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Abstract
Batch/semi-batch processes are highly nonlinear and
involve complex reaction mechanisms. Model-plant
mismatch always exists. The lack of rapid direct or
indirect measurements of the properties to be con-
trolled makes the control task difficult. It is the usual
practice to follow the prespecified setpoint profiles for
process variables for which measurements are avail-
able, in order to obtain desired product properties.
Modeling error can be the cause of bad performance
when optimal profiles computed for the model, are
implemented on the actual plant. In this paper, a
state estimation model based algorithm is presented
for on-line modification of the optimal profile and con-
trol with the goal of obtaining the desired properties
at the minimum batch time. The effectiveness of the
algorithm is demonstrated by its application to bulk
polymerization of styrene.
1. Introduction

Batch/semi-batch processes are characterized by
strong nonlinearities, significant time delay in the
measurements of the properties to be controlled and
external unmeasured disturbances entering the sys-
tem. The lack of instantaneous measurements of the
properties to be controlled (e.g., in a polymerization
reactor, the control of molecu%ar weights) makes di-
rect control almost impossible. It is the practice to
track the setpoint profiles of other variables such as
temperature to obtain the desired product properties.
Such profiles are computed by off-line optimization
of appropriate objective functions based on the avail-
able model [1,9]. The modeling of batch/semi-batch
processes involves complex reaction mechanisms and
the presence of model-plant mismatch is unavoid-
able. Because of the modeling errors and external
disturbances, even if the optimal profiles are tracked
perfectly, the final properties may significantly differ
from the desired values. To account for the model-
ing errors and disturbances, new optimal profiles may
be recomputed once the new measurements are ob-
tained. Such computations require solving a compu-
tationally intensive nonlinear optimization problem
and are not feasible for practical on-line implementa-
tion.

To avoid reoptimizing the nonlinear objective func-
tion every time the new measurements are obtained,
Kozub and Macgregor [4] proposed a method based
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on the instantaneous properties of the desired prod-
uct. Palanki ez al. [7{ derived optimal state feedback
laws for a class of nonlinear systems. Zafiriou and Zhu
[10] proposed an approach for modifying the optimal
profile from batch to batch so that an improvement in
the objective function is accomplished in every batch.
However, they assumed that the controller tracks the
optimal profiles perfectly and all the states are mea-
sured. Moreover, the computation is off-line and the
initial few batches need to be discarded until the true
optimal profile for the plant is found.

In this paper, a state estimation model based al-
gorithm is proposed for on-line modification of the
optimal profile (e.g., setpoint profile to be tracked)
and control (e.g., to track the setpoint profile) of
batch/semi-batch processes. Once the delayed di-
rect/indirect measurements of the properties to be
controlled are available, the values of the states at
current time are estimated. Based on the current
state of the process, the setpoint profile is updated
by carrying out one iteration of a gradient based op-
timization method. The modified profile is imple-
mented till the next set of measurements are avail-
able. State estimation NLQDMC algorithm (2] is
used as a control algorithm for setpoint tracking.

2. Methodology

The proposed algorithm involves (i) on-line modifica-
tion of setpoint profile (ii) on-line tracking of setpoint
profile. The measurements are divided into two cate-
gories as primary and secondary measurements. The
primary measurements are used for state estimation
in the control algorithm. The secondary measure-
ments are used in the estimation phase of on-line up-
date of setpoint profile.

2.1. Maedification of setpoint profile

The setpoint profile is modified on-line whenever
there is a new set of secondary measurements avail-
able. Let T, be the sample time associated with the
secondary measurements. It is assumed that there
is a delay of one sample unit in processing the sec-
ondary measurements, i.e., at the sampling time k
the information about the measurements at sampling
time k — 1 is available. Based on the measurements
at k-1 the estimates of states at k— 1 are corrected
and the values of states at k are estimated. Using
the estimated values of the states and the model, the
setpoint profile is modified.

Estimation
Consider the nonlinear model of the form

x=fx u) 0y



y = h(x) )
where x is the state vector, u is the setpoint for the
on-line control, y is the vector of secondary mea-
surements. For example, in a polymerization pro-
cess where the polymer properties (e.g., molecular
weights) are controlled by following a prespecified
temperature profile, the temperature is the setpoint
in the on-line control and is the input in the on-line
modification of setpoint profile.

At time K, a linear model is obtained by linearizing
the above nonlinear model at x;3-; and 4 and is

given by
Ap 12+ Biau
Craz (3)
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where Ak = (Eé)imtlb-hmﬂ Bk = (5£)|1=x‘,|,_| JU=UE )y Ck =
(%)L:x,l,_l. The notation ;| represents the estimate
of x at k based on the information at k—~1. To account
for the persistent disturbances and modeling errors,

(3) is augmented with stochastic states and is given
as:

zZ = Ak_lz +Bu+ Grw+w;
W o= w
Vi = Gzi+y; C))

where w1, w; and v; are uncorrelated white noise se-
quences with [wy7, wTT" ~ (0, Qs) and vj ~ (0, Rs), Qs
and R, being covariance matrices associated with pro-
cess and measurement noise. y; is the measurement.
The only technical requirement in using this kind of
disturbance model is that the augmented system is
detectable. In general, it is required that the num-
ber of new augmented states are less than or equal
to the number of outputs for the detectability of the
augmented system. For more details the reader is
referred to [2].

In our development, it is assumed that Qp =

2
[ 5‘6‘ g ) ] and Ry 6,21 where 6,2, 6,52 and 6,2
w2

are scalar variances. Define & = 6,1/6,,6, = 642/6,

and let 6,2 = 1. The parameters §, and §, are used
as tuning parameters which determine the value of
estimator gains.
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Let Ky = ﬁ‘l ] be the steady state kalman gain
k-1

obtained by using the continuous-discrete kalman fil-
ter formulation [6]. The superscript 1 stands for the
gain for the subsystem consisting of original states
and 2 stands for the gain for the subsystem consisting
of augmented states. Once the kalman gain is com-
puted, it is used to correct the states of nonlinear and
augmented linear model. The corrected estimates at
k-1 are given as

a1 = Reaps + K D —hGep2)]l (5
Wik = Weapeo + Kpy i1 =hGap2)]  (6)

‘The model for the future prediction is given as:
J@,u)+ G W )
y h(%) (®)

The values of estimates for states at k are obtained
by integrating (7 — 8) over one sample unit T}.

Determination of optimal profile

The optimal setpoint profile for the remaining time of
the batch is determined based on the model described
by (7 -8) and the values of the estimated states at
k. The objective of the on-line modification of the
setpoint profile at time k is to compute the setpoint
profile to achieve the final desired properties in the
minimum batch time starting from time k. One has
to be reminded that the modification of setpoint pro-
file is on-line and should not be computationally ex-
pensive. Therefore, the use of minimum time optimal
control techniques to obtain the complete solution at
every sampling time is ruled out. First, we utilize the
technique proposed by Kwon and Evans [3] to con-
vert the fixed-end-point and free-end-time problem to
a free-end-point and fixed-end-time problem through
coordinate transformation. This method can be ap-
plied to any nonlinear system in which at least one
of the state variables is monotone. In the following,
we briefly summarize this method. First, the state
variable x = (x;,x2, . . ., X,) is rearranged such that x;
is the monotone state variable which is used as new
independent variable. Then a coordinate transforma-
tion is made given by

TeX et ge—x (i>1) )

It results in a system

g(r) = Flg,u,7) (10)

with F; = 1/fi and F; = f;/fi for i > 1. The trans-
formed problem can be solved using any gradient
based optimization method. In our approach, the
steepest descent with constraints method is used. At
each k, we carry out one iteration of the algorithm.
One iteration is justified because, once the new mea-
surements are obtained, the model and initial esti-
mates change resulting in a different optimal profile.
Therefore, to reduce the on-line computational re-
quirements, only one iteration is carried out at each
k and the updated profile is implemented.

Algorithm:
ggr; ¢(q(7¥) (11)

subject to (10) where 77 is the desired value of x; at
the end of the batch.

(a) Set =X Mk-l, 1 =l and ¢; = X Mk-1 fori> 1.
(b) Forward integration of model.
Uota(7) = §(7) = F(q,u, 7) — g(7)
(c) Linearize F(g,u,r) at wu,u(t),q(1) to obtain
Fq(qy Uold) an Fu(q, uo12)
(d) Backward integration of adjoint system
A =Fy(g, uota);  A(7y) = Agd(q(7r))
(¢) Compute gradient
8(r) = Fi(q, o) M(r)
(f) Line search:
Unew(T) = Uola(T) — PR(T)
0 < a < minla,, amal
where P is the constraint projection matrix,
Oy 18 the limit imposed by constraints and a,

is the limit on maximum adjustment on succes-
sive updates.

Optimal step size a is computed using Armijo [8]

stepsize rule. The updated u is used as the setpoint
for the on-line control algorithm.
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2.2. Setpoint tracking

State estimation NLQDMC [2] is used as a control al-
gorithm for tracking and disturbance rejection. The
requirement of solving only one Quadratic Program
(QP) at each sampling time makes this algorithm
an attractive option for industrial implementation.
Here, we briefly summarize the algorithm. For more
details, the reader is referred to [2]. Lee and Ricker
[6] proposed a slightly different algorithm based on
Extended Kalman Filter formulation.

Consider the nonlinear model of the form
X=fc(x,u) (12)

y =h(x) (13)

where x is the state vector, u is the manipulated vari-
able in the on-line control, y is the controlled variable.
The states of the model described by (12) partly con-
sist of the states of the model described by (2) and
vice-versa. The model (12— 13) is the state space de-
scription of the primary measurement variables and
the related input variables, whereas the (1 —2) is the
state space description of the secondary measurement
variables and the related input variables. The con-
trolled variable y in (13) is the input vector u in (1).
Referring to the polymerization example, the con-
trolled variable is the temperature and the manip-
ulated variable is the cooling water which controls
the optimally modified temperature profile obtained
by the procedure described the previous subsection.
A linear model is obtained by linearizing (12 - 13) at
Xe-1 and ;. Let @, and I'; be discrete state space
matrices, obtained from the linearized model. Let yj
be the measurement of the plant at k and f(x, uz)
is denoted as the value of the state when the system
model X = f.(x, u) is integrated over one sampling time
from the initial conditions x; and u;.

The idea is to approximate the nonlinear process as
a linear model around the sampling instant, augment
the linear model with additional linear states to de-
scribe the appropriate disturbances, then compute
the estimator gains for the augmented system. Once
the estimator gains have been computed, we use them
to update the nonlinear states and the augmented lin-
ear states to capture the effect of nonlinearity and dis-
turbances. We consider the two sets of linear discrete
models given as

Dpe A Zinw = Dz + o+ wyj
Ms1 = Mj+ Wy
Vi = Gzi+ni+v (14)
Tope B Zist = Opzi+ Dt + Tewj + wyj
Wj+1 = Wj + sz
Vi = Gty (15)

where wy;, wy; and v; are uncorrelated white noise se-
quences with [wy;T, w717 ~ (0, Q) and v; ~ (O,R), Q
and R being covariance matrices associated with pro-
cess and measurement noises. z is the state vector
of the linearized model, y; is the measurement and 7
and w represent additional linear states to describe
the disturbances.

The type A model represents the process model aug-
mented with the disturbance model for disturbances

which are step-like at the output. Type B model rep-
resents the augmented process and disturbance mod-
els for step-like disturbances at the input. In type
B model, w going through I't makes it optimal for
input disturbances, however, that matrix can be any
general matrix as long as the augmented system sat-
isfies the detectability requirement discussed in the
previous subsection. Offset-free tracking in the pres-
ence of model-plant mismatch can be handled in an
effective manner by the use of either type of models.
Also, an observer designed based on the description of
either type can stabilize the open-loop unstable pro-
cesses by putting the closed-loop observer poles inside
the unit disk, provided that the controller is designed
such that the regulator poles are inside the unit disk.

As discussed in the previous subsection it is as-

2
sumed that Q ~ [ 0'.61 ng and R ~ 0,2I where

om?,0um? and 0,2 are scalar variances. Define o =
ow/0y,02 = oyzfo, and let 0,2 = 1. The parame-
ters o1 and o7 are used as tuning parameters which
determine the value of estimator gains.

1
Let K £ [ §§ ] be the steady state kalman gain
k

computed using the discrete Kalman filter [6]. The
future prediction equations are given by:

Type A augmented system:
Benipe = Paluger + Do +
Ki D ~ Ciligiet — a1 (16)
Bt = P + KiDk — Celgper — flger] - (17)
Pere = Cilparpe + et (18)

By taking the conditional mean, the P-step ahead
predictions are

Bsife = Oufpwicippe + Doty i=2,...,P (19)
itk = freiap £=2,...,P (20)
Vit = Cilsilte + i i=2,...,P 1)

Rewriting (16) and (19) as

Beerfe = DPaXper + Datti + DiAuy +
Ki Ve — CrRje-1 — fegpt] (22)
i
Besie = Oukfp+ Tetir + Y OF T, (23)
I=1
for i = 2,...,P, where 2;;”-_1',‘ is the estimate com-

puted using (16) or (19) by setting ug.; = up for
i=0,...,P-1 and Au is the change in manipulated

. A
variables, defined as Auy = wy —uy;.

Now, to account for the nonlinearity in the future pre-
dictions, the computations related to the past infor-
mation are carried out using the available nonlinear
model. However, the contribution of the future ma-
nipulated variables is computed by using the linear
model inorder to formulate the optimization as a QP.
Then, the future predictions are given by:

Type A augmented system:
Bare = SOk, Up1) + DAy +
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K} Dy ~ h(e1) = g1 (24)
et = figee + KiDk — Bgp-r) = ] (25)
Vet = A1) + Ao (26)

The P-step ahead predictions are

i
Bl = [ W)+ Y P Thluiy (27)
=
file = itk (28)
Pevite = ARkaitt) + fheifie 29

fori=2,...,P

By the similar procedure, the prediction equations for
the type B augmented model are given by:

Type B augmented system:
Bt = fQujp-1, 1) + TuWpgpy + DpAug +
K} [ye — h(Sage1)] (30)
P = Wagr + KEDk — h(Bge)] @1
Vet = BRurjr) (32)

The P-step ahead predictions are

B = ity 1) + T i +
i
Z O T AU (33)
P
Wik = Wreis1)k 34)
Pesite = ARt 35)

fori=2,...,P, with % = X0, floj_1 = 0 and g; = 0.
P is the prediction horizon. To avoid complexity in
notation, we used the same notation for estimator
gains for both Type A and Type B systems. But in
actuality they come from solving ARE’s with different
system matrices.

Optimization R
min > [IT@kue - red)|| + |A s[> (36)
=1

Auy,...,Aupiay
where || o||? is defined by ||x]|?> = xTx. M is the number
of future moves to be optimized. It is assumed that
UkeM-1 = Uyt = ... = Ugep. T and A are diagonal
weight matrices and r is the reference setpoint. The
reference setpoint is updated whenever the setpoint
profile is modified as described in section 2.1
M future manipulated variables are computed, but
only the first move is implemented. The optimiza-
tion is subject to input and other possible constraints.
The estimate %1 1s computed by the following equa-
tions.
Type A augmented system:

e = SCgeor, ) + KR Dk — Rt — gt X37)

Type B augmented system:
Besre = F@jk-1, ug) + Doyt + Kb [y — h(R1(38)

3. Dlustration

In this section, the algorithm is applied to thermally
initiated bulk polymerization of styrene in a batch re-

actor. The differential equations describing the sys-
tem are given by,[3]:

no=fi= 220 -xY epn + 2%

En_y (39)

Anexp(—
21 Ty
hixa 1400x;
== (1- ) (40)
1+x Awexp(x—j;)
B
fi Averp(zrs)
=f3= - 41
B =f; T+x ' 1500 x3) @4n
po(-AHLYA  UA.
e = - (x4 - xs5) (42)
MupCo Ty pC,V
Gerefqc  Tjin UA:
¥ o= (G - xs) + (1 - x543)
3 Ve (Tmf ) (Pcp)cvc(
_ 1-x X1
P B n+nl, r+rnl,
p = n+nl
¢, = 1256+ .004404(x—50) J/(gm K)
T. = XTnr—273.15

where x) is the conversion, X3 = X, /Xnr and X3 = Xy /Xur
are dimensionless number average and weight aver-
age chain lengths (NACL and WACL) respectively,
X4 = T/Tyy is the dimensionless reactor temperature,
Xs = Tj/Trys is the dimensionless jacket temperature,
% 18 NACL, x,, is WACL, g. = Qc/qcrs is the di-
mensionless cooling water flow rate, T is the reactor
temperature, T; is the jacket temperature and Q. is
the cooling water flow rate. The parameter values
used are, A, = .033454, B = 4364 K, M,, = 104,
x = 33, n = 9328 gm/cc, r; = 1.0902 gm/cc,
r; = -.00087902 gm/cc C, ry = —.00059 gm/cc C,
em = 10,103.5 K, A, = 4.266e08 cc/g mol 5, A; =
1.0m?, Vo =.02m®, V=02m, Tjy = 330K, Ty =
399.15K, (pcp). = 4.17J/cc K, (-AH,) = 67,400J/mol,
U. = 05J/K cm? 5, gorgs = 1000cc/min, X,z = 700
and x,s = 1500. The initial values of the states are
X10 = 0.0, x20 = 1.0, x30 = 1.0, x40 = 1.0, x50 = 0.975.

The objective of the batch is to achieve a conversion
of 0.8 (80%) with values of NACL and WACL equal
to 1 in the minimum amount of time. Therefore, the
objective function for on-line modification of the set-
point profile can be stated mathematically as

min 4+ 100 - 102+ @) -0 44
The prifflary measurement is the reactor tempera-
ture. The secondary measurements are conversion,
NACL and WACL. x4 is the controlled variable in
the on-line control phase and is the input variable
in the on-line setpoint modification phase, and ¢, is
the manipulated variable in the on-line control. The
model for on-line modification of setpoint profile is
described by (39 —43) and the model for on-line set-
point tracking is described by (39 -41). A value of
¥ = 10,000 is used in simulations.

In all the simulations it is assumed that there is mod-
eling error in the heat transfer coeflicient, U,.. A value
of 0.04 is used for the plant heat transfer coefficient.
Parametric uncertainty is assumed in A, to demon-
strate the on-line modification procedure. A value of
Ay plam = 1.2A,, is used in simulations.
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Figure 1: Temperature vs. time. Setpoint tracking without
on-line modification; Dashed line —setpoint; Solid
line —reactor temperature; Dashed and dotted line —
jacket temperature

setpoint l properties at #
NACL | WACL | conv.
no modification | 313 [ 1.080 | 1.090 0.801

modified on-line | 218 | 1.002 | 1.004 | 0.803

Table 1: Product properties at the end of the batch

For the ideal case with no model-plant mismatch in
Ay, the desired properties and conversion are achieved
in 313 min. Figure 1 demonstrates the tracking of
temperature profile which is optimal for model, with-
out modifying it on-line. Tuning parameter values of
A = .015,P=5M =1 and Type B estimator with
o1 =0 and ¢, = 10 are used in the control algorithm.
A sample time of 1.0 min is used for primary mea-
surement, i.e., for temperature. A lower constraint of
0.0 is imposed on the cooling water flow. It can be
seen that the control algorithm can track the setpoint
profile almost perfectly even in the presence of uncer-
tainty in the heat transfer coefficient. However, due
to the modeling error in A, as shown in table 1, val-
ues of NACL = 1.08 and WACL = 1.09 are obtained
at the end of the batch with a conversion of 0.801.

1.12 7
§
g‘ 1.08 1
2 1.04
£
E 1.00 - N\j\/\'/\
£
0.96 T T T T T v 1
0 100 200 300

Time (min)

Figure 2: Temperature vs. time. Setpoint tracking with on-line
modification; Dashed line —setpoint; Solid line —
reactor temperature; Dashed and dotted line — jacket
temperature

Figure 2 demonstrates the tracking of temperature
profile with on-line modification. Tuning parameter
valuesof 6y = .1, 6, =.1and G =G =[0 1 1]7 are
used in the estimation phase of on-line modification
of setpoint profile. A sample time of 20 min are used

for the secondary measurements, i.e., for molecular
weights and conversion. It is assumed that the first
secondary measurement sample is taken 5 min after
the start of the batch. A constraint of +2K (+0.005 in
dimensionless unitsel is imposed on the change of op-
timal profile at each step of modification. The same
tuning parameters as before are used for the control
algorithm. It can be seen that, because of the on-line
modification and sudden step like changes, the set-
point is not tracked perfectly. However, at the end
of the batch, as shown in table 1, values of NACL =
1.002 and WACL = 1.004 are obtained with a con-
version of 0.803. Another important aspect to note is
that there is a significant decrease in the batch time
from 313 min to 218 min.
4. Conclusions

A state estimation model based algorithm is pre-
sented for on-line optimization and control of
batch/semi-batch processes. Based on the delayed
measurements of the properties to be controlled, the
setpoint profile is updated on-line. State estimation
NLQDMC algorithm is used for on-line control. The
effectiveness of the algorithm is demonstrated by its
application to bulk polymerization of styrene. It is
observed that by the use of the proposed algorithm,
the desired values of molecular weights are achieved
with a significant decrease in the batch time, despite
the presence of modeling error.
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