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The last decade has seen the emergence of auction mechanisms for pricing and al-

locating goods on the Internet. A successful application area for auctions has been

sponsored search. Search firms like Google, Bing and Yahoo have shown stellar

revenue growths due to their ability to run large number of auctions in a com-

putationally efficient manner. The online advertisement market in the U.S. is es-

timated to be around $41 billion in 2010 and expected to grow to $50 billion by 2011

(http://www.marketingcharts.com/interactive/us-online-advertising-market-to-reach-

50b-in-2011-3128/). The paid search component is estimated to account for nearly

50% of online advertising spend.

This dissertation considers two problems in the sponsored search auction domain.

In sponsored search, the search operator solves a multi-unit allocation and pricing

problem with the specified bidder values and budgets. The advertisers, on the other

hand, regularly solve a bid determination problem for the different keywords, given



their budget and other business constraints. We develop a model for the auctioneer

that allows the bidders to place differing bids for different advertisement slots for

any keyword combination. Despite the increased complexity, our model is solved

in polynomial time. Next, we develop a column-generation procedure for large ad-

vertisers to bid optimally in the sponsored search auctions. Our focus is on solving

large-scale versions of the problem.

Multi-unit auctions have also found a number of applications in other areas that

include supply chain coordination, wireless spectrum allocation and transportation.

Current research in the multi-unit auction domain ignores the budget constraint

faced by participants. We address the computational issues faced by the auction-

eer when dealing with budget constraints in a multi-unit auction. We propose an

optimization model and solution approach to ensure that the allocation and prices

are in the core. We develop an algorithm to determine an allocation and Walrasian

equilibrium prices (when they exist) under additive bidder valuations where the

auctioneer’s goal is social welfare maximization and extend the approach to address

general package auctions. We, also, demonstrate the applicability of the Benders de-

composition technique to model and solve the revenue maximization problem from

an auctioneer’s standpoint.
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Chapter 1

Introduction

Auctions have been used since ancient times to price and allocate items. High value

art items and wholesale flower trade in Netherlands have used auctions for centuries.

In the last decade, the growth of the internet along with that in computational

power, has resulted in various auction forms gaining a great deal of prominence in

the business and academic community. Some of the biggest names in the e-commerce

domain, like eBay, Yahoo, Bing, Facebook and Google, are in fact large auction op-

erators. Auctions have also been used by various governments to sell public goods

like wireless spectrum, airport landing slots etc. Many traditional firms like Sears

and Home Depot [EK03] have successfully used auctions for procurements and have

observed significant savings. The growth in the usage of auctions in the industry

has spurred researchers in the academic community to study the same. Although

there have been many significant contributions made by the academic community

in studying the economic properties, bidding behavior and computational aspects of

the many auction formats, a majority of the studies ignore the presence of budget

constraints. Budget constraints are very important from the standpoint of both the

bidders participating in the auction process as well as the auctioneer and thus, in

this dissertation, we seek to address computational and modeling issues faced by
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bidders as well as the auctioneer, when faced with hard budget constraints. We fo-

cus largely on the sponsored search domain. This dissertation consists of four essays.

The first essay models the sponsored search problem that the search providers like

Google, Bing and Yahoo face. We develop more general sponsored search auction

mechanisms than currently used in practice. The second essay deals with model-

ing the sponsored search problem faced by the search advertiser bidding on various

sponsored search platforms. We develop a methodology that allows large advertisers

to optimally bid in sponsored search auctions. The third essay addresses computa-

tional issues in determining the outcome of an auction run by a revenue maximizing

auctioneer, where the bidders face a hard budget constraint and have additive val-

uations for the items. In the fourth essay, we model the auctioneer’s objective as

social surplus maximization while the bidder assumptions remain the same as in the

third essay. Here we wish to find a social welfare maximizing allocation along with

a set of stable prices.

1.1 Online Advertising & Sponsored Search

The growth in internet commerce and usage has affected the advertising indus-

try fundamentally. The last few years has been marked by the explosive growth

of companies like Google, Facebook and Yahoo, which while providing a host of

free services, derive their revenues primarily from online advertising. In fact, the

tremendous profitability of this medium has attracted the likes of Microsoft and

Ask to come up with their own advertising platform. From the perspective of the

advertisers, online advertising provides the best return on investment amongst all

alternatives as the advertiser has a much better idea about the end-user intent and

profile. Also, since the cost of advertising on the internet is much smaller than tele-

vision or print, search advertising provides a platform for small businesses, which
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earlier would have been priced out by larger firms from the advertising space, to

compete on an equal footing. This new form of advertising has affected traditional

advertising channels like Yellow Pages, since small, local advertisers can target the

same audience more effectively online.

Online advertising includes search advertising, referrals and lead generation ads,

banner ads, email ads, content related ads, social ads and rich media ads. The

most prominent of these formats is sponsored search advertising. Recent reports

on internet advertising estimate the revenues to be around $50 billion for 2011

(http://www.marketingcharts.com/interactive/us-online-advertising-market-to-reach-

50b-in-2011-3128/). Large advertisers on the internet include firms in domains such

as financial services, consumer electronics, retail, leisure, automotive and enter-

tainment. Search based advertising accounted for about 50% of the revenue while

display advertising, social media advertising, referrals and classifieds accounted for

a significant proportion of the rest. Although internet advertising has demonstrated

impressive growth rates in the last few years, the amount spent on it as a propor-

tion of the entire advertising budget is still less than 10 per cent. Growing usage

and penetration rates will push significant ad budgets from other mediums to the

internet. Also, the ability to dynamically determine suitable ads to display along

with better understanding of the user intent, based on textual or search keyword

analysis, makes the online ad market very attractive to firms using the internet for

commercial purposes.

GoTo (Overture Services), provided the first sponsored search platform on the inter-

net in 1998. Overture was later acquired by Yahoo and formed the basis for its ad

platform till the launch of its new platform, Panama, in 2007. Google modified the

Overture model by including click-thru rates for various keywords and introduced
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its system in 2002. In the last four years, Ask.com and Bing have also adapted a

model similar to that of Google, with modifications to account for demographic and

geographic targeting. All the search platforms mentioned above have the following

format - when a search user specifies a set of keywords to search for, the search

engines display algorithmic (organic) results. They also display a set of results,

clearly marked as advertisements, to the top or right of the screen. These text ads,

in response to the user query, are called sponsored search ads. The ad typically

consists of a title and a short description related to the business, along with the

business’s URL. The placement of the ad is determined differently by various search

engine operators. These ads also follow the pay-per-click (PPC) model. In the PPC

framework, the advertiser has to pay Google, Bing or Yahoo only if the search user

clicks on the respective ad. The payment rules for the advertiser’s also varies with

the search platform. Most of the popular platforms use a next−price payment rule

in which the advertiser pays an amount related to the bid of the advertiser posi-

tioned immediately below her. Also, one should note that all the above allocations

and price determinations are performed under budget constraints. Hence, the prob-

lem that Google and others seek to solve is one of expected revenue maximization

such that the budget constraints of bidders are not violated. On the other hand,

the bidders have to determine their bids, knowing that they have an explicit budget

constraint. Thus, unlike standard auction literature, where budget constraints are

rarely discussed, any study related to the sponsored search domain has to explicitly

account for the budget constraint. The presence of the budget constraint, however,

significantly increases the computational complexity of the problem and also, re-

sults in incentive issues that cannot be addressed by extending results from auction

models for the unconstrained problem.
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1.2 Literature Review

The last six years have seen a number of papers being published that specifically

deal with the problem of sponsored search. Feng et.al. [FBP07] discuss the vari-

ous sponsored search allocation mechanisms, specifically that of Google and Yahoo

(Overture). They use simulations to compare the revenues on various platforms

under different ranking schemes. Parkes & Sandholm [PS05] discuss the significant

limitations in the bidding language being used on various ad platforms. They em-

phasize the need for an expressive bidding language for the sponsored search domain

and detail the benefits that search providers and advertisers can obtain by having

this additional expressiveness. The paper provides a framework to deal with com-

putational issues for auctions that have greater expressiveness. Goodman [Goo05]

deals with one of the significant issues faced by the sponsored search domain, namely

click fraud. The author describes a pay-per-percentage of impressions model, instead

of the current pay-per-click model, to make the ad system immune from click and

impression fraud. Edelman & Ostrovksy [EO05] empirically show that bidders dis-

play strategic behavior for keyword combinations and that the strategic behavior

persists over time. Animesh et. al. [ARV05] investigate the difference in search

behavior observed in the sponsored search domain depending on the type of good

being sold. They classify the goods as experience or credence goods and determine

some of the drivers for this difference in behavior. Jansen & Resnick [JR05] investi-

gate the interaction between the organic and sponsored search term on the buying

behavior of a search user.

Mehta et.al. [MSVV07] address the budget constrained issue in search auctions and

provide an algorithm to maximize the auctioneer’s revenue. They use an online

bi-partite matching algorithm along with a trade-off revealing Linear Program(LP)

that takes into account the bid as well as remaining budget for each advertiser.
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Edelman et.al. [EOM07] and Varian [Var07] independently show that the current

next price auctions being used by Google and Yahoo are not incentive compatible,

contrary to what intuition may suggest. Aggarwal et.al. [AGM06] address the issue

of non-incentive compatibility in current sponsored search auctions and describe

a method to convert these auctions into truthful auctions. Andelman & Mansour

[AM04] formulate a multi-unit allocation problem with budget constraints and dis-

cuss an approximation method for solving the problem. However, their formulation

doesn’t properly model the sponsored search problem. The paper models a one-shot

allocation and pricing problem where bidders have additive valuations and face hard

budget constraints. In the sponsored search problem, however, the budget varies

over the various rounds and the participants and items being auctioned off also do

not remain the same in the multiple rounds. Borgs et.al. [BCI+05] demonstrate the

lack of incentive compatibility in auctions with budget constraints.

Zhou & Lukose [ZR06] show that equilibrium behavior in sponsored search auctions

is vulnerable to vindictive bidding. Iyengar & Kumar [IA06] present a general model

for the pay-per-click auction where the advertisers have multi-dimensional private

valuations per click. They characterize the set of incentive compatible and individ-

ually rational allocation rules. Liu et.al. [LJA06] discuss a class of auctions called

the weighted price auctions and its relation to the sponsored search problem. They

also analyze the equilibrium bidding strategy for this class of auctions. Asdemir

[Asd06] conducts an empirical study to identify bidding patterns observed online

and develops a one shot simultaneous move and an infinite horizon alternative move

game to model the observed patterns.

Although the sponsored search problem from the search engine’s perspective has

been relatively well studied, the problem faced by the advertiser has very limited
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literature. Kitts & Leblanc [KL04] formulate the general problem that the advertiser

faces and discuss some methods used in the industry to estimate the system param-

eters. Ruschmevicheintong & Williamson [RW06] model the advertisers problem

when the number of slots available is just one. They discuss the stochastic knapsack

problem and its relation to the sponsored search problem. They further develop an

adaptive algorithm to solve the advertiser’s problem when the click-thru rates are

unknown. The paper, however, does not discuss or model the real-world case of

multiple ad slots with a combinatorial set of keywords.

Researchers have studied the economic properties of multi-unit auctions in great

detail. Specifically, Vickrey-Clarke-Groves(VCG) mechanism properties and associ-

ated computational details have been addressed in a number of papers. However,

there are very few papers that explicitly talk about the economic properties or

computational issues faced by auction participants, when faced with hard budget

constraints. In Benoit & Krishna [BK01], the authors show that when there are two

items and two bidders with a budget constraint, then if the items are auctioned of

sequentially, it is always optimal to sell the more valuable object first. The paper

only deals with the case of common value items and does not model cases when more

than two objects are present. However, it is evident that even in the multi-unit case,

the sequence in which one auctions of the items will result in different revenues for

the auctioneer. Thus, we need to consider all of the items at the same time and not

sequentially. Che & Gale [YG00] consider the selling of a single item and discuss

a non-linear pricing approach for the optimal allocation in the presence of budget

constraints. Ausubel & Milgrom [AM02] describe a multi-unit, ascending auction

format that can be suitably modified to account for hard budget constraints. How-

ever, their solution approach is a heuristic and the paper does not give a complete

characterization of the problem being solved. Borgs et.al. [BCI+05] discuss the lack
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of known incentive compatible (IC) mechanisms under strict budget constraints. It

is not even known whether there exists an IC mechanism when hard budget con-

straints are present.

1.3 Objective of this Dissertation

The rapid revenue growth in the paid search advertisement segment in the last

five years has resulted in a number of theoretical and empirical research papers by

researchers belonging to diverse domains such as computer science, operations re-

search, economics, marketing and statistics. As discussed in the previous section,

there has been significant work, particularly by the computer science community,

related to economic and computational properties of various sponsored search plat-

forms. There is, however, very limited amount of research that deals specifically

with the problem that advertiser’s on such platforms face. Further, modeling the

budget constrained multi-unit allocation problem has not been addressed well in

the standard auction literature. This dissertation seeks to address gaps in existing

research in these areas. We specifically model the sponsored search problem faced

by the search platform provider and the advertiser as well as discuss computational

and modeling issues for a multi-unit allocation problem with budget constraints, in

a general setting.

The first essay (chapter 2) deals with the optimization problem that sponsored search

platform providers face. We discuss current allocation and pricing models prevalent

in the search space. We, further, model the online ad allocation and pricing problem

faced by firms like Google and Yahoo as an assignment problem. Current bidding

systems allow only a single bid per keyword combination at a specific point in time.
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In our model we allow the option to specify different willingness-to-pay values for the

various positions. Further, we discuss the application of the Hungarian algorithm to

solve the assignment problem and its relation to the Vickrey-Clarke-Groves (VCG)

set of prices. Currently, the bidders are allocated upto one ad slot, of uniform di-

mension, in any auction round. However, it is expected that biddable video and

graphic ads will be allowed by the various search providers in the near future and

thus, the bidders could be allocated more than one ad slot of standard dimension

in any iteration. We model this extension where the bidder has an option to bid

on contiguous set of ad slots and show that optimization techniques can be used to

allocate space to multi-media ads.

In the second essay (chapter 3), we discuss the problem faced by an advertiser on the

current sponsored search platforms. We use the toolkit of integer programming(IP)

to model the problem faced by the search advertiser. We examine the constraint

structure of the problem and show that the LP relaxation will have an optimal so-

lution that is integral for nearly all decision variables. In fact, we demonstrate that

we need not consider all positions while bidding for a keyword combination. Rather,

we should consider only those points that lie on the upper convex hull of the (total

revenue, total cost) plot for the specific keyword combination. Further, bidders like

eBay and Amazon, bid on millions of keywords daily on the various search platforms

. Thus, loading the bid data at different positions and solving the LP relaxation

is in itself a difficult task. We use the specific properties of the sponsored search

domain to design a column generation approach to solve the relaxation problem

faced by large advertisers. We, then, extend the column generation method and use

a branch-and-price approach to build an algorithm to solve the IP to optimality.

In the third essay (chapter 4), we formulate a multi-unit auction with additive val-
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uations and hard budget constraints. The objective of the auctioneer is assumed to

be revenue maximization. The problem is modeled using integer programming and

the computational intractability of the problem, in certain budget ranges, is demon-

strated using simulations. A Benders decomposition method is then developed and

used to solve the problem for these hard instances and an associated auction inter-

pretation is provided.

The fourth essay (chapter 5) again deals with a multi-unit auction with additive

valuations and hard budget constraints. However, the objective for the auctioneer

is social welfare maximization. Solving the social welfare maximization problem will

result in an allocation that maximizes overall value but the prices determined could

be such that the bidders and the auctioneer would have a motivation to deviate and

increase their respective surpluses. Hence, we need to modify the constraint space for

the standard social maximization model under budget constraints to obtain prices

and an allocation that are in the core (i.e., stable). In particular, assuming they

exist, we would like single item prices (i.e., Walrasian equilibrium prices) in the ad-

ditive setting. Also, of note is that unlike the unconstrained auction problem where

VCG mechanism can be used to determine the efficient allocation, for the budget

constrained auction, the VCG mechanism has no specific economic property. Thus,

we need to simultaneously determine item prices as well as allocation. Building

upon Day & Raghavan [DR07], we provide a constraint generation approach to deal

with the exponential number of constraints associated with the core and provide an

algorithm to solve the separation problem. We, also, extend the model to general

package auctions where the valuations are not restricted to be additive.
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Chapter 2

Optimizing Sponsored Search

Auctions

In the recent past, revenues from sponsored online search based ads for firms like

Google and Yahoo has grown tremendously. Potential advertisers provide their

valuations for various keywords, and also specify overall budget for a period of time.

The search operator then solves a multi-unit allocation problem with the specified

bidder values and budgets, and determines two things - the order to place the ads and

the amount to charge the respective bidders. In this chapter, we describe a model

and method based on mathematical programming, to solve the online sponsored

ad selection problem as an assignment problem. This would enable search engines

to efficiently solve the problem in real time and increase their revenue by solving

the problem to optimality. In contrast to the current sponsored search auction

models, our model also allows bidders to specify different willingness-to-pay based

on allocated position. We also consider the situation where text ads of varying

length or a combination of text and graphical ads can be displayed. This introduces

a packing problem and we describe two potential auction models for this problem.
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2.1 Introduction

In the last few years, a new, targeted form of consumer advertising has emerged

on the internet. These ads based on keywords specified by the consumer are called

sponsored search ads. Sponsored search keyword advertising has become a multi-

billion dollar industry with firms like Google deriving a majority of their income

from sponsored search. The industry has shown double-digit growth in revenues

and profit over the same period, and continues to expand its use of sponsored ads

as a medium for growth. This chapter describes an enhanced auction format for

sponsored search that can potentially increase the revenue from the advertisers in

sponsored ad site activities.

The essence of the problem involves potential advertisers willing to pay for being fea-

tured at the top of a list of sponsored sites whenever users (i.e. potential consumers)

do a search on some keywords, and the search company (like Google) wanting to

be paid when these links are clicked on. Generally, the higher the placement in the

set of sponsored links the better it is for the advertiser in terms of generated traffic.

Potential advertisers know this and usually bid higher amounts to get placed higher

in the set of displayed sponsored links. Conversely, the search engines only get paid

if there is a click on the sponsored link. Thus, the search engine has an incentive to

place ads that are of high quality (i.e. a higher propensity for the user to click on)

and have attracted suitably high bids.

In fact, in their use of sponsored ad-sites to generate revenue, search engines such

as Google, Bing and Yahoo have become large auction houses where they solve an

allocation and pricing problem each time the consumer initiates a search. The bid-

ders specify the maximum amount that they are willing to pay for a keyword and

also specify overall budget limits for a pre-defined time period across a set of key-

12



words. The search engine operator provides options for placing bids on more than

one keyword or even combinations of keywords. Based on these bidder inputs, the

search engine operators use heuristics to determine the order of display as well as

the price paid by each advertiser for the ad placement.

The sponsored ad auction has attracted a lot of attention in the research community

recently. Feng et al. [FBP07] analyze and compare different sponsored search allo-

cation mechanisms as well as explore the effect of total number of slots auctioned

on auctioneer revenues. Rolland & Patterson [RP03] propose an expert system

to match advertisers and web users. Lim & Tang [LT05] use a simple one-stage

game theoretic model with two bidders to study how advertisers compete for posi-

tions in a search engine based on their expected click-thru rates. Weber & Zhang

[WZ07] study paid placement strategies and find that in order to maximize revenue,

the search engine design should be based on a weighted average of relative quality

performance in addition to bid amount. Kumar, Dawande & Mookerjee [KDM03]

propose a complex pricing model to maximize the search engine’s revenue; the price

is based on the number of impressions of the ad and the number of clicks on the

ad. There has also been some work that has examined efficient algorithms for allo-

cating sponsored site positions. For example, Zhan, Shen & Feng [ZSF09] examine

simultaneous pooled auctions and methods to improve revenue as well as suggest

a modified Vickrey-Clarke-Groves(VCG) mechanism that the auctioneer can use to

get the same expected revenue as in the pooled auction.

Varian [Var07] characterizes the Nash equilibrium of Google sponsored auctions

and shows that the generalized second price auction (followed by Google, Bing and

Yahoo) is not incentive compatible and is not equivalent to the VCG mechanism.

Aggarwal et al. [AGM06] independently show the lack of truth telling as a domi-
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nant strategy for these auctions and develop a truthful mechanism called the ladder

auction. In the next section, we describe these two papers in greater detail.

2.2 Current Sponsored Search Models

The models which various sponsored search engines use for ad auctions are a vari-

ant of the auction run by Google. The auction mechanism that Yahoo used prior to

2007 can be interpreted as a special case of the Google mechanism. Varian [Var07]

uses the phrase “position auctions” to describe various variants used in the spon-

sored search domain. The paper considers an auction problem with m bidders and

K slots. Vik denotes the value that bidder i has for slot k. A key assumption in

the paper is that the bidder valuations for slots are separable i.e., the value of a

bidder for a slot can be expressed in terms of a bidder specific factor and a position

specific factor. Thus, Vik = Ui.CTRk, where Ui is the expected profit per click for

bidder i and CTRk is the click-thru rate of ad slot k. It is assumed that CTR is

a monotonically decreasing function with respect to the position i.e., the CTR at

a given position will be strictly greater than the CTR of the position below. Let

bi be the bid that bidder i places in the ad auction. Varian [Var07] first describes

an auction model where the price paid by bidder i for an allocated slot k is equal

to the bid placed by the bidder allocated slot k + 1. The paper, then, provides a

link between the symmetric Nash equilibrium prices for this auction setting and the

assignment game in which bidders can be assigned no more than one ad slot. Under

the assumption that bidder’s valuation is separable, the position auction is nothing

but a competitive equilibrium of the assignment game.

Varian [Var07] also provides an insight into the actual Google ad auction. The allo-
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cation and pricing of slots occurs in two phases. In the first phase, Google sorts the

bidders in decreasing order of their “value” to Google. Here, the value to Google is

defined as the product of advertiser’s quality score and bid. The slots are assigned

based on this ordered list. Bidders with greater value to Google will be assigned

the higher slots. In the second phase of the auction, the price paid by each bidder

is determined, conditioned on the slot allocated in the first phase. Each bidder is

expected to pay the minimum amount to retain the allocated slot. For example,

assume slot k + 1 is allocated to bidder i + 1. Bidder i + 1 has bid bi+1 and has

a quality score of ei+1. If bidder s is assigned slot k, then the price that bidder s

would pay, if a web surfer clicks on the ad, is bk+1ek+1

es
, where es is the quality score

of bidder s. Further, the paper demonstrates that the position auctions are not

incentive compatible.

Aggarwal et.al. [AGM06] independently show the lack of incentive compatibility

in sponsored search auctions. They, however, define a new auction format, called

the laddered auction, that they show is incentive compatible. Under assumption of

separability for the click-thru rate (i.e., the click-thru rate can be separated into a

bidder specific and a position specific factor), they show that their auction is revenue

equivalent to the currently used position auctions.

All search providers ask a bidder to provide a single bid associated with a keyword.

Aggarwal et.al. [AGM06] suggest that Google also uses a single bid for the respec-

tive keywords along with the expected click-thru rate at position 1. There are three

limitations of with existing sponsored search auction implementations, as well as

the research of Varian [Var07] and Aggarwal et.al. [AGM06]. The first issue is that

they do not allow bidders to express differential willingness to pay based on slot

position. In fact, this single bid that is currently obtained from the bidder makes

15



a VCG implementation suffer from an effect similar to loss of “voter-sovereignty”

[AGM06]. Secondly, it is assumed that the quality score for an advertiser is indepen-

dent of position. Lastly, the models proposed by Varian [Var07] and Aggarwal et.al.

[AGM06] assume a separable structure for bidder valuations and click-thru rates

respectively. Our model allows bidders to bid differently for the various slots and

thus, provides an option to improve rank under a VCG implementation. We, also,

provide the option to have differential quality scores for the bidders as a function

of position. Further, our model does not rely on the assumption of separability of

either the bidder valuations or the click-thru rates.

2.3 Proposed Assignment Model

In this section, we address all the limitations of the current sponsored search mod-

els described in the previous section and model closely the sponsored ad problem.

We formulate the item pricing and allocation problem from the perspective of the

auctioneer (search engine operator). The auctioneer sells K slots to the bidders and

aims to maximize its expected revenue while adhering to specified budget constraint

and individual rationality, based on declared values. The auctioneer is assumed to

have estimates for the click-thru rates (i.e. the probability that a user will click on

an ad at a specific position) based on statistical analysis of historical data. The

bidders, in turn, bid for combination of various key words at the respective slot

positions and specify their aggregate budget for the day.

The setup for our model is as follows - a user specifies the search words to the search

engine operator. The search engine operator (auctioneer) has bids and budget from

the advertisers as well as historical data that indicates the probability that the dis-

played ads will be clicked on. The bidder then solves an optimization problem to
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maximize the expected value subject to various constraints.

The click-thru rate defined above is a function of the “degree of match” and the

“position”. The degree of match is defined as the number of keywords in the bidder

defined bundle that match what is specified by a user (e.g., - if an internet user

searches for the words ‘hat coat’ and say a bidder has bid for a bundle ‘hat coat

shoes’, then the degree of match is 2). In our model, we assume that the click-thru

rates are symmetric i.e. any keyword set with the same degree of match will have

at the same click-thru rate at the respective position. For example, let us assume

that the web user specified the search term hat coat shoe. Then, in our model we

assume that the click-thru rates for the words hat and coat will be the same for a

given bidder. This assumption is not restrictive but allows us to reduce the number

of active bids in our model.

Let us assume there are m bidders and K slots (or positions). V
′k
ij denotes the value

that bidder i has for keyword bundle j at slot k. Let bi be the current budget level

of bidder i. The decision variables for the above problem are xkij ∈ {0, 1} (the allo-

cation of keyword bundle j at position k to bidder i). The estimated click-through

rate for bundle j at position k is denoted by ckj . The auctioneer’s objective is to

maximize the total expected value obtained from all the bidders.

The number of bids from each bidder in the model can also be reduced from an

exponential order to linear in the number of keywords as follows. For each degree

of match, at every position, select the maximum bid from the bidder. Thus, the

number of active bids from each bidder reduces from order K(2n−1) to Kn , where

n is the number of keywords specified by the user and K is the number of ad slots.

The index j, henceforth, is used to represent the number of keyword matches i.e.
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the degree of match. Note that the degree of match for a keyword combination

is incorporated in the estimated click-thru rate, ckj . Also, in the pre-processing

stage, for every user specified search, the auctioneer will take the current remaining

budget of bidder i into account to determine the respective input bid for any bidder

i.e. V k
ij = min{V ′kij , bi} . The auctioneer’s problem can be stated as:

max
∑
i=1..m

∑
j=1..n

∑
k=1..K

V k
ijc

k
jx

k
ij (2.1)

s.t.
∑
i=1..m

∑
j=1..n

xkij ≤ 1; for k = 1..K (2.2)∑
j=1..n

∑
k=1..K

xkij ≤ 1; for i = 1..m (2.3)

xkij ∈ {0, 1}; for i = 1..m, j = 1..n, k = 1..K (2.4)

Constraint (2.2) indicates that no slot can be allocated to more than one bidder

while constraint (2.3) indicates that no bidder can be allocated to more than one

slot. Constraints (2.2) and (2.3) together constitute a TUM matrix. In fact, the

above problem is an assignment problem where every bidder is bidding on specific

slots. For every bidder and for each slot k, find V k
i = maxj{V k

ijc
k
j} 1. The assignment

problem that the auctioneer solves is with V k
i as the value that bidder i has for slot

k and the decision variable being xki .

1if click-thru rates are not symmetric, then V k
i can be calculated over an exponential number

of bids.
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Obj = max
∑
i=1..m

∑
k=1..K

V k
i x

k
i (2.5)

s.t.
∑
i=1..m

xki ≤ 1; for k = 1..K (2.6)∑
k=1..K

xki ≤ 1; for i = 1..m (2.7)

xki ∈ {0, 1}; for i = 1..m, k = 1..K (2.8)

Thus, the auctioneer can solve a linear program to determine the allocation. Al-

ternatively, specialized algorithms like the well-known Hungarian method [Wol98]

obviate the need for using any optimization software to solve the problem. The

above method can easily be extended to settings where the click-thru rate is a func-

tion of other parameters like reputation of the bidder along with degree of match.

For example, ckj can be modeled as the product of three functions, f(i), g(j | length

of search term) and h(k). f(i) is a measure of bidder reputation for bidder i, h(k)

is an exponential decay function to measure the effect of position on click-thru

rate[FBP07] and g(j | length of search term) measures the degree of fit for keyword

j, given the search term specified by the search user.

From Leonard [Leo83], we know that we can get the VCG price and allocation for

an assignment model by solving two sequential linear programs. The first problem

to be solved would correspond to the primal assignment problem described above.

The second problem to be solved would use the dual variables ui and vk. The vk

variables will correspond to the VCG prices while ui will be the respective bidder

surpluses. The second LP is
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min
∑
k=1..K

vk (2.9)

s.t. ui + vk ≥ V k
i ; for i = 1..m, k = 1..K (2.10)∑

i=1..m

ui +
∑
k=1..K

vk = Obj (2.11)

ui, vk ≥ 0; for i = 1..m, k = 1..K (2.12)

Here Obj is the objective function value corresponding to the optimal solution to

the primal assignment problem. Note however, we can in fact, obtain the allocation

and VCG prices by solving the assignment problem using the Hungarian algorithm

[BdVSV02]. Demange et.al. [DGS86] use the Hungarian approach but increase the

price of each item in the over-demanded set by a single unit in each iteration. We

will, however, determine the price increment in each iteration using the standard

Hungarian procedure i.e., the dual variables for the assignment constraints may

change by more than a single unit.

Note that solving the assignment problem with the Hungarian algorithm provides

expected VCG payments. To find the actual amount that a bidder pays each time

her ad is clicked on, we proceed as follows: If a bidder i has been allocated slot k,

then the amount the bidder will pay is vk
ckj

; where ckj corresponds to the click-thru

rate for the bundle that maximized V k
ijc

j
k for bidder i and vk is the VCG price for

the keyword combination k.

The sponsored ad auction model we describe here is in fact equivalent to bidders

bidding in a multi-unit setting with unit demand (as the ad auctions are run repeat-

edly during the day). This naturally raises the question whether using VCG is each

round is incentive compatible. We show that, even under this multi-round setting,
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solving for the VCG outcome for every search instance is not incentive compatible

as the following theorem illustrates.

Theorem 1. For the sponsored search auction, modeled as a static game with one

round, truthful reporting of true value and budget is a dominant strategy for every

bidder under VCG mechanism. However, for multiple rounds under budget con-

straints, the VCG solution for each round does not result in truthful reporting for

the bidders.

Proof. Let us assume that the bidder’s have the same value for any slot that they

are allocated i.e. they place a single bid for all slots. We will now consider the single

stage as well as the multi-stage auction setting.

1. Single stage auction - The bidders declare their value for slots (denoted by

vi) and the budget (denoted by (bi)). The auctioneer selects those bidders

for whom the vi ≤ bi i.e., only those bidders that have sufficient budget to

participate in the auction. Thus, the budget constraint is not binding for any

of the bidders and is not relevant to the single round pricing and allocation

problem. The proof of truthfulness is identical to that for VCG.

2. Multi stage auction - Let the true value and budget of the bidders be (v1, b1)

and (v2, b2) respectively. Also, let b1 > v1 and v2 > b2. Further, we assume

v1 > v2. Assume that both the bidders bid their true values and budgets. We

shall show that one of the bidders can do better ex-post by deviating from her

true value.

For the first round, bidder 1 gets the slot and pays v2 to the auctioneer, under

the VCG scheme. Thus, the remaining budget of bidder 1 is (b1 − v2). For
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the second round, the effective bid of bidder 1 will be min{v1, (b1− v2)} while

that of bidder 2 remains v2. If v1 ≤ (b1 − v2), then bidder 1 gets the slot and

pays a price of v2. However, if v1 > (b1− v2), then the following two cases can

occur:

(a) If v2 > b1/2, then the slot is allocated to bidder 2 at a price of b1 − v2

(b) If v2 ≤ b1/2, then the slot is allocated to bidder 1 at a price of v2

Thus, we have a case corresponding to v2 > b1/2, where the price paid by the

bidder is not independent of her bid. Thus, truth-telling is not a dominant

strategy for the bidders.

Note that the theorem illustrates an extreme situation. Most search auctions in-

volve a large number of bidders, multiple keyword bundles, large number of auctions

through the day and a budget that is usually irrelevant for a particular instance or

even many multiple instances of the problem. Thus, for most practical purposes,

despite the result of Theorem 1, we believe, payments as discussed prior to Theorem

1 are appropriate.

There are two key aspects to the superiority of our proposed model over that being

used by Google, Bing and Yahoo. First, the current search platforms accept only

a single bid for the advertiser. The advertiser, thus, determines the position that

maximizes her revenue metric for the keyword combination and bids accordingly.

However, since the search platform provider doesn’t guarantee a specific position,

the advertiser could be allocated a lower position and end up paying higher than

her value for that position. Thus, the model followed by Google or Yahoo will result

in “advertiser regret”. In our implementation, since we collect and use bids for each

position that the keyword could be bid to, the advertiser doesn’t face any regret no
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matter what position the keyword combinations are slotted at.

Secondly, in the current Google implementation, the estimated click-thru rate for

the first position for each keyword combination is used to determine the order of

allocation. In our model, we use the click-thru rates at all positions to arrive at

the optimal answer and thus, are able to arrive at a superior value maximization

outcome.

2.4 Models for Multiple Slot Allocation

The current sponsored search models do not provide the bidders an opportunity to

be allocated more than one slot for a specific search instance. Search engines like

Ask currently support graphical images in their search feature. It is, thus, conceiv-

able in the future one could have a combination of text and image ads displayed

in the sponsored search results. In the recent past, various search engines such as

Google and Bing have explored options for placing search-based ads with formats

differing from the standard text ads. These graphical ads could possibly span multi-

ple slots and thus, the auctioneer would need to account for the varying dimensions

of the image while allocating space to the bidders. Here, we describe two models

for allocating sponsored search ads where the ad spans across contiguous slots.

Model 1(a)

In this model, the search engine operator can display both banner and text ads based

on the search term specified. We aim to solve the winner determination problem

when the auctioneer is intending to maximize revenue, given the bid declarations.

This model can also be used for modeling the case of displaying only text ads but

with variable length. Bidders bid for relative position and length of the displayed
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advertisement. The auctioneer aims to maximize revenue and the bidders are as-

sumed to pay only if the ads are clicked on.

Let the basic unit of available space be a slot. The number of slots is assumed to

be L. Hence, each bidder can place up to L(L + 1)/2 bids. Also, let p indicate the

package index. Each package is composed of two elements [Rp, Lp], where Rp is the

relative position of the advertisement and Lp is the length of the ad. For e.g., in a 3

slot allocation problem the number of possible packages that the bidder could place

bids on would be 6 and the package index would be as follows:

Package Index (p) Package Description [Rp, Lp]

1 [1,1]

2 [1,2]

3 [1,3]

4 [2,1]

5 [2,2]

6 [3,1]

The auctioneer wants to maximize her revenue subject to the following constraints:

1. No bidder is allocated more than one package.

2. The total length of the allocated packages cannot exceed the available space.

3. The allocation of slots is contiguous and no two allocated packages can have

the same relative position.

Decision variables for the problem are:

1. xip ∈ {0, 1}; 1, if bidder i is allocated package p; 0, otherwise

2. yp ∈ {0, 1}; 1, if package p has been allocated to any bidder; 0, otherwise
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The formulation for the problem from the auctioneer’s standpoint is :

max
∑
i=1..m

∑
p=1..P

Vipxip (2.13)

s.t.
∑
p=1..P

xip ≤ 1; for i = 1..m (2.14)∑
i=1..m

xip ≤ yp; for p = 1..P (2.15)∑
p=1..P

Lpyp ≤ L (2.16)∑
p=1..L

yp ≤ 1∑
p=2L..3L−3

yp −
∑

p=L+1..2L−1

yp ≤ 0∑
p=3L−2..4L−6

yp −
∑

p=2L..3L−3

yp ≤ 0

...and so forth (2.17)

xip, yp ∈ {0, 1}; for i = 1..m, p = 1..P (2.18)

Here, P is the total number of packages. The number of equations in (2.17) will be

equal to the number of slots available for the auction. Also, the formulation above

can further be strengthened by generating cover inequalities corresponding to the

0/1 knapsack constraint (2.16). (2.14) indicates that no bidder can be allocated

more than one package. (2.16) ensures that the length of the slots allocated doesn’t

violate the available slot length. (2.15) and (2.17) are feasibility constraints for the

allocated packages. (2.17) checks for feasibility of package allocation, while taking

the relative position of the packages into account. For example, in the three slot

auction case, we can have only one of the packages with index 1, 2 and 3 be assigned

to bidders in the optimal solution i.e. y1 + y2 + y3 ≤ 1. The relative position of the

three packages is 1 and thus, these three packages would occupy overlapping slots, if

more than one of the packages was assigned to the various bidders. (2.17) prevents
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the occurrence of this infeasible solution.

The model detailed above actually corresponds to solving an auctioneer’s problem

with exact keyword match. The Overture model (used by Yahoo prior to 2007) was

a special case of the above general model (Lp = 1 for all packages). Although the

model above doesn’t take into account the click-thru rate, one can model the same

by modifying the constants in the objective function to cipVip instead of Vip above,

where cip is the click-thru rate. The modification for click-thru gives an allocation

where the auctioneer is maximizing expected value over exact match bids only. The

current Google model would, hence, be a special case of this modified formulation

(again, Lp =1 for all packages and instead of cip, Google uses ci1).

Model 1(b) (inexact match; combinatorial bids on keywords):

The package is now defined as [Rp, Lp, (keyword combination)]. The bidder sub-

mits the bids for various packages to the proxy agent. The auctioneer, then, finds

for every feasible [Rp, Lp] combination the keyword grouping which maximizes the

cjipVip. Thus, once the auctioneer does this pre-processing, the problem effectively

reduces to that described earlier in model 1(a).

Model 2

The bidders place direct bids on the contiguous slots. The model we propose here is

the same as Model 1 but the mathematical formulation is different. If the auctioneer

has 3 slots to auction off, the possible packages that the bidders could bid on would

be
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Package Index (p) Package Description [Slots]

1 [1]

2 [2]

3 [3]

4 [1,2]

5 [2,3]

6 [1,2,3]

The package [1, 3] will not be a feasible package as the respective slots are not con-

tiguous. If the number of slots being auctioned off is L, then the maximum number

of packages that the bid on will be L(L+ 1)/2.

Let i be the bidder index, j the package index and k the index on slots. The

auctioneer’s problem can be stated as maximizing value (or expected value, as the

case maybe) subject to no package being allocated to more than one bidder and

that the overall allocation should not have overlapping slots. The decision variable

for the problem is xij, where xij is 1 if bidder i is allocated package j and is 0,

otherwise.

max
∑
i=1..m

∑
j=1..P

Vijxij (2.19)

s.t.
∑
j=1..P

xij ≤ 1; for i = 1..m (2.20)∑
i=1..m

xij ≤ 1; for j = 1..P (2.21)∑
j=1..P

akj(
∑
i

xij) ≤ 1; for k = 1..K (2.22)

xij ∈ {0, 1}; for i = 1..m, j = 1..P (2.23)

Here, P is the total number of packages. Equations (2.20) and (2.21) ensure that no
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bidder is allocated more than one package and no package is allocated to more than

one bidder. (2.22) indicates that the allocated slots are part of a feasible package.

Here, is akj a constant, which takes a value of 1, if slot k is part of package j and

0, otherwise. As discussed for Model 1, one can modify the objective function to

include click-thru rate so that the auctioneer maximizes expected revenue.

Let us define matrix, A, such that akj is an element of matrix A. A will be a

matrix with K rows and P columns, where K is the number of slots and P is

the maximum package index. For the three slot auction example, A will have the

following structure:


1 0 0 1 0 1

0 1 0 1 1 1

0 0 1 0 1 1


The constraints in the model (2.19)-(2.23) have the structure shown below:



eT

eT

eT

I I I

A A A


Here, eT is a row vector of 1’s while A is an interval matrix and therefore, TUM. In

fact, the interval matrix A is identical for each slot. The first two blocks consisting

of eT and I correspond to the constraint set (2.20)-(2.21) while the last block com-

prised of the A’s corresponds to (2.22). Notice that the various blocks are TUM.

Preliminary results with this formulation show all LP relaxations are integral. The

TUM structure of parts of the constraint matrix may offer an apparent explanation
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Table 2.1: Max weight bipartite matching (Hungarian Approach) (in secs)

Slots Bidders = 20 50 100 200 500

5 0 0 0 0.2 1.18
10 0 0 0 0 1.7
20 0 0 0 0 2.5
50 0 0 0 2.8
100 0 0.58 3.1
200 0.4 3.4
500 3.8

for this. Consequently, Model 2 is preferred over Model 1.

2.5 Computational Experiments

All of the models were tested with simulated data. The structure of the generated

data for the sponsored search assignment problem was as follows - data was gener-

ated on the bids and click-thru rates for various keyword bundle, ad slot and bidder

combination. Click-thru rates and bids varied with the degree of match and rank of

the ad according to the following rules:

1. The bid for each match decreases with position (i.e. lower the position, lower

is the willingness to pay).

2. For the same degree of match, the click-thru rate decreases with position (i.e.

reduces as we go lower down in terms of position). Also, for the same position,

the click-thru rate decreases as the degree of match reduce.

Table 2.1 shows the solution time for the ad assignment problem, solved using Hun-

garian algorithm implemented on an Intel Pentium M 1.6 GHz processor with 512

MB RAM. The algorithm was implemented in C. The time shown is the average

time over 10 randomly generated problem instances for each bidder-slot combination.
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Table 2.2: IP solution for Model 1 (in secs)

Slots Bidders = 50 100 200

5 0.06 0.5 0.34
10 0.3 0.51 1.26

Table 2.3: IP solution for Model 2 (in secs)

Slots Bidders = 50 100 200

5 0.18 0.28 0.64
10 0.66 1.21 3.27

The results show that we can, in fact, include click-thru rates, combinatorial set of

keywords and differential willingness to pay for every bidder and still arrive at an

optimal allocation almost instantaneously. This obviates the need for using heuris-

tics, which is the current industry practice.

Tables 2.2 and 2.3 show the time to determine optimal allocation for the integer

programs corresponding to the multiple slot allocation problems model 1 and 2,

respectively. The solution was obtained using OPL Studio 7.0 on an Intel Pentium

801 MHz processor with 512 MB RAM. The time shown is the average time over 5

randomly generated problem instances for each bidder-slot combination.

The results show that an additional dimension of length for the search ads can be

incorporated into the model and problem sizes typically faced by current search

operators can be solved very quickly. Adding cover inequalities as well as analysis

of the TUM structure of the constraint sub-blocks can possibly further reduce the

solution time.
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2.6 Conclusion

In this chapter, we have modeled the sponsored search problem faced by a search

provider as an assignment problem and have shown a way to calculate the VCG

prices for the same. Currently, a VCG based auction is used by Facebook for its ad

platform. Our model includes bids for the various positions for each keyword com-

bination unlike the current models where only a single bid is imputed for a specific

keyword. Further, we account for the different click-thru rates that a keyword en-

counters at various positions. These modifications help to deal with advertiser regret

in current models and also, provides a higher social value. The changes proposed in

our model, however, still allow the problem to be solved nearly instantaneously.

We, also, extend the current models to include bidding on multiple contiguous slots,

a feature not feasible in current models. This approach can be used for search adver-

tising as well be extended for an auction based framework for banner ads of different

sizes. We could, also, easily extend our modeling framework to include features such

as volume discounts and bidding language to limit competition.
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Chapter 3

Optimal Bid Determination in

Sponsored Search

In the last seven years, internet search based ads have been the fastest growing

segment in the entire advertising domain and account for nearly half of the online

advertising spend. Potential advertisers provide their valuations for various key-

words and also, specify overall budget for a period of time. The search operator,

then, solves a multi-unit allocation problem with the specified bidder values and

budgets, and determines two things - the order to place the ads and the amount to

charge the respective bidders. The advertisers, on the other hand, regularly solve a

bid determination problem for the various keywords, given their respective budgets

and other business constraints. In this chapter, we provide an optimization-based

methodology to solve the advertiser’s bid determination problem in sponsored search

auctions. We first prove some structural properties of the optimal solution in such a

setting. Finally, we consider the large scale nature of this problem, and based on the

structural properties of the optimal solution, develop an efficient solution methodol-

ogy to rapidly solve this problem. Traditional linear programming (LP) and integer

programming (IP) methods are not particularly suited for this problem as the largest
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advertisers are known to bid on close to a million keywords with shared revenue met-

rics many times in a day. Thus, even loading all the keyword data and performing

simple data manipulation tasks like numeric ordering is a computationally intensive

exercise.

3.1 Introduction

The search engines earn a large portion of their revenue by being a multi-unit, auc-

tion platform for text ad inventory. The search based advertising platforms like

Google, Yahoo, Bing etc. provide the following basic framework - firms wanting

to advertise select a set of keyword combinations to bid on. These advertisers also

specify their respective daily budgets. When a search user types a word or a set of

words in the search box, the platforms will match the user specified terms to the

keywords bid on by the firms, determine an order to display the ads in and also

determine the amount that the firm has to pay if the user clicks on the displayed

ad. This model is often called the pay-per-click (PPC) model. The match type is

selected by the firm and in general, belongs to one of the four types - broad, exact,

negative and phrase match. Bing additionally provides functionality to further fil-

ter the match based on consumer demographics. Insufficient budget for a campaign

can adversely affect the advertiser’s performance as the corresponding ads are not

displayed once the daily budget is exceeded.

The payment and allocation rules vary across various search platforms. However,

they all are variants of Google’s Adwords model. This model allocates the advertis-

ers slots based on a multiplicative function of a proxy for the click-thru rates (often

referred to as the quality score) and the advertiser’s bid. The payment rule on the

various platforms is, typically, an increment over the bid (or a function of bid and

33



quality score) of the bidder allocated the immediate lower ad position.

Given the rules and mechanisms of the search ad platforms, the advertisers face a

computationally difficult problem. The bids of the competitors for the respective

keywords are not known. Also, the number of keywords that advertisers bid on

daily varies from a few thousand for small enterprises to tens of millions for firms

like eBay and Amazon. The cost curve, revenue potential and the click-thru rate

that the advertiser faces for each keyword is an unknown function of the position

the ad is shown on. Reports available on the various platforms let the advertiser

know the daily number of times the ads corresponding to each of the keyword com-

binations were shown, the number of clicks that the ads got, the average position

where the ad was displayed and the cost per click incurred by the advertiser for

each keyword combination. Further, from analysis of the web data log files on the

advertiser’s server, the advertiser can make an estimate of the revenue generated

per ad click corresponding to each keyword combination. Once these estimates have

been determined, the firm still has to understand the performance trade-off between

the keywords, given the daily allocated budget.

The rapid growth of the search ad domain has spurred research activity in the com-

puter science, economics and operations research community specifically addressing

issues related to various sponsored ad platforms. This research has primarily been

focused on modeling the problem that search platform providers like Google and

Yahoo face. Feng et.al. [FBP07] analyze and compare different sponsored search

allocation mechanisms as well as explore the effect of total number of slots auctioned

on auctioneer revenues. Rolland & Patterson [RP03] propose an expert system to

match advertisers and web users. Lim & Tang [LT05] use a simple one-stage game

theoretic model with two bidders to study how advertisers compete for positions in a
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search engine based on their expected click-thru. Weber & Zheng [WZ07] study paid

placement strategies and find that in order to maximize revenue, the search engine

design should be based on a weighted average of relative quality performance in ad-

dition to bid amount. Varian [Var07] characterizes the Nash equilibrium of Google

sponsored auctions and also, shows that the generalized second price auction (fol-

lowed by Google and Yahoo) is not incentive compatible and is not equivalent to the

VCG mechanism. Aggarwal et.al. [AGM06] independently show the lack of truth

telling as a dominant strategy for these auctions and develop a truthful mechanism

called the ladder auction.

Although there have been a few papers addressing the problem faced by the search

provider, there is very limited research into the problem faced by the advertisers.

To our knowledge, there are only four papers of note that have attempted to address

issues that the search advertisers face. Kitts & Leblanc [KL04] provide an overview

of the various problems that the advertiser faces. They discuss the bid determina-

tion formulation as well as parameters that need to be estimated to solve the bid

determination problem. However, they do not describe solution methods or solu-

tion algorithms. Rusmevichientong & Williamson [RW06] formulate the keyword

selection problem that advertisers face. They first formulate the problem assuming

knowledge about the click-thru rates for various keywords. The paper develops a

link with the stochastic knapsack problem for the static case and uses that as a

baseline to provide an adaptive algorithm when the click-thru probabilities are un-

known. The authors do not consider multiple positions for the keyword and thus,

are not able to capture the trade-off that occurs between keywords at various po-

sitions. Ghose & Yang [GY08] model the relationship between the click-thru rate,

conversion rate and bid with variables such as as position, keyword length and in-

formation specificity (brand terms v/s retailer specific terms). They show that the

35



revenue potential of keywords varies significantly when compared to each other.

Further, they demonstrate a strong impact of the position attained by the keyword

on observed revenue. Thus, the paper makes a strong case for using optimization

techniques to determine optimal bids, although the authors do not address this is-

sue in their paper. Feldman et.al. [FMPS07] discuss a simple heuristic based on

randomization between two uniform bid strategies that advertisers can use to bid

on keywords. The authors assume that the advertiser has flexible daily budgets and

the auction market is static. The heuristic has the same bid for all keywords and

adjusts budgets for the following day based on prior days overspend/ underspend.

To the best of our knowledge, this is the first time that (i) the structural aspects of

the search advertiser’s problem have been studied, and (ii) a solution algorithm to

solve large-scale versions (i.e., of real-world size) of this problem has been provided.

Given the novelty of sponsored search, there is a critical need for research tools

and techniques that support advertisers in their efforts to bid optimally in search

auctions. The methods described in following sections fill this academic and practical

need.

3.2 Problem Formulation & Model Description

The popular sponsored search auctions (Google, Yahoo, Bing, Ask etc.) are, typ-

ically, next-price auctions. The advertiser determines the set of keyword combi-

nations that she believes are related to her business and will generate the desired

traffic. The advertiser then determines the amount of money that she is going to

spend each day on the advertising campaign. Also, for each keyword combination

selected, the advertiser has to place a bid. This bid determines the position that

the ad will be placed in, whenever there is a search user who specifies the keyword
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combination. Each of the platform providers have their own proprietary method for

determining the order of ad placement. However, although the systems are like a

black-box for the advertiser, she can use her own historical data, along with aggre-

gate historical data, to determine the various revenue and cost parameters.

The problem that the advertiser solves is of revenue maximization. We could model

the objective as profit maximization too, by comparing the revenue generated by a

click to the cost of the click. However, it appears that in the industry advertisers

typically have specified budgets to spend and do not have utility for any unspent

amount. Based on the past data, it is reasonable to believe the advertiser has

available the estimated expected cost and the expected revenue or benefit for a

keyword at the various positions. This may be obtained by experimentation. Please

note that for all future discussions in this chapter the words keyword and keyword

combination can be used interchangeably. Let the keywords the advertiser has

selected to be bid for be denoted by i. Also, let posi be the position that the keyword

is bid to, B be the advertiser’s daily budget and bidi be the bid for keyword i. bidi is

the decision variable for the advertiser. The advertiser has to estimate the following

functions -

1. posi = f(bidi)⇒ estimated position for keyword i when placing a bid of bidi

2. clicki = g(i, posi) ⇒ estimated daily clicks for the keyword combination i, if

allocated position posi

3. revi = h(i, posi) ⇒ estimated average revenue per click for keyword i if allo-

cated to position posi

4. cpci = l(i, posi) ⇒ estimated cost per click (CPC) for keyword i if allocated

to position posi

37



The problem that the advertiser, thus, seeks to solve is -

max
∑
i=1..I

revi.clicki (3.1)

s.t.
∑
i=1..I

cpci.clicki ≤ B (3.2)

bidi ≥ bidi,min (3.3)

Here bidi,min is the minimum bid required for a keyword to participate in any auction

on a search engine.

We now show below how the above problem is reformulated as an integer program.

The input data to the IP model is -

1. Rij - expected total revenue for keyword i at position j. This value is ob-

tained by multiplying the revenue per click obtained at the various positions

to the number of clicks that the keyword combination attracts at the respective

positions.

2. Cij - expected total cost for keyword i at position j. This value is obtained

by multiplying the cost per click obtained at the various positions (available

through the reports provided by Google, Bing, Yahoo etc.) to the number of

clicks that the keyword combination attracts at the respective positions.

3. B - budget for the advertiser

The decision variable for the advertiser is the position that she should bid each

keyword to. Once we know what position we should bid a keyword to, we can find

out the related bid as we assume that we know the cost landscape (i.e. once we know

the cost per click (CPC) for keyword i at some position j, then we need to bid a

small increment over the CPC to get that position). Thus, the decision variable is

-
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xij, where xij = 1, if keyword i is allocated to position j and is 0, otherwise. Also,

x0j denotes a slack variable that takes a value 1, if the optimization model decides

not to bid for the keyword i.e. chooses position 0. The corresponding total revenue

and total cost for position 0 are Ri0 and Ci0, both of which equal zero.

The optimization problem that the advertiser solves (IPOPT ) is -

max
∑
i=1..n

∑
j=0..m

Rijxij (3.4)

s.t.
∑
j=0..m

xij = 1; for i = 1..n (3.5)∑
i=1..n

∑
j=0..m

Cijxij ≤ B (3.6)

xij ∈ {0, 1}; for i = 1..n, j = 0..m (3.7)

Proposition 1. IPOPT is NP-complete

Proof. If j = 1 i.e. only one slot is available for bidding, then IPOPT reduces to

the knapsack problem. Thus, it is NP-complete.

Proposition 2. The LP relaxation of IPOPT can have no more than two fractional

xij. Further, the fractional allocation corresponds to one keyword combination.

Proof. The optimal solution to the LP relaxation of IPOPT is a basic feasible

solution and hence, can have upto n+1 of the xij variables as non-zero, as there are

n+ 1 rows in the formulation. Due to the equality sign in the first set of constraints

in IPOPT , the separable nature of these constraints will result in every constraint

having at least one xij greater than zero. Thus, for the first set of constraints to be

satisfied, either n of the xij variables will be greater than zero or n + 1 of the xij

variables will be greater than zero. Hence, there are only three possibilities for the

optimal solution to the LP relaxation - n of the xij variables equal 1, n − 1 of the

xij variables equal 1 and two xij are fractional (with one being a slack variable) or
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n− 1 of the xij variables equal 1 and two xij variables are fractional, while adding

upto 1.

For an advertiser bidding on any of the platforms (Google, Yahoo, Bing, Ask etc.),

the following assumptions are observed to be true -

1. Number of clicks increase as we move to a higher position

2. Cost per click at a higher position is never lower than that at a lower position,

for a given keyword. Thus, total expected cost increases at higher positions

3. Total revenue increases with position; thus, providing an incentive for the

advertisers to bid for higher slots.

Theorem 2. For every keyword combination i, find the convex hull of the (Rij, Cij)

pairs. Any (Rij, Cij) pair not on the convex hull will not be in the optimal solution

to the LP relaxation of IPOPT .

Proof. Suppose that xij > 0 in the optimal solution for some (i, j) tuple, for which

(Rij, Cij) is not part of the upper convex hull. Then -

Ri,j+1 −Rij

Ci,j+1 − Cij
>
Rij −Ri,j−1

Cij − Ci,j−1

Since xij is part of the optimal solution for the relaxed problem, the objective

function value is OPT =
∑
ij

Rijx
?
ij =

∑
i′ 6=i,j′ 6=j

Ri′j′x
?
i′j′ +Rijx

?
ij Now consider xi,j−1

and xi,j+1 and write a new solution as

x̂i,j+1 = x∗i,j+1 +
(

Cij−Ci,j−1

Ci,j+1−Ci,j−1

)
x∗ij

&

x̂i,j−1 = x∗i,j−1 +
(

Ci,j+1−Cij

Ci,j+1−Ci,j−1

)
x∗ij

Set x̂i,j = 0. Also, all other x̂i,j = x∗ij

Observe, since
∑
j

xij ≤ 1 and
(

Cij−Ci,j−1

Ci,j+1−Ci,j−1

)
x∗ij +

(
Ci,j+1−Cij

Ci,j+1−Ci,j−1

)
x∗ij = Cijx

∗
ij the

new solution will be feasible for the original relaxed problem. Let New OPT denote
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the objective function value of x̂. Then New OPT =∑
ij

Rijx̂ij =
∑

i′ 6=i,j′ 6=j

Ri′j′x
∗
i′j′ +Ri,j−1

(
Ci,j+1 − Cij
Ci,j+1 − Ci,j−1

)
x∗ij +Ri,j+1

(
Cij − Ci,j−1

Ci,j+1 − Ci,j−1

)
x∗ij

Thus,

New OPT −OPT =

(
Ri,j−1

Ci,j+1 − Ci,j
Ci,j+1 − Ci,j−1

+Ri,j+1
Cij − Ci,j−1

Ci,j+1 − Ci,j−1

−Rij

)
x∗ij

=

(
(Ri,j+1 −Ri,j−1)Cij − Ci,j+1(Rij −Ri,j−1)− Ci,j−1(Ri,j+1 −Rij)

Ci,j+1 − Cij

)
x∗ij

But from assumption about the slope at j, we have

Ri,j+1 −Rij

Ci,j+1 − Cij
>
Rij −Ri,j−1

Cij − Ci,j−1

i.e.(Ri,j+1 −Ri,j−1)Cij − Ci,j+1(Rij −Ri,j−1)− Ci,j−1(Ri,j+1 −Rij)Ci,j+1 ≥ 0

Thus, New OPT > OPT and hence, xij > 0 cannot be part of the optimal solution.

In other words, for every keyword combination i, only those (Rij, Cij) pairs that are

on the upper convex hull can be part of the optimal solution.

The (Rij, Cij) pairs are in a plane and the plot is monotonically non-decreasing.

We use the following algorithm to determine the convex hull for each keyword.

Algorithm 1 (Convex Hull Algorithm for a Keyword).

1. For the keyword i, initialize variables newj to 0 and convex list to {}.

2. Find the slopes (i.e.
Rij−Ri,newj

Cij−Ci,newj
) from newj to all other j′s for keyword i, such

that j > newj.

3. Determine the j with the highest slope. This j lies on the convex hull.

4. Update newj ← j and convex list← convex list ∪ {j}.
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Figure 3.1: Convex Hull for a Keyword.

5. If newj is not the highest j available for the given i, then GO TO Step 2. Else

STOP.

Figure 3.1 illustrates the convex hull that we calculate for each keyword. Note

that in the following sections, any reference to position corresponds to only relevant

positions i.e. positions for the keyword that lie on the convex hull described above.

Thus, all the indices for position would be referring only to the points on the convex

hull. Further, index 0 corresponds to the origin.

3.3 Algorithm to solve LP relaxation

From proposition 1, we know that the advertiser’s problem is computationally dif-

ficult. Based on proposition 2 we can now develop an algorithm to solve the LP

relaxation of IPOPT and get a solution where only one keyword combination will

have a fractional allocation. The intuition for the algorithm to solve the LP re-

laxation to optimality is as follows - allocate the keyword combinations to various

relevant positions greedily. Specifically, order the keyword-position pairs by their

descending bang−for−buck ratios. Keep on allocating the keywords in order till the

allocation results in the budget constraint either being exactly matched or exceeded.

If the keyword allocation that results in the budget constraint being violated has
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been already allocated to a certain position, then take a convex combination of the

allocations to the current and previous allocation such that the budget constraint

is satisfied. This final allocation will correspond to the fractional component in the

optimal solution. The steps below formally describe the algorithm and solve the LP

relaxation of the advertiser’s problem to optimality.

Algorithm 2 (LP Optimal Algorithm).

1. Initialize list to blank (the list has a structure [Rij Cij flagij]). For each

keyword i, find (Rij, Cij) pairs that lie on the convex hull of the Rij v/s Cij

plot and add to the list. Initially, all flagij are set to zero. Also, i varies

between 1 to n and j varies between 0 to m (0 is a dummy slot corresponding

to no bid ).

2. Take all the entries in the list obtained above and order the list by decreas-

ing
∆Rij

∆Cij
, where

∆Rij

∆Cij
=

Rij−Ri,j−1

Cij−Ci,j−1
; Also, set Bnew = current available budget

(initially, set to B).

3. Let xi0 = 1 for all i (i.e. initially, each keyword is allocated to the dummy

slot). Set all flagi0 to 1.

4. Select the highest
∆Rij

∆Cij
from the list that have flagij set to 0. If none exists,

then STOP

5. Let π = Bnew

∆Cij
. If π < 1, then set xij to π, xi,j−1 to (1− π) and STOP. Else set

xij to 1 and xi,j−1 to 0.

6. Set flagij to 1, for the current i and j.

7. GO TO Step 4.
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Proof. Here we provide a proof of optimality for the above algorithm. Let l be

the last keyword assigned (to a position other than slot 0) before the budget is

exhausted (i.e. the keyword under consideration in Step 5 when the algorithm ter-

minates). The position that l is assigned is j. Also, let A be the set of keywords

that are assigned to some position other than 0, i.e. xi0 6= 1 for i ∈ A and let A be

the set of keywords which at the termination of the algorithm are still assigned to

slot 0 i.e. xi0 = 1 for i ∈ A.

The dual of the advertiser’s problem (3.4)-(3.7) can be written as -

min By +
∑
i=1..n

λi

s.t. Cijy + λi ≥ Rij ∀i, j

y, λi ≥ 0

We construct a dual solution as follow. Let y =
∆Rlj

∆Clj
=

Rlj−Rl,j−1

Clj−Cl,j−1
, λl = Rlj − Cljy.

Also, let λi = Rij − Cijy for iεA, where j is the position that i has been bid to

at the termination of our algorithm. For iεA, λi = 0. Now, to prove optimality of

our algorithm, we will have to show primal feasibility, feasibility of the dual values

described above and complementary slackness of the primal and dual solutions.

1. Primal feasibility - by construction of the algorithm

2. Dual Feasibility - For iεA, λi = 0. Thus, we need to show that Cijy ≥ Rij.

Now, for j = 0, this holds trivially. For j 6= 0, since keyword l was selected

at termination before any iεA, by the ordering in our algorithm
∆Rlj

∆Clj
≥ ∆Rij′

∆Cij′
,

where iεA and j′ = 1..m. From convexity of (Rij, Cij) we know that

(a)
Ri1 −Ri0

Ci1 − Ci0
>
Ri2 −Ri0

Ci2 − Ci0
> ... >

Rim −Ri0

Cim − Ci0

(b)
Ri1 −Ri0

Ci1 − Ci0
>
Ri2 −Ri1

Ci2 − Ci1
> ... >

Rim −Ri,m−1

Cim − Ci,m−1
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(c)
Rij −Ri0

Cij − Ci0
>
Rij −Ri,j−1

Cij − Ci,j−1

;∀i, j

Now, Ri0 = Ci0 = 0. Hence, using the ordering of our algorithm along with

the convexity property, we have y =
∆Rlj

∆Clj
≥ ∆Rij′

∆Cij′
i.e. y ≥ Rij′

Cij′
∀iεA and

j′ = 1..m. Thus, dual feasible.

3. Complementary slackness - To show

(a) y(B −
∑
ij

Cijxij) = 0 ⇒ is true by the construction of our algorithm as

we terminate when we hit the budget constraint i.e. B −
∑
ij

Cijxij = 0.

(b) λi(1 −
∑
j

xij) = 0 ⇒ For iεA, λi = 0. For iεA,
∑

j xij = 1 (by the

algorithm). For i = l, we will have two cases - either xi1 > 0 or there

exists two xij that are fractional and add upto 1. In the first case, λl = 0

by our definition while in the second case
∑
j=0..m

xlj = 1

(c) xij(Cijy + λi − Rij) = 0 ⇒ For iεA, xij = 0. For i = l, λl = Rlj − Cljy.

Now for iεA, let j be the position to which i is bid. By our algorithm,

xij = 0 for j 6= j. For j = j, λi = Rij − Cijy. Hence, all complementary

slackness conditions are satisfied.

In Sinha & Zoltners [SZ79], a multiple choice knapsack problem is defined as follows

-

45



min
∑
k=1..m

∑
jεNk

ckjxkj (3.8)

s.t.
∑
k=1..m

∑
jεNk

akjxkj ≥ B (3.9)∑
jεNk

xkj = 1 (3.10)

xkj ≥ 0, integer (3.11)

Here, the coefficients ckj and akj are non-negative and Nk is the set of multiple

choice classes that are mutually exclusive. The authors describe the applicability of

the above formulation to problems in capital budgeting, menu planning and system

design for reliability. The paper discusses an algorithm to solve the LP relaxation of

the above problem. The sponsored search problem can be mapped to the multiple

choice knapsack problem as follows - the coefficient ckj is similar to Rij, akj to Cij

and the choice class Nk correspond to the various positions that we are bidding

to. Also, the objective function changes to a maximization function instead to the

minimization objective in the above definition. The algorithm detailed by Sinha

& Zoltners [SZ79] is similar to the one described earlier for the sponsored search

problem. However, our proof of optimality is more direct and quite different from

that in Sinha & Zoltners [SZ79].

Zemel [Zem84] and Dyer [Dye84] independently provide an O(n) algorithm to solve

the LP corresponding to the multiple-choice knapsack problem. Both papers use

the convexity property of the dual function and a partitioning approach to arrive at

an optimal solution. Pisinger [Pis95] uses an expanding core approach to determine

the set of solution points that have a high probability of yielding an optimal answer

for the IP.
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3.4 Column Generation Approach

The bidding problem that the advertisers solve daily is very large. Typically, for

medium to large sized advertiser the number of keywords that they bid on daily

can vary from tens of thousands to about a million. The largest advertisers in the

search domain like eBay and Amazon are rumored to place bids on millions of key-

words everyday. However, the largest keyword groups that share a common set of

revenue metrics, budget target and objective function is of the order of a few hun-

dred thousand. Hence, solving the LP relaxation of the problem may itself be an

insurmountable task. The huge number of variables and constraints involved, along

with the natural decomposible structure of the advertiser’s problem, necessitates

the need for a column generation approach to solve the LP relaxation as well as

embedding it within a branch-and-bound algorithm to solve the IP.

To solve the advertiser’s optimal bid determination problem using column genera-

tion, we will use the following propositions.

Proposition 3. Let A be the set of keywords which have columns corresponding

to all their possible positions included in our consideration set. For a keyword iεA

allocated to a given position ‘j’ in the current iteration, the keyword can never be

allocated to a position higher than ‘j’ in any future iteration. Thus, these columns

can be removed from further consideration. As a consequence, for a given keyword

iεA, any keyword not allocated to a position 1 to m in the current iteration will

never be part of the final optimal solution and thus, can be deleted from the problem.

Proof. Let some iεA, where i is a keyword with all its columns added in some

prior iteration, be allocated to position j in current iteration. Thus, by our LP
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optimal algorithm, i was allocated to some position 1,2, .., j − 1 in some previous

iterations. In the current optimal solution keyword i is allocated to position j,

implying
Ri,j+1−Rij

Ci,j+1−Cij
≥ ∆Rlj

∆Clj
, where l is the last keyword allocated by our algorithm

to some position j. The entering variable for the next iteration will have columns

with bang-for-buck greater than
∆Rlj

∆Clj
. This new keyword, using our LP optimal

algorithm will either be considered for allocation to a position before keyword i

or after keyword i. If this new keyword is allocated before i, then the remaining

budget when determining the position that i will be allocated to is less than that

of the previous iteration. Thus, i cannot be allocated to a higher position than

last iteration. If the new keyword is allocated after i, then the remaining budget

when i is allocated is the same as the last iteration. Since, in the last iteration the

keyword i was optimally determined to be allocated to position j with the given

remaining budget, the allocation will remain optimal in the current iteration too.

Thus, positions j + 1 to m can never be part of the optimal solution in any future

iteration and can be removed.

Proposition 4. Let yk be the dual value of the budget constraint in the optimal

solution obtained in the kth iteration of the column generation approach. yk is a

monotonically non-decreasing function with respect to ‘k’.

Proof. From our proof of optimality for the LP optimal algorithm earlier, we know

yk =
∆Rlj

∆Clj
, where l is the last keyword allocated to some position j. In iteration k+1,

some new keyword i, with its corresponding columns, is part of the consideration

set. Thus, at least one of the
∆Rij

∆Cij
is greater than

∆Rlj

∆Clj
. Now using our LP optimal

algorithm to solve for optimality in iteration k + 1, we can have two options -

1. The last keyword assigned in iteration k + 1 before the budget runs out is

still l. This allocation will happen at position j (same as iteration k) or lower

as the amount of budget available to l in iteration k + 1 is now less than
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that available in k. Hence, according to our algorithm, it will be assigned to

position j or one of the lower positions (i.e. higher slope than
∆Rlj

∆Clj
) Thus,

yk+1 =
∆Rlj

∆Clj
≥ ∆Rlj

∆Clj
, where j ≤ j.

2. The budget, based on our algorithm, gets exhausted before we reach keyword

l. Hence, the last keyword assigned in the k + 1th iteration optimal solution

has
∆Rnew,j

∆Cnew,j
≥ ∆Rlj

∆Clj
, where new is the last keyword assigned to position j in

current iteration. Thus, yk+1 =
∆Rnew,j

∆Cnew,j
>

∆Rlj

∆Clj
= yk

Proposition 5. If Ri1

Ci1
≤ y for some iεA, then the reduced cost for all j for the given

i will be less than or equal to zero.

Proof. Reduced cost for i at position j = RCij = Rij − yCij − λi. Now, RCij −

RCi1 = (Rij − yCij − λi) − (Ri1 − yCi1 − λi) = (Rij − Ri1) − y(Cij − Ci1). Thus,

RCij −RCi1
Cij − Ci1

=
Rij −Ri1

Cij − Ci1
− y. But from our assumptions we know, Cij > Ci1 and

Rij > Ri1. Also, from convexity property, we have
Rij−Ri1

Cij−Ci1
≤ Ri1

Ci1
. Now, y ≥ Ri1

Ci1
.

Thus, y ≥ Rij−Ri1

Cij−Ci1
and hence, RCij − RCi1 ≤ 0. Note that RCi1 = Ri1 −

∆Rlj

∆Clj
Ci1

as λi = 0 (iεA). Since, by our assumption, y =
∆Rlj

∆Clj
≥ Ri1

Ci1
, we have RCi1 ≤ 0 and

thus, RCij ≤ 0

Proposition 6. If the reduced cost of keyword ‘i’ (iεA) at position ‘j’ is positive,

then the reduced cost of the keyword ‘i’ at position 1 will also be positive.

Proof. The reduced cost at position j = Rij − yCij − λi, which is given as greater

than zero. For iεA, λi = 0. Thus,
Rij

Cij
> y. The reduced cost at position 1 for i is

RCi1 = Ri1 − yCi1. Thus, RCi1

Ci1
= Ri1

Ci1
− y. But from the convexity assumption, we

have Ri1

Ci1
>

Rij

Cij
;∀j > 1. Hence, RCi1 is positive.
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The column generation method for solving the advertiser’s problem would involve

the following approach - start by including a small set of keywords (randomly cho-

sen) and the respective relevant positions that these keywords could be bid to. Using

propositions (3) to (6), in each iteration we add a certain number of keywords and

respective columns from the set of keywords not under consideration. Also, we

remove certain keywords or a subset of columns for keywords under current consid-

eration based on the same set of propositions. Then using algorithm 2, we solve the

current set of columns to optimality and check for feasible entering keywords in the

next iteration. The algorithm terminates when no new keyword can be found to

enter the set of columns under consideration.

The column generation algorithm to solve the LP relaxation is as follows -

Algorithm 3 (LP Column Generation).

1. Select a set of keywords, A, and add corresponding columns at every posi-

tion such that the budget, B, will be completely used in the current optimal

solution. From the remaining set of keywords, A, for each keyword add the

column corresponding to the dummy position 0.

2. Solve the restricted LP master ⇒ Use the LP optimal algorithm described

earlier to solve the LP master to optimality. This will give us the optimal so-

lution to the current set of columns. Also, let the dual variables corresponding

to the budget constraint and allocation constraints be y and λi respectively.

y =
∆Rlj

∆Clj
, where l is the last keyword assigned to some position j before ex-

hausting the budget. Also, λi = Rij − Cijy, if xij = 1 and iεA in the current

optimal solution; otherwise λi = 0.

3. Remove the columns corresponding to iεA that follow proposition 3
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4. Discard all iεA that have Ri1

Ci1
< yk, where k is the current iteration (follows

from propositions 4 and 5).

5. To determine the entering keyword (and its associated columns), findmax{Ri1

Ci1
},

where iεA. Note - although this will be the entering keyword, we may not se-

lect the keyword corresponding to max{Rij

Cij
}, where j = 1..m and iεA

6. STOP if no column has positive reduced cost (or if within certain pre-determined

bounds). Else, GO TO step 2

Note that we need not calculate the convex hull of the keywords that will enter

the consideration set in an iteration. We just need to find the max{Rij

Cij
} for the

respective i to figure out the first relevant position on the convex hull. Solving the

LP relaxation using column generation approach may not terminate in an optimal

solution that is integral. We can, however, use the bounds obtained while solving

the restricted LP to solve for the IP.

The branching scheme that we propose would be on the original allocation variables

xij for the keyword i with fractional allocation between positions j and j + 1 i.e.,

the branching is of the form (A)
∑

k=j+1..m

xik = 0 and (B)
∑

k=j+1..m

xik = 1. A key point

to note is that our proposed branching scheme preserves the structure of the LP

column generation algorithm. Also to note is that points not on the convex hull can

be part of the optimal IP solution. For e.g., let us consider a bidder with a budget of

$2.5 and a single keyword to bid upon. Further, assume the bidder’s expected cost

and revenue at positions 1, 2 and 3 are ($3,$6), ($2,$1.5) and ($1,$1) respectively.

Position 2 does not lie on the convex hull. However, if we determine the optimal

solution to the integer program, the bidder would select position 2 (i.e., select a

point that is not on the convex hull).
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We now briefly discuss the LP column generation as applied to the two branches

(A)
∑

k=j+1..m

xik = 0 and (B)
∑

k=j+1..m

xik = 1. On branch (A), we need to find all

points not lying on the upper convex hull between xij and xi,j+1. Let there be p

such points. Note that xi,j+1 is not included in these p points. To apply our LP col-

umn generation procedure we need to compute (i.e., add to our existing points) the

upper convex hull starting at xij along with these p points and add the associated

variables. Also, delete the variables/ columns associated with the variables set to

zero on branch (A).

On branch (B), we necessarily spend at least Ci,j+1. Thus, we reduce the budget

by Ci,j+1 (i.e., B ← B −Ci,j+1 and solve the problem (using LP column generation

and sorting)) starting at point j + 1 on the upper convex hull. Notice that no new

points are added to the upper convex hull on branch (B).

3.5 Computational Results

We ran the LP, LP column generation and IP column generation on problems of

different sizes. Cost and revenue data was generated for each keyword-position

combination from a uniform distribution. Further, monotonicity in both cost and

revenue values was maintained with respect to position (i.e. the expected revenue

and cost at a higher position was higher than that of a lower one). The assumption

of monotonicity is in-line with the empirical results and observations in Feng et.al.

[FBP07]. For e.g. - for a given keyword, the cost and revenue at the lowest position

that we model for will be drawn from U[0,n]. Suppose the realization for cost is x.

Then, the cost for the next higher position will be drawn from U[x,x + n]. Rev-

enue values for each keyword-position combination are also generated by a similar

approach. Note that for large advertisers, a small subset of keywords contribute a
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large part of the revenue. The expected revenue for most keywords at the various

positions modeled for is negligible. However, in the revenue data we generated, the

revenue distribution was not skewed. Thus, from a computational standpoint, the

problem we solve is more difficult than the datasets in real-world.

The size of the problems that we ran the various algorithms on are typical of what

advertisers face in the sponsored search space. The largest advertisers in the spon-

sored search domain bid on tens of millions of keywords daily. However, the largest

keyword groups that share a common set of revenue metrics and budget targets

is of a smaller order. Based on keyword groups that share similar revenue objec-

tives, more than 99% of such keyword groupings have problem sizes from a few

hundred to about a few hundred thousand keywords. Thus, our results are rep-

resentative of the performance expectations that we can achieve solving real-world

sponsored search problems. We are unable to solve for small sized SEM problems

(e.g. 10,000 keywords at 30 positions) using OPL since the revenue and cost data

for each keyword-position combination has to be uploaded into memory at the same

time and thus, there doesn’t exist sufficient system memory to solve the problem.

The number of variables in the problem instances that we solved for range from

30,000 to 24 million. The corresponding number of constraints were between 1001

and 800,001. Table 3.1 indicates the size of the problems that we run our algorithms

against. Note that the column generation algorithms have an additional parameter

which provides the option of specifying the number of columns that can be added

in each iteration.

The results indicate the time to solve the problem optimally, averaged over five

problem instances. Further, the number of positions that we generated revenue and

cost data for each keyword was thirty. The algorithms were implemented on a 3 GB
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Table 3.1: Problem Dimension
Keywords Bid Levels # Variables # Constraints

1000 30 30,000 1001
10000 30 300,000 10001
50000 30 1.5 million 50001
100000 30 3 million 100001
250000 30 7.5 million 250001
500000 30 15 million 500001
800000 30 24 million 800001

Table 3.2: Computational Time for Algorithms (in secs)

Keywords Algo = LP LPCG B&P(multi) B&P(single)

1000 0.263 0.345 0.957 (10) 0.3567
10000 7.56 4.58 15.523 (10) 12.1
50000 171.02 46.94 143.5 (10) 218.16
100000 667.44 188.96 713.87 (20) 1029.75
250000 4041.44 1187.02 4628.72 (25) Unable to solve
500000 Unable to solve 7231.33 67020.21 (50) Unable to solve
800000 Unable to solve 31802.21 Unable to solve Unable to solve

RAM, 32 bit machine with a 3-GHZ Intel Pentium processor speed. The code was

implemented in Python on a Linux environment. The results are shown in Table 3.2.

The numbers in the bracket refer to the parameter that controls the number of

columns added in one iteration (i.e., number of columns added in each iteration <=

number of keywords/number of iterations).

The results in Table 3.2 indicate that we are able to solve for medium sized problems

(upto 250,000 keywords) using the LP approach. However, for larger problems, the

LP approach does not work since loading the parameters associated with all the

decision variables into RAM along with ordering the list of keyword-position tuples

by diminishing marginal values takes a long time. This occurs due to swapping of

data between RAM and the system hard disk since the RAM does not have sufficient
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space to accommodate all the data. In such instances, the LP column generation

approach can be used to determine the optimal solution. For the same system spec-

ification, we are able to solve for problem sizes that are at least three times larger

(800,000 keywords) than ones we can address using the LP technique. We have,

thus, demonstrated two approaches to solve the linear relaxation problem for prob-

lem sizes that are significantly larger than the ones that can be be solved by OPL.

We also demonstrate the use of the Branch & Price method to solve the IP formu-

lation for medium to large sized problems (100,000 to 500,000 keyword problems).

Again, we are able to solve for problem instances in the integer programming case

that are larger by an order of magnitude than the ones that can be solved by OPL.

In the advertising campaigns that are run by large online advertisers, no single key-

word contributes to a significant part of revenues or cost when measured across all

keywords. Since no more than one keyword can have a non-integral allocation in

the optimal solution to the LP relaxation of the original problem, we can follow a

randomization strategy to determine a feasible integral solution from the LP relax-

ation solution. We could pick one of the two positions with a certain probability for

the keyword with non-integral solution and have an integral solution. Due to the

relative insignificance of a single keyword for an advertiser, we would expect this

randomization strategy to arrive at an integral solution that gives us an expected

revenue very close to that of the IP optimal solution while ensuring that the spend

is close to the targeted budget. An example of a randomization strategy would be

to select position j with probability π and position j− 1 with a probability of 1−π

(refer to Step 5 in Algorithm 2 for the definition of π).

Advertisers may have hard budget constraints for a period of time (e.g., for a month
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or a quarter) but typically are willing to accept small variations in daily budget spent

on advertising. The randomization strategy that we propose could result in slight

overspend or underspend on a daily basis. However, we would not be, in expectation,

violating the hard budget constraint that is specified over the longer time period.

In case the advertiser has a hard budget constraint on a daily basis, instead of

randomizing over positions j − 1 and j for the keyword with fractional allocation,

we would just pick position j− 1 and not exceed the daily budget constraint. Thus,

we could use the LP column generation approach to produce near-integral solution

for very large problem instances and come up with an integral solution that is

close to optimal by either a randomization strategy on the keyword with fractional

allocation variables or with a deterministic approach when faced with a hard budget

constraint. We would be able to solve for problems larger in size than those that we

address using the Branch & Price framework.

3.6 Conclusion

In this chapter, we have modeled the sponsored search problem from the adver-

tiser’s standpoint as a multiple choice knapsack problem and have shown that the

optimal solution will have no more than one keyword with a fractional allocation in

the optimal solution. Further, we develop a LP column generation approach and a

Branch & Price method to deal with the huge number of variables that medium to

large advertisers face.

The result show that it is possible to solve very large SEM problems using column

generation approaches on a single machine with modest specifications. Further, the

constraint structure of the problem, along with the fact that no single keyword con-

tributes to a significant portion of the revenue, supports using LP column generation
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to arrive at a very good approximation to the optimal integer solution. Thus, the

problem formulation and algorithms described in this paper can be used in a real

business context by advertising agencies, SEMs and large advertisers to successfully

come up with bids for the largest of campaigns that they manage.

57



Chapter 4

A Benders Approach to Solve

Budget Constrained Auctions

Combinatorial auctions are an increasingly popular method used for allocation and

pricing in various business transactions. Over the last few years, availability of com-

putation power has resulted in the successful development of combinatorial auctions

in the fields of procurement, supply chain coordination, transportation services,

wireless bandwidth allocation and internet search. Although, the auctions have an

underlying budget constraint, nearly all the auction applications ignore this con-

straint to make the problem computationally tractable and have an allocation and

price that follows incentive compatibility. In this chapter, we consider the case of a

budget constrained auction and attempt to develop a method to provide a compu-

tationally efficient solution using the decomposible structure of the problem.

4.1 Introduction

In the previous two chapters, we discussed an application of combinatorial auc-

tions to the sponsored search space. We further described computational issues and

economic properties that arise due to hard budget constraints, which need to be
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accounted for by the auctioneer as well as the bidders. Besides the sponsored search

space, combinatorial auctions have been an active area of research for applications

to domains such as supply chain planning and coordination, resource procurement,

allocating public goods like wireless spectrum auctions, treasury market, network

resource allocation and electricity pricing. Most of the academic literature as well

as real world implementations do not take the hard budget constraints faced by par-

ticipants into account. There is an implicit assumption that the participants have

some budget constraints, but it is typically assumed that the bidders have accounted

for these constraints in their bids. Thus, the auctioneer need not explicitly model

the budget constraint in the allocation and pricing problem that she seeks to solve.

Elmaghraby & Keskinocak [EK03] discuss the application of combinatorial auctions

to procurement of transportation services at Home Depot. The paper describes the

bidding mechanism developed at Home Depot to allow carriers to bid on various

lanes based on the network structure and demand at various nodes. The savings at

Home Depot by using combinatorial auctions is estimated to be in millions of dollars.

Bichler et. al.[BDHK06] provide details about the various features of a combina-

torial auction in an industrial procurement framework. It is estimated that nearly

40% of firms that spend more than $100 million a year use auction mechanisms

for procurement. Although it is difficult to obtain details about specific auctions in

use, due to the proprietary nature of various implementations, the paper provides an

insight into a combinatorial auction implementation at Mars,Inc. Caplice & Sheffi

[CS06] explore the usage of combinatorial auctions in the procurement of freight

transportation services. They discuss a winner determination problem with side

constraints that include business guarantee constraints. Ball et.al.[BDH06] provide

an application of combinatorial auctions to airport slot allocation.
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Many researchers in the computer science and operations research community have

addressed the computational issues related to combinatorial auctions. Lehmann

et.al. [LMS06] discusses the hardness of algorithms for winner determination and

details a search algorithm to solve the problem in a computationally efficient manner.

Leyton-Brown et.al.[LBNS06] perform tests to determine the empirical hardness of

the combinatorial auction problem. They create a test-suite to determine causes

of hardness in problems beyond just the increase in problem size. Bikhchandani

et.al. [BdVSV02] build on LP models to devise efficient implementations of the

VCG mechanism. They also provide a primal dual framework for understanding as-

cending auctions implementations in a multi-unit setting. Day & Raghavan [DR09]

define a compact, expressible language called matrix bidding to specify bids over

all possible item bundles and show that winner determination with matrix bids is

suitable for practical settings. Day & Raghavan [DR07] develop a constraint gen-

eration approach that determines allocation and prices in the core for the winner

determination problem. Their implementation converges to the core prices faster

than the clock proxy auction mechanism developed in Ausubel & Milgrom [AM02]

Most of the papers listed above, along with other work in the literature, typically

ignore computational issues arising from side constraints. Budget and other side

constraints are, however, an integral part of every auction and thus, need to be

modeled explicitly while solving the winner determination problem. Andelman &

Mansour [AM04] provide a model and approximate solution approach to deal with

the multi-unit allocation problem with budget constraints, when the bidder val-

uations are additive. In this chapter, we provide a method to solve the budget

constraint problem using the decomposible structure of the constraints. We provide

a solution approach using Benders decomposition and discuss heuristics to obtain

a good initial solution to start the iterative mechanism. Further, we provide a link
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between the Benders algorithm and an iterative auction implementation. We note

that in this chapter the assumption is that the auctioneer is interested in revenue

maximization.

4.2 Problem Definition and Model Formulation

The combinatorial auction that we consider in this chapter is as follows - an auction-

eer (seller) has n items to sell. There are m bidders and bidder i has a valuation Vij

for item j. We will assume that the bidder valuations are additive. In many settings

such as fantasy sports, internal resource allocation within a firm and other auctions

settings where complementarity between items is not evident, additive valuations

for items is a reasonable assumption. Thus, given the bidder valuations Vij for the

various items, the seller has to find an allocation and price for each item such that

her revenues are maximized. The seller, however, has to ensure that the bidders are

not charged beyond their budget limits.

Andelman & Mansour [AM04] studied the problem of finding a computationally

efficient solution to this budget constrained problem. They formulate the problem as

an Integer Program(IP) and develop an approximation algorithm using the solution

to the LP relaxation and applying a rounding method. The formulation that they

use is as follows -
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max
∑
i=1..m

pi (4.1)

s.t. pi ≤ Bi; for i = 1..m (4.2)

pi ≤
∑
j=1..n

zij.Vij; for i = 1..m (4.3)∑
i=1..m

zij ≤ 1; for j = 1..n (4.4)

zij ∈ {0, 1}; for i = 1..m, j = 1..n (4.5)

Here, zij is a binary variable denoting whether item j has been allocated to bidder

i, pi is the price that the seller charges bidder i for the allocated items, Bi is the

budget of bidder i and Vij is the bid (i.e. the declared valuation) of bidder i for item

j.

Andelman & Mansour [AM04] show that the optimal allocation for an auction with

even two bidders and identical bids and budget constraints is NP-Hard by reduction

from the PARTITION problem. In fact, an exact optimal allocation can be found

for the budget constrained optimal allocation problem using dynamic programming

with time complexity of the order O(m4n). They further develop an approximation

algorithm for the problem by solving the LP relaxation of the above formulation

and assigning an item j to bidder i with probability zij. The approximation ratio

of the algorithm is shown to be 1.582.

However, it is hard to argue that participants in an auction would be satisfied with

an approximate solution. Further, in many public good auctions, participants would

like feedback on individual prices. The formulation of Andelman & Mansour [AM04]

gives allocation and price for the various bundles. It does not, however, give individ-

ual item prices as an output. Typically bidders would like feedback on the individual
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prices for the final allocation since the bids in this setting are submitted individually

on each item.

Our motivation is to find an exact allocation that maximizes revenue and also allows

for individual item prices. We now describe an Integer Program that will allow us

to determine individual item prices. Let Bi be the budget of bidder i and Vij be

the value that bidder i has for item j. The decision variables for the problem are

xij ∈ {0, 1}, the allocation of item j to bidder i and pij is the price that bidder i is

charged for item j. The auctioneer aims to maximize the revenue.

max
∑
i=1..m

∑
j=1..n

pijxij (4.6)

s.t.
∑
i=1..m

xij ≤ 1; for j = 1..n (4.7)∑
j=1..n

pijxij ≤ Bi; for i = 1..m (4.8)

pij ≤ Vijxij; for i = 1..m, j = 1..n (4.9)

xij ∈ {0, 1}, pij ≥ 0; for i = 1..m, j = 1..n (4.10)

The first constraint is the availability constraint (no item can be allocated to more

than one bidder), the second constraint specifies the budget constraint while the

third set of constraints correspond to the individual rationality (IR), with respect

to the bidder’s declared valuation. Individual rationality implies that the price of

an item allocated to any bidder cannot be greater than the bidder’s bid for that

item. The objective function as well as the constraint set (4.8) are non-linear. We

describe how to linearize and reformulate the above problem as a mixed integer

program (MIP). Let tij be the fraction of the budget of bidder i allocated to item j

and xij be a binary variable that determines allocation of item j to bidder i (xij = 1
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denotes item j is allocated to bidder i). The MIP formulation is as follows -

max
∑
i=1..m

Bi(
∑
j=1..n

tij) (4.11)

s.t.
∑
i=1..m

xij ≤ 1; for j = 1..n (4.12)∑
j=1..n

tij ≤ 1; for i = 1..m (4.13)

Bitij ≤ Vijxij; for i = 1..m, j = 1..n (4.14)

xij ∈ {0, 1}, tij ≥ 0; for i = 1..m, j = 1..n (4.15)

In the above formulation, the first constraint is the availability constraint, the second

constraint specifies that the sum of the fractions of the budget allocated to items

add up to to less than or equal to 1, while the third constraint is the individual

rationality constraint for each bidder-item combination.

When we attempt to solve instances of the above MIP formulation using OPL Studio

3.7 (which uses CPLEX to solve the MIP on a machine with 801 Mhz processor and

512 MB RAM), we observe that many instances can be solved very fast. However,

as the problem size increases, the solution time also increases. We also examined

the effect of the budget level on the running time. We observe that in certain

budget ranges, both the smaller and the larger problems take over an hour to run.

Tables 4.1 and 4.2 below show how the solution time varies with respect to the

budget level when the bids and budgets are drawn from a uniform distribution (10

instances each). Table 4.3 corresponds to runs when the bids are drawn from a

uniform distribution but the budgets are the same for all bidders.

From these three tables, it is evident that in certain budget ranges, the problem

takes a long time to solve. To try and solve these types of instances faster, we will
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Table 4.1: Time to IP optimal; 100 bidders, 100 items

Budget Distribution Avg Time (sec)

U[0,500] 4.26
U[0,250] 4.9
U[0,100] 6.73
U[0,50] 8.203
U[0,30] abort (1 hr)

Table 4.2: Time to IP optimal; 100 bidders, 500 items

Budget Distribution Avg Time (sec)

U[0,500] 49.625
U[0,400] 47.953
U[0,100] abort (1 hr)
U[0,50] 295.31
U[0,25] 62.76

use the decomposible structure of the problem and apply Benders decomposition

method to potentially devise a computationally efficient solution method for the

problem.

Table 4.3: Time to IP optimal; 100 bidders, 100 items; Equal Budgets

Budget Avg Time (sec)

160-200 3.934
110-159 4.078
60-109 4.543
19-59 109.029
11-18 abort (1 hr)
6-10 23.27
2-5 30.95
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4.3 A Benders Decomposition Approach to the

Budget Constrained Auction Problem

The Benders decomposition method separates out a mixed integer programming

problem into a integral master problem with a set of complicating constraints and a

set of linear sub-problems that can be solved independently. The procedure uses the

master problem to fix the integer variables and the sub-problems to find the value for

the continuous variables. Fixing the variables in the master problem helps us exploit

the special structure of the sub-problems and solve the sub-problems efficiently. The

sub-problem contributes a set of dual values that are used by the master problem

to generate a suitable cut in each iteration that the current solution to the mas-

ter problem violates. These constraints are also referred to as “Benders feasibility

cuts” since they enforce the conditions for feasibility of the master problem. This

process continues iteratively, with the master problem finding a new solution while

the sub-problems generate feasibility cuts, till we reach the optimality condition.

From the MIP formulation discussed in the previous section, we can see that if we

fix the values for xij in the problem, then the problem essentially decomposes into

a set of independent problems by bidder. We use this observation to develop our

Benders decomposition approach. The master problem that we seek to solve is an

allocation problem i.e. we solve the master problem, with the Benders’s feasibility

cuts, to determine the allocation of item j to bidder i. The sub-problem, on the

other hand, gives us the maximum willingness to pay by each bidder, for the given

allocation in each iteration. The Benders master problem can be formulated as -
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Master Problem

max Z (4.16)

s.t.
∑
i=1..m

xij ≤ 1; for j = 1..n (4.17)

Z ≤ Zmax (4.18)

(x, Z) ∈ F (4.19)

xij ∈ {0, 1}; for i = 1..m, j = 1..n (4.20)

Z is a scalar and the value for Z that we obtain in each iteration determines an

upper bound to the objective function of the original problem. F is the solution

space defined by the Benders feasibility cuts generated in all prior iterations using

the dual solution to the sub-problems in respective iterations. Thus, it is F that

defines the set of constraints that links the prices obtained from the sub-problems to

the allocation decision variables that are determined by solving the Benders master

problem. Zmax is a very large number that determines an initial upper bound. In

our case, we use the budget of the various bidders to determine an appropriate Zmax.

If we fix the allocation based on the solution to the master problem, then it is clear

that we have a separable problem structure; i.e., our sub-problems decompose by

bidder. Thus, each sub-problem can be interpreted as a bidder determining her

willingness to pay for each item allocated to her in any iteration, conditional on

her value for the individual items as well as the overall budget. The Benders sub

problem that each bidder i solves is -
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Figure 4.1: Information Exchange between Master and Sub-problems.

Bidder i’s sub-problem

max Bi(
∑
j=1..n

tij) (4.21)

s.t.
∑
j=1..n

tij ≤ 1 (4.22)

Bi

Vij
tij ≤ xij; for j = 1..n (4.23)

tij ≥ 0; for j = 1..n (4.24)

The information exchange between the master problem (i.e. the auctioneer’s prob-

lem) and the sub-problems (i.e. the bidder’s problem) is shown in Figure 4.1. Here,

ωi is the dual variable corresponding to the first constraint in the formulation above

while λij is the dual for each of the constraints corresponding to second set.

The Benders decomposition algorithm for the budget-constrained auction problem

is as follows.

Algorithm 4 (Benders Decomposition Algorithm).

1. Set k = 0 (k is the iteration counter), Upper bound (UB0) = Zmax, Lower
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bound (LB0) = 0, Zmax = a very large number and F = {(X,Z)|X ∈

Bmn, Z ∈ R}.

2. While (UBk − LBk) > 0

(a) Set k ← k + 1

(b) Solve master problem

max Z

s.t.
∑
i=1..m

xij ≤ 1; for j = 1..n

LBk−1 ≤ Z ≤ UBk−1

(X,Z) ∈ F

xij ∈ {0, 1}; for i = 1..m, j = 1..n

(c) Set UBk ← Z

(d) Solve each of the sub-problems for the allocation x obtained above by

solving the master problem. Each bidder i solves the following problem

(which is the dual of bidder i′s sub-problem) -

vki (x) = min ωi +
∑
j=1..n

λijxij

s.t. ωi +
∑
j=1..n

Bi

Vij
λij ≥ Bi

ωi, λij ≥ 0; for j = 1..n

Let ωki , λkij denote the optimal solution obtained by solving bidder i′s

problem in the kth iteration.

(e) Set LBk ← max{LBk−1,
∑
i

vki (x)}

(f) Set F ← F ∩ {Z ≤
∑
i

ωki +
∑
i=1..m

∑
j=1..n

λkijxij}
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Note that in the first iteration of the master problem, none of the items will be

allocated to any bidder. Further, the algorithm will terminate when the upper

bound and lower bound are equal i.e. when we stop generating Benders feasibility

cuts since the necessary condition for primal feasibility would have been satisfied.

4.4 Accelerating Convergence of the Benders Al-

gorithm

In every iteration of the Benders algorithm, we essentially solve an integer program

while determining the allocation from the master problem solution. Thus, from

a computational standpoint, the solution time for the master problem effectively

determines the time taken to solve the entire problem. To address this issue of

convergence we can use the following strategies - generate a good initial solution,

formulate the problem such that the relaxation is tight and generate good cuts to

add to the master problem from the sub-problem duals.

When we apply the Benders decomposition algorithm to network optimization prob-

lems, it is very important to generate good cuts in each iteration, otherwise the

Benders algorithm converges very slowly. The budget constrained optimization

problem can be visualized as a bipartite graph assignment problem with additional

constraints. The bidders and the items form two disjoint group of nodes while the

allocation variable and the budget allocated from each bidder to every item can be

represented as links between these group of nodes. The additional constraint, in this

case the bidder level budget constraints, needs to be accounted for while solving the

bipartite graph assignment problem. It has been been found that problems where

the constraint matrix has a network flow structure, the problem typically has many

optimal solutions [MW81]. Given the network structure problem, we also observe
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that there is inherent degeneracy in the sub-problem optimal solutions. In our case,

if for a given master allocation, the optimal solution to the sub-problem hits the

budget constraint, then we have multiple prices for the allocated items that would

give the same revenue to the seller. For example, assume that a bidder is partici-

pating in a two-item auction with valuations of {$3,$3} for each item and a budget

of $5. If in any iteration, both items are allocated to this bidder, then the bidder’s

maximum willingness to pay for the package is $5. Individual prices {$2,$3} as well

as {$3,$2} both satisfy the budget constraint as well as the individual rationality

constraint. Hence, we will have a degenerate optimal solution for the sub-problem

corresponding to this bidder.

Magnanti & Wong [MW81] describe a procedure to generate “good” cuts from the

sub-problems in Benders decomposition. We use the following definitions from

their paper - a cut Z ≤ f(ω1) + xg(λ1) dominates the cut Z ≤ f(ω) + xg(λ),

if f(ω1) + xg(λ1) ≥ f(ω) + xg(λ) for all xεX with a strict inequality for at least

one point xεX, where X is the set of feasible allocations of items to the bidders in

our case. In the previous section, Algorithm 4 (point 2(f)) determines the nature

of Benders cut. Also, a cut is called a pareto optimal cut if it is not dominated by

any other cut. Associated with each cut is a dual set of variables from solving the

sub-problems. Thus, if a cut is pareto optimal then the associated dual variable is

also said to be pareto optimal.

To generate a pareto optimal cut for the budget constrained auction problem, we

use the following theorem from Magnanti & Wong [MW81] -

Theorem 3. Let x0 be a point in the relative interior of Xc, where Xc is the

convex hull of X. Also, let U(x̂) with x̂εX denote the set of optimal solutions to

the optimization problem Max(ω,λ)εU{f(ω) + x̂g(λ)} and let x0 solve the problem
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Max(ω,λ)εU(x̂){f(ω) + x0g(λ)}. Then x0 is pareto optimal.

In Algorithm 4, we can easily solve the minimization problem independently for

each bidder. However, like many other network optimization problems, the solution

to the sub-problems are degenerate in nature and thus, the solution method can

be accelerated by generating pareto-optimal cuts. Thus, in the step 2(f) of our

algorithm, instead of adding the cut specified, we want to add a pareto-optimal cut.

Using Theorem 3, the pareto optimal cut is obtained by solving the following linear

program -

min
∑
i=1..m

ωi +
∑
i=1..m

∑
j=1..n

λijxij

s.t. ωi +
∑
j=1..n

Bi

Vij
λij ≥ Bi; for i = 1..m∑

i=1..m

ωi +
∑
i=1..m

∑
j=1..n

λijxij = v(x)

ωi, λij ≥ 0; for i = 1..m, j = 1..n

Here, v(x) =
∑

i vi(x).

If we solve the budget constrained problem as described in Algorithm 4, then the

initial optimal solution to the master problem could be that none of the items are

assigned to any bidder and the objective function of the master problem having a

value of Zmax, which initially is a very large number (at least as large as the sum of

all the bidder budgets). Instead, we could speed up the convergence to the optimal

solution for the original problem by using the bid data to find a “good” initial so-

lution. The two algorithms detailed below provide an initial allocation based on a

greedy approach.

Algorithm 5 below emulates a sequential auction process. In each iteration, the

item under consideration is auctioned off to the bidder who has the largest value,
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truncated by the remaining budget.

Algorithm 5 (Greedy 1).

1. Let j ← 0, Brem
i ← Bi; ∀i (i = 1 to m) and xij ← 0;∀i, j (i = 1 to m, j = 1

to n)

2. j ← j + 1

3. For item j (items are selected in the order of their index in the data), find

i′ = argmaxi{min(Vij, B
rem
i )}. Set pj ← maxi{min(Vij, B

rem
i )} and xi′j ← 1.

Also, set Brem
i′ ← (Brem

i′ − pj). (In case there is a tie between bidders, then

randomly allocate selected item to any of the bidders in the tie set. Alternately,

one could allocate to the bidder with the highest remaining budget within the

tied set. If there is a tie between bidders with the highest remaining budget,

one could randomly allocate the items between the bidders that belong to the

tie set.)

4. If j < m then Go To Step 2; m is the number of bidders participating in the

auction.

5. STOP

In Algorithm 6, to find an initial solution, instead of considering items in the order

that they are indexed, we consider all items and the associated remaining budget

with the bidders to make an allocation. We choose to allocate the item that provides

the largest value, truncated by the remaining budget to the corresponding bidder.

Algorithm 6 (Greedy 2).

1. Let k ← 0, Brem
i ← Bi; for i = 1..m and xij ← 0; for i = 1..m, j = 1..n

2. Find i′, j′ = argmaxi,j{min(Vij, B
rem
i )}. Set pj = {min(Vij′ , B

rem
i′ )}, xi′,j′ ← 1

and Brem
i′ ← Brem

i′ − pj.
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3. Remove item j′ and associated bids for the item.

4. k ← k + 1

5. If k < n then Go To Step 2.

6. STOP

Let us consider an example where there are two bidders and three items being auc-

tioned of. Let bidder 1 have the valuations of $3, $5 and $2 for items 1, 2 and 3

respectively along with an overall budget constraint of $7. Similarly bidder 2 has

valuations $4, $3 and $6 respectively with a budget of $7. By algorithm ‘Greedy

1’, the items will be allocated as follows - Item 1 and 3 to bidder 2 at a price of $4

and $3 respectively and item 2 to bidder 1 at $5 for a total revenue of $12 for the

seller. In case of the ‘Greedy 2’ algorithm, items 1 and 2 are assigned to bidder 1

at $2 and $5 respectively while item 3 is assigned to bidder 2 at a price of $6. The

total revenue for the auctioneer is $13.

We compared the performance of the various formulations using OPL Studio 3.7,

running on machine with 512 MB RAM and an 801 MHz processor. The bidder

valuations for various items as well as the budgets were drawn from a uniform dis-

tribution. We ran the algorithms for the four different formulations - direct solution

using OPL’s MIP solver, standard Benders implementation (Algorithm 4), Benders

with initialization via the sequential item auction (Algorithm 5) and Benders with

initialization with the descending item valuation (Algorithm 6). Each value in Table

4.4 corresponds to an average over ten problem instances. Further, each (bidder,

item) problem was run for five different budget levels. The entries marked with a

(*) in the table indicate that the algorithm was terminated when the upper and

lower bound were within about 2.5% of each other.
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Table 4.4: Time to IP optimal (in secs) - Benders

Problem Size OPL(IP) Benders (default) Greedy1 Greedy2

2 bidders, 5 items 0.000 0.031 0.015 0.000
0.016 0.031 0.016 0.016
0.016 0.453 0.016 0.000
0.015 0.031 0.015 0.015
0.015 0.016 0.016 0.015

5 bidders, 10 items 0.454 10.432 7.272 4.927
0.078 11.276 4.475 11.65
0.156 17.609 18.686 19.624
0.516 22.131 6.662 8.96
0.093 13.809 14.767 15.615

10 bidders, 20 items 90.672 68.297* 615.6* 219.291*
1008.25 1315.97* 2503.82* 3277.14*
165.4 53.65* 426.66* 516.7*

397.594 393.2* 815.19* 752.87
0.453 11.124* 74.76* 55.29*

In Table 4.4, we can observe that although the Benders solution with the two

heuristics for initial allocation performs well for small problems, as the problem

size increases, the Benders implementation with the default starting solution per-

forms better. Hence, the applicability of the two initialization algorithms to the

budget-constrained problem is limited. Also, the time taken to solve the problem

instances to optimality using OPL Studio is significantly less than that using Ben-

ders. Although we could use the pareto optimal cuts as defined by Magnanti &

Wong [MW81] in a Benders decomposition framework, we do not expect to match

the performance of OPL due to the inherent degeneracy in the problem as well as the

significant gap in solution time between OPL and Benders variants, as seen in Table

4.4. The Benders approach, however, provides a nice framework to get feedback on

prices for interim allocations as well as provide a method to address the problem in

a decentralized manner. The next section details an auction interpretation to the

Benders framework.
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4.5 An Auction Interpretation to Benders De-

composition

In Benoit & Krishna [BK01], the authors show that when there are two items and

two bidders with a budget constraint, then if the items are auctioned of sequentially,

it is always optimal to sell the more valuable object first. The paper deals with the

case of common value items only. It also does not model cases when more than two

objects are present. We know of no study which models the case of the optimal

strategy from the sellers perspective when each bidder has individual valuations for

the various items. However, it is evident that the sequence in which items are auc-

tioned off will result in different revenues. Given that we do not know the bidder

valuations (i.e. they are private), we need to consider all items at a time and not

sequentially.

The Benders decomposition method described in this chapter can be considered as

an iterative auction mechanism with all items being considered in each iteration.

In every iteration, the solution to the master problem is an allocation of a subset

items to each bidder. The sub-problems take this allocation and return a set of dual

prices for either each allocated item (when the bidder’s budget is non-binding) or

for the set of allocated items and the bidder budget (when the bidder’s budget is a

binding constraint). The master problem can, thus, be interpreted as an auctioneer,

participating in an interactive format auction, who determines an allocation vector

in each round based on feedback that it receives from the bidders for the marginal

values of items & package of items allocated. Each sub-problem that we solve for

corresponds to a single bidder. The bidders, based on the current allocation, return

a set of marginal values to the auctioneer for the allocated item as well as the budget

constraint. Thus, the bidders in each iteration solve a pricing problem.
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4.6 Conclusion

In this chapter, we model the multi-unit allocation problem with hard budget con-

straints and additive valuations. We show instances of the problem which are com-

putationally difficult and demonstrate the applicability of Benders decomposition to

the problem. The Benders approach provides an approach analogous to an iterative

auction model. With the current Benders implementation using OPL Studio 7.0,

there doesn’t seem to be a computational advantage over the standard MIP im-

plementation. However, the Benders method has a nice auction interpretation that

could be used in an iterative manner if bidders do not want to fully reveal valuations

over all items and the budget. Specifically in case of the MIP model, the bidders

would have to provide valuations for all the items while the Benders decomposition

approach would allow them to disclose values for only those items that have been

allocated in any iteration.

We could use the cut-generation method specified by Magnanti & Wong [MW81]

in a Benders decomposition framework. However, we do not expect it to perform

better than the OPL implementation since the problem is inherently degenerate and

there exists a significant gap in performance between the OPL implementation and

various Benders variants.
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Chapter 5

Core Allocation for Budget

Constrained Auctions

Multi-unit budget constraint auctions are a popular form of resource allocation and

pricing in a variety of settings including procurement auctions, supply chain coor-

dination, search engine marketing and wireless spectrum allocation. The bidders

submit their valuations and budgets to the auctioneer, who aims to solve a social

surplus maximization problem with budget, allocation and individual rationality

constraints. The auctioneer seeks to determine an optimal allocation for items with

supporting prices that are in the “core”. FCC auctions for wireless spectrum allo-

cation and fantasy sports on the Internet are examples of real-world auctions where

the entity conducting the auction aims to maximize social value. These problems

can be solved using the ascending proxy auction algorithm proposed by Ausubel &

Milgrom (2002). However, their approach suffers from convergence problems, lack

of feedback on individual item prices, and capping of bidder valuations at budget

over an exponential set of packages. In this chapter, we develop a constraint gener-

ation procedure for a setting where the bidder valuations for the items are additive.

The problem is modeled as a mixed integer program (MIP) with an exponential
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number of constraints and we develop an approach to determine core allocation and

individual item prices directly using the toolkit of integer programming. We, fur-

ther, extend this approach to model the core determination problem for a general

combinatorial auction (i.e., where the bidder valuations are not additive).

5.1 Introduction

The last few years has seen tremendous growth in auctions being used for resource

allocation and pricing across a range of business domains. Increased computational

ability has resulted in combinatorial auctions being developed for a range of ap-

plications that include procurement, supply chain coordination, wireless spectrum

allocation, airport slot distribution, real-time electricity markets, communication

network pricing and search engine marketing. The academic community has ac-

tively contributed to theoretical advancements as well as in developing practical

models to address these domains. Even with a fairly restrictive set of assumptions,

solving combinatorial auctions to optimality remains a non-trivial computational

task. Hence, most academic works ignore the presence of real constraints that all

the bidders face e.g. a hard budget constraint.

Ideally, we would like the auction mechanism to have properties like efficiency, in-

centive compatibility and individual rationality, amongst others. The presence of

budget constraints not only makes the problem computationally more difficult, it

also destroys some of the economic properties of the unconstrained version of the

auction. In the case of auctions with unconstrained bidders, the VCG mechanism

gives an incentive compatible allocation and associated prices. However, one of

the underlying assumptions of the VCG mechanism is the quasi-linearity of bidder

utility. If we have a hard budget constraint, then this assumption is violated as
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the bidder has a utility of −∞ when the budget constraint is exceeded. One can

easily show by a counter-example that the VCG mechanism applied to a budget

constrained auction is not incentive compatible.

Borgs et.al. [BCI+05] consider a multi-unit auction having multiple agents with

private valuation and hard budget constraints. They show that there is no truth-

ful auction that satisfies the properties of consumer sovereignty, independence of

irrelevant alternatives and strong non-bundling. They, then, develop a randomized

approach to determine an asymptotically optimal auction (the objective is revenue

maximization for the seller). However, their work does not determine if there exists

any deterministic allocation method that is incentive compatible, under the presence

of budget constraints.

In Benoit & Krishna [BK01], the authors show that when there are two items and

two bidders with a budget constraint, then if the items are auctioned of sequentially,

it is always optimal to sell the more valuable object first. The paper deals with the

case of common value items only and also, does not model cases when more than

two objects are present. We know of no study which models the case of optimal

strategy from the sellers perspective when each bidder has individual valuations for

the various items. However, it is evident that the sequence in which one auctions

of the items will result in different revenues for the auctioneer. Thus, we need to

consider all items at a time and not sequentially. Che & Gale [YG00] consider the

selling of a single item and discuss a non-linear pricing approach for optimal allo-

cation in the presence of budget constraints. Pai & Vohra [PV08] consider hard

budget constraints in a single unit auction. They derive revenue maximization auc-

tions for the above setting and show that subsidizing participants with low budgets

is never desirable from the auctioneer’s standpoint. Dobzinski et.al. [DLN08] prove

80



an impossibility result that states that there does not exist any mechanism in the

case of multi-unit auctions that is both incentive compatible and pareto-optimal,

when the budgets are privately known.

Given the lack of a mechanism for incentive compatibility under budgetary con-

straints, we consider a weaker economic criterion, namely a social welfare maximiz-

ing allocation and a set of individual item prices that are in the core. A core is

defined as the set of feasible allocations that cannot be improved upon by a subset

or coalition of the participants taking part in the allocation mechanism. The prob-

lem that we consider is to determine a core allocation and supporting prices while

maximizing social welfare. Social welfare maximization arises in a number of real

as well as virtual settings. In the case of many public asset auctions, the objective

of the government is to maximize the social surplus. For resource allocation within

various departments in a firm, the central authority that takes decisions based on

the departmental budgets, aims to allocate resources to maximize social value within

the firm. Fantasy sports is an increasingly popular activity in which the platform

provider too is interested in overall value maximization. The following sections for-

mulate the core allocation and pricing problem, under budget constraints, using the

toolkit of integer programming. We show how to model the core with an expo-

nential set of constraints. Rather than including these core constraints explicitly,

we use a constraint generation approach identical to Day & Raghavan [DR07]. We

show how to use this constraint generation approach to determine the social welfare

maximizing core allocation and prices simultaneously.
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5.2 Core Allocation for Budget Constrained Auc-

tion

The auction that we consider in this chapter is the following - an auctioneer (seller)

has n items to sell and there are m bidders bidding for the various items. Each

bidder has a certain valuation for each of the items and has her own overall bud-

get limit (assumed to be a hard constraint). As discussed in the previous section,

solving to optimality a budget constraint auction, even with additive valuation, is

computationally hard. Further, in many real-world settings like fantasy sports or

resource allocation within a firm, the valuations are additive. Thus, we initially

assume that the bidder valuations are additive. Given the bidder valuations for

the various items, the auction operator has to find an allocation and price for each

item such that the overall social welfare is maximized. Further, the operator has to

ensure that the bidders are not charged beyond their budget limits.

Let Bi be the budget of bidder i and Vij be the value that bidder i has for item j. To

prevent bidders from declaring arbitrarily large valuations, we limit the value of a

single item by the budget (i.e., Vij ≤ Bi). The decision variables for the problem are

xij ∈ {0, 1}, the allocation of item j to bidder i and pj, which is the price observed

by all bidders for item j. Further, let us assume that there are m bidders and n

items. The operator aims to maximize the social surplus. The formulation below

allows us to determine individual item prices.
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max
∑
i=1..m

∑
j=1..n

Vijxij (5.1)

s.t.
∑
i=1..m

xij ≤ 1; for j = 1..n (5.2)∑
j=1..n

pjxij ≤ Bi; for i = 1..m (5.3)

pj ≤
∑
i=1..m

Vijxij; for j = 1..n (5.4)

xij ∈ {0, 1}, pj ≥ 0; for i = 1..m, j = 1..n (5.5)

Equation (5.2) is the availability constraint (no item can be allocated to more than

one bidder), equation (5.3) specifies the budget constraint while equation (5.4) cor-

responds to individual rationality (IR), with respect to the bidder’s declared valua-

tions. Note that in the above formulation equation (5.3) is non-linear.

In the above formulation, we could have an optimal solution with all the pj’s

set to zero (implying the item prices are zero), since the objective function is

max
∑
i

∑
j

Vijxij i.e. it is independent of pj. Also, none of the constraints ne-

cessitate that pj be strictly greater than zero. Now, if the auctioneer declares the

optimal allocation obtained above and the prices of items as zero to the bidders,

then each bidder can increase her overall surplus by bidding incrementally more

than zero for various items not allocated to her, without violating her own budget

constraint. Thus, the losing bidders for each of the items are willing to pay more

than zero to the auctioneer to increase their surplus. The seller, too, would be

willing to consider such bids and change the current allocation as she can increase

the revenue generated from the auction. Hence, the allocation and prices obtained

by solving the above formulation is not stable as it provides motivation for both
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the seller as well as the bidders to collaborate and deviate from the same. For a

stable allocation, the formulation has to include a set of constraints such that no

coalition of bidders and seller has an incentive to deviate from the allocation at

the determined prices (i.e., allocation and prices consistent with our prior informal

definition of the core). When the solution is in the core, effectively the surplus from

the current allocation and prices observed by each bidder should be greater than

the surplus generated from all other possible allocations, at the current set of prices.

A novel auction mechanism used for multi-unit allocation is the Ausubel & Milgrom

[AM02] ascending auction. If there are no budget constraints, then the Ausubel

& Milgrom auction avoids many of the problems associated with the VCG mecha-

nism. Limitations of the VCG mechanism include low revenues for the auctioneer,

decreasing revenues as bidders are added to the auction or if bidders change their

bids, and collusion being a profitable strategy for the participants.

Let T be an outcome of a combinatorial auction i.e. T corresponds to a set of

allocations and payments for the bidders. Also, let the coalition CT refer to the set

of bidders receiving items under the outcome T . To help understand the method to

determine a core allocation and prices for an auction under budget constraint, we

will use the following definitions from Day & Raghavan [DR07] -

1. An outcome T is considered blocked if there exists an alternative outcome TB

that generates more revenue for the seller and for which each bidder in CTB

weakly prefers to T . CTB is referred to as a blocking coalition

2. An outcome that is not blocked is called a core outcome.

The Ausubel & Milgrom[AM02] ascending proxy auction works roughly as follows.

The bidders report their values for the various packages that they are interested
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in to the proxy. The bidders could also specify their overall budget constraint to

the proxy agent. In every iteration, the auctioneer specifies a set of prices for the

various packages. The proxy agent for a bidder takes these prices and figures out

the package that will maximize the bidder’s surplus, at the current price levels. The

agent then bids for that package in the auction. In every iteration the auctioneer

determines the revenue maximizing allocation and the prices for the over-demanded

packages are increased incrementally. The auction terminates when there are no

new bids from the proxy agents. It is important to note that all the intermediate

bids are kept live throughout the auction. Ausubel & Milgrom [AM02] prove the

following theorem -

Theorem 4. The payoff vector π resulting from the proxy auction is a core impu-

tation relative to the reported preferences: π ∈ Core(L,w). Here, L is the set of

players (includes seller) while w(S) is the value of coalition S.

Due to convergence to the core, the seller gets competitive revenues while the buyer

allocation is efficient. Also, to note is that in every round of the auction the objec-

tive function being maximized is the seller revenues and the overall buyer surplus

i.e. in every iteration, social welfare is being maximized. An issue with the Ausubel

& Milgrom (AM) auction is convergence. Since, in each iteration prices are changed

by a very small amount, the auction is plagued by a slow convergence to the core.

The AM auction can be modified to solve core allocation problems with budget

constraints. The modification proposed is to put a cap on the bidder valuation for

a subset of items at the bidder specified budget. E.g.- if a bidder has a valuation of

$5 for item 1, $4 for item 2 and a budget of $7, then the bidder valuation is assumed

to be $5 for item 1, $4 for item 2 and $7 for items 1 & 2. However, this modification

creates two issues - artificial capping of bidder valuations that makes the auctioneer

85



ignore true item valuations of the respective bidders and a pre-processing step to the

actual algorithm that necessitates determining valuations over an exponential set of

packages. Continuing with the example above, let us assume that there is a second

bidder that values item 1 and item 2 at $7 but has no value for each individual

item. The budget for bidder 2 is assumed to be $7 (same as bidder 1). Based on the

approach in the AM paper for budget constraints, the auctioneer in this case would

assume that both the bidders have the same valuation for the package containing

items 1 & 2, although bidder 1 has declared a strictly higher valuation. If the auc-

tioneer had a choice between allocating both items to either bidder 1 or bidder 2,

the valuation capping approach would make the auctioneer indifferent between the

two bidders. The auctioneer could have achieved higher efficiency by allocating both

items to bidder 1.

An argument that has been sometimes made is that if the bidder really values a

subset of items higher than the budget, then she should be specifying a higher will-

ingness to pay. However, in the real-world, valuations and budgets don’t necessarily

go together. E.g. a telecommunications service provider may value two cities in the

US at $2 billion and $1 billion respectively. The valuation is calculated based on

business potential that the firm estimates for each city. The budget, however, is

determined by the ability of the firm to raise funds from various stakeholders and

thus, is limited by factors that include financial market conditions and the firm’s

past performance. Thus, the bidder may be able to raise no more than $2.5 billion

for the auction.

To understand the issue with the pre-processing step prior to running the AM auc-

tion, let us assume there are 50 items being auctioned off and that the bidders have

additive valuations over this set of items. We will have to determine the value of
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each subset of items where the value of a subset is the sum of values for the indi-

vidual items in the subset, if the sum is less than the budget. If the total value of

the items in the subset exceeds the budget, then the value is capped at the bidder’s

budget. With 50 items, we will have to evaluate nearly 1015 bundles. Hence, even

if we assume that truncation of values at budget is acceptable, we cannot use the

AM algorithm to solve a package auction of this size.

Further, the AM ascending auction mechanism fails to provide feedback on indi-

vidual item prices, even when the valuation is additive and is specified for each

individual item by the bidder.

Although the work of Day & Raghavan [DR07] and Hoffman et.al. [HMvdHW06]

discuss implementations for faster convergence to the core, both the papers ignore

budget constraints. The allocation is the efficient allocation for the given bids and

the core prices are calculated for this allocation. Further, Day & Raghavan [DR07]

show that it is a Nash equilibrium to bid truthfully. However, in the case of budget

constrained auction, the core allocations need not be the social welfare maximizing

allocation obtained by ignoring budget constraints; and thus, we have to determine

both the allocation and prices simultaneously that satisfy the various constraints. In

the following section, we formulate the pricing and allocation problem with core con-

straints as a mixed-integer program. We demonstrate that for the additive valuation

case, we can determine the core allocation and prices, if they exist, by a constraint

generation approach. In fact, our approach is able to solve the core allocation and

pricing problem under budget constraints with individual item price feedback. We,

also, give examples of budget constrained auctions under additive valuation that

will not have a core solution with individual item prices. In such cases, we can use

our proposed method with a modification that has package prices instead of item
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prices.

5.3 Core Problem Formulation as a MIP

Borgs et.al. [BCI+05] describe the lack of any deterministic incentive compatible

mechanism currently known for budget constrained auctions. In the case of auc-

tions run by public sector organizations like the FCC as well as in the case of

combinatorial exchanges jointly operated by bidders and sellers, the objective of

the entity running the auction is to maximize the social welfare. Similar situations

of social welfare maximization is also found in online environments dealing with

“funny money” e.g. fantasy sports. In this section, we formulate the social welfare

maximization problem as an integer program. The auction operator is trying to

maximize social surplus for all the participants concerned. In the formulation of

Andelman & Mansour [AM04], they considered the problem from the auctioneer’s

standpoint i.e. the auctioneer is interested in revenue maximization. Thus, the opti-

mal solution obtained would be such that, after the bids and budgets are submitted,

the auctioneer would have no incentive to deviate from the determined allocation

and prices since the objective function was revenue maximization for the auctioneer.

Instead, let us assume that the auctioneer and bidders both have agreed to an

exchange that they believe is “fair”. The auction operator doesn’t favor either

party but is interested in obtaining an allocation and corresponding set of non-

discriminatory prices that all participants accept and don’t have an incentive to

deviate from. Thus, we seek to determine an allocation and set of prices that are

in the core; i.e., given the bids and budgets, there will be no losing bidders that

could have bid more than the current set of prices paid by the winners, given their

declared bids and budgets. Note that in the analysis below, the item valuations for
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all bidders are assumed to be additive.

The following example will clarify the need and motivation for the core formulation

described later in the chapter. Let us consider a seller auctioning off two items A

and B. Also, assume that there are two bidders participating in the auction. Bidder

1 values each item at $5 and has an overall budget of $7. Bidder 2 values the two

items at $4 each and has an identical budget constraint as bidder 1. If the auctioneer

is interested in revenue maximization, then we can use the model described in the

previous chapter or that in Andelman & Mansour [AM04] to determine the optimal

allocation and associated prices. In the revenue maximization case, item A will be

allocated to bidder 1 at $5 and item B will be allocated to bidder 2 at $4. The total

revenue that the seller receives is $9. Further, there is no other feasible allocation

that is individually rational to the bidders and will result in higher revenues to the

seller. Hence, the seller has no incentive to collaborate with any bidder and change

allocation or prices. The allocation is, thus, in the core.

Let us now consider the case where the auctioneer is performing social welfare max-

imization instead of revenue maximization. Under social value maximization, both

items A and B will be allocated to bidder 1, at a combined price of $7, since the

budget constraint cannot be violated. Assume that the prices declared are $3.5

and $3.5 respectively. Bidder 2, who is currently getting zero surplus as she is not

assigned any item, can increase her surplus by bidding $3.5 + δ on item B. Also, the

seller can increase her revenue from $7 to $7 + δ by accepting the offer of bidder

2. Thus, the price and allocation determined by solving the social welfare maxi-

mization problem is not stable, unlike that for the revenue maximization solution

considered previously.
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If instead bidder 1 is allocated item A and bidder 2 is allocated item B, one should

note that the prices $3.5 and $3.5 (for items A and B respectively) are in the core,

since neither bidder can bid more on the respective losing items without violating

one’s own budget constraint. Also, to note is that there are other prices that support

the core allocation. For example, the same allocation as above along with prices of

$3.5 and $4 for the respective items is also in the core. However, this core point is

not bidder-pareto optimal. An outcome is defined as bidder-pareto optimal if there

is no other outcome in the core weakly preferred by every bidder in CT (Day &

Raghavan [DR07]). However, it be clear that bidder 2 prefers being assigned item

B at a price of $3.5 rather than $4. In the formulation that we describe later in the

chapter, we formulate the problem to determine the core solution and discuss an

approach by which our formulation can be modified suitably to determine a bidder-

pareto optimal outcome.

Let pj be the price of item j and xij ∈ {0, 1} indicates if item j is allocated to bidder

i. Let us assume that the value (in our case, the bid) of item j to bidder i is Vij

and the budget for bidder i is Bi. The problem that the auction operator solves to

determine the core allocation and prices for a budget constraint auction with additive

valuation and an objective of social surplus maximization can be formulated as
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max
∑
i=1..m

∑
j=1..n

pjxij +
∑
i=1..m

∑
j=1..n

(Vij − pj)xij (5.6)

s.t.
∑
i=1..m

xij ≤ 1; for j = 1..n (5.7)∑
j=1..n

pjxij ≤ Bi; for i = 1..m (5.8)

pj ≤
∑
i=1..m

Vijxij; for j = 1..n (5.9)∑
j=1..n

(Vij − pj)xij ≥ max{
∑
j∈S

(Vij − pj),
∑
j∈S

Vij −Bi};

for i = 1..m, S ⊆ J (5.10)

xij ∈ {0, 1}, pj ≥ 0; for i = 1..m, j = 1..n (5.11)

The objective function consists of two parts - the first part corresponds to the seller

revenue while the second is the total buyer surplus. The seller is interested in

maximizing her own revenues while each bidders wants to maximize her respective

surplus. For an allocation and price to be in the core, the surplus to any bidder

for the current allocation and prices should be at least as large as that generated

by any subset of items at the current price level. This is not a requirement of the

core definition in Day & Raghavan [DR07] but we can determine a set of supporting

Walrasian equilibrium item prices by incorporating equation (5.10) in our model. In

fact, the equilibrium item prices will be a subset of the core supporting price vec-

tor. Equations (5.7), (5.8) and (5.9) are identical to equations (5.2), (5.3) and (5.4)

respectively. The constraint set (5.10) has the following interpretation - the surplus

from the allocation at the current price levels is higher than the surplus generated

by any other allocation, where the price paid for any allocation is capped at the

declared bidder budget. The chosen subsets of J do not violate the bidder’s budget

constraint; i.e., if the sum of the individual prices is higher than the bidder’s budget,

then the payment for the items is assumed to be capped at the declared budget.
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These additional constraints result in an exponential number of constraints being

added to the social welfare maximization problem defined by equations (5.6)-(5.9).

Also, one should note that constraints (5.8) and (5.10) are non-linear.

We linearize equations (5.6)-(5.11) by introducing the variable tij, where tij is the

fraction of the budget of bidder i allocated to item j. A MIP corresponding to

equations (5.6)-(5.11) is then

max
∑
i=1..m

∑
j=1..n

Vijxij (5.12)

s.t.
∑
i=1..m

xij ≤ 1; for j = 1..n (5.13)∑
j=1..n

tij ≤ 1; for i = 1..m (5.14)

tij ≤ xij; for i = 1..m, j = 1..n (5.15)∑
i=1..m

Bitij ≤
∑
i=1..m

Vijxij; for j = 1..n (5.16)∑
j=1..n

(Vijxij −Bitij) ≥
∑
j∈S

(Vij −
∑
i=1..m

Bitij);

for i = 1..m, S ⊆ J (5.17)∑
j=1..n

(Vijxij −Bitij) ≥
∑
j∈S

(Vij)−Bi; for i = 1..m, S ⊆ J (5.18)

xij ∈ {0, 1}, tij ≥ 0; for i = 1..m, j = 1..n (5.19)

Constraint (5.13) is the item allocation constraint. Constraint (5.14) dictates the

fractional budgetary allocations for a bidder will not exceed one. Constraint (5.15)

indicates that no part of a bidder’s budget will be allocated to an item, unless that

item is assigned to the bidder. The individual rationality for the allocated items

is ensured by constraint (5.16). Constraints (5.17) and (5.18) together define the

core constraints, where the payments for the current allocation are capped by the
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bidder’s budget.

Note that we can modify the objective function (5.12) to obtain a bidder-pareto core

solution rather than any general solution in the core. The new objective function to

determine the core allocation will be
∑
i=1..m

∑
j=1..n

Vijxij − α
∑
j=1..n

(
∑
i=1..m

Bitij). Here,

α is a constant that is assigned a very small value. Due to the presence of the term

α
∑
j=1..n

(
∑
i=1..m

Bitij) in the objective function, the value maximizing core solution will

correspond to a set of prices from the bidders that maximize the difference between

the first and second terms in the new objective function. This can be re-interpreted

as a value maximizing core solution where the second term in the new objective

function is minimized. The second term is nothing but the sum of prices paid by

the bidders multiplied by a constant, α. Hence, this formulation results in an optimal

core allocation that is supported by a set of prices such that the sum of the prices

for the items is minimized. In the next section, we describe a constraint generation

approach to deal with the exponential number of constraints in a computationally

efficient manner.

5.4 Constraint Generation Approach to Determine

Core

The core allocation and pricing problem for the budget constrained auction problem

can be solved by the ascending proxy auction of Ausubel & Milgrom [AM02]. The

AM auction makes a strong assumption that the bidder valuations for packages are

capped at the respective budgets. Further, the auction suffers from multiple issues

- slow rate of convergence, the core solution being dependent on the step size for

incrementing the price on over-demanded items, lack of feedback on individual item

prices in case of additive valuation and the need to evaluate package valuations on
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all possible packages, even when the valuations are additive. If we directly solve

the formulation described in the previous section, we avoid the limitations of the

Ausubel & Milgrom auction. However, in our case, the core is defined by an ex-

ponential number of constraints and thus, we need to determine an approach that

addresses associated computational issues.

We can characterize the core allocation and price as follows - if the current prices and

allocation are in the core, then no bidder can increase her own surplus by bidding

more than the current winner on any item not allocated to her without violating

her declared budget constraint. To deal with the exponential number of constraints

that define this core, we seek to separate out the set of core defining constraints

that don’t have any effect on the optimal solution from those that define the opti-

mal allocation and prices. We use an approach identical to that in Day & Raghavan

[DR07] to generate appropriate constraints to define core. In their work, the authors

consider a standard multi-unit auction with no budget constraint. Thus, they start

of with an efficient allocation for the stated valuations and then determine a set

of supporting prices that are in the core. However, in case of budget constrained

auctions, it is not necessarily the case that the allocation that maximizes value will

be a core allocation. Thus, we determine both the core allocation and prices simul-

taneously.

We start with solving the linearized version of equations (5.1)-(5.5), i.e. equations

(5.12)-(5.16). If the prices and allocations do not violate any of the core constraints

(i.e. equations (5.17) or (5.18)), then we have arrived at a core point. However, to

verify whether a core constraint is being violated for a bidder, we need to compare

the surplus at current price levels with an exponential subset of item groups. In

other words, we need to check the surplus at the current price levels for each bidder
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over all possible set of items, S, where S ⊆ J (here, J denotes the set of all packages

that can be created from n items). We show how this can be achieved by solving the

separation problem SEP (i), described below, to find the most violated constraint

corresponding to equation (5.17) for a bidder i. If the objective function for SEP (i)

has a value less than or equal to zero, then no core constraint is being violated for

the bidder at the current allocation and price levels. However, if the objective value

is greater than zero, then we need to find the set of items that result in the constraint

being violated. The price of these items cannot exceed the bidder’s budget. If the

price exceeds the budget, we add constraint (5.18) instead, since the right side of

constraint (5.18) is now greater than that for (5.17). Steps 4 and 5 in Algorithm

6 provide the details to find the most violated constraint for a given bidder, at a

particular price level and allocation.

SEP(i)

Zi
sep = max

∑
j=1..n

(Vij −
∑
i=1..m

Bitij)yj −
∑
j=1..n

(Vijxij −Bitij) (5.20)

s.t.
∑
j=1..n

(
∑
i=1..m

Bitij)yj ≤ Bi (5.21)

yj ∈ {0, 1};∀j = 1..n (5.22)

Note that xij and tij are given for problem SEP (i). Also, let Zi
SEP denote the value

of the objective function for the problem SEP (i). Solving the separation problem

is essentially solving a knapsack problem for every bidder to determine the most vi-

olated constraint. For each bidder, we determine the most violated constraint, add

it to the formulation comprising equations (5.12)-(5.16) (including the constraints

added in all previous iterations) and resolve the problem. The stopping criterion for

this algorithm is when we can find no Walrasian equilibrium prices that are being

violated by current allocation. Algorithm 7 describes in detail the solution approach.
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Algorithm 7 (Algorithm to find Core).

1. Let F ← {xij ∈ {0, 1}, tij ≥ 0;∀i = 1..m, j = 1..n}

2. Solve (5.12)-(5.16)

max
∑
i=1..m

∑
j=1..n

Vijxij

s.t.
∑
i=1..m

xij ≤ 1;∀j = 1..n∑
j=1..n

tij ≤ 1;∀i = 1..m

tij ≤ xij;∀i = 1..m, j = 1..n∑
i=1..m

Bitij ≤
∑
i=1..m

Vijxij;∀j = 1..n

(x, t) ∈ F

Denote the optimal solution by (x̄, t̄)

3. Initialize Si ← {};∀i

4. Perform

for each i

Set Pass(i)← 0

Solve SEP (i) and denote by y∗j the optimal solution to SEP (i)

if Zi
sep > 0

Si = {j|y∗j = 1}

F ← F ∩ {
∑
j=1..n

(Vijxij −Bitij) ≥
∑
j∈Si

(Vij −
∑
i=1..m

Bitij)}

else Pass(i)← 1

5. Check
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if Pass(i) = 1 for each i

DONE

else

Go To Step 2

An important point of note is that the a core allocation and supporting set of in-

dividual item prices (i.e. Walrasian equilibrium prices) may not exist for certain

bidder valuations and budgets. The algorithm that we described above finds the

core with individual item prices, if it exists. In case, there is no such supporting

set of prices, then the algorithm detects infeasibility and will terminate without de-

termining the core. In such a case, we can use the constraint generation approach

similar to that described in Algorithm 7 to find a core allocation with supporting

package prices. We will need to modify step 2 in Algorithm 7 to add constraints that

account for multiple allocated packages not having the same items (we will describe

this procedure in section 5.6).

The following example demonstrates a two bidder case where a core allocation with

individual item prices does not exist. Let us assume that there are four items that

the bidders declare their valuation for. Bidder 1’s valuation for the items is {19,

5, 18, 18} while bidder 2 has a valuation of {19, 16, 18, 17}. Further, the two

bidders have a budget of $21 and $22 respectively. In the first iteration, items 1,

2 and 3 will be allocated to bidder 2 while item 4 will be assigned to bidder 1.

Each item will be be priced at zero. At the current set of prices and allocation, the

most violated constraint for both bidders would involve all the four items. Thus,

the most violated constraint for the bidders will be 19x11 + 5x12 + 18x13 + 18x14 ≥

60−22(t21+t22+t23+t24) and 19x21+16x22+18x23+17x24 ≥ 70−21(t11+t12+t13+t14)

respectively.
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Note that the left hand side of both these constraints has to be greater than 38

and 49 respectively, irrespective of what allocation and prices we arrive at. This

is, however, not possible since it requires that at least three of the xij’s for each

bidder equate to 1. Thus, there is no feasible allocation that can support these two

constraints.

An issue which we have not addressed in this chapter is the incentive of the bidders

to declare bids or budgets that deviate from their true values. Borgs et.al. [BCI+05]

describe the lack of any known incentive compatible mechanism for the multi-unit

auction setting with budget constraints. As there are no known incentive compat-

ible mechanisms, we focused on determining core allocation and associated prices

assuming that the bidders have correctly stated their values for individual items and

overall budget. However, the bidders could shade their bids or budgets and increase

their surplus.

To limit the ability of bidders to substantially shade their values or budgets, we

require that the budget stated by a bidder has to be greater than the maximum

value that the bidder has for any individual item. This ensures that bidders who,

for example, state very high bids for individual items cannot shade their budgets

significantly and still be allocated items by the auctioneer. In fact, by shading the

budget, the bidder will be reducing the possible number of items that the auction-

eer considers for allocation to the bidder. Thus, in the presence of competition, the

bidder negatively affects her own probability of winning items from which she could

have derived a positive utility, if she had stated her true budget. However, if there

only a few bidders participating in the auction, the bidders may have an incentive

to shade their budgets.
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An alternate approach to determine a core solution would be to use the simultaneous

ascending auction described by Cramton [Cra06]. Simultaneous ascending auctions

are ideally suited for settings where the complementarities between the individual

items is weak. All the items are auctioned off simultaneously and the bidders have

the flexibility to bid on any set of items. The auction terminates when none of the

bidders raise the bid on any of the items being auctioned off. In the additive valua-

tion case, the simultaneous ascending auction does not have any exposure problems

since there are no complementarities between the items. Also, the auction provides

the bidders an opportunity to discover item prices over multiple rounds. A key

advantage of this auction format is its simplicity.

The simultaneous ascending auction format converges to a core allocation when the

individual items are substitutes, bidders are price takers and the bid increments in

each auction round are infinitesimally small. In the additive setting that we have

described so far only one of the conditions i.e., items being substitutes, holds true.

In the computational experiments that we describe in the next section, we have

cases where the competition is limited and thus, bidders are not price takers. In

practice, bid increments ranging from 5 to 20% are used. An advantage of the si-

multaneous ascending auction is that the bidders do not have to state their budget

to the auctioneer. In fact, a variant of this format called the clock auction precludes

the bidders from declaring their bids to the auctioneer (the bidders only express the

desired quantities at the price denoted by the clocks associated with each item). In

the clock auction format the bidders which items they are still bidding for in each

round. A limitation of the clock auction is that under budget constraints current

prices of item A can affect the decision to bid for item B. For e.g., assume a bidder

has valuations of $5 each for items A and B and a budget constraint of $8. If the
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current prices for each of the items goes over $4, then the bidder will stop bidding

for one of the two items. Our model does not face this issue.

Three key issues with using the simultaneous ascending auction format are demand

reduction, collusive bidding and convergence issues related to small bid increments.

In case of limited bidder competition, the auctioneer revenues as well as auction

efficiency can be significantly affected due to bid shading by bidders with higher

valuations [Cra06]. Collusion between bidders in FCC auctions has also been ob-

served in practice. The auctioneer can modify the auction rules to reduce collusion

and encourage competition. Cramton [Cra06] suggests methods that include con-

cealing bidder identities, setting high reserve prices and offering preference for small

businesses. The core allocation approach that we have proposed has incentive is-

sues similar to that observed in simultaneous ascending auctions. However, like the

simultaneous ascending auctions, incentive issues are of less concern to us if there is

substantial bidder competition. Our method, in fact, addresses a key issue related

to auction convergence faced in the simultaneous auction setting since our final al-

location and prices are based on a one-time set of inputs from bidders regarding

their individual item values and overall budget. Further, our model considers all

possible core solutions while the choice of bid increments prevents the ascending

auction format from doing so.

5.5 Computational Experiments

We ran the core allocation and price determination algorithm for the additive val-

uation case. The algorithm was run on various problem instances where we varied

three parameters - the number of bidders, the number of items being auctioned off

and the bidder budgets. The bidder valuations for each item were assumed to be
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drawn from a uniform distribution, U [0, k]. The bidder budgets were also drawn

from a uniform distribution. The budget for a bidder is a value drawn from the

distribution U [k, k + p]. Here, p is a parameter that we will vary to observe the

computation time as a function of the bidder budget. We specify four levels for p

where level 1 corresponds to the highest budget level and level 4 is the lowest budget

level (i.e. tightest budget constraint). Also, the value for p at each budget level is

half the value of p at the previous budget level. For example, if level 1 corresponds

to a budget drawn from U [k, k + p] then budgets for bidders corresponding to level

2 will be drawn from U [k, k + (p/2)]. The values for p were selected from the list

[kn, kn/2, kn/4, kn/8], where k is the number used above in the uniform distribution

and n is the number of items being auctioned off.

The algorithm was run using GLPK 4.43 & libraries that allow calls to the GLPK

routine using Python. We used PyGLPK and PyMathProg to write the algorithm

in Python and make appropriate calls to GLPK solver. The code was run on a 1

GB RAM, 1 GHz Intel Centrino machine with Linux OS. The results are shown in

Table 5.1.

Note that the entry NFCS stands for the problem instances where we found ‘No Fea-

sible Core Solution’. Each cell in the table indicates the average computation time

across ten problem instances. The results indicate that our method can determine

the existence of core solution as well as core allocation and prices in a reasonable

time frame. Further, we observe that tighter budget constraints typically result in

higher computation time, for a given problem size.
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Table 5.1: Computation Time for Core Allocation & Prices (Algorithm 7) (in secs)
Budget Level

Bidders Items 1 2 3 4

2 2 0.0281 0.0305 0.0398 0.0485
5 0.4038 0.9050 1.0256 1.1350
10 1.7846 5.0212 5.9336 9.8690

5 2 0.0630 0.0844 0.0868 0.0776
5 0.7063 1.0289 0.9680 0.8325
10 7.5686 8.3460 8.4360 NFCS

10 2 0.2034 0.3124 0.2720 0.3361
5 2.2700 2.1900 1.4396 1.9960
10 13.661 14.4236 16.2740 16.6422

20 2 0.8764 0.9340 1.0332 1.1093
5 4.8166 5.5278 4.8360 6.4280
10 27.6780 28.2726 31.3874 32.7579

50 2 3.484 4.9486 3.915 4.0079
5 22.746 26.655 28.556 32.6245
10 115.306 122.24 133.578 238.25

5.6 Core Formulation for General Package Auc-

tions

In this section, we generalize the core pricing and allocation problem for a combi-

natorial auction where no assumptions are made on the bidder valuations (i.e., the

bidder valuations need not be additive). Similar to the approach in Section 5.4, we

develop a non-linear formulation to define the core and then reformulate it as a MIP.

Let i be the bidder index varying from 1 to m and j be the item index varying from

1 to n. Also, let N be the set of all packages that can be created from the items

and S denote a specific package. Note that the auctioneer has a single copy of each

item and the bidders use the OR bidding language to express their preferences over

the packages. A bidder can be allocated more than one package and the budget

of a bidder has to be greater than the bidder’s maximum value over any package
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that the bidder is interested in. We specify this requirement on the bidder budget

so that the there is a lower bound on how much the bidder can shade her budget.

Further, for any bidder that shades the budget a lot, lesser number of packages will

be considered by the auctioneer for possible allocation to her. Thus, the bidder

will have to take this trade-off between budget shading and lower probability of

being allocated various packages into consideration. The inputs to the optimization

problem are Vi(S) and Bi, where Vi(S) is the value (bid) of bidder i for package S

and Bi is the budget declared by bidder i. The decision variables for the problem

are p(S), the price of package S and yi(S) ∈ {0, 1}, where yi(S) is 1 if the bidder i

is allocated package S and is zero otherwise. A bidder can be allocated any number

of packages that she bids on. The core allocation and pricing problem for a general

budget constrained combinatorial auction is described below.

max
∑
i=1..m

∑
S⊆N

Vi(S)yi(S) (5.23)

s.t.
∑
i=1..m

yi(S) ≤ 1;∀S ⊆ N (5.24)∑
S3j

∑
i=1..m

yi(S) ≤ 1; for j = 1..n (5.25)

p(S) ≤
∑
i=1..m

Vi(S)yi(S) +M(1−
∑
i=1..m

yi(S));∀S ⊆ N (5.26)∑
S⊆N

p(S)yi(S) ≤ Bi; for i = 1..m (5.27)∑
S⊆N

[Vi(S)− p(S)]yi(S) ≥ max{
∑
S⊆N

(Vi(S)− p(S)),
∑
S⊆N

Vi(S)−Bi};

for i = 1..m (5.28)

yi(S) ∈ {0, 1}, p(S) ≥ 0; for i = 1..m,∀S ⊆ N (5.29)

The objective function is maximizing social surplus. Constraint(5.24) and (5.25) are

feasible allocation constraints. Constraint (5.24) indicates that no package can be
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allocated to more than one bidder and (5.25) corresponds to feasibility of items over

the allocated set of packages. Constraint (5.26) corresponds to the set of individual

rationality constraints with respect to the declared bidder valuations. The constant

M is a very large value and we can use the maximum bids and budgets disclosed by

the bidders to arrive at an appropriate value for M . We use the big M method in

constraint (5.26) because we do not want unallocated packages to have their price

constrained i.e., unallocated packages need not have zero core prices. The budget

constraint for each bidder is imposed by constraint set (5.27). Constraint (5.28)

defines the core and specifies that the surplus generated by the allocated package to

the bidder at a price p(S) is at least as large as the surplus generated by any other

package at the current set of prices. Note that the constraint sets (5.27) and (5.28)

are of a non-linear nature.

To linearize the above formulation, we define a variable ti(S), where ti(S) is the

fraction of bidder i′s budget used for obtaining the package S. The MIP formulation

for the previous formulation is -
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max
∑
i=1..m

∑
S⊆N

Vi(S)yi(S) (5.30)

s.t.
∑
i=1..m

yi(S) ≤ 1;∀S ⊆ N (5.31)∑
S3j

∑
i=1..m

yi(S) ≤ 1; for j = 1..n (5.32)∑
i=1..m

Biti(S) ≤
∑
i=1..m

Vi(S)yi(S);∀S ⊆ N (5.33)

ti(S) ≤ yi(S); for i = 1..m,∀S ⊆ N (5.34)∑
S⊆N

(Vi(S)yi(S)−Biti(S)) ≥
∑
S⊆N

(Vi(S)− p(S));

for i = 1..m (5.35)∑
S⊆N

(Vi(S)yi(S)−Biti(S)) ≥
∑
S⊆N

(Vi(S))−Bi;

for i = 1..m (5.36)

p(S) ≤
∑
i=1..m

Vi(S)yi(S) +M(1−
∑
i=1..m

yi(S));∀S ⊆ N (5.37)∑
S⊆N

ti(S) ≤ 1; for i = 1..m (5.38)

p(S) ≥
∑
i=1..m

Biti(S);∀S ⊆ N (5.39)

yi(S) ∈ {0, 1}, p(S) ≥ 0, ti(S) ≥ 0; for i = 1..m,∀S ⊆ N (5.40)

We will use a constraint generation approach to specify the core constraints. Hence,

we solve for equations (5.30)-(5.34) and (5.37)-(5.40) and check if the optimal al-

location and price violate any of the constraints specified by (5.35) or (5.36). If

none of the constraints are being violated, then we have determined the optimal

core allocation and package prices. If, however, any of the constraints in (5.35) or

(5.36) are being violated, then we need to determine the most violated one for each

bidder. This can be obtained by solving the separation problem SEP2(i), for each

bidder, given below.
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SEP2(i)

Zi
sep2 = max

∑
S⊆N

[Vi(S)− p(S)]x(S)

−
∑
S⊆N

[Vi(S)yi(S)−Biti(S)] (5.41)

s.t.
∑
S⊆N

(
∑
i=1..m

Bi.ti(S))x(S) ≤ Bi (5.42)

x(S) ∈ {0, 1};∀S ⊆ N (5.43)

If the value for equation (5.41) is greater than zero, then the Ŝ for which x(Ŝ) = 1

is the package corresponding to the most violated constraint for the specific bidder.

Thus, we need to add the constraint
∑
S⊆M

Vi(S)yi(S)− p(S) ≥ Vi(Ŝ)−
∑
i=1..m

Biti(Ŝ)

to (5.30)-(5.34) and (5.37)-(5.40), and resolve the problem.

From a computational perspective, the amount of computation required to find the

most violated constraint in each iteration is equivalent to finding the package which

gives the maximum surplus to a bidder in any iteration of the Ausubel-Milgrom

auction. However, since our solution is not dependent on any step size for the item

prices, unlike the Ausubel & Milgrom auction, we consider all possible core points

and will not face convergence issues related to the choice of step size. Thus, from

a practical standpoint, our constraint generation approach can be applied to any

combinatorial auction problem where the Ausubel & Milgrom ascending auction is

thought of as a feasible format.

A few researchers have proposed that in the case of package auctions a budget

constrained core allocation can be obtained by a minor modification to the Ausubel

& Milgrom [AM02] algorithm or the method proposed by Day & Raghavan [DR07].

The modification that the researchers propose is to truncate the valuations at the
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bidder budget for each package that the bidders are interested in. The core allocation

algorithms are run on these packages with truncated values. It is, thus, assumed

that the increased computational complexity of the approach described earlier in this

section is not warranted. In section 5.2, we showed an example where there exists

an optimal allocation that does not maximize social welfare when we truncate at

bidder budgets and apply the AM algorithm. This occurs due to the information

loss that is inherent when the valuations are truncated. The method that we propose

always takes the true valuation (assuming bidders bid truthfully) of the bidders into

account and thus, would determine the allocation within core that maximizes social

welfare, i.e., an efficiency maximizing allocation within the core.

5.7 Conclusion

In this chapter, we have demonstrated a MIP based approach to determine individual

item level core allocation and prices under hard budget constraints, when the bid-

der valuations are additive. We provide a computational approach that maintains

allocation feasibility throughout. This is unlike the Ausubel & Milgrom auction,

where none of the interim allocations are feasible. Also, we provide an approach to

deal with the practical impediments in choosing appropriate step size for the same.

Further, we describe a method to determine the bidder-pareto optimal outcome by

refining the core determination formulation.

We extend this approach to combinatorial auctions with general bidder valuations

and show that finding violated constraints in each iteration is computationally equiv-

alent to finding the maximum surplus package determination by the Ausubel &

Milgrom ascending auction. We have run computational tests to provide support

for practical implementations of such an IP based approach in the case of an ad-
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ditive valuation setting. We believe that this chapter addresses some unanswered

research questions for core determination in a budget constrained setting and rep-

resents a first attempt to define a framework and demonstrate an implementation

to simultaneously determine core item prices and allocation.
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Chapter 6

Conclusion

In this thesis, we have attempted to model budget constrained combinatorial auc-

tions in the context of sponsored search and other multi-unit allocation settings.

The last decade has seen an explosive growth in application of auction theory to

resource allocation problems in many online as well as offline settings. Practical ap-

plications have included online advertising, supply chain coordination, procurement

auctions, airport slot allocation, wireless spectrum allocation and fantasy sports.

Researchers from diverse fields such as computer science, economics and operations

research have contributed significantly to literature that examines economic proper-

ties and computational issues of these auction formats. An issue that has received

very limited attention from the research community is the presence of hard bud-

get constraints. Hard budget constraints introduce a non-linearity effect in bidder

valuations, which results in mechanisms like the VCG losing their economic prop-

erties. Further, the presence of budget constraints makes the resource allocation

and pricing problem significantly more difficult from a computational standpoint as

compared to algorithms for the unconstrained case. We provide various frameworks

to address multi-unit, budget constrained auctions from the perspective of the auc-

tioneer as well as the bidders.
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Auction mechanisms have become the de-facto standard for pricing and allocation

of ad space for many online advertising channels. The significant growth in rev-

enues that has occurred for firms such as Google, Yahoo and Facebook over the

last few years can be mostly attributed to the application of auctions to online ad-

vertising. Auctions are prevalent across online advertising channels such as search

engine marketing, graphical display ads, social media ads, contextual text ads and

mobile advertising. These online advertising channels have the channel operator

(e.g. Google, Yahoo etc.) creating a platform for advertisers to set bids for various

biddable units and budgets for campaigns, while the channel operator solves an al-

location and pricing problem with the bidder inputs. Currently, these mechanisms

account for more than $30 billion dollars of advertising spend online. The significant

economic value, the pervasive use of these auctions and the lack of research address-

ing computational implications of budget constraints in these auctions motivated us

to address in this thesis the following research questions.

1. Search engine platforms currently use generalized second price (GSP) auctions

for pricing and allocation. The GSP auction is not incentive compatible. Can

we formulate the auction problem in the incentive compatible VCG framework

and use optimization methods to solve optimally in real time typical problem

sizes that the search engine operators face? Further, can we enhance the

expressiveness of the auction for the bidders and still solve the auction in real

time?

2. The large advertisers bid on hundreds of thousands of keywords on a daily

basis and have hard budget constraints to deal with. Are there computational

methods that can help advertisers determine optimal bids to place on the

various advertising channels when dealing with tens of millions of decision

variables?

110



3. The auctioneer is typically interested in revenue maximization. In case of

bidders with hard budget constraints and additive valuations over items, can

we use the decomposible constraint structure of the revenue maximization

problem to efficiently solve the problem to optimality?

4. When the auctioneer is aiming to achieve social value maximization and the

bidders have hard budget constraints along with additive valuations over items,

are there computational methods to help the auctioneer arrive at an optimal

allocation and price vector (specifically individual prices for items) such that

neither the auctioneer nor any of the bidders have an incentive to deviate from

the optimal solution? Further, can we extend our methodology to address

general package auctions?

Chapter 2 attempts to address research question 1 posed above. Instead of specify-

ing a single bid for a keyword, the auction format we consider provides the bidders

the ability to express different bids for various ad slots. Here, the allocation and

pricing problem faced by the auctioneer is formulated as an assignment problem.

Using the Hungarian algorithm for assignment problem, we demonstrate how the

auctioneer can solve the allocation and pricing problem in real time, even with

this increased expressiveness. Consequently, this also provides VCG prices for the

auction. We also extend the model to solve for the option of allocating multiple,

contiguous slots to advertisers (which is appropriate for graphical ads). Currently,

Facebook uses a VCG mechanism for its biddable advertising marketplace [Heg10].

Advertisers bid to place ads for specific targets (e.g., age range, likes & interests,

geo etc.) and Facebook uses a VCG mechanism to determine allocation and pricing.

Our approach provides an algorithm that can determine the optimal solution for

their auction in polynomial time.

In chapter 3, we formulate the problem that budget constrained advertisers face

111



while attempting to determine optimal bids for each keyword of interest. We for-

mulate the problem as an integer program and show that the linear relaxation to

the problem has a “near-integral” property. We use column generation approach

to solve the linear relaxation to optimality for large scale problems (problems that

involve upto 24 million decision variables). Further, we demonstrate the application

of a branch and price algorithm to solve for the IP formulation. To our knowledge,

this is the first time that such methods have been applied to solve large-scale bid

determination problems in online advertising from the bidder’s perspective. Chap-

ter 3, thus, addresses research question 2.

To address research question 3, we use a MIP formulation to determine optimal

prices and allocation for a revenue maximization auctioneer objective and additive

bidder valuations with hard budget constraints. Chapter 4 uses the Benders decom-

position framework to recast the MIP formulation as an iterative auction mechanism.

Although the Benders formulation does not provide any improvement over the OPL

results (OPL is a commercial software to solve MIPs), it does provide a framework

to arrive at the optimal solution with limited information revelation by the bidders.

Chapter 5 deals with the determination of a core solution for a social welfare maxi-

mizing auctioneer with the bidders having hard budget constraints. Chapter 5 seeks

to address research question 4. First we deal with the case when bidder valuations

are assumed to be additive. In this case, we use a constraint generation method iden-

tical to that in Day & Raghavan [DR07] to arrive at a core solution. However, our

model has to incorporate the budget constraints and thus, we develop a method to

determine core prices and allocation simultaneously. Further, our method provides

individual item prices for the additive case. To the best of our knowledge, this is

the first time that core solution determination for budget constrained auctions with
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individual item price feedback has been addressed algorithmically in the research

community. We, also, extend our approach to demonstrate how general package

auctions with budget constraints can be formulated as MIPs and extend the use of

the constraint generation technique to determine core prices and allocation.
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