JOURNAL OF PROPULSION AND POWER
Vol. 15, No. 2, March—April 1999

Solving for Mistuned Forced Response by Symmetry

B. Shapiro*
California Institute of Technology, Pasadena, California 91125

The introduction of mistuning in jet-engine bladed disks can lead to large changes in stability and
forced response. Even small random mistuning (within the bounds of manufacturing tolerance) can lead
to unacceptable response and high-cycle fatigue. Meanwhile, intentional mistuning may improve stability
and forced response under manufacturing uncertainty. This paper presents a general framework for
predicting forced response as a function of mistuning. Because the forced response problem is an almost-
singular linear problem, its solution is highly nonlinear in the mistuning parameters. Our methods exploit
symmetry arguments and eigenstructure perturbation to provide a method valid for any model. It is
shown that, by perturbing eigenvectors in the numerator and the inverse of eigenvalues in the denomi-
nator (exploiting symmetry in both computations), we can accurately approximate the forced response
as a function of mistuning. Results are demonstrated for a simple lightly damped model, and the con-
sequent sharp nonlinear behavior is captured almost perfectly. We also show that intentional mistuning
may guarantee improved stability and forced response under fixed manufacturing tolerances. Thus, in-
tentional mistuning should be considered as a practical means of increasing safety and enhancing engine

performance.

Nomenclature

= A@R) = [iwl — M(2)], inverse matrix of Eq. (13)

= a, 4 linear eigenvalue perturbation coefficient of

Eq. (52)

Ith forcing vector, Eq. (11)

b; 4, i quadratic eigenvalue perturbation

coefficients of Eq. (52)

(fi. fo - -, f) cascade model, Eq. (1), f; dynamics

of jth blade

= f(x, z) unforced system in Eq. (9)

f'(x, z, t) forced dynamics, Eq. (9)

I mod r, excited modes in tuned response, Eq. (44)

spatial mode index in fixed frame, Eq. (11)

= M(z) linearization of f about x*, Eq. (12)

number of states per blade

rm, total number of states

e*™" jth phase coefficient, Theorem 3.1

number of blades

S; 4, quadratic eigenvalue perturbation matrix

T™' = T(z), T"'(z) matrix of right, left eigenvectors of

M(z), Eq. (34)

t = time

24 = Ul(z) € C" left (row) eigenvector of M(z), in
indexing of Theorem 3.1

uj = uj(z) € C, first m elements or block of U{(z),
Eq. (40)

Ve = V¥z) € C" right (column) eigenvector of M(z), in
indexing of Theorem 3.1

V; = vi(z) € C™, first m elements or block of V{(z),
Eq. (40)

X = X(z) forced response in frequency domain (13), X7
for jth blade, gth mode

x = (x;, X2, ..., X,) system state, x; € R™ states for jth
blade

x* = x*(z) equilibrium point of unforced system f,
Eq. (9)
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z = (21, 2 - - - » 2,) Mistuning vector, z; € R mistuning
of jth blade

B = B(2), first m elements or first block of B,(z),
Eq. (40)

14 = {(0) disturbance in stationary frame, Fig. 2

n = —Re[AJ(0)], tuned damping, Eq. (71)

A = A(z) diagonal matrix of eigenvalues of M(z),
Eq. (34)

¢ = AJ(z) eigenvalue of M(z), indexing of Theorem 3.1

w = ul(z) an eigenvalue of A™'(z), indexing of
Theorem 3.1

T = 27/r(} system symmetry time lag, Eq. (5)

o) = rotation operator, defined in Eq. (4)

Q = cascade angular velocity, Fig. 2

w = [Q) forcing frequency for /th mode

I. Introduction

IGH-cycle fatigue in titanium engine parts has been iden-

tified as the predominant cause of several hundred inci-
dents over the past three decades.' These incidents have ranged
from class A mishaps down to maintenance actions. [Class A
mishaps involve either 1) property damage in excess of one
million dollars, 2) U.S. Air Force aircraft damaged beyond
economical repair, or 3) human fatality or a permanent and
total disability.] In fact, high-cycle fatigue has been explicitly
identified as the dominant unexpected engine failure mode
from 1989 to 1994.” Furthermore, fatigue failures are typically
dormant: they are identified only after failure has occurred,
even though the root cause may have been present for some
time. Such data forces an obvious question: what causes these
surprise high-cycle fatigue failures?

One potential explanation is blade asymmetry, caused by
manufacturing tolerances or wear and tear, which can lead to
large asymmetric forced response with resulting high-cycle fa-
tigue. Ideally, fans or compressors are tuned (all blades are
identical). In reality, manufacturing along with engine wear
creates mistuning (blades are different from one another). It is
well known that even a small amount of mistuning can induce
a large asymmetric forced response known as mode localiza-
tion.>* Only certain mistuning patterns lead to an unacceptable
response and, because the majority of engines remain opera-
tional, the probability of these patterns occurring must be
small. Still, the same probability may be unacceptably large
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by safety standards (we show such an example in Sec. VII).
Fatigue because of mistuning is a natural suspect because it
displays all of the required symptoms: failure because of an
unacceptable mistuning pattern is unexpected (of low proba-
bility and probably not seen or predicted by any experiment
or analysis), and it is dormant (root cause present for consid-
erable time before failure).

Although random mistuning can lead to failure, intentional
mistuning can provide benefits. For one, it can push back flut-
ter margins to allow increased performance.’~ Previous au-
thors have noticed that such an increase in stability can be
accompanied by mode localization. As a result, intentional
mistuning has been viewed as a tradeoff between a benefit in
stability vs a detriment in forced response. It is true that the
introduction of intentional mistuning typically creates a larger
forced response; however, this misses the point. If intentional
mistuning is chosen intelligently, it may lead to robust behav-
ior. In Sec. VII we show a case where the tuned system is not
robust: small manufacturing tolerances can lead to disastrous
forced response and even instability. Upon the introduction of
intentional mistuning, the system becomes robust: now ac-
ceptable forced response and stability are guaranteed under the
same manufacturing tolerances. Clearly, the latter situation is
preferable to the former. Consequently, intentional mistuning
(if done properly) might answer the challenge posed by the
U.S. Air Force Scientific Advisory Board (AFSAB)' to prevent
fatigue failure through better management of vibratory
stresses. It is the AFSAB opinion that this task cannot be ac-
complished through improving resistance of materials to vi-
bratory stresses (except perhaps through composites) or by im-
proved nondestructive evaluations. Hence, other methods must
be investigated and we feel that intentional mistuning is one
of the more practical alternatives, it makes use of existing tech-
nology and does not require new materials or manufacturing
techniques.

To this end, we must understand the effect of mistuning on
stability and forced response. It is impossible to do so exper-
imentally, as even with just two different blade types the num-
ber of combinations grows as 2", where r is the number of
blades. Consequently, our approach must be analytic. More-
over, it must not only predict behavior for a given mistuning,
but it should reveal underlying design tradeoffs to facilitate
improved engine design. Figure 1 shows our analysis goal. At
the top of the figure we find a first-cut approach: take an en-
gine model X = f(x, z, £) and plug in mistuning z to find
response X. Such an approach is not useful for two reasons:
1) it is computationally intractable (to map out the mistuning
space we have to run the possibly complex model f on the
order of 2" times) and 2) it provides no insight. By comparison,
the approach at the bottom of Fig. 1 takes model ¥ = f(x, z,

Low analysis; high complexity: almost useless.

[/

Specific Model
x = f(x,z,t)
Valid for any z.

D Analysis

Perturbation Method

X =P
Valid for any f. [:>

High analysis, low complexity: useful for design.

Fig. 1 Developing a method valid for any model.

1) as its input and generates the functional X(z) as output. Now
we have an (ideally simple) expression for response as a func-
tion of mistuning z. From expression X(z) we can learn sen-
sitivities and design tradeoffs. Instead of iterating on mistun-
ing, we can iterate on models. Computation complexity has
been vanquished. Because the method is model independent,
we can gain invaluable understanding on how sensitivity to
mistuning varies with parameters and between models. Our
paper presents the analysis arrow and achieves the analysis
goal at the bottom of Fig. 1, providing a simple accurate func-
tional X(z) that reveals underlying design tradeoffs.

By comparison, previous work”'® varies between the top and
middle of Fig. 1. It is not difficult to justify this statement:
there are a number of problems considered untractable in the
literature that are trivial in our framework. For example, the
combinatoric optimization problem of arranging mistuned
blades to maximize stability is claimed untractable in the lit-
erature,'' but is solved closed form in Ref. 9 (albeit in a prac-
tical special case). Robustness guarantees under manufacturing
tolerances cannot be achieved using current methods in the
literature, but are given here in Sec. VII. In Ref. 12, Monte
Carlo simulations are performed on a specific model to check
the probability of unacceptable forced response (precisely the
top approach of Fig. 1). This approach is justified by the claim
that all analytic methods (such as in Ref. 13) fail when the
system is lightly damped. This is not so. At worst, Monte Carlo
simulation can be performed orders of magnitude more effi-
ciently on our functional relation X(z) of Egs. (43), (66), and
(68). At best, these equations will be amenable to analytic
estimates of probabilities; certainly we can guarantee a zero
probability in some cases by the bounds of Sec. VII. However,
our most significant contribution is one of understanding.

We know the symmetric or tuned point is degenerate; it
satisfies the rule that all blades are the same. This constrains
the eigenvectors or mode shapes to have a constant inter-blade-
phase-angle. Hence, forcing excites only some of the modes
with resulting acceptable behavior. However, even a small
amount of mistuning will break the constant inter-blade-angle
eigenvector constraint. In that case, the remaining lightly
damped modes are exicted, creating a disastrous forced re-
sponse. Such an understanding reveals the underlying tradeoffs
between stability, forced response, and robustness, including
how these depend on damping, mode placement, and manu-
facturing tolerances. These results rest on two mathematical
techniques: 1) symmetry arguments and 2) eigenstructure per-
turbation.

II. System Symmetry

Mistuning is fundamentally concerned with symmetry and
symmetry breaking. As a result, the symmetry arguments pre-
sented in this section are the natural tools of analysis. These
arguments formalize the following obvious statement: “Given
a tuned system, mistuning blade one and observing blade two
is the same as mistuning blade three and observing blade
four.”” They hold true for every aspect of the problem, whether
it is initial model formulation or final performance optimiza-
tion. In our analysis, symmetry is applied to any dynamic dis-
crete-blade cascade model of the form X = f(x). Symmetry
arguments also apply to imposed sinusoidal motion models
that correspond to the special case x restricted to x(f) = ¥ +
x'e'. In fact, conclusions achieved by symmetry considera-
tions apply even when f(x) cannot be written explicitly, as is
the case in computational fluid dynamic (CFD) models.

Suppose a fan or compressor has r blades. Start with any
cascade flutter model of the form

X=f(x,z1 e))
where x = (x,, X», ..., x,) = R™ is the state vector with x; €

R™ corresponding to aerodynamic and structural states for the
ith blade. Mistuning is represented by the vector z € R". An
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element z; € R denotes mistuning for the ith blade. For ex-
ample, if we mistune the stiffness of individual blades, then
define the ith blade stiffness k; = ko(1 + z), where ko is the
nominal or tuned stiffness. As in this example, z = 0 will al-
ways denote the tuned case. Finally, t represents time because
we allow time-dependent forcing.

Consider the dynamics of the first blade:

X = filxn, Xa o X 2 Z2s e e T 1) 2)
which correspond to the first block row (the first m rows) of
the vector field f in Eq. (1). Clearly, the dynamics of the first
blade (¥,) depend on the state of the third blade (x;), the same
way the dynamics of the second blade (¥,) depend on the state
of the fourth blade (x,). The same holds for the mistuning vector
z, the dynamics of the first blade (¥,) depend on the mistuning
of the seventh blade (z;), the same way the dynamics of the
third blade (¥;) depend on the mistuning of the ninth blade (z,).
Applying this chain of logic to all blades, we must have

x'l =fl(x9 Z, t)

=fi(X0, X2, X3, ooy X1, Xy 20, 220 235 v e s Zrm1s 2 )
X, =folx, 2, 0
= filxs, x5, . ..

+ Qw/rQ))]

s Xre1s Xy X15 225 235 v v o5 Zr—15 2 215
x3 =.f3(x7 Z, t)
= filxs, X4, ..

+ (d/rQ))]

cs Xp X1 X2, 235 Zas - -5 s 215 225 B

X, =fx,z 0
=fi{x, xi, ... RS AP AR 3

+ [27(r — D/IrQY]}

s Xr—25 Xr—15 Zps 215 -+«

The time shift of 277/r() in expression (3) follows from assum-
ing a stationary disturbance, as would be generated by stator/
inlet guide vane wakes or by an inlet distortion. For a cascade
of undeformed blades rotating at angular velocity £ past such
a stationary disturbance (as in Fig. 2), the disturbance at blade
two will precede the same disturbance at blade one by 27/r().
Now consider the case where blades are deforming because of
their states x and possibly their mistuning z (for example, mis-
tuning stiffness will change the nominal deformation of blades
under aerodynamic loading). If at time ¢, blade one is deformed
from its nominal angular position 6, by some amount s be-
cause of its state (x, = «) and its mixtuning (z, = ), then it
occupies the position 6, + (e, B) and has some shape de-
formation {(a, B). It follows that if blade two has the same
state (x, = «) and mistuning (z, = B) at time ¢t + 27/r(}, then
it must deform an identical amount and will also occupy the
position 6, + Y(a, B) with the same shape {(a, B). At these
two identical conditions (same position and shape), blades one
and two will experience the same dynamics because of forcing.
This is precisely the statement in Eq. (3), ¥, depends on x,, z,,
and ¢ the same way %, depends on x,, z,, and t + 27/rQ}.

To ease notation we define the rotation operator ¢, which
rotates vectors of size m or rm to the left. The scope of the
argument (size r or rm) is clear from context:

Q2 2oy oo s 2) = @i Loty o e s oo T+ v 05 Z5)
‘ Z; (S R or C (4)
Q(xy, X2y o0, X)) = (xl+j’ Xotjs oov s Xy X1y 0o vy xj)
x, € R"or C”

0 Rotating Frame

>0
=

Stationary Frame

AN

Disturbance
)
3

Fig. 2 Cascade disturbance.

For convenience, ¢' is written simply as ¢, and ¢~' is the

inverse rotation to the right. Using the rotation operator and
defining 7 = 27/r(}, condition (3) on model (1) can be re-
written succinctly as-

ef(x,z,0)=f(px, 9z, t + 7) %)

Applying Eq. (5) a total of r times, we note f(x, z, ) = f(x,
z, t + 27/Q), which is of course the periodicity associated
with a complete rotation: As shown in Fig. 2, we have assumed
that the disturbance {(6) is constant in the stationary frame.
Expression (5) is a system symmetry and is the basic build-
ing block for all of the analysis that follows. Let &%, s, z, ©)
denote trajectories or solutions to Eq. (1), with initial condition
X at time s, where the mistuning has been fixed at z. For this
initial condition £ at time ¢ = s [so x(s) = &%, s, z, 5) = %],
the state of the system at any other time 7 is given by x(f) =
&R, s, z, 1). It follows from Eq. (5) that solutions & must satisfy

PR, 5,2, 1) = &(eX, s + T, 9z, + 7) (6)

For a proof of this, see Theorem A.1. Equation (6) says that,
if we know the solution for £, s, and z, then we have also
found the trajectory for initial condition @£ at time s + 7 with
mistuning ¢z.

In the special case of a tuned cascade (pz =z orz;, =z, =
-++ =z,) and no forcing [no time dependence in Eq. (1)], we
can drop the now redundant z and ¢ notation to reduce Eq. (5)
to

F&) =7 fex) )]

If we further pick tuned initial conditions ¢# = £, then Eq. (6)
becomes (s is dropped because all starting times are equiva-
lent)

PR, 1) = &R, 1) ()

which implies &,(%, ) = &%, ©) = -+ - = €%, 1), and the solution
remains tuned for all time.

In the remainder of this work we study the leading-order
linear problem (see Sec. II1.B), and so exploit a special case
of Egs. (5) and (6). Nevertheless, it is instructive to note the
scope of symmetry arguments that provide results for the full
nonlinear system [Eq. (1)]. Interested readers are referred to
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Golubitsky et al."* for a deeper analysis of symmetry tools and
their application to dynamical systems.

III. Linearization and Symmetries
A. Assumptions

To show the assumptions made, break up the full forced
nonlinear system [Eq. (1)] into a forced and unforced part:

x=fxz,0)=f02 +f(xz1 )

here f is the dynamics of Eq. (1) if there is no disturbance,
and f” is defined as f — f. Now consider an equilibrium point
x*(z) of the unforced system, f[x*(z), z] = 0. (It is crucial to
note that x* can vary with mistuning; for instance, a change
in stiffness will cause different nominal deformations in blades
because of aerodynamic loading.)

It seems valid to assume that the equilibrium point of inter-
est x* for the tuned unforced system f(x, 0) is symmetric,
x*(0) = ex*(0), because, if this assumption does not hold, then
we must have a whole family of equilibria: x¥(0) = x*(0),
x$(0) = @x*(0), x3(0) = ¢°x*(0), - -+, x*(0) = ¢ 'x* (0). See
Lemma A.1, which is an occurrence not seen in jet engines.
Linearization of Eq. (9) about x*(z) yields the time-varying
linear dynamics:

of af

o x*@), 2] + [x*@). z, 1]
2=q o [x = x*@] + f'*@). 2. 1]

time invariant time varying

(10)

As an example, in simple aerodynamic models, the force on
blade i is proportional to the distance between adjacent blades
times the angle of attack: sin(a)[x;+, — x;-,]. An inlet distortion
changes the incoming velocity in the fixed frame, and so, spin-
ning blades see a resulting variation in angle of attack as a
function of time, a(f) = a + A(f?). This results in the linear
time-varying perturbation term {sin[a + A($)] — sin(a)}(xi+:
— x;-1). Even though such terms are physically of second order
[the first-order effect is clearly sin(a)(x;+y — x:i-1)], they are
perturbing a lightly damped matrix (8 f/dx) (turbomachines
have lightly damped modes), and so, may cause large changes.
Clearly, one must solve the time-invariant problem before at-
tempting the more difficult time-varying case, and so, we ne-
glect the [0 f'/0x] term in the remainder. However, future work
should examine the effect of the time-varying [0 f'(. .., £)/dx]
term and check whether it can be ignored.

B. Linear Problem

To leading order, forced response is a linear problem. Two
analytic methods are required to solve the problem: the first is
a symmetry arguments toolbox as addressed in Sec. II and
specialized to linear systems later in this section; the second
is a set of linear algebra tools dealing with perturbations of
eigenvalues and eigenvectors (Sec. V). In this section we dis-
cuss the first method.

Neglecting higher-order terms (including the time-varying
linear term [0 f'(. .., ©)/ox], as described in Sec. IIL.A) we get
the standard linear problem:

% = M@)x + B,(z)e™ (11

Here

M@) £ {gf [x*(2), z]} (12)

and the deviation from equilibrium x — x*(z) has been rela-
beled as x. Coefficient B, corresponds to the Ith spatial mode

of the disturbance in the fixed reference frame: {(6) = sin(/6)
in Fig. 2 with resulting forcing frequency w = I).

For M(z) stable (see Ref. 9), the transient response decays
to zero and the steady-state forced response may be written in
frequency domain as

X() = [iwl — M@)] 'B.(2) (13)

Here, steady-state forced response in the time domain is given
by X(z, ©) = X(z)e'". Because analysis is conducted at a fixed
spatial mode /, X dependence on / and w is understood but
dropped in the notation.

Up to our linear time-invariant formulation, expression (13)
provides the exact forced response for any specific mistuning
z. Yet Eq. (13) by itself is not useful for two reasons.

1) It is computationally infeasible to re-evaluate Eq. (13) for
each new mistuning pattern; typical cascade models have many
states and require long computation times. Consequently, it is
impractical to characterize response to mistuning by comput-
ing Eq. (13) for a large set of mistuning patterns.

2) Computing Eq. (13) for each new pattern z provides al-
most no understanding. Sensitivity and parameter dependence
is not revealed by exhaustive calculation.

Instead, one should find an approximation of the forced re-
sponse as a function of mistuning, X(z) ~ X(z), where X is
tractable and provides insight. To do so, we must approximate
the inverse of A(z) = [iwl — M(z)] in Eq. (13) as a function
of z. In Sec. IV we find that because A(z) is almost singular,
its inverse is a steep nonlinear function of z. Thus, approxi-
mating this inverse matrix is at once our main aim and the
major difficulty.

Toward this aim we now discuss symmetries of Eq. (13). In
Lemma A.3, we show how symmetry (5) along with equilib-
rium symmetry ¢x*(z) = x*(¢z) (see Sec. III.A and Lemma
A.2) imply a symmetry on the linearization M:

eM(z) = M(e2)¢ (14)

This is to be interpreted as follows: for any vector x

¢[M(z)x] = M(¢2)(ex) 15)

and so, ¢ only acts on vectors as defined in Eq. (4). If we now
let z = 0, we find that M(0) must satisfy M(0) = ¢~ 'M(0)o,
and so, it is trivial to check that the tuned linearization M(0)

must be block circular. Precisely, M = M(0) must have the
form

Ml Mz Ma Mr—l M,
M, M, M, M, M,_,

M = K . (16)
Mz M3 Mr—l Mr M;

where M; € R™".

The structure in Eq. (16) motivates Theorem 3.1, which is
crucial in analysis and computation. Now let p; = exp(2ij/r)
denote powers of the rth root of unity, where i = \/—1, and
define

Q=M+ pM, +pMy + - +p~'M, € C™"
je2,....,n A7

Theorem 3.1: For M a block circular matrix as in Eq. (16),
let A, uf, and v{ be the dth eigenvalue, left eigenvector, and
right eigenvector, respectively, of Q;. Then (A]) form eigen-
values of M with left and right eigenvectors U = (u},
pj_uls piuf, .., puf) and Vi = @f, pyi, ... PV
pi Vi)
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For proof of the preceding theorem, please see the Appen-
dix. This theorem also proves the constant inter-blade-phase-
angle assumption (corresponding to preceding symmetric ei-
genvectors with phase angle p;), common in flutter analysis,
which only holds when the system is tuned. Matrix symmetry
(14), together with Theorem 3.1, imply a symmetry on the
mistuned right and left eigenvectors of M(z):

Vi@ = po Vi)

Sy (18)
Ui =p; ¢ 'Uj(ez)

with notation of Theorem 3.1 (see Lemma A.6). Recall that
right and left eigenvectors, V and U, are defined by MV = AV
and U™ = AU, respectively. Proofs of earlier statements,
Theorem 3.1 and Lemmas A.3 and A.6, may be found in the
Appendix.

In fact, every object associated with Eq. (13) inherits a sym-
metry from the nonlinear symmetry Eq. (5). For instance, ei-
genvalues A(z) of M(z) have an invariance symmetry, Lemma
A.S:

A(@) = Agz) 19

Physically, if we change the first blade or the 10th blade (a
rotation by nine of z), our eigenvalues (and, hence, quantities
such as minimum damping) will remain the same. Eigenvalue
invariance is the fundamental assumption made in our stability
9
paper.
Perhaps the most important symmetry of all is that of the
forced response, Lemma A.7:

X@) = po” ' X(¢2) (20)

Hence, if we know the first blade dynamics X,(z) for arbitrary
mistuning z we know the entire response by

X>(2) = p.X\(¢2)

X;@) = piX\(¢z) 1)

X,(2) = pi ' Xi(¢'2)

This means that instead of having to approximate the entire
forced response X, we only have to find X,(z) and all other
blades X, ..., X, follow from Eq. (21). This is true for all of
the symmetries (linearization M, eigenvectors V and U, eigen-
values A, forcing vector B, and forced response X), they allow
us to find the entire object for any mistuning z by computing
a single blade or block as a functional form. To conclude, we
list all relevant symmetries in Table 1.

IV. Perturbation Comparisons

We compare two methods of approximating the inverse ma-
trix A7'(z) = [iwl — M(z)]. Method one is a series expansion
whose variations are used in much of the mode localization
literature. Method two is based on eigenvalue/vector pertur-
bations and is developed in Sec. V.

A. Series Approximation

If the spectral radius of matrix P is less than one, p(P) < 1,
meaning that all eigenvalues of P lie within the open unit disk,
[A] < 1, then the following series converges:

U+P)'=I-P+P ~P + - (22)

Series (22) may be used to approximate the inverse of matrix
A@2) = [iwl — M(2)] in Eq. (13). In shorthand, let A, = A(Q)
and AA, = A(z) — A(0); then

AT'@) = (Ao + AAY™
= [A( + AF'AA)]
= (I + As'AA) A"
= [ — Ag'AA, + (Ag'AA)” — -4, (23)

which converges if and only if p(4,'AA,) < 1. A fundamental
problem is that A, is almost singular. Engines have light damp-
ing, [A(0)] =~ 0, and can be forced near resonance, w =~
ReIm[A;(0)]. Hence, A(0) can have an almost zero eigenvalue:
iw — A\(0) ~ 0. Consequently, Ay is very large, and so
p(Ag'AA,) < 1 only allows very small matrices AA, and, hence,
only a small range of z is permitted. Thus, the series method
has a tiny region of validity when the system is lightly damped
and forced close to resonance, as is the case in turbomachines.

B. Eigenvalue/Vector Approximation
The inverse matrix A~'(z) can be written as

A2 = liwl — M) = T)liwl — A@]1'T '@ (24)

where

1
iw — A(2)
liwl = A@]™' = (25)
1
iw — A,(2)

Here A(z), T(z), and T~ '(z) are the eigenvalues and right/left
eigenvectors of linearization M(z). By approximating eigen-
values A(z), we can easily capture matrix (25), even when A(z)
is almost singular: iw — Aj(z) =~ 0.

Table 1 System symmetries®

Object Symbol Symmetry Equation Proof

Model [ S, z,D=0¢""f(ex, ¢z, t + 7) [} Sec. I

Unforced model fx, 2)=¢ " f(ox, ¢z) ©) Trivial

Trajectories & ER, 5,2, =@ 'E(@R, s + 1,0z, 1 + 7 (6) Theorem A.1
Equilibrium x* x*@2) = ¢ 'x*(¢z) (10) Lemma A.2
Response X X@) = po~ ' X(¢z) (13) Lemma A.7
Forcing vector B, B,2) = p,¢ 'B/(¢2) (13) Lemma A.4
Linearization M M(2) = ¢~ 'M(¢2)e (13) Lemma A.3
Eigenvalues A A(Z) = A(¢2) 37) Lemma A.5
Right eigenvectors v/ V;,‘-’(z) =p;io” ' Vi(¢g2) 37 Lemma A.6
Left eigenvectors U Ui@z) = p; '¢"' U (¢z2) 37 Lemma A.6

apj = exp(2mij/r).
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A fundamental limitation of this method is eigenvalue col-
lision. When eigenvalues are indistinct, A;(z) = A,(z), eigen-
vectors become discontinuous and the eigenvector perturba-
tions of Sec. V fail. If M(0) has almost indistinct eigenvalues,
then small z may cause these eigenvalues to collide on some
surface that passes close to the origin, and our perturbation
technique (which begins at the origin z = 0) will not be able
to see close to or past this surface. A concrete example of this
phenomena is demonstrated in Sec. IV.C.

As noticed by Mignolet and Hu" and others, it is difficult
to check the series convergence condition p(4,'AA,) < 1 for
general matrices A, and mistuning z. It is even more difficult
to check the distinct condition of the eigenvalue/vector
method. However, this does not prevent us from checking
these conditions for a simple example. We do so next and note
that method limitations revealed by the example generalize to
arbitrary linear systems.

C. Example: Series vs Eigenvalue/Vector Convergence

Take the simplest possible case: two blades, r = 2, with one
state per blade, m = 1. Pick the following matrix A(z) = [iwl
— M(z)], with symmetry (14):

a+ z, b+zz] 26)

where coefficient @ may be complex (it depends on iw), but
21, 25, and b are real. Matrix (26) has eigenvalues
M) =a — b, M@y=at+b+z t+z @7

with right (column) eigenvectors

V,(z)=[”“2 ]

"b'_Z|

1
V@) = [1] (28)
and left (row) eigenvectors

(1, -1
2b + 7, + 2,

s e

U@ = 2+ + 2

The inverse of A(z) is given by

A'@ =1/[@ - b)a + b+ z, + )]
X[a+z2 —b-—z:] (30)

-b—-2z a+z

We see immediately that A™'(z) has a steep nonlinear depen-
dence on z if a + b =~ 0, precisely if A(0) has an eigenvalue
close to zero: A,(0) = 0.

It is trivial to check convergence conditions of the series
and eigenvalue/vector methods for this example. Matrix
A5'AA, in Eq. (23) has eigenvalues:

6=0,  L=( + )+ b)
Hence the condition for convergence of the series method is
given by

p(AT'AA) < 1 & |z, + 2| < |a + b] @31)

Expression (31) is a conservative guarantee that Ay(z) # O in
Eq. (27).

On the other hand, our eigenvalue/vector perturbation that
begins at the origin, z = 0, will not be able to see across the
1/2b + z, + z,) singularity in the eigenvectors (29). Hence,
the eigenvalue/vector method only converges if

721+ 2>—2b when b=0
32)
3+ < —2b when b<0

where b is real. This is exactly the point where eigenvalues
become indistinct:

AE) =A@ =2b+ 2z, +2,=0

If A(0) is almost-singular [A,(0) = a + b = 0], but the
eigenvalues are far from being indistinct [A,(0) — A,(0) = 2b
# 0], then the series approximation has a tiny silver of con-
vergence while the eigenvalue/vector method has a large re-
gion of convergence (Fig. 3). [Shading denotes regions where
Egs. (31) or (32) fail and methods do not converge.] This is a
case we expect to see in practice. For the contrary case: nearly
indistinct eigenvalues [A,(0) — A,(0) = 2b =~ 0], but far from
singularity [A,(0), A,(0) & 0, hence, a =~ 0], the series method
is good and the eigenvalue/vector method is bad (Fig. 4). For
the case where we have indistinct and almost-singular eigen-
values [A,(0) = A,(0) =~ 0 or a = b ~ 0], both methods are
poor (Fig. 5). This can also be the case. For example: com-
pressors with many small rigid blades may exhibit closely
spaced, lightly damped modes.

It should be noted that variations and enhancements on the
series method will still be poor in the almost singular case.
Fundamentally, it is not possible to approximate the (multi-
variable) discontinuous function 1/[iw — A,(z)] by a smooth
polynomial expression

Ulio — A@)] ~a, +a,'z + 2747+ -+~

in a substantial region of z space when iw — A;(0) is small.
Yet, it is possible to achieve an approximation that holds over

zl

SERIES EXPANSION EIGENVALUE/VECTOR

Fig. 3 Method convergence: almost-singular case.

SERIES EXPANSION EIGENVALUE/VECTOR

Fig. 4 Method convergence: almost-indistinct case.

EIGENVALUE/VECTOR

SERIES EXPANSION

Fig. 5§ Method convergence: almost-singular and indistinct cases.
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Table 2 Perturbation method validity

Eigenvalue = Low damping® High damping”
Distant Eigen approx. / Eigen approx. /

Series method X  Series method /
Nearby Eigen approx. X  Eigen approx. X

Series method X = Series method /

ot B . b s . .
aSensmve to mistuning. Not sensitive to mistuning.

a large region with only a few terms by approximating A;(z)
in the denominator (matching two similar discontinuous func-
tions). The functional form 1/[iw — A;(z)] yields the required
steep nonlinear dependence on mistuning.

In summary, Table 2 follows from Egs. (24), (25), and
the example of series vs eigenvalue/vector convergence.
The light-damping limitation of the series method is also noted
in Ref. 12. By comparison, the eigenvalue/vector method
holds in the lightly damped resonant case, but fails if we have
closely spaced modes. Of course, symmetry arguments along
with Egs. (24) and (25) continue to hold. To extend the
eigenvalue/vector method to the nearby eigenvalues case re-
quires the tracking of sharply veering eigenvalues and eigen-
vectors.

V. Forced Response by Eigenstructure
Perturbation

Our eigenvalue/vector perturbation approach, shown next,
is valuable for two reasons: First, it allows for a large region
of method validity as in the example in Sec. IV.C, and second,
it states the forced response solution in terms of eigenvalues
and eigenvectors providing a link to familiar concepts in linear
systems. The basic idea is very simple: We write the response
in terms of eigenvalues and eigenvectors, and this allows an
approximation of the mistuned response by perturbation of the
eigenvalues and eigenvectors about the tuned point.

A. Jordan Decomposition

Forced response X in the frequency domain is given by ex-
pression (13):

X(2) = A”'@B,@?) (33)

where A(z) = [iwl — M(z)]. To develop a simple functional
form for X(z), we must approximate the inverse matrix A~'(z),
which we do by bringing the symmetry tools of Sec. II to-
gether with eigenstructure perturbation concepts shown next.

Assume the tuned linearization matrix M = M(0) of Eq. (16)
has distinct eigenvalues, this is true generically (almost al-
ways).” Then, M(z) has a diagonal Jordan form, where the
eigenvalues and eigenvectors vary smoothly with z (see Ref.
16):

M) = TRART ')

| | A(2) 0
=V - V.2
| | 0 A2)

-U 1.(Z) -

— U,,.(z) -
34)

Here, A(z) is a diagonal matrix of eigenvalues, and T(z) and
T7'(z) are matrices of right and left eigenvectors, respectively.
Let the right eigenvectors V;(z) be normalized as || V;(0){ = 1
for any j. By definition, A(z) = T@)[iwl — A@)]T '(z), and so
the inverse matrix A™'(z) is given by

A7'(@) = [iol — M@)]™" = T@)liwl — AR]'T™'@ ((35)

o io — A (2)

where
S 0
iw — A2
liwl — A@]™" = (36)
1
0 i — \®)
Expression (35) may be rewritten:
n 1 I [—Uq(Z)—‘]
A=y, —— v.,l(z) 37

n X n complex matrix
where n = rm.

B. Response per Mode with Symmetry

Now consider response X’4(z) from a single mode j, d (num-
bering of Theorem 3.1). From Egs. (33) and (37) we have

. V{@)U{(z)B,(z)
Xg) = —————— 38
(64) o~ 2@ (33
where the response for all modes is given by
r=1 m
X@) =D, > X (39)
j=0 d=1

Recall that V{(z), Uf(z), and B,(z) have the symmetries of
Table 1; these imply that

d

Ui = [u}@), p; 'uj(ez), p;*u)(92), ..., p; " 'uf (¢ '2)]

v/ (@) B
P (¢2) PiB(2)
Viop=| pvie | B@=| piBe%) (40)
PV ) P Ble™™'2)

where vf(z), uf(z), and B(z) correspond to the first (m-sized)
block of V{(z), U;(z), and B,(z), respectively.

Equation (40) allows us to write the response of the first
blade [first block of X’“(z) in Eq. (38)] as

, 1 <«
X(z) = = N0 [2 pifu}’(cp‘z)ﬁ(cp’z)] vi@@) (4D

iw — —
Equation (41) is a great simplification; it reduces computing
the forced response X(z) from an rm-sized vector problem to

a first-blade m-sized problem. Response of the first blade as a
result of all modes follows from Eq. (39):

X@ =Y, > X 42)

j=0 d=1
Subsequent response for all blades is given by symmetry (21):

X@) = [X\@), pXi(92), piX,(¢%2), ..., P/ ' Xi(¢T'D)]  (43)

C. Tuned Response
When the system is tuned (z = 0), Eq. (42) reduces to

SRHOVONE
X0 =r Y OB i) (44)

d=1
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where L = I mod r. For example, if r = 10 and / = 12 [meaning
£(6) = sin(126) in Fig. 2], then only j = L = 2 modes will
appear in Eq. (44).

The preceding statements can also be seen geometrically: y
= T7'(z)x is the change of coordinates that transforms Eq. (11)
into diagonal form:

¥ =A@y + T7'@)B/@)e™ (45)

Now, T '(z)B,(z) is the projection of the forcing vector B,(z)
into the diagonal coordinate system. The matrix T~'(z) consists
of left eigenvectors U{(z) of M(z). When the system is tuned,
B,(0) lines up with the Lth right eigenvector block V7(0):

Vi) = (v, pv, piv, ..., p['V) (46)
B,0) = (B. p.B. PiB. - ... PI"'B) 47

More precisely, B,(0) projects onto a subspace defined by the
span of V{(0) as d varies between 1 and m. So, the only non-

TUNED

trivial equations in Eq. (45) are those corresponding to the Lth
modes:

= MOy, for j=L 8)
¥4 = X(O)yi + ULO)B(0)e™ 49)

As z is varied away from zero, the eigenvectors V(z) and U(z)
shift, and the Lth right eigenvector subspace drops away from
the forcing vector B,(z). For the mistuned case, B,(z) has a
projection onto all eigenvectors, the structure [Egs. (48) and
(49)] fails, and all modes come into play (as in Fig. 6). The
amount by which any specific mode-shape V(z) appears is
determined by the size of projection U;(z)B,(z) scaled by the
inverse eigenvalue p(z) = 1/[io — A{(z)], precisely the scalar
term U (2)B,z)/[io — A{(z)] in Eq. (38). Consequently, lightly
damped modes close to resonance will appear far more readily
with mistuning than highly damped modes forced far from
resonance.

D. Eigenstructure Approximations

Up to now, we have not made any approximations, and so
the modal expression of Eqs. (41-43) is an exact solution to

MISTUNED

Eigenvalues
(M Imaginary ¢ Imaginary
Ty
e .

® w -forcing freq. 2 ® w -forcing freq.

2 @ -------------- W2
0 + @ """""" - wy -resonant freq.
0{1) wo
Real > Real
0, )6,
+ '@
2@
@ O - Denotes Active Modes
Eigenvectors & Forcing Vector
V3(0)
B.(0) V#=span{V},V?}
=2
X(0)=7V3(0) X(z)=%V5(2)+m V1 (z)+2V3(z)
Response: Bode Plots
1X51 Tuned : all blades same. IX;1 | Mistuned : a single blade response.

F

w2 w

Wo W2 Wi w

Fig. 6 Geometric explanation of mistuning sensitivity.
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the linear forced response problem, Eq. (13). An obvious first-
cut approximation is to drop all highly damped modes. In this
case, summation (42) is only taken over j = / mod r (the tuned
modes), plus any additional mistuned modes j, d, which satisfy

|Re[A/(0)]] < & = |uf(0)] = (50)

1 1
liw — A20)] ~ &

where 1/6 is the (roughly) desired accuracy. Equation (50) is
a useful estimate, yet it does not address our primary goal of
expressing Eq. (41) as a simple functional form in z. To do so,
we turn to standard tools in eigenvalue and eigenvector per-
turbation.

1. Inverse Eigenvalue Perturbation
We need to approximate the term

(63))

P S
i v

in Eq. (41). Here, u/(z) is an eigenvalue of A™'(z) and A{(z)
is an eigenvalue of M(z). Eigenvalues A{(z) are approximated
by the methods of Ref. 9. Remember that eigenvalue A (z) has
symmetry:

M@ = Al (e2)

and so is invariant under rotation (see Lemma A.5). Invariance
under rotation implies

)\7(2) = /\7(0) +adn tzt+ 0 +2z)
+bhdd+ Lt + D)
+ cMaze + 2z + 0+ 22)

+ cizz e+t 22)
+ C{c'd(ZlZl+k + %0+ 22 T ©(”z”3)
= N(0) + a4y D,z + Sz + O(zlP) (52)
i=1

where k is given by

r even

>~
1
NS
—

(53)

r odd

There are some slight differences in notation between Ref. 9
and the current paper. In Ref. 9, coefficients a, b, ¢, ..., ¢
are real and describe motion of the real stability increase s(z).
Here, coefficients a, b, ¢, ..., ¢, are complex to capture com-
plex eigenvalues.’

The linear term a X[, z; does not capture mistuning depen-
dence; it only reacts to the averaged or tuned 2., z; portion.
It is the quadratic term z'Sz, which really reveals eigenvalue
motion as a function of mistuning and captures motion caused
by zero average mistuning: 7., z; = 0. Since u(z) in Eq. (51)
can depend strongly on A(z), it is crucial to capture this sec-
ond-order eigenvalue dependence on mistuning given by z’Sz.

Differentiating Eq. (52) shows that coefficients a, b, c,, ...,
¢, correspond to eigenvalue derivatives:

@Ga=—-—0), b,=7 0), cf'=——"—(©0) (54
i d 821() jd 2 oz ), ¢ 3Z1321+i() (54)

aA; 1 9°Af EDV
ey
1

These eigenvalue derivatives with respect to parameters are
computed as in Ref. 9. This yields an approximation for the
Uliw — Aj(z)] term in Eq. (41) by approximating eigenvalue
Al(z) in the denominator of Eq. (51).

2. Coupling Approximation

Our next goal is to approximate the remainder of expression
(41), namely, find an approximation for the coupling term:

Vi) = [z pi-uf («P‘Z)B(cp’z)] vi(z) (55)
s=0

Consequently, Eq. (41) may be rewritten as X}z) =
W@V (). The term ¥ varies slowly with z; eigenvectors
change slowly unless eigenvalues are clustered because rate
equations such as Eq. (58) always depend on eigenvalue dis-
tance A, — A, in the denominator. Consequently, it is accept-
able to approximate W(z) as a first-order function in z.

Equation (55) can be further split into two parts: the sum-
mation

8/ = >, piui (@D Be*2) (56)
5=0

and the first block v{(z) of right eigenvector V{(z). So, i(z)
= g/(2)v{(z), where g{(z) is a scalar function and v¢(z) € C".

a. Right eigenvector perturbation. We linearly approxi-
mate v{(z) found in Eq. (55) by

vy vy
Vi@ ~ v (0)] + [— (O)] o+ [— (O)] 2
a9z, 02,
v
+oee t [_ (0)] zZ 67
a9z,

Because v#(0) corresponds to the first block of tuned right
eigenvector V#(0), it may be computed from Theorem 3.1. The
required eigenvector derivatives are given by formulas similar
to those in Ref. 16:

oM ,
U,(0) [a— (0)] V5(0)
Zi

A/ (0) = A0

o
T O=3

p.s#j.d

v,(0) (58)

As in the eigenvalue perturbation, all we need to do is compute
the tuned eigenvalues and right, left eigenvectors, A(0), U(0),
and V(0), which substitute into Eqgs. (57) and (58) to yield a
linear approximation for v}”(z). If desired, one may make fur-
ther approximation by dropping from summation (58) any
mode p, s, which is far from target mode j, d, |A{(0) —
A3(0)| large.

b. Summation approximation. It remains to approximate
the summation term g (z) of Eq. (56). It is easy to show that
g/(z) has symmetry:

8/(92) = p;-18](@) (59)
Symmetry (59) implies that g{(z) has the form

gi@) =g/(0) + g'(zs + pjzo + plyzs + o0 + piDlz)
+ 0(|1zlI» (60)

To complete a first-order approximation of g¢(z), we need to
find the complex coefficients g¢(0) and g¢. The tuned portion
£/(0) is computed from Eq. (56) and Theorem 3.1:

gl0)y=0 for j=L

d o d S
81(0) = ruz(0) B(0)
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Coefficient g; is obtained by differentiating Eqs. (56) and (60)
with respect to 2

'-’———(0) Zp,_,{[a - (0>] [BO)]

u(0)] [ 9B (0)]} (62)

It remains to find left eigenvector derivatives with respect to
parameters, du/dz;, and as in the right eigenvector case, this is
done by standard methods as in Ref. 16. Analogous to Eq.
(58), we have

U0 [ : (0)] V(0)
% 0 = Z Zi
5z, ©= A4(0) — A(0)

p.s#j.d

u,(0) (63)

and once more we only need to find the tuned eigenvalue and
left, right eigenvectors, A(0), U(0), and V(0), from Theorem
3.1 to complete the calculation.

3. Combining Terms

Combining linear approximations for v{(z) [Eqgs. (57) and
(59)] and g{(z) [Egs. (60-63)] yields a linear approximation
for the coupling term ¥¥(z) of Eq. (55):

Vi) = gl @vi@) = &b’ + &'z, + &bz + - + @)z,
+ 0(llz1® (64)

where a}¢ are known, constant, complex, m-sized, column
vectors. Recall that the forced response of blade one, X’“(z),
because of the j, dth mode is taken from Egs. (41) and (55):

¥i(z)
Jd -
X(z) = o - NQ (65)

Here inverse eigenvalue 1/[io — A{(z)] of Eq. (51) is accu-
rately captured by approximation (52) of A{(z) in the denom-
inator. Approximation (64) together with the denominator ap-
proximation of eigenvalue A{(z) as shown earlier yields the
approximate forced response of blade one from mode j, d:

) it adlz + adiz, + o+ iz,
Xid) ~ S aTn ¥ oia “ o (66)

io — A0 — a4 2 z — 2502
i=1

In cleaner notation (drop all j, d indexing), the approximate
response of blade one caused by a single mode is given by

; + oz a0 oz,
Xiz) ~ X 121 222 - 67)

io — A0) — a D,z — 'Sz
i=1

Here «; are known, constant, m-sized vectors; w = I} is the
forcing frequency; A(0) is an eigenvalue of tuned linearization
matrix M(0); a is a known complex coefficient; and S is a
known complex matrix containing coefficients b, ¢y, ..., ¢; as
in Eq. (52). Further, it follows from Eq. (61) that e} = 0 if j
# | mod r since a’* corresponds to the tuned portion of the
response. An approximation for the total response of blade one
follows from Egs. (42) and (66):

r—1

X@ =, > X @

j=0 d=1

r—1

+ a_ivdzr

” Jd j.d j.d
Ea + a7z, + @bz, + -
1 1 2 2 (68)

=
a; 4 z L — ZT(Sj’d)z
=1

=]

Jj=0 d=1

iw — AJ(0) —

In addition, we can drop terms in Eq. (68), which correspond
to highly damped modes. In that case the summation is taken
over all tuned modes with j = [ mod r plus those that satisfy
Egq. (50). Finally, the response for all blades is given by sym-
metry (43).

Our analysis goal has now been achieved. Equations (43),
(66), and (68) provide a simple functional form in z for forced
response X(z). Once we have computed coefficients «;, a, and
b, ¢, ..., ¢, of matrix S for all desired modes, we know the
forced response for arbitrary mistuning. More importantly,
functional forms (43), (66), and (68) allow for an intuitive
understanding of the mode localization problem and permit
sensitivity or tradeoff studies as in Sec. VII.

E. Mistuning Sensitivity

There exists a simple and elegant geometric interpretation
of the mode localization solution. Consider a three-blade, two-
states-per-blade example as in Fig. 6.

First consider the tuned case. Tuned matrix M(0) of Eq. (11)
has six eigenvalues A{(0). These eigenvalues are labeled by
index j and plotted as crosses in the complex plane at the top-
left of Fig. 6. Each tuned eigenvalue A;(0) has associated tuned
right eigenvectors V”(O) with constant inter-blade-phase-angle
2@j/r, j =0, 1, or 2. Theorem 3.1 implies that A{ has comp]ex
conjugate A?_, and so the numbering of modes in Fig. 6 1s
correct. Our forcing is taken to be purely second modal [/ =
in Eq. (11)], and so, only modes with j = 2 are active (as
denoted by circled eigenvalues in the top-left of Fig. 6). In
fact, this is a consequence of Egs. (48) and (49), which state
that the tuned forcing vector B,(0) lies in the subspace V ;(0)
generated by V}(0), V; (0), ..., V}(0). This is denoted sche-
matically in the middle-left of Fig. 6, where B,(0) exactly lines
up with subspace V;(0). Hence, forcing B,(0) can only affect
Jj = 2 modes, and so we write in shorthand

X(0) = V20

meaning that the response only contains j = 2 modes. Coeffi-
cients in 7, are proportional to the inverse of distance |A{(0)
— iw|, thus, lightly damped modes forced near resonance cre-
ate large . In our example, A3(0) has medium damping (mode
Jj =2,d =1 in top-left of the complex plane), whereas the
lightly damped mode A3(0) (mode Jj =2,d =2 at the bottom-
left of Fig. 6) is far from resonance for all positive rotation
speeds of the fan. Hence, j = 2 modes generate the gentle Bode
plot at the bottom-left of Fig. 6, with associated resonant fre-
quency w, = Im[A3(0)].

Now assume we allow mistuning. First of all, the eigenval-
ues shift as shown in the top-right of Fig. 6 and this movement
is captured by expansion (52). Such motion may be either
stabilizing or destabilizing. In our example we show the sta-
bilizing case (least stable eigenvalues move left), as is often
the case. Yet the eigenvalues are not perturbed alone, the ei-
genvectors also shift away from the tuned case as in Egs. (57)
and (58), and as shown pictorially in the middle-right of Fig.
6. Now B,(z) no longer lines up with subspace V 3(z), and so,
B,(2) can project onto all the eigenvectors. Notice that B,(z)
typically retains its direction because / = 2 basically corre-
sponds to second modal forcing, as could be caused by two
upstream struts, and will not be affected by mistuning of
blades. All modes are now excited and this is denoted by all
modes being circled in the top-right of Fig. 6. The associated
forced response has the form

X@) =%V + nVi@ + Vi@
where the size of coefficients in v; is determined by the amount
B.(z) projects onto eigenvector subspace V;(z) times the in-
verse of distance |A{(z) — iw|. Because mode one, A}(z), has
very light damping, vy, will be large at resonance, even for
very small shifts in the eigenvectors. As a result we get the
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Bode plot shown in the bottom right of Fig. 6 with the severe
peak at w; = Im[Ai(z)]. In summary, this is the mode locali-
zation phenomena. Even when mistuning is stabilizing (modes
shift to the left), the appearance and resonance of previously
unexcited low-damped modes can cause huge peaks. More-
over, the problem is incredibly sensitive. Tiny changes in the
eigenvectors, as created by small random mistuning resulting
from machining imperfections, may create unacceptably large
vibrations as a result of low damping found in turbomachines.
Of course this extends to the case of multiple mode forcing
[many values of / in Eq. (11)]. For example, we may have
forcing with weak / = 1 and strong / = 2 spatial decomposition,
creating an acceptable tuned response in modes j =1 and j =
2. Upon mistuning, the large ! = 2 forcing component will
excite an unacceptable response in the lightly damped j = 1
mode.

F. Two Misconceptions

At this point we can dispel two misconceptions found in the
literature.

1) Sensitivity to mistuning is caused primarily by light
damping and the destruction of eigenvector symmetry (see Fig.
6), not mode-veering or weak/strong blade coupling (except if
these cause or combine with light damping) [see Egs. (38) and
(39)]. These equations are exact. Weak blade coupling causes
eigenvalues to cluster and creates fast eigenvalue/vector mo-
tion [veering of A(z), V(z), and U(z)]. However, this veering
occurs in the vicinity of the clustered eigenvalues/vectors; it
is confined to a small region. If the clustered eigenvalues are
far into the left-half-plane (strong-damping), the net effect on
response (38) and (39) is small. Mode-veering without light
damping cannot cause mistuning sensitivity. Light damping
without mode-veering can cause mistuning sensitivity (see Ta-
ble 2).

2) There are no bifurcations in the linear forced response
problem [Eq. (13)]. Some past researchers'’ have confused the
quickly varying behavior of X(z) caused by the fast, but
smooth, dependence on mistuning in Eq. (51) with a strict
definition of bifurcations. To be precise, Z is a bifurcation point
for dynamics (13) if X is not smooth at Z. Yes, eigenvalue/
vector motion can be discontinuous. However, 0X(%)/0z is al-
ways well defined unless an eigenvalue of M(Z) lands on the
imaginary axis (see Theorem A.2). When this happens, stabil-
ity is lost; either the eigenvalue continues on into the right
half-plane (generic case) or stability is determined by the non-
linear terms we neglected in Sec. III.A. Either way, Eq. (13)
is meaningless when M(£) has an eigenvalue on the imaginary
axis. Thus, it is meaningless to study the bifurcations of Eq.
(13); when a bifurcation exists, Eq. (13) no longer applies.

G. Summary of Section V

To close this section we present a short summary of the
entire analysis method.

1) Start with any nonlinear model (1), which necessarily has
symmetry (5).

2) Select an appropriate equilibrium point x*(z) that has
symmetry of Lemma A.2 (see Sec. III.A. for discussion).

3) Compute linearization matrix M(z) and forcing vector
B,(z) of Eq. (11) about chosen equilibrium x*(z) (see Sec.
II1.B). May consider one forcing mode / at a time by linearity.

4) Check stability, as in Ref. 9, to ensure that forced re-
sponse is meaningful. Transforming to frequency domain
yields the linear forced response problem [Eq. (13)].

5) Solve for eigenvalues, A(0), and right, left eigenvectors,
V(0), U(0), of tuned matrix M = M(0) in Eq. (16) by Theorem
3.1.

6) Use A(0) and V(0) as in Ref. 9 to compute eigenvalue
perturbation for A(z) of Eq. (52). This approximates eigenval-
ues w(z) of inverse matrix A'(z) = [iwl — M(z)]™" in the
denominator through expression (51). Further substitute values
of A(0), U(0), and V(0) into Egs. (58) and (63) to compute

Egs. (57), (60), and (62), which together yield ¥(z) of Eq.
(64). Combine the ¥ (z) of Eq. (64) and the wu(z) of Eq. (51)
to find first blade approximation (65) and (66) for any given
mode j, d.

7) Sum over tuned modes, j = I mod r, and any other modes
whose amplitude is larger than desired accuracy 1/8, see Eq. (50),
to yield an apprximation of first blade forced response (68).

8) Response for all other blades follows from symmetry (43).

9) Redo the previous step for all relevant spatial modes / of
item 3. Summation over all such / modes yields a final result.

Notice that all of the preceding steps only require informa-
tion at the tuned point z = 0. The MATLAB code that performs
these computations is available by request from the author.

VI. Application to Quasisteady Model

Our perturbation method is applied to a quasisteady, invis-
cid, incompressible, linear model (as in Ref. 18), with 11
blades (r = 11) and three states per blade (m = 3). We choose
model parameters that create a lightly damped system. The
resulting tuned lightly damped eigenvalues A¢(0) are shown in
Fig. 7, labeled by index j. Eigenvalues A} and A3 are the most
lightly damped with damping ratio —Re[A1/|A| = 0.0000330/
0.0376 = 0.000875. (All quantities are nondimensional.)

From the tuned eigenvalues of Fig. 7, we can predict the
nature of the tuned and mistuned response. We pick spatial
forcing mode ! = 1. Because the tuned system only displays
forced modes, only modes A{(0) are active. From Fig. 7 we
see that for positive forcing frequencies all of the j = 1 modes
(A1, A}, and A?}) are far from resonance. [Mode A;(0) has very
high damping and is off the scale to the left of Fig. 7. Mode
A3(0) has positive frequency and medium damping. Finally,
mode A}(0) has small damping but negative frequency; thus,
it is not excited by the positive forcing frequency.] As a result,

0.06¢
3, 2g— i o
-+ =, Suis
2 5. —f— 10
-0.04 ~0.02 o

-0.06"

Fig. 7 Tuned eigenvalues A;(0) labeled by index j.
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Fig. 8 Tuned Bode plot: z = 0.
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Fig. 9 a) Mistuned Bode plot and b) plot with zoom: z = z,,,.
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b)

Fig. 10 Tuned vs mistuned mode shapes: z = 0 and z = z,,4. Forc-
ing frequency w = a) 0.0376 and b) 0.02.

if we plot the amplitude of vibration as a function of forcing
frequency w, we derive the gentle Bode plot of Fig. 8 with
resonant peak Im[A3(0)] = 0.0454 [see Egs. (38) and (39)].
Such gentle behavior is lost with the introduction of mis-
tuning. To illustrate this point, we choose a small random mis-
tuning z,,., where we change the stiffness of each blade by less
than 2%. The system is still stable. Plotting the amplitude of
response for each blade as a function of forcing frequency w
yields the Bode plot of Fig. 9. The thick line denotes the tuned
response, whereas the 11 thin lines denote the mistuned re-
sponse of each blade. As demonstrated in Fig. 6, all modes
now come into play and the response is dominated by the least
stable mode A}(z,..), which resonates at w = 0.0376. We can
see that the mistuned response is very sharp and its peak is
half an order of magnitude above the tuned response, a direct
consequence of the lightly damped j = 9 eigenvalue:
Re[A3(Z,.s)] = —0.000050. This demonstrates numerically the
sharp sensitivity to mistuning, discussed in Sec. IV. Clearly,
the performance is disastrous at Aj resonance: @ = 0.0376.
Let us compare the tuned and mistuned response at two
frequencies: the resonant frequency w = 0.0376 and a fre-
quency @ = 0.02, which is far from resonance. Figure 10
shows the response for the tuned and mistuned system at these
frequencies. In both cases, solid circles denote the amplitude
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Fig. 11 Approximation comparison at resonance frequency w =
0.0376 for small and large mistuning. Exact response of Eq. (13)
= O, approximate response of Eq. (68) = W, partial-mode approx-
imate response of Eq. (50) = A, series method of Ref. 13 = +,z =
a) Zma and b) 5 X z..4.
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and phase of each blade for the tuned response (all blades have
equal ampitude and are separated by a constant-inter-blade-
phase-angle), wheres solid squares denote the mistuned re-
sponse. For the resonant frequency, we see that even a small
amount of mistuning z = z,.,, can cause a large degree of scatter
because of the excitation of previously dormant j = 9 modes.
In contrast, for w = 0.02, far from resonance, other modes are
basically not excited and the mistuned response is nearly iden-
tical to the tuned response.

All of the preceding data are given by approximation (68).
Figure 11 compares the approximation (68) with the exact so-
lution of Eq. (13) for z = z,,, and z = 52,4, at w = 0.0376. As
in Fig. 10, we are plotting the amplitude and phase of each
blade. Here, the circle at the origin denotes the size of the
tuned response; open circles denote the exact mistuned re-
sponse found by solving Eq. (13) at z = z,,, or z = 5z,,, With
o = 0.0376; crosses represent the series approximation of Ref.
13; solid squares are given by the full-mode approximation
(68) and, solid triangles represent a partial-mode approxima-
tion with & = 0.005 in Eq. (50).

Our method gives excellent results for small mistuning z =
Z.a and provides acceptable results for larger (roughly 9%)
mistuning z = 5z,,,. In contrast, the series method results have
nothing to do with the mistuned forced response. In the small
mistuning case, z = Zz,4 they are completely inaccurate,
whereas in the larger case, z = 5z, they are off the scale of
the plot. The series convergence criteria p(A;'AA,) < 1 Sec.
IV fails in both cases. Consequently, inclusion of additional
terms in the series expansion will be of no use.

VII. Engineering Tradeoffs

Engineering design tradeoffs are summarized next. These
tradeoffs are based on symmetry arguments (Sec. II) and hold
for any model. Figure 12 shows a schematic of the mistuning
space R" for a fixed forcing frequency w: light-gray regions
correspond to an acceptable forced response, medium-gray de-
notes unacceptable response, and the black regions show in-
stability. (We shall prove this figure shortly.)

There is a small region of acceptable response about the
origin. Blades are produced within some manufacturing tol-
erance (dotted white circle). For simplicity, let us assume
blades are distributed uniformly within this manufacturing re-
gion. In Fig. 12, there is a sliver of unacceptable response
inside the manufacturing tolerance region. Hence, the proba-
bility of unacceptable response is given by

probability of failure

area of unacceptable sliver inside tolerance

- (69)
area of manufacturing tolerance

This probability increases if 1) manufacturing tolerance in-
creases; 2) damping decreases, leading to a smaller acceptable
response region; and 3) allowable blade amplitude decreases,
again creating a smaller acceptable region.

Basically, there exist competing tradeoffs. Engine manufac-
turers cannot decrease cost (loosen manufacturing tolerances)
and increase performance (decrease damping) and lengthen
blade life (lower blade response amplitudes). In fact, if we fix
the allowable failure probability, there exists a linear constraint
between tolerance, damping, and vibration amplitude:

K X manufacturing tolerance = damping

X allowable blade response (70

(K is a computable constant). Hence, as companies attempt to
reduce cost, prolong engine life, and increase performance for
next-generation engines, they will encounter additional mis-
tuning problems.

Luckily, mistuning itself may be used to combat mistuning
sensitivity. If we introduce the intentional mistuning z;,, shown

in Fig. 12, we can guarantee acceptable response under the
same manufacturing tolerance. Basically, mistuning z;, creates
robust damping.

To demonstrate the preceding tradeoffs, we use the specific
model of Sec. VI. However, these tradeoffs are based on sym-
metry arguments and hold in general. Suppose our conceptual
factory produces blades whose stiffnesses vary uniformly be-
tween 0.98k, and 1.02k,. Blade life is deemed acceptable if
blades vibrate less than 10 times the tuned amount: || X(z)| <
10||X(0)||. We consider the resonance forcing frequency w =
0.0376 (see Fig. 9). By Monte Carlo simulation we find that
there is a 9.5% probability of instability and a 4.6% probability
of unacceptable response. This means that both the black unsta-
ble regions and dark-gray unacceptable response regions pene-
trate the manufacturing tolerance circle of Fig. 12. Together,
there is a 14.1% probability that the system behavior is unac-
ceptable.

For simplicity, let us consider how zero-average mistuning,
3 z; = 0, affects stability and forced response. We want to
understand dependence on the magnitude of mistuning. Con-
sider a mistuning direction £ with X £, = O on the unit sphere
l|Iz| = 1, and let mistuning z vary along this direction as z =
€2. From Eq. (52), each eigenvalue AJ(eZ) varies as

Re[Af(ed)] ~ —n — k& (71)

with n = ——Re[)\j’(O)], the tuned damping. If Z is stabilizing,
then k, = k,(2) > 0, else k, < 0. Destabilizing directions Z yield
the black regions in Fig. 12, where £ becomes sufficiently large
to move A{(z) into the right-half-plane.

At resonance frequency w = 0.0376, the mistuned forced
response is dominated by the least-damped mode A3(z) (see
Fig. 7). Hence, Eq. (66) implies

I X(eDl =~ koe!(n + ki&”) (72)

For Z stabilizing (k, > 0), tradeoff (72) is shown in Fig. 13.
This curve has been noticed numerically in Ref. 19. Other
researchers have determined this tradeoff by Monte Carlo sim-
ulations, but have also been unable to explain its shape.” In
our case, symmetry provides a straightforward explanation.
Rotation invariance (19) implies that eigenvalues vary quad-
ratically with mistuning [the  + k,&” term in the denominator
of Eq. (72)], whereas eigenvectors are permitted to vary line-
arly (the koe term in the numerator). In the £ stabilizing case,
the response first climbs linearly as k,/7 (mistuned modes ap-
pear as in Fig. 6), and then sinks quadratically as eigenvalues
move into the left-half-plane. Light damping (small ) causes
a fast linear growth.

" Manufacturing
Tolerance.

. Unacceptable
- response -

Fig. 12 Intentional mistuning for robustness under manufactur-
ing uncertainty. Mistuning space: z.
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Fig. 13 Response sensitivity to mistuning size [Eq. (72)].

If we choose A as the acceptable blade vibration, then the
leftmost estimate of Fig. 13 yields the allowable manufacturing
tolerance:

”zmanuf“ = (An/ko) (73)

We could find the minimum estimate [using max kq(Z)] by
varying £ over the unit sphere ||Z|| = 1. Equation (73) is equiv-
alent to the tradeoff of Eq. (70).

Varying Z and & together recovers Fig. 12. Coefficients
ko and k, vary with Z, so that different directions have different
sections of acceptable and unacceptable response. To pick an
intentional mistuning z;,, we must find a stabilizing direction
2 (see Ref. 9) and pick & beyond the right-hand intersection,

e* = (ko/Ak)) — (Anlk,) (74)

of Fig. 12: z;,, = ££ with &€ > &*. Now an additional small
random mistuning z = Ziy + Zmaner Will shift us along the gentle
right-hand portion of Eq. (72).

Numerical results for the model of Sec. VI are shown graph-
ically in Fig. 14. Recall that for a 2% manufacturing tolerance
there is a 4.6% probability of unacceptable response. We
choose a specific manufacturing mistuning ||Zg..|| = 2%, such
that X(z...) is unacceptable. Resulting amplitude of all the
blades | X;(Z,c)| is plotted as thin lines in Fig. 14. The mis-
tuned response is far above the acceptable limit A (dashed line):

I X @spec) |l = max| Xi(zopeo) | > 101X = A  (75)
Now pick the intentional mistuning:

Za=€2=01(1,1,1,1,1,0, -1, -1, -1, -1, —1)

Log |X(z)|

.  y

b) 0.03745  0.0375 ] 0.03755  0.0376
Fig. 14 a) Response under manufacturing tolerance and b) with
zoom. Acceptable level A = —-~—, bound for |X@y + Zmanw)| =

e amplitude | X(z,,..) | of all blades =

VIII. Conclusions

This paper presents a perturbation scheme to find the forced
response as a function of mistuning. By using symmetry ar-
guments and an eigenstructure perturbation we are able to ac-
curately predict forced response as a function of mistuning for
any model. Our method reveals the underlying tradeoffs be-
tween forcing frequency, damping, resonance, and robustness.
It is shown that intentional mistuning can lead to improved
performance (both stability and forced response) under man-
ufacturing uncertainty. As a result, intentional mistuning may
be a viable technique for increasing safety and performance in
jet engines.

Appendix: Technical Results

Here we prove some of the more technical results in the
paper. First we show a symmetry result for trajectories.

Theorem A.I: For model (1) with symmetry (5), the tra-
jectories &(%, s, z, t) satisfy condition (6).

Proof: Let n(f) = @&, 5,2, 1) — &(eX, s + 7, oz, t +
7). By construction, n(s) = ¢ — ¢£ = 0. From Eq. (1) we
have

N) = e&®, 5,2, £) — &(@f, s + 7, ¢z, t + 7) by construction
=of[E®, 5,2, 0,2, 1] — f[&@R, s + 7,9z, 1 + 1), ¢z, t + 7] from Eq. (1)
=floé®, 5,2, 1), oz, t + 71 — fl&(R, s + 7,9z, + D, ¢z, t + 71 symmetry (5)
=fIn@) + &, s + 7, ¢z, t + 1), 9z, t + 7] — f[&(@X, s + T, 9z, + 7), ¢z, + 7] by construction

£ H(n, 1)

Here, £ is chosen by an eigenvalue optimization as in Ref. 9,
whereas ¢ = 10% is larger than £* of Eq. (74). Using the
triangle inequality, Egs. (43), (52), (66), and (68) provide
bounds for stability Re[A(Zin + Zmau)] and forced response
1 X@ine + Zimanuo) ||~ for all manufacturing mistuning ||Zamenll =
2%. The forced response bound is shown as the thick line in
Fig. 14. Clearly, it falls below A for all forcing frequencies w.
Thus, the introduction of intentional mistuning z,, guarantees
stability and acceptable response under manufacturing toler-
ance.

Clearly, H(O, t) = O for all ¢, regardless of values £, s, and z.
Thus, n(1) satisfies ) = H(m, 1), n(s) = 0 with H(, 1) = 0,
and so m starts at zero and stays zero for all time. Conse-
quently, n(f) = &%, 5,2, 1) — &(ex, s + 7, ¢z, t + 1) =0
for all £, s, z, and ¢. =]

Now we show that asymmetric equilibria come in families
of size r (result also found in Ref. 14).

Lemma A.I:  Given the tuned unforced system f (x, 0) with
the symmetry ¢ f(x, 0) = f(¢x, 0), consider an asymmetric
equilibrium point x*(0) # ¢x*(0). Then ¢’x*(0) for j € (1, 2,

.., r) are also equilibria of f(x, 0).
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Proof: By symmetry and because x* is an equilibrium

of f,
Fle’x*(0), 0] = ¢’ fIx*(0), 0] =

Hence, ¢’x*(0) form a total of r equilibrium points. o

Next we show an equilibrium symmetry. ~

Lemma A.2: Consider the unforced system X = f (x, z) [see
Eq. (9)], with symmetry ¢ f (x, z2) =f (¢x, ¢z) and equilibrium
point x*(z). If the tuned equilibrium point is symmetric x*(0)
= ¢x*(0) and the Jacobian at x*(0) is nonsingular,

det {— [x*(0), 0]t =0
ox

(true almost always), then the equilibrium has symmetry
ex*(z) = x*(¢z).

Proof: Let n(z) =x*(z) — x*(0). Because x*(z) is an equi-
librium point that varies as z changes, it satisfies f [x*(z), z] =
0 for any z, specifically:

FIx*@), 2] = flx*(¢2), ¢z] =

By symmetry ¢ f(x, ) = f(¢x, ¢z) of the unforced system,
we have

Flx*@), 2] = ¢ flo~ 'x*(¢z), 2] =

Substituting 1 and noting assumption ¢~ 'x*(0) = x*(0) yields

Flx*0) + @), 2] = f[x*(0) + ¢ 'nl¢2), 2] =
Because det{(d f/ax)[x*(O) 0]} # O, the implicit function the-
orem (Ref. 21, p. 354) implies that relation f [x*(0) + «(z), z]
= 0 uniquely deﬁnes a(z). (Note that @ f = 0 implies f = 0.)
Hence, 1(z) = ¢ 'n(¢z), and so

ex*(Z) = x*(0) + en(2) = x*(0) + n(ez) =x*(pz) O

The following results state linear symmetries that follow from
nonlinear symmetry [Eq. (5)] and the equilibrium symmetry
of Lemma A.2. First we prove Theorem 3.1.

Proof: To prove the theorem, we need to show MV} =
A/V{ and U/M = A{U;. Both statements are verified trivially

by substitution. o
Lemma A.3 proves symmetry of the linearization M(z) found
in Eq. (13).

Lemma A.3: Consider unforced system f with symmetry
fx, 2) = ¢'f(ox, ¢z), and equilibrium point x* with sym-
metry x*(z) = ¢~ 'x*(¢z) of Table 1. Then M(z) defined in Eq.
(12) has symmetry M(z) = ¢~ 'M(¢z)®. ~

Proof: By definition of the equilibrium point x*, f [x*(z), z]
= 0. Hence, a Taylor expansion yields

fx, 2) = (M@]x — x*@] + Ofllx — x*@)|I")
Applying symmetry of f to the linear term provides
¢f(x, 2) =f(ex, ¢2)
= ¢{[M@)]lx — x*@)]} = [M(p2)l[px — x*(¢2)]

The crucial step is the equilibrium symmetry ox*(z) = x*(¢z),
which allows

e{[M@@)][x — x*@2)]} = [M(e2)]e[x — x*(2)]

So, for any y = x — x*(z), we have M(2)y = ¢~ 'M(¢z)¢y, the
required symmetry.

Next we show symmetry of the forcing vectors B,.
Lemma A.4: Forcing term f’ has symmetry (5), namely,

ez, D=9 fl(ex, 9z, t + 7)

Hence, symmetry ¢x*(z) = x*(¢z) on the equilibrium implies
that any vector coefficient B,(z) has symmetry B,(z) = p,

¢ 'Bi(¢2).
Proof: By definition of B,, setting all disturbance modes
to zero except mode / reduces f' to

f'Ix*@), z, 1] = B/(z)e"™ (A1)
By symmetry on f’ and x*, we have
¢ f'[x*@), z, 1] = f'lex*(@), 9z, t + 7]
=f'lx*(¢2), @z, 1 + 7] (A2)
Substituting Eq. (A1) into (A2) yields
¢B/(2)e"™ = B/(gz)e" "™

= pBi(g2)e"™ (A3)

T _ p2millr A

because e = p.. Hence, B,(z) = p,¢o~ 'B/(¢z). o

Symmetry of M(z) in Lemma A.3 implies a symmetry on
eigenvalues and eigenvectors.

Lemma A.5: If the Jacobian has symmetry M(z) =
qf'M(cpz)cp, then its eigenvalues A;(z) have symmetry A,(z) =
Ai(¢z).

Proof: An eigenvalue A,(z) satisfies M(z2)V(z) = A(2)V(2),
where V(z) is the corresponding right eigenvector. By sym-
metry

M@)V(z) = L()V(2)
e[M@)V(2)] =
M(e2)[¢V(2)] = Mi(2)¢V(z) by symmetry of M

A(@)eV(z) rotate both sides

So, Ai(z) is also an eigenvalue of M(pz) with eigenvector
¢V(2); hence, by definition, there exists an eigenvalue A;(¢z)
of M(¢z) with A,(z) = A;(pz). Setting z = 0 we see that these
must be the same eigenvalue i = j. Consequently, A,(2) =
Ai(¢2). o

A similar result holds for right and left eigenvectors.

Lemma A.6: For Jacobian with symmetry M(z) =
¢~ 'M(¢z)e@, right and left eigenvectors, V{ and U, in the no-
tation of Theorem 3.1 have symmetry:

Vi) = pio~' V(e2)

Ui@ = pe™'Uf(92)
Proof: By definition:
M@)Vi@) = X/@V{(k)

e[M@)V{(@)] = A{@)¢Vi(z) rotate both sides
M(e2)[¢V](2)] =

So, ¢V¥(z) is the j, dth right eigenvector of M(¢pz). Because
eigenvectors are unique up to a scaling constant, we get
eVi@) = aVi(ez). Setting z = 0, we find @ = p;, because
@V{(0) = p;V{(0) from Theorem 3.1. A mirror arguments holds
for left eigenvectors U{(z). a
To conclude this portion we show the symmetry of the
forced response X(z). This follows from symmetry (5), by way
of Theorem A.1, and the equilibrium symmetry of Lemma A.2.
Lemma A.7: If model f has symmetry (5) and equilibrium
point x* has the symmetry of Lemma A.2, then the linear
forced response X of (13) has symmetry X(z) = p,¢” ' X(¢z).
Proof: By Theorem A.l, trajectories & have symmetry:

A (ez)eVi(z) by symmetry of M and A

ER, 5,2, ) =@ 'E(@f, s + T, 9z, 1+ 7T)
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For stable M(z), as assumed in Sec. IIL.B, the steady-state
response is given by

£z, D) = x*@) + X@)e""

where initial conditions £, s may be dropped because the tran-
sient decays to zero. By symmetry of & we have

€z, 1) = ex*(2) + eX @)™ = &(gz, t + T) = x*(¢z)
+ X(‘pz)eilﬂ(H"r)

However, ¢x*(z) = x*(¢z), and so,
¢X(2) = X(¢2)e™" = pX(¢2) u]

Finally, we show that the forced response X(z) of Eq. (13)
is smooth in z (no bifurcation) at Z if M(£) has no eigenvalues
on the imaginary axis. Because M(Z) has no purely imaginary
eigenvalues, A() = [iwl — M(Z)] of Eq. (33) has no zero ei-
genvalues and is invertible [A™'(£) exists]. From Eq. (13) we
note that

X®) = AT'OB.(®) (A4)

Our analysis assumes that M(z) and B,(z) are smooth. Hence,
to show that X(2) is smooth in Eq. (A4), we need only show
A7'(z) is smooth at 2. This follows from Theorem A.2.

Theorem A.2: Consider a matrix A(a) dependent on real
scalar @ with A(a) smooth and invertible for all « in (¢, a,),
so that dA(a)/da and A™'(e) exist for all @ € (a;, o). Then,
dA™'(a@)/da exists for all @ € (a;, a,), meaning A™'(a) is
smooth for all « values in the open interval (a,, a,).

Proof: The proof is standard and proceeds by construction.
For any a € (a,, a,), we have

4 i) < &L
= A @A) = 5= 0
By the product rule
[%; (a)] [A@)] + [A7(@)] [% (a)] =0
da da
and so
L @ = - @] [% (a)] A~ (@]
a da

which exists for all @ € (a,, a,) because A™'(a) and dA(a)/
da exist for all « in («,, a,). m|

Theorem A.2 extends to vector dependence, a — z, by the
chain rule. Hence, M(%), having no eigenvalues on the imagi-
nary axis, implies that A™(z) is smooth at £. So, X(z) is smooth
at Z by Eq. (A4). No bifurcations occur unless M(Z) has ei-
genvalues on the imaginary axis.
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