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Abstract

This paper describes a two-space genetic algorithm that finds solutions
to minimax optimization problems. The genetic algorithm maintains two
populations and searches both simultaneously. Each individual is evalu-
ated with respect to the individuals in the other population. Preliminary
experimental results confirm that the algorithm can find good solutions to
minimax optimization problems.
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1. Introduction & Problem Definition

Consider the designers of a manufacturing system and the following problem: the
designers need to purchase machines, form manufacturing cells, assign products
to these machines and cells, and create a layout that specifies the location of each
cell and machine. The designers need to select the system design that will meet
performance requirements with minimal cost. However, any design’s performance
depends upon the future demand, which is uncertain. Suppose the set of potential
demand patterns forms a set of scenarios. Then, the designers may want to select
the system design that has the best worst-case performance. That is, they want
a robust design.

In general, the design of a manufacturing system includes many steps, and
previous research has considered specific models for cell formation and facility
layout in the face of uncertain demand [5], [9], [13], [15], [16], and [18] and the
idea of robustness, a solution that is near-optimal in any scenario [11], [10], [14].
This problem is one example of minimax optimization. However, in such prob-
lems, the solution and scenario spaces can be extremely large. This complicates
the minimax optimization problem. To begin attacking this complication, we
have developed a two-space genetic algorithm that finds solutions to minimax
optimization problems. Section 2 describes the associated minimax problem for-
mulation. Section 3 describes the two-space genetic algorithm. Section 4 describes
the experimental results. Section 5 concludes the paper.



2. Problem Formulation

In order to construct a robust manufacturing system design the designers need
to solve the following problem: Let £ be the set of demand scenarios. Let F
be the set of potential manufacturing system designs. (For example, a design
may specify the machines, cells, operation assignments, and layout.) Let C(F, L)
measure the fixed and operating costs (e.g., the purchase, maintenance, and inter-
cell material handling costs) of design F' in scenario L. Let T;(F,L),i=1,..., M
be M performance measures for design F in scenario L,with T;" an upper bound
on the acceptable performance. (For example, suppose T;(F, L) is the cycle time
of product ¢, with T;" the maximum allowable cycle time for product i.) We can
formulate the robustness problem as the following mathematical program:

. . A ‘_*_ .
min{max C(F, L) : Ty(F, L) < T;" VL, 1}

We can remove the constraints by limiting F to those F :T}(F,L) < T;" VL, .
This leads to a standard minimax optimization problem:
min max C(F, L)
FeF LeL
Often one can transform a minimax problem by adding a surrogate variable

(say y) and constraints that ensure that the surrogate variable is greater than
each term in the minimax problem:

IP;1€1§:1{z :z2 > C(F,L)VL € L}

When the scenario space is small, adding these constraints yields a standard
optimization problem. However, we wish to consider large scenario spaces, which
complication standard techniques. For additional information about minimax
optimization and robustness problems, see Du & Pardalos [3] and Kouvelis & Yu
[11].

The MinMax Theorem. In a two-person, zero-sum game, player A’s profit
equals player B’s loss, and this amount depends upon the combination of the
strategies that each player chooses. The MinMax theorem, a fundamental game
theory result [17], says that player A can win no less than a minimum by choos-
ing the strategy that maximizes the minimum possible outcome. Since player A
wants to maximize profit, this strategy is the one that has the best worst-case
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performance. Likewise, player B can lose no more than a maximum by choosing
the strategy that minimizes the maximum possible outcome. From A’s perspec-
tive, this strategy is the one that has the worst optimal outcome. We will use this
result later to motivate the fitness functions for the two-space genetic algorithm.

3. Solution Approach

We propose a two-space genetic algorithm for finding good solutions to the min-
imax problem. (Genetic algorithms are described by [1}, [2], [4], [8], and [12].)
This genetic algorithm maintains two distinct populations: one has individuals
from F, and the second has individuals for £. If we consider the robust design
application, the first population (P,) represents system designs, and the second
population (P,) represents demand scenarios.

The two-space algorithm should reduce the computational effort needed when
both spaces (F and L) are extremely large. In this situation, considering every
scenario and every solution is an impractical task. Thus, the algorithm samples
both spaces with its two populations.

The genetic algorithm changes both populations over time. We want the
first population to converge to those solutions F' with the minimum worst-case
performance. We want the second population to converge to the worst-case sce-
narios L so that we can correctly evaluate the solutions. The worst-case sce-
narios are those that have terrible performance for all solutions, including the
one that is optimal for that scenario. In order to achieve these goals, we define,
for a solution in the first population, an objective function h(F') that evaluates
that solution’s worst-case performance. Since we do not want to consider every
scenario, the evaluation considers only those scenarios in the second population.
h(F) =max{C(F,L) : L € P,}. A solution’s fitness is the inverse of the objective,
so solutions with better worst-case performance are more likely to survive.

Similarly, for the second population, we define an objective function g(L) that
evaluates the optimal value for a scenario. Again, we do not want to consider every
scenario, so the evaluation considers only those solutions in the first population.
9(L) = min{C(F,L) : F € P;}. A scenario’s fitness correlates to this objective,
so scenarios with worse optimal solutions are more likely to survive.

We expect that the second population will converge to the worst-case scenarios,
and the first population will converge to solutions that perform well in these
scenarios. For instance, consider Example 1; the entry in each cell is C(F;, L;). F
is more likely to survive since it has the best worst-case performance (h(F}) = 8),




and L, and L3 are more likely to survive since they have poor optimal solutions
(9(L2) = g(Ls) =6).

Example 1
Scenario
Solution | Ly Ls L3 | h(F;)
F 2 6 8 8
F 4 10 6 10
F3 9 7 10| 10
gl;) |2 6 6

A traditional, simple genetic algorithm has the following steps:

1.
2.
3.
4.

Create initial generation Gy. Let k = 0.
For each individual ¢ € Gy, evaluate its fitness f(4).
Create generation Gy by reproduction, crossover, and mutation.

Let k = k + 1. Return to Step 2.

The two-space genetic algorithm can be summarized as follows:

1.

AR NS

Create initial generations Py and Pyy. Let k = 0.

For each individual F' € Py, evaluate h(F) = max{C(F,L) : L € Py}.
For each individual L € Py, evaluate g(L) = min{C(F,L) : F' € Py}.
Create generation P, 41 by reproduction, crossover, and mutation.

Create generation P, k.1 by reproduction, crossover, and mutation.

Let £k = k+ 1. Return to Step 2.



4. Implementation and Results

In order to test the proposed approach, we created a two-space genetic algorithm
using GENESIS, the genetic algorithm software developed by John J. Grefen-
stette. We modified the code so that the algorithm created and maintained two
populations. Each individual in each population was evaluated with respect to
the individuals in the other population.

Table 1. Genetic algorithm parameters.

Parameter Value
Experiments 1
Total Trials 10000

Population Size 50
Structure Length 10
Crossover Rate 0.6
Mutation Rate 0.001
Generation Gap 1.0
Scaling Window )
Report Interval 10
Structures Saved 5
Max Gens w/o Eval 2
Dump Interval 1
Dumps Saved 10
Options aCefL
Random Seed 123456789
Rank Min 0.75
Genes 1
min -2.048
max 2.044
values 1024

The parameters of the genetic algorithm are given in Table 1. For all exper-
iments the range for both F' and L is [—2.048,2.044]. Note that the 10-bit gene
for each variable means that consecutive values have a difference of 0.004. We
conducted experiments using seven different objective functions, given in Table
2. This section describes our results for each function. Figures 1 through 7 show,
for each objective function, the convergence of each population.



Table 2. Objective functions.
Cj(F’ L)

F2

F?— 12
0.1(F-1)2+4+05L%—0.25L*
100(F? — L)2 + (1 — F)?
—100(F? - L)2 - (1 - F)?

|F - L|

7 FL

O O W N %

The first objective function C(F, L) = F? did not include L. (Figure 1 does
not show the convergence of g(L).) This tested how well the algorithm, under
a given set of parameters, converged on a straightforward optimization problem.
After 10,000 trials (5,000 in each population) the first population converged to
the optimal solution. F* = 0. Cy(F*,L) = 0.

Co(F,L) = F? — L%, The worst-case scenario is always L = 0, and minimizing
the worst-case will lead to F' = 0. For a worst-case scenario, the optimal solution
is F' = 0, and maximizing this will lead to L = 0. Thus, we expect the algorithm
to converge to C2(0,0) = 0. Our results confirm that it does.

C3(F,L) = 0.1(F — 1) + 4+ 0.5L% — 0.25L*. The worst-case scenarios are
always L = £1. Minimizing these leads to F' = 1. For any scenario, the optimal
is F' =1, and maximizing this leads to L = +1. Thus, we expect the algorithm
to converge to C3(1,+1) = 4.25. Our results show that the algorithm converges
to the L = 1 scenario and the optimal solution.

Cy4(F,L) = 100(F? — L)? + (1 — F)%. The worst-case scenario is L = —2.048,
and minimizing this leads to F' = 0. For negative scenarios (L < 0), the optimal
solution is near F' = 0. For positive scenarios, the optimal F' increases as L
increases (see Figure 8). Maximizing the optimal solution leads to L = —2.048.
Thus, we expect the algorithm to converge to C4(0, —2.048) = 420.43. Our results
confirm that it does.

Cs(F,L) = —100(F? — L) — (1 — F)%. The worst-case scenario is L =
min{F?,2.044}. Minimizing the worst-case leads to extreme values of F, with
F = —2.048 the optimal. For any scenario, the optimal solution is F' = —2.048,
although F' = 2.044 is near-optimal. Maximizing these leads to L = 2.044. Thus,
we expect the algorithm to converge to C5(—2.048,2.044) = —471.671. Our re-
sults confirm that it does.

Cs(F,L) = |F — L|. For F < 0, the worst-case scenarios are L = 2.044. For
F > 0, the worst-case scenarios are L = —2.048. Minimizing the worst-case leads

7



to F' = 0. For any scenario, the optimal is F' = L, and all scenarios are equally
good. The optimal solution is F' = 0, which has a worst-case performance of
Ces(0, —2.048) = 2.048. However, the 10,000-trial algorithm converged to F' =
1.020, L = 2.044, with a difference of 1.024. Because the second population
converged to positive values of L, the solutions increased as well.

Let us examine how this happened. Consider the initial generation. The values
of F and L range from -2 to 2. For any value of L, there is some value of F' close
to L, so each and every scenario has a performance near 0. For any value of
F, there is some value of L far away,so the worst-case performance ranges from
approximately 2 (when F' = 0) to near 4 (when F' is near —2 or 2). In the first
1000 trials, the first population converges to values of F' near 0. As this happens,
the optimal solutions for extreme values of L are not near L. Thus, these scenarios
have worse optimal solutions, which should encourage the algorithm to converge
to extreme scenarios, as we expect. Note that Figure 6 shows that, in the early
generations, the first population’s best solutions have a worst-case performance
near 2.

During later generations, however, the second population converges to large
values of L. This in turn causes the second population to shift to larger values of
F'. Note that Figure 6 shows that, in the later generations, the first population’s
best solutions have a worst-case performance near 1. It is unclear why it does not
reconverge on the largest values of F' near 2. We conjecture that the algorithm will
work only if the second population can maintain two equally important subgroups,
L=2and L =-2.

C7(F,L) = FL. For F < 0, the worst-case scenario is L = —2.048. For F > 0,
the worst-case scenario is L = 2.044. Minimizing the worst-case leads to ' = 0.
For L < 0, the optimal solution is F' = 2.044. For L > 0, the optimal solution is
F = —2.048. Maximizing the optimal leads to L = 0. As we expect, the algorithm
converges to C7(0,0) = 0.

From these results we conclude that the two-space genetic algorithm can find
optimal solutions to minimax problems in most cases. When the worst-case sce-
narios are those that also maximize the optimal solution, the algorithm keeps
them and can evaluate solutions correctly. However, it will eventually converge
to one scenario. For some problems, this is not enough information to evaluate
the solutions correctly. In these cases, the algorithm converges to a non-optimal
solution.



5. Contributions

This report describes a two-space genetic algorithm that can solve minimax opti-
mization problems. Since such problems occur in many areas of optimization, the
two-space genetic algorithm may be a useful tool in many fields. The experiments
studied some continuous, non-linear functions. For these functions, the algorithm
usually found the optimal solution and converged to one worst-case scenario. In
some cases, the objective function structure prevented convergence. Specifically,
when more than one worst-case scenario exists, the algorithm can not correctly
evaluate solutions.

Further experiments are needed to evaluate the two-space genetic algorithm’s
performance on a larger set of continuous and discrete objective functions. Addi-
tional experiments should evaluate the algorithm’s performance relative to other
minimax solution techniques and to other traditional genetic algorithms.

One potentially rewarding area for this research is robust optimization, which
minimizes the worst-case performance. Future research will consider objective
functions that model robust optimization problems.

We will also consider applying the two-space genetic algorithm to search prob-
lem and heuristic spaces. The combination of a problem and a heuristic yields
a solution. Previous research has developed techniques that search a problem or
heuristic space to find good solutions to difficult optimization problems [6], [7]. A
two-space genetic algorithm could search both spaces simultaneously.
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Figure 1. C1(F,L)
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Figure 2. C2(F,L)
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Figure 3. C3(F,L)
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Figure 4. C4(F,L)
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Figure 5. C5(F,L)
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Figure 6. Cs(F,L)
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Figure 7. C7(F,L)
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Figure 8. C4(F,L): Optimal Solution for Each Scenario
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