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Abstract

We propose a specification model and present a method to algorithmically derive a
protocol specification from a service specification based on the model. Unlike the previous
models based on finite state machines, the proposed model can explicitly express concur-
rency, synchronization, and timing requirements such as delays and timeouts. We assume
that there exists a reliable communication channel between any two protocol entities and
the maximum delay for each channel is bounded by a positive constant. Because of the
variable nature of the communication delays along with the time constraints associated
with events, no protocol specification can fully simulate the service specification. The pro-
posed method derives a protocol specification that is optimal in the sense that it provides
the largest possible subset of the service specification under the communication delay con-
straints. We also give a method to derive a sub specification from a service specification
and a maximum communication delay of each channel such that the sub specification, but
no superset of it, can be simulated by the derived protocol specification.

1 Introduction

There are two common approaches for designing communication protocols: analysis and syn-
thesis [4]. In the analysis method, the protocol designer begins with a preliminary version
of the protocol usually obtained by ad hoc methods. This approach usually results in an in-
complete and erroneous design, which is followed by an analysis and redesign process. The
sequence of redesign, analysis, and error correction is applied iteratively until an error-free
design is obtained. In the synthesis method, a partially specified or incomplete protocol design
is completed incrementally, or automatically, without any interaction by the designer such that
as the synthesis process proceeds correctness is maintained. The process ends with a design
that provides the set of specified services. Therefore, no further verification of the protocol
design is necessary as in the analysis approach.

Much research has been done in the area of protocol synthesis. The reader may refer to
[1] for a survey and assessment of several synthesis methods. The synthesis methods can be
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classified by the modeling formalism. The models include finite state machines [2, 3, 7], Petri
nets [5], LOTOS-like models [8, 9], etc. However, these methods do not provide or represent
the notion of time, which is important for the proper functioning of communication systems.
Recently, a few methods [10, 11] have been proposed that derive protocol specifications from
timed service specifications. In [10], a model based on finite state machines has been proposed
for specifying timing requirements by using a global clock, timers, and counters. The method
derives the protocol and medium specifications from a service specification written as a set
of timed transitions. The model represents temporal requirements between remote as well
as consecutive events, which necessarily introduces an exponential increase in the number of
timers. On the other hand, [11] has proposed a model based on LOTOS that restricts the time
constraints of service specifications while fixing the maximum delay of the communication
media in the sense that the model can specify a complicated order of events in a structural
way.

In this paper, we propose a model called timed extended finite state machine(TEFSM)
based on the extended finite state machine(EFSM) model to deal with timed operations be-
tween consecutive events. Delay and timeout are certainly two of the most useful timed op-
erations. To represent these events, we use the notion of a timed transition in our model
by associating a time interval [/, u] with the transition. The lower and upper time limits are
measured with respect to a global clock, and can thus be used in modeling timed properties
including delays and timeouts. The notion of a timed transition is not new, and our model is
in fact inspired by a few previous works [12, 13]. The main difference is that our model can
express concurrency and synchronization among protocol entities explicitly while these previ-
ous models could not. For synthesis, we assume that each communication channel is error-free
and has a propagation delay bounded by a constant, as in [11]. We present an algorithm that
derives a protocol specification from a service specification modeled as a TEFSM when an
upper bound of delay for each channel is given.

The paper is organized as follows. Section 2 describes our TEFSM model. Section 3
formalizes the protocol synthesis problem and gives some notation. In section 4, we present an
algorithm for deriving the protocol specification of a protocol entity from a service specification
and prove the correctness of the algorithm by investigating the relationship between the service
specification and the protocol specification. In section 5, we demonstrate the applicability of
our synthesis method by giving an example. Section 6 gives some concluding remarks and
discusses areas requiring future work.

2 The Model

The TEFSM model is designed as a method for the formal description of service and protocol
specifications. A TEFSM M is defined by a tuple < S, FJ,V,T,6,50 >, where (1) 5 is a
nonempty set of states and for each s € 9, s is a choice, fork, join, or fork/join state. To repre-
sent a possible parallel execution among protocol entities, M explicitly uses a pair ( fork, join)
of states such that the control flows(directed paths) from fork to join can be executed concur-
rently and independently. If a join state is also a fork state which is matched with another join
state, we call it fork/join state. Note that for each fork state, there exists a unique join state
and vice versa. All states other than fork, join, or fork/join states are choice states. If more
than one outgoing transition exists for a choice or a join state, M can arbitrarily choose one
transition and execute it. See Figure 1 for an example of the classification of states; (2) F'J is



a finite(possibly empty) set of (fork,join) pairs in M; (3) V is a set of variables including input,
output, and local variables, denoted by I, O, and L, respectively; (4) T is a set of transitions
and each transition ¢ € T is a 6-tuple < head(t),tail(t), P(t), E(t), host(t), [ming, maxs] >,
where head(t) and tail(t) are respectively the head and the tail state of ¢, P(¢) is the enabling
predicate in V' associated with ¢, £(t) is the event on V associated with ¢, host(t) is the pro-
tocol entity that executes t, and [min;, max] is the time interval associated with ¢ such that ¢
can be executed after min,, but no later than maxz, has passed since the time of visit to head(t)
state. If a time interval is not specified explicitly, the default interval [0, c0) is assumed. An
event is a partial function: E(t): L x I — L x O. We denote a‘[min;, maz,] as the transition ¢
with the action ¢ and the protocol entity ¢ when the other components of ¢ are of no concern;
(5) 6 is a partial state transition function such that 6 : S x T" — 5, and (6) so is an initial
state.
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fork/join state(s) : 4
5/ choice state(s) : all other states
m
O p oo (a, b) and (c, d, €) can be executed concurrently.
e 1 1\010 (f, g, h), (i, j) and (k, 1) can be executed concurrently.

Figure 1: The Classification of States : An Example

The execution of a transition ¢ is an instantaneous action in which both the event associated
with ¢ and the state change to the tail state of ¢t occur simultaneously. A transition ¢ in a
TEFSM M must be executed within its time interval if (1) M is in head(t); (2) A finite time
interval is associated with ¢; and (3) ¢ is enabled throughout the time interval.

A protocol is specified as a set of processes < PSy, PS5, ..., PS5, > where each process PS;
is a TEFSM that can communicate with other processes through FIFO channels. Note that
each process PS; has only choice states since no concurrent execution is allowed.

A channel from P5; to PS; has a maximum delay D; ; such that the message transmissions
are carried out within D; ;, i.e., 0 < delay(i,j) < D; ;.

A sending transition s;;(m) denotes the nonblocking transmission of the message m from
P5S; to PS; and a receiving transition r;;(m) denotes the blocking reception of the message m
coming from PS; to PS;. Note that s;;(m) and r;;(m) are dual events.

Since a TEFSM can be described as a labeled directed graph, we will use state and node,
and event and transition interchangeably for the rest of the paper.

3 Synthesis Problem

We assume that there is a global digital clock that ticks at a constant frequency and all of the
relative times of the protocol entities refer to this clock.

Notation 1 (1) Given a finite sequence o, first(c) and last(c) denote the first and the last
element of o, respectively. Denote - for concatenation. ¢ denotes an empty sequence, |¢| = 0.
(2) Given a sequence of events o, we denote ¢ |; for the projection of o onto the events of P.S;.



(3) For a state s in a TEFSM, t(s) denotes the time when the machine has visited the state.
(4) Given a state s in a TEFSM, IN(s) and OUT(s) denote the sets of the incoming and the
outgoing transitions of s, respectively.

Definition 1 For a join or a fork/join state s in a TEFSM, #(s) def maxi<i<r{t;| where t; is
the time when the incoming event e; of s has occurred, 1 < ¢ < k}. For all other states sin a
TEFSM, t(s) is defined to be the time when an incoming event e of s has occurred provided
the machine has executed e to reach the state s.

Definition 2 [10] A timed sequence S in a TEFSM M is a finite or infinite sequence of pairs
< e;,t; >, where t; < t;4q1 if host(e;) = host(e;41) and t; < t;41 otherwise and each pair
< e;,1; > denotes that an event e; of M has occurred when the time is equal to ¢;.

Definition 3 A timed sequence § in a TEFSM M is valid if each e; has been executable at
head(e;), i.e., P(e;) was true at head(e;) and has remained to be true till the execution of e;,
and t(head(e;)) + min., <t; < t(head(e;)) + max.,.

Definition 4 Let {seqy,...,seq,} be a set of sequences, where seq; is a valid sequence in a
TEFSM PS;,1 < ¢ < n. A merged sequence seq(d_"_; i) from the set is a sequence of pairs
< e;,t; >, where e; is in the union of the events of P5;,1 < j < n, such that seq(}°1—,?) | ;=
seq(7), for each j,1 < j < mn,and t; < t;11.

Notation 2 (1){PS;,1 < i< n} denotes the set of the merged sequences {seq(> "7, i)|seq(> i—y ?)
is a merged sequence from {seq,...,seq,}, where seq; is a valid sequence in a TEFSM
PS;,1<i<n}. (2) {55} denotes the set of valid sequences in a service specification 55

The protocol synthesis problem is basically to derive a protocol specification for the protocol
entities from a given service specification such that each protocol entity would be able to execute
events in exactly the same order as specified in the service specification. However, since the
specification is modeled by a TEFSM, the problem now is to consider time constraints as well
as the relative order of the events in the service specification. Along with the time constraints
associated with events, the variable nature of the communication delays make it impossible to
derive a protocol specification which would be able to fully simulate the service specification.
Therefore, to cope with the discrepancy between protocol and service specifications, we define
the protocol synthesis problem as follows. Derive a protocol specification from a given service
specification which satisfies the following conditions.

Definition 5 A derived protocol specification P5;,1 < ¢ < n, is correct with respect to the
service specification 55 if (1) every merged sequence seq(> ", ¢) from {seq(1),...,seq(n)},
where seq(i) is a valid sequence in PS;, 1 <i <n,is a valid sequence in {55}; and (2) every
valid sequence o in {55} is a merged sequence from {55 [1,...,599 |}, where S5 |; preserves
the order of events as specified in P5;,1 <1 < n.

Condition (2) of Definition 5 means that the derived protocol specification should preserve
the order of events, but not necessarily simulate the same time stamp of the events in the
service specification.



4 Synthesis Algorithm

We present an algorithm that derives the maximal protocol specification among the correct
protocol specifications from a service specification. Moreover, we also give an algorithm for
finding the maximal subset of a service specification which can be represented by the derived
protocol specification.

Since we assume that each protocol entity is modeled by a TEFSM, no (fork, join) pair in a
service specification should contain a set of control flows that might be able to cause a conflict,
i.e., two or more concurrent events with the same host(protocol entity) and the same time
stamp. To cope with the problem, we provide a sufficient condition for a service specification
to be conflict-free. We believe that the condition given in Lemma 1 does not severely restrict
the modeling power of TEFSM.

Lemma 1 A TEFSM M with nonempty FJ is conflict-free if for each (f,j) € FJ, any two
sequences sy and sy from f to j that can be executed concurrently by M do not share a host,
i.e., host(s1) N host(sz) = (0, where host(s;) = {m|a™ is an event in s;}.

We also impose a restriction Ry to the service specification 5.5 as follows: for every choice
state s in 59, |host(OUT(s))] = 1. Ry means that when a choice is possible during the
execution of a concurrent protocol system, the choice should be made locally by the same
protocol entity to avoid possible deadlocks.

For the sake of algorithm presentation, we denote (z, e, y) as the event ¢ with the head
state z and the tail state y, respectively. The following algorithm generates P5;, the specifica-
tion for protocol entity i, and we can get the protocol specification PS;,1 < i < n, by running
the algorithm n times with different ¢ each time.

Synthesis

e Input: Service specification 55 with the condition in Lemma 1 and Ry represented by a
TEFSM and D; ;,¥4,5,1 <1,j <n. Note that D; ; =0,Vi,1 <7 <n.

e Output: Protocol entity specification P.S; in a TEFSM

1. For each state s with [IN(s)| > 0in S5 do the following:
Let IN(s) = {(ug, €™ ,5),...,(up, ™, s) }and OUT(s) = {(s, fO, v1),..., (s, fo% v))}.

(a) (Append send and/or receive transitions appropriately.)

i. s1is a choice state: Note that outy = ... = ouf; let 7.
for each transition (uy, e, s),1 <z <k, do:
o if (iny # i A j =1), then append a receive transition to the transition as in
Figure 2(a);
e else if (iny =i A j # i), then append a send transition to the transition as
in Figure 2(b);
o elseif (iny =iANj=1)V(iny #1Aj# 1), then do nothing;
ii. sis a fork, but not a join state:
for each transition (uy, e, s),1 <z <k, do:
o if (in, = i), then append a set of send transitions to the transition as in
Figure 3(a);
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Figure 2: Case(i) s is a choice state
o else if (in, # i Ai € {outy,...,out;}), then append a receive transition to
the transition as in Figure 3(b);
o else if (iny # i A1 & {outy,...,out;}), then do nothing;
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Figure 3: Case(ii) s is a fork, but not a join state

a join or a fork/join state:

if (1 € {ing,...,inx}) A (¢ € {outy,...,out;}), then append a set of send
and receive transitions to the transition as in Figure 4(a);

else if (7 € {iny,...,ing})A(i & {outy,...,out;}), then append a set of send
transitions to the transition as in Figure 4(b);

else if (i € {iny,...,ink}) A (1 € {outy,...,out;}), then append a set of
receive transitions to the transition as in Figure 4(c);

else if (i & {iny,...,ink}) A (¢ & {outy,...,out;}), then do nothing;

the time intervals associated with the outgoing transitions of s, if necessary.)

if i € {outy,...,out;}, then [for each transition ¢V Lot (s, fo% v,),1 < y <, such
that out, = 4, do: [ming, maxw] — [ming, mazy — maz1<p<p{Din,.i}]"]

2. (Project the

S5 from the Step 1 onto PS;.) For every event €*, z # 1, replace the event

with an e transition.

3. For each pair (s5,s;) € FJ, remove all ¢ paths from s; to s;, if any. If all the transitions

and states except s; and s; are removed, then merge sy and s; into a single state sy ;.

4. Remove ¢ transitions by the standard algorithm given in [6].

Hf mingy > mazy — maxlSmsk{szyi}, then the execution of fouty may not be possible under the delay

constraint.
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Figure 4: Case(iii) s is a join or a fork/join state

Lemma 2 Let PS;,1 < i< n, be the derived protocol specification from 55 under the delay
constraints D; ;,1 < ¢,7 < n. Then {PS5;,1 < i < n} C {55} Moreover, {PS5;,1 < i < n}
is maximal in the sense that any extension of a time interval in any PY5; might be able to
generate sequences which are not in {55} under some specific delay constraints.

Proof: We first show that {PS;,1 < i < n} C {95}. Let {seq(i),1 < ¢ < n} be a set of
sequences such that seq(7) is a valid sequence in PS; for each 7,1 < ¢ < n. The proof is by
induction on |o|, where o is a merged sequence from {seq(i),1 < ¢ < n}. Base Case |o| = 1.
It is clear that o is a valid sequence in SS. Induction Hypothesis(IH for short) Assume the

claim holds for |o| = k > 0. Let o/ = o+ < a',t >,|0| = k, be a merged sequence from

{seq(i),1 < ¢ < n}. Let s o head(a'). Suppose s is a choice state. By the Step 1(a) of

the algorithm Synthesis, P.S; can execute a' either after having received a message from one
of PS;,,,in, # 1 or after having executed emf,inl, = 4. In either case, we know from the
algorithm Synthesis that an event in IN(s) must have occurred in o. Let e be the latest
event from IN(s)in o. Then, the subsequence €=, ..., last(c) of o does not have any event
from OUT(s) since otherwise a’ would not have occurred in o’ by the nature of choice state.
Thus, we showed that a' had been executable at last(o). Suppose s is a fork, but not a join
state. The only difference here from the above case(s:a choice state) is that the subsequence
e ..., last(a) of o might have some events from QUT(s), but no a'’s since otherwise a'
would not have occurred at last(o). Suppose s is a join, but not a fork state. By the con-
struction of PS; in Step 1(a) of the algorithm Synthesis, we know that PS; can execute a'
only after having received a set of messages from {PS;,, | where (u,, e, s) € IN(s),in, # i}
, which implies that {e",in, # i} had occurred in o by PS;,,, respectively. Also, we know
that '™, where (u,, e, s) € IN(s), and in, = i, if any, had occurred in o. Let the most
recently occurred event from OUT(s) in o be €=, i.e., #(s) is equal to the time when e has
occurred. Then the subsequence e, ... last(c) of o does not have any event from QUT(s)
since otherwise a' would not have occurred. Thus, a' had been executable at last(c). Suppose



s is a join/fork state. As above, we know that {e'™ 1 < z < k} had occurred in ¢. We also
know that the subsequence e, ..., last(c) might have some events from OUT(s), but no a'’s
since otherwise a’ would not have occurred at last(o), where e+ is the most recently occurred
event from OUT(s) in o. Now, it is straightforward that a' had been executable at last(c).
Thus, we conclude that ' had been executable at last(c) for all cases. Next we show that
t(s) + ming <t < t(s)+ max,:, where [min,, maxz, ] is the time interval associated with
a'in 5S. The time interval associated with @' in PS;, by the algorithm Synthesis Step 1(bh),
becomes [min,i, maz,i — maxi<p<p{Din,,i}]. Since o’ |;=0 |; - < a',t > is a valid sequence
in PS;, we know that #(s) + min, + di,,; <t < Hs) + dip, i + maz,i — mari<p<p{Ding.i}
where 0 < d;p, i < Dy, ;. Thus we have that t(s) 4+ ming: < t(s) + ming + diy, ; <t < U(s) +
max i —{mari<p<p{Din, i} — din,i} < t(s)+ maz,i. Therefore, since o is a valid sequence in
S5 by TH, o’ is also a valid sequence in S5 from the above argument. To prove the maximality
of {PS5;,1 <i<n},consider a sequence t in {55} —{PS;,1 << n}. Itis clear that [¢p| > 1,

since any sequence in {55} with length 1 should also be in {P5;}, for some i. We know that
there exists a pair of events < e',t, >, < f/.t; > in ¢ such that €' € IN(s), f/ € OUT(s),i # j,
and t(s) = t. for some state s in SS, since otherwise ¢ would not bein {55} —{PS5;,1 < i < n}.
Note that e’ and f7/ might not be adjacent in . By the algorithm Synthesis, the time interval
associated with the event f7 is adjusted into [min,;, max ;; —maz1<p<p{Din, ;}] in PS;, where
e € IN(s),1 <z < k. Assume the interval associated with the event f7 in PJS; is extended
to [ming; — e, max s; — mari<e<i{Din, ;} + €2], where ¢; and ¢; are positive constants. Then
te + ming — €1+ 1 < te + ming, for a positive constant 7 su;h that n < ¢ < D; ;. Hence,
if the actual delay from PS; to PS; is 5, then < €',tc >, < f/,tc + ming — e +n > would
not be possible in any sequence in {55}, since t. + ming; — e + 1 < t. + ming;. Similarly,
t. + maxf] — max1<x<k{Dmm7]} + € +mavico<i{Din, ;} = te + mazy + €2 > tc + mazy;.

Thus, < €', t. >, < fi,t. + maz s — mar1<e<k{Din, ;} + € + mari<p<p{Din, ;} > would
not be p0551ble in any sequence in {55}, if mari<p<i{Din,;} = Di; and the actual delay
from PS; to PS; is D;;. Note that if mazi<,<p{Din,;j} > D;;, the validity of the pair
<ete >, < fite+ maz ;5 — maz1<z <k Din, j} + €2+ Dij > in 55 depends upon the sign of
the value D;; + ¢ — mazi<p<p{Din, ;- ®

On the other hand, it should be clear that {55} € {PS;,1 < i < n} because of the ad-
justment in Step 1(b) of the algorithm Synthesis. However, we can restrict 59 to get a sub
specification 5.5 such that {55*} C {PS;,1 <i < n}. Here, we give an algorithm to generate
such a sub specification §.5* which is maximal in the sense that {SS'} C {PS;,1 < i < n}
implies {95} C {55%}.

Restriction

e Input: Service specification 55 with the condition in Lemma 1 and Ry represented by a
TEFSM and D; ;,¥4,5,1 <1,j <n. Note that D; ; =0,Vi,1 <7 <n.

e Output: Restricted service specification §5* in a TEFSM
For each state s with [/N(s)| > 0in S5 do the following:
L. Let IN(s) = {(u1,e"™,5),..., (ug, €™, 5)}and OUT(s) = {(s, o v1),..., (s, fo% v)}.

2. For each ¢,1 <1 < n, where n is the number of the protocol entities, do the following:



o if i € {outy,...,out;}, then [for each transition ¥ Lot (s, fo% v,),1 < y <, such
that out, = 4, do: [minw, mazw] — Mocd<mar,cocp {Din, i} LMy + d, mazy —

mar1<p<i{Ding i} + d)}.?

Lemma 3 Let PS;,1 < ¢ < n, be the derived protocol specification from 55 and 55* be
the restricted service specification of 55. Then every valid sequence o in {55} is a merged
sequence from {595 |1,...,99 |}, where 55 |; preserves the order of events as specified in
PS;, 1 <i<n. Moreover, {55*} C {P5;,1 <i<n},and {95*} is maximal in the sense that
any extension of a time interval in 5.5 might be able to generate sequences which are not in
{PS;,1 <i<n} under some specific delay constraints.

Proof: Since 55 and 55" are equivalent if timing is ignored, we know that it suffices to
show that {55} C {PS;,1 < i < n} to guarantee that the order of events specified in 59
is preserved in each PS;,1 < i < n. We first show that {55} C {PS;,1 < i < n}. The
proof is by induction on |o|, where o is a valid sequence in S5*. Base Case |o| = 1. It is
easy to see that o is a merged sequence from {PS;}, where 0 =< a',t >. Induction Hypoth-
esis(IH for short) Assume the claim holds for |o| = k& > 0. Let o/ = o- < da',t >,|0| = F,
be a valid sequence in S5*. By IH, we know that for each 5,1 < 7 < n, o |; is a valid
sequence in PS;. We show that ¢ |; - < a',t > is also a valid sequence in PS;, where we
assume for the sake of the proof that PJS; is the protocol specification obtained in Step 3,
i.e., one with € transitions. Note that o |;= o’ |;, for j # ¢,1 < j < n. Let s let head(ai).
Since ¢’ is a valid sequence in 9%, it is clear that ' had been executable at last(c). We let
last(o |;) = first(o), if ¢ |;= €. By Step 2 of the algorithm Synthesis, the transitions after
last(o |;) through last(o), if any, in PS; would be € transitions. It is not hard to verify that,
by investigating Step 1 and 2 of the algorithm Synthesis, the sequence ¢ would be able to
lead PS; into the state s and moreover s is reachable from either head(last(o |;)), if any, or
the start state of P5;, otherwise, via only €, send, and/or receive transitions. Next we show
that the inequalities #(s) + minf,-si +din, s <t < H(s) + mawisi + d;p, ; hold regardless of
the value of the actual delay dm] i as 10ng as 0 < dmﬂ § Din, i, where [minisi,
is the time interval associated with «* in PS; and < €' ,1, > is an incoming event of
s such that #(s) = t.. Note that [minisi,maxisi] = [ming, maz, — mazi<j<p{Din,i}]-
Since o’ is a valid sequence in 55*, we have that ¢(s) + minS?" < t < t(s) + maa’?",
where [minS?", maz¥7"] = ﬂ0<d§max1$]3k{DmJ7i} {[ming: +d, mazx,; —maxi<j<p{Din, i} +d]}
is the time interval associated with «' in §5* We have that t(s) + minfis" + dmﬂ =
t(s)+ming +din, i <Hs)Fming +Din, i < H(s)+mingi+mazi<j<p{Din, i} < t(s)—l—minf,-s* <
t. Similarly, t < #(s) + maxfis* < U(s) + maz,i —mazi<j<piDin, i} + 1, where the last in-
equality holds for any positive constant 1. Hence, by choosing n sufficiently small, we have
t(s) + mawisi +1n < t(s)+ mawisi + dmﬂ, which completes the other half. Therefore,
since ¢ |; is a valid sequence in PS; (by IH), o' |;= o |; - < a',t > is also a valid se-
quence in PS;. To prove the maximality of {$5*}, consider a sequence ¢ in {55} — {§5%},
where §§" is §5* with a time interval in §S* extended. We know that |¢| > 1, since
any sequence in {55*} with length 1 must have an unadjusted time interval, which im-
plies that any extension of the interval would generate a sequence not in {595}, a contra-
diction. We know that there exists a pair of events < €', t, >, < fj,tf > in 1) such that

et € IN(s), f? € OUT(s),i # j, and {(s) = t. for some state s in 95 and the time interval

maxisi]

2If the intersection for any transition does not exist, SS* does not, either.



associated with f7 is extended in SS', since otherwise ¥ would not be in {SS'} — {55*}.

Note that e’ and f7 might not be adjacent in . By the algorithm Restriction, the time

interval associated with the event f7 in 59* is adjusted into [I,u] = Lot

ﬂ0<d<max1<m<k{Dmm J}
{[ming; + d,mazs; — mazi<e<ik{Din, ;} + d]}. Assume the extended interval associated with
the event f7 in §5" is [l — e;,u] or [l,u + €], where ¢; and ¢, are positive constants. Then
I —a = ming + mavi<o<i{Din, ;} — a < ming + D;;, if mari<o<x{Din,;} = Di;.
Hence, if the actual delay from PS; to PS; is D;; and mazi<y<i{Din,:} = D;;, then
< e'yte >, < fiit. + 1 — ¢ > would not be possible in {PS5;,1 < ¢ < n}. Similarly,
u+ € > mary; — mati<e<kiDin,;} + €2. Thus, if the actual delay from PS; to PS; is
less than €3, < €',t. >, < fI,t. + u+ €3 > would not be possible in {PS;,1 < i < n}, either. m

By lemmas 2 and 3, we have the following theorem which proves the correctness of the
algorithm Synthesis.

Theorem 1 A derived protocol specification PS;,1 < ¢ < n, is correct with respect to the
service specification 59
5 An Example

To demonstrate the synthesis method, we show the protocol specification after each step of the
algorithm Synthesis when the service specification 59 in Figure 5 is given. Figure 6 (a),(b),
and (c) describe the protocol specification PS5 after each step of the algorithm Synthesis.
After removing € transitions, we have the final protocol specification PS5y, which is given in
Figure 7 along with the final protocol specifications P53 and PS5.

1/\ d L3
N\ al/fla [ ] 0\26] Dj,72 D=1
0 3] D.=2 D_=2
%%3 3 21_ D23 .

8

07 j 1[1,6] FJ={(0, 4)}
1/1[1,5]

m[2,4] 9

Figure 5: A Service Specification 5.9

6 Conclusion

We proposed a model based on EFSM that can represent concurrency, synchronization, and
timing requirements explicitly, and presented a method to synthesize protocol specifications
from timed service specifications based on the model. The proposed method appropriately
inserts send and/or receive transitions between the events in the service specification so that
the event orderings in the service specification are preserved. The time intervals associated
with transitions are also adjusted by the method to incorporate the delay between protocol
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[ 3] (1.3] .

* /\
. / %O%Ohs N b e
[2,3] [2,3] /
€
S (78) r (56)0\ $(78) ﬁ (56)
,,(80) /O @0 EoTEg i

r. (90) K[2,4 f . r. (90) K[2.4 ﬁ .
S SB“%A sl =7 3479 A\ A

1'[1,5] 11,51
(a) after Stepl(a),(b) (b) after Step 2

b[2,2] o $12(24)
a6 Qo\ empty

312(24) b12,2]

d2,3] \8 [,]1* : timeinterval adjusted.

4 "empty’ becomes true only if all the previous send
r (80) /O Si2 r3§56) or receive transitions are executed.

5,5(79) 11[1,5] ¥

I'[L.5]
(c) after Step 3

Figure 6: P57 after each step of the algorithm Synthesis

b72,2] s12(24) 23(03 23
o s d11.3] di22 ; (24)®r g[ ]
y 34
| ns \/O\ my (56) | o izgms)
X empty I5,(58
113
il [1.4]
K[2,4] f 118l ﬂw
s,,(80)
1'11.5] r5(90)
(@Ps (b PS,
, (34)
£[1,4] (45)
\ ;9)70 23 h [2.6] * "empty’ becomestrue only if al the previous send

or receive transitions are executed.

f 4(59)

Figure 7: Protocol Specifications PS5y, PS5, and PS5
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entities for synchronization. We proved that the derived protocol specification is optimal in the
sense that any superset of the protocol specification would necessarily include specifications
which are not attainable from the service specification under some specific delay constraints.
We also presented a method to derive a sub specification from a service specification and a
maximum communication delay of each channel such that the sub specification, but no superset
of it, can be simulated by the derived protocol specification.

A formalization of logical errors in a TEFSM would be required to further investigate the

relationship between the derived protocol specification and the service specification, as far as
insuring the absence of design errors.
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