952, pp. 11-26

4. Hyman, R. Stimulus information as a determinant of
reaction time. Journal of Experimental Psychology, 45,
1953, pp. 423-432

5. Kaasten, S. and Greenberg, S. Integrating Back, History
and Bookmarks in Web Browsers. In Extended
Abstracts of the ACM Conference of Human Factors in
Computing Systems (CHI’01), ACM Press, 2000.

6. Landauer, T. K., and Nachbar, D. W. Selection From
Alphabetic and Numeric Menu Trees Using A Touch
Screen: Breadth, Depth, and the Width. In Proceedings
of Human Factors in Computing Systems, ACM, 1985,
pp. 73-78

7. Lee, E. and MacGregor, J. Minimizing user search time
in menu retrieval systems. Human Factors, 27, 1985,
pp. 157-162

8. McGrenere, J., Baecker, R., Booth, K. S. An Evaluation
of a Multiple Interface Design Solution for Bloated
Software. In Proceedings of Human Factors in
Computing Systems (CHI’02), 2002, pp. 163-170

9. Miah, T., Karageorgou, M., Knott. R. P. Adaptive
Toolbars: An Architectural Overview. 3rd ERCIM

Workshop on “User Interfaces for All” , 1997.

10. Norman, K. (1991). The Psychology of Menu Selection:
Designing Cognitive Control at the Human/Computer
Interface. Ablex Publishing Corporation

11. Sears, A. and Shneiderman, B. Split Menus: Effectively
Using Selection Frequency to Organize Menus. ACM
Transactions on Computer-Human Interaction, Vol. 1,
No. 1, 1994, pp. 27-51.

12. Shneiderman, B., Maes, P., and Miller, J. Intelligent
Software Agents vs. User-Controlled Direct
Manipulation: A Debate, CHI 97 Electronic
Publications: Panels , 1997,
(http://www.acm.org/sigchi/chi97/proceedings/panel/jr
m.htm)

13. Tauscher, L. and Greenberg, S. (1997). How People
Revisit Web Pages: Empirical Findings and
Implications for the Design of History Systems. Int. J.
Human-Computer Studies, 47, pp. 97-137

14. Advanced Shell Techniques: Creating Custom Explorer
Bars, Tool Bands, and Desk Bands,
http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/shellcc/platform/Shell/programmersguide
/shell_adv/bands.asp

15. Microsoft Word Help

