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The goal of our research was to improve the accessibility of current upper-limb prostheses. 

We aimed to maintain non-invasive aspects of an Electroencephalography (EEG), use affordable 

material and resources, and match the accuracy and control of conventional prostheses alongside 

improved training methods. Our process began with us designing a method of data collection that 

uses a 3D-printed headset with dry electrodes to record brain signal data through EEG software. 

We then analyzed the signals, applied preprocessing to reduce noise, and used machine learning 

(ML) models to classify EEG signals with respect to specific actions such as the opening and 

closing of a hand. Finally, we constructed a 3D-printed hand that is actuated by servos with 

Arduino to demonstrate the physical actions interpreted through analysis, and we leveraged novel 

techniques to build a virtual reality (VR) environment to serve as a tool for prosthetic 

rehabilitation. We successfully met the goals set for data collection and prosthetic arm actuation. 

Additionally, we have created a functional algorithm for action prediction but were not able to 



 

achieve the desired accuracy. Overall, we achieved our primary goal of collecting brain signal 

data, analyzing that data through an algorithm, and actuating a prosthetic arm with actions 

interpreted from the brain signals all in real-time. Moving forward, there is room to increase 

accessibility and quality of prostheses through further development of non-invasive brain-

computer interface (BCI) based technology for 3D-printed prostheses and VR environment 

prosthetic models. 
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Introduction 

There are an estimated 2.2 million individuals living with limb loss in the United States 

(Ziegler-Graham et al., 2008). Individuals living with limb loss or congenital differences can 

experience difficulties in life. In addition to limb loss present at birth, limb loss can be brought 

about through a broad range of circumstances. One such circumstance is through amputation as 

a treatment for various conditions including blood vessel disease, diabetes, or blood clots; 

injuries from accidents or trauma; and surgery, such as the removal of tumors from bones and 

muscle (Stanford Healthcare, n.d.). 

While it is not impossible to adapt and manage daily tasks without additional support, the 

inability to perform certain activities without support can negatively impact the individual’s 

health. There are both mobility issues as well as psychological effects that can present as feelings 

of inadequacy due to loss of independence in such individuals’ daily lives, which can be seen 

from the fact that 94% of people with incapacitating hand injuries suffer from mental health 

effects such as depression, anxiety, and stress disorders (Mental Health and Partial Hand 

Amputation, 2019). Particular concerns also stem from the history of ableism entrenched within 

society. Ableism is a powerful driver for exclusion which, in turn, can harm self-esteem and lead 

to anxiety and depression. 

A way to support and provide a sense of normalcy for individuals living with limb loss is 

through prosthetic devices or prostheses. Having artificial limbs allows individuals to regain a 

sense of independence despite the visual and physical differences. However, some prosthetic 

devices only serve an aesthetic function and most lack precise control of motor functions. 

Modern prosthetic models come with increased functionality but are still limited by their 

accuracy and precision, and do not typically perform at the same level of ease, precision, and 

https://www.zotero.org/google-docs/?JWmuL8
https://www.zotero.org/google-docs/?7mpNYs
https://www.zotero.org/google-docs/?LZ9yeF
https://www.zotero.org/google-docs/?LZ9yeF
https://www.zotero.org/google-docs/?LZ9yeF
https://www.zotero.org/google-docs/?LZ9yeF
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comfort as biological limbs (Bright et al., 2016). 

There have been significant prosthetic-based technological advancements in the medical 

community over recent years. A new approach to advancing prosthetic devices is with brain-

computer interfaces (BCI), also known as brain-machine interfaces (BMI), which have been 

successfully used to allow individuals to control prosthetic devices with their thoughts. A BCI 

involves the fusion of biology and technology into a communication and control system. This 

system enables users to send neural signals as commands to a computer or external device, 

without the need for muscle control (Jeunet et al., 2016). Generally, specific patterns of the 

user’s brain activity that indicate different commands are detected, processed, and then decoded 

by signal processing tools to identify the message or command before being delivered to the 

output device (Guger & Allison, 2014). As a closed-loop system, BCIs provide real-time 

information which reflect the intended messages or commands. That is, BCI controlled prosthetic 

devices permit higher quality of life for amputees due to greater autonomy and control over 

movements. However, most BCI technologies being studied are invasive, meaning they require 

surgical attachment. Our project aims to research the effectiveness of non-invasive BCI 

prostheses. 

Additional research into the application of BCIs range from medicine to business to 

gaming. Clinically, BCI technology utilizing electroencephalograph (EEG) extracted signal 

features has been used to translate device commands that control assistive technologies for 

communication (e.g. spelling), movement control (e.g. a neuroprosthesis), locomotion (e.g. 

driving an electric wheelchair), and rehabilitation (e.g. therapy for impaired brain areas and 

connections after a stroke) (Mak & Wolpaw, 2009). Businesses, alternatively, are interested in 

environmental control in regards to hardware interfaces for phones, temperature, TVs, light, and 

https://www.zotero.org/google-docs/?sIE0ld
https://www.zotero.org/google-docs/?aT7Afd
https://www.zotero.org/google-docs/?yPWssc
https://www.zotero.org/google-docs/?A1SppM
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other smart devices. In entertainment, BCIs are being used in video games to control avatars, 

actions, and objects (Abdulkader et al., 2015). 

By building upon existing research, we demonstrated that it is possible to generate an 

end-to-end system using commercially available components to mock up a non-invasive 

prosthetic device. By combining the use of EEG technology, open-source databases, open-source 

machine learning (ML) models, and 3D-printing, our approach offers a cost-efficient, non-

invasive method that would not only be effective at interpreting brain waves to generate 

prosthetic movement, but also be made available to those who need it. 

  

https://www.zotero.org/google-docs/?fb10R7
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Literature Review 

Acquisition 

Our baseline collection method is an EEG, which measures electrical activity in the brain 

as brain wave patterns using electrodes, which are small metal disks. The electrical activity 

measured are the electrical signals, or nerve impulses, between cells called neurons in the brain. 

Movements of the body, such as lifting an arm, are caused by specific patterns of nerve impulses 

sent from the brain. An EEG allows for these brain waves to be read so that they can be 

analyzed.  

Each electrode records a sampling-rate-dependent constant stream of data similar to 

sound or frequency data. EEG data is often analyzed via a spectrogram, which is a time 

dependent graph that plots relative power for each electrode. These bandwidths are divided into 

Delta, Theta, Alpha, Beta, and Gamma which are associated with the numeric frequency 

bandwidths of 0-4 Hz, 4-7 Hz, 8-15 Hz, 16-31 Hz, and 32-60 Hz respectively. Alpha band 

power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, 

attention modulation, and working memory whereas the Beta band is most commonly studied in 

relation to sensorimotor behavior. It is known that beta band power decreases during the 

preparation and execution of voluntary movements and bursts after the termination of the act 

(Jeunet et al., 2016). Beta bands have also been identified as markers for sensorimotor signals. 

When voluntary movements are planned and performed, the power on the beta bands decreases. 

This trend is still observed when the movement is thought about but not followed by any 

physical action. Gamma bands have been identified as markers for sensorimotor stimuli 

(Suurmets, 2018). 

https://www.zotero.org/google-docs/?R290P2
https://www.zotero.org/google-docs/?ZWc7JP
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Action signals are identified by an increase in power in one or more of the frequency 

bandwidths. After an amputation, observed frequency bandwidths may change, as well as 

general brain signals in certain regions of the brain (Lyu et al., 2016). An EEG records 

measurements using an active electrode-reference electrode pair–by measuring the potential 

difference between the electrodes over time (X. Li et al., 2017). The brain signals for motor and 

limb function are common in specific parts of the brain, for example, within the parietal lobe. 

However, as a general rule, an increase in the number of electrodes leads to measuring more data 

points, which can potentially lead to more accuracy at the expense of increased cost. 

 There are several types of electrodes that can be used with an EEG. The main categories 

are dry electrodes, wet electrodes, and semi-dry electrodes. Wet and semi-dry electrode EEG 

systems use a solution to maintain brain signals by providing an ionic conducting path. This 

allows for minimal degradation of the brain signals before they can be recorded by the EEG. 

Some of the solutions used with EEGs include gel, saline, and semi-dry (water or humidity). Dry 

electrode EEG systems are easier to use, require less time to set up, and are more convenient; 

however, they are less accurate than wet and semi-dry electrodes. We used dry because of their 

accessibility, cost-effectiveness, and convenience. 

 We considered NeuroSky’s MindWave Mobile 2: Brainwave Starter Kit, NextMind’s 

Dev Kit hardware, and OpenBCI’s Ultracortex Mark IV as potential EEG sources ranging from 

$110 to $1300. The NeuroSky MindWave headset is an inexpensive, lightweight, portable device 

with wireless communication. NextMind’s Dev Kit is a wearable EEG system that translates 

signals into commands that can control a digital interface, and is primarily used in video game 

applications. The development kit was unfortunately not yet available for purchase when we 

needed to construct the headset to begin data acquisition. Due to OpenBCIs availability, 

https://www.zotero.org/google-docs/?8nXRbc
https://www.zotero.org/google-docs/?hxD6nw
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affordability, and versatility, the Ultracortex Mark IV and 8-channel Cyton Biosensing board 

were used in our study. OpenBCI provided 3D-printable files for the structure of the headset as 

well as electrical materials, such as electrodes and wires. Furthermore, OpenBCI provided a user 

interface to allow for ease of data collection and live streaming of data in Python. 

Implementation 

Our implementation method is a physical prosthesis that is able to demonstrate simple 

actions such as opening and closing a hand, as well as moving individual fingers. There are many 

ready-to-buy prosthetic arm devices which exist on the market at a variety of prices. There are 

also other prosthetic options that can be explored via 3D-printing. 

Current State of BCI-Prosthetics 

Past research on BCI technology in the application of prosthetics has explored advanced 

methods for deciphering data from EEGs, developed sophisticated algorithms to analyze data, 

and researched into how effective prosthetic limbs can be built. Some general categories of 

prostheses organized by price are as follows:  

1. High-end ($7,800-$50,000): TrueLimb, Grippy, HeroArm, KalArm, Manifesto 

Hand, OHand 2-Channel, BrainCo, Ability Hand, BrainRobotics Hand, 

MeHandB, Nexus Hand, OHand 8-Channel, Zeus Hand, Adam’s Hand, Bebionic 

Hand, MeHandA, Vincent Evolution, i-Limb Access, Atom Touch, i-Limb Ultra 

& Quantum, LUKE Arm, Michelangelo Hand, TASKA Hand 

2. Mid-level ($100-$500): LewanSoul, Tinkersphere, Hiwonder uHandPi  

3. Low-level (3D-Printed options available online): NIH 3D Print Exchange 
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Figure 1. Hero Arm Demonstration. The Hero Arm is holding a Rubik’s Cube while the user’s 

biological hand is positioned close by (Williams, 2021). 

 
Figure 2. Zeus Hand Demonstration. The hand is shown squeezing a ball (Williams, 2020). 

https://www.zotero.org/google-docs/?G0VOCL
https://www.zotero.org/google-docs/?AYg7ZN
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Figure 3. LewanSoul Hand. The hand is shown positioned upright, curling the thumb and pointer 

finger while the other fingers are positioned open (Robot Hand Five Fingers Solely Movement 
Bionic Robot Mechanical Arm DIY (Right Hand), n.d.).  

https://www.zotero.org/google-docs/?Pb85Hj
https://www.zotero.org/google-docs/?Pb85Hj
https://www.zotero.org/google-docs/?Pb85Hj
https://www.zotero.org/google-docs/?Pb85Hj
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Figure 4. Tinkersphere Hand. The hand is shown positioned upright and open (Robotic Hand Kit 

- Servos Included, n.d.). 

 
Figure 5. Raptor Reloaded. The hand is shown palm down on a surface. Raptor Reloaded is a 

3D-printable prosthetic arm with a print file available for download from the NIH 3D Print 
Exchange website (NIH 3D - Raptor Reloaded, n.d.). 

https://www.zotero.org/google-docs/?fxNerU
https://www.zotero.org/google-docs/?fxNerU
https://www.zotero.org/google-docs/?fxNerU
https://www.zotero.org/google-docs/?fxNerU
https://www.zotero.org/google-docs/?36CxRr
https://www.zotero.org/google-docs/?36CxRr
https://www.zotero.org/google-docs/?36CxRr
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There is a wide variety of commercial prosthetic devices available, with more expensive 

prostheses often having myoelectric based control, which refers to control from input of 

electrical signals generated by muscles in the residual limb. To accomplish such control, 

invasive surgery is needed to get to those residual limb muscles to link with wiring. Our 

approach is constrained by the fact that we are seeking a non-invasive approach, so we 

eliminated high-end prosthetic devices from our research. 

The mid-level commercial prosthetic devices available have wiring that is able to 

interface with Arduino or other microcontrollers, allowing for more non-invasive control for 

individuals. However, since we have collected non-invasive EEG data, this limits the accuracy 

with which we are able to classify the observed brain activity. As a result, we expected to only be 

able to identify more broad categories of movement, such as opening or closing a hand or a 

finger, and not the specifics to exactly how much a finger or hand should move. Mid-level 

prosthetic devices have fingers with multiple degrees of rotation, but as our EEG data is not 

accurate enough to take advantage of that freedom, we eliminated them as a choice for our 

research.  

These design eliminations left us with 3D-based prosthetic devices, which fit the more 

basic physical control requirements we are seeking. 3D-printed prosthetic devices typically 

function mechanically—where the hand is attached to an individual's wrist and/or residual 

limb—and have mechanical wires that open and close fingers in tandem with the opening and 

closing of the wrist joint. Another benefit of 3D-printing prosthetic devices is affordability 

compared to commercial options due to the costs of materials and labor to print. However, 3D 

printers can be thousands of dollars for individuals without access to public 3D printers, so 

accessibility is a concern here. Although the cost of owning a 3D printer limits accessibility, it is 
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possible to order 3D-printed pieces online relatively inexpensively, so the expense issues could 

be counteracted. Also, it should be noted that in terms of FDA (U.S. Food and Drug 

Administration) approval, 3D-printed prosthetics would need approval if they were to become 

common commercially for users. The FDA does approve 3D-printed medical devices, so in 

theory 3D-printed prosthetics should be feasible for approval (Health, 2022). Therefore, when 

doing 3D-printed prosthetic research it is important to consider future FDA approvals, especially 

if participants are involved in the research. 

When researching prosthetic models available to print from online, we explored a website 

called The NIH 3D Print Exchange. There, we saw various prosthetic designs to choose from, 

and chose to print the popular ‘Raptor Reloaded’ hand (NIH 3D - Raptor Reloaded, n.d.). 

An important part of designing a prosthesis is the control system. Wired connections are 

commonly used, but wireless connections are available as well. One device we explored was a 

Bluetooth transmitter which would work in conjunction with an Arduino in order to transmit 

commands from our lab computer to the Arduino in order to control the prosthetic arm. 

Ultimately, we went with wiring the Arduino directly to a desktop computer, but since the 

OpenBCI headset used Bluetooth, we were able to have participants sit some distance away from 

the computer. 

https://www.zotero.org/google-docs/?3aXXYL
https://www.zotero.org/google-docs/?6fvHnU
https://www.zotero.org/google-docs/?6fvHnU
https://www.zotero.org/google-docs/?6fvHnU
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Figure 6. Bluetooth Module for Arduino. The module would allow for Bluetooth communication 

with an Arduino (HC-05 Wireless Bluetooth Receiver RF Transceiver Module Serial Port 
Transmitter Module: Electronics, n.d.). 

Typically, an upper-limb amputee would use a prosthetic arm such as the ‘Raptor 

Reloaded’ while it is attached to their wrist area, and wrist bending would allow for opening and 

closing of the prosthetic arm (Dally et al., 2015). Variations of prosthetic usage exist which 

involve using attached servo motors to allow software controlled physical action (Donaldson, 

n.d.). 

We decided to connect the prosthetic arm using servo motors and Arduino to allow for 

computer-based control, which allows for precision in movement. This was different from 

utilizing the prosthesis for its standard mechanical-based control. In comparison, mechanical 

control uses wrist bending to open and close the hand, and is more practical for user’s than 

https://www.zotero.org/google-docs/?2gLf5v
https://www.zotero.org/google-docs/?2gLf5v
https://www.zotero.org/google-docs/?2gLf5v
https://www.zotero.org/google-docs/?2gLf5v
https://www.zotero.org/google-docs/?qF3kPn
https://www.zotero.org/google-docs/?0BE5rF
https://www.zotero.org/google-docs/?0BE5rF


13 

prostheses involving servo motors. We used standard connections to connect five different servo 

motors to the Arduino board. The Arduino software our project uses is based on existing servo 

control commands, but it utilizes serial output communication to receive command code from 

our data analysis and implement the code as movement.  

Virtual Reality Environment for Prosthetic Rehabilitation 

The goal behind a virtual simulation is to make our novel prosthetic interface more 

accessible and improve the experience of prosthetic rehabilitation. While we initially sought to 

explore a 3D simulation of our prosthetic for the purposes of demonstration, by recognizing the 

unique capabilities of VR as an assistive technology, we decided to build a proof-of-concept 

environment that aims to aid clinicians and patients in pain management, prosthetic orientation, 

and prosthetic training. By immersing the user in an environment capable of simulating real-life 

prosthetic interactions and exercises, along with the portable convenience of minimal setup and a 

fully customizable user experience, VR is a powerful technology that has the potential to 

improve the rehabilitation process. 

With current VR-assisted prosthetic rehabilitation efforts, adoption of these novel 

techniques in clinical practice has been minimal due to many factors. These include barriers 

based on unfamiliarity from patients and clinicians to the technology, the upfront cost from 

medical institutions in acquiring VR hardware and training clinicians outweighing perceived 

value, and the technological limitations of VR to fully represent the complexities of rapidly 

advancing prosthetic technologies (Gaballa et al., 2022). Despite these issues, several case 

studies have been conducted showcasing the positives of integrating Extended Reality 

technologies, which consist of VR, Augmented Reality (AR), and Mixed Reality (MR), within 

Upper-Arm Amputee training, though the majority of the control strategies that have been tested 

https://www.zotero.org/google-docs/?Uxtejn
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are of myoelectric signals, and EEG control has only been briefly explored as a possible input 

modalities (Hauschild et al., 2007). Due to ongoing BCI research, there are multiple research-

grade EEG systems that have full VR integration including the DSI-VR300 offered by 

NeuroSpec and the Galea from OpenBCI (DSI-VR300, n.d.; Galea, n.d.). However, both options 

are expensive (around $25,000) and difficult to obtain, and so far there has not been any 

significant research using these Head-Mounted Displays (HMD) within the field of prosthetic 

rehabilitation. Our solution would be to provide an affordable pathway for VR to improve our 

novel, affordable EEG interface, especially by focusing on portability, ease-of-use, and 

customization within the rehabilitation process. 

It is clear where our VR environment could be integrated throughout the lengthy 

postoperative and prosthetic training program for a recent amputee. Soon after their operation, 

the patient will be especially dependent on their healthcare team which would consist of 

physicians, nurses, and occupational and physical therapists. In the early stages, the goals of this 

program would be to maximize the patient’s independence and increase muscle strength and 

range of motion which is especially crucial for the placement and function of a prosthetic device 

(Atkins, 2002). The patient will likely experience phantom limb pain, which is a feeling of 

persistent pain in an amputated limb and has been recorded to affect approximately 70% of 

amputees. VR environments have shown promising results in serving as a tool to deliver 

effective, low-cost, self-administered treatment for this kind of pain, which can serve as 

precedent for the use of technology within rehabilitation (Ambron et al., 2018). Throughout this 

process, the healthcare team would be exploring the patient's goals and orienting the patient with 

prosthetic options and training. One use case for our VR environment would be as an interactive 

demonstration of our brain-computer interface, promoting the cost benefits of our prosthetic.  

https://www.zotero.org/google-docs/?3IAG7X
https://www.zotero.org/google-docs/?ZItKpm
https://www.zotero.org/google-docs/?ZItKpm
https://www.zotero.org/google-docs/?ZItKpm
https://www.zotero.org/google-docs/?ZItKpm
https://www.zotero.org/google-docs/?ZItKpm
https://www.zotero.org/google-docs/?TotNCc
https://www.zotero.org/google-docs/?SCwED5
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As the patient transitions into the training phase of their rehabilitation, their relationship 

with their occupational therapist becomes even more crucial, as it will be the responsibility of the 

therapist to manage and monitor the amputee’s acclimation to the prosthetic. It must be said that 

when we propose a VR component to rehabilitation therapy, this is not meant to be a 

replacement to the traditional therapeutic methods which rely on the input of a clinician. Since a 

major component of the therapy requires the haptic feedback and physical presence of the 

therapist, a fully-virtual simulation environment that could be used as a form of immersive 

‘distance-learning’ would not be feasible given current technology. However, recent studies have 

introduced a force feedback from a physical robotic arm in order to add realistic weight to the 

control of a prosthetic limb in a VR environment (Chappell et al., 2022).  

The VR environment would be best utilized for the exercises that comprise prosthetic 

controls training. Initially, prosthetic training would consist of prehension control practice 

including reaching, grasping, moving, positioning, and releasing; those being the motion 

elements that are primarily used in hand manipulation (Atkins, 2002). Once the individual has 

reached a satisfactory level of practice, they would typically attempt other commonly used 

indicators of upper-limb mobility and function including the Box and Block test, the Nine Hole 

Peg Test, and the Target Achievement Control (Gaballa et al., 2022). Finally, the user would 

have the opportunity to engage in functional use training, which would be completing ordinary 

everyday tasks by using their prosthetic. This is likely the most difficult and prolonged stage of 

the training process, and the stage which VR can most effectively accelerate. In order to more 

effectively monitor and alter the situation, a VR environment would allow the occupational 

therapist to quickly make adjustments to the patient’s virtual environment. Since the scene is a 

controlled environment, the therapist could easily adjust the position or dimensions of the 

https://www.zotero.org/google-docs/?vof66j
https://www.zotero.org/google-docs/?qabV0k
https://www.zotero.org/google-docs/?ZsYRcb
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prosthetic, quickly alter the scene and objects within them, and accurately conduct an analysis on 

the user’s performance. The therapist also has the capability of providing simulated 

demonstrations to the patient to help them better follow along with the exercise. It is important 

that the options for customization are plentiful and made accessible to the clinician, and it would 

be best that the final design for a fully customizable environment be vetted by several 

distinguished healthcare professionals. While we do want to specify that most of the actual 

training would be supervised by the occupational therapist, the portability of the VR environment 

could allow the patient to take part in self-administered at-home practice that is assigned by the 

therapist. 

Despite the virtual environment’s ability to simulate the majority of exercises within 

prosthetic rehabilitation, it will not replace the training of the actual prosthetic. To maximize the 

feeling of independence of the user, a proposed rehabilitation process would look to wane off the 

reliance of the VR environment for training. We still hope that the environment would improve 

the comfort of the user in the early stages, especially in establishing a feeling of ownership and 

control over their prosthetic. 
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Figure 7. VR HMD and Peripherals. (Top Left) Meta Quest 2 HMD. (Top Right) Left 
Controller. (Bottom Left) HTC Vive Tracker 3.0. (Bottom Middle) Skywin VR Tracker Strap. 

(Bottom Right) HTC Vive Base Station (Base Station | VIVE United States, n.d.; Oculus Quest 2 
Transparent PNG - StickPNG, n.d.; Skywin VR Tracker Strap for HTC VIVE System Tracker 

Puck, n.d.; VIVE Tracker | VIVE Business United States, n.d.). 

When analyzing the HMDs that are available on the market in order to set up our 

environment, our main concern was to use a headset that was widely available and cost-effective, 

as accessibility is one of our priorities. Most of our initial development was accomplished using 

the HTC Vive Pro 2 Full Kit, an expensive HMD valued at $1,399 which also requires the device 

to be wired to a computer that runs our software. In order to track the movement of the HMD, 

trackers, and controllers, it is also required to set up multiple base stations in the corners of the 

user’s physical space that rapidly emit sync pulses and laser lines to calculate the position of the 

VR devices (known as outside-in tracking). Due to the high cost and difficult setup of the HTC 

Vive HMD, we opted to use the much more consumer-friendly Meta (formerly Oculus) Quest 2. 

As opposed to using base stations, the Quest 2 tracks its HMD and controller position through 

inside-out tracking, calculating position in 3D space through cameras on the HMD that employ a 

computer vision model that looks for reference points in the physical environment to deduce the 

user’s position in the virtual space. As the HMD contains an internal CPU and GPU, the device 

is able to run a standalone Android-based operating system, which allows the user to remain 

untethered to an external computer. Both due to its affordability ($399) and being wireless, we 

preferred to use the Quest 2 as the HMD of choice. 

https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
https://www.zotero.org/google-docs/?8OqzQc
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To allow for body tracking, specifically to track the position of the user’s elbow, we 

chose the HTC Vive Tracker 3.0, valued at $130. Unfortunately, the Tracker requires the usage 

of physical base stations, which would need to be mounted and secured high in the walls of the 

play area in order to track position. In the near future, we would hope to convert to using inside-

out trackers through the recently announced HTC Vive Self-Tracking Trackers, which wouldn’t 

require the installation of base stations. 

 
Figure 8. HTC VIVE Self-Tracking Tracker. An inside-out tracking peripheral that will be 

released later in 2023. Does not require the use of Base Stations (VIVE Self-Tracking Tracker, 
n.d.). 

https://www.zotero.org/google-docs/?WLWJkN
https://www.zotero.org/google-docs/?WLWJkN
https://www.zotero.org/google-docs/?WLWJkN
https://www.zotero.org/google-docs/?WLWJkN
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Methods 

 
Figure 9. Overview of Methodology. Where the data flows from Acquisition to Analysis to 

Implementation. 

A detailed participant testing protocol can be reviewed in Appendix B. An overview of 

our methodology is shown in Figure 9 above. Methodology is split into three phases: Data 

Acquisition, Data Analysis, and Data Implementation. 
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To summarize the process, we first connected the EEG headset to a computer to detect 

and record brain waves. Second, recorded brain waves were used as data for the purpose of 

analysis and classification. We analyzed the data to investigate what motor function the recorded 

brain wave is trying to control. We then sent classified actions as outputs to use for 

implementation in the simulation or prosthetic device. Along the way, we worked to tweak the 

accuracy of our process by testing various machine learning models and applying 

hyperparameter tuning on them. Setting up this end-to-end workflow helped to provide a 

baseline for how our process works. 

Data Acquisition 

70 EEG signal data sets were collected from six healthy individuals affiliated with the 

University of Maryland with no history of seizures who were 18 years of age or older. The 

following criteria were required to be eligible to participate: 

● Have no injury nor condition that limits hand exercises required by our procedure 

● Have not consumed recreational drugs or alcohol within 24 hours of testing 

● Right hand dominant 

● No braids or other protective styles during testing 

 
Figure 10. The Cyton Biosensing board (left) and the Ultracortex Mark IV (right) from 

OpenBCI. The Cyton Biosensing board is attached to the 3D-printed Ultracortex Mark IV. 
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Figure 11. OpenBCI Graphical User Interface. Example of collecting raw data using the 

OpenBCI Graphic User Interface. 

An 8-channel Cyton Biosensing board was used with the Ultracortex Mark IV – an open-

source, 3D-printable headset – from OpenBCI to acquire the EEG signals via the OpenBCI 

Graphical User Interface (GUI) shown in Figure 11 above. The electrode positions are FC1, FC2, 

C3, C4, Cz, CP5, CP1, and P3 based on the 10-20 system for electrode placement as shown in 

Figure 12 below. Two ear clip electrodes are used in addition to the eight active electrodes. The 

left ear clip electrode is the reference while the right ear clip electrode is the ground with 

common-mode noise rejection, also known as the bias (Ultracortex Mark IV | OpenBCI 

Documentation, n.d.).  

https://www.zotero.org/google-docs/?eNuElH
https://www.zotero.org/google-docs/?eNuElH
https://www.zotero.org/google-docs/?eNuElH
https://www.zotero.org/google-docs/?eNuElH
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Figure 12. Electrode placements based on the 10-20 system. The selected electrode positions are 

noted by the highlighted nodules. Colors correlate with the channels recorded (Ultracortex 
“Mark IV” EEG Headset, n.d.). 

 

 
Figure 13. Sensorimotor Cortex. The highlighted regions show the sensorimotor area of the 

brain. Purple shows the primary somatic motor area. Yellow shows the primary somatic sensory 
area. 

We measured signals that arise in the sensorimotor area of the brain as highlighted in 

Figure 13 above. The sensorimotor area consists of the premotor cortex, primary motor cortex, 

supplementary motor area, primary somatosensory cortex, and posterior parietal cortex. The 

https://www.zotero.org/google-docs/?spgQf1
https://www.zotero.org/google-docs/?spgQf1
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premotor cortex deals with signals that coordinate movement in extrapersonal space. In contrast, 

the primary motor cortex encodes for voluntary movement within personal space, such as arm’s 

reach. The supplementary motor area is involved with initiation of movement while the primary 

somatosensory cortex processes sensory information from all areas of the body. The posterior 

parietal cortex is specifically involved in sensorimotor integration and sends signals to the 

primary and supplementary motor cortices (Purves et al., 2018). 

 
Figure 14. Sensorimotor regions activated by right hand movements. Functional Magnetic 
Resonance Imaging (fMRI) showing activation of the left-lateralized sensorimotor region, 

particularly in M1, SMA and vPMC, due to right hand movements (Sarfeld et al., 2012). 

In order to measure the desired signals through the headset, participants were asked to 

perform one of two actions: opening and closing one’s right hand around a stress ball or opening 

and closing each digit separately. Participants were informed that the execution of each action 

would be mediated by a countdown timer and that multiple repetitions of an action would take 

place during each measurement. Before recording, each action was demonstrated to the 

participants and they were able to request a redemonstration if needed before each data collection 

step. Each full hand measurement was taken via Google Timer and began with a 10/5/5 sequence 

–10 seconds at rest, 5 seconds open hand, and 5 seconds closed hand– followed by a 5/5 

sequence of opened and closed hands until the end of that portion of data collection. 

https://www.zotero.org/google-docs/?woRUw8
https://www.zotero.org/google-docs/?OGsq7j
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Measurements for each finger and thumb were taken at 1-second increments throughout data 

collection. 

 
Figure 15. Participant Set-up. Example of a participant in the lab fully set-up in the EEG and 

ready to collect data using the OpenBCI Graphic User Interface. 

 The data collected from the participants focused on the 4-13 Hz frequency band, which 

was chosen based on analysis done by Leocani et al. and Manganotti et al.. Leocani’s study 

focused on analyzing right-handed index finger movement within the 10 Hz and 20 Hz frequency 

bands, while Manganotti studied right-handed finger movements focused on the 8-20 Hz 

frequency band (Leocani et al., 1997; Manganotti et al., 1998). The ranges in both studies 

correspond with the values noted from our aforementioned literature review, which relate alpha 

and beta band values (8-20 Hz) with affecting motor movement. It should be noted that the 8-12 

https://www.zotero.org/google-docs/?3n7UDi
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Hz frequency band also corresponds heavily with visual signals (such as blinking) which may 

confound data. Our data collection procedure, as noted, does not place any forehead electrodes, 

and we believe that there will be minimal visual interference in our data. 

Data Analysis 

We then extracted useful information from the raw EEG data that was acquired via data 

acquisition. Using initial experimentation with historical EEG data, data preprocessing, and data 

analysis through neural networks, we generated results in a sequence of numerical predictions 

that were then translated into machine readable actions. 

Initial Experimentation 

As our first step, we explored which libraries and models would be useful for our 

purposes. We found a Python library named MNE which provided us with a swath of 

preprocessing, processing, and visualization tools for EEG data (Gramfort et al., 2013). We also 

learned about the Python library scikit-learn which came with various ML models we could test 

on (Pedregosa et al., n.d.). We chose the models we would utilize by testing them on sample 

EEG data provided by MNE. This was done to make sure the results of the models were 

reproducible and to ensure we were implementing them properly.  

Data Preprocessing 

Data preprocessing was a multistep process that transformed the raw EEG data into 

something that could be processed by our ML models. First, the program reads the raw output 

files from the OpenBCI GUI with MNE. We then applied a bandpass filter from four to thirteen 

hertz using infinite impulse response (IIR) filters. Next, we dropped channels with no recordings 

in them, cropped the data to remove the buffer, and added annotations (Open or Closed) as 

shown in Figure 16 below. After these steps, we concatenated each file into a single dataset. We 

https://www.zotero.org/google-docs/?M0i0a9
https://www.zotero.org/google-docs/?uIeadk
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then converted all of the data into three second windowed epochs and normalized it. Finally, we 

randomized the data and split it into three sets: 50% for training, 25% for validation, and 25% for 

testing. 

 
Figure 16. Annotated Spectrogram. Plot of a sample from our dataset that has been preprocessed 

and annotated through MNE. 

Models 

The first model we tested was not a deep learning model, but rather was a combination of 

a spatial filtering model called xDawn + Riemannian Geometry Classifier (xDawn + RG). To 

introduce this model, we first discuss the xDawn component. This model estimates spatial filters 

which aim to enhance the EEG signal associated with the target action through a series of matrix 

decompositions. These spatial filters allow dimension reduction of the streamed EEG data and 

allow the target response signals to be enhanced, allowing for easier classification of our target 
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EEG responses (Rivet et al., 2009). The Riemannian Geometry Classifier works by mapping the 

EEG data onto a Riemannian manifold and then using a clustering algorithm to classify the data. 

This Riemannian manifold is a non-Euclidean space where the neighborhood of each point in the 

manifold is homeomorphic to a Euclidean space. Upon mapping the data to this Riemannian 

manifold, the Riemannian distance (the distance between points on the Riemannian manifold) is 

used to compute clusters of data in the Riemannian manifold so that a classification can be 

determined. The combined xDawn + RG method works by initially computing the spatial filter 

using xDawn, then taking the resulting filter and using the filtered input data to train the 

Riemannian Geometry Classifier. To implement this model, we utilized the PyRiemann library to 

define a model combining xDawn and Riemannian Geometry and decoded the data with a 

logistic regression (F. Li et al., 2020). The code for the model was retrieved from the PyRiemann 

ERP sample script example. In order to get the model to work with our data, we had to adjust 

various parameters including the number of components, the data shapes, and the output shape. 

EEGNet was a Convolutional Neural Network (CNN) model we tested. This model 

specifically utilizes temporal convolutions and depthwise separable convolutions. Temporal 

convolutions adapt regular CNNs so that they can be used for sequential data which EEG signals 

are. Depthwise separable convolutions were used to reduce the size of the model as well as 

helped extract spatial filtering features. The original study tested the model on a variety of 

paradigms including datasets involving motor imagery and movement in which EEGNet had 

high performance compared to several other algorithms (Lawhern et al., 2018). We trained and 

tested our dataset with the same model implemented in Keras with some minor additions. At 

every epoch, we chose the best model based on the lowest validation loss. Additionally, various 

hyperparameters such as dropout rate, batch size, epoch size, and kernel length were optimized 

https://www.zotero.org/google-docs/?8IQ27x
https://www.zotero.org/google-docs/?BjZCd1
https://www.zotero.org/google-docs/?CE8JmU
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to find values that best fit our dataset. One notable change from the original study was that their 

dataset contained 64 channels while ours only contained 8 channels. 

ShallowConv is another convolutional CNN we tested with our data. This model consists 

of two layers. The first layer is a convolutional layer with convolutions on the temporal axis as 

well as a spatial filter along the electrodes designed for EEG data. The second layer is a dense 

softmax classification layer. 

 
Figure 17. ShallowConv. The architecture of the ShallowConv model showing its convolutional 

and dense layer (Schirrmeister et al., 2017). 

DeepConv is a larger version of the ShallowConv CNN described in the same paper. The 

DeepConv network consists of 5 layers as opposed to ShallowConv’s 2 layers. The DeepConv 

model’s first layer is a convolutional layer in the temporal dimension with spacial filters. This 

layer is specially designed to handle EEG input. The next 3 layers are standard convolution max-

pooling layers that lead into a final dense softmax classification layer. 

https://www.zotero.org/google-docs/?2KbzLL
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Figure 18. DeepConv. The architecture of the DeepConv model showing the four convolutional 

layers and final dense classification layer (Schirrmeister et al., 2017). 

Both DeepConv and ShallowConv were tested against multiple datasets that included 

both motor-imagery and non-motor-imagery data including hand movement, foot movement, and 

word generation. Both the DeepConv and ShallowConv models performed well compared to the 

widely used filter bank common spatial patterns (FBCSP) algorithm which was used as a 

baseline in the study (Schirrmeister et al., 2017). We tested our dataset against both 

ShallowConv and DeepConv implemented in Keras and trained the models in a similar way to 

https://www.zotero.org/google-docs/?tmo6a4
https://www.zotero.org/google-docs/?VNmz81
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how the EEGNet model was trained. At each epoch we calculated validation loss and saved the 

model weights of the model that had the lowest validation loss. 

Translation 

The purpose of the translation step was to convert the predicted outcomes from 

classification into a structure that the implementation can read and apply to actuate the 

prosthesis. First EEG data was streamed live with the BrainFlow Python library. However, 

before classifying this data, the window of streamed data required additional preprocessing 

compared to that described in the preprocessing section in order to transform it into data 

accepted by the model. The raw data had to be converted from V to µV and turned into an MNE 

RawArray. After an initial buffer period of three seconds, our ShallowConv model made a 

classification every second predicting if the hand was grasping or not. The classification was 

then converted into a ‘11111’ for grasping or ‘00000’ for open which was then sent to the 

Arduino via the Python library Pyserial using a serial USB connection.  

Data Implementation 

Implementation of the analysis into a prosthesis involved sending the analyzed non-

invasive EEG-based data into a BCI prosthetic arm system to help users with reduced or no 

residual limb functionality. The aim of implementation was to find a prosthetic device that is 

affordable, accessible, efficient, precise, and intuitive. An existing prosthetic arm model known 

as ‘Raptor Reloaded’ was found online on the NIH 3D Print Exchange website, and was printed 

at the Makerspace in the University of Maryland STEM Library using 3D printers which are 

available free to students. For this project, we utilized the prosthesis in a unique way that 

involved connecting it to servo motors, rather than using the hand mechanically with no motor 

connection. 
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Actuation of the Prosthesis 

The individual prosthetic arm parts were printed with polylactic acid (PLA) building 

material using a Prusa I3 Mk3s printer, and then assembled by connecting the parts with printed 

pins and caps to secure the connections in place. Various assembly instruction manuals can be 

found online for the ‘Raptor Reloaded’ design, but we used one written by Andreas Bastian, an 

engineer with an interest in 3D-printing technologies (andreasbastian, n.d.). Bastian had posted 

an instructional manual on the Instructables website, a site for instructional how-to guides for a 

variety of projects that includes technology and science (Yours for the Making, n.d.). After the 

hand was assembled, we glued the hand to a surface with the palm facing upwards so that the 

hand would stay in place when the fingers moved. Flexor cords were used to attach the fingertips 

to five different servo motors. We designed a tray with designated slots to keep the servo motors 

in place, and then glued the tray to the same surface as the hand. The wrist piece was 180 

degrees about the attached hand piece, before the wrist piece was also attached to the same 

surface. It should be noted that this layout is different from how this design is commonly 

assembled. Then, connected the servo motors to an Arduino Uno which was plugged into the lab 

computer. 

 

https://www.zotero.org/google-docs/?fCieRf
https://www.zotero.org/google-docs/?fCieRf
https://www.zotero.org/google-docs/?fCieRf
https://www.zotero.org/google-docs/?BGZbeb
https://www.zotero.org/google-docs/?BGZbeb
https://www.zotero.org/google-docs/?BGZbeb
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Figure 19. BCIPRO 3D-Printed Prosthesis. Our 3D-printed prosthetic arm with flexor wire and 
servo motor attachments. Hand is in a closed position.  

 
Figure 20. BCIPRO 3D-Printed Prosthesis. Our 3D-printed prosthetic arm with flexor wire and 

servo motor attachments. Hand is in an open position.  

We programmed software that takes in a five-bit serial input from data analysis and 

interprets the input signals as commands to open and close specific fingers. The Python program 

used for data analysis uses a Pyserial program that sends the commands from the Python to the 

Arduino software. The open position results in a completely extended digit and the closed 

position results in a somewhat closed digit. The closing action is currently for demonstrative 

purposes only, and is not intended to function as a forceful grasp. The closed position pulls the 

cords to lift the fingers up via tension, while the open position releases the tension and allows 

gravity to bring the fingers down so the hand is open. Each of the five input bits control the 

actions of  a specific digit, with ‘1’ indicating flexed closed and ‘0’ indicating open. For 

example, ‘11111’ is fully closed and ‘00000’ is fully open. The software checks the input 

every second and updates the servo positions immediately, as well as outputting the serial input 
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to the serial motor. Commands are received about every second, so the software updates every 

second accordingly.  

void loop(){ 
  if (Serial.available() > 1){  
    if(Serial.available() != 0){ 
      long n1 = Serial.parseInt(); 
      for(int i = 4; i >= 0; i--){ 
        int orientation = n1%10; 
        n1 = n1/10;  
        ss[i].write(90*orientation); 
        String s = String(i+1);   
      } 
    } 
  }  
}                

Figure 21. Arduino Code. Section of the Arduino code we used to control the prosthesis. 

Virtual Reality Environment 

In providing an accessible alternative to normal prosthetic rehabilitation, we investigated 

VR as a low-cost, convenient, and personalized tool for our users. Upon engaging with our 

environment, our users would be able to control a virtual version of the Raptor Reloaded 

prosthetic arm within a 3D environment that consists of common household objects to interact 

with. The final version of our design would seek to integrate the Ultracortex Mark IV headset 

and HMD, opening and closing the specific fingers of the prosthesis within the simulation 

environment based on the output of our machine learning model. The idea would be as follows. 

1. The user displays intention for a device to move (in the case of an able-bodied individual, 

they would physically also execute the actions). 

2. The signals are collected and processed through the data analysis algorithm, translating 

them into machine commands 

3. These machine commands are then processed in one of two ways 
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a. The machine commands are processed to move a prosthetic device 

b. The machine commands are processed to interact with the HMD 

The goal of this integration is to allow us to utilize the headset-to-implementation system during 

all steps of the rehabilitation process, allowing those that interact with the system to gain 

experience with the system before having a full prosthetic device. 

 

 
Figure 22. VR Interaction. (Top) Left Controller represented by a red-gloved hand while HTC 

Tracker represented by prosthetic hand with a simple arm representation of customizable length. 
(Bottom Left) User picking up white chess piece by closing the prosthetic hand. (Right) User 

drops white chess piece by opening the prosthetic hand. 

Our prosthetic simulation was built in Unity, a popular game engine used for 3D and VR 

development. The pieces for the prosthetic hand used for 3D-printing were imported and 

assembled. We actuated our prosthetic by writing a C# script to rotate each of the prosthetic 
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digits around their pivots to either an “open” or “closed” state. Finally, we added interactivity 

between our virtual prosthesis and its environment by adding custom colliders to the fingertips of 

the model, allowing the user to reach, grasp, move, position, and release gameObjects within a 

3D space.  

 
Figure 23. Prosthetic Closed-Open States in Unity. Assembled prosthetic hand shown in closed 
(Left) and open (Right) states within Unity. Digits can be controlled independently or together. 

Within our VR Environment, the participant would be placed in front of a table, on top of 

which there are several everyday objects of various shapes and sizes. These include a doll, chess 

piece, spray bottle, ball, crowbar, and mug. These objects will behave according to Unity’s built-

in 3D physics engine, allowing the participant to interact with them. For demonstration purposes, 

the grasping of objects has been simulated, making it easier for the user to pick up objects. A 

simple user interface is present that marks the items that have been picked up as well as the 

current offset representing the missing arm length of the prosthetic. 
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Figure 24. 3D Environment in Unity. (Top) Isometric view of Interactable gameObjects in Unity 

scene. (Bottom) Front view of gameObjects in front of basic UI elements. 

In order to implement our VR hardware with our Unity build, we used a variety of free 

software, plugins, and packages. We used SteamVR, which utilizes the OpenXR standard, to 

connect our HMD, controllers, base stations, and trackers. We used Unity’s XR Interaction 

Toolkit package to bring input from our devices into Unity, and it allowed us to use free assets 
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and scripts to implement locomotion within our scene. In order to integrate the Quest 2 HMD 

and HTC Vive Tracker’s different tracking systems, we had to calibrate the devices by using the 

OpenVR Space Calibrator, an open-source plug-in to SteamVR that integrates both the inside-

out and outside-in tracking systems. 

 
Figure 25. Physical VR Set-Up. (Right) Vive Tracker strapped below the user's elbow. (Middle) 
User wearing Quest 2 HMD and handling Left Controller. (Right) Location of Vive Base Station 

relative to the user, indicated by red circle. 

 Figure 24 suggests the desired physical setup for a participant to engage with our virtual 

environment. It is necessary that the user has ample space to move around in, so we recommend 

that a play area is cleared of any obstacles and the user standing or sitting in the center. For 

tracking of the HTC Vive tracker, the corresponding HTC Vive Base Stations must be mounted 

to a high up point next to the play area, prior to beginning the virtual session. The user can then 

attach the HTC Vive Tracker to below the elbow of the desired limb to train, tightening the 

velcro strap to fix it in place. In their opposite hand, they will hold the corresponding Oculus 

Quest 2 Controller. Finally, the user can place the Oculus Quest 2 HMD over their eyes, 

tightening the HMD strap to stay firmly in place during the session. During the development 

stage of our environment, we would be seated next to the computer running our program with a 
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wired connection to our HMD as shown in Figure 26. The final program would be built and run 

on the standalone HMD, but a wired connection could allow for graphical or performance 

improvements based on the power of the connected computer. 

 
Figure 26. VR Demonstration. Simultaneous view of VR scene and seated user. 

 Despite demonstrating a working proof-of-concept for a virtual scene that would be used 

by our brain-computer interface, we were unable to complete the full end-to-end system that 

includes the EEG headset, machine learning model, and VR environment. By making alterations 

to the Ultracortex Mark IV model, we would attach the EEG headset to the Oculus HMD so that 

the user could wear both simultaneously and our VR environment could take input from the 

processed EEG output. 

  

Results 

Data Collection and Modeling 

We generated a data collection system using a commercially available EEG. The 8-

channel Cyton Biosensing board was used with the Ultracortex Mark IV – an open-source, 3D-
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printable headset – from OpenBCI to acquire the EEG signals via the OpenBCI Graphical User 

Interface. EEG data was collected while the right hand was opening and closing. Sections of the 

data were classified as open or closed corresponding to the time of the action. The algorithm was 

trained by this data to be able to predict whether brain signal data represents the open or closed 

action. Using this method, we were able to generate a model that can read EEG data and output 

the estimated movement. 

Both the EEGNet and xDawn + RG model were first tested on a sample dataset from 

MNE in order to ensure the results found in the original paper for the models were reproducible. 

The dataset contained four classes which were left ear auditory simulation, right ear auditory 

simulation, left visual field, and right visual field. The xDawn + RG model had an average 

accuracy of 68.06% on the dataset while the EEGNet model had an average accuracy of 93.06%. 

Figure 27 found below shows a confusion matrix for the two models showing that the xDawn + 

RG model was unable to classify auditory stimuli as well as the visual stimuli while EEGNet did 

very well on the left visual field and the right ear. 

 
Figure 27. Confusion Matrices. (Left) A confusion matrix of the sample MNE dataset being 
classified with xDawn + RG. (Right) A confusion matrix of the sample MNE dataset being 

classified with EEGNet. 
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 The four models, xDawn + RG, EEGNet, ShallowConv, and DeepConv were used to 

train and test our preprocessed data. We found that ShallowConv did the best with an accuracy 

of 58.7% followed by EEGNet (55.4%), then DeepConv and xDawn + RG which both had an 

accuracy of 54.6%. While ShallowCov did the best, it is clear from the confusion matrix found in 

Figure 28 that it had a bias for the hand opening. 

 
Figure 28. Confusion Matrices. (Top Left) A confusion matrix of our dataset being classified 

with xDawn + RG. (Top Right) A confusion matrix of our dataset being classified with 
DeepConv. (Bottom Left) A confusion matrix of our dataset being classified with EEGNet. 

(Bottom Right) A confusion matrix of our dataset being classified with ShallowConv. 
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Real-time Deployment of Prosthetic Device 

We developed a real-time deployment system in two ways. The first is a simulation 

which uses the Computer-Aided Design (CAD) files of the prosthetic arm, and the second is the 

physical 3D-printed prosthesis actuated by servos through Arduino. EEG data is recorded from 

the OpenBCI GUI and then translated by the algorithm, via Python, which then predicts an 

action based on the collected brain signals. Using Pyserial, a Python-to-Arduino software 

converter, we transferred instructional movement data in real-time from the prediction to the 3D-

printed prosthesis in the form of binary code. 

Discussion 

We included several steps in our participant testing procedure to ensure accurate 

acquisition of data. We checked that the electrodes had sufficient contact with the scalp by 

making sure none of the electrode signals were railed, or appeared as a flat line. Additionally, 

we performed impedance testing on each electrode to check the quality of the data being 

collected. We understand that using an OpenBCI EEG headset comes at a cost of lower spatial 

resolution, and with low quality data, there is more potential for error. However, the primary 

accuracy of our predictions was determined by our choice of algorithm. Many different 

algorithms were tested with varying accuracies (e.g. xDawn + RG, EEGNet, ShallowConv, and 

DeepConv). Although we were not able to obtain as high a level of accuracy as we desired, our 

algorithm functions well by allowing for data to flow from data acquisition to prosthetic 

implementation in real-time. As such, the prosthetic arm is able to receive signal commands from 

our algorithm which enables the prosthetic arm to be actuated by brain signals in real-time. 

Additionally, the benefits of a non-invasive EEG system allow for easy user usage, which makes 

up for reductions in prediction accuracy. 
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Future Research and Development 

In summary, our project succeeded in establishing an end-to-end workflow starting from 

EEG recorded participant data and ending in action implementation in a physical prosthesis. 

However, there is still room for improvement, especially in terms of data detection accuracy. As 

our project has developed, we have considered several potential focuses that other additional 

research could explore in the future. 

Future research may focus on modifying an existing commercial prosthetic arm, as those 

are generally preprogrammed to be controlled easily; or modifying our own existing prosthetic 

arm to add innovative features such as additional degrees of freedom. Another step could be to 

design and 3D-print a new prosthesis. If applicable to specific prosthesis features, calculations 

such as stress on the material or dynamic calculations of how many angles a joint is able to 

rotate, etc., will need to be done to determine the constraints for that feature before selecting 

materials. The features could then be implemented into the prosthetic arm and tested. 

For our VR environment, our initial goal was to complete a proof-of-concept scene that 

could be used for the purposes of prosthetic rehabilitation. The next step would be to speak with 

healthcare industry professionals, especially occupational therapists who have dealt with upper-

arm prosthetic training and discuss their desires for customization options for a VR environment. 

Conducting this survey would allow us to understand more current day rehabilitation methods in 

order to improve our design. We felt that certain elements such as haptic feedback were lacking, 

which would have improved the immersion of the user within the virtual scene. Overall, we want 

to have the user feel connected to their virtual prosthetic, which we could accomplish by 

including an accurate anthropometric virtual avatar body to improve the viewer’s self-body 

perception. Our environment could then make use of the ‘Self-Avatar Follower Effect’ to better 
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guide the user’s motor functions through their virtual avatar to result in more effective prosthetic 

training (Gonzalez-Franco et al., 2020). Lastly, we would like to complete case studies and 

collect surveys in order to gauge a participant's feeling of immersion within our scene and to test 

their ability to complete common training exercises.  

Another focus could be improving aesthetics or functionality to make a prosthetic arm 

look and feel more realistic, which could help a user be more comfortable with the device. This 

could emerge in ways such as designing finger tips that activate a touch screen, especially in our 

society which is heavily influenced by touch screen technology. Adding a sensory-synthetic 

skin—a thin film that can be placed on a surface to recognize pain due to heat, cold, and 

pressure—would give users a more realistic prosthesis experience. Another feature could be 

changing material selections and using polymers. Experimenting with this could positively 

change the strength and weight of a prosthesis. Energy efficiency through battery selection, 

power usage, and energy recycling is also important to consider. Whether wireless or not, a 

prosthesis with low power costs is ideal.This may be implemented by having the prosthesis be 

chargeable via a wall socket or powered by smaller, affordable batteries, such as a set of four 

AAA batteries. 

For noninvasive technologies specifically, there are two emerging methods of how the 

technology could function: direct kinetic control, and reverse kinetic control (McFarland & 

Wolpaw, 2008). Direct kinetic control is controlled specifically by the user, and therefore could 

be more effective for unique physical actions such as picking up objects with variable sizes. 

Direct control is considered to be an active control, meaning that a specific action is thought of 

by the user, and the BCI is able to communicate to the prosthetic to perform that exact action. 

Reverse kinetic control involves automatic pre-programmed actions, which could be more 

https://www.zotero.org/google-docs/?3zu4um
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effective for common physical actions, like gripping a standard-sized pencil. Reverse control is 

considered to be a passive control, meaning that a general idea or concept is thought of, not 

necessarily a specific action. For example, a user’s brain could be classified as being in an 

overloaded or underloaded state, and this information could be used to have an algorithm adapt 

so that a user is better calibrated with and in control of their prosthetic (for example, a more or 

less engaging system of controlling a prosthetic could be activated). In the example of a 

preprogrammed action to pick up a pencil, the user of course won’t think of the exact actions to 

grip a pencil; a more general mental state could be detected and subsequently implemented with 

actions. Passive control has other possibilities as well, such as identifying general mental states 

that can help distinguish between different users when it comes to using prosthetics, along with 

having the algorithm of the BCI become better calibrated with an individual user. 

Future developments in this technology will likely involve prosthetic limbs which have 

more degrees of freedom. Also, developments into reverse kinetic control seem promising. Such 

developments could mean a user having less exact control, but they would be able to choose a 

preprogrammed action to perform, for example, gripping an object with specified dimensions. 

Reverse kinetic control actions would be chosen by the user, but the BCI would automatically 

perform those actions according to a predetermined program. As time goes on, this function 

could develop to perform gradually more complicated tasks that may not be possible with direct 

kinetic control.  

The OpenBCI EEG headset used in this study came with pre-defined reference and 

ground electrode placements on the ear lobes. It is important to note that the placement of these 

grounds can affect the clarity of the signals we sought to measure. Ideally, the reference 

placement should produce as close to zero or constant potential, however no point on the body 
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has been identified that fulfills this condition. Even if this requirement is fulfilled, placement of 

the electrode would depend on the desired signal (Yao et al., 2019). Future studies could focus 

on testing and identifying the optimal placement for these reference and ground electrodes. 

While this study mainly focused on CNNs as its primary source for classification models, 

other deep learning techniques remain unexplored. One such example is transformers which 

have been revolutionary in various fields like natural language processing and computer vision 

(Devlin et al., 2018). One advantage a transformer model could have over CNNs is that 

transformers are able to track both local and global sequential context, while CNNs only look at 

chunks of local context with no regard for order. 

Our participant testing experience evolved as we did our testing throughout the project. 

When testing with participants, we had them look at a stopwatch on a screen and told them to 

perform actions every five seconds, and started EEG recording in sync with the stopwatch. We 

assumed that the participant actions should sync up well with the EEG recording, and that the 

actions accurately aligned with every five-second interval for the hand and every one-second 

interval for the fingers that we specified. However, there is human error possible due to 

participants not properly performing actions in synchronization with the stopwatch, and due to 

our team not properly syncing EEG recorded data with the stopwatch and the participant actions.  

A way to help mitigate recording delays and also errors syncing up with time intervals 

would be to manually record the start of physical actions. One possible way would be to record 

an additional electrode physically separate from the participant, which we could touch whenever 

we observe the participant performing a specific action. This additional electrode could mark 

when in time participant actions are performed more accurately and could improve the accuracy 

https://www.zotero.org/google-docs/?ldJjS1
https://www.zotero.org/google-docs/?cxQmLo
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of the data. Although we did not implement this, we believe it would be a method for more 

accurate timing associations with EEG signals in future research.  

Another direction we could have explored for participant testing is having solid color 

screens come up for the participants that simply show the current action word, either ‘open’ or 

‘close’. This is simpler than our protocol of having a participant actively thinking about the 

stopwatch and when they need to perform actions. This could have a possible effect on data and 

it is an idea to be explored at a later time. 

Our participant testing involved a specific demographic: able-bodied individuals. We 

took EEG data from multiple participants, though all of them were able-bodied. Individuals with 

an amputation exist with a wide range of amputations at varying locations on limbs. Testing 

individuals with a variety of amputation locations would help account for different complexities 

of prostheses needed. Amputees can also have a variety of affected signal pathways in the brain 

and/or nerves, which means they would likely need to be trained on a different training model as 

EEG signals would be noticeably different. Studies have observed that specific differences in 

alpha and beta bands between able-bodied people and amputees, suggesting that changes in the 

sensorimotor area of the brain occur after limb loss is sustained (Lyu et al., 2016).  

Animal studies provide further evidence for cerebral rewiring after amputation. One 

study reported that in adult owl monkeys who had a finger removed, the brain region associated 

with the amputated finger had been completely taken over by areas that were associated with the 

remaining fingers within three months (Merzenich et al., 1984). Though we acknowledge that 

because of these discrepancies our device may not be suitable for those with limb loss at this 

time, our hope is that our model for able-bodied individuals can be applied to an amputee dataset 

and still maintain efficiency. Machine learning is a fundamental aspect of our project, which 

https://www.zotero.org/google-docs/?ExX7TS
https://www.zotero.org/google-docs/?CXfLDb
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allows us to accommodate differences in somatosensory organization. Furthermore, it is 

important to mention that neuroplasticity, or changes in brain connectivity, is a continuous 

process in our brain that happens in all people regardless of age or ability. Our existing dataset 

and reliance on machine learning provides a robust foundation upon which to build a functional 

device for EEG signal acquisition and prosthesis for those who are differently abled.  

Collecting data from participants with limb loss and adjusting our model accordingly 

would be a logical next step for future research. The testing could be similar to the testing we 

already did. In future testing, participants would think about gripping a stress ball (instead of 

physically gripping a stress ball) with their missing limb rather than actually doing so. Or, if 

needed, they could think about moving a different existing limb to grip a stress ball. These 

thoughts would be used to control the prosthetic arm gripping. Feedback could be implemented 

in the form of a prosthesis that detects that a ball is being compressed when squeezing it, and in 

response notifies the participant via physical feedback (touching the participant, audio, or visual 

feedback, etc.).  

We made assumptions during our research to help clarify things. For example, when 

measuring the EEG signal as the user moved their hand or squeezed a ball, we assumed that 

action to be initiated by a specific singular signal. In reality, there are two signals involved in 

hand motion: sensory feedback and motor commands. A ‘sensorimotor’ signal involves both of 

these aspects, and factoring this knowledge into account and separating the two could have 

future prospects for improving data analysis accuracy. Another assumption we made was that 

EEG signals correspond directly to an action. The reality is that the brain is complex, and EEG 

signals tend to drift and represent other thoughts, which complicates interpreting the signals. 

Future research could look into targeted instance tests that try to isolate a singular action, so that 
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a corresponding EEG signal can be more confidently associated with that action. Research exists 

regarding targeted individual validation, so this can feasibly be further explored (Sperrin et al., 

2022). Another assumption was that we could use the same trained model across multiple 

participants. Every participant is different, so future research could involve specific training 

model data for individuals, which could potentially yield higher prediction accuracy. 

Equity Impact Report 

A fundamental challenge that our team faced was balancing the scientific and social 

impact our device would have. That is, our team needed to create an original solution for 

individuals living with limb loss without alienating the most in-need populations. In order to do 

this, we incorporated knowledge and application of diversity, equity, and inclusion, within each 

step of the research process. Our literature review provided a foundation of knowledge that has 

informed our decisions across all aspects of the project, from the materials used to the cost-

benefit analysis. Throughout our literature review, we uncovered a web of disparities that exist 

surrounding accessibility to prosthetic devices that can be best explained by examining the 

intersection between race, socioeconomic status, and healthcare as a whole. 

Causes of Inequities and Adverse Impacts  

Central to understanding the diversity of our target population was not only recognizing 

the main causes of limb loss, but also the identities that those affected by limb loss may have and 

how those identities might exacerbate living with limb loss. For instance, we discovered that 

54% of limb loss in the United States is due to vascular disease (“Limb Loss Statistics,” 2015). 

Delving further into the demographics of vascular disease revealed that a disproportionate 

amount of marginalized racial groups are at greater risk for developing and sustaining adverse 

effects of vascular disease, such as amputation. These discoveries were substantiated by other 

https://www.zotero.org/google-docs/?DqJg7H
https://www.zotero.org/google-docs/?DqJg7H
https://www.zotero.org/google-docs/?J1ivuL
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statistical evidence offered by Ohio State University, which reported that African Americans are 

four times more likely to need a prosthetic device due to limb loss (The Ohio State University, 

n.d.). This is due to a multitude of factors, such as lower socio-economic status on average and 

lower likelihood of possessing insurance to assist in the cost of either a cosmetic or functional 

prosthesis. 

The median income for Hispanic individuals is around $20,000 less than White 

individuals, and the median income for African Americans is around $30,000 less than White 

individuals (Wilson, 2020). Moreover, African Americans are half as likely to have health 

insurance, such as Medicare or Medicaid, and Hispanic individuals are one third as likely to have 

health insurance as White Americans (Sohn, 2017). Understanding the socio-economic realities 

of individuals who are in need of prosthetic devices provides insight into why there are issues in 

acquiring them. Not only do cosmetic upper-limb prostheses cost upwards of $3,000, but 

functional or myoelectric prostheses are much more expensive, with the cheapest available 

devices starting at around $30,000 (Vandersea, n.d.). Moreover, myoelectric devices are often 

invasive, which then pose increased health risks and longer recovery periods, further driving up 

expenses. Those who are struggling financially, uninsured, or both, may not realistically be able 

to afford a prosthetic device. Considering the prices of prosthetic devices on the market, and the 

median income and insurance rates for the groups that need them the most, we can see that there 

is a great need for a new iteration of a prosthetic device that increases financial accessibility. 

We also recognize that design flaws in the EEG device itself may also reflect systemic 

racism (Choy et al., 2022). EEGs rely on the ability of the electrodes to reach the scalp of the 

individual in order to properly read signals, though this process can be interrupted and become 

https://www.zotero.org/google-docs/?qWPscS
https://www.zotero.org/google-docs/?qWPscS
https://www.zotero.org/google-docs/?qWPscS
https://www.zotero.org/google-docs/?qWPscS
https://www.zotero.org/google-docs/?4p5a9r
https://www.zotero.org/google-docs/?whtRwf
https://www.zotero.org/google-docs/?MmrEMo
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less reliable with someone who has curly or coily hair. In addition to financial concerns, it is also 

important that the device addresses inequities that may arise due to its structure. 

Recommendation 

In our approach to lowering the price of prosthetic devices, we considered three main 

sources of cost: reading and translating brain signals, the actual mechanical prosthesis, and 

reducing rehabilitation expenses. Our main focus was addressing the first source. One of the 

ways in which our team was able to do this was to rely on 3D-printing for our headset. Through 

3D-printing, the headset is accessible both in terms of cost and location, and is even 

customizable to account for changes in age and differences in curl patterns, as the user can 

adjust for size and electrode type that best accommodate their hair (Krueger et al., 2022).  

3D printers can be found at almost any major institution, and as the technology becomes 

increasingly advanced, the cost to print and the time needed to print will decrease. Currently, 

printing the headset at our institution costs between $10-$30. Electrodes from either Amazon or 

websites such as OpenBCI range from $30-$50. Finally, the boards needed for the acquisition of 

EEG data are available through OpenBCI, though simpler circuit boards are compatible with the 

device, and prices range from $50-$800. In total, the cost for reading and translating brain 

signals with our device becomes $90 and the low end to $880 at the high end. This can be 

compared to the $30,000 invasive devices that are commercially available.  

Utilizing 3D-printing for the headset and using easily attainable materials for our device 

allows users to enjoy a non-invasive, inexpensive way to transform brain signals into digital 

signals, which effectively minimizes the cost of our prosthesis. In terms of the actual mechanical 

prosthetic device, recent changes in FDA policies have approved methods to print a prosthetic 

device. 3D printed devices are regulated in the same way that medical devices are. Although 

https://www.zotero.org/google-docs/?Omw5My
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biocompatible materials can be 3D printed, we want to emphasize that the majority of the cost 

lies within the functionality and not mechanical ability.  

With the prescription of a prosthetic, a necessary component of prosthetic acceptance and 

function is the long process of prosthetic rehabilitation. The user will likely need years of costly 

therapy sessions, which is definitely a barrier to choosing prosthetics as an option. While our VR 

environment is still in the early stages, we remarked how this technology can accelerate 

prosthetic training, resulting in less costs for the user. Our setup was also extremely affordable, 

using consumer products such as the Oculus Quest 2 HMD and the HTC Vive Tracker, which is 

a total value of $530. With VR HMDs and peripherals becoming more widely available, these 

technologies definitely have the potential to significantly reduce the overall cost to the patient. 

In essence, decreasing the cost to replicate human motion increases accessibility and 

restores quality of life to marginalized populations. By being cognizant of disparities throughout 

the entirety of our project, we have not only discovered new approaches to non-invasive BCIs, 

but also succeeded in uplifting disenfranchised communities that would most benefit from our 

work. Our project is not just about prosthetics research; rather, it is about integrating innovative 

features in devices that solve systematic disparities and spark a greater conversation about 

medical ethics and healthcare inequity.  
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Appendices 

Appendix A - Glossary 

1. Ableism: “The practices and dominant attitudes in society that devalue and limit the potential 

of persons with disabilities” according to the Stop Ableism Organization (What Is Ableism?, 

n.d.). 

2. Active control: A way of controlling actions where a specific action is thought of by a user, 

and where this thought is the action directly implemented by the prosthetic.  

3. Alpha: EEG bandwidth ranging from 7-12 Hz. Associated with task performance and 

inversely related to increased activation of the prefrontal cortex, which has largely been 

implicated in motivation and emotion pathways.  

4. Amputation: The surgical removal of all or part of a limb. 

5. Amputee: An individual with a limb that has been surgically removed, or an amputation. 

6. Bandpass filter: A filter that passes frequencies within a certain range and rejects frequencies 

outside of that range. 

7. Beta: EEG bandwidth ranging from 16-31 Hz, which indicates planning and execution of 

voluntary movement.  

8. Brain-Computer Interface (BCI) or Brain-Machine Interface (BMI): A communication and 

control system that enables users to send commands to a computer or external device with 

brain signals alone without the need for muscle control (Jeunet et al., 2016). 

9. BrainFlow: A Python library that streams, parses, and processes EEG and other signals. 

10. Buffer: A process by which newly-acquired data is held in memory until there is a given 

amount of data stored, is potentially changed or processed, and then is all used at once. The 

process is then repeated for future data. 

https://www.zotero.org/google-docs/?y2wj5P
https://www.zotero.org/google-docs/?y2wj5P
https://www.zotero.org/google-docs/?y2wj5P
https://www.zotero.org/google-docs/?y2wj5P
https://www.zotero.org/google-docs/?DoaUDK
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11. Computer-Aided Design (CAD): The use of computers in the creation and editing of a 

design, typically in regards to designing 3D-printing files.  

12. Congenital: Present from birth. 

13. Convolutional Neural Network (CNN): A convolutional neural network is composed of 

multiple building blocks, such as convolution layers, pooling layers, and fully connected 

layers, and is designed to automatically and adaptively learn spatial hierarchies of features 

through a backpropagation algorithm (Yamashita et al., 2018). 

14. Curl patterns: Hair texture is typically divided into four categories: straight, wavy, curly, and 

coily. The latter three can be further divided into subcategories. Curl patterns play a large 

role in how one styles their hair and the hair products they are able to use.  

15. DeepConv: A deep learning model that classifies EEG signals. 

16. Degrees of Freedom: The independent axes of motion a mechanical object can move along. 

17. Delta: EEG bandwidth less than 4 Hz. Implicated in dopamine reward systems, hunger, 

thirst, and sleep rhythms. 

18. Direct Kinetic Control: A type of prosthetic control where the user directly controls motor 

function. 

19. Electroencephalogram (EEG): A neuromonitoring method used to evaluate the electrical 

activity in the brain. Brain cells communicate with each other through electrical impulses. An 

EEG can be used to help detect potential problems associated with this activity. An EEG 

tracks and records brain wave patterns. 

20. EEGNet: A deep learning model that can be trained to classify EEG data. 

21. Epoch: A single pass of all data points in the training set. 

22. Functional Magnetic Resonance Imaging (fMRI): A method of measuring blood flow 

https://www.zotero.org/google-docs/?GTjqe9
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changes in the brain associated with different mental activities using magnetic fields (Guger 

& Allison, 2014). 

23. Gamma- EEG bandwidth ranging from 32-60 Hz, which indicates sensorimotor integration  

24. -gram, -graph, and -graphy: (1) A -gram is the record or the results of the recording, (2) a -

graph is the instrument used for recording, and (3) a -graphy is the process of recording. 

25. Head-Mounted Display: Devices that are mounted to the operator's head consisting of 

displays that are in front of each eye. Virtual Reality headsets are an example of these. 

26. Keras: A Python library that allows users to train and test deep learning models. 

27. Machine Learning (ML): A computer algorithm that utilizes training data to learn to 

automatically accomplish a task. 

28. MNE: A Python library for processing and visualizing neurophysiological data. 

29. Myoelectric: Pertaining to the electrical impulses, known electromyography (EMG) signals, 

generated by muscles. 

30. Myoelectric Prosthesis: A type of prosthesis that is controlled by EMG signals that are 

naturally produced by muscles. 

31. Passive control: A way of having a more general brain state measured from the user (such as 

overstimulation or understimulation), and using the information about the classified brain 

state as a way to adapt or tweak the process of control (for example making the control 

program more or less stimulating). 

32. Polylactic acid (PLA): a polyester that is commonly used in 3D-printing. 

33. Prosthesis: An artificial limb. 

34. Prosthetic: Relating to an artificial limb; The branch of medicine regarding the production 

and use of artificial limbs. 

https://www.zotero.org/google-docs/?NRtaa1
https://www.zotero.org/google-docs/?NRtaa1
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35. Pyserial: A Python library that allows Python to read from serial ports. 

36. Railed: When data remains at zero. For our research, this is when an electrode is not 

measuring any brain signal potentials while the headset is running. This typically occurs 

when the electrode is not in contact with the scalp. 

37. Residual Limb: Remaining part of a body that has been amputated. 

38. Reverse Kinetic Control: A type of prosthetic control which involves automatic pre-

programmed actions, where the user chooses an automated action to perform. 

39. Scikit-learn: An open-source  python library that comes with various machine learning tools. 

40. ShallowConv: A deep learning model that classifies EEG signals. 

41. Softmax: A function that converts a vector of N real numbers into a probability distribution 

of N possible outcomes. Often used as an activation function in machine learning contexts. 

42. Theta: EEG bandwidth ranging from 4-7 Hz. Implicated in memory and emotional 

regulation.  

43. Transformer Model: A machine learning model that is able to learn context by tracking 

relationships in sequential data. 

44. Virtual Reality (VR):  A simulated experience created with computer technology and can be 

experienced through various devices, allowing users to interact with and immerse themselves 

in a virtual environment. 

45. xDawn + Riemannian Geometry Classifier (xDawn + RG): A machine learning classification 

model. 
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Appendix B - Participant Testing Protocol 

Protocol Developed From Electroencephalogram (EEG) Recording Protocol for Cognitive and 
Affective Human Neuroscience Research (Farrens et al., 2020). 
 
Note: We will remain compliant with IRB recommendations and requirements regarding 
COVID-19 restrictions. 
 
Prior to Arrival 
 
1. Present the participant with a link to the attached interest survey through their emails to 

determine if they meet the requirements to participate in the study. 
See attached “Eligibility Survey” document for more information. 
 

2. If the participant meets the requirements, ask the participant to schedule a testing time using 
the following template. 

 Draft email:  
 

Subject:  
Schedule A Time For Participation In On-Campus Research Participation; Help Advance 
Research In Brain-Computer Interface Prosthetics 
 
Description: 
Hello,  
 
Our team is ready for you to schedule a time to come in for research in this study. Please 
reply to this email with upcoming (within two weeks) dates and times in which you 
would be able to come in for a session. As a reminder, a session can take up to an hour so 
please make sure to account for this. 
 
Team BCIPRO  
 
Contact info.bcipro@gmail.com for questions. 

 
Contact Person: Team BCIPRO 
Contact Email: info.bcipro@gmail.com 
Website URL: https://bcipro.github.io/  
 

3. Send a reminder to the participant via email 1-2 business days before the study. Include the 
time, date, and location of the testing session, as well as information about the general testing 

mailto:info.bcipro.bcipro@gmail.com
mailto:info.bcipro@gmail.com
https://bcipro.github.io/
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procedure (e.g., what to expect, how long it will take, why certain data is needed such as 
demographics, etc.). Include a list of reminders, such as: “Participants need to be completely 
awake during the experiment, so please have sufficient sleep before arriving. Arrive with 
clean, dry hair, and remove all ponytails, braids, wigs, extensions, hair clips, hats, etc., prior 
to arrival.” 
a. If a participant arrives wearing inappropriate clothing, provide a disposable gown for the 

participant to wear over their clothing to avoid damage. 
b. Draft Email 

 
Subject:  
REMINDER: Upcoming Appointment for Participation In On-Campus Research 
Participation; Help Advance Research In Brain-Computer Interface Prosthetics 
 
Description: 
Hello,  
 
We would like to remind you that you have an upcoming appointment on <date and time of 
appointment>. As another reminder, a session can take up to an hour so please make sure to 
account for this. 
 
We will see you soon and we are looking forward to your participation! 
 
Team BCIPRO  
 
Contact info.bcipro@gmail.com for questions. 

 
Contact Person: Team BCIPRO 
Contact Email: info.bcipro@gmail.com 
Website URL: https://bcipro.github.io/  

 
4. Lay out as much of the equipment prior to the participant’s arrival as you can. This includes 

the gloves, tape measure, and alcohol wipes  
a. Test equipment for functionality before participants are brought to the lab. 
b. Disinfect all equipment with isopropyl alcohol before its first use, and disinfect all 

equipment with isopropyl alcohol after each individual use.  
 
Arrival 
 

mailto:info.bcipro.bcipro@gmail.com
mailto:info.bcipro@gmail.com
https://bcipro.github.io/
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1. Participants will be directed to go to room 4364 of the Atlantic Building at the University of 
Maryland. 
 

2. After arrival, provide participants with the QR code, link, or electronic device to use to fill 
out the consent form and/or demographics survey. 
 

3. Ask participants to read through the consent form and to affirm or deny their consent. 
 
Electrode Application 
 
1. Obtain consent according to the procedure approved by the Institutional Review Board. 
 
2. Seat the participant in a comfortable low-backed chair in the prep area. 

 
3. Have the participant comb their hair using a provided plastic comb, instructing them to 

concentrate on their scalp. The purpose is to loosen up some of the dead skin on the scalp, 
which will help reduce electrode impedances. Use a plastic comb instead of a hair brush; hair 
brushes soak up an excessive amount of disinfectant and are much harder to clean in between 
participants. 

 
a. If the participant arrives with wet hair or is sweaty, have them dry their hair with 

a hair dryer before beginning.  
 

b. If your participant arrives with a ponytail, braid, wig, barrettes, hair clips, or 
extensions of any kind, have the participant remove them before continuing. 

 
4. Put on a pair of gloves. 

 
5. Measure the circumference of the participant’s head (in cm) using a soft tape measure, using 

the nasion and inion to define the measurement axis. 
 

6. Use an alcohol wipe to clean skin areas along the hairline and behind the participant’s ears. 
 
Data Collection 
 
1. Take the participant into the testing room, leaving their backpack, purse, cellphone, etc. 

outside the testing room. The testing room will consist of 3 height-adjustable tables (one for 
demonstration, one for the participant, and one for the monitor and computer), 3 chairs (one 
for demonstration, one for the participant, and one for the researcher), 2 monitors (one for 
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data collection and one to display the data being collected to the participant), a computer (to 
collect data), an EEG headset (to collect data), and alcohol wipes (to clean and sanitize). 

 
2. Have the participant sit in the following manner: 

a. Have the participant sit with their feet flat on the floor and their bottom all the way to the 
back of the chair.  

b. Adjust the chair height so the participant is sitting with their knees bent at a comfortable 
angle (~90°), and then adjust the height of the monitor on the height-adjustable table so 
that the center of the screen is level with their eye gaze. 

 
3. Place the EEG cap (with up to 16 electrodes) on the participant’s head. Use the soft 

measuring tape to make sure the cap is centered. The Cz (vertex) electrode holder should be 
exactly half way between the nasion and inion and exactly halfway between the left and right 
preauricular points. To readjust the cap, use both hands to slide/push the cap into place; avoid 
grabbing individual electrode holders and tugging or pulling the cap into place. Once the cap 
is centered front to back, visually ensure the cap is centered side to side. Re-adjust as 
necessary. 
a. If the headset needs to be changed for a smaller/larger size, disconnect the Cyton board 

from the previous headset and move it into the board holder on the appropriately sized 
headset. Reattach the wires, following the instructions at 
https://docs.openbci.com/AddOns/Headwear/MarkIV/ 

 
4. Adjust the non-electrode feet (by screwing them into or out of their holders) until the cap fits 

snugly on the head of the participant. The participant should attest that the cap is not 
applying an uncomfortable amount of pressure. 

 
5. Adjust each scalp electrode (by screwing them into or out of their holders) until the 

participant attests to feeling the electrode on their scalp. 
 
6. Adjust each forehead electrode (by screwing them into or out of their holders) until the 

participant attests to feeling the electrode on their forehead. 
 
7. Attach the two black ear clips to each ear. These are used for grounding and biasing. 

a. For help with steps 4-7, please reference the OpenBCI documentation found at 
https://docs.openbci.com/AddOns/Headwear/MarkIV/ 
 

8. Plug the battery into the amplifier. 
 
9. Open the OpenBCI GUI on the data acquisition PC.  
 

https://docs.openbci.com/AddOns/Headwear/MarkIV/
https://docs.openbci.com/AddOns/Headwear/MarkIV/
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10. Plug in the Cyton USB dongle into a USB port on the data acquisition PC 
 

11. Turn on the Cyton Biosensing Board by setting the switch to PC mode 
 
12. Connect to the Cyton board using the following procedure 

a. In the data source panel, select LIVE (from Cyton) 
b. Under the “Pick Transfer Protocol” popup, select Serial (from Dongle) 
c. Under the CHANNEL COUNT header, select either 8 or 16 channels (corresponding to 

the number of electrodes in the cap) 
d. Under the SERIAL CONNECT header, select AUTO-CONNECT 
e. Click the START SESSION button 

 
13. Make the testing room monitor a clone of the data acquisition monitor using the HDMI cable.  
 
14. Show the participant their EEG signals on the monitor. Describe common movement 

artifacts, how to prevent them, and why they matter. This helps the participant understand 
why they are being asked to minimize certain behaviors and allows you to ensure that all 
artifacts are easily identified with the placement of the electrodes. 

 
a. Eyeblinks: Ask participants to look at the center of the recording screen and to blink 4-5 

times in rapid succession. This shows them what their blinks look like and why you may 
need them to minimize how often they blink during the trials. Check to make sure the 
blinks are appearing in the proper channels; there should be little to no blink activity 
detected in the HEOG (Horizontal Electrooculogram) channels. If you see large blink 
activity in either HEOG channel, you will need to remove the electrode and place it more 
evenly in line with the participant’s canthus, and make sure the polarity of the VEOG 
(Vertical Electrooculogram) Lower electrode is negative and that the signal is the 
expected size. If you see large blink activity It is possible that an electrode was placed in 
the wrong location (for example HEOG Left in VEOG Lower’s place). 

 
b. Eye Movements: Ask the participant to look at the center of the recording screen and to 

look back and forth between the left and right edges of the monitor a few times while 
leaving their head stationary. This should produce large, rectangular deflections in the 
HEOG Left and HEOG Right channels (with opposite-polarity deflections for the Left 
and Right channels). If this is not the case, re-adjust the electrode(s) as necessary and 
check to confirm they are placed correctly to the left and right sides of the eyes. 

 
c. Concentration Face: Ask the participant to clench their teeth and furrow their brow. This 

demonstrates the most common artifacts caused by a participant’s “concentration face.” 
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Remind the participant that it is important to keep their face, jaw, and neck as relaxed as 
possible throughout the experiment to help minimize this muscle noise. 

 
d. Chewing: Ask the participant to pretend to chew gum. This demonstrates why it is 

important for them to completely finish eating their snack(s) before beginning the next 
block of the task. It is also a good opportunity to make sure your participant is not 
chewing gum before beginning. 

 
e. Alpha waves: For most participants, asking them to close their eyes while relaxed should 

produce visible bursts of alpha waves. This is a brainwave that is undesirable in this 
experiment and will illustrate the need to stay awake during the experiment. 

 
15. Check the temperature of the room and the lighting level. Adjust as necessary for the comfort 

and the participant. 
 

16. When ready to begin the experiment, pull up the timer that the participant will be following 
on the participant’s screen. 

 
17. Explain the tasks to the participant. The task is for participants to watch a timer that will 

coordinate their actions.  
 

a. Participants will be told an action to execute by investigators. They will be told that the 
execution of an action will be mediated by a countdown timer, where blocks of time on 
the timer correspond with a movement (ex. The first 10 seconds are at rest, the following 
5 seconds correspond with keeping the right hand open, the next following 5 seconds 
correspond with closing the right hand around a stress ball, the next 5 seconds correspond 
with opening the right hand again, etc.). These actions will be expected to be repeated 
multiple times during the duration of data collection. The actions will be 

i. Opening and closing the hand (gripping a foam stress ball when the hand 
is closed) 

ii. Opening and closing each finger individually 
 
18. Demonstrate the tasks to the participant, following the Action Demonstration Protocols 

a. Inform participants that they may request a redemonstration of the action before each 
data collection step. 
 

19. Reiterate any special EEG artifact instructions like maintaining fixation or reducing the rate 
of blinking until a certain time. Assure the participant that there are many breaks throughout 
the experiment and they are free to move around as much as they need to during those 
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portions of the experiment. However, before beginning the task again, they must return to a 
still and relaxed position. 

 
20. To begin recording the EEG, hit the ‘Start Recording’ button. Start your recording 

approximately 10 seconds before the task begins and end the recording approximately 10 
seconds after the task ends. This minimizes edge artifacts when filtering the EEG data 
offline. 
 

21. Monitor the EEG data closely at all times. Do not read books or journal articles, do 
homework, look at websites, read email, send texts, etc. In most cases, the experimenter 
should not have their cell phone nearby, which reduces the temptation to engage in 
distracting activities. 

 
a. Check behavioral performance continually to ensure that the participant understands the 

instructions, is complying, and is not becoming drowsy or unmotivated (e.g., is keeping 
their eyes open and fixated on the screen, etc.). 
 

b. If you see evidence of a problem with the recording (e.g., excessive noise, excessive 
artifacts, etc.), fix the issue as soon as possible. Depending on the task and the type of 
problem, this can be accomplished at the next break, or it may be beneficial to pause the 
task to address the issue before continuing. 
 

c. If the participant exhibits artifacts that are particularly problematic for the experiment 
being run (e.g., eye movements, blinks that frequently occur during the presentation of a 
visual stimulus, etc.), gently remind the participant to avoid that artifact. 
 

d. If a participant is unable to perform the task with an appropriate level of accuracy or 
without excessive artifacts, terminate the session early and document the issue(s). 
 

e. Regularly check the participant to make sure that the participant is behaving 
appropriately (e.g., feet still flat on the floor, remaining still, maintaining fixation, etc.). 
 

f. If the participant is becoming drowsy (as evidenced by poor task performance, excessive 
alpha waves, or visibly nodding off), turn the lights to full brightness and allow the 
participant to stand and stretch their legs at the next break to help alleviate drowsiness. 
 

22. Inform participants that their first action will be opening and closing their right hand, 
gripping on a stress ball when they close their hands, at 5 second intervals for up to 300 
seconds, which corresponds with up to 30 actions. Inform participants that this action will be 
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repeated for up to 2 rounds, and that they will be given up to a 5-minute break between each 
round. Ask participants if they require or would like a redemonstration of the action. 

 
23. Have the participant start with their palm open. Start the EEG recording and wait at least ten 

seconds then start the google timer after a verbal three-second countdown. Stop the EEG 
recording at least 10 seconds after the timer reaches 0. 

 
24. Give participants up to a 5-minute break. Participants may stretch and move around while 

seated during this time. 
 
25. Repeat data collection of opening and closing the right hand (steps 21-22) up to 2 times. 

 
26. Inform participants that their next action will be opening and closing their right thumb at 1 

second intervals for up to 40 seconds. Ask participants if they require or would like a 
redemonstration of the action. 

 
27. Have the participant start with their palm open. Start the EEG recording and wait at least ten 

seconds then start the google timer after a verbal three-second countdown. Stop the EEG 
recording at least 10 seconds after the timer reaches 0. 

 
28. Give participants up to a 1-minute break. Participants may stretch and move around during 

this time. 
 

29. Inform participants that their next action will be opening and closing their right pointer finger 
at 1 second intervals for up to 40 seconds. Ask participants if they require or would like a 
redemonstration of the action. 

 
30. Have the participant start with their palm open. Start the EEG recording and wait at least ten 

seconds then start the google timer after a verbal three-second countdown. Stop the EEG 
recording at least 10 seconds after the timer reaches 0. 

 
31. Give participants up to a 1-minute break. Participants may stretch and move around during 

this time. 
 

32. Inform participants that their next action will be opening and closing their right middle finger 
at 1 second intervals for up to 40 seconds. Ask participants if they require or would like a 
redemonstration of the action. 
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33. Have the participant start with their palm open. Start the EEG recording and wait at least ten 
seconds then start the google timer after a verbal three-second countdown. Stop the EEG 
recording at least 10 seconds after the timer reaches 0. 

 
34. Give participants up to a 1-minute break. Participants may stretch and move around during 

this time. 
 

35. Inform participants that their next action will be opening and closing their right ring finger at 
1 second intervals for up to 40 seconds. Ask participants if they require or would like a 
redemonstration of the action. 

 
36. Have the participant start with their palm open. Start the EEG recording and wait at least ten 

seconds then start the google timer after a verbal three-second) countdown. Stop the EEG 
recording at least 10 seconds after the timer reaches 0. 

 
37. Give participants up to a 1-minute break. Participants may stretch and move around during 

this time. 
 
38. Inform participants that their next action will be opening and closing their right pinkie finger 

at 1 second intervals for up to 40 seconds. Ask participants if they require or would like a 
redemonstration of the action. 

 
39. Have the participant start with their palm open. Start the EEG recording and wait at least ten 

seconds then start the google timer after a verbal three-second countdown. Stop the EEG 
recording at least 10 seconds after the timer reaches 0. 

 
40. Give participants a up to 1-minute break. Participants may stretch and move around during 

this time. 
 

41. Repeat steps 24-38 up to one more time. 
 
42. Provide an alcohol swab to the participant for them to wipe their forehead. 

 
Clean Up. 

 
1. Gently slide the cap backwards off the participant’s head. Set everything aside. 

 
2. Allow the participant to comb their hair if they wish. Do not make them wait while you clean 

everything up. Explain to the participant that they will be compensated with $10 through 
their Terrapin Express account for completing testing. Notify them that there will be a raffle 
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where three randomly chosen participants will each win $50 which will be awarded through 
Terrapin Express and be notified by email if they win once the data collection phase of 
research is completed. Allow participants to scan a QR code, enter a link, or use an electronic 
device to fill out a form that will collect name and UID which are needed for compensation 
as well as whether the participant wants to be entered in the raffle. Afterwards, inform them 
that the experiment is over and indicate to them that they may leave. 

 
3. Once the participant has left the lab, unplug each electrode from the cap by gently sliding the 

electrode up and out of its holder with your thumb and forefinger. 
 

4. Disinfect the electrodes, cap, and comb by wiping them with isopropyl alcohol wipes. Rinse 
thoroughly with water to remove all of the isopropyl alcohol when done. 

 
5. Disinfect the prep station by wiping it with isopropyl alcohol. Rinse thoroughly with water 

when done and let dry. 
 

6. Leave the cap out on the table or use a small fan to dry. Do not dry with the hair dryer. 
 

7. Disinfect the comb used at the beginning of the experiment by wiping it with isopropyl 
alcohol. Rinse with water when done. Comb will be disinfected as well before first use.  

 
8. Clean up the prep station and wipe down the testing area with isopropyl alcohol. The prep 

station will be disinfected as well before first use. 
 
Post Testing 
 
1. Each participant who completes the session in full will be compensated with $10 through 

Terrapin Express, and there will be an optional raffle to award $50 to each of three 
participants through Terrapin Express. Requests for compensation can be posted up to twice 
per month. 

 
2. Send a follow up email thanking the participant for participating in the study. 

Draft email 
 
Subject:  
REMINDER: Thank You! For On-Campus Research Participation; Help Advance 
Research In Brain-Computer Interface Prosthetics 
 
Description: 
Hello,  
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We wanted to say thank you for your participation in our research study! Your 
contribution plays a part in understanding how to analyze measured EEG brain waves to 
identify physical actions. This contribution will be used to develop algorithms to develop 
the analysis of EEG waves, which will help develop technology for prosthetic users. 
Thank you again for making a difference and helping a good cause!  
 
Team BCIPRO  
 
Contact info.bcipro@gmail.com for questions. 

 
Contact Person: Team BCIPRO 
Contact Email: info.bcipro@gmail.com 
Website URL: https://bcipro.github.io/  
 

3. Send an email announcing the winners of the raffle.  
Draft email 
 
Subject:  
Raffle Winners For On-Campus Research Participation; Help Advance Research In 
Brain-Computer Interface Prosthetics 
 
Description: 
 
Hello,  
 
We again wanted to say thank you for your participation in our research study! Also, you 
are one of the raffle winners! $50 will be deposited into your Terrapin Express account. 
Congratulations and thanks again for participating in the study! 
 
Team BCIPRO  
 
Contact info.bcipro@gmail.com for questions. 

 
Contact Person: Team BCIPRO 
Contact Email: info.bcipro@gmail.com 
Website URL: https://bcipro.github.io/  

 

mailto:info.bcipro.bcipro@gmail.com
mailto:info.bcipro@gmail.com
https://bcipro.github.io/
mailto:info.bcipro.bcipro@gmail.com
mailto:info.bcipro@gmail.com
https://bcipro.github.io/
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4. Data collected in this study will be analyzed to determine which brain signal patterns 
correlate to the specific movements of opening the hand, closing the hand, opening each 
finger individually, and closing each finger individually. 

 
5. Raffle will be at completion of data collection. Requests for compensation of participants 

will be made up to twice per month as participants complete data collection. 
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