
Abstract

Title of thesis The Bit Probe Model for Membership Queries:
Non-Adaptive Bit Queries

Ryan Blue, Master of Science, 2009

Thesis directed by Professor William Gasarch
Department of Computer Science

A common problem in computer science is how to efficiently store sets: when

given a set, how do you store it so that you do not use much space and

membership queries can be done quickly? One popular method is to use bit

vectors. We use a model data structure that is a variant of bit vectors, the bit

probe data structure, to demonstrate lower and upper bounds for bit vectors

and similar structures. This thesis presents a survey of known results from

literature, contributes some new proofs that have not appeared before, and

gives complete proofs of known results that are missing from literature.

The Bit Probe Model for Membership Queries:
Non-Adaptive Bit Queries

by

Ryan Blue

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2009

Advisory Committee:
Professor William Gasarch, Chair
Professor Clyde Kruskal
Professor Jeffrey Hollingsworth

Contents

1 Introduction 1

2 Easy Upper Bound: There is a (U, n; coU
δ, q)-BPDS where δ =

1
dq/ne 7

2.1 The Upper Bound . 7

2.2 Actual Values . 10

3 Easy Lower Bound: If there is a (U, n; s, q)-BPDS then s ≥

c0U
1/q 13

3.1 The Lower Bound . 13

3.2 Actual Values . 15

4 Easy Probabilistic BPDS: An Adaptation of the Easy Upper

Bound 17

5 Upper Bound: There is a (U, n; s, 4)-BPDS where s = O(n1/6U5/6) 21

5.1 Combinatorial Set Up . 21

5.2 14+

5
-Expansion Implies (3, 2, 4)-Useful 25

5.3 (2n, 14+

5
)-Expansion implies (n; 3, 2, 4)-Useful 29

5.4 The Upper Bound: There exists a Bipartite Graph Such That. . . 32

5.5 Actual Values . 35

6 Upper Bound: There is a (U, n; s, 4)-BPDS where s = O(n1/4U3/4) 37

ii

6.1 A 8+

3
-expanding graph is (3, 2)-colorable 38

6.2 Actual Values and Comparison 44

7 Lower Bound: If there exists a (U, n; s, 2)-BPDS and n ≥ 2 then

s ≥ U 47

8 Lower Bound: If there is a (U, n; s, 3)-BPDS and n ≥ 4 then

s ≥ c0n
2/3U1/3 53

8.1 The Lower Bound . 54

8.2 Generalization: If n ≥ q + 1, then s ≥ (U1/qn1−1/q)/q. 57

8.3 Actual Values . 58

9 Lower Bound: If there is a (U, n; s, 3)-BPDS and n ≥ 16 logU

then s ≥ Ω

(
n1/2U1/2

(logU)1/2

)
62

9.1 Graph-Theoretic Results . 62

9.2 The Lower Bound: Graph Limits of n-nice 66

9.3 Actual Values and Comparison 67

10 Conclusion 70

iii

List of Tables

1 Values of s for different q (3-6) and n. (U = 232 − 1.) 12

2 Values of s for different q (7-10) and n. (U = 232 − 1.) 12

3 Values of M for different q and n. 16

4 Lower bounds on s, for different q and n using U = 232 − 1. . . 17

5 Values of s using different n for both EASY and Expansion-

14/5+ algorithms. (U = 232 − 1, q = 4) 36

6 Values of s using different powers of 2 as n for both EASY and

Expansion-14/5+ algorithms. (U = 232 − 1, q = 4) 37

7 Values of s using different n for EASY, Expansion-14/5+, and

Expansion-8/3+ algorithms. (U = 232 − 1, q = 4) 45

8 Values of s using different powers of 2 as n for both EASY,

Expansion-14/5+, and Expansion-8/3+ algorithms. (U = 232 −

1, q = 4) . 45

9 Values of s for EASY and Expansion-8/3+, for increasing U.

(n = logU, q = 4) . 46

10 Values for this section’s lower bounds on s, for different q and

n using U = 232 − 1. Negative values omitted. 59

11 Space values for this section’s lower bound compared to values

for the EASY lower bound (in parentheses), for different q and

n using U = 232 − 1. Negative values omitted. 60

iv

12 Values of s for each lower bound technique and different n.

(U = 232 − 1, q = 3) . 69

13 Comparison of lower bounds for Sections 8 and 9, for increasing

U values. n = d16 · logUe , q = 3. 69

14 Comparison of lower bounds for Sections 8 and 9, for increasing

U values. n = U − d16 · logUe , q = 3. 69

v

List of Figures

1 An example (U, s, E) graph associated with a 3-query bit probe

data structure. 22

vi

1 Introduction

Consider the following common problem: You want to store a set so that you

do not use too much space, and you can answer membership questions eas-

ily. In practice, such a set could “contain” any object, but we can restrict

our scope to sets that store just numbers because structures generally store

just integers that are references, hash keys, or some other numeric represen-

tative. We can also assume that the numbers we will store are limited by

some maximum value, for practicality or convenience. For instance, most in-

teger representations are 32 or 64 bits and are more than sufficient for most

applications.

The key concerns when storing such sets are space and number of queries.

Two straightforward methods for storing sets are good demonstrations of the

trade-offs involved, (assume numbers are limited by some maximum called U):

1. Store each member of the set in a sorted-order list of length n.

• Probes needed to determine membership: O(log n) queries using

binary search.

• Space needed to store: n cells of O(logU) bits each.

2. Construct a bit vector with one bit for each possible value (1 . . . U). Store

a 1 for each item in the set and a 0 otherwise.

• Probes needed to determine membership: 1.

• Space needed to store: U bits

Method 1 uses much less storage space, O(n · logU), and uses an adaptive

query strategy—where the item queried can depend on the previous queries.

1

Method 2 uses much more space, but achieves a constant number of 1 bit

queries rather than O(log n) queries, each logU bits. Can we do better? Is

there a way to achieve O(1) bit queries and still use only space considerably

less than U bits1?

This thesis focuses on non-adaptive variants of the bit vector approach, gener-

alized as the bit probe data structure. The bit probe data structure is similar

to bloom filters[4], however, the data structures we present are deterministic

and must provide correct results.

In this thesis, We will survey the literature, include some new, simpler proofs

that have not appeared before, and will give complete proofs of known results

that are missing from literature. We will pay particular attention to real

constants and contribute concrete space comparisons between data structures.

We now proceed formally and define the bit probe model. We only define and

work with the non-adaptive case where all of the queries are made at the same

time. Normally, we would use the phrase “nonadaptive” but will omit it for

this reason.

Note 1.1 We use [x] to denote the set {1, 2, . . . , x}, where x ∈ N.

Def 1.2 A (U, n; s, q) bit probe data structure for membership, henceforth

BPDS, consists of the following:

1. A function that will, given A ⊆ [U] of size ≤ n, output a vector CELL ∈

{0, 1}s.

2. A membership algorithm, MEM , consisting of two functions:

1We will show in Section 2 that the answer is YES.

2

(a) A function that takes as input u ∈ [U] and outputs (i1, . . . , iq) where

1 ≤ i1, . . . , iq ≤ s. The intuition is that on input u we ask the bit

queries CELL[i1], · · · , CELL[iq]. When q = 2 we will use (au, bu).

(b) A function that takes input u ∈ [U] and outputs a boolean function

fu on q boolean variables. We require that

u ∈ U iff fu(CELL[i1], . . . , CELL[iq]) = IN.

(We use IN for TRUE and OUT for FALSE since the real info is

IN and OUT.)

(U, n; s, q) are the parameters of the data structure, where:

• U is the size of the universe

• n is the size of sets we will be storing

• s is the number of bits in the data structure, the space used

• q is the number of bit queries in a membership test

Note 1.3

1. The universe is U , which is why we used U above, so any integer stored

in the data structure is in the set [U]. We use U as a parameter here

because many of the bounds will be in terms of U , like the examples

above. The data structure stores some subset, A, of [U] that is of size

≤ n, so membership questions have the form “u ∈ A?”

3

2. The function and process in Definition 1.2 need not be computable.

Hence our lower bounds will be very strong. Our upper bounds will

use easily computable functions.

3. The membership algorithm in this definition was nonadaptive: questions

asked could not depend on prior answers given.

4. We will often use the notation s and q rather than s(n, U) and q(n, U),

even though values of s and q will often depend on n and U .

5. In the motivating examples, (1) did not fit this model. (2) did fit this

model and is a (U, n;U, 1)-BPDS (parameters s = U and q = 1).

6. CELL[i] need not be related to i ∈ U in any way shape or form.

Note 1.4 In proving lower bounds we must guard against the data structure

designer having a clever idea. We give two examples of what she might do. Its

not clear that these ideas are clever or helpful; however, they are possibilities

that our lower bounds must take into account.

1. Assume that we have a (U, n; s, 2)-BPDS. Assume that to make the mem-

bership query “2 ∈ A?” we need to make the bit queries CELL[12] and

CELL[84]. Given a number, you know which queries are asked, but how

those bits are set may depend on which set was stored. For instance, the

following is possible:

(a) If the set {1, 2, 7} is stored then CELL[12] = 1 and CELL[84] = 0.

(b) If the set {2, 4, 9} is stored the CELL[12] = 0 and CELL[84] = 1.

4

In this case it may be that the membership query algorithm on the

question “2 ∈ A?” might tell you to, after making the bit-probe queries

CELL[12] and CELL[84], XOR the bits together to get the answer to

the membership query.

2. The following is possible:

(a) If the membership query “17 ∈ A?” is made then the bit probe

queries asked are CELL[4] and CELL[8].

(b) If the membership query “25 ∈ A?” is made then the bit probe

queries asked are CELL[4] and CELL[8].

How could this be? Well, it could be that

17 ∈ A iff CELL[4] = 1 xor CELL[8] = 0

and

25 ∈ A iff CELL[4] = 0

In this case here is how the types of sets are stored: (1) If 17, 25 /∈ A

then set CELL[4] = 1 and CELL[8] = 1. (2) If 17 ∈ A and 25 /∈ A

then set CELL[4] = 1 and CELL[8] = 0. (3) If 17 /∈ A and 25 ∈ A

then set CELL[4] = 0 and CELL[8] = 0. (4) If 17, 25 ∈ A then set

CELL[4] = 0 and CELL[8] = 1. The point is that you can have two

different membership queries use the same two bit probe queries.

Note 1.5 This definition puts no restrictions on the function in 2.(a) and

this is a known problem with the bit probe data structure model. The model

5

counts queries, but ignores how to determine which queries to make. This

fact means that the upper bounds on bit probe data structures that are non-

constructive, such as the bounds in Sections 5 and 6, cannot necessarily be

achieved if the function requires being stored as a lookup table—such a table

would contain O(U) entries. The lower bounds, however, are stronger for this

reason. We proceed despite this flaw.

Using this BPDS definition, Sections 2, 3, and 4 present “easy” bounds and

methods to introduce bit probe data structures: Section 2 gives an easy data

structure for our first non-trivial upper bound. Section 3 details a similarly

simple lower bound. Section 4 defines probabilistic bit probe data structures

and presents an adaptation of the easy upper bound to demonstrate the con-

cept. Next, Sections 5 and 6 present upper bounds from literature, while

Sections 7, 8, and 9 will give lower bounds from literature. We conclude in

Section 10.

The results in Sections 2, 3, and 4 are new. Section 2 is the best constructive

upper bound for q ≥ 5. The upper bounds from literature in Sections 5 and 6

are given in a more complete form than in literature and contain a correction

to the bound in Section 6. We also contribute complete proofs of the lower

bounds in Sections 7, 8, and 9, as well as a new generalization of the lower

bound in Section 8. We present all proofs from literature consistently using

bipartite graphs rather than with hypergraphs or other structures. All of our

analyses contribute careful calculations of constant terms, new tables of real

space requirements, and new comparisons between all of the upper and lower

bounds.

6

2 Easy Upper Bound: There is a (U, n; coU
δ, q)-

BPDS where δ = 1
dq/ne

In this section, we present a simple data structure that achieves O(1) queries

and uses space � U . This algorithm was devised as an understandable intro-

duction to bit probe data structures, which is why we present it first here.

This algorithm, which is the product of correspondence between William

Gasarch and Peter Bro Milterson, has not yet appeared in literature. Our

presentation includes an analysis of the algorithm’s constant factors, as well

as a table of the space required for storage for sample values of n and q.

Each value is stored by setting q bits in the structure that may overlap. Using

polynomials, it ensures that at least one bit for each stored value will not

overlap the bits set to store other values. The key to this data structure is

that if two polynomials of degree d pass through the same d + 1 points, they

must be the same polynomial.

2.1 The Upper Bound

Lemma 2.1 Assume there is a map from [U] to
(

[s]
q

)
(q-sized subsets of [s]).

We will denote the set u maps to by Bu. If, for all n-sized subsets {u1, u2, . . . , un} ⊆

[U] and any u ∈ [U]

|Bu ∩
n⋃
i=1

Bui | < q

Then there is a (U, n; s, q))-BPDS.

7

Proof:

To show Lemma 2.1, we show how to construct a BPDS.

Setting up the Data Structure:

• Initially all of the cells are set to 0.

• Let A ⊆ [U], |A| ≤ n.

• For each u ∈ A set the bits of Bu to 1.

Making a Query:

• To ask “u ∈ A?”, you make q probes to the bits specified by Bu.

• If all q are 1 then output YES else NO.

Why does this work?

• Clearly, if u ∈ A then the answer returned will be YES.

• Let A = {u1, . . . , un}. Let u /∈ {u1, . . . , un}. We need to show that if A

is stored and “u ∈ A?” is asked then the answer will be NO.

• By assumption, we know that

|Bu ∩
n⋃
i=1

Bui| < q

This means that Bu overlaps the n sets of locations that were set to 1

by at most q − 1 cells and at least one cell will be set to 0. Therefore,

the membership algorithm will correctly conclude that u is not in A.

8

Lemma 2.1 assumes a map from [U] to
(

[s]
q

)
. The proof of the theorem proceeds

by giving such a map and showing that it is efficient.

Theorem 2.2 Let n, q ∈ N. Let δ = 1
dq/ne . There exists constants U0, c0 such

that, for all U ≥ U0, there is a (U, n; coU
δ, q)-BPDS.

Proof:

Let d be a quantity to be named later. Let δ = 1/(d + 1). Let p be a prime

number such that U δ ≤ p ≤ 2U δ. Let TUPLE be an injection of [U] to

[U δ]× · · · × [U δ] (d+ 1 times).

If TUPLE(u) = (ad, . . . , a0) then let

fu(x) = adx
d + · · ·+ a0

Let

Bu = {(1, fu(1)), . . . , (q, fu(q))}

Note that for any w ∈ U(w 6= u),

|Bu ∩Bw| ≤ d

This is because Bu and Bw are each made up of q > d points on degree d

polynomials. If Bu and Bw had d+ 1 points in common, then the polynomials

must be the same. Because TUPLE is an injection, u and w must be the

same, which would be a contradiction.

9

Therefore, Bu can only overlap n other such sets in at most dn points.

|Bu ∩
n⋃
i=1

Bui | ≤ dn

We need dn < q in order to apply Lemma 2.1, so we choose d = dq/ne − 1 to

ensure this condition. Note that δ = 1
d+1

= 1
dq/ne .

2.2 Actual Values

We now present a careful analysis of the actual bounds and constant factors

for the easy upper bound.

Let p be the smallest prime larger than U
1

dq/ne .

Let TUPLE be an injection from [U] to Zp × Zp × . . .× Zp (d+ 1 times).

We think of TUPLE as an injection from [U] to polynomials over Zp of de-

gree d, so TUPLE(u) = fu(x). Next, the algorithm forms the set Bu =

{(1, fu(1)), . . . , (q, fu(q))} for each u ∈ A. The question is: how efficiently can

we store these sets?

Theorem 2.3 The sets Bu : u ∈ [U] can be stored in s = q · p bits.

We show this theorem by way of the following lemmas:

Lemma 2.4 The sets Bu : u ∈ [U] must be stored in s ≥ q · p bits.

Proof: Consider a q by p bit table in which the set Bu is stored by setting

the fu(1)-th bit of the first row, the fu(2)-th bit of the second row, and so on.

10

We claim that this scheme minimizes the number of bits required to store Bu,

because there are q · p possible values to store, and any fewer bits (q · p − 1)

would cause a collision somewhere in the table and a mistake on at least one

decision.

Lemma 2.5 The sets Bu : u ∈ [U] can be stored in s ≤ q · p bits.

Proof: The fact that each Bu is constructed via a degree d polynomial

guarantees (see Section 2) that it differs in at least one bit from all the other

sets. Hence, all of the Bu sets can be stored in the same q · p bits.

Baker, Harman, and Pintz [3] showed that, for almost all c, there is a prime

between c and c+ c0.525 (see [5] for a survey of this type of result). Therefore,

p is bounded by U
1

dq/ne + U
0.525
dq/ne

Using this, all of the sets can be stored in

s = q · p ≤ q ·
(
U

1
dq/ne + U

0.525
dq/ne

)
bits

To get an idea of what this equation means, see Tables 1 and 2, which list

values of s for different q and n. We use U = 232 − 1, as an example universe,

which corresponds to common 32 bit integers. We will come back to these

space values later, when comparing this upper bound to those presented in

Sections 5 and 6.

Note that values in each row have a pattern: a large decrease followed by slow

increase and then another large decrease. . . This pattern is due to the dq/ne

11

n \ q 3 4 5 6

2 197619 263492 8370 10044
3 12885244197 263492 329365 395238
4 12885244197 17180325596 329365 395238
5 12885244197 17180325596 21475406995 395238
6 12885244197 17180325596 21475406995 25770488394
7 12885244197 17180325596 21475406995 25770488394
8 12885244197 17180325596 21475406995 25770488394
9 12885244197 17180325596 21475406995 25770488394
10 12885244197 17180325596 21475406995 25770488394

Table 1: Values of s for different q (3-6) and n. (U = 232 − 1.)

n \ q 7 8 9 10

2 1918 2192 846 940
3 11718 13392 15066 2740
4 461111 526984 15066 16740
5 461111 526984 592857 658730
6 461111 526984 592857 658730
7 30065569793 526984 592857 658730
8 30065569793 34360651192 592857 658730
9 30065569793 34360651192 38655732591 658730
10 30065569793 34360651192 38655732591 42950813990

Table 2: Values of s for different q (7-10) and n. (U = 232 − 1.)

term. The jumps are when this reaches a new integer and the slow increase

corresponds to the q multiplier increasing. This is why the slow increase is

longer as n increases.

Another interesting point is that when n ≥ q, δ = 1 and the space required by

the structure is greater than the simple bit-vector strategy. For this reason,

the values obtained by this method are only interesting where n < q. We will

see this fact again in the comparative analyses.

12

3 Easy Lower Bound: If there is a (U, n; s, q)-

BPDS then s ≥ c0U
1/q

We now present our first lower bound. This argument was also devised as

an introduction to BPDS lower bounds by William Gasarch. This is the first

time this argument has appeared in literature and we present both the algo-

rithm and a detailed analysis of its constant factors for comparison with other

algorithms.

The key argument for this lower bound is this: Say two sets, A1 = {15, 64} and

A2 = {15}, have the same representation using the same bits (e.g., CELL[5] =

1 and CELL[44] = 1). Then the query “64 ∈ A?” cannot be answered and

therefore, no BPDS would store A1 and A2 this way. The lower bound cleverly

chooses BPDS parameters that will force this condition to reach a contradiction

and argue that no such BPDS can exist.

3.1 The Lower Bound

Theorem 3.1 Let n, q ∈ N. Let M be the least number such that

(
M

0

)
+ · · ·+

(
M

n

)
≥ 2q + 1

If there is an (U, n; s, q)-BPDS then
(
s
q

)
≥ U

M
.

Proof:

Assume, to reach a contradiction, that there is a (U, n; s, q)-BPDS where
(
s
q

)
<

U
M

13

Let f : [U] →
(

[s]
q

)
be a function that maps u to the set of queries the mem-

bership algorithm asks. Since
(
s
q

)
< U

M
there must be some M elements of

[U] that map to the same set of queries. Let those M elements of [U] be

W = {u1, . . . , uM} and let the set of bit queries be X = {x1, . . . , xq}.

Next, map every potentially stored subset, A, of W to the way the bits of X

are set to store A. The domain of this function is

(
[W]

0

)
∪ · · · ∪

(
[W]

n

)

This domain has the size

(
M

0

)
+ · · ·+

(
M

n

)
≥ 2q + 1

The codomain has size 2q (ways to set q bits). Hence there must be two sets

that map to the exact same bit pattern. This causes a contradiction because

the BPDS cannot distinguish between those two sets.

Therefore, for any (U, n; s, q)-BPDS,
(
s
q

)
≥ U

M
.

A simple corollary now gives the lower bound.

Corollary 3.2 Let n, q ∈ N, There exists U0 and c0 such that, for all U ≥ U0,

if there is an (U, n; s, q)-BPDS then s ≥ cU1/q.

14

Proof:

Let M be the least number such that

(
M

0

)
+ · · ·+

(
M

n

)
≥ 2q + 1.

Note that M is a constant. By Theorem 3.1
(
s
q

)
≥ U

M
. Note that

(
s
q

)
≤ sq.

Hence we have

sq ≥
(
s

q

)
≥ U

M
.

s ≥
(

1

M

)1/q

U1/q

Let c0 = (1
M

)1/q.

3.2 Actual Values

To calculate the actual lower bounds on s, depending on U , q, and n, we first

have to calculate values of the constant M , which depends only on q and n.

Table 3 shows values of M calculated for different q and n.

Using sq for
(
s
q

)
as in the last section is not a very good approximation. Before

calculating a table of s-values, we give the following improvement:

(
s

q

)
=

s!

q!(s− q)!
=
s(s− 1)(s− 2) · · · (s− q + 1)

q!
≤ sq

q!

15

n \ q 3 4 5 6 7 8 9 10 11 12 13 14 15

1 8 16 32 64 128 256 512 1024 2048 212 213 214 215

2 4 6 8 11 16 23 32 45 64 91 128 181 256
3 4 5 6 8 9 12 15 19 24 30 37 47 59
4 4 5 6 7 8 10 11 13 16 19 22 26 31
5 4 5 6 7 8 9 10 12 13 15 17 19 22
6 4 5 6 7 8 9 10 11 12 14 15 17 19
7 4 5 6 7 8 9 10 11 12 13 14 16 17
8 4 5 6 7 8 9 10 11 12 13 14 15 16
9 4 5 6 7 8 9 10 11 12 13 14 15 16
. . . 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 3: Values of M for different q and n.

Using this instead yields a much closer approximation:

sq

q!
≥ U

M
⇒ s ≥

(
q! · U
M

)1/q

Again using U = 232− 1, we can calculate concrete lower bounds for s. These

lower bounds are given in Table 4. Unfortunately, these bounds are not very

interesting because they are still so low. We will revisit these values for com-

parison in Section 8, which gives an alternative generalized lower bound.

16

n \ q 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1477 284 111 61 41 31 25 21 19 17 16 15 15
2 1861 363 146 81 55 41 34 29 26 24 22 21 20
3 1861 379 154 86 59 45 37 32 28 26 24 23 22
4 1861 379 154 88 60 46 38 33 29 27 25 24 23
5 1861 379 154 88 60 46 38 33 30 27 26 24 23
6 1861 379 154 88 60 46 38 33 30 27 26 25 24
7 1861 379 154 88 60 46 38 33 30 28 26 25 24
8 1861 379 154 88 60 46 38 33 30 28 26 25 24
9 1861 379 154 88 60 46 38 33 30 28 26 25 24
. . . 1861 379 154 88 60 46 38 33 30 28 26 25 24

Table 4: Lower bounds on s, for different q and n using U = 232 − 1.

4 Easy Probabilistic BPDS: An Adaptation of

the Easy Upper Bound

In this section, we give an introduction to probabilistic bit probe data struc-

tures. Probabilistic data structures try to improve upper bounds, either by

reducing the number of queries or by reducing the amount of space required,

by taking advantage of some reasonable tolerance for failures (incorrect an-

swers). We allow the query function to “flip coins”, to improve the number of

queries or space it takes to answer the question “x ∈ A”?

This is the only section in that deals with probabilistic methods and is included

as an important variation of our main topic. This adaptation of the EASY

upper bound is new and was produced by Ryan Blue. We will now define the

probabilistic bit probe model, still in the non-adaptive case.

Def 4.1 A one-sided Probabilistic BPDS, or (U, n, ε; s, q)-Prob-BPDS, is a

BPDS where the membership algorithm, MEM , is given a random string

17

and decides membership with a probability of being wrong less than some ε.

That is,

• Pr(MEM(u, r) = IN |u 6∈ A) < ε

• Pr(MEM(u, r) = OUT |u ∈ A) = 0

In a Prob-BPDS, MEM consists of:

1. A function that takes as input u ∈ [U] and r ∈ {0, 1}m and outputs

(i1, . . . , iq′).

2. A function, MEM , that takes as input u and r and outputs a boolean

function fu,r on q′ boolean variables and concludes

u ∈ U iff fu,r(CELL[i1], . . . , CELL[iq′]) = IN

This MEM process decides with probabilities:

Pr(MEM(u, r) = IN |u 6∈ A) < ε

Pr(MEM(u, r) = OUT |u ∈ A) = 0

Note 4.2 We use q′ above because we think of q′ < q, where q is the number

of queries in the deterministic “version” of MEM . This allows us to define

the probabilistic version in terms of the deterministic version.

Consider the following probabilistic adaptation of the easy upper bound in

Section 2:

18

Theorem 4.3 Let n, q ∈ N. Let δ = 1
dq/ne . There exists constants U0, c0 such

that, for all U ≥ U0, there is a (U, n, ε; c0U
δ, q−1)-Prob-BPDS, where ε > 1/q

Proof:

Setting up the Data Structure:

• Use the same procedure as the deterministic BPDS.

Making a Query:

• Select, at random, q′ = q − 1 bits of Bu.

• If all q′ bits are 1, then output IN, else OUT.

Why does this work?

• The probability that this algorithm concludes incorrectly, deciding that

u ∈ A when it is not, is the probability that each CELL[i] queried

collided with another value stored in the data structure. Because we

know that there is at least one cell that never collides with other values,

this cell was not chosen.

• The probability of NOT choosing a particular cell is 1/q. So:

Pr(MEM(u, r) = IN |u 6∈ A) ≤ 1/q < ε

• The probability that this algorithm concludes incorrectly, deciding that

u 6∈ A when it is, equals 0. We know that if this algorithm decides OUT,

then there was at least one CELL[i] that was 0, and u would be OUT

in the original data structure, regardless of the unchecked cell.

19

This alteration of EASY is able to reduce the number of queries by one.

This technique, however, uses the same amount of space as the original al-

gorithm2 because any of the bit positions could be chosen and queried. Other

Probabilistic-BPDS can have much better results than this demonstration,

reducing both storage space and number of queries, but such structures are

not discussed in this paper. See [6] for more extensive results on probabilistic

methods.

2See Section 3 for a space analysis and table of values.

20

5 Upper Bound: There is a (U, n; s, 4)-BPDS

where s = O(n1/6U 5/6)

Now we move on to upper bounds from literature. This section presents the

first of our upper bounds. This upper bound is not constructive (or explicit)

like the EASY upper bound, but instead relies on probabilistic techniques to

argue that a data structure using space ≤ c0 ·n1/6U5/6 must exist. This section

is a stepping stone to the next section, which uses the same logic but more

complicated means to achieve a better upper bound.

Our contribution in this section is the thorough proof write-up and the space

comparison values given at the end of the section.

5.1 Combinatorial Set Up

We first need to define a graph that we will use frequently for the rest of the

paper.

This proof introduces a bipartite graph3 associated with a bit probe data

structure4 that is key to many proofs. Figure 1 shows an example of such a

graph for a 3-query BPDS.

Notation 5.1 A bipartite graph of the form ([U], [s], E) will be denoted (U, s, E).

Def 5.2 A bipartite graph (U, s, E) where every element of U has degree q is

called q-regular.

3A bipartite graph is a graph that can be divided into two disjoint sets of vertices such
that every edge connects a vertex in one set to some vertex in the other

4[6] uses hypergraphs in places, however, we use only the equivalent bipartite graphs.

21

Figure 1: An example (U, s, E) graph associated with a 3-query bit probe data
structure.

22

Def 5.3 Assume we have a (U, n; s, q)-BPDS. We associate to it the following

bipartite graph, G = (U, s, E), where

E = {(u, x) : to answer “u ∈ A?” one of the bit-queries is x. }

Every u ∈ [U] has degree q (this graph is q-regular). Note that not every

node in [s] necessarily has degree q and that the bipartite graph stores only

the bit locations that are used as input to fu. It has no information about the

function fu itself.

We will refer to this graph as the graph associated with the bit-probe data

structure or as the BPDS’s corresponding graph.

Def 5.4 Let G = (U, s, E) be a bipartite graph. Let A ⊆ U . Then GA is

the labeled bipartite graph where the elements of A are labeled IN and the

elements in [U]− A are labeled OUT.

Def 5.5 Let a, b, q ∈ N such that 0 < a, b < q. Let G = (U, s, E) be a q-

regular labeled bipartite graph. Let A ⊆ U . An (a, b)-coloring of GA is a

partial 2-coloring of [s], using the colors {0, 1} such that the following occurs:

1. Every u ∈ A then at least a neighbors of u are colored 1.

2. Every u /∈ A then at least b neighbors of u are colored 0.

We allow the 2-coloring of [s] to be partial because all we care about is the

conclusion that IF u ∈ A then . . . and IF u /∈ A then . . . and a partial coloring

is sufficient to draw such conclusions.

23

Def 5.6 Let a, b, q ∈ N such that 0 < a, b < q. Let G = (U, s, E).

1. G is (a, b, q)-useful if it is q-regular and has the following property: for

any subset A ⊆ [U], GA is (a, b)-colorable.

2. G is (n; a, b, q)-useful if it is q-regular and has the following property: for

any subset A ⊆ [U], |A| ≤ n, GA is (a, b)-colorable.

(2) is defined here because the constraints on (1) would be too strong for

this proof to work. Because we are only storing n-sized subsets of [U], (2) is

sufficient and will work later on.

Lemma 5.7 If there exists a 4-regular (n; 3, 2, 4)-useful bipartite graph G =

(U, s, E) then there is a (U, n; s, 4)-BPDS.

Proof:

Setup:

• Let A ⊆ U , |A| ≤ n. Let COL be the (3, 2)-coloring of GA. For each

x ∈ [s] that is colored 0 (1) let the corresponding bit be 0 (1).

Query:

• To determine if u ∈ A ask the 4 bit-queries that correspond to the

elements in N(u). If at least 3 of them are 1 then answer IN. If at most

2 of them are 1 then answer OUT.

Why does this work?

24

• If u ∈ A then A was labeled IN. Hence at least 3 of its neighbors are

colored 1. Hence the algorithm will return IN.

• If u /∈ A then A was labeled OUT. Hence at least 2 of its neighbors are

colored 0. Hence at most 2 neighbors are colored 1. Hence the algorithm

will return OUT.

Lemma 5.7 can be generalized for any value of q, so our job is reduced to

finding such a bipartite graph. We approach this problem by introducing and

using an expansion property of bipartite graphs next:

5.2 14+

5 -Expansion Implies (3, 2, 4)-Useful

Def 5.8 Let α > 1. Let G = (U, s, E) be a bipartite graph.

1. G has expansion α if for every A ⊆ [U], |N(A)| ≥ α|A|.

2. G has expansion α+ if for every A ⊆ [U], |N(A)| > α|A|.

Looking at the definition of expansion it looks like you would need s ≥ U to

have an α-expanding graph. This is true, and, therefore, it would seem that

such graphs are not useful to us. But they will be used later as a subroutine

of what we need to do (and as a subroutine in Section 6 as well).

This is why we defined (n; 3, 2, 4)-useful earlier in addition to (2, 3, 4)-useful.

The latter entails α-expanding graphs with s ≥ U , while the former enables

us to get s < U .

25

Lemma 5.9 Let G = (U, s, E) be a 4-regular bipartite graph with expansion

14+

5
.

1. G is (3, 2, 4)-useful.

2. Let A ⊆ [U]. Informally, we want to say that a partial (3, 2)-coloring of

GA can be extended to a full (3, 2)-coloring of GA. We proceed formally.

Let A ⊆ U . Assume the right hand side of G has been partially (3, 2)-

colored such that

(a) if u ∈ U is IN then either at least 3 elements of N(u) are colored 1

or no elements of N(u) are colored 0, and

(b) if u ∈ U is OUT then either at least 2 elements of N(u) are colored

0 or no elements of N(u) are colored 1.

Then this partial coloring can be extended to a full (3, 2) coloring.

Proof:

We prove part (2). Part (1) follows. Let A ⊆ [U]. Assume there already is a

partial coloring as described in the premise. The following greedy algorithm,

henceforth GREEDY, will complete the (3, 2)-coloring:

1. Initialize ACTIV E to be the union of the following two sets.

{u ∈ U : u is labeled IN and ≤ 2 of its neighbors are colored 1 }

{u ∈ U : u is labeled OUT and ≤ 1 of its neighbors are colored 0 }

26

2. Initialize NCOL to be

NCOL = {x ∈ [s] : x has not been colored yet }.

3. For all x ∈ NCOL

(a) If N(x) ∩ ACTIV E are all IN then COL(x) = 1 and NCOL =

NCOL− {x}.

(b) If N(x) ∩ ACTIV E are all OUT then COL(x) = 0 and NCOL =

NCOL− {x}.

4. For all u ∈ ACTIV E

(a) If at least 3 elements of N(u) are colored 1 then ACTIV E =

ACTIV E − {u}.

(b) If at least 2 elements of N(u) are colored 0 then ACTIV E =

ACTIV E − {u}.

5. If ACTIV E 6= ∅ then GOTO Step 3

Clearly all u /∈ ACTIV E that are labeled IN (OUT) have at least 3 (2)

neighbors colored 1 (0). We need to show that eventually ACTIV E = ∅.

(Note that this is all we need- we do not need that NCOL = ∅ since the

coloring can be partial.) We show that so long as ACTIV E 6= ∅ either some

u ∈ [U] will become inactive or some x ∈ [s] will get colored.

Assume ACTIV E 6= ∅ but during an iteration of the algorithm no element of

[s] is colored and no element of [U] is made inactive. We will get a contra-

diction. Let ACTIV E = ACTIN ∪ACTOUT where the IN (OUT) elements of

27

ACTIV E are ACTIN (ACTOUT).

We count |N(ACTIN ∪ ACTOUT)| in two different ways.

1. Every elements of ACTIN has 4 neighbors. Look at u ∈ ACTOUT . We

look at the neighbors of u and determine how many of them are not

already counted in N(ACTIN). No neighbor of u is colored 1 since

u ∈ ACTOUT . At most one neighbor of u is colored 0 (if two were

colored 0 then u /∈ ACTIV E). Of the non-colored neighbors of u all of

them are in N(ACTIN), else they would have been colored. Hence

|N(ACTIN ∪ ACTOUT)| ≤ 4|ACTIN |+ |ACTOUT |.

Hence (we’ll need this later)

2|N(ACTIN ∪ ACTOUT)| ≤ 8|ACTIN |+ 2|ACTOUT |.

2. Every elements ofACTOUT has at most 4 neighbors. Look at u ∈ ACTIN .

We look at the neighbors of u and determine how many of them are not

already counted in N(ACTOUT). No neighbor of u is colored 0 since

u ∈ ACTIN . At most two neighbor of u are colored 1 (if three were

colored 1 then u /∈ ACTIV E). Of the non-colored neighbors of u all of

them are in N(ACTOUT), else they would have been colored. Hence

|N(ACTIN ∪ ACTOUT)| ≤ 2|ACTIN |+ 4|ACTOUT |.

Hence (we’ll need this later)

28

3|N(ACTIN ∪ ACTOUT)| ≤ 6|ACTIN |+ 12|ACTOUT |.

Adding together the two equations that we claimed we would need later you

get

5|N(ACTIN ∪ ACTOUT)| ≤ 14|ACTIN |+ 14|ACTOUT |.

or

|N(ACTIN ∪ ACTOUT)| ≤ 14

5
(|ACTIN |+ |ACTOUT |).

Hence if X = ACTIN ∪ ACTOUT then |N(X)| ≤ 14
5
|X|. This contradicts G

being 14+

5
-expanding.

This looks good: if we can find a graph G = (U, s, E) that is 4-regular and

14+

5
-expanding then it will be (3, 2, 4)-useful. However, since the expansion

condition as we have stated it applies even to the entire set U , the resulting

data structure would use space greater than 14U
5

, which is no good. But we

only need an (n; 3, 2, 4)-useful graph, and for that, a weaker condition will

suffice.

5.3 (2n, 14+

5)-Expansion implies (n; 3, 2, 4)-Useful

Def 5.10 Let α > 1 and L ∈ N.

1. G = (U, s, E) has expansion (L, α) if for every A ⊆ [U], |A| ≤ L,

|N(A)| ≥ α|A|.

29

2. G = (U, s, E) has expansion (L, α+) if for every A ⊆ [U], |A| ≤ L,

|N(A)| > α|A|.

Lemma 5.11 Let G = (U, s, E) be a 4-regular bipartite graph with expansion

(2n, 14+

5
). Then G is (n; 3, 2, 4)-useful.

Proof:

Let A ⊆ [U] such that |A| ≤ n. We exhibit a (3, 2) coloring of GA. Actually

we just do the algorithm from Lemma 5.9. We need to show that eventually

ACTIV E = ∅.

Assume ACTIV E 6= ∅ but during an interaction of the algorithm no element

of [s] is colored and no element of [U] is made inactive. We will get a contra-

diction. Let ACTIV E = ACTIN ∪ACTOUT where the IN (OUT) elements of

ACTIV E are ACTIN (ACTOUT).

Claim 1 |ACTOUT | < |ACTIN |.

Proof:

Assume, by way of contradiction, that |ACTOUT | ≥ |ACTIN |.

Choose V ⊆ ACTOUT of exactly the same size as ACTIN . Note that

|V | = |ACTIN | ≤ n (since originally |A| ≤ n), so

|ACTIN ∪ V | ≤ 2n

Hence, since G is (2n, 14+

5
)-expanding,

|N(ACTIN ∪ V)| > 14

5
(|ACTIN |+ |V |)

30

Since |V | = |ACTIN | we have

|N(ACTIN ∪ V)| > 28

5
(|ACTIN |)

This is what we will contradict.

By the same reasoning used in Lemma 5.9 we have that

|N(ACTIN ∪ V)| ≤ 4|ACTIN |+ |V | = 5|ACTIN |

Note that we have

28

5
|ACTIN | < |N(ACTIN ∪ V)| ≤ 5|ACTIN |

This is a contradiction.

The set of active elements of [U] has size ≤ 2n. Hence the bipartite graph

that is left to color has ≤ 2n elements in the left hand side. By the premise

this graph is α-expanding. It is partially colored. By Lemma 5.9 it can be

extended to a full coloring. Formally this contradicts the assumption that the

coloring stopped.

Note 5.12 Lemma 5.11 used the α > 14
5

. This is not optimal.

31

5.4 The Upper Bound: There exists a Bipartite Graph

Such That. . .

In the last sections, we showed that if there is a (2n; 14/5+)-expanding graph,

then that graph is (n; 3, 2, 4)-useful. Now we need to show that such a graph

exists to complete the upper bound proof.

Lemma 5.13 There exists constants c, U0 such that the following is true.

For every δ > 0, for every U, n with U ≥ n, and U ≥ U0, for every s ≥

cnδ/(1+δ)U1/(1+δ) there is a 4-regular (2n, (3 − δ)+)-expanding bipartite graph

G = (U, s, E).

Proof:

We show the graph exists by the probabilistic method. To do this, we take

appropriately sized bipartite graphs with vertices in [U] and [s], and generate

random edges such that the graph is 4-regular. Then, we probabilistically

show that at least one randomly chosen graph will have the desired expansion,

3− δ.

Let ∆ = (3− δ) to simplify formulas. Also note that

(m
k

)k
≤
(
m

k

)
≤
(e ·m

k

)k
(1)

(The e really is the e you know: 2.718 . . .)

For every u ∈ [U] pick 4 elements of [s] at random to be its neighbors in the

bipartite graph. Consider subsets of [U] that are size 2n and smaller.

32

We bound the expected number of X such that |X| ≤ 2n and |N(X)| ≤ ∆|X|.

Since |N(X)| is an integer this is equivalent to |N(X)| ≤ b∆|X|c. Let 1 ≤

r ≤ 2n.

We first bound the expected number of X where |X| = r, such that |N(X)| <

b∆rc.

There are
(

s
b∆rc

)
subsets of [s] of size b∆rc. Let Y be one of them. What is

the probability that N(X) ⊆ Y ? It is

((b∆rc
4

)(
s
4

))r

Using equation 1, we can bound this probability

((b∆rc
4

)(
s
4

))r ≤

(
eb∆rc

4

)4

(
s
4

)4


r

=

(
e b∆rc
s

)4r

Hence the expected number of such X (of size r) is bounded above by

(
s

b∆rc

)(
e b∆rc
s

)4r

Hence the total number of such X (of size 1 ≤ r ≤ 2n) is

2n∑
r=1

(
U

r

)(
s

b∆rc

)(
e b∆rc
s

)4r

.

Again, by equation 1:

(
U

r

)
≤
(
eU

r

)r
33

(
s

b∆rc

)
≤
(

es

b∆rc

)b∆rc
Putting this all together, we get that the expected number of X is bounded

above by

2n∑
r=1

(
eU

r

(
es

b∆rc

)∆(
e b∆rc
s

)4)r
We look at the summand.

(
eU

r

(
es

b∆rc

)∆(
e b∆rc
s

)4)r
≤
(
e∆+5U

r

(b∆rc)4−∆

s4−∆

)r
≤
(
e∆+5∆4−∆Ur3−∆

s4−∆

)r
.

Since ∆ = 3− δ and r ≤ 2n we get that this quantity is bounded above by

(
e8−δ(3− δ)1+δUrδ

s1+δ

)r
≤
(
e8−δ(3− δ)1+δU(2n)δ

s1+δ

)r
=

(
e8−δ(3− δ)1+δ2δU(n)δ

s1+δ

)r

Let c be a bound on e8−δ(3− δ)1+δ2δ that is independent of n, U and even δ.

Then the quantity above is bounded above by

(
cUnδ

s1+δ

)r
Hence we have that the expected number of such X is bounded above by

2n∑
r=1

(
cUnδ

s1+δ

)r
.

34

The sum is geometric. If the summand is less than 1
2
, then the summation

must be less than 1, which is what we’re after. This yields

cUnδ

s1+δ
≤ 1

2

2cUnδ ≤ s1+δ

(2cUnδ)1/(1+δ) ≤ s

Let c0 = 2c. We have that if s ≥ c0n
δ/(1+δ)U1/(1+δ) there is a 4-regular (2n, 3−

δ)-expanding bipartite graph.

Theorem 5.14 There exists U0 and c0 such that, for all U ≥ U0, for all n,

there is a (U, n; s, 4)-BPDS where s =
⌈
c0n

1/6U5/6
⌉
.

Proof: This follows from Lemmas 5.7, 5.11, and 5.13 with δ = 1/5.

5.5 Actual Values

The actual constant term can be obtained from Lemma 5.13:

c0 = 2c = (6− 2δ)1+δ · e8−δ

and

s ≥ c0 · n
δ

1+δ · U
1

1+δ

To get a more precise answer, we use c that depends on δ. When δ = 1/5

35

n EASY n1/6U5/6

2 2.634 · 105 2.306 · 1012

3 2.634 · 105 2.467 · 1012

4 1.718 · 1010 2.589 · 1012

5 1.718 · 1010 2.687 · 1012

6 1.718 · 1010 2.770 · 1012

7 1.718 · 1010 2.842 · 1012

8 1.718 · 1010 2.906 · 1012

9 1.718 · 1010 2.963 · 1012

10 1.718 · 1010 3.016 · 1012

Table 5: Values of s using different n for both EASY and Expansion-14/5+

algorithms. (U = 232 − 1, q = 4)

(expansion 3− 1/5 = 14/5).

c0 =

(
28

5

)6/5

· e39/5

Using this constant value, Table 5 compares values of s for different n between

the EASY algorithm and the Expansion algorithm. For low n values, EASY

has much better space values. We also include Table 6, which shows s with

powers of 2 as n. The constant factor—and thus space required—for EASY is

better for higher values as well.

In the next section, we will get a better upper bound by using a smaller

expansion. We will then revisit these comparisons.

36

n EASY n1/6U5/6

8 1.718 · 1010 2.906 · 1012

16 1.718 · 1010 3.261 · 1012

32 1.718 · 1010 3.661 · 1012

64 1.718 · 1010 4.109 · 1012

128 1.718 · 1010 4.613 · 1012

256 1.718 · 1010 5.178 · 1012

512 1.718 · 1010 5.812 · 1012

1024 1.718 · 1010 6.523 · 1012

2048 1.718 · 1010 7.322 · 1012

4096 1.718 · 1010 8.219 · 1012

8192 1.718 · 1010 9.226 · 1012

Table 6: Values of s using different powers of 2 as n for both EASY and
Expansion-14/5+ algorithms. (U = 232 − 1, q = 4)

6 Upper Bound: There is a (U, n; s, 4)-BPDS

where s = O(n1/4U 3/4)

In the previous section, we used the 14+

5
-expansion to guarantee that the

(greedy) algorithm would not stop until the ACTIVE set was exhausted. To

get a smaller expansion, and thus smaller s required to store A, we need to

show what happens when the algorithm stops but the ACTIV E set is NOT

empty.

The following section shows that a 8+

3
-expanding graph is (3, 2)-colorable.

Note 6.1 [1] also shoes that 8/3 is the minimal expansion to guarantee a

(3, 2)-coloring by constructing a graph that is one vertex short of an 8/3 ex-

pansion and cannot be (3, 2)-colored.

This is based on Theorem 4.3 in [1].

37

6.1 A 8+

3 -expanding graph is (3, 2)-colorable

Def 6.2 Let G = (U, s, E) be a bipartite graph. Let col be a partial (p, q)-

coloring of G. Let Ni(u) (u ∈ [U]) denote the number of neighbors (∈ [s])

colored i. The demand of a vertex u ∈ [U] is:

1. if u is IN, demand(u) = p−N1(u)

2. if u is OUT, demand(u) = q −N0(u)

Def 6.3 Let G = (U, s, E) be a bipartite graph. Let W ⊆ [U]. A preliminary

coloring of W is a partial (p, q)-coloring where:

1. For all i ∈ [s], col(i) = 1 if all of its neighbors in W are IN

2. For all i ∈ [s], col(i) = 0 if all of its neighbors in W are OUT

The set W is demanding if ∀u ∈ W , demand(u) > 0.

Note 6.4 This definition of demanding describes the situation that exists

after the greedy algorithm from Section 5.2 stops and any vertices in NCOL

that can be colored are colored. ACTIV E forms an demanding set. The

definition, however, is defined independently (from the algorithm), so we can

use it in Lemma 6.6.

Def 6.5 A graph G = (U, s, E) satisfies the counting condition if, following

the preliminary coloring, for every choice of demanding W , the number of

38

remaining (uncolored) vertices in [s] is at least as large as the sum of the

demands of W . For all W ⊆ [U]:

|N(W)−N1(W)−N0(W)| ≥
∑
u∈W

demand(u)

Lemma 6.6 Any bipartite graph, G = (U, s, E), with expansion α ≥ 8/3

satisfies the counting condition.

Proof: We proceed with proof by contradiction. Let G be as in the state-

ment of the lemma and let W be any demanding set. Pre-color G using W .

Let Ci, i ∈ {0, 1, 2} denote the number of IN vertices with i neighbors that are

pre-colored. Similarly, let Bj, j ∈ {0, 1} denote the number of OUT vertices

with i neighbors that are pre-colored.

We will use m to denote the number of neighbors of W that are not pre-colored

(m = |N(W)−N1(W)−N0(W)|).

Assume, to reach contradiction, that the set W violates the counting condition:

m <
∑
u∈W

demand(u)

Next, we rewrite this equation in terms of the Ci and Bj by noting that any

two u ∈ W that contribute to the same Ci (Bj) have the same demand: 3− i

(2− j)

m < 3C0 + 2C1 + 1C2 + 2B0 + 1B1 (2)

39

The second key equation comes from bounding m2 by using a counting tech-

nique similar to counting ACTIN . Every vertex counted in m2 must be con-

nected to an IN and an OUT node in [U]. For every OUT node with no

pre-colored neighbors, there are at most 4 distinct vertices in [s] and for every

OUT node with 1 pre-colored neighbor, there are at most 3 distinct neighbors.

Therefore,

m ≤ 4B0 + 3B1 (3)

Adding two of equation (1) with one of equation (2) yields:

3m < 6C0 + 4C1 + 2C2 + 8B0 + 5B1

or, when reduced,

m < 2C0 +
4

3
C1 +

2

3
C2 +

8

3
B0 +

5

3
B1 (4)

The total number of vertices, N(W), in terms of m, Ci, and Bj for counting is

N(W) ≤ C1 + 2C2 +B1 +m

Substituting (3) for m,

N(W) < 2C0 +
7

3
C1 +

8

3
C2 +

8

3
B0 +

8

3
B1 <

8

3
|W | (5)

Equation (4) contradicts the 8
3
-expansion property; therefore, G satisfies the

40

counting condition.

Now we are almost ready to present the final algorithm to produce a (3, 2)-

coloring. We use the GREEDY algorithm as a sub-routine, and we also use a

second sub-routine, MATCH, which finds an optimal matching on a bipartite

graph by using alternating paths.

Def 6.7 An alternating path is a list of edges in a graph, (x1, y1), (x2, y2), . . . , (xl, yl),

where (xi, yi) and (xi, yi+1) are edges in the graph for all 1 ≤ i < l. In other

words, an alternating path is a set of edges formed by taking every other edge

of a path in G.

Alternating paths can be used to find an optimal matching5. This is the

approach used by MATCH:

1. Input G,MATCHABLE,COL.

2. Let G′ = (MATCHABLE,N(MATCHABLE), E ′) where

E ′ = {(x, y) ∈ E : x ∈MATCHABLE ∧ y ∈ N(MATCHABLE)}

3. Let M = (x, y) ∈ E ′, where (x, y) is any edge. M will be an alternating

path in E ′, with edges (x1, y1), . . . , (xl, yl).

4. Let UNMATCHED = {x ∈MATCHABLE : 6 ∃(x, y) ∈M .

5. If UNMATCHED = ∅, GOTO Step 7.

5For further reading on Bipartite Matchings, see [7]

41

6. For x ∈ UNMATCHED do

• For y ∈ {y ∈ N(MATCHABLE) :6 ∃(x, y) ∈M} do

– If (x, y1) ∈ E ′ and (xl, y) ∈ E ′ (x and y can be used to form a

larger alternating path), then let

M = {(x, y1), (x1, y2), . . . , (xl−1, yl), (xl, y)}

– GOTO Step 4.

7. For each (x, y) ∈M , let COL(y) = 1 if x is labeled IN and COL(y) = 0

if x is labeled OUT.

Note 6.8 MATCH may not terminate on any input, however, in the final

algorithm, MATCH is always run with inputs for which Hall’s Theorem guar-

antees there is a perfect matching.

The final algorithm is:

1. Run GREEDY on G,ACTIV E,COL.

2. If |ACTIV E| = 0, output COL.

3. Find the largest subset, X, of ACTIV E such that
∑

u∈X demand(u) >

N(X).

4. Let MATCHABLE = ACTIV E −X.

5. Run MATCH on G,MATCHABLE,COL.

6. Let ACTIV E = X.

42

7. If |ACTIV E| = 0, output COL.

8. GOTO Step 1.

Why does this work?

• Every time the GREEDY algorithm stops, we are left with a demanding

set that, guaranteed by Lemma 6.6 has more neighbors than its demand.

For this set, there are two possibilities. (1) for every subset, there are

more neighbors than demand or (2) there exists some subset for which

there is more demand than neighbors.

• For case (1), Hall’s theorem guarantees a matching, which will be found

by MATCH. For case (2), we choose the largest subset for which there

is more demand than neighbors. (Note that the remainder of ACTIV E

satisfies Hall’s theorem because the other subset is maximal, so MATCH

takes care of those nodes, which are then removed from ACTIV E.)

This subset violates the counting condition. Therefore—because every

demanding subset of G satisfies the counting condition—this subset is

not demanding and there is at least one neighbor that is demanded by

only IN or only OUT vertices. This means that the GREEDY sub-

routine can make progress and either finish or will stop with another

demanding ACTIV E set.

Because either GREEDY or MATCH will always continue or finish, we are

guaranteed to produce (3, 2)-coloring. In other words, we just proved:

Lemma 6.9 If G is a 4-regular bipartite graph with expansion 8
3

+
, then G is

(2n; 3, 2, 4)-useful.

43

Using this lemma in place of Lemma 5.11, we can prove our theorem:

Theorem 6.10 There exists U0 and c0 such that, for all U ≥ U0, for all n,

there is a (U, n; s, 4)-BPDS where s =
⌈
c0n

1/4U3/4
⌉
.

Proof: This follows from Lemmas 5.7, 6.9, and 5.13 with δ = 1/3.

6.2 Actual Values and Comparison

To get the actual values for s, we refer back to the proof of Lemma 5.13:

c0 = 2c = (6− 2δ)1+δ · e8−δ

and

s ≥ c0 · n
δ

1+δ · U
1

1+δ

We use the same calculation as in Section 5. When δ = 1/3 (expansion

3− 1/3 = 8/3).

c0 =

(
16

3

)4/3

· e23/3

Using this constant value, Table 7 again compares values of s for different n,

this time including the Expansion-8/3+ algorithm with EASY and Expansion-

14/5+. For low n-values, EASY still has much better space values, despite a

dramatic improvement with the smaller expansion. Table 8, shows s with pow-

ers of 2 as n. This is due to the fact that the constant factor for EASY is still

much better, even for higher values of n and with the dramatic improvement

in the expansion algorithm with a smaller expansion.

44

n EASY n1/6U5/6 n1/4U3/4

2 2.634 · 105 2.306 · 1012 3.971 · 1011

3 2.634 · 105 2.467 · 1012 4.394 · 1011

4 1.718 · 1010 2.589 · 1012 4.722 · 1011

5 1.718 · 1010 2.687 · 1012 4.993 · 1011

6 1.718 · 1010 2.770 · 1012 5.226 · 1011

7 1.718 · 1010 2.842 · 1012 5.431 · 1011

8 1.718 · 1010 2.906 · 1012 5.615 · 1011

9 1.718 · 1010 2.963 · 1012 5.783 · 1011

10 1.718 · 1010 3.016 · 1012 5.938 · 1011

Table 7: Values of s using different n for EASY, Expansion-14/5+, and
Expansion-8/3+ algorithms. (U = 232 − 1, q = 4)

n EASY n1/6U5/6 n1/4U3/4

8 1.718 · 1010 2.906 · 1012 5.615 · 1011

16 1.718 · 1010 3.261 · 1012 6.678 · 1011

32 1.718 · 1010 3.661 · 1012 7.942 · 1011

64 1.718 · 1010 4.109 · 1012 9.444 · 1011

128 1.718 · 1010 4.613 · 1012 1.123 · 1012

256 1.718 · 1010 5.178 · 1012 1.335 · 1012

512 1.718 · 1010 5.812 · 1012 1.588 · 1012

1024 1.718 · 1010 6.523 · 1012 1.888 · 1012

2048 1.718 · 1010 7.322 · 1012 2.246 · 1012

4096 1.718 · 1010 8.219 · 1012 2.671 · 1012

8192 1.718 · 1010 9.226 · 1012 3.176 · 1012

Table 8: Values of s using different powers of 2 as n for both EASY, Expansion-
14/5+, and Expansion-8/3+ algorithms. (U = 232 − 1, q = 4)

45

U n EASY n1/4U3/4

232 − 1 32 1.718 · 1010 7.942 · 1011

236 − 1 36 2.748 · 1011 6.543 · 1012

240 − 1 40 4.398 · 1012 5.374 · 1013

244 − 1 44 7.036 · 1013 4.403 · 1014

248 − 1 48 1.125 · 1015 3.600 · 1015

252 − 1 52 1.801 · 1016 2.938 · 1016

256 − 1 56 2.882 · 1017 2.394 · 1017

260 − 1 60 4.611 · 1018 1.948 · 1018

264 − 1 64 7.378 · 1019 1.584 · 1019

268 − 1 68 1.180 · 1021 1.287 · 1020

272 − 1 72 1.888 · 1022 1.044 · 1021

Table 9: Values of s for EASY and Expansion-8/3+, for increasing U. (n =
logU, q = 4)

The expansion bounds, however will eventually win over EASY. For the q = 4

case, almost any value of n will cause the EASY bound to be O(U) (as noted in

the EASY analysis section). Table 9 gives a comparison between the expansion

(8/3+) bound and the EASY bound for increasing U . EASY continues as the

better bound until approximately 252 (a reasonable universe).

Still, EASY is a very good upper bound for its constant factor and the fact that

it is constructive (or explicit in the literature’s terminology) and the expansion

bounds are not—even though it requires finding a prime number larger than

U δ.

46

7 Lower Bound: If there exists a (U, n; s, 2)-

BPDS and n ≥ 2 then s ≥ U

Next, we present the first of the lower bounds from literature for the 2-query

case, originally published in [6]. This proof shows that for any 2-query BPDS,

the space used to store a set must be at least U (no Ω), no matter how small

n may be. Our contribution in this section is the clear and thorough write-up

of the proof.

We will use the following key fact from graph theory:

Fact 7.1 If a graph has more edges than vertices then it must have a cycle.

Theorem 7.2 Let n ≥ 2. In any (U, n; s, 2)-BPDS, s ≥ U .

Proof:

We will prove this by induction on U .

Base Case U = 1 If s < U then s = 0. So no queries can be made. Thus

if A = ∅ or A = {1}, the membership algorithm gives the same answer.

This is a contradiction.

Note that U = 1, n ≥ 2 makes sense because A ⊆ U such that |A| ≤ n.

In that case, |A| ≤ 1.

We do not need the U = 2 nor the U = n case; however, we present both

for enlightenment.

Case U = 2 (For Fun) If s < U then s = 1. Map ∅, {1} and {2} to how

they are stored. Since there is only one bit, two of them map to the

47

same storage. If its ∅ and {1} then the query “1 ∈ A?” will be answered

incorrectly. If its ∅ and {2} then the query “2 ∈ A?” will be answered

incorrectly. If its {1} and {2} then query “2 ∈ A?” will be answered

incorrectly.

Case U = n (For More Fun) In this case we are storing all subsets of U .

If s < U then we can take s = n− 1. Map all elements of 2U to how the

n−1 bits are set. Since this map had domain of size 2n and co-domain of

size 2n−1, two different sets map to the same setting. Call the sets A,B.

Let a ∈ A ⊕ B (so either a ∈ A − B or a ∈ B − A). The membership

query algorithm will make a mistake on the query “a ∈ A?”.

Induction Hypothesis Assume that there does not exist a nonadaptive

(U − 1, n; s, 2) bit-probe data structure where s < U − 1.

Induction Step We can assume U ≥ 2 from our base cases. Also, assume to

reach a contradiction that there exists a (U, n; s, 2)-BPDS where s < U

(note that for U − 1, the induction hypothesis, this is not true).

Let u ∈ [U]. To determine if u ∈ U you make two queries, which we

denote au and bu (so the actual queries are to CELL[au] and CELL[bu]).

Then, you apply some boolean function of two variables to the answers,

which we will call fu(x, y). There are several case of what fu can be

which lead to several cases for our theorem. Most of them are easy.

Note that we aim to reach a contradiction in every case.

fu is constant There exists u such that fu is the constant function.

We take fu(x, y) = TRUE (FALSE is similar). Let A = ∅. If you

48

store A in your data structure and ask “u ∈ A?” you get answer

TRUE. This is incorrect; a contradiction.

fu depends on one input There exists u such that fu(x, y) depends

on only one of the variables. We take fu(x, y) = x (the cases

fu(x, y) = ¬x, fu(x, y) = y, and fu(x, y) = ¬y are similar). Hence

we have

u ∈ [U] iff au = 1

Consider this claim: If A ⊆ [U] − {u} and |A| ≤ n. When A is

stored, CELL[au] = 0.

To show this is true, assume that when A is stored CELL[au] = 1.

Then the query “u ∈ A?” will be answered YES when it should be

NO. Hence, the claim is true.

Using the claim, we can now create a nonadaptive (s − 1, 2) bit-

probe data structure where the universe is [U] − {u}. This will

contradict the induction hypothesis. Use the same storage you did

for U ; but do not use CELL[au]. If this cell is ever asked about

then hardwire the answer 0 into it. Hence it does not count as a

cell. Thus we use s − 1 cells for universe U − 1. Because s < U ,

this contradicts the induction hypothesis.

fu depends on both x and y Create an edge-labeled multigraph6

with vertex set [s] and edge set

E = {(au, bu) : u ∈ [U] this edge is labeled u}
6A multigraph is a graph where there may be several edges between two nodes, rather

than at most one.

49

It is possible that two different elements of U ask the same two

questions—which is why it is a multigraph.

The key to this case is that this graph has s vertices but U > s

edges. Hence it must have a cycle. Let the cycle be (x1, x2, . . . , xL).

We will refer to the edges as u1, u2, . . . , uL, where u1 = (x1, x2) and

so on. We do not know what L is; it will not matter.

There are several sub-cases:

fu = x ∧ y for some u In this case, the cycle contains an edge

labeled u such that fu(x, y) = x∧y We assume fu1(x, y) = x∧y

without loss of generality.

We build a set A ⊆ [U], |A| ≤ n, which will help us get a

contradiction.

• Stage 1: A = {u1}. CELL[x1] = 1 and CELL[x2] = 1 are

forced.

• Stage 2: If CELL[x2] = 1 forces u2 ∈ A then we are done:

the set A = {u1} will cause a mistake on the query “u2 ∈

A?”. Hence we can assume that fu2(x, y) is not forced by

the choice x = 1.

Now consider another claim: the decision to have u2 /∈ A

forces the value of CELL[x3]. Assume not. Say that A =

{u1} is stored. Clearly CELL[x1] = CELL[x2] = 1. What

about CELL[x3]. By assumption it is not forced. Hence

both the data structures

CELL[x1] = 1, CELL[x2] = 1, CELL[x3] = 1

50

CELL[x1] = 1, CELL[x2] = 1, CELL[x3] = 0

must correctly answer all membership queries for the set

{u1}.

How do we encode B = {u1, u2}? To get the data structure

to answer yes to “u1 ∈ A?”, we must set CELL[x1] =

CELL[x2] = 1. We know that the bit probe queries made

to answer “u2 ∈ A?” are CELL[x2] and CELL[x3]. But

whether you set CELL[x3] to 0 or 1 you will get the answer

NO based on what we know about storing {u1}. Hence

{u1, u2} cannot be stored. Therefore, the claim is true:

CELL[x3] is forced to some value when u2 /∈ A.

• Stage i: For i = 3 to L−1 assume inductively that (1) u1 ∈

A, (2) u2, u3, . . . , ui−1 /∈ A, and (3) CELL[x1], CELL[x2],

. . . , CELL[xi] have been forced.

If the setting of CELL[xi] forces the status of ui then we are

done: one of the sets {u1, ui} or {u1} will cause a mistake on

the query “ui ∈ A?”. Let b be such that CELL[xi] be forced

to be b. Do not put ui into A. This forces CELL[xi+1] to

some value by similar reasoning to Stage 2.

We now have that if A = {u1} then CELL[x1], . . ., CELL[xL]

are forced. This forces the status of {uL}. Hence one of the sets

{u1} or {u1, uL} will cause a mistake on the query “uL ∈ A?”

and gives our contradiction.

fu is similar to x ∧ y If the cycle contains an edge labeled u

such that fu(x, y) is one of the following: x ∧ ¬y,¬x ∧ y,¬x ∧

51

¬y, x∨ y, x∨¬y,¬x∨ y,¬x∨¬y, then the logic is just like the

x ∧ y case. The key is that there was a setting of fu(x, y) that

forced both x and y. The same is true for these functions.

fu is x⊕ y or ¬(x⊕ y) The remaining case is where each edge

on the cycle has associated fu of the form x ⊕ y or ¬(x ⊕ y).

Hence we have that there exists b1, . . . , bL ∈ {0, 1} such that

A(u1) = x1 + x2 + b1 (mod 2)

A(u2) = x2 + x3 + b2 (mod 2)

A(u3) = x3 + x4 + b3 (mod 2)

...
...

A(uL) = xL + x1 + bL (mod 2)

Note the following

• If A = ∅ then the bits must be set such that, for all 1 ≤

i ≤ L, xi + xi+1 + bi ≡ 0. Summing over all 1 ≤ i ≤ L all

of the xi’s cancel and you get
∑L

i=1 bi ≡ 0.

• If A = {u1} then x1 + x2 + b1 = 1 but, for all 2 ≤ i ≤ L,

xi + xi+1 + bi ≡ 0. Summing over all 1 ≤ i ≤ L all of the

xi’s cancel and you get
∑L

i=1 bi ≡ 1.

It cannot be that
∑L

i=1 bi is both ≡ 0 and ≡ 1 so this is a

contradiction.

In each case for fu, we have now arrived at a contradiction. Therefore,

the assumption, that there exists a (U, n; s, 2)-BPDS where s < U must

be false. This concludes the inductive case and our proof.

52

8 Lower Bound: If there is a (U, n; s, 3)-BPDS

and n ≥ 4 then s ≥ c0n
2/3U 1/3

This section is based on the original proof in [1]. We will first examine the

3-query case and prove the lower bound from literature, then give a new lower

bound that holds for all q ≥ 3, and values for the space required at sample

of q and n. This generalization and the resulting space values we will present

have not appeared in literature.

We proceed by proving a lemma that links lower bounds for nonadaptive

(U, n; s, q)-BPDS to a problem in pure combinatorics, Lemma 8.3. This proof

demonstrates combinatorial reasoning to prove a lower bound, which is a com-

mon technique from the literature ([1], [6]).

Def 8.1 Let G = (U, s, E).

1. If u ∈ U then N(u) is the set of all neighbors of u.

2. Let Y ⊆ [s]. Then

ANSBY(Y) = {u ∈ U : N(u) ⊆ Y }

Intuitively, think of ANSBY(Y) as the members of [U] whose membership

could be determined, or answered, given the bits of Y .

Def 8.2 Let G = (U, s, E) and n ∈ N. G is n-nice if,

For all Y ∈
n−1⋃
i=1

(
[s]

i

)

53

|ANSBY(Y)| ≤ |Y |

We will now show that every graph associated with a (U, n; s, q)-BPDS is n-

nice, which will be the key to our lower bound. Specifically, we seek values of

s for which the graph (U, s, E) cannot be n-nice.

Lemma 8.3 If there exists an (U, n; s, q)-BPDS, then there is a q-regular bi-

partite graph G = (U, s, E) that is n-nice.

Proof: Assume there exists a (U, n; s, q)-BPDS. Let G = (U, s, E) be the

associated bipartite graph.

Assume, to reach a contradiction, that there exists Y ∈
⋃n−1
i=1

(
[s]
i

)
, such that

ANSBY(Y) ≥ |Y |+ 1. Let Z be a subset of ANSBY(Y) of size |Y |+ 1. Note

that |Z| ≤ n. Hence every A ⊆ Z has a representation in the data structure.

Note also that the answers given by the data structure for the elements of Z

depend only on the bits of Y .

Let A ⊆ Z. If A is the set you are trying to store then you will set the bits of

Y . Map each such A to the way you set the bits of Y . This is a mapping of a

set of size 2|Y |+1 to a set of size 2|Y |. Hence two different A1, A2 ⊆ [Z] set the

bits the exact same way. This is a contradiction because this will cause some

membership query to be answered incorrectly.

8.1 The Lower Bound

We will now prove a combinatorial lemma using this n-nice property. This

leads directly to the lower bound. Note that there is no Ω in this result.

54

Lemma 8.4 Let s, n, U ∈ N. Let 4 ≤ n ≤ U . If G = (U, s, E) is any n-nice

3-regular bipartite graph then s ≥ n2/3U1/3/4.

Proof:

Let G = (U, s, E) be a 3-regular n-nice bipartite graph. We will pick a set

Y ⊆ [s], |Y | = n− 1, at random and find the expected value of ANSBY(Y).

Fix u ∈ U . Note that |N(u)| = 3.

Pr(N(u) ⊆ Y) =

(
s−3
n−4

)(
s

n−1

) =
(s− 3)!

(n− 4)!(s− n+ 1)!

(n− 1)!(s− n+ 1)!

s!
=

(n− 1)(n− 2)(n− 3)

s(s− 1)(s− 2)
≥
(
n− 3

s

)3

.

Hence

Pr(N(u) ⊆ Y) ≥
(
n− 3

s

)3

.

Let EX be the expected number of u such that N(u) ⊆ Y . By the above

calculation

EX ≥ U

(
n− 3

s

)3

.

Since G is n-nice we know that EX ≤ n− 1. Hence

55

U

(
n− 3

s

)3

≤ n− 1.

U1/3n− 3

s
≤ (n− 1)1/3.

n− 3

s
≤ (n− 1)1/3

U1/3
.

s

n− 3
≥ U1/3

(n− 1)1/3
.

s ≥ U1/3(n− 3)

(n− 1)1/3
.

s ≥ U1/3(n− 3)

(n− 1)1/3
.

Since n ≥ 4 we have n− 3 ≥ n
4
. Clearly n− 1 ≤ n. Hence we have

s ≥ U1/3n

4n1/3
≥ n2/3U1/3/4

Theorem 8.5 If there is a (U, n; s, 3)-BPDS and n ≥ 4, then s ≥ n2/3U1/3/4.

Proof: This follows from Lemma 8.3 and Lemma 8.4: A BPDS must

have an associated n-nice bipartite graph, and such graphs must have s ≥

56

n2/3U1/3/4

8.2 Generalization: If n ≥ q + 1, then s ≥ (U 1/qn1−1/q)/q.

Lemma 8.4 can be easily generalized for any value of q, which we will now

demonstrate. This generalization will allow us to easily compare this lower

bound with the other lower bounds presented in this thesis.

Lemma 8.6 Let q < n ≤ U . If G = (U, s, E) is any n-nice q-regular bipartite

graph, then s ≥ (U1/qn1−1/q)/q.

Proof: This proof parallels the proof of Lemma 8.4. We start with G

and randomly pick a set Y ⊆ [s] (|Y | = n − 1). The probability that the

neighbors of some u ∈ [U] are contained in Y is the number of ways to choose

Y containing the q neighbors of u divided by the number of ways to choose

sets of size n− 1:

P (N(u) ⊆ Y) =

(
s−q

n−q−1

)(
s

n−1

) =
(s− q)!

(n− q − 1)!(s− n+ 1)!
· (n− 1)!(s− n+ 1)!

s!
=

(n− 1)(n− 2)(n− 3) . . . (n− q)
s(s− 1)(s− 2) . . . (s− q + 1)

≥
(
n− q
s

)q
The expected number of u that are in ANSBY(Y) is obtained by multiplying

this probability by U :

n− 1 ≥ EX ≥ U

(
n− q
s

)q

57

sq ≥ U
(n− q)q

n− 1

s ≥ U1/q n− q
(n− 1)1/q

Using the assumption (from the Lemma’s premise) that n ≥ q + 1, we have

n− q ≥ n
q
. Clearly, n > n− 1. Using both of these facts to simplify, we arrive

at our result,

s ≥ U1/q n

q · n1/q

s ≥ (U1/qn1−1/q)/q

8.3 Actual Values

To generate an accurate table of results for this lower bound, we take an

intermediate step in the proof of Lemma 8.6, before approximating—which

made the terms nicer for a stated bound, but less accurate. We use the result,

s ≥ U1/q n− q
(n− 1)1/q

The values for this result, shown in Table 10, are much better than the EASY

lower bound for most values of n, except values that are near q. A compar-

ison of these space values to the EASY lower bound space values is given in

Table 11, with the values for EASY in parentheses. Note that for both tables,

n ≥ q because of the (n − q) term and the negative results are omitted from

the table.

58

n \ q 3 4 5 6 7 8 9 10 11 12 13 14 15

4 1128 0
5 2048 182 0
6 2852 343 62 0
7 3579 491 119 30 0
8 4249 630 172 59 19 0
9 4877 762 223 86 36 13 0
10 5471 887 273 112 53 25 10 0
11 6036 1008 320 138 69 36 19 8 0
12 6579 1125 366 163 85 48 28 15 7 0
13 7101 1238 412 187 101 59 36 22 12 6 0
14 7605 1349 456 211 116 70 45 29 18 11 5 0
15 8094 1456 499 234 131 81 53 36 24 16 9 5 0
16 8569 1561 541 257 146 92 61 43 30 21 14 9 4
17 9032 1664 583 280 160 102 70 49 36 26 18 12 8
18 9483 1766 623 302 175 113 78 56 41 31 23 16 11
19 9924 1865 664 324 189 123 86 62 47 35 27 20 15
20 10356 1962 703 346 203 133 94 69 52 40 31 24 19

Table 10: Values for this section’s lower bounds on s, for different q and n
using U = 232 − 1. Negative values omitted.

59

n \ q 3 4 5 6 7 8 9

4 1128 (1861) 0 (379)
5 2048 (1861) 182 (379) 0 (154)
6 2852 (1861) 343 (379) 62 (154) 0 (88)
7 3579 (1861) 491 (379) 119 (154) 30 (88) 0 (60)
8 4249 (1861) 630 (379) 172 (154) 59 (88) 19 (60) 0 (46)
9 4877 (1861) 762 (379) 223 (154) 86 (88) 36 (60) 13 (46) 0 (38)
10 5471 (1861) 887 (379) 273 (154) 112 (88) 53 (60) 25 (46) 10 (38)
11 6036 (1861) 1008 (379) 320 (154) 138 (88) 69 (60) 36 (46) 19 (38)
12 6579 (1861) 1125 (379) 366 (154) 163 (88) 85 (60) 48 (46) 28 (38)
13 7101 (1861) 1238 (379) 412 (154) 187 (88) 101 (60) 59 (46) 36 (38)
14 7605 (1861) 1349 (379) 456 (154) 211 (88) 116 (60) 70 (46) 45 (38)
15 8094 (1861) 1456 (379) 499 (154) 234 (88) 131 (60) 81 (46) 53 (38)
16 8569 (1861) 1561 (379) 541 (154) 257 (88) 146 (60) 92 (46) 61 (38)
17 9032 (1861) 1664 (379) 583 (154) 280 (88) 160 (60) 102 (46) 70 (38)
18 9483 (1861) 1766 (379) 623 (154) 302 (88) 175 (60) 113 (46) 78 (38)
19 9924 (1861) 1865 (379) 664 (154) 324 (88) 189 (60) 123 (46) 86 (38)
20 10356 (1861) 1962 (379) 703 (154) 346 (88) 203 (60) 133 (46) 94 (38)

Table 11: Space values for this section’s lower bound compared to values for
the EASY lower bound (in parentheses), for different q and n using U = 232−1.
Negative values omitted.

60

The space lower bound from this method depends on n, which is the edge

over the EASY lower bound. EASY depends on M , which is based on n,

but doesn’t increase as n increases. Intuitively, it makes sense that the space

required should depend on the number of items being stored and that this

generalized upper bound is closer.

61

9 Lower Bound: If there is a (U, n; s, 3)-BPDS

and n ≥ 16 logU then s ≥ Ω

(
n1/2U1/2

(logU)1/2

)
Our next lower bound is also from [1], but presented here in more detail. Our

method to prove this lower bound is, again, to examine associated bipartite

graphs, and find the values of s for which (U, s, E) cannot be n-nice. To do

this, we first prove a purely graph-theoretic result, Lemma 9.4. This bound is

asymptotically better than the bound in 8 and we present comparison values

at the end of this section.

Our contribution is the thorough write-up of these results and the value com-

parison between the lower bounds.

9.1 Graph-Theoretic Results

Our first lemma is folklore–it is cited as “well known” in [1]–we include a proof

here for completeness. This proof is based on a comment we found at [2].

Lemma 9.1 Any graph with s vertices and at least 2s edges contains a cycle

no longer than 2 log s

Note 9.2 It is important to know what exactly Lemma 9.1 states. We know

from Lemma 7.1 that any such graph must have at least one cycle; in contrast,

this lemma states that the graph must have at least one small cycle (where

small means ≤ 2 log s).

Proof: We proceed by induction on s.

62

Base Case Begin7 at s = 5. The only graph with 5 vertices and 10 edges

is the complete graph (K5), so there are many small cycles of length

3 < 2 log 5 ≈ 4.64

Induction Hypothesis Assume that any graph with n − 1 vertices and ≥

2(n− 1) edges contains a cycle of length ≤ 2 log(n− 1).

Inductive Case (1) Let G be a graph of size n with ≥ 2n edges. If G

contains a vertex with degree 1 or 2, then we can form G′ by omitting

that vertex and its incident edges (no more than 2). G′ then has n − 1

vertices and ≥ 2n − 2 = 2(n − 1) edges, accounting for those that were

removed. This means that the induction hypothesis applies to G′ and

that there is a small cycle in G′ that must also exist in G.

Inductive Case (2) If G does not have a vertex of degree 1 or 2, then each

vertex has at least 3 edges. Consider a breadth-first search method to

build a tree on this graph. Start at any vertex and add as its children

each of its neighbors. Keep adding neighbors until a previously-visited

node (a cycle!) is found. How big can this cycle be? In the worst case,

we would exhaust all of the nodes in the graph this way, forming a tree

with all s vertices. We know, however, that each node in the tree has at

least two children because it has degree ≥ 3. So the maximum depth of

the tree is log n and the cycle is no longer than 2 log n.

Lemma 9.3 Any graph with s vertices and more than 3s edges contains a set

of k ≤ 4 log s vertices which spans at least k + 1 edges.

7Because smaller values of s result in graphs that cannot contain ≥ 2s edges!

63

Proof: Let G be a graph with s vertices and ≥ 3s edges. By Lemma 9.1,

there is a cycle of length ≤ 2 log s. Take such a cycle and form a new graph by

omitting its edges. Keep repeating this process until the graph formed by this

process no longer has at least 2s edges—no longer guaranteed by Lemma 9.1

to have a small cycle.

At this point, we have a set of edge-disjoint cycles and a graph, G′ with less

than 2s edges. Because G′ has less than 2s edges, we know that the set of

cycles contains more than s edges, so two of those cycles must share a common

vertex. Let k1 and k2 be the number of edges in those cycles. The number of

vertices in each cycle are also k1 and k2 (which are both ≤ 2 log s), but the

number of vertices in their union, k, is ≤ k1 + k2 − 1 because they share at

least one vertex. The number of edges in their union is k1 + k2 because both

cycles are edge-disjoint. So the union of these two cycles forms a subgraph

with k ≤ 4 log s vertices with at least k + 1 edges, as in the statement of the

lemma.

Lemma 9.4 For s ≥ n ≥ 16 log s, any graph with s vertices and at least

3s+ n/2 edges contains a set of k ≤ n/2 vertices that spans at least k+ n
16 log s

edges.

Proof: Let G be a graph with s vertices and ≥ 3s + n/2 edges. By

Lemma 9.3, there is a set, X1 of k1 vertices that spans more than k1 + 1

edges. Form a new graph by omitting its edges, and repeat. Perform this

process n
16 log s

times.

64

Let X =
⋃n/16 log s
i=1 Xi. This set has k vertices, where

k ≤ (4 log s) · n

16 log s
=
n

4
≤ n

2

Because each set of vertices spans at least ki+ 1 edges, and all of the edge sets

are disjoint—because in each iteration, we removed them from the construction

of the next set—the number of edges spanned by X is

n/16 log s∑
i=1

ki + 1 =

n/16 log s∑
i=1

ki +

n/16 log s∑
i=1

1

≥ k +
n

16 log s

Therefore, X is a set as in the statement of the lemma.

Note 9.5 We know that Lemma 9.3 applies during each iteration, because

each set Xi has no more than 4 log s edges. 4 log s · n
16 log s

= n
4
, and we know

(by the premise of this lemma) that G contained ≥ 3s + n/2 edges. Thus, at

the end and during each iteration, there are at least 3s + n/4 edges and we

can apply Lemma 9.3.

Note 9.6 The three lemmas in this section also apply to multi-graphs—

graphs where the set of edges, E, can contain duplicates. The proofs are

the same because we never relied on the fact that each edge was unique, only

that each edge was never used twice. It is in the context of multi-graphs that

we will use these lemmas in Section 9.2

65

9.2 The Lower Bound: Graph Limits of n-nice

We now apply the graph lemmas to get our result by showing that for certain

values of s, there are no n-nice graphs.

Theorem 9.7 There exists c0 such that, for all U , if there is an (U, n; s, 3)-

BPDS with n ≥ 16 logU , then

s ≥ c0
n1/2U1/2

(logU)1/2

Proof: LetG = (U, s, E) be the corresponding bipartite graph to a (U, n; s, 3)-

BPDS where s ≥ n ≥ 16 logU LetR ⊆ S be the n
17 log s

vertices of largest degree

in S. The sum of the degrees of each z ∈ R is greater than n
17 log s

· 3U
s

, because

3U
s

is the average degree of the members of [s] and the members of R have the

largest degrees.

Let G′ be the multi-graph ([s], E ′). E ′ is the set of edges formed by creating

an edge (x, y) for every u ∈ U such that the third z ∈ N(u) is in R. Note

that there is a one-to-one relationship between edges in E ′ and members of U .

Formally,

E ′ = {(x, y) : (∃1u ∈ U) (z ∈ R ∧ {(u, x), (u, y), (u, z)} ⊂ E)}

Because there is an edge in E ′ for each u ∈ U connected to a z ∈ R, the set

E ′ has at least 3U ·n
17s log s

· 1
3

edges. This is equal to the lower bound on the sum

of the degrees from above, divided by 3 to account for the situation where x,

y, and z (or two of them) are in R.

66

If the number of edges exceeds 3s + n/2, we can apply Lemma 9.4 to find a

set, T , of k ≤ n/2 vertices that spans at least k + n
16 log s

edges of E ′.

Consider the set R ∪ T . The size of R ∪ T is g ≤ k + n
17 log s

≤ n. The number

of u ∈ U such that N(u) ∈ R∪T is at least k+ n
16 log s

≥ g, because every edge

(x, y) of the set of edges spanned by T (⊆ E ′) corresponds to a u ∈ U such

that N(u) = x, y, z and z ∈ R. Therefore,

|ANSBY (R ∪ T)| > |R ∪ T |

This contradicts the fact that G is n-nice, so we conclude that

U · n
17s log s

≤ 3s+
n

2
≤ 7s

2
2U · n

119 log s
≤ s2

The resulting lower bound is reached using c0 =
√

2/119 and s ≤ U (so

log s ≤ logU) to simplify:

s ≥ c0 ·
n1/2U1/2

(logU)1/2

9.3 Actual Values and Comparison

The technique from this section also gives a better lower bound than EASY

due to the fact that it depends on n. Table 12 shows the actual space values for

this lower bound technique. It also gives the 3-query results from Sections 3

67

and 8 for comparison. The generalized lower bound from Section 8 is the clear

winner for our choice of U . The technique in this section gives better bounds

than the last section when n is smaller and U is larger (in comparison to the

probabilistic technique), but this is limited by the necessary assumption that

n ≥ 16 logU . For U = 232 − 1, n is greater than 512 and the combinatorial

technique, which depends more on n and less on U , already gives a better

bound.

The graph limits of n-nice, however, do give a better asymptotic bound in some

cases. For higher values of U , where does this begin to take effect? Table 13

gives the lower bounds for increasing values of U from 232 − 1 to 264 − 1.

For each row, we use the minimum n = 16 · logU . The table shows that for

large values of U , approximately 244, the lower bound from this section is a

better bound. This also appears to be a reasonable universe. We chose to

base most comparisons on the universe U = 232 − 1 based on common integer

representations, but 264− 1 is also a commonly used integer representation on

newer 64-bit architectures.

If we choose an n closer to U , for instance n = U−16 · logU , the trend reverses

and the lower bound from Section8 is again the better bound. Table 14 shows

the same content as Table 13, but uses n = U − 16 · logU instead of 16 · logU .

68

n EASY U1/qn1−1/q/q n1/2U1/2

(logU)1/2

512 1861 103490 33985
1024 1861 164711 48062
2048 1861 261803 67970
4096 1861 415857 96123
8192 1861 660347 135939

Table 12: Values of s for each lower bound technique and different n. (U =
232 − 1, q = 3)

U n U1/qn1−1/q/q n1/2U1/2

(logU)1/2

232 − 1 512 1.034 · 105 3.398 · 104

236 − 1 576 2.822 · 105 1.359 · 105

240 − 1 640 7.633 · 105 5.437 · 105

244 − 1 704 2.050 · 106 2.175 · 106

248 − 1 768 5.477 · 106 8.700 · 106

252 − 1 832 1.456 · 107 3.480 · 107

256 − 1 896 3.856 · 107 1.392 · 108

260 − 1 960 1.017 · 108 5.568 · 108

264 − 1 1024 2.677 · 108 2.227 · 109

Table 13: Comparison of lower bounds for Sections 8 and 9, for increasing U
values. n = d16 · logUe , q = 3.

U n U1/qn1−1/q/q n1/2U1/2

(logU)1/2

232 − 1 4.294 · 109 4.294 · 109 9.842 · 107

236 − 1 6.871 · 1010 6.871 · 1010 1.484 · 109

240 − 1 1.099 · 1012 1.099 · 1012 2.253 · 1010

244 − 1 1.759 · 1013 1.759 · 1013 3.438 · 1011

248 − 1 2.814 · 1014 2.814 · 1014 5.266 · 1012

252 − 1 4.503 · 1015 4.503 · 1015 8.096 · 1013

256 − 1 7.205 · 1016 7.205 · 1016 1.248 · 1015

260 − 1 1.152 · 1018 1.152 · 1018 1.929 · 1016

264 − 1 1.844 · 1019 1.844 · 1019 2.989 · 1017

Table 14: Comparison of lower bounds for Sections 8 and 9, for increasing U
values. n = U − d16 · logUe , q = 3.

69

10 Conclusion

We have studied the bit probe data structure and summarized the determin-

istic, non-adaptive results from literature. We introduced the bit probe data

structure with two new techniques, the EASY upper and EASY lower bounds.

We also presented a new probabilistic adaptation of the EASY upper bound.

We continued by presenting complete proofs of the graph expansion upper

bounds—both 14/5 and 8/3 versions. Our version is more detailed that those

in literature, and includes a correction to the final bound, given in [1] as

O(n1/3U2/3). We added a new comparison between the known and new upper

bounds with actual values for required space. We found that the graph expan-

sion algorithms require more space than the EASY algorithm for low U , but

have better space efficiency in most cases. Also, EASY is the only constructive

algorithm that works for any q.

Lastly, we presented detailed proofs of lower bounds from literature: the 2-

query lower bound from [6], and more complete proofs of the n-nice combina-

torial lower bound from [1] and the graph-theory lower bound from [1]. We

also included a new generalization of the combinatorial lower bound and new

concrete comparisons and constant analysis between the known and new lower

bounds. We found that the general combinatorial lower bound in Section 8

is better than the EASY lower bound, except for where q and n are close or

when n < q. We also found that the graph-theory lower bound outperformed

the combinatorial lower bound when n is not near U and when U is sufficiently

large, however, this result is only for 3 queries.

70

References

[1] N. Alon and U. Feige. On the power of two, three and four probes.

Manuscript, 2008.

[2] Aravind. A “well known” theorem (comments), November 2008.

https://www.blogger.com/comment.g?blogID=3722233&postID=

4951420787206539360.

[3] R. C. Baker, G. Harman, and J. Pintz. The difference between consecutive

primes. II. Proc. London Math. Soc. (3), 83(3):532–562, 2001. http:

//plms.oxfordjournals.org/cgi/reprint/83/3/532.

[4] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A

survey. Internet Mathematics, 1(4):485–509, 2004.

[5] D. R. Heath-Brown. Differences between consecutive primes. Jahresber.

Deutsch. Math.-Verein., 90(2):71–89, 1988.

[6] H. Huhrman, P. Milterson, J. Radhakrishnan, and S. Venkatesh. Are bit

vectors optimal. SIAM Journal on Computing, 31:1723–1744, 2002. http:

//www.daimi.au.dk/~bromille/Papers/index.html.

[7] I. Simon. Bipartite matching. Manuscript. http://www.mcs.csuhayward.

edu/~simon/handouts/4245/hall.html.

71

