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Many attempts to assimilate precipitation observations in numerical models have 

been made, but they have resulted in little or no forecast improvement at the end of 

the precipitation assimilation. This is due to the nonlinearity of the model 

precipitation parameterization, the non-Gaussianity of precipitation variables, and the 

large and unknown model and observation errors.  

In this study, we investigate the assimilation of global large-scale satellite 

precipitation using the local ensemble transform Kalman filter (LETKF). The LETKF 

does not require linearization of the model, and it can improve all model variables by 

giving higher weights in the analysis to ensemble members with better precipitation, 

so that the model will “remember” the assimilation changes during the forecasts. 

Gaussian transformations of precipitation are applied to both model background 

precipitation and observed precipitation, which not only makes the error distributions 

more Gaussian, but also removes the amplitude-dependent biases between the model 



  

and the observations. In addition, several quality control criteria are designed to reject 

precipitation observations that are not useful for the assimilation. 

Our ideas are tested in both an idealized system and a realistic system. In the 

former, observing system simulation experiments (OSSEs) are conducted with a 

simplified general circulation model; in the latter, the TRMM Multisatellite 

Precipitation Analysis (TMPA) data are assimilated into a low-resolution version of 

the NCEP Global Forecasting System (GFS). Positive results are obtained in both 

systems, showing that both the analyses and the 5-day forecasts are improved by the 

effective assimilation of precipitation. We also demonstrate how to use the ensemble 

forecast sensitivity to observations (EFSO) to analyze the effectiveness of 

precipitation assimilation and provide guidance for determining appropriate quality 

control. These results are very promising for the direct assimilation of satellite 

precipitation data in numerical weather prediction models, especially with the 

forthcoming Global Precipitation Measurement (GPM) sensors. 
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1 

Chapter 1: Introduction 

1.1 Review of assimilation of precipitation 

Precipitation has long been one of the most important and useful meteorological 

quantities to observe. The traditional rain gauge measurement of precipitation can be 

traced back to the 19th century before the rawinsonde network was established (e.g., 

Jones and Bradley 1992). In recent years, more advanced precipitation estimations 

from a variety of remote sensing platforms, such as satellite and ground-based 

precipitation radar, have also become available. For example, the Tropical Rainfall 

Measuring Mission (TRMM) has been used to produce a set of high-quality, high- 

resolution global (50S–50N) precipitation estimates (Huffman et al. 2007) that have 

been widely used in many research areas. The Global Precipitation Measurement 

(GPM; Hou et al. 2008) mission is scheduled for launch in 2014 as the successor to 

TRMM. Because of the large impact that effective assimilation of precipitation could 

have in forecasting severe weather, many efforts to assimilate precipitation 

observations have been made (Bauer et al. 2011). 

Both nudging and variational methods have been used previously to assimilate 

precipitation by modifying the model’s moisture and sometimes temperature profiles 

as well, in order to either enhance or reduce short-term precipitation according to the 

model parameterization of rain (e.g., Tsuyuki 1996, 1997; Falkovich et al. 2000; 

Davolio and Buzzi 2004; Koizumi et al. 2005; Mesinger et al. 2006). They are 

generally successful in forcing the forecasts of precipitation to be close to the 

observed precipitation during the assimilation, but the resulting forecast perturbations 
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quickly decay when assimilation stops. For example, a nudging method was applied 

to the North American Regional Reanalysis (NARR), and achieved the objective of 

making the Eta NARR 3 hour forecasts essentially identical to the observed 

precipitation used to nudge the model (Mesinger et al. 2006). However, the Eta 

forecasts from the NARR were not superior to the operational forecasts beyond a few 

hours. Nudging the moisture was not effective presumably because it is not an 

efficient way to update the potential vorticity field, which is the “master” dynamical 

variable that primarily determines the evolution of the forecast in numerical weather 

prediction (NWP) models. 

There are other important issues for precipitation assimilation in the variational 

framework. Precipitation processes parameterized by the model physics are usually 

very nonlinear and even discontinuous at some “thresholds” (Zupanski and Mesinger 

1995). Therefore, it is problematic to create and use the linearized version of the 

forward model as required in the 4D-Var assimilation of precipitation variables 

(Errico et al. 2007). An inaccurate tangent linear model and adjoint model would 

yield a poor estimate of the evolution of finite perturbations and degrade the 4D-Var 

analyses. Considerable efforts have been made on improving the model’s moist 

physics in order to improve the assimilation of precipitation remotely sensed by 

satellite or radar (e.g., Treadon et al. 2003; Li and Mecikalski 2010, 2012). 

Alternative moist physical parameterization schemes that are more linear and 

continuous have been used to reduce the nonlinearity problem (e.g., Zupanski and 

Mesinger 1995; Lopez and Moreau 2005). In addition, it is difficult to use the fixed 

(climatological) background error covariance to describe the relationship between 
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precipitation and other state variables, thus the dynamical variables may not be 

optimally updated. These problems lead to a widely shared experience that forecasts 

starting from analyses with precipitation assimilation lose their extra skill in forecasts 

of precipitation or other dynamical variables after just a few forecast hours (e.g., 

Tsuyuki and Miyoshi 2007; Davolio and Buzzi 2004; Errico et al. 2007). One notable 

exception is Hou et al. (2004) who used forecast tendency corrections of temperature 

and moisture as control variables in variational data assimilation in the assimilation of 

hurricane observed precipitation. They were able to show that large changes in 

precipitation had long-lasting positive impacts on a hurricane forecast, presumably 

because the release of latent heat corrected the potential vorticity. 

There are even more difficulties associated the characteristics of the precipitation 

variable itself in both models and observations. First, the highly non-Gaussian 

distribution of the precipitation observations seriously violates the basic assumption 

of normal error statistics made in most data assimilation schemes. Transformations 

such as a logarithmic transformation have been applied to the precipitation 

assimilation (e.g., Hou et al. 2004; Lopez 2011, 2013) in order to overcome this issue. 

Although the logarithmic transformation is expected to alleviate the non-Gaussianity 

of positive precipitation, it is not necessarily optimal. Besides, the precipitation 

variable contains a great portion of zero values, which also leads to a major challenge. 

In the variational methods, there is often no sensitivity (i.e., the Jacobian of the 

observation operator is zero) where the observable is zero (Errico et al. 2007). Past 

studies have shown that it is very difficult to achieve improvement by assimilation of 

zero precipitation observations in the usually used methods (e.g., Tsuyuki and 
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Miyoshi 2007). However, as shown in Weygandt et al. (2008), the forced suppression 

of convection in areas with no radar echoes did show the importance of zero 

precipitation observations in correctly analyzing a convection system. Therefore, a 

proper use of zero precipitation data would be a very important task. Furthermore, the 

forward model errors mainly associated with the moist physical parameterizations and 

the observation errors may be large. The error characteristics in the retrieval products 

are almost unknown. All of these issues add to the difficulties of the precipitation 

assimilation in the realistic NWP configuration. For more details, Errico et al. (2007) 

provided a comprehensive review of the issues regarding the cloud and precipitation 

assimilation, and Bauer et al. (2011) reviewed the current status of precipitation 

assimilation in the modern NWP models. 

1.2 Objectives 

In this study, we propose to use the ensemble Kalman filter (EnKF) method to 

address some critical issues regarding the precipitation assimilation. Since the EnKF 

method does not require linearization of the model or any other modifications of the 

model physics as required in variational methods, we can thus get rid of the complex 

linearization problem and use the original moist physical for precipitation 

assimilation. Further, with the ensemble approach, an accurate precipitation 

parameterization should result in useful error covariances between the diagnostic 

precipitation and the other prognostic variables, so it should be able to more 

efficiently change the potential vorticity field and thus improve the longer-term 

model forecasts. Several pioneering experiments of precipitation assimilation using 
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the EnKF methods have already been conducted (Miyoshi and Aranami 2006; 

Zupanski et al. 2011; Zhang et al. 2013) with somewhat encouraging results. 

For the non-Gaussianity issue, we propose to use a general variable 

transformation algorithm (i.e., Gaussian anamorphosis; Wackernagel 2003) to replace 

the traditional logarithm transformation. This method can transform any continuously 

distributed variable into a Gaussian distribution based on its empirical (climatological) 

distribution. In addition, we propose a new “quality control” criterion to accept 

observations based only on the model background. With this criterion, the 

precipitation observations are assimilated when there are enough background 

ensemble members having positive precipitation, regardless of the observed values. 

Therefore, it is possible to make use of some zero precipitation observations during 

the assimilation. 

To test the above ideas, we first conduct precipitation assimilation experiments 

using a simpler system. The experiments are conducted within an identical-twin 

observing system simulation experiment (OSSE) framework, and a simplified but still 

realistic global circulation model (GCM), the Simplified Parametrizations, primitivE-

Equation DYnamics (SPEEDY) model (Molteni 2003), is used. It is worth 

emphasizing that when we previously used the same OSSE framework, but without 

introducing the Gaussian transformation of precipitation and the new criterion for 

precipitation assimilation, analysis and forecast errors became significantly larger 

when precipitation was assimilated. Therefore, a success demonstration of 

precipitation assimilation with this simple system will be an essential first step before 

applying our ideas to more complicated systems. 
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After carrying out our proof of concept with the idealized settings, we decide to 

conduct similar precipitation experiments with a more realistic configuration. In this 

part of study, the TRMM Multisatellite Precipitation Analysis (TMPA) data are 

assimilated into a low-resolution version of the National Centers for Environmental 

Prediction (NCEP) Global Forecasting System (GFS). With the realistic model and 

real observations, more challenges emerge, such as the large model errors and the 

unknown observation error statistics. As a result, it becomes be much more difficult 

to obtain positive impacts by precipitation assimilation in this configuration. A 

detailed discussion about the challenges and possible solutions with the real model 

and observations will be provided in Chapter 5. We compute several statistics of 

precipitation from the point of view of data assimilation to investigate these issues. 

With these challenges and limitations in mind, the assimilation of global large-scale 

precipitation in a realistic model is demonstrated. Finally, a powerful tool, the 

ensemble forecast sensitivity to observations (EFSO; Kalnay et al. 2012; Ota et al. 

2013), is applied to the precipitation assimilation, which allows us to discuss the 

problems form different aspects. 

1.3 LETKF 

In this study, we use the Local Ensemble Transform Kalman Filter (LETKF; 

Hunt et al. 2007) to perform the precipitation assimilation. The LETKF is a flavor of 

EnKF scheme that performs most of the analysis computations in ensemble space and 

in a local domain around each grid point. An EnKF finds an optimal analysis in a 

“subspace” of the forecasts in local regions (depending on the localization settings). 

For example, if a member produces a (locally) better precipitation field in the 
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background forecast compared to the observations, it will be (locally) weighted more 

in creating the ensemble mean analysis. The “weight” is calculated explicitly in the 

ensemble transform Kalman filter (ETKF) and as detailed below in the LETKF, but 

this interpretation is also valid in other ensemble data assimilation schemes such as 

the ensemble square-root filter (EnSRF) where the computation of the weights is 

implicit. As all other ensemble data assimilation schemes, the LETKF flow-

dependent background error covariance    is inferred from the sample covariance 

among ensemble members. The background error covariance can be written as 

     
 

   
   (  )  , (1.1) 

where    [  ( )   ̅      ( )   ̅ ] is the matrix whose columns are background 

ensemble perturbations (i.e., the departure of members from the ensemble mean), and 

  is the ensemble size. The dimension of    is exceedingly large in modern NWP 

models, thus it is not computed explicitly. Instead, when performing the LETKF 

analysis,  ̃ , the analysis covariance in ensemble space is computed first (Hunt et al. 

2007): 

  ̃  [(   )   (  )       ]   . (1.2) 

After that, the mean weight vector  ̅  and the weight matrix for the ensemble 

perturbation    are computed from: 

   ̅   ̃  (  )    (    ̅ ) , (1.3) 

 

     [(   )  ̃ ]
  ⁄

 , (1.4) 

where    [  ( )   ̅      ( )   ̅ ]  is the matrix that consists of columns of 

background observation perturbations,   is the observation error covariance, and    is 
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the observation. The background (forecast) observation values are calculated through 

the observation operator:   ( )   (  ( )). Finally, the analysis ensemble mean and 

perturbations can be computed by applying the weights to the background ensemble: 

   ̅   ̅      ̅  , (1.5) 

 
           . (1.6) 

In the LETKF, Equations (1.2)–(1.6) are computed locally for every model grid 

point with its nearby observations, which allows easy implementation of covariance 

localization and parallelization (Hunt et al. 2007). A computationally efficient code 

for the LETKF is available at the public Google Code platform from Miyoshi 

(http://code.google.com/p/miyoshi/), including the SPEEDY-LETKF system that 

couples the SPEEDY model with the LETKF codes. 

1.4 Outline of this thesis 

The dissertation is organized as follows. The methodology, including the 

Gaussian transformation and the special treatment of zero precipitation observations, 

are introduced in Chapter 2. Chapter 3 presents the results of the perfect-model 

OSSEs with the SPEEDY model and summarizes what we learn from the proof-of-

concept experiments. Chapter 4 describes the development of the GFS-LETKF 

system in preparation for the real precipitation assimilation. Chapters 5–7 are three 

parts of the real precipitation assimilation experiments. In the part I (Chapter 5), the 

satellite precipitation dataset used in this study is introduced. Several statistical results 

of the precipitation variable between the model and the observations are presented to 

generally discuss the challenges and possible solutions of the real precipitation 
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assimilation. The part II (Chapter 6) presents a set of experiments showing positive 

impacts by assimilating real satellite precipitation data into the GFS model. The part 

III (Chapter 7) demonstrates how to use EFSO to provide guidance for determining 

appropriate quality control. The summary and future directions are provided in 

Chapter 8. 
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Chapter 2: Transformation of precipitation 

2.1 Introduction 

Most of data assimilation schemes, including the variational method and the 

EnKF method, assume Gaussian error distributions for both observations and the 

model backgrounds. If the error distribution is not Gaussian, the analysis could be not 

optimal. However, it is unavoidable that we need to use observations with a certain 

non-Gaussianity in the geophysical data assimilation. In particular, the precipitation-

related variables are often very non-Gaussian. It becomes a severe problem when 

those variables are assimilated. 

Bocquet et al. (2010) provided a comprehensive review of the methods to deal 

with the non-Gaussianity in various data assimilation schemes. The approaches that 

do not require Gaussian variables, such as the particle filter (van Leeuwen 2009), the 

maximum entropy method (Eyink and Kim 2006), and the rank histogram filter 

(Anderson 2010), are generally too expensive. Therefore, these methods have only 

been applied and tested with simpler systems. On the other hand, a much cheaper and 

feasible solution would be to do a variable transformation. When non-Gaussian 

observations are being assimilated, an appropriate transformation of observables can 

make the error more Gaussian with only a small additional cost. Either analytical or 

empirical formula can be used for the transformation. In this chapter, we will describe 

several transformations for precipitation assimilation, including the widely used 

logarithm transformation, and the Gaussian anamorphosis method we propose to use. 

In addition, the fact that precipitation can have zero value adds much complexity to 



11 

the problem. Several choices to deal with the zero precipitation value will also be 

discussed. 

2.2 Logarithm transformation for the precipitation assimilation 

The logarithm transformation 

   ̃    (   ) (2.1) 

has been widely used in the precipitation assimilation. In the equation,   is original 

variable,  ̃ is the transformed variable, and   is an arbitrary constant. The constant   

is added to prevent the singularity at zero precipitation (   ). This constant can be 

tuned to optimize the results according to the specific problems, and is suggested to 

be 1 mm in Mahfouf et al. (2007). Using this transformation, Lopez (2011) 

successfully assimilated the NCEP stage IV precipitation analysis over the eastern 

United States, and Lopez (2013) presented experimental results of assimilation of the 

6-hourly accumulated precipitation observations measured by the rain gauges at 

synoptic stations. 

The logarithm transformation enhances the discrimination of small precipitation 

amounts, and damping the contribution of large precipitation amount, leading to a 

modification of the dynamical range (Mahfouf et al. 2007). It is also a sound choice if 

we assume that the magnitude of precipitation errors varies as a power law of the 

precipitation amount (Bauer et al. 2002), and the error distribution is close to a log-

normal distribution (Errico et al. 2001). Therefore, we can reasonably assign a 

constant observation error for precipitation observations in the transformed space, 
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which is approximately valid when the original error is proportional to the 

precipitation amount. 

2.3 Gaussian anamorphosis 

The analytical transformation such the logarithm transformation [Equation (2.1)] 

is simple, but it is not guaranteed to be useful if the error associated with precipitation 

does not follow a log-normal distribution. It may be a good transformation for 

precipitation in some regions, seasons, or precipitation types, but a globally invariant 

analytical transformation may not be applicable to every case. Therefore, we choose 

an alternative method to define empirical transformations based on samples. A usual 

way to define these transformations (or “anamorphosis functions”) is through the 

connection between the two cumulative distribution functions (CDFs) of the original 

variable ( ) and the transformed variable ( ̃): 

   ̃( ̃)   ( ) , or (2.2) 

 
   ̃   ̃  [ ( )] , (2.3) 

where   is the CDF of  ,  ̃ is the CDF of  ̃, and  ̃   is the inverse function of  ̃. By 

definition, the CDFs are bounded in [   ]. The CDF of the original variable ( ) 

needs to be empirically determined from samples, and the CDF of the transformed 

variable ( ̃) can be arbitrarily chosen so that the transformed variable can have any 

desired distribution. When we choose 

   ̃( ̃)    ( ̃)  
 

 
[     (

 ̃

√ 
)]  , (2.4) 

which is the CDF of a standard normal distribution with zero mean and unit variance 

so that 
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( )  √       (    ) , (2.5) 

it becomes an “Gaussian anamorphosis” (Wackernagel 2003): 

   ̃      
[ ( )] . (2.6) 

In this way, the transformed variable ( ̃) becomes a Gaussian variable. The use of the 

Gaussian anamorphosis has appeared in several geophysical data assimilation studies 

(e.g., Simon and Bertino 2009, 2012; Schöniger et al. 2012). We call this method 

“Gaussian transformation” (GT) hereafter in this dissertation. 

An illustration of the Gaussian transformation of precipitation is shown in Figure 

2.1. Figure 2.1a shows a typical probability density function (PDF) of precipitation, 

which is very non-Gaussian and contains a great portion of zero values that can be 

regarded as a delta function at zero. Figure 2.1c is the corresponding cumulative 

distribution of the precipitation PDF. Using the inverse CDF of the standard normal 

distribution     
, the cumulative probability value is converted back to the 

transformed variable  ̃, whose CDF shown in Figure 2.1d and PDF in Figure 2.1b. 

Note that the transformation ensures a simple one-to-one relationship between the 

original variable and the transformed variable if their CDFs are continuous. However, 

it is apparent that the precipitation is not a continuous variable since it contains a 

large portion of zero values so that the CDF is discontinuous at zero. In the 

illustration, the dashed parts of lines in Figure 2.1b, c, and d are associated with those 

zero precipitation values. This issue regarding zero precipitation will be addressed 

and the figure will be further discussed in Chapter 2.5. Note that multimodal 

distributions would not pose any difficulty in defining the transformation. 
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Figure 2.1:  At a random grid point, the probability density function and cumulative 

distribution function of (a), (c) the original precipitation and (b), (d) the transformed 

precipitation based on the 10-year model climatology. The procedure of the Gaussian 

transformation is from (a) to (c), to (d), and to (b) as indicated by the arrows. The 

transformation of zero values is illustrated using dashed lines, which uses the “climatological 

median” method (CZ; see Section 2.5.1). 

In this transformation method, the transformation of the extreme values needs to 

be specifically defined. If the value to be transformed is larger or smaller than all 

sample values used to construct the empirical CDF, there is a problem. In particular, 

    
 will transform zero and one to    and    respectively, which is also not 
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acceptable. Simon and Bertino (2012) indicated that using the tails of the distribution 

during the transformation can be a risk, and they proposed to use linear tails. In our 

study, since we will use large samples to construct the empirical CDF of precipitation, 

we choose a simpler way: all precipitation values with cumulative distribution less 

than 0.001 and greater than 0.999 are set to the values 0.001 and 0.999, respectively. 

Consequently, when the original values fall outside this range, they will be 

transformed to -3.09 and 3.09. 

It is worth mentioning that this CDF-based transformation of precipitation has 

been used in some climate studies, though they are not related to the data assimilation. 

For example, the Standardized Precipitation Index (SPI) (McKee et al. 1993; Guttman 

1999) commonly used to study drought is defined based on a similar method, while 

the time scale of precipitation accumulations they have focused is much larger than 

the 6 hours used in the data assimilation. 

Last but not least, when we define the empirical CDF based on the climatological 

samples from models or observations, this method transforms the climatological 

distribution of the original variable into a Gaussian distribution as a whole, but not its 

error distribution at every estimate. Unfortunately, it would be impossible to define 

the transformation for every estimate because no enough samples can be obtained in 

this case. As a result, using the climatological samples would be the only practicable 

choice. Nevertheless, we think this method is still beneficial to the EnKF data 

assimilation, by assuming that the error distributions from a variable with more 

Gaussian climatological distribution will also be more Gaussian. The validity of this 

assumption is conceptually explored in Figure 2.2. The gray shaded area is the 
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climatological distribution. When we take an estimate in a random observation time 

and location, suppose the error distribution of this estimate is Gaussian (the orange 

line), then the actual error distribution will also be Gaussian (the red line) because the 

product of two Gaussian distributions is also a Gaussian distribution. Therefore, we 

believe that for a usual variable with continuous climatological distribution, this 

assumption is generally valid. Later in Chapter 5.4, we will use samples of the 

background ensembles generated from a realistic model to further verify the validity 

of this assumption. 

 

Figure 2.2:  The probability density functions of the climatological distribution and the 

background error distribution at a random grid point and time. 

2.4 Implementation with the LETKF 

Once the transformation is defined, it is very easy to implement with the LETKF. 

Assume that the transformation used is  ̃   [ ] , where  [ ]  can be either the 

logarithm transformation [Equation (2.1)] or the Gaussian transformation [Equation 
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(2.6)]. In the data assimilation calculation, the precipitation observations  (  )
  are 

replaced by the transformed observations: 

   ̃(  )
   [ (  )

 ] . (2.7) 

Meanwhile, the transformation is also applied to the precipitation values in the model 

background: 

   ̃(  )
   [ (  )

 ]   [ (  )]   ̃(  ) ,    ̃      , (2.8) 

thus it can be included in the observation operator   (  stands for the function 

composition). 

2.5 Treatment of zero precipitation 

As mentioned in Chapter 2.3, there is an issue regarding the transformation of the 

zero precipitation values. It is actually a very critical problem because the probability 

of zero precipitation can amount to more than 50-80% in many datasets. A naïve 

approach would be to only transform the non-zero part of precipitation data. However, 

this is not practical in data assimilation because even if all zero precipitation 

observations are discarded, it is still possible to have zero values at the corresponding 

observation location in the background forecasts, which still need to be transformed 

before they are passed into the assimilation calculation. In ensemble data assimilation 

framework, this problem is even more apparent than in variational data assimilation 

since it is very likely that a random ensemble member would have zero precipitation 

at an observation location. Therefore, a heuristic solution to the transform of zero 

precipitation values is necessary. 
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Before introducing the solutions of the zero precipitation assimilation, a value, 

      , meaning a measurable trace of precipitation, is defined here. In practice, we 

may regard those very tiny non-zero precipitation values in the model outputs or 

satellite retrievals as meaningless precipitation amounts; therefore, a condition is first 

imposed to the original precipitation values: 

    {
              

             
 . (2.9) 

A proper choice of this value can improve the data assimilation results, since it 

removes the impact of meaningless tiny values. However, a value of        that is too 

large would diminish the useful information contained in the small precipitation 

amounts. 

2.5.1 Method 1: Climatological median 

The zero precipitation is manifested as a delta function in the probability 

distribution (Figure 2.1a). Since any deterministic transformation of a delta function 

will still result in a delta function, it is be impossible to expand it into a continuous 

distribution and form a perfect Gaussian distribution in the transformed space by any 

deterministic method. Instead, we need to decide a specific value in the transformed 

variable to that all zero precipitation values are transformed. In other words, a value 

of cumulative probability  ( ) for zero precipitation (   ) needs to be assigned. 

The first method is called “climatological median” of zeros (CZ). In this method, 

 ( )  is assigned to be the middle value of the zero precipitation cumulative 

probability: 
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   ( )  
 

 
   (2.10) 

 

  so that  ̃         
[ ( )]      

(
  

 
)  , (2.11) 

where     (      )  is the zero precipitation probability in the climatology. This 

method has been illustrated in Figure 2.1. In this example, the probability of zero 

precipitation is about 63.4% (CDF = 0.634 for       ; open circles in Figure 2.1c and 

d), thus  ( )        is assigned for all zero precipitation (solid circles) at that grid 

point. By this way, the zero precipitation in the transformed variable is still a delta 

function in its PDF (Figure 2.1b), but it is located at the median of the zero 

precipitation part of the normal distribution. Therefore, though not perfectly Gaussian, 

it is more reasonable than the original skewed distribution
1
.  

2.5.2 Method 2: Background median 

On further thinking, this fixed transformation of zero precipitation determined 

from the climatological zero precipitation probability may not be a good solution. As 

illustrated in Figure 2.3a, when the boundary of positive precipitation and zero 

precipitation exists, the “real” background error distribution (red Gaussian curve) can 

cross this boundary, result in a distribution that only the positive precipitation part 

(red shaded area; right side to the boundary) is fitted into the Gaussian envelope while 

                                                 

 

 

 
1
 This approach to transforming zero precipitation does not maintain the properties of zero 

mean and unit standard deviation. However, this does not create problem in the data 

assimilation because such properties are essentially not required in the climatological 
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the zero precipitation part remains undetermined. We note the similarity of the gray 

shaded area and the red shaded area: they are both “parts of the Gaussian distribution”, 

but the ratios of the zero precipitation areas to the whole Gaussian areas are different. 

In the CZ method, we determine the value of the transformed zero precipitation based 

on the gray shaded area; here we propose an algorithm called “background median” 

of zeros (BZ), in which we determine the value of transformed zero precipitation 

based on the red shaded area instead of the gray shaded area. We will also assign the 

zero precipitation to the median of the zero precipitation probability under the red 

Gaussian curve (red vertical thick line in Figure 2.3b), but now this probability is 

determined from the background ensemble (i.e., the number of the non-precipitating 

background ensemble members divided by the total member number), not the 

climatology. Since the red shaded area (real error distribution determined from the 

background members) is not fixed every time, the transformation of the zero 

precipitation using this BZ method will also be changing in every LETKF analysis 

time. 
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Figure 2.3:  (a) The relation between the boundary of zero precipitation and positive 

precipitation (      ) and the zero precipitation probability in the climatology (  ) and in the 

background ensemble (  ). (b) The median of the zero precipitation probability in the 

climatology (black thick vertical line) and in the background ensemble (red thick vertical 

line). 

Based on the concept expressed above, the new formulation of the zero 

precipitation transformation is derived as follows. As shown in Figure 2.3, the 

boundary of positive and zero precipitation is associated with two probability 

distributions, the climatological distribution and the background error distribution, 

through the zero precipitation probability in the climatology and in the background 

ensemble, respectively. Here we state again that both these two distributions are 

assumed to be Gaussian, where the climatological one is known but the one 

representing the background error distribution is unknown. Therefore, we can write 

the first equality in the form of inverse CDFs of normal distributions: 

   ̃          
(  )       

(  ) , (2.12) 
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where  ̃      is the trace value of precipitation [i.e., the boundary of positive and zero 

precipitation; its original value,       , is 0.1 mm (6h)
-1

 in our SEPPDY model 

experiments and 0.06 mm (6h)
-1

 in our GFS model experiments] in the transformed 

variable,     
 is the inverse CDF of a normal distribution with zero mean and unit 

standard deviation as we defined in Equation (2.5), and      
 is the inverse CDF of 

an unknown normal distribution.     (      ) is the zero precipitation probability 

determined from the climatology;    is the zero precipitation probability determined 

from the background ensemble: 

     
(                                                    )

(             )
 . (2.13) 

Assuming the unknown normal distribution representing the background error 

distribution has a mean  ̅  and a standard deviation   so that      
(  )   ̅  

     
(  ), the Equation (2.12) becomes: 

   ̃          
(  )   ̅       

(  ) . (2.14) 

If we can solve these two unknown variables ( ̅ and  ), then we can determine the 

hypothesized background error distribution and therefore define the zero precipitation 

transformation by 

   ̃      ̅       
(
  

 
)  , (2.15) 

the median of the zero precipitation probability in the background ensemble. 

To solve these two unknowns, we construct the second equality through the 

expected value of the background error distribution. The expected values of the zero 

precipitation part and the positive precipitation part of the background error 
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distribution must be combined to form the expected value of the entire distribution, 

which is  ̅: 

     [ ̃  ̃   ̃     ]  (    ) [ ̃  ̃   ̃     ]   ̅ . (2.16) 

, where  [ ] means expected values. Assuming an exact Gaussian distribution for the 

zero precipitation part, the analytical representation of the    [ ̃  ̃   ̃     ] is: 

     [ ̃  ̃   ̃     ]     ̅   ∫   ( )  
    

(  )

  

 ,    ( )  
  

  

 

√  
 . (2.17) 

On the other hand, the (    ) [ ̃  ̃   ̃     ] term is computed using the discrete 

background ensemble members having positive precipitation, during the LETKF 

assimilation computation: 

  (    ) [ ̃  ̃   ̃     ]  
 

 
∑  ̃ 

 

      

 , (2.18) 

where   is the ensemble size and    is the number of ensemble members with zero 

precipitation, assuming the member indices have been sorted in ascending order in 

terms of the precipitation values. Finally, we can represent the Equation (2.16) as: 

     ̅        ̅ , (2.19) 

 

where   ∫   ( )  
    

(  )

  

   [    
(  )]  ,     
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 . (2.20) 

From Equations (2.14) and (2.19), we can solve  ̅ and  : 

   ̅  
  ̃           

(  )

  (    )    (  )
 , and (2.21) 

 

    
(    ) ̃       

  (    )    (  )
 . (2.22) 
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Plugging in these two values into Equation (2.15), we thus obtain the value to that 

zero precipitation should be transformed in this BZ method. 

It is noted that this new formulation of the zero precipitation transformation will 

be ill-posed when the number of the positive precipitation members is too small. In 

particular, when there are no positive precipitation members, it is impossible to 

determine the zero precipitation transformation based on this method. However, later 

we will introduce a criterion that the precipitation observation is assimilated only 

when there are enough positive precipitation members in the background. By using 

this criterion the problem is automatically prevented. Another advantage of the BZ 

method is that the transformed value of the zero precipitation ( ̃    ) is always closer 

to the trace precipitation (  ̃     ), and it is even closer when there are more 

background members having positive precipitation. 

2.5.3 Method 3: Random transformation 

We may also propose a probabilistic method to transform the zero precipitation 

in order to expand the delta function into a continuous distribution; i.e.,  ( ) is 

assigned to be a random value from a uniform distribution: 

   ̃         
( ) ,       (    ) , (2.23) 

where   (    ) stands for a uniform distribution from 0 to   , the zero precipitation 

probability in the climatology. By this way, the zero precipitation part of the 

transformed PDF can be filled up nicely so a perfect (climatological) Gaussian 

variable can be generated. However, the idea of “random” observations does not have 

a sound theoretical basis and it may lead to additional sampling errors. We tested this 
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idea in our data assimilation experiments but its experimental impact was no better 

than the climatological (CZ) or background (BZ) median approaches. Therefore, this 

method will not be used in this dissertation. 

2.6 Observation errors in the transformed space 

When a variable transformation algorithm is used in the data assimilation, not 

only are the observables transformed (see Chapter 2.4), but the observation error 

associated with the transformed variable will also be different from the original error 

value. In theory, we should be able to estimate the observation error for the 

transformed variable based on the error for the original variable. It can be done by the 

transformation of the entire PDF from the original physical space to the transformed 

space, and estimating the new variance after the transformation. However, it is not an 

easy computation. Simon and Bertino (2012) proposed a computationally feasible 

method based on the Monte Carlo method, consisting of three steps. First, a number 

of perturbed observations are generated in the original physical space by specifying a 

known error distribution such as normal or log-normal distributions. Second, the 

transformation is applied to those perturbed observations. Third, the new variance is 

computed from the sample of the perturbed observations in the transformed space. 

This strategy can be particularly useful if the observation error of the original variable 

is well known. 

However, it is noted that the shapes of the error distributions before and after the 

transformation should be different; i.e., if we assume a Gaussian error distribution in 

the original variable, then the transformed error distribution will not be Gaussian. 

Nevertheless, only the Gaussian error distribution can be used in data assimilation 
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schemes such as the LETKF, so we must approximate the transformed PDF with a 

Gaussian distribution represented by its variance. Considering again the idea of the 

transformation, by introducing the transformation, we should expect that the error 

distribution in the transformed space is more Gaussian than that in the original 

physical space (Figure 2.2). In that sense, the transformation of the error PDF, 

starting from a Gaussian distribution, would not be a proper approach. On the 

contrary, estimation of the error or the error model with the transformation variable 

alone, regardless of the original variable, should be a better direction. 

In our study, when we conduct OSSEs in Chapter 3, since we know exactly the 

error magnitudes of the simulated observations, we take a similar strategy as Simon 

and Bertino (2012) to compute the transformed observation error from the original 

error value, but our method is much simpler: Only two samples, the observation value 

plus/minus one standard deviation, are considered. Conceptually, 

   ̃   [     ]   [  ]   [  ]   [     ] , (2.24) 

where    is the original observation value,  [ ]  is the transformation,    is the 

observation error for the original variable, and  ̃  is the observation error for the 

transformed variable whose squares appear in the diagonal elements of   in the data 

assimilation. We choose to determine the final  ̃  value by requiring both two 

estimates,  ̃    [     ]   [  ]  and  ̃    [  ]   [     ] , be at least 

0.1 (unitless in the transformed variable) and then averaging them; namely, 

   ̃  
 

 
[   ( ̃      )     ( ̃      )] . (2.25) 

When we conduct real precipitation assimilation experiments in Chapters 6 and 7, 

since the precipitation observation errors are basically unknown, it would not be a 
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good idea to adopt this strategy. Instead, we will use simple constant values as the 

observation errors for the transformed precipitation (applied to both logarithm 

transformation and Gaussian transformation). We conducted many trials to obtain the 

best constant value experimentally. A more detailed discussion about the errors of the 

satellite precipitation retrievals can be seen in Section 5.1.2. 
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Chapter 3: Perfect-model experiments with SPEEDY model 

3.1 Introduction 

In this chapter, we show the results of precipitation assimilation experiments 

with the Simplified Parametrizations, primitivE-Equation DYnamics (SPEEDY) 

model (Molteni 2003). The experiments are conducted within an identical-twin 

observing system simulation experiment (OSSE) framework, so they are “perfect-

model” experiments without considering model errors. We first use this simpler 

system to test our idea of the LETKF assimilation of global precipitation with the 

transformation techniques. There are many advantages in using a simpler system for a 

proof-of-concept study. It helps us to get rid of many uncertainties that we are not 

able to address at the first stage, and allows us to conduct experiments more quickly 

given the limited computing resources in order to do many sensitivity tests. Besides, 

the precipitation assimilation is a challenging topic even with such simpler systems. 

For example, when we previously used the same OSSE framework, but without 

introducing the Gaussian transformation of precipitation and other modifications 

described later in this chapter, the precipitation assimilation failed. Therefore, a 

success demonstration of precipitation assimilation with this simple system will be an 

essential first step before applying our ideas to more complicated systems. 

3.2 The SPEEDY model 

The SPEEDY model (Molteni 2003) is a simple, computationally efficient, but 

still realistic general circulation model that has been adapted for data assimilation 
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experiments (Miyoshi 2005) and widely used (e.g., Kang et al. 2011). The version of 

SPEEDY model used in this study is run at a T30 resolution with 7 vertical sigma 

levels. It has five state variables: the zonal (U) and meridional (V) components of 

winds, temperature (T), specific humidity (Q), and surface pressure (Ps). In addition 

to those state variables, the previous 6-hour accumulated precipitation (PP) is a 

diagnostic variable that is also calculated by the model, which allows easy 

implementation of the precipitation assimilation in the LETKF system. Note that the 

diagnostic PP in the analyses plays no role in the subsequent forecasts, and all 

improvements in model forecasts are achieved by the update of the state variables. 

The convective parameterization scheme is a simplified mass-flux scheme 

activated whenever conditional instability is present, and humidity in the planetary 

boundary layer (PBL) exceeds a prescribed threshold. The cloud-base mass flux (at 

the top of the PBL) is computed in such a way that the PBL humidity is relaxed 

towards the threshold value on a time-scale of 6 h. The large scale condensation is 

created by relaxing the humidity above saturation towards a sigma-dependent 

threshold value on a time scale of 4 h. Although the model resolution is very low and 

the parameterization scheme is simple, the SPEEDY model produces realistic 

precipitation (Molteni 2003) and responds realistically to anomalous SST forcing 

(Kucharski et al. 2013). Therefore, we think the complexity of the model is sufficient 

for preliminary precipitation assimilation studies. 
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3.3 Experiment design 

3.3.1 General settings 

The SPEEDY model is first run for a one year spin-up (year 1981) and then for 

10 years, from January 1, 1982 to January 1, 1992 forced by the climatological sea 

surface temperature. These 10 years of simulation are used to compute the CDFs of 

precipitation in preparation for defining the Gaussian transformation. The same run in 

the period from January 1, 1982 to January 1, 1983 is also regarded as the nature run, 

or the “truth” in the OSSEs. Figure 3.1 shows the comparison between the mean daily 

precipitation amount in our 10-year model run and in a high-quality precipitation 

analysis. It is concluded that the climatology produced from the SPEEDY model is 

reasonably good compared to the analysis data. 

 

Figure 3.1:  The mean daily precipitation amount (mm) in (a) the 10-year nature run with the 

SPEEDY model and (b) CPC Merged Analysis of Precipitation (CMAP) from 1979 to 2011. 

The CDFs of precipitation is computed for each grid point and each season, and 

the transformations of both observation and model precipitation variables are thus 
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followed in terms of their geographical location and season during the data 

assimilation computation: 

   ̃      
[ (  location  season)] . (3.1) 

The periods of four seasons are allocated as March–May, June–August, September–

November, and December–February. Besides, we define the        value to be 0.1 mm 

for 6-hour accumulations; i.e., the precipitation values that are less than 0.1 mm (6h)
-1

 

are regarded as “zero precipitation.” 

Simulated observations are taken from this nature run by adding random noise 

corresponding to the designated observation errors. The basic observing system used 

in this study is just conventional rawinsonde observations that are assimilated in the 

control run (“RAOBS” hereafter). The rawinsonde locations are distributed 

realistically as shown by open circles in Figure 3.2. Variables assimilated include u, v 

winds, temperature, specific humidity, and surface pressure, whose observation errors 

are listed in Table 3.1. Additional precipitation observations are assimilated in other 

experiments to estimate the impact of the precipitation assimilation. The 6-hour 

accumulated precipitation data are obtained from the nature run every 2 by 2 model 

grid points (i.e., every 7.5 by 7.5) simulating satellite retrievals (indicated with plus 

signs in Figure 3.2). The observation errors of precipitation observations are set to be 

either 20% or 50% of the observed values for the non-zero precipitation (i.e., normal 

random errors with standard deviation 20% or 50% of the true values are added when 

generating the precipitation observations) and no error when zero precipitation is 

observed in the nature run, based on the assumption that clear air observations have 

no uncertainty. Covariance localization is computed adjusting the observation errors 
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by their distance (the “R localization” in Greybush et al. 2011), with a horizontal 

length scale L = 500 km and a vertical length scale of 0.1 in natural logarithm of 

pressure for all observations with two exceptions: 

1) No vertical localization is applied for precipitation observations because of the 

expected correlation between precipitation and model variables in deep layers. 

2) Reduced horizontal localization lengths for precipitation observations are used 

in two experiments (“0.5L” and “0.3L”) in order to test the sensitivity of the 

results to precipitation localization. 

The adaptive inflation scheme of Miyoshi (2011) is used. In addition, to obtain stable 

analyses, the upper-level (the highest 3 model levels) moisture (Q) observations are 

not used, and the upper-level Q variables in the model are also not updated by any 

other observations. 

 

Figure 3.2:  The spatial distribution of conventional rawinsonde observations (open circle) 

and global precipitation observations (plus sign) used in the OSSEs. 
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Table 3.1:  The observation errors for the simulated observations. 

Variable Observation error 

U 1.0 m s
-1

 

V 1.0 m s
-1

 

T 1.0 K 

Q (specific humidity)          kg kg
-1

 

Ps (surface pressure) 1.0 hPa 

PP (previous 6-hour accumulated precipitation) 20% or 50% (in different experiments) 

 

Twenty ensemble members are used in our assimilation experiments. Starting 

from January 1, 1982, all experiments are initialized with the same initial ensemble 

created by a random choice of model conditions at an unrelated time in the nature run, 

so they are very different from the “truth.” Observation data are then assimilated into 

the model with a 6-hour cycle. All experiments are run for 1 year until January 1, 

1983. The differences among experiments are summarized in Table 3.2. First, in 

“RAOBS”, only the rawinsonde observations are assimilated. We denote the control 

experiment showing the effectiveness of precipitation assimilation as “PP_CTRL”, in 

which precipitation is assimilated and the Gaussian transformation is performed. 

Unless mentioned otherwise, the simpler “climatological median” of zeros (CZ) 

method to transform the zero values is used. All prognostic variables in the SPEEDY 

model are updated during the assimilation as in the standard formulation of LETKF. 

The observation error of precipitation observations in this experiment is rather 

accurate, 20%, and the localization length of precipitation observations is the same as 

rawinsonde observations (i.e., L = 500 km). In “Qonly”, only the specific humidity Q 
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is updated during the LETKF assimilation of precipitation observations. This is 

analogous to conventional “nudging” methods using precipitation observations to 

only modify the moisture field in the model. Other sensitivity experiments listed in 

Table 3.2 will be introduced later. Further, for these experiments, 5-day free forecasts 

initialized from each 6-hourly ensemble mean analysis over the year are conducted in 

order to quantify the forecast impacts of the assimilation of precipitation. 

Table 3.2:  Design of all experiments. “GTcz” and “GTbz” stand for the Gaussian 

transformation with the CZ and BZ methods, respectively, to transform zero precipitation. 

Experiment Observation Transf QC for precip 

assimilation 

Obs error 

of precip 

Loc length 

of precip 
Raobs Precip 

RAOBS X      

PP_CTRL X X GTcz Precip members   10 20% 1L  

(= 500km) 

Qonly X X (only 

update Q) 

GTcz Precip members   10 20% 1L 

noGT X X  Precip members   10 20% 1L 

Log X X Log Precip members   10 20% 1L 

GTbz X X GTbz Precip members   10 20% 1L 

ObsR X X GTcz Obs precip > 0.1 mm h
-1

 20% 1L 

1mR X X GTcz Precip members   1 20% 1L 

5mR X X GTcz Precip members   5 20% 1L 

15mR X X GTcz Precip members   15 20% 1L 

50%err X X GTcz Precip members   10 50% 1L 

50%err_noGT X X  Precip members   10 50% 1L 

0.5L X X GTcz Precip members   10 20% 0.5L 

0.3L X X GTcz Precip members   10 20% 0.3L 
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3.3.2 Quality control based on the model background 

In the traditional way of precipitation assimilation, the zero precipitation 

observations are usually discarded because those observations are difficult to use (e.g., 

Koizumi et al. 2005). Nevertheless, zero precipitation observations should contain 

valuable (and accurate) information about the atmospheric state. With our current 

transformation algorithm handling the zero precipitation and an ensemble data 

assimilation system, zero precipitation observations are, indeed, assimilated. Instead 

of discarding all zero observations, a different quality control criterion is used in this 

study: assimilation is conducted at all grid points where at least some members of 

prior ensemble are precipitating (regardless of the observed values). The motivation 

of this criterion is that if the ensemble spread is zero (i.e., all forecasts have zero 

precipitation), it is not possible to assimilate precipitation using an EnKF. In Section 

3.5.1, we will show that assimilating precipitation observations at locations with only 

a few precipitating members does not show improvements, so that the criterion we 

have chosen in the PP_CTRL experiment is to require that at least half (10) of the 

forecasts have positive precipitation at the analysis grid point (“10mR” criterion 

hereafter), which controls the assimilation quality and saves computational time. We 

will also show that while this model background-based criterion only allows us to 

assimilate a small portion of the zero precipitation observations, this portion of 

observations seems to contain the crucial data which are really useful in the EnKF 

data assimilation. 



36 

3.4 Results 

3.4.1 Global analysis and forecast errors 

Figure 3.3 shows the evolution of the global root-mean-square (RMS) analysis 

errors (verified against the nature run) of the u-winds over one year. We only show 

this variable because the impacts are remarkably similar for all model variables, 

indicating that the assimilation of precipitation approach is indeed able to influence 

the full dynamical evolution of the model and not just the moist thermodynamics. 

Different time intervals are used to show the spin-up stage in the first month and for 

the remaining 11 months after the spin-up. The average values of RMS analysis errors 

in the last 11 months are also listed in Table 3.3. Note that the spin-up takes about 

one month because the ensemble initial states were chosen to be very different from 

the nature run at the initial time. In the LETKF (or any EnKF) a long spin-up is 

required in order to estimate not only the truth (with the ensemble mean), but also the 

“errors of the day” with the ensemble perturbations (Yang et al. 2012). 
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Figure 3.3:  The global root-mean-square (a) analysis and (b) forecast errors (verified against 

the nature run) of u-winds in experiments PAOBS, PP_CTRL, and Qonly. For the analysis 

errors, the evolution over one year is shown. Different scales on the time axis are used for the 

spin-up period (the first month) and the remaining 11 months. For the forecast errors, the 11-

month (after the spin-up) average values are shown versus the forecast time. 

Table 3.3:  Impact of precipitation assimilation on the last 11-month averaged analysis errors 

of u-wind. 

Experiment Last 11-month averaged RMSE of U (m s
-1

)  

(percentage changes relative to RAOBS) 

Globe NH TR SH 

RAOBS 1.58 0.67 1.64 2.03 

PP_CTRL 1.15 (-27.2%) 0.53 (-20.6%) 1.45 (-11.2%) 0.91 (-55.2%) 

Qonly 1.37 (-13.6%) 0.58 (-13.1%) 1.51 (  -7.4%) 1.59 (-21.8%) 

 

It is clear that when all variables (and therefore the full potential vorticity) are 

modified (PP_CTRL; blue line in Figure 3.3a), the improvement introduced by 

precipitation assimilation is quite large (27.2% reduction in the mean global analysis 
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error) after the first month of spin-up. Not only is the long-term averaged RMS error 

reduced, but the temporal variation of analysis accuracy is also reduced (e.g., the 

error jump observed in the RAOBS experiment during July is not seen in PP_CTRL). 

This result is very encouraging because it clearly shows that assimilating precipitation 

does bring significant benefits to the LETKF analysis. In contrast, when precipitation 

observations only modify the moisture field (Qonly; orange line in Figure 3.3a), the 

improvement is much smaller (only 13.6% reduction in the mean global analysis error 

after the spin-up), even though this approach also uses the Gaussian transformation 

and the model background-based observation selection criterion of precipitation. 

In addition to the LETKF analysis, the impact of precipitation assimilation on 

model forecasts is also shown on Figure 3.3b. The global RMS forecast errors of u-

wind are averaged over the last 11 months (i.e., after the spin-up). It is evident that 

the improvements last throughout the 5-day forecasts, so that the effect of 

precipitation assimilation is not “forgotten” by the model during the forecast, as 

experienced with nudging. Contrary to our expectations, the improvement by LETKF 

modifying only moisture (Qonly) also lasts throughout the forecast, which seems 

more effective than nudging possibly because of the use of the Gaussian 

transformation with an EnKF and/or the idealized OSSE framework. However, the 

improvement in Qonly is much smaller than that in PP_CTRL, and its error growth 

rate (i.e., the slope) is close to that in RAOBS whereas the error growth rate in 

PP_CTRL is smaller than for the other two experiments. As indicated before, similar 

improvements in the analysis and 5-day forecast errors are also observed in all other 

model variables, including the very important precipitation forecasts. Figure 3.4 
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shows that the precipitation forecasts are improved as well by assimilating the 

precipitation observations. Starting from 12 forecast hours, the error growth rates are 

stable, and the forecast improvement on precipitation in PP_CTRL relative to 

RAOBS is more than 2 days. 

 

Figure 3.4:  As in Figure 3.3b, but for precipitation forecast errors. 

3.4.2 Regional dependence 

The regional dependence of the impact of precipitation assimilation is discussed 

in this section. The RMS errors are computed for three regions: the Northern 

Hemisphere extratropics (30–90N; NH), the tropics (30S–30N; TR), and the Southern 

Hemisphere extratropics (30–90S; SH). Figure 3.5 shows the RMS errors of u-wind 

in 0 – 5 day forecasts averaged over the last 11 months for main experiments as 

Figure 3.3b, but for each region. For all other experiments, the 11-month average 

RMS analysis errors in terms of separate regions are also listed in several tables: 

Table 3.3–3.5, 3.7, and 3.8. 
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Figure 3.5:  As in Figure 3.3b, but the RMS forecast errors are calculated separately for the 

Northern Hemisphere extratropics (30–90N; NH), the tropics (30S–30N; TR), and the 

Southern Hemisphere extratropics (30–90S; SH), indicated by different marks on the lines. 

It is clear that, as in operational forecasts, these three regions have distinct 

characteristics of analysis errors, error growth rate, and the impact of precipitation 

assimilation. With only rawinsonde observations (RAOBS), the analysis (0 hour) in 

the NH region is already quite accurate, while the TR analysis is less accurate and the 

SH analysis is the least accurate. As a result, the precipitation assimilation only has a 

small effect on the NH region (20.6% reduction in PP_CTRL) but a large effect on 

the SH region (55.2% reduction in PP_CTRL). The effect on the TR region is even 

smaller (11.2% reduction in PP_CTRL), which could be due to differences in 

dynamical instabilities and precipitation mechanisms between the tropical and 
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extratropical regions. The prevailing convective precipitation in the tropics tends to 

maintain small-scale features and thus would be more difficult to capture in this low-

resolution global model implementing only the large-scale mass-flux 

parameterization scheme and by low-resolution observations. During the 5-day 

forecasts, the RMS errors in both NH and SH regions grow with similar rates, faster 

than that in the TR region, as observed in operational forecasts (Reynolds et al. 1994; 

Bengtsson et al. 2005), due to the stronger growth rates of mid-latitude baroclinic 

instabilities. The RMS errors in the NH region are then close to those in the TR 

region at the end of the 5-day forecasts. The improvement by precipitation 

assimilation in the SH region is so large that the RMS analysis and most forecast 

errors in the SH region in PP_CTRL are even better than those in the TR region even 

though without precipitation assimilation the SH analyses and forecasts are much less 

accurate. The difference between the LETKF modifying all variables and only 

modifying moisture is also emphasized in the SH region with the difference in RMSE 

between Qonly and PP_CTRL increasing with forecast time. Note that in spite of 

different dynamical nature of error growth in the three regions, precipitation 

assimilation does lead to positive impacts in all regions. 

Global maps of (temporally averaged) RMS errors and error reduction of the 

mid-level vorticity (      ) for the 72-hour forecasts during the last 11 months are 

shown in Figure 3.6. As expected, the error in RAOBS (contours) is large in the 

Southern Hemisphere since the conventional rawinsonde network is quite sparse in 

that region. The Southern Ocean near the southern end of South America has the 

largest error in the world presumably because it is the least observed. By contrast, the 
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RAOBS vorticity forecast error is generally small in the Northern Hemisphere, 

especially over the Euro-Asian continent with the densest rawinsonde observations. 

By including the precipitation observations in LETKF assimilation, the vorticity error 

reduction (i.e., the RMS error of PP_CTRL – the RMS error of RAOBS; shaded) is 

large in the SH extratropical region, smaller in the NH extratropical region, and 

smallest in the tropical region. Once again, the dynamical impact of assimilation of 

precipitation on the evolution is shown by the fact that the largest error reduction is 

almost collocated with the regions with the largest error in RAOBS, where the room 

for improvement is large, and yet the error is still reduced even in rawinsonde-rich 

Northern Hemisphere. The tropical region, instead, shows the smallest improvement, 

and the eastern equatorial Pacific and the central Africa are the only two areas that 

show slightly negative impacts. We can conclude that precipitation assimilation in the 

EnKF has a profound impact on vorticity through the dynamical impact of giving 

higher weights to the ensemble members with more accurate precipitation. This 

improvement is observed almost everywhere. 
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Figure 3.6:  The global map of RMS 72-hour forecast errors of the vorticity at        

during the 11 months after the spin-up in RAOBS (brown contour) and the corresponding 

error reduction from PP_CTRL to RAOBS (shading). The rawinsonde observation locations 

are also shown in blue open circles. 

3.4.3 Comparison among transformation methods. 

Several experiments using different methods of precipitation transformation are 

compared in Figure 3.7 assuming accurate precipitation (20% errors). In experiment 

“noGT”, no transformation of precipitation is applied; in experiment “Log”, the 

logarithm transformation is used; in experiment “GTbz”, the Gaussian transformation 

with the “background median of zeros” (BZ) method to transform the zero 

precipitation is used instead of the CZ method. As shown in the figure, during the 

spin-up stage, the LETKF analysis without the transformation of precipitation (noGT; 
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red line in Figure 3.7) is worse than PP_CTRL when the Gaussian transformation is 

applied. However, with these accurate observations, the Gaussian transformation does 

not make a significant difference after the spin-up period (Table 3.4; 26.1% vs. 27.2% 

reduction in the mean global analysis errors). It is possible that the proposed Gaussian 

transformation is especially useful to the LETKF assimilation when the model 

background is less accurate and the difference between model background and the 

precipitation observations is large. Therefore, when the analysis is accurate enough 

after the first month of spin-up, the Gaussian transformation does not offer a major 

advantage. The impact of the Gaussian transformation in experiments with less 

accurate precipitation observations is, however, much larger and will be shown in 

Section 3.5.2. 

 

Figure 3.7:  As in Figure 3.3a, but for experiments RAOBS, PP_CTRL, noGT, ObsR, Log, 

and GTbz. 
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The logarithm transformation (Log; orange line in Figure 3.7) results in similar 

evolution of the analysis errors as the PP_CTRL using the Gaussian transformation, 

but the overall analysis errors are slightly larger than those in PP_CTRL in all 

verification regions (Table 3.4; 23.5% vs. 27.2% reduction in the mean global 

analysis errors). This comparison demonstrates the advantage of the Gaussian 

transformation over the simple logarithm transformation which may be too ideal and 

not necessarily optimal. However, we do not put too much emphasis on the logarithm 

transformation here with the SPEEDY model experiments. The effect of the 

logarithm transformation will be examined more carefully in Chapters 5–7 with real 

precipitation observations and a more realistic model. 

Table 3.4:  Impact of precipitation transformation methods. 

Experiment Last 11-month averaged RMSE of U (m s
-1

)  

(percentage changes relative to RAOBS) 

Globe NH TR SH 

RAOBS 1.58 0.67 1.64 2.03 

PP_CTRL (20%err) 1.15 (-27.2%) 0.53 (-20.6%) 1.45 (-11.2%) 0.91 (-55.2%) 

noGT (20%err) 1.17 (-26.1%) 0.52 (-22.0%) 1.47 (-10.3%) 0.95 (-53.0%) 

Log 1.21 (-23.5%) 0.55 (-17.9%) 1.53 (  -6.7%) 0.96 (-52.5%) 

GTbz 1.12 (-29.3%) 0.52 (-22.7%) 1.40 (-14.3%) 0.91 (-55.0%) 

 

On the other hand, when we repeat the experiment using the BZ method in the 

Gaussian transformation (GTbz; green line in Figure 3.7) instead of the CZ method, 

we obtain even better results than PP_CTRL. It spins up faster than all other 

experiments and maintains an analysis that is slightly more accurate than that in 
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PP_CTRL (Table 3.4; 29.3% vs. 27.2% reduction in the mean global analysis errors). 

More importantly, although this additional improvement is not big in the analysis, but 

it keeps growing with forecast time in the 5-day forecasts (Figure 3.8). Therefore, the 

Gaussian transformation with the BZ method is the best method for the precipitation 

transformation in this OSSE configuration. Again, we will discuss more about the 

differences among the transformation methods in later chapters. 

 

Figure 3.8:  As in Figure 3.3b, but for experiments RAOBS, PP_CTRL, and GTbz. 

3.5 Sensitivity experiments 

The other sensitivity experiments are as follows: Experiments “1mR”, “5mR”, 

and “15mR” are conducted to test the sensitivity to the quality control criteria for 

assimilation. They vary the critical number of precipitating members to 1, 5, and 15 

from 10 in PP_CTRL. Experiments “50%err” and “50%err_noGT” are conducted to 

test the impact of lower observation accuracy on the precipitation assimilation, using 

higher precipitation observation errors of 50% rather than 20%. In addition, 
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experiments “0.5L” and “0.3L”, which vary the localization length to 250 and 150 

from 500 km in PP_CTRL, are conducted in order to test the sensitivity to the 

localization lengths of precipitation observations. 

3.5.1 Sensitivity to quality control criteria 

Figure 3.7 also shows the analysis error of the “ObsR” experiment that uses the 

traditional criterion of assimilating only positive rain observations [> 0.1 mm (6h)
-1

]. 

Compared it with our newly proposed 10mR criterion that requires at least half of the 

background members to rain (PP_CTRL), the 10mR criterion seems to be essential in 

order to have effective precipitation assimilation. The analysis of ObsR (gray line in 

Figure 3.7) is obviously degraded from PP_CTRL (Table 3.5; giving only a 0.3% 

reduction relative to RAOBS in the mean global analysis error). In particular, the 

degradation comes mainly from the tropical region (30S–30N; Table 3.5; 18.7% 

increase in the mean analysis error), which indicates that this observation-based 

criterion is not useful in our experimental setup in areas dominated by convective 

precipitation. Table 3.5 also shows the results of additional experiments with different 

minimum numbers (1, 5, and 15 out of 20) of precipitating ensemble members 

required to assimilation precipitation observations. With a criterion that is too lenient 

(requiring only 1 or 5 precipitating members), the improvement by precipitation 

assimilation is also degraded. This indicates that assimilating precipitation 

observations at locations where precipitating members are rare can hurt the analysis. 

If stricter criteria (10mR or even 15mR) are used as we do in most experiments in this 

study, the results are better. Note that this type of criteria also automatically allows 

some zero precipitation observations to be assimilated, provided that there are enough 



48 

precipitating members at the observation location. These locations will probably be in 

areas of scattered precipitation or near the edges of large-scale precipitation. Average 

numbers (and percentages) of observations in 4 different classes in terms of the 

observation-based criterion and the model background-based criterion in PP_CTRL 

experiment after the spin-up is shown in Table 3.6. It is shown that the current 10mR 

criterion only allows a small portion of the zero precipitation observations (bold; 48.9 

out of 542.6, the average number of zero precipitation observations) to be assimilated 

in our control experiment. Since the results are significantly improved by using this 

criterion, it is clear that this small portion of precipitation observations is crucial and 

really useful in the EnKF data assimilation. Given the fact that the observation data in 

the upper-right corner of the table (i.e., precipitation observed but no enough 

precipitating members in the background) are not used in our “10mR” method, and 

physically this part of data is also expected to have valuable information, it would be 

worth exploring other ways to exploit information from these data. 

Table 3.5:  Impact of quality control criteria of precipitation observations. 

Experiment Last 11-month averaged RMSE of U (m s
-1

)  

(percentage changes relative to RAOBS) 

Globe NH TR SH 

RAOBS 1.58 0.67 1.64 2.03 

ObsR 1.58 (  -0.3%) 0.69 (  +3.4%) 1.94 (+18.7%) 1.40 (-31.0%) 

1mR 1.29 (-18.6%) 0.57 (-14.3%) 1.62 (  -0.9%) 1.04 (-48.6%) 

5mR 1.19 (-25.2%) 0.52 (-22.3%) 1.50 (  -8.5%) 0.94 (-53.6%) 

PP_CTRL (10mR) 1.15 (-27.2%) 0.53 (-20.6%) 1.45 (-11.2%) 0.91 (-55.2%) 

15mR 1.13 (-28.9%) 0.52 (-23.0%) 1.42 (-13.4%) 0.89 (-56.0%) 
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Table 3.6:  The average numbers and percentages (in parentheses) of observations in 4 

classes in terms of the observation-based criterion and the model background-based criterion 

in PP_CTRL experiment after the spin-up. The bold, underlined classes are assimilated into 

the model and the others are not used. The total number of observations is 1008 at every 

cycle. 

 
Obs precip rate    

0.1 mm (6h)
-1

 

Obs precip rate    

0.1 mm (6h)
-1

 

Background precip members   10 493.7 (49.0%) 134.5 (13.3%) 

Background precip members   10 48.9 (4.9%) 330.9 (32.8%) 

 

3.5.2 Sensitivity to the accuracy of precipitation observations 

As mentioned in Section 3.4.3, with accurate precipitation observations of 20%, 

the application of the Gaussian transformation to the precipitation variable has only a 

minor impact on the LETKF analysis accuracy after the spin-up (Figure 3.7). 

However, this is not the case when we use more realistic precipitation observation 

errors of 50%. Figure 3.9 and Table 3.7 shows the impact of both larger observation 

errors as well as the use of the Gaussian transformation. The observation error of 

precipitation observations is increased to 50% both in the observations and in the 

LETKF estimation of observation errors. When the Gaussian transformation is used 

(50%err vs. PP_CTRL which uses 20%err), the analysis becomes only slightly worse 

(shown as a green line in Figure 3.9). However, without the Gaussian transformation 
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and with 50% errors (50%err_noGT; red line in Figure 3.9), the precipitation 

assimilation fails. The LETKF analysis in 50%err_noGT is actually worse than not 

assimilating precipitation in each region, as well as globally (Table 3.7). In other 

words, without the Gaussian transformation the precipitation assimilation hurts the 

analysis, whereas 50%err with the Gaussian transformation is almost as good as that 

obtained with the much smaller 20% errors. This sensitivity test demonstrates the 

importance of the Gaussian transformation. Less accurate observations will tend to 

have larger differences from the model background and may not be able to make the 

analysis accurate enough, so that the non-Gaussian effects become more important for 

large errors. Note that the errors of real satellite or radar precipitation estimates 

depend strongly on the degree of spatial and/or temporal averaging applied to the data 

(Huffman et al. 2010), and that a 50% error in precipitation observations would be 

considered quite good for such products (Bowman 2005). Therefore, the Gaussian 

transformation proposed in this study seems essential for the practical assimilation of 

precipitation. 
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Figure 3.9:  As in Figure 3.3a, but for experiments RAOBS, PP_CTRL, 50%err, and 

50%err_noGT. 

Table 3.7:  Impact of accuracy of precipitation observations with and without the Gaussian 

transformation. 

Experiment Last 11-month averaged RMSE of U (m s
-1

)  

(percentage changes relative to RAOBS) 

Globe NH TR SH 

RAOBS 1.58 0.67 1.64 2.03 

PP_CTRL (20%err) 1.15 (-27.2%) 0.53 (-20.6%) 1.45 (-11.2%) 0.91 (-55.2%) 

noGT (20%err) 1.17 (-26.1%) 0.52 (-22.0%) 1.47 (-10.3%) 0.95 (-53.0%) 

50%err 1.28 (-19.2%) 0.59 (-12.5%) 1.52 (  -6.9%) 1.26 (-38.1%) 

50%err_noGT 1.87 (+17.8%) 0.79 (+18.2%) 2.00 (+22.0%) 2.29 (+12.9%) 
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3.5.3 Sensitivity to the localization lengths of precipitation observations 

In all experiments so far we have used the same horizontal localization length 

scale for precipitation assimilation as for rawinsonde observations (500 km, denoted 

as 1L). Since dense global precipitation observations are assimilated in our OSSEs, 

and precipitation has more local characteristics than the dynamical variables, we 

speculate that the optimal horizontal localization length scale for precipitation 

observations could be smaller than that for rawinsonde observations. Two additional 

experiments, 0.5L and 0.3L, with 250 and 150 km localization lengths for 

precipitation observations, respectively, are conducted. It is observed in Table 3.8 that 

the smaller length scales improve the LETKF analyses, and the 0.5L (250 km) length 

scale would be close to optimal under our current experimental design. The averaged 

RMS analysis error after the spin-up can be reduced by 32.7% relative to RAOBS 

when the 0.5L length scale is used, compared with 27.2% when using the original 

length scale. This suggests that the optimal localization length could vary with 

different observation datasets and experimental settings and should be tuned 

appropriately. It would be interesting to try localization length scales that vary 

geographically, e.g., smaller length in tropics or wherever precipitation is mostly 

dominated by convection. 
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Table 3.8:  Impact of horizontal localization lengths of precipitation observations. 

Experiment Last 11-month averaged RMSE of U (m s
-1

)  

(percentage changes relative to RAOBS) 

Globe NH TR SH 

RAOBS 1.58 0.67 1.64 2.03 

PP_CTRL (1L) 1.15 (-27.2%) 0.53 (-20.6%) 1.45 (-11.2%) 0.91 (-55.2%) 

0.5L 1.07 (-32.7%) 0.48 (-28.0%) 1.31 (-20.0%) 0.95 (-53.4%) 

0.3L 1.14 (-27.8%) 0.53 (-20.2%) 1.37 (-16.2%) 1.08 (-46.6%) 

 

3.6 Summary and discussion 

Past attempts to assimilate precipitation observations into NWP models have 

found it difficult to improve model analyses and, especially, model forecasts. In the 

experience with nudging or variational methods, the forecasts starting from analyses 

with precipitation assimilation lose their extra skill in forecasts of precipitation or 

other dynamical variables after a day or less (e.g., Errico et al. 2007). The linear 

representation of moist physical processes required in the variational data assimilation 

and the non-Gaussianity of precipitation observations and model perturbations are 

both major problems in precipitation assimilation (e.g., Bauer et al. 2011). 

The EnKF does not require linearization of the model, thus addressing the first 

problem. The ensemble can give the “error correlation of the day”, essential to 

produce optimal analyses. In precipitation assimilation, the EnKF can take advantage 

of the original nonlinear precipitation parameterization to establish useful finite 

amplitude perturbation covariances between the diagnostic precipitation output and 
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all other state variables without additional computational cost. In this way, the EnKF 

is expected to more efficiently improve the potential vorticity field compared to 

nudging or variational approaches. Since potential vorticity is the variable that 

primarily determines the evolution of the forecast in NWP models, it is not surprising 

that the analysis improvement due to precipitation used in an EnKF is not so quickly 

“forgotten” in the forecasts.  

In addition to using the EnKF, we introduce two important changes in the data 

assimilation procedure that contribute to improving the performance of precipitation 

assimilation. Firstly, we adopt the Gaussian transformation for precipitation based on 

its climatological distribution in the model. Secondly, we propose a model 

background-based criterion in the ensemble data assimilation: precipitation 

observations are assimilated only at grid points where at least some members of the 

forecast ensemble are precipitating. This automatically allows zero precipitation 

observations to be assimilated. 

To prove these concepts, we conduct identical-twin OSSEs of global 

precipitation assimilation with the SPEEDY model and the LETKF. The SPEEDY 

model is a relatively simple global circulation model, but able to simulate a realistic 

climatology (Molteni 2003). Results in our OSSEs are extremely encouraging. By 

assimilating global precipitation, the globally averaged RMS analysis errors of u-

winds after the spin-up stage are reduced by as much as 29% (in GTbz) as compared 

to only assimilating rawinsonde observations. The improvement is not “forgotten” 

and persists throughout the entire 5-day forecasts. All model variables show similar 

impacts of the precipitation assimilation. The improvement is much reduced when 
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only the moisture field is modified by the precipitation observations. By separating 

the globe into three verification regions, i.e., the NH extratropics, the tropics, and the 

SH extratropics, it is shown that the effect of precipitation assimilation is larger in the 

SH region than that in the NH region since the NH analyses are already accurate due 

to the denser rawinsonde network. The tropical region shows the least relative 

improvement probably because of the slower dynamical instabilities and the 

prevailing convective precipitation type with small-scale features. Reducing the 

localization scale in these regions may improve the impact in the tropics. 

In addition, a number of comparisons among experiments are made in order to 

assess the impact of different transformation methods and the observation selection 

criteria, as well as the sensitivity to the precipitation error level and to the localization 

length scale used for the precipitation observations. Applying the Gaussian 

transformation does not have a large impact on the analysis errors when precipitation 

observation errors are at an accurate 20% level, but it is very beneficial when 

observation errors are at a much higher (and realistic) 50% level. As to the impacts by 

different transformation methods, the logarithm transformation is slightly worse than 

the Gaussian transformation in our case, and the BZ method is slightly better than the 

CZ method for transforming zero precipitation values with the Gaussian 

transformation. The proposed 10mR data selection criterion (assimilating 

precipitation at the location where at least half of the members are precipitating) 

allows using some zero precipitation observations, and gives much better results than 

the traditional observation-based criterion of only assimilating positive precipitation, 
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and better than assimilating more observations with a looser criteria (1mR and 5mR 

criteria). 

Although these results are promising, it is important to recognize that the 

SPEEDY model is simple, that model errors, especially in precipitation 

parameterization, are absent in this identical-twin OSSE setting, and that the 

simulated observations might be too idealized. In a real system, an accurate 

precipitation parameterization scheme would be very important to the precipitation 

assimilation. We still expect the EnKF to show advantages in this case because the 

original well-tuned nonlinear moist physics can be directly used for the data 

assimilation. Besides, the dimensionality of the employed system, a T30 horizontal 

resolution with 7 vertical levels, is very low compared to current operational systems. 

This low resolution prevents us from addressing some aspects of precipitation 

assimilation such as the strong and small-scale convective precipitation in tropical 

regions. In addition, with a real system, the difficulty of estimating errors of 

precipitation observations will emerge as another critical issue that is absent in the 

current OSSE framework. 

Nevertheless, this set of experiments with the SPEEDY model is an essential first 

step to understand the feasibility and potential of the precipitation assimilation using 

an ensemble data assimilation method. The results suggest that, in our relatively 

simple system, the EnKF provides advantages for precipitation assimilation beyond 

the traditional nudging or variational methods. In the later chapters, follow-up studies 

using a more realistic model and assimilating real satellite precipitation observations 

will be presented.  
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Chapter 4: LETKF data assimilation with the NCEP GFS model 

4.1 Introduction 

With the success of the SPEEDY model experiments, we proceed to test our idea 

of precipitation assimilation using a more realistic setting. We choose to use a lower 

resolution version of the NCEP Global Forecasting System (GFS) model assimilating 

the TRMM Multi-satellite Precipitation Analysis (TMPA). The primary data 

assimilation system for the GFS model is the Gridpoint Statistical Interpolation (GSI; 

Kleist et al. 2009), which uses 3-dimensional variational method (3DVar). There have 

been several efforts on the coupling of ensemble data assimilation systems to the GFS 

model. Szunyogh et al. (2008) tested the LETKF with a low resolution version of the 

GFS model and obtained comparable analysis accuracy as the variational method. 

Besides, with NCEP’s recent movement from the traditional 3DVar to the hybrid 

3DVar-EnKF system, several versions of EnKF for the GFS model has been created 

(Whitaker et al. 2008; Kleist 2012; Wang et al. 2013). However, these versions of 

GFS-EnKF are run on specific machines and may be difficult to be ported to the 

university research environment with limited computational resources, so we decided 

to develop our own GFS-LETKF system to conduct the real precipitation assimilation 

experiments. The purpose of developing this system is not limited to the use of 

precipitation assimilation, but also for other research plans, in particular, the project 

of coupled atmospheric-oceanic data assimilation system led by Eugenia Kalnay. In 

this chapter, we will describe the main goals of the development and provide an 

overview of the system. 
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4.2 The GFS model 

The GFS model is an operational global NWP model developed by the 

Environmental Modeling Center (EMC) at the NCEP. It is one of the major state-of-

the-art operational NWP models over the world and provides main model guidance 

for the weather forecast in the United States. We asked a version of the GFS model 

from the EMC with the kind help from Henry Huang and Daryl Kleist. This version 

was successfully ported to our own Linux cluster in the department by the valuable 

contribution from Tetsuro Miyachi. The GFS model can be run at various resolutions 

from T62 to T574, all with 64 vertical levels (L64) on a hybrid sigma/pressure 

coordinate. T574 has been the current operational resolution since 2010. We will take 

advantage of the lower-resolution versions (T62/T126) of the GFS model to quickly 

conduct our experiments of precipitation assimilation. The prognostic variables in the 

GFS model include the zonal (U) and meridional (V) components of winds, 

temperature (T), specific humidity (Q), cloud condensate (Qc), and surface pressure 

(Ps), so these are used as the state variables in our GFS-LETKF system. 

4.3 Development of the GFS-LETKF 

4.3.1 General strategies 

We hope the development of the GFS-LETKF system can benefit not only this 

study but also other planned data assimilation researches. The general strategies are 

as follows: 

 The system is targeted to be run at lower resolution with simple configurations 

in order to favor fast experiments to study new data assimilation ideas, but it 
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still preserves the flexibility of running higher resolution experiments on 

larger computer clusters. Currently, the main tests are performed at a T62L64 

resolution, which is equivalent to about 215 km horizontally. 

 The generic LETKF core code (available at the public Google Code platform: 

http://code.google.com/p/miyoshi/) will be used with minimal modifications. 

The same core code has been coupled to a number of models with a broad 

range of complexity, including the Lorenz 40-variable model (Lorenz and 

Emanuel 1998), the SPEEDY model, and the Weather Research and 

Forecasting (WRF) model. The same code structure will benefit the data 

assimilation researches. We aim to merge the GFS-LETKF system into the 

existent LETKF code repository in the future. 

 The observation operators can be flexibly chosen. A set of simple observation 

operators for conventional observation data is built in the LETKF code. For 

more sophisticated observation types such as the satellite radiance data, one 

can choose to use the GSI as the observation operator. This allows us to be 

able to assimilate more data. Details about the use of the GSI in the GFS-

LETKF system is described in Section 4.3.3. 

Figure 4.1 shows the flow chart of the GFS-LETKF system. The rectangles 

represent any kind of files with their formats shown in square brackets. Those 

rectangles are connected by arrow lines that represent program execution, with 

corresponding program file names shown in the bold italic font next to the arrow lines. 

Three main components of the system – the data assimilation cycle, the observation 

processing module, and the model forecast and verification modules – are boxed by 
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the red dashed rectangles. The data assimilation cycle is illustrated in the lower part 

of the figure: the 9-hour ensemble GFS model integration is executed based on the 

GFS sigma/surface file formats (sig/sfc), and the LETKF analysis is executed based 

on the gridded file format (grd). The purpose of conducting 9-hour forecasts is to 

perform a 4-dimensional LETKF (4D-LETKF) which assimilates asynchronous 

observation data at their right time within a window from hour 3 to hour 9. The 

source of the observation data is from the NCEP PREPBUFR dataset that not only 

provides the observed values but also the observation errors associated with each 

observation. These observation errors will be used in our system. As described before, 

there is flexibility of choosing observation operators. The route 1 shown in green 

arrows uses the built-in observation operators that can only process conventional 

(non-radiance) observation data. The route 2 shown in blue arrows uses the GSI as 

the observation operator. A set of reference model analysis data (gray rectangle) is 

needed in order to provide updated values of some prognostic variables that are not 

able to be analyzed by the atmospheric data assimilation system, such as ozone 

concentration and sea surface temperature (SST). In our study, the Climate Forecast 

System (CFS) Reanalysis (CFSR; Saha et al. 2010), which is a most advanced 

reanalysis dataset produced by the NCEP CFS version 2, is chosen to be this 

reference model dataset. 
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Figure 4.1:  The flow chart of the GFS-LETKF system. The rectangles represent any kind of 

files with their formats shown in square brackets. Those rectangles are connected by arrow 

lines that represent program execution, with corresponding program file names shown in the 

bold italic font next to the arrow lines. There are two routes of the observation processing: 

using built-in observation operators (green arrows) and using the GSI (blue arrows). 

Explanation of the format abbreviations: “sig/sfc” for sigma/surface files of GFS model 

inputs and outputs; “grd” for gridded files in model levels that can be read by the LETKF 

main program and plotted with GrADS software; “grdp” for gridded files in pressure levels; 

“prepbufr” for the NCEP PREPBUFR observations; “letkfobs” for a special observation data 

format used by the LETKF code; “letkfobs2” is similar to “letkfobs” but with observation 

values in model backgrounds appended; “gsidiag” for the format of GSI diagnostic outputs. 
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4.3.2 Choice of initial ensemble 

The simplest way to create an initial ensemble would be using a combination of 

initial conditions at different times as we did in the SPEEDY model experiments. We 

also design by this way to initialize the GFS-LETKF system from a random time 

series of any model analysis dataset
2
. At first, we used the CFSR data that we already 

used as the reference model analysis (gray rectangle in Figure 4.1) to initialize the 

system. However, the result of this trial was not satisfactory. A consistent temperature 

bias was observed near the tropopause which can be as large as -8 K, especially near 

the polar region (Figure 4.2c). It was an unacceptable huge bias that can significantly 

degrade the LETKF data assimilation performance. After a comprehensive 

examination, we found that the main cause of this large bias is the unrealistic globally 

mean negative water vapor concentration appeared at the lower stratosphere in CFSR 

(Figure 4.2a, b). This underestimate of the stratospheric water vapor resulted in the 

unrealistically strong longwave radiation cooling near the tropopause. The data 

assimilation was not able to fix the water vapor concentration at such high levels 

because there was hardly any moisture observation. For this reason, we have revisited 

our choice of the initial conditions and used the operational GFS model analysis, in 

                                                 

 

 

 
2
 Although any random time series of the model data can be chosen to generate the initial 

ensemble, it is recommended to use the data in the same season and same local time in order 

to prevent the deteriorate effects of the annual cycle and the diurnal cycle. 
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which the water vapor profile is more reasonable. The problem has been solved by 

this choice. 

 

Figure 4.2:  The globally averaged (a) RH (%) and (b) Q (kg kg
-1

) profiles in the CFSR 

initial condition (black lines; 12Z, August 15, 2008) and in the operational GFS (red lines; 

00Z, January 1, 2012). (c) The zonally averaged long-term temperature drift, computed by the 

day 8 output minus the day 1 output in a T62 GFS forecast initialized from random CFSR 

data. The vertical coordinate is the GFS model level from 1 to 64. 

4.3.3 Flexible observation operators 

It is relatively easy to build a set of observation operators for the conventional 

(non-radiance) observation data that only involve 2-dimentional or 3-dimensional 

interpolation. However, if we want to add the ability of assimilating satellite radiance 

data into our system, it is too difficult to create the observation operators that involve 

radiative transfer calculations. An easier route to assimilate satellite radiance data is 

through the mature GSI system. We can first run the GSI system in an “observer” 
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mode and store its diagnostic outputs that contain the information of the observation 

values in the model background [    (  )], then our program can make use of this 

information to compute the LETKF analysis without bothering the observation 

operator computation. In order to achieve this, Takemasa Miyoshi has separated the 

observation operator computation outside the main LETKF program in his Google 

Code repository, thus we can flexibly choose to use any observation operator. Daryl 

Kleist provided us clear instruction on how the NCEP used the GSI as an observer to 

develop their GFS-EnKF system. Runhua Yang did most of work to test the GSI 

system on our Linux cluster and to write a program to extract the information we 

need from GFS diagnostic files. After the cooperative work, the GSI has been 

coupled into the GFS-LETKF system and become an option of the observation 

operator (shown in blue arrows in Figure 4.1), while the option to use the simple 

built-in observation operators to process conventional data is still retained (green 

arrows in Figure 4.1). However, to date, the function of the satellite radiance data 

assimilation has not been finished yet. There are still some additional tasks to process 

the GFS diagnostic files for the satellite radiance observations whose format is more 

complicated than the conventional observations. In the current system, we can only 

use the GSI to process the conventional data. 

We verify our implementation by comparing the observation increment between 

using built-in observation operators and using the GSI in a single LETKF update with 

the same set of observations. As shown in Figure 4.3, the LETKF update using two 

options results in similar observation increments in both patterns and magnitudes for 
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the u-wind (Figure 4.3a) and the sea level pressure (SLP; Figure 4.3b), indicating that 

the implementation of the flexible observation operators works correctly. 

 

Figure 4.3:  The observation increments of (a) u-wind at      (m s
-1

) and (b) sea level 

pressure (hPa) computed using the built-in observation operators (shown in shade) and using 

the GSI (shown in contour) in a single LETKF update. 
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In this study of precipitation assimilation, we use the built-in observation 

operators to run all of our experiments. Since we do not use any satellite radiance data, 

the use of the simple built-in observation operators makes the computation much 

faster than using the heavy GSI program. 

4.3.4 Observation thinning 

The NCEP PREPBUFR data are used as the observation data source. It includes 

all conventional observation platforms but without satellite radiance data. As shown 

in Figure 4.4a, c, the original PREPBUFR data are extremely dense in some particular 

locations, such as the continental United States and the Europe. Besides, some 

observations are also too dense in their vertical resolution, such as the rawinsondes in 

Europe (Figure 4.5a). As a result, the representativeness of the data does not fit into 

our low-resolution model, so it is not good to directly assimilate this original dataset 

from the NCEP. In the ensemble data assimilation, these dense data can also result in 

too small ensemble spreads and degrade the analyses in latter cycles. To alleviate the 

problem, the original data need to be thinned before assimilated into the model. 
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Figure 4.4:  In August 2008, (a) (b) the upper-level observation densities (number of 

observations per column grid) and (c) (d) the surface observation densities in the NCEP 

PREPBUFR data before (left) and after (right) the superobing/thinning procedure. 

In the GFS-LETKF system, a mixed superobing/thinning procedure is developed 

following a basic principle: keeping at most only one observation per (3-dimensional) 

model grid point/observation type/variable during one assimilation window. This 

procedure reduces the total observation numbers by about a third and the resultant 

observation density is shown in Figure 4.4b, d horizontally and Figure 4.5b vertically. 

When the built-in observation operators are used, it is recommended to run this 

superobing/thinning program before assimilating the NCEP PREPBUFR data. When 

the GSI is used, since GSI can also perform the observation thinning during the 
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observation operator computation, we can simply enable observation thinning in the 

GSI and achieve similar results. 

 

Figure 4.5:  The vertical sample points (red plus signs) of u-wind data in a random 

rawinsonde observation in Europe (a) before and (b) after the superobing/thinning procedure. 

The black dots and lines are the u-wind vertical profiles in the model background. The left 

vertical coordinate (black) is GFS model levels from 1 to 64; the right vertical coordinate 

(blue) is pressure levels (hPa). 

4.3.5 Modifications to prevent system blow-up 

During the development, we found that the GFS-LETKF system tends to blow up 

after about 2 months of the cycling data assimilation run. After careful examination, it 

is concluded that there are two main causes of the problem: the quasi-constant 

adaptive inflation parameter and the unrealistically large moisture spread in the 

tropical regions, and these two problems are actually tied together. 
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The adaptive inflation (Miyoshi 2011) assumes slowly evolving observing 

network, so the inflation takes place quasi-constantly over the cycles. However, the 

observing network in the real world changes rapidly. The amount of rawinsonde 

observations significantly varies between 00, 12Z and 06, 18Z, and several types of 

satellite observations (e.g., air motion vectors) just appear randomly. At some 

locations, for example, the adaptive inflation estimates a factor of 4 multiplicative 

inflation parameter based on the previous several month cycling run. This factor will 

keep almost constantly cycle by cycle. Then, with some bad luck, at some cycle 

almost all surrounding observations within the localization length are gone, thus the 

analysis ensemble spread would increase by a factor of 4 in this cycle (because there 

is no observation to reduce the spread in the same time). The unrealistic ensemble 

spread will lead to unrealistic assimilation increment in the subsequent cycles, and 

will result in unrealistic values of model variables. Eventually the model can crash 

because of the unrealistic initial conditions. 

In order to alleviate this problem associated with the inflation, we add a 

“relaxation to prior” scheme proposed by Zhang et al. (2004) that relaxes the analysis 

ensemble perturbation in the EnKF (  ) to the background ensemble perturbation (  ) 

based on a weight constant   that can be optimally chosen: 

    (   )         . (4.1) 

In the LETKF, it is equivalent to replacing the weight matrix    with a weighted 

average of it and the identity matrix: 

    (   )        . (4.2) 
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Note that the adaptive inflation is still functioning at the same time, which means that 

the adaptively estimated multiplicative inflation factor is still used in the LETKF 

calculation. This “relaxation to prior” method can smooth the evolution of the 

ensemble spreads. In our precipitation assimilation experiments, the   value is chosen 

to be 0.5. 

Although this modification can stabilize the system and extend the period of the 

successful cycling run, it can still randomly blow up when the low-level moisture 

spread becomes unrealistically large. We observe this problem repeatedly happens 

over the tropical land regions such as the central Africa. Without a better solution, we 

add an artificial constraint on the ensemble spread of moisture: when the standard 

deviation of the specific humidity is greater than 0.7 times of its ensemble mean value, 

the spread is relaxed to this limit. The modification greatly stabilizes the system. 

4.3.6 Verification 

The forecast and the verification packages are included in the GFS-LETKF 

system. Deterministic or ensemble forecasts of any length can be conducted every 

cycle based on the mean or ensemble LETKF analyses. After the forecasts finish, one 

can choose to use any model analysis, such as the CFSR, or rawinsonde observations 

as reference states to compute the RMS errors, average absolute errors, biases in 

terms of several variables. The verification regions can also be flexibly chosen. 

4.3.7 Forecast sensitivity to observations 

A package to compute the ensemble forecast sensitivity to observations (EFSO; 

Kalnay et al. 2012; Ota et al. 2013) developed by Daisuke Hotta is also included in 



71 

the GFS-LETKF system. We will use this tool to compute the EFSO of each 

precipitation observation in Chapter 7. The formulation of the EFSO will be 

described in Chapter 7.2. 

4.4 Benchmark tests 

A few preliminary test experiments assimilating conventional observations are 

conducted to evaluate the performance of the GFS-LETKF system. 

4.4.1 Forecast verification 

An initial ensemble is created at 00Z January 1, 2008 from a random time series 

of operational GFS initial conditions. After one month spin-up, we conduct 5-day 

forecasts initialized from ensemble mean analyses every cycle from February 1–10, 

2008, and the average forecast errors verified against rawinsonde observations are 

computed for the globe and for three regions: the Northern Hemisphere extratropics 

(20–90N), the tropics (20N–20S), and the Southern Hemisphere extratropics (20–

90S). Another set of forecasts are also conducted using the same T62L64 GFS model 

but with initial conditions from the CFSR, and the same verification is computed. The 

CFSR is expected to be a higher quality analysis dataset than our GFS-LETKF 

analysis because it was produced at a native T382L64 resolution and it assimilated 

much more observation data. 

Figure 4.6 shows that the forecasts from GFS-LETKF are worse than those from 

CFSR in u-wind, temperature, and humidity by about 12–18 hour lead time, but the 

difference in forecast errors is not growing with time. The difference could arise from 

the lack of the satellite radiance data assimilation in our current GFS-LETKF system 
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and the big difference in native resolutions (i.e., T62 in GFS-LETKF vs. T382 in 

CFSR) of the data assimilation system. The important role of the satellite radiance 

data assimilation can be assessed from the verification results for different regions 

(Figure 4.7). It shows a smaller skill difference in the Northern Hemisphere 

extratropical region but a larger skill difference in the Southern Hemisphere 

extratropical region, where the conventional observation data are sparse so that the 

satellite data are essential. Giving the above explanation, we believe that our GFS-

LETKF system has reached reasonable analysis and forecast accuracy with its 

relatively low resolution and smaller observation usage. 

 

Figure 4.6:  Using a T62L64 GFS model, the average global root-mean-square forecast errors 

(solid lines) and biases (dashed lines) versus forecast time initialized from T62 GFS-LETKF 

analyses (red lines) and CFSR (blue lines): (a) 500-hPa u-wind (m s
-1

) (b) 850-hPa 

temperature (K) (c) 850-hPa specific humidity (kg kg
-1

). 



73 

 

Figure 4.7:  As in Figure 4.6, but for root-mean-square forecast errors averaged over three 

difference regions: the Northern Hemisphere extratropics (NH; 20–90N), the tropics (TR; 

20S–20N), and the Southern Hemisphere extratropics (SH; 20–90S). 

4.4.2 Resolution dependence 

In addition to the test experiments at the T62 resolution described in the previous 

subsection, experiments at a T126 resolution are also conducted for the same period. 

Three new forecast experiments are introduced here, using a T126 GFS as the 

forecast model but initialized from different analysis data, including the T126 GFS-

LETKF analyses (blue lines in Figure 4.8), T62 GFS-LETKF analyses (green lines), 

and the T382 CFSR (purple lines). The other two forecast experiments using the T62 

GFS model that we have already seen in the previous subsection are also plotted in 

Figure 4.8 for reference (red lines: initialized from T62 GFS LETKF analyses; gray 

lines: initialized from the T382 CFSR). Therefore, Figure 4.8 shows an overall 
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comparison among different resolutions of data assimilation systems and resolutions 

of forecast models. 

As expected, it is found that the initial analysis errors depend mostly on the 

resolution of data assimilation systems, and the error growth rates depend mostly on 

the resolution of forecast models. The errors grow slower when a higher resolution 

model is used. As a result, for longer-term forecasts (> 48 hour), the resolution of 

forecast models is more important than the resolution of data assimilation systems 

used to produce the analyses (green vs. red lines), although the higher-resolution data 

assimilation system also brings essential benefits (blue vs. green lines). Besides, the 

CFSR analyses are still considerably superior to our GFS-LETKF analyses at the 

T126 analysis resolution (blue vs. purple lines). In addition, as shown in the vertical 

profiles of the forecast errors (Figure 4.8b), forecasts initialized from the CFSR are 

relatively more accurate at the altitude of upper troposphere, as compared to the 

forecasts initialized from our GFS-LETKF system, presumably due to the beneficial 

use of the satellite radiance data in the CFSR. 
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Figure 4.8:  (a) The average global root-mean-square forecast errors (RMSEs; solid lines) 

and biases (dashed lines) of 500 hPa u-winds (m s
-1

) versus forecast time for experiments 

with different analysis and forecasta resolutions: (1) Using a T126 GFS as the forecast model, 

forecasts are initialized from T126 GFS-LETKF analyses (blue lines), T62 GFS-LETKF 

analyses (green lines), and the CFSR (purple lines). (2) Using a T62 GFS as the forecast 

model, forecasts are initialized from T62 GFS LETKF analyses (red lines) and the CFSR 

(gray lines). (b) Same as (a), but for average RMSEs (solid lines) and biases (dashed lines) of 

u-winds (m s
-1

) at various vertical levels in the 24-hour forecasts. 
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Chapter 5: Assimilation of real precipitation observations I - 

Challenges and possible solutions 

5.1 Introduction 

The next three chapters are on the real precipitation assimilation experiments. 

With a realistic model and real satellite observation data, there are much more 

challenges compared to the OSSEs with the SPEEDY model. Therefore, a naïve 

replication of the SPEEDY model experiments but with the real model and 

observations would not lead to acceptable results. Instead, in the first step, it is a good 

idea to investigate and isolate those challenges with the real model and observations, 

and to understand the differences between the idealized and realistic settings. After 

we sufficiently understand these issues, we can propose possible solutions to 

overcome them. Following this logic, in this chapter we will first introduce the 

characteristics of the satellite precipitation dataset that will be used in the assimilation 

and discuss several expected challenges, then we will show several statistical results 

between the precipitation variables in the model background and in the observations 

in order to investigate and narrow down the challenges in our proposed real 

precipitation assimilation system. We will also discuss the possible solutions to these 

issues. 

5.1.1 The TRMM Multi-satellite Precipitation Analysis 

We choose to use the TRMM Multi-satellite Precipitation Analysis (TMPA; 

Huffman et al. 2007, 2010) for our real precipitation assimilation experiments. It is a 

gridded precipitation dataset compiled from multiple satellite sensors. It has a global 
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coverage from 50S to 50N with a homogeneous 0.25-degree spatial resolution and a 

3-hour temporal resolution. The primary data sources are the low-earth-orbit (LEO) 

satellites such as the Microwave Imager (TMI) on TRMM, Special Sensor 

Microwave Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) 

satellites, Advanced Micro-wave Scanning Radiometer-Earth Observing System 

(AMSR-E) on Aqua, and the Advanced Microwave Sounding Unit-B (AMSU-B) on 

the National Oceanic and Atmospheric Administration (NOAA) satellite series. These 

microwave satellite data have a strong physical relationship to the hydrometeors and 

thus the surface precipitation, but they are spatially and temporally inhomogeneous. 

To fill the gaps left from the LEO sensors, the infrared (IR) data collected by the 

geosynchronous-earth-orbit (GEO) satellites are used as the secondary data sources, 

though the accuracy of precipitation derived from the IR is lower. In addition, in the 

research version (i.e., not in real time) of the TMPA, these satellite-derived 

precipitation amounts are further rescaled based on several monthly rain gauge 

analyses to achieve accurate statistics in the climatological scale. Due to the limit of 

the satellite measurements, the errors inherent in the finest scale estimates are large. 

The most successful use of the TMPA data is when the analysis takes advantage of 

the fine-scale data to create time/space averages appropriate to the user’s application 

(Huffman et al. 2010). 

With the above data processing procedure, the TMPA has very high data 

coverage rate (Figure 5.1a), making itself a potentially good data source for global 

precipitation assimilation. In our real precipitation assimilation study, we use the 

version 7 of the TMPA research products, labeled as 3B42, released in 2012 
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(Huffman and Bolvin 2013). The data is available for the period from January 1998 to 

present. The climatological mean daily precipitation computed from the 14-year 

TMPA data (1998-2011) is shown in Figure 5.1b. 

 

Figure 5.1:  (a) The data coverage rate (%) and (b) the mean daily precipitation (mm) of the 

14-year (1998-2011) TRMM Multi-satellite Precipitation Analysis. 

5.1.2 Problems we face with real data and models 

Since the SPEEDY model experiments in Chapter 3 are conducted within an 

identical-twin OSSE framework, their most serious drawback would be the 

assumption of perfect models. In reality, we know that the precipitation 

parameterization in the models is far from perfect, thus the model error of 

precipitation is large. Specifically, the convective model precipitation output come 

from cumulus parameterization and/or microphysical parameterization. The cumulus 
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parameterization diagnoses precipitation mainly based on the vertical thermodynamic 

profile at the model grids. It is a rougher method but is the only solution to simulate 

precipitation when the model grid spacing is greater than 10 km. When the model 

resolution is increasing, the convection can be more explicitly resolved, thus we can 

rely more on the microphysics parameterization to simulate precipitation. The 

precipitation simulated by these two methods can have different error characteristics: 

for example, common problems of the cumulus parameterization include the 

underestimate of the contribution and frequency for heavy precipitation, the 

overestimate of them for light precipitation, and incorrect timing of the precipitation 

(Dai 2006). Although it is believed that the precipitation simulated by microphysics 

parameterization is more reasonable, due to the insufficient resolution, in most of 

current global models the precipitation is still simulated by the cumulus 

parameterization. Meanwhile, our focus is also the large-scale precipitation in a low-

resolution global model, so the issues of model errors we deal with is from the 

cumulus parameterization. In higher-resolution models, the challenges and the 

strategies may change. 

In addition, the observation error of the precipitation data is another tough 

problem. Not only is the error magnitude large in the satellite retrieval products, but 

the characteristics of the error in the retrievals is also mostly unknown: the 

observation error of precipitation can vary with location, time, precipitation amounts, 

and precipitation types, and it can also be very non-Gaussian. There have been 

several studies to validate the in satellite precipitation estimates and to quantify the 

biases and errors (Bauer et al. 2002; Bowman 2005; Ebert et al. 2007). The error 
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magnitude is typically very large as compared to other conventional observations 

used in the data assimilation, but it varies very much when different grid sizes and 

validation time intervals are chosen. To give an idea of the error magnitude, for 

individual TRMM satellite overpasses averaged over a 1° × 1° box, the relative RMS 

difference with respect to a rain gauge centered in the box is as high as 200% to 

300% (Bowman 2005), which is much larger than what we used in the SPEEDY 

experiments (20% or 50%). However, by combining information from multiple 

satellite sensors, averaging raw data in space and/or in time, the errors can be reduced. 

Tian and Peters-Lidard (2010) estimated the lower bound of the uncertainties of 

satellite-based precipitation measurements in each 0.25° grid over the globe by 

computing the variance from six different satellite precipitation datasets. They 

concluded that the uncertainties are relatively small (40–60%) over the oceans, 

especially in the tropics, and over the lower-latitude South America. Large 

uncertainties (100–140%) exist over high latitudes, especially during the cold season. 

High relative uncertainties also persist over complex terrains such as the Tibetan 

Plateau, the Rockies and the Andes, and near the coastline region. More sophisticated 

error models categorizing the errors into three components, including hit bias, missed 

precipitation, and false precipitation, have also been proposed to better quantify the 

errors is the satellite precipitation estimates (Tian et al. 2009; Maggioni et al. 2013). 

However, the above studies are not sufficient to determine the observation errors 

and error characteristics of the precipitation observations when used in the data 

assimilation, because the meaning of the “observation error” in the data assimilation 

could be different from these studies. There are at least two components of the 
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“observation error” that must be considered in the data assimilation formulation: the 

instrumental error and the representativeness error (Ide et al. 1997; Errico et al. 2007). 

For a satellite retrieval quantity, the “instrumental error” is loosely defined. We 

recognize that the main issue regarding the observation errors of precipitation is not 

investigated in this study. It is a very difficult problem and has not been solved yet. In 

this study, we follow similar strategy as Lopez (2011, 2013): a simple constant value 

is used for the observation error of all precipitation observations after the variable 

transformation (either the logarithm transformation or the Gaussian transformation). 

The underlying hypothesis is that after the precipitation transformation, the 

observation errors is more uniform (Mahfouf et al. 2007). We first conduct many 

trials to obtain the best value for the precipitation observation error and then use it in 

our experiments. We think that a better way to address this issue is to use some kind 

of adaptive methods associated with the data assimilation system to objectively 

determine the observation error of precipitation. For example, Li et al. (2009) 

demonstrated a method to estimate the optimal observation errors with the EnKF. 

Applying such methods to estimate the observation error of satellite precipitation data 

could be an interesting study. 

5.1.3 Strategies to overcome these problems 

As discussed, both the model precipitation and the precipitation observations 

may have large errors, so the long-term statistics of these two quantities may be very 

different, which is harmful to the data assimilation use. In this data assimilation study, 

we are not attempting to improve either the model or the observations. Our main goal 

is to optimally use this imperfect observation dataset in this imperfect model, to 
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improve the model forecasts in both precipitation and non-precipitation variables. To 

achieve this goal, we follow two simultaneous goals: 

1) For those observations that are more compatible with the model background, 

some bias correction scheme could be applied to make the model and 

observed precipitation have similar climatological distributions. 

2) For those observations that are deemed to be too bad to be used, we should 

define useful quality control criteria to reject these observations. Note that the 

statement “an observation is bad for assimilation” is not necessarily because 

the observation itself is bad, but could also be because the model is not good 

enough to use this observation in that location and time. 

In addition, the method of Gaussian transformation and the criterion that requires 

enough precipitating background members that we proposed in the SPEEDY model 

experiments are still applied to the real precipitation assimilation to overcome the 

non-Gaussianity problem. In particular, we will verify the validity of these methods 

by the Gaussianity statistics in Chapter 5.4. This argument was absent in our 

SPEEDY model experiments. Several statistical results of precipitation are presented 

in the following sections in order to identify the problems and support the above-

mentioned strategies especially for our proposed configuration of precipitation 

assimilation with the GFS-LETKF. 

5.2 Joint probability distribution diagram statistics 

In the beginning of the precipitation statistics, we plot joint probability 

distribution diagrams to see the inconsistency between the model background 

precipitation and the precipitation observations. To ensure an apple-to-apple 
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comparison, a large sample of “model background values” and “observation values” 

of precipitation is created by the method shown in Figure 5.2. For observations, 10-

year (2001–2010) data are collected to form a series of observations. The original 

TMPA data are provided with the 3-hourly precipitation rate at a 0.25-degree 

longitude-latitude resolution. We first change (upscale) the original TMPA grids to 

the T62 or T126 Gaussian grids used by the GFS model using an areal conservative 

remapping, and then we can choose to either use the instantaneous precipitation rate 

as in its original form, or use the 6-hour accumulated precipitation amount. The 6-

hour accumulated precipitation centered at time   is computed by 

  (  )  
 

 
            

 

 
      , (5.1) 

where     is the precipitation rate at time   in unit mm h
-1

. The different joint PDF 

properties between the precipitation rate and the accumulated precipitation will be 

discussed later. On the other hand, for model backgrounds, we conduct a series of 9-

hour GFS model forecasts at desired resolutions (T62 or T126 in this study) every 6 

hours initialized from the same 10-year (2001–2010) CFSR reanalysis data, then the 3 

to 9 hour forecasts are collected to form a series of model background. It is noted that 

these 3 to 9 hour forecast data are exactly what we use as model backgrounds in the 

4D-LETKF data assimilation, so they can lead to meaningful statistics from the point 

of view of data assimilation. The GFS model generates forecast fields every hour and 

its precipitation output is also in the form of the instantaneous precipitation rate. We 

can pick up the precipitation rates every 3 hours corresponding to the TMPA 

observations, or we can compute the 6-hour accumulated precipitation centered at 

time   by 
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then they can be directly compared to the observations. 

 

Figure 5.2:  Formation of samples of precipitation in the 10-year TMPA and the GFS model 

background. 

Figure 5.3 shows the joint probability distribution diagrams between the 6-hour 

accumulated precipitation in the T62 GFS model background and in the TMPA data 

upscaled to same T62 grids. Different transformation methods are used in each 

subplot. Only positive precipitation is shown in the figures because when the zero 

precipitation is also plotted, it just adds two saturated lines along the x-axis ( ̃  ̃    ) 

and y-axis ( ̃      ̃) representing the abundance of zero precipitation in either the 

model background or the observation data (not shown). We expect that the maximum 

probability regions should be located along the one-to-one diagonal line for a usual 

variable that is useful for data assimilation. However, when the joint probability 

distribution diagram is plotted without a transformation method (Figure 5.3a), we 

barely see any correlation in precipitation between the model background and the 
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observations
3
. The probability of the small precipitation amounts is saturated and not 

oriented along the one-to-one line. This could partly explain why the precipitation is 

not a good variable for data assimilation and a transformation of precipitation is 

normally needed. When the precipitation is logarithm-transformed before the plotting 

(Figure 5.3b), the curved line of the maximum probability (red dashed curve) is 

nicely seen. This maximum probability curve is off from the one-to-one line, 

indicating a value-dependent positive bias of the model precipitation as compared to 

the TMPA data. As discussed in Chapter 5.1, we are not to argue either the model 

precipitation or the TMPA data is more correct, but it is better to remove this bias 

before the data assimilation. An interesting fact is that when the “modified” logarithm 

is used [i.e., a constant       mm (6h)
-1

 is added in the transformation; refer to 

Equation (2.1)] (Figure 5.3c), the saturation in the small precipitation amounts is seen 

again, yet the maximum probability curve near the one-to-one line is still retained but 

less obvious. The constant   is required when the logarithm transformation is used in 

the data assimilation, and       mm is the value that leads to the best experimental 

results in the precipitation assimilation experiments that we will show in Chapter 6. 

However, from this joint probability distribution diagram, it is inferred that the use of 

the constant   in the logarithm transformation makes the behavior of the transformed 

variable in the small precipitation amounts similar to the original variable and thus 

reduce the discrimination in the small amounts. 

                                                 

 

 

 
3
 In this case, the    value computed from the linear regression shown in the figure is not 

particularly meaningful, since the correlation largely comes from the off-diagonal regions. 
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Figure 5.3:  The joint probability distribution of the 6-hour accumulated precipitation with 

different transformation methods between the T62 GFS model background and the TMPA 

data upscaled to same T62 grids. (a) No transformation (b) exact logarithm transformation 

[    in Equation (2.1)] (c) “modified” logarithm transformation (      mm) is applied 

to the precipitation variables. Only positive precipitation is shown in all figures. 

Figure 5.4 shows the same diagrams but for the comparison between the 

instantaneous precipitation rate and the 6-hour accumulated precipitation (    in 

the logarithm transformation). As shown in Figure 5.4a, the correlation with the 

precipitation rate is worse than that with the accumulated precipitation amount. In 

particular, a multimodal feature is seen in the model precipitation. The precipitation 

rate produced from the T62 GFS model tends to be concentrated at several ranges (-3 

to -2, -1.5 to -1, and 0 to 1 in the transformed value), which could be related to some 

deficiencies of the precipitation parameterization at this low resolution. The lower 

correlation may also be resulted from the timing error of the precipitation 

parameterization scheme. The instantaneous precipitation rate is too sensitive to the 

timing error while it is common for the precipitation produced from the cumulus 
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parameterization. For example, Chao (2013) showed that the cumulus precipitation 

scheme can have large systematic errors in the precipitation diurnal cycle over the 

land. Therefore, although the accumulation of precipitation discards the information 

of the time variation of the precipitation within the 6-hour assimilation window, the 

6-hour accumulated value of precipitation would still be a better variable than the 

precipitation rate when used in the data assimilation. The successful assimilation of 

precipitation demonstrated by Lopez (2011, 2013) also used the 6-hour accumulated 

precipitation. Nevertheless, we note that the model resolution we use is a fairly coarse 

T62, and the precipitation parameterization could perform better in a higher 

resolution model. 

 

Figure 5.4:  The joint probability distribution of the logarithm-transformed (a) instantaneous 

precipitation rate (mm h
-1

 in its original value) and (b) 6-hour accumulated precipitation (mm 

in its original value) between the T62 GFS model background and the TMPA data upscaled 

to same T62 grids. Only positive precipitation is shown in all figures. 
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The same diagram but plotted with higher resolution results in shown in Figure 

5.5b. In this case, we redo all the processes in Figure 5.2 at a T126 resolution; i.e., the 

GFS model forecasts are conducted at the T126 resolution and the TMPA data are 

upscaled to the same T126 grids. At this resolution, the correlation is actually slightly 

lower than that at the T62 resolution, which probably due to the larger random error 

in the higher resolution model and observation data. By spatially averaging the field, 

this random error can be reduced (Huffman et al. 2010). It does not mean that the 

higher resolution model or observations are useless, but it is kind of a “trade-off” 

between the resolution and errors. For our purpose of assimilating global large-scale 

precipitation to improve the model forecasts, a spatially averaged lower-resolution 

variable could be sufficient. 

 

Figure 5.5:  As in Figure 5.3, but for logarithm-transformed precipitation at (a) a T62 

resolution and (b) a T126 resolution in both the GFS model background and the TMPA data. 
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5.3 Separate Gaussian transformations applied to model background and 

observations 

From this section the Gaussian transformation of the precipitation with the 

realistic GFS model and TMPA observations are introduced. We apply the same 

Gaussian transformation technique to this case as we did in the SPEEDY model 

experiments but with a little modification: the transformations are defined separately 

for model backgrounds and observations. Specifically, the transformation of the 

model precipitation is performed based on the CDF computed from the model 

climatology; and the transformation of the precipitation observations is performed 

based on the CDF computed from the observation climatology. We use the same 10-

year (2001–2010) sample prepared in the previous section to compute the CDFs of 

model and TMPA precipitations for each T62 grid point and each 10-day period of 

year (3 periods per month; 36 periods in total), and define their own transformations 

as functions of locations and time by: 

   ̃      
[ (  location  period of year)] . (5.3) 

Here the precipitation values that are less than 0.06 mm (6h)
-1

 are regarded as “zero 

precipitation” [i.e.,             mm (6h)
-1

; refer to Equation (2.9)]. In the SPEEDY 

model experiments, there was no consideration of separate transformations because it 

was an identical-twin configuration so that the two CDFs are theoretically identical. 

In addition, with the real data containing large spatial and temporal variabilities, we 

like to have a more “continuous” CDF field smoothly varying in space and time, so 

when computing the CDF at each grid point and each period, all data within 500-km 

radius and  2 periods ( 20 days) are considered as a whole set of samples in order to 
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obtain the smoothed field. This choice also increases the sample sizes and thus 

reduces the sample errors. Although it helps us to construct a smooth CDF field and 

thus a more continuous definition of the Gaussian transformation, the disadvantage of 

this method is that the transformation would be not good in the regions with 

intrinsically large gradient of precipitation climatology, such as regions with complex 

terrain and orographic precipitation. 

Before showing the statistical results with the Gaussian-transformed precipitation, 

we first take a look of the CDF fields we construct from the 10-year model and 

observation data. Figure 5.6 shows an example of maps of precipitation amounts at 

various cumulative distribution levels in the period of February 1–10 in both the 

TMPA data and the T62 GFS model backgrounds. By comparing the fields at same 

cumulative distribution levels, it is clearly found that the model has positive bias as 

compared to the observations as concluded in the previous section (the amounts in 

Figure 5.6b, d, f are generally greater than those in Figure 5.6a, c, e). In terms of 

patterns, the CDF fields of the model and the observations agree reasonably well in 

most regions. However, in some particular regions, they actually have large 

disagreement. The regions can be more highlighted in maps showing the zero 

precipitation probability. As shown in Figure 5.7, the most significant differences in 

the zero precipitation probability between the model and the observations are 

observed over where the marine stratocumulus is formed, including the subtropical 

eastern Pacific in both northern and southern hemispheres, and the subtropical eastern 

Indian Ocean. In the TMPA data, it rarely rains in these regions (about 80% 

probability of zero precipitation or 20% probability of positive precipitation), but in 
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the model it has too frequent drizzle (about 30% probability of zero precipitation or 

70% of positive precipitation). Based on our understanding of the marine 

stratocumulus (vanZanten et al. 2005; Leon et al. 2008), the reality favors the TMPA 

data and it poses a question on the GFS model results. The precipitation 

parameterization in the T62 GFS model may be incapable to correctly simulate the 

marine stratocumulus precipitation. Nonetheless, again we are not to improve the 

model or observations. A reasonable strategy would be not using the precipitation 

data in these regions during the assimilation, since the disagreement between the 

model background and the observations is huge. 

With the Gaussian transformation of the model precipitation and the TMPA 

precipitation, the joint probability distribution diagrams are shown in Figure 5.8. 

Figure 5.8a and d are the global results. Figure 5.8a uses logarithm transformation 

which we already seen (same as Figure 5.3b) and Figure 5.8d is the same figure 

plotted with the Gaussian transformed variables. It is shown that with the Gaussian 

transformation, the distribution of the precipitation variables become more normal, 

the maximum probability curve becomes more collocated with the one-to-one line 

(i.e., the biases are removed), and the correlation (   value) becomes slighter higher. 

In our transformation method defined for model and observations separately, the 

model climatology and the observation climatology are first converted to the same 0–

1 scale (cumulative distribution), then the same     
 is applied to obtain the 

Gaussian variables. Therefore, this method can essentially remove the value-

dependent bias as seen in Figure 5.8a. We would call this method a “CDF-based bias 

correction.” 
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Figure 5.6:  The maps of precipitation amounts (mm) at (a) (b) 30%, (c) (d) 60%, and (e) (f) 

a 90 % cumulative distribution levels in the period of February 1–10 in (a) (c) (e) the TMPA 

data and (b) (d) (f) the T62 GFS model backgrounds. 
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Figure 5.7:  The maps of (all-season) zero precipitation probability (%) in (a) the TMPA data 

and (b) the T62 GFS model backgrounds. 
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Figure 5.8:  The joint probability distribution of (a)-(c) the logarithm-transformed (   ) 

and (d)-(f) the Gaussian-transformed 6-hour accumulated precipitation between the T62 GFS 

model background and the TMPA data upscaled to same T62 grids. (a) (d) Global results; (b) 

(e) only the precipitation over the land; (c) (f) only the precipitation over the ocean. Only 

positive precipitation is shown in all figures. 

We can change the validation regions based on the land/ocean distribution and 

the latitude. The same diagrams are plotted with land data only (Figure 5.8b, e), ocean 

data only (Figure 5.8c, f), the northern hemisphere extratropics (20–50N; Figure 5.9a, 

d), the tropical regions (20N–20S; Figure 5.9b, e), and the southern hemisphere 

extratropics (20–50S; Figure 5.9c, f). Note that the TMPA only covers from 50S to 

50N so the statistics is done within this extent. Overall, the same effect of the 
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Gaussian transformation of precipitation is also generally seen. The value-dependent 

biases are removed in all regions. Using the logarithm transformation, the 

climatological distributions are skewed toward large precipitation amounts in the land 

and tropical regions where the convective precipitation is more prevalent, and toward 

small precipitation amounts in other regions. The skewness is less obvious in all 

regions when the Gaussian transformation is applied. As to the correlation, the 

increase of the correlation is particularly notable in the land region and in the northern 

hemisphere extratropics. 

 

Figure 5.9:  As in Figure 5.8, but for (a) (d) the northern hemisphere extratropics (20–50N), 

(b) (e) the tropical regions (20N–20S), and (c) (f) the southern hemisphere extratropics (20–

50S). 
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5.4 Gaussianity statistics 

Another statistics examining the Gaussianity in the model background is also 

computed here. In Chapter 2.3, we mentioned that the Gaussian transformation based 

on the climatological CDFs does not necessarily ensure the Gaussianity of the 

background error distributions. However, we assumed that it is still helpful to make 

the error distributions more Gaussian. This assumption can be persuasively verified 

using samples of ensemble model backgrounds since we can explicitly compute the 

Gaussianity given an ensemble. To generate the samples of this statistics, we need to 

run ensemble GFS forecasts. Following the design shown in Figure 5.10, we conduct 

a series of 9-hour ensemble GFS forecasts at the T62 resolution initialized from the 

ensemble analyses of a GFS-LETKF cycling run, and then the 3 to 9 hour forecasts 

are taken to form a series of ensemble model background. The 6-hour accumulated 

precipitation amounts are computed following the same method described in Chapter 

5.2. The GFS-LETKF cycling run assimilates only the global rawinsonde data and is 

taken from an experiment that will be introduced in Chapter 6. It is noted that instead 

of computing the statistics for the 10-year data every 6-hour cycle, we only compute 

this Gaussianity statistics for the year 2008 and every 30 hours (5 data assimilation 

cycles) due to the heavy computational burden of running the ensemble model. The 

use of 30 hours instead of a multiple of a day is to avoid always computing the 

statistics in the same time of the diurnal cycle. 
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Figure 5.10:  Formation of samples of ensemble precipitation in the GFS model backgrounds. 

Note that in our study, cycles in between every 5 cycles are skipped in order to save 

computational time. 

The “Gaussianity” can be defined by several measures, such as the sophisticated 

“relative entropy” method, simpler methods based on hypothesis testing, or the even 

simpler skewness and kurtosis (Bocquet et al. 2010). Here we use the method based 

on the hypothesis testing to measure the deviation from the Gaussian distribution for 

a given distribution: 
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where   is the ensemble size,  ̃( ) is the (transformed) observation value in the  th 

member that has been sorted in ascending order, and 
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representing a realization of the expected Gaussian distribution. The expected mean  ̅ 

and the expected variance    are determined from the background members  ̃( ). The 

   value is a measure of the deviation from the expected Gaussian distribution, so it 

is a measure of the “non-Gaussianity.” A larger    value means a more non-Gaussian 
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background error distribution, and vice versa. After computing the    value for each 

precipitation observation at each cycle, they can be averaged in time or in any group 

to obtain meaningful statistics. 

Figure 5.11 shows the average    values with respect to the number of 

background members with positive precipitation not using (NT) and using each 

transformation method. The transformation methods here include with the logarithm 

transformation with       mm (Log), and the Gaussian transformation with the CZ 

(GTcz) and BZ (GTbz) methods for zero precipitation transformations. The 

Gaussianity increases (   decreases) with the number of precipitating members, 

regardless of the transformation methods. Therefore, the current Gaussianity statistics 

provides a compelling reason of implementing the model background-based quality 

control criterion as proposed in the SPEEDY model experiment (Section 3.3.2). 

Compared the    values computed with transformed precipitation to those computed 

with the original precipitation, it is found that the Gaussianity is considerably 

increased when there are more than 8–10 precipitating members and any of the three 

transformation methods is used (Figure 5.11c, f, g), while the transformation can also 

make the error distribution more non-Gaussian when there are too few the 

precipitating members. Although the transformation methods seem to be deteriorating 

in the latter case, we do not worry about it because the quality control criterion 

monitoring the number of precipitating members will prevent the observations being 

assimilated in this situation. Comparing the different transformation methods, the 

Gaussian transformations are generally more effective than the logarithm 

transformation, and the GTbz method results in the most Gaussian background errors 
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of precipitation, leading to as much as 60% improvement than using the original 

precipitation values when there are more than 24 precipitating members (Figure 

5.11g). The simpler GTcz method shows the similar effect as GTbz, but suffers a 

little when there are many but not all precipitating members (Figure 5.11f). 

Figure 5.12 shows the global maps of the    values averaged in time. As 

discussed before, the general improvements by transforming the precipitation are also 

seen here. As to the geographical distributions, the very non-Gaussian regions are 

distributed over the desert areas. All three transformation methods cannot improve the 

Gaussianity over these really bad regions. Therefore, it would not be a good idea to 

conduct the precipitation assimilation over the areas with very infrequent 

precipitation. Another key finding is that the Gaussianity over the ocean is generally 

better than over the land, and most of the improvements are also achieved over the 

ocean. 
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Figure 5.11:  The average non-Gaussianity (  ) of background precipitation errors with 

respect to the number of precipitating background members (a) without transformation, (b) 

with the logarithm transformation, (d) with the Gaussian transformation and the CZ method 

for transforming zero values, and (e) with the Gaussian transformation and the BZ method for 

transforming zero values. (c) (f) (g) The percentage differences of the average    in each 

method as compared to those without transformation. 
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Figure 5.12:  The maps of the average non-Gaussianity (  ) of background precipitation 

errors (a) without transformation, (b) with the logarithm transformation, (c) with the Gaussian 

transformation and the CZ method for transforming zero values, and (d) with the Gaussian 

transformation and the BZ method for transforming zero values. 
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5.5 Summary and discussion 

In this chapter, we compute several statistics with the precipitation variable in the 

model background and observations from the point of view of the LETKF data 

assimilation. To achieve most meaningful statistics, the samples are carefully 

constructed using the same model with same forecast time, the same data assimilation 

system (to form the ensemble), the same observations, and the same resolution, as we 

planned in the real precipitation assimilation experiments. These statistical results can 

give us many useful hints of how to extract much useful information from the 

precipitation observations. 

First of all, as we expected, the errors of precipitation in both numerical models 

and observations are large. This fact can contribute to a substantial amount of 

difficulties in the precipitation assimilation. For example, the GFS model has a severe 

problem in parameterizing the marine stratocumulus precipitation at a T62 resolution. 

Strenuous efforts to improve the accuracy of the model precipitation or satellite 

precipitation estimates have been made by the modeling or retrieval communities, but 

they are still very difficult topics. In our data assimilation study goals, we do not 

include any modification of the model or the observations. Instead, we adopt two 

strategies: For the “useful” component of the observation data, we apply appropriate 

transformations, and remove the value-dependent biases to make the model and 

observed precipitation have similar climatological distributions; for the other 

“difficult-to-use” component, we define effective quality control criteria to reject 

them. That an observation is difficult is not necessarily because the observation itself 

is poor, but could also be because the model backgrounds are poor, something that 
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can be diagnosed from the statistics in this chapter. We expect that by taking this 

approach, although both the model and observations may have large errors, the 

improvement of the model forecasts, which is our main goal, could still be achieved. 

The “precipitation scale” is a key point of the problem. It can be understood in 

many aspects. First, the principle to simulate precipitation in numerical models can be 

intrinsically different at different grid resolutions. When the grid resolution is low, the 

precipitation is mainly parameterized by cumulus schemes; when the resolution is 

sufficient to resolve convection, the microphysics parameterization schemes can take 

over. Not only can the error characteristics be very different between these two 

methods, but even with the same scheme, it can also change with the model resolution. 

For example, in the GFS model, precipitation at the T126 resolution is less biased 

than that at the T62 resolution, but the correlation to the observations is also lower. 

Besides, the precipitation is usually patched randomly, especially for convective 

precipitation, leading to large random errors at high resolutions. The timing of the 

convective precipitation is also difficult to simulate by the model. In addition, the 

high spatial and temporal variabilities further lead to large representativeness errors, 

which are also dependent upon resolutions and important to the data assimilation. 

Performing spatial and/or temporal averages can effectively reduce the errors. 

Huffman et al. (2010) recommended TMPA users create time/space averages that are 

appropriate to their application from the original fine-scale data. Bauer et al. (2011) 

also mentioned that using the spatially/temporally smoothed precipitation data in the 

assimilation can be beneficial. Based on similar reasons, accumulated precipitation 

(equivalent to a time average) is a better variable to be assimilated rather than the 
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instantaneous precipitation rate for precipitation assimilation. However, this strategy 

seems to contradict the continued pursuit of higher resolution, especially if we are 

able to afford the high-solution models and take the high-resolution observations. 

There is a "trade-off" between resolution and errors. If the main goal is to improve the 

longer-term model forecasts, using the smoothed lower resolution fields to improve 

the large-scale analysis can be a reasonable choice. In our study, we can run the GFS 

model at a T62 low resolution, so the TMPA data are upscaled to the same T62 grids 

before assimilated, therefore focusing on the assimilation of large-scale precipitation. 

An interesting test would be to use a higher resolution model but still include an 

average operator in the observation operator  , in order to see if the sacrifice of the 

resolution can still help to improve the effectiveness of the precipitation assimilation. 

We note that the strategy for effective assimilation of convective scale precipitation 

such as meteorological radar observations could be quite different from what we used 

in our study. 

The statistics we developed also answer that the Gaussian transformation can 

improve the precipitation assimilation. Compared to the original precipitation variable, 

the Gaussian transformation can reduce the non-Gaussianity measured by    by as 

much as 60% when there are enough background precipitating members. The 

logarithm transformation has similar effects but it is less effective. The BZ method to 

transform zero precipitation leads to better results than the CZ method. In addition, 

applying the Gaussian transformation to the model background precipitation and 

precipitation observations separately can also serve as a CDF-based bias correction 
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that can correct the value-dependent bias and increase the correlation between the 

model precipitation and observations over some regions. 

Based on the above discussion, the problems associated with the assimilation of 

real precipitation in realistic models will be addressed as follows: 

 Large non-Gaussianity of the precipitation variable: Use the Gaussian 

transformation and assimilate precipitation only where there are enough 

background members with positive precipitation. This was proposed for the 

SPEEDY model experiments and has been verified in this chapter. 

 Inconsistent probability distribution of precipitation between model and 

observation climatology: Define the CDF-based transformation for the model 

variable and the observation precipitation separately to remove the amplitude-

dependent bias. 

 Timing errors of the precipitation: Use the 6-h accumulated amount. 

 Deficient precipitation parameterization: Do not use observations when the 

model is deficient. Appropriate quality control criteria need to be defined in 

order to only select the precipitation observations where the model can use 

them effectively. In the next chapter, we will introduce a simple criterion 

based on the correlation of model background precipitation and the 

precipitation observations in each grid point. 

 High-resolution observations contain large random errors: Perform spatial 

and/or temporal averages to reduce the random errors; upscale the 

observations to large-scale grids. 
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 Unknown observation error scales and distributions: This issue is not 

investigated in this study. Instead, we obtain by tuning the best observation 

error assumed to be globally constant in the transformed variable. 
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Chapter 6: Assimilation of real precipitation observations II - 

Experimental results 

6.1 Introduction 

In this Part II chapter of the real precipitation assimilation, we show the results of 

precipitation assimilation experiments using more realistic models and observations. 

The basic experimental design is similar to the SPEEDY model experiments in 

Chapter 3, but with the NCEP GFS model assimilating TMPA satellite precipitation 

data, so that it is no longer an OSSE. Real model and observation errors are in play 

here. We still use a rawinsonde-only experiment as the baseline and assimilate 

precipitation on top of it in order to have a large “room for improvement.” More 

focus on the comparison among the precipitation transformation methods is put here 

because the results with the real model and data can provide more reliable guidance 

on the effects of precipitation transformations. 

6.2 Experiment design 

6.2.1 General settings 

The GFS model is run at a T62 resolution with 64 vertical hybrid sigma/pressure 

levels. Thirty-two ensemble members are used. The initial ensemble at 00Z 

November 1, 2007 is created by taking a random series of operational GFS analyses 

at unrelated times. All conventional (non-radiance) observations taken from the 

NCEP PREPBUFR dataset are assimilated in the first month in order to spin up the 

system and evolve the ensemble to represent the “error of the day.” After this one-
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month cycling run, the analyses on 00Z December 1, 2007 is used as the initial 

condition for all experiments. The experimental settings are summarized in Table 6.1. 

In the “RAOBS” experiment, only the rawinsonde observations are assimilated. In the 

other experiments, the global TMPA data upscaled to the T62 Gaussian grids and 

computed in a form of the “6-hour accumulated precipitation” during the assimilation 

window are assimilated as well. In the “NT” experiment, no transformation of 

precipitation is used, and in the “Log”, “GTcz”, and “GTbz” experiments, the 

logarithm transformation, the Gaussian transformation with the CZ method to 

transform zero precipitation based on climatology, and the Gaussian transformation 

with the BZ method to transform zero precipitation based on the background 

ensemble are used, respectively. The method of the Gaussian transformation applied 

to the real GFS model precipitation and the TMPA data has been described in Chapter 

5.3. The constant   in the logarithm transformation [refer to Equation (2.1)] is set to 

0.6 mm (equivalent to 0.1 mm h
-1

 average precipitation rate), which is an optimal 

value based on several trials. When no transformation is used, the observation error of 

precipitation is set to 50% of the observed values but with a minimum of 0.3 mm 

(equivalent to 0.05 mm h
-1

 average precipitation rate). When the logarithm 

transformation or the Gaussian transformation is used, it is set to a constant of 0.5 

(unitless) in the transformed variable except for the sensitivity experiments. All of 

these choices are made to optimize the experimental results in each experiment. The 

horizontal localization length scale (“R” localization in Greybush et al. 2011) of the 

precipitation observations is 350 km in most of experiments, but it is 500 km for all 

other observations. These localization settings are based on the finding in the 
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SPEEDY model experiments that the optimal localization scale of precipitation 

observations would be smaller than regular observations (Section 3.5.3). The vertical 

localization length scale is 0.4 in natural logarithm of pressure for regular 

observations and precipitation observations, while the centers of the localization 

functions of all precipitation observations are located at 850 hPa. The inflation 

scheme is the mixed adaptive inflation-relaxation scheme described in Section 4.3.5. 

The five main experiments (RAOBS, NT, Log, GTcz, and GTbz) are conducted 

for a 13-month cycling run until 00Z January 1, 2009 and 5-day free forecasts 

initialized from each 6-hourly ensemble mean analysis are conducted in order to 

quantify the forecast impacts of the assimilation of precipitation. In addition, other 

five sensitivity experiments are conducted in the same way to examine the 

sensitivities to the precipitation observation errors (GTbz_err0.3, GTbz_err0.7), the 

localization lengths (GTbz_loc500, GTbz_loc200), and the precipitation quality 

control criteria (GTbz_16mR). These sensitivity experiments are only conducted for 3 

month ended at 00Z March 1, 2008. The details of these sensitivity experiments will 

be described in Chapter 6.4. The European Centre for Medium-range Weather 

Forecasts (ECMWF) ERA interim reanalysis dataset is used to verify our results. It is 

noted that the one-month period from December 1, 2007 to January 1, 2008 is still 

regarded as an additional spin-up period because a certain period is required for the 

adaptive inflation scheme to adjust to the change of observing systems from the 

previous conventional observation dataset to the new configurations in each 

experiment. The other details of the GFS-LETKF data assimilation system can be 

found in Chapter 4. 
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Table 6.1:  Design of all experiments. 

Experiment Observation Transf QC for precip 

assimilation 

Obs error  

of precip 

Loc length  

of precip 

Raobs Precip   

RAOBS X      

NT X X  Precip members   24 50%, 

minimum 0.3 

350 km 

Log X X Log,       Precip members   24 0.5 350 km 

GTcz X X GTcz Precip members   24 0.5 350 km 

GTbz X X GTbz Precip members   24 0.5 350 km 

GTbz_err0.3 X X GTbz Precip members   24 0.3 350 km 

GTbz_err0.7 X X GTbz Precip members   24 0.7 350 km 

GTbz_loc500 X X GTbz Precip members   24 0.5 500 km 

GTbc_loc200 X X GTbz Precip members   24 0.5 200 km 

GTbz_16mR X X GTbz Precip members   16 0.5 350 km 

 

6.2.2 Quality control criteria for the TMPA assimilation 

As introduced in Section 3.3.2, the precipitation observations are assimilated 

only when the number of the background members with positive precipitation is 

greater than a threshold. This model background-based criterion can ensure the 

quality of the precipitation assimilation as experimentally examined in Section 3.5.1 

and theoretically discussed in Chapter 5.4. Here with the GFS model, we require at 

least 24 (out of 32) precipitating background members to assimilate the precipitation 

(“24mR” hereafter). 

In addition to the 24mR criterion, and in response to the discussion in Chapter 5 

that the model and the observations can be very inconsistent over certain regions, a 
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new quality control criterion based on the correlation of long-term model 

precipitation and long-term observed precipitation is introduced. Based on the same 

10-year samples of the GFS model backgrounds and the TMPA data as we used to 

compute the CDFs and several statistics, the correlation between these two datasets 

are computed for each grid point and each 10-day period of year (refer to Chapter 5.3). 

In every period, data within  2 periods ( 20 days) are considered together in order 

to obtain the temporally smoothed field. This correlation score is a simple measure of 

the statistical “consistency” between the model background and the observations. We 

expect that the precipitation data distributed over the higher-correlation regions are 

more useful than those over lower-correlation regions where the model errors and/or 

observation errors are too large. Figure 6.1 shows the correlation maps in 4 different 

periods in January, April, July, and October. We choose the correlation   0.35 as the 

criterion for the precipitation assimilation (“Corr0.35” hereafter), which corresponds 

to the green shaded area in the figure (the blue contours are correlations   0.35). 

Overall, the correlation over the ocean is generally much higher than that over the 

land. The marine stratocumulus regions are problematic as we observed in Chapter 

5.3, and the entire Africa and the Tibetan Plateau also show constantly low 

correlation; therefore, the precipitation observations over these regions are rejected. 

Over the United States, the eastern U.S. has higher correlation than the western U.S., 

and the precipitation observations over the western U.S. are rejected in winter and in 

summer. We note that this correlation score is not the only possible method to define 

the precipitation quality control. In Chapter 7.5, we will discuss and compare several 

other potential methods. 
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Figure 6.1:  The maps of correlation between precipitation in the GFS model backgrounds 

and in the TMPA observations during the periods of (a) January 11–20, (b) April 11–20, (c) 

July 11–20, and (d) October 11–20. The blue contours indicate correlations   0.35 that is the 

threshold of the precipitation assimilation. Precipitation observations are assimilated over the 

green shaded areas. 

6.3 Results 

6.3.1 Global analysis and forecast errors 

Figure 6.2 shows the evolution of the global RMS analysis errors of the u-wind 

verified against the ECMWF ERA interim reanalysis over the 13-month period. 

Although the time variation is large, it can be seen that the precipitation assimilation 

experiment without transformation (NT; cyan lines) is clearly worse than RAOBS 

(black lines), the experiment with logarithm transformation of precipitation (green 

lines) is roughly comparable to RAOBS, and the two experiments using Gaussian 

transformation of precipitation (GTcz and GTbz; blue and red lines) are slightly better 
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than RAOBS. The yellow shade indicates the verification period of the entire year 

2008 that will be used to compute the average errors and biases in later figures. 

 

Figure 6.2:  The 13-month evolution of the global root-mean-square analysis errors of u-

wind (m s
-1

) verified against the ERA interim reanalysis in RAOBS, NT, Log, GTcz, and 

GTbz. The yellow shaded period from January 1, 2008 to January 1, 2009 is the verification 

period. 

Figure 6.3 shows the average 5-day global RMS forecast errors (solid lines) and 

biases (dashed lines) in the 1-year verification period versus forecast time. The 

positive impacts by precipitation assimilation using the Gaussian transformation are 

clearly seen in this figure. With the Gaussian transformation (blue lines and red lines, 

which are almost superposed), the GFS model analyses (   ) and forecasts are 

constantly improved in the 5 day range in terms of the 500-hPa u-wind (Figure 6.3a), 

the 500-hPa temperature (Figure 6.3b), and the 700-hPa specific humidity (Figure 

6.3c). The differences in the analysis and forecast errors between the GTcz or GTbz 

experiments to the Raobs experiments are statistically significant at all 0- to 120-hour 
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forecast times at the 0.1% level using the hypothesis testing for paired samples. For 

the mid-level wind and temperature, the CZ method (blue lines) and the BZ method 

(red lines) of the zero precipitation transformation lead to almost indistinguishable 

results (for the 500-hPa u-winds, they are statistically insignificant at 18- to 120-hour 

forecast times at the 1% level; for the 500-hPa temperature, they are statistically 

insignificant at 60- to 120-hour forecast times at the 1% level.), but for the 700-hPa 

moisture, the more sophisticated BZ method performs slight better (statistically 

significant at all 0- to 120-hour forecast times at the 0.1% level). The improvement 

lasts over the 5-day forecast period, indicating that the master dynamical variables 

(e.g., potential vorticity) are improved by the precipitation assimilation using the 

LETKF, which is consistent with our SPEEDY OSSEs but different from the past 

experience that the model tends to quickly forget the changes by assimilating 

precipitation (e.g., Mesinger et al. 2006). On the other hand, with the logarithm 

transformation (green lines), the impacts are marginal. The Log experiment shows 

similar forecast errors in the 500-hPa u-wind, and slightly worse 500-hPa temperature 

but slightly better 700-hPa moisture as compared to RAOBS. In great contrast, if the 

transformation of precipitation is not used (NT; cyan lines), very large negative 

impacts by precipitation assimilation are seen with all variables. The negative impacts 

in Log and NT experiments are also seen in the biases: the precipitation assimilation 

by these two methods tends to increase the model biases, especially in the 

temperature and moisture variables. 

It is important to note that the Corr0.35 quality control criterion based on the 

correlation between the model background and the observations is rather essential in 
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these real precipitation assimilation experiments. When this criterion is not used, even 

with the Gaussian transformation, the impact by assimilating the TMPA data is still 

negative (not shown), which means that the observations over the low correlation 

regions are too harmful so that all positive impacts by those useful precipitation 

observations are completely eroded away. 

 

Figure 6.3:  The average global root-mean-square forecast errors (solid lines) and biases 

(dashed lines) in year 2008 (verified against the ERA interim reanalysis) versus forecast time 

in RAOBS (black lines), NT (cyan lines), Log (green lines), GTcz (blue lines), and GTbz (red 

lines): (a) 500-hPa u-wind (m s
-1

) (b) 500-hPa temperature (K) (c) 700-hPa specific humidity 

(g kg
-1

). 

6.3.2 Regional dependence 

The regional dependence is investigated by computing the RMS errors and biases 

for three separate regions: the Northern Hemisphere extratropics (20–90N; NH), the 

tropics (20S–20N; TR), and the Southern Hemisphere extratropics (20–90S; SH). 

Figure 6.4, 6.5, and 6.6 shows the average RMS errors and biases of the 500-hPa u-
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wind, the 500-hPa temperature, and the 700-hPa specific humidity in the 5-day 

forecasts for the NH, SH, and TR regions, respectively. As discussed in the SPEEDY 

model experiments, the analyses and forecasts over the NH region are more accurate 

than the SH region because of its better observing network, and the NH and SH 

regions have larger error growth rates than the TR region due to the stronger growth 

rates of mid-latitude baroclinic instabilities. With the Gaussian transformation, the 

improvement by precipitation assimilation is seen over all three regions. In particular, 

the SH region is improved the most, resulting in about additional 12 hour forecast 

lead time in u-wind (Figure 6.5a). The above results in separate verification regions 

are consistent to what we found with the SPEEDY model experiments. Among the 

three variables, the 700-hPa moisture is the one most benefitted by the precipitation 

assimilation. For the moisture variable, the difference in analysis errors (   ) 

between RAOBS and GTcz/GTbz are large, especially in the SH region (Figure 6.5c), 

although the difference becomes smaller with forecast time. The GTcz and the GTbz 

are still almost indistinguishable in most regions and variables, except for the u-wind 

in the TR region, and the moisture in the NH region and TR region, where the GTbz 

method shows slightly better results than the GTcz method. 

In terms of the mid-level wind and temperature, the Log experiment leads to 

marginal results as RAOBS in the NH and SH region, but it clearly degrades the 

temperature in the TR region. In terms of the 700-hPa moisture, the Log experiment 

can, however, brings positive impacts, showing again the particular benefit of 

precipitation assimilation on the moisture. By contrast, the NT experiment results are 

bad in all regions for all variables. 
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Figure 6.4:  As in Figure 6.3, but for the northern hemisphere extratropical region (20–90N). 

 

Figure 6.5:  As in Figure 6.3, but for the southern hemisphere extratropical region (20–90S). 

 

Figure 6.6:  As in Figure 6.3, but for the tropical region (20N–20S). 
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6.3.3 Vertical error profiles 

The vertical profiles of the 24-hour forecast errors are plotted in Figure 6.7 and 

6.8. Figure 6.7 shows the vertical profiles of the u-wind errors. The error is the largest 

at 200–300 hPa where the jet level with large zonal winds is located. The 

improvement or degradation of the 24-hour forecasts by assimilating the TMPA data 

in GTcz, GTbz, Log, and NT experiments are consistently seen at all levels, while the 

largest improvement with the Gaussian transformation of precipitation is found at the 

mid-levels. Besides, the TR region has different profiles of the precipitation 

assimilation impacts compared to the other regions. The low-level (700–1000 hPa) u-

wind is not improved by the precipitation assimilation. Figure 6.8 shows the vertical 

profiles of the specific humidity errors. Generally, with the Gaussian transformation 

(GTcz and GTbz), the moisture is improved the most at the mid-levels (500–700 hPa), 

which is already shown in Figure 6.3–6.6, but can be degraded at the lower levels 

(850–1000 hPa), especially in the TR region. The GTbz method is slightly better than 

the GTcz method when the moisture is verified, and again, the Log results are 

marginal and the NT results are very bad. 
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Figure 6.7:  The vertical profiles of the average root-mean-square 24-hour forecast errors 

(solid lines) and biases (dashed lines) of u-wind (m s
-1

) in year 2008 (verified against the 

ERA interim reanalysis) in RAOBS, NT, Log, GTcz, and GTbz. The verification regions are 

(a) the globe, (b) the northern hemisphere extratropics (20–90N), (c) the tropics (20N–20S), 

and (d) the southern hemisphere extratropics (20–90S). 
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Figure 6.8:  As in Figure 6.7, but for the verification of specific humidity (g kg
-1

). 

6.4 Sensitivity experiments 

Five additional sensitivity experiments are conducted in order to examine the 

sensitivities to the precipitation observation errors, the localization lengths, and the 

precipitation quality control criteria. Due to the computational burden, these 

sensitivity experiments are only conducted for 3 month ended at 00Z March 1, 2008 

so that the average period for the forecast verification is only 2 months. The 

experimental settings of these experiments are also listed in Table 6.1. They are all 
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designed based on the GTbz experiment. In the experiments GTbz_err0.3 and 

GTbz_err0.7, the observation errors for precipitation are changed to 0.3 and 0.7, 

respectively, instead of 0.5 in GTbz. In the experiments GTbz_loc500, GTbz_loc200, 

the localization length scales for precipitation observations are changed to 500 km 

and 200 km, respectively, instead of 350 km in GTbz. In the experiment GTbz_16mR, 

it requires at least 16 (out of 32) members having positive precipitation (16mR 

criterion) instead of 24 members in GTbz. 

6.4.1 Sensitivity to observation errors 

Figure 6.9 shows the sensitivity of the 5-day forecast errors to the precipitation 

observation errors. Recall that in this study we use constant unitless values for the 

observation errors of precipitation when the Gaussian transformation is applied. 

Among the three values, 0.3, 0.5, and 0.7, the observation error of 0.5 as in the 

control experiment (red lines; GTbz) results in the best LETKF analyses and 5-day 

forecasts. When the values of 0.3 (blue lines) or 0.7 (green lines) are used, the 

precipitation assimilation still leads to improvements in the 5-day forecasts 

(compared to Raobs), but the improvements are smaller than that in GTbz when the 

value of 0.5 is used. 
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Figure 6.9:  The average global root-mean-square forecast errors (solid lines) and biases 

(dashed lines) during January 1–March 1, 2008 (verified against the ERA interim reanalysis) 

versus forecast time in RAOBS (black lines), GTbz_err0.3 (blue lines), GTbz (err0.5; red 

lines), and GTbz_err0.7 (green lines): (a) 500-hPa u-wind (m s
-1

) (b) 500-hPa temperature (K) 

(c) 700-hPa specific humidity (g kg
-1

). 

6.4.2 Sensitivity to localizations 

Figure 6.10 shows the sensitivity of the 5-day forecast errors to the horizontal 

localization length scales for precipitation observations. It is verified that, compared 

to the localization length for conventional observations, smaller localization lengths 

are beneficial to the precipitation data assimilation, as we found in the SPEEDY 

experiments (Section 3.5.3). The horizontal localization lengths of 200 km (green 

lines) and 350 km (red lines) lead to similar results, which are all better than the 500 

km localization lengths (blue lines). In our control experiment (GTbz), the 350 km 

localization length is used. 
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Figure 6.10:  As in Figure 6.9, but for experiments RAOBS (black lines), GTbz_loc500 (blue 

lines), GTbz (loc350; red lines), and GTbz_loc200 (green lines). 

6.4.3 Sensitivity to quality control criteria 

Figure 6.11 shows the sensitivity of the 5-day forecast errors to the minimum 

numbers of the precipitating members in the background ensemble (i.e., XmR 

criteria). It is found that the 16mR and 24mR observation selection criteria lead to 

similar positive impacts by the precipitation assimilation. In particular, the stricter 

criterion, 24mR (red lines), results in slightly better analyses and 5-day forecasts than 

the 16mR criterion (blue lines), especially in mid-level u-winds and 700-hPa moisture 

fields. 
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Figure 6.11:  As in Figure 6.9, but for experiments RAOBS (black lines), GTbz_16mR (blue 

lines), and GTbz (24mR; red lines). 

6.5 Summary and discussion 

With the success of the LETKF assimilation of precipitation using the SPEEDY 

model, the same ideas are now tested with the realistic NCEP GFS model and the real 

TMPA observations. Compared to the SPEEDY model experiments, it is a more 

difficult problem because more issues emerge in these realistic settings, such as the 

possibly large model errors of precipitation, and the unknown observation errors. To 

solve the problem, we adopt all methods proposed with the SPEEDY perfect model 

experiments, and also introduce some additional modifications based on the guidance 

gained from the Part I statistical studies (Chapter 5). Consequently, using the 

rawinsonde-only experiment as the baseline of comparison, we successfully obtain 

positive results, which are comparable to the SPEEDY experiments, but using the 

realistic settings. 

In additional to the quality control criterion based on the number of the 

precipitating background members (XmR criterion), a new criterion based on the 
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correlation between the long-term model background precipitation and the 

observation data in each grid point and each period of year is proposed in this chapter. 

The reason to implement this criterion is to filter out the precipitation observations 

made at the locations and seasons where the model background and the observation 

are climatologically inconsistent. The inconsistency can arise from the deficient 

precipitation parameterization in the model and/or the problematic precipitation 

retrievals. Assuming we are not planning to improve the model or the observations, 

this part of the observation data would be the part that should be discarded. In our 

experiments, we require the correlation be higher than 0.35 (Corr0.35 criterion), and 

it turns out to be an essential criterion to our experimental results since the 

experiment without this criterion was not successful. 

Having the real model and observations, here we focus more on the comparisons 

among different transformation methods, including no transformation, logarithm 

transformation, and two Gaussian transformations with different methods of handling 

zero values. In contrast to the single transformation used in the SPEEDY model 

experiments, the Gaussian transformation here is applied to the model background 

and the observations separately. Among all experiments, only the experiments with 

the Gaussian transformation of precipitation show clear positive impacts by 

assimilating the TMPA data. The differences between the two schemes of zero 

precipitation transformations are fairly small, while the sophisticated GTbz method 

performs slightly better than the simple GTcz method in some variables such as 

moisture. The largest improvement is seen in the u-wind in the SH region. Additional 

12-hour forecast lead time in u-wind is obtained there by assimilating the TMPA data, 



126 

meaning that the model “remembers” the assimilation change over the entire forecast 

periods. In contrast, the precipitation assimilation without using transformations (NT) 

leads to much degraded analyses and forecasts. The Log experiment is just marginal, 

resulting in slightly worse temperature fields but slightly better moisture fields. 

Several sensitivity experiments are conducted, which conclude that the 0.5 

observation error for the transformed precipitation, the 350 km horizontal localization 

length scale for precipitation observations, and the 24mR criterion, as used in the 

control experiment (GTbz), are close to their optimal values. The smaller horizontal 

localization lengths than that for conventional observations are beneficial to the 

precipitation data assimilation, which is consistent to our previous results in the 

idealized SPEEDY OSSEs. 

It is important to note that the complexity of the current configuration is still 

“intermediate” between the OSSEs with simplified models and the real operational 

NWP. Firstly, although we double the resolution from T30 in the SPEEDY model to 

the T62 GFS model, the resolution is still low as compared to the state-of-the-art 

operational NWP models. Secondly, our baseline experiment, RAOBS, assimilates 

only rawinsonde observations, which is considered insufficient in operational 

forecasts. Although having the large room for improvement is advantageous for us to 

identify the positive impacts by the additional precipitation data, it does not prove that 

the precipitation assimilation will still be beneficial when more conventional and 

satellite observation data are assimilated as well. The average improvement by 

precipitation assimilation in the current GFS model experiments is relatively smaller 

than that in the SPEEDY model experiment, and we expect it becomes even smaller 
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when more observation data are also assimilated. Nevertheless, this work is 

undoubtedly another step forward towards the assimilation of global large-scale 

satellite precipitation estimates. Obtaining positive impacts by assimilating 

precipitation on top of a more accurate baseline experiment is one of our important 

future directions of work. 
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Chapter 7: Assimilation of real precipitation observations III - 

Forecast sensitivity to observations 

7.1 Introduction 

In Chapters 3 and 6, we demonstrated positive impacts by assimilating 

precipitation in an idealized system and a realistic system, respectively. The positive 

impacts were obtained by conducting many different experiments assimilating 

different sets of observations. In addition, we proposed to use the Gaussian 

transformation of precipitation and the quality control criterion that precipitation is 

assimilated only when enough precipitating members are present in the model 

background. The usefulness of these methods is also verified by conducting a group 

of sensitivity experiments. Conducting these so-called “observing system experiments” 

(OSEs) in order to recommend the best experimental settings is usually a very time-

consuming process. In this chapter, we reexamine the effects of precipitation 

assimilation from a different aspect: we apply the method of the ensemble forecast 

sensitivity to observations (EFSO; Kalnay et al. 2012; Ota et al. 2013) to the 

precipitation assimilation with the GFS-LETKF system. The EFSO is a powerful 

technique which allows us to systematically estimate the impact on the short-range 

forecasts by every single observation in the same time, with only a small amount of 

additional computation. Therefore, by averaging the observation impacts in terms of 

various factors, such as geographic locations, numbers of precipitating background 

members, and the observed precipitation amounts, we can efficiently obtain an 

overall picture of the effectiveness or ineffectiveness of the precipitation assimilation, 
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without conducting many computationally expensive OSEs. By this route, the 

soundness of our methods of precipitation assimilation will be reinvestigated. 

7.2 EFSO formulation 

The method to compute the forecast sensitivity to observations (FSO) was first 

introduced by Langland and Baker (2004) using an adjoint method with a variational 

data assimilation system. It has been applied to several operational data assimilation 

systems to estimate the relative observation impacts among different types of 

observation platforms (e.g. Gelaro et al. 2010). Liu and Kalnay (2008) and Li et al. 

(2010) proposed an equivalent method formulated under the ensemble data 

assimilation system (i.e., EFSO) with no need of the adjoint model. Kalnay et al. 

(2012) further improved the formulation based on direct computation of the cost 

function, without computing its gradient. Ota et al. (2013) implemented the EFSO 

with the NCEP GFS model and demonstrated how to use this method to identify the 

observations that lead to a local forecast failure. The formulation used by Kalnay et al. 

(2012) and Ota et al. (2013) is briefly summarized below. 

The model forecast started from    and validated at   is denoted by      

 
. The 

ensemble mean forecast errors started from     h and      h verified against the 

analysis at the verification time   are denoted by: 

       ̅   
    

      , and         ̅    
    

      , (7.1) 

respectively.   
      is estimated with a verifying analysis that can be from the same 

system or any other model analysis. As shown in Figure 7.1, the impact of 

assimilating observation    at     h is manifested by the difference between two 
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forecast errors (     and      ), since the forecast started at      h serves as the first 

guess for the analysis at     h. Therefore, a cost function to measure the change in 

forecast errors made by the data assimilation is defined as: 

           
       

      
            

        , (7.2) 

where   is a given norm operator defining the measure of the forecast errors. For 

norms of kinetic energy (KE), potential energy (PE), and moist energy (ME), 

         can be expressed as (Ehrendorfer et al. 1999): 

    
  

 

 

 

 
∫ ∫ (       )     

 

 
 

 , (7.3) 

 

     
  

 

 

 

 
∫ [∫

  

  
       

 

 

 
    

  
 

    
 ]   

 

 , (7.4) 

 

     
  

 

 

 

 
∫ ∫

  

    
         

 

 
 

 , (7.5) 

 
while the subscripts     or      are neglected. Here   ,   ,   ,    , and    are the 

forecast errors of zonal wind, meridional wind, temperature, surface pressure, and 

specific humidity, respectively.   ,   , and   are the specific heat at constant pressure, 

the gas constant of dry air and the latent heat of condensation per unit mass, 

respectively.    and    are the reference temperature and pressure, respectively. In this 

study, we use        K and         hPa. In addition, the dry total energy (DTE) 

 KE  PE, and moist total energy (MTE)  KE  PE  E can be easily computed 

within the EnKF which does not require linearization of the physical 

parameterizations. When the cost function (   ) is negative (positive), it means a 
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reduction (increase) of forecast errors measured by the given norm at the evaluation 

time, and thus a positive (negative) impact by the data assimilation. 

 

Figure 7.1:  Schematic of the perceived forecast errors verified against the analysis at the 

verification time   from two forecasts started from the analysis at     h (    ), and from the 

analysis at      h (     ). The only difference between the two forecasts is the assimilation 

of the observation    at     h. Adapted from Kalnay et al. (2012). 

Following the derivation in Kalnay et al. (2012), the cost function can be 

approximated by: 

     
 

   
               

   
  (          ) , (7.6) 

where   is the ensemble size,        ̅      (  )̅̅ ̅̅ ̅̅ ̅̅  is the innovation vector, 

and   is the observation error covariance matrix as defined in Chapter 1.3.    

[  ( )   ̅      ( )   ̅ ]  is the matrix consisting of columns of analysis 

observation perturbations, and     
 

 [    
 ( )

  ̅   
 

       
 ( )

  ̅   
 

]  is the matrix 

consisting of columns of forecast ensemble perturbations started from     h and 

validated at the time  . With the EnKF system in which the covariance localization is 
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used, the impact of the  th observation on the forecast at the  th grid point can be 

computed by: 

 (   )    
 

   
(  ) [    

     (    
   

)
 
   (          ) 

]
 

 , (7.7) 

where    is the localization function on the grid point  . The total impact of a single 

observation can be obtained by simply summing up over   (grid points), and the total 

impact of any subset of observations can be obtained by summing up over the set of 

observations. Note that the localization function in Equation (7.7) may be different 

from that used in the EnKF analysis; for example, the localization center can be 

advected with the average wind speed in order to account for the propagation of the 

observation impact (Ota et al. 2013). 

We implement the above formulation of EFSO into our GFS-LETKF system. 

Yoichiro Ota and Daisuke Hotta kindly provided their EFSO code and much help on 

this part of work. Note that in our system, the    that appears in Equations (7.6) and 

(7.7) is obtained directly from the LETKF analysis equations [refer to Equation (1.6)]: 

           , (7.8) 

rather than applying the observation operator to the analysis ensemble [ (  )], in 

order to prevent some practical problems that make the latter way infeasible. For 

example, if one uses the latter way, the elements of  (  ) passing the quality control 

may be inconsistent to the elements of    passing the same quality control, so we are 

not able to obtain the complete set of the observations in the analysis. Besides, for a 

time-integral quantity such as the 6-hour accumulated precipitation, it is also 

impossible to compute    through the observation operator applied to the analysis 

ensemble. 
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7.3 Experimental design 

According to our purpose, we need to first obtain a large sample of the 

observation impact of each single precipitation observation. We would like to have 

the EFSO values not only for the good precipitation observations, but also for the 

other bad observations, in order to comprehensively assess the usefulness of all 

precipitation data in every situation. Therefore, we decide to dismiss all quality 

control criteria previously used in our precipitation assimilation (e.g., the 24mR 

criterion and the Corr0.35 criterion; refer to Section 6.2.2) except the basic gross error 

control. However, if we conduct a cycling assimilation of precipitation without using 

these criteria, the analysis and thus the background would become very bad after a 

few cycles, which would be not representative of a “normal” model background. To 

solve this problem, cycling assimilation of precipitation is intentionally avoided; 

instead, each cycle of assimilation of precipitation is separately initialized from the 

ensemble analyses of an independent rawinsonde-only GFS-LETKF cycling run, and 

the EFSO values for each observation are thus computed from these discontinuous 

cycles. This procedure is shown in Figure 7.2, which is actually an extension of the 

procedure used to generate the sample for the Gaussianity statistics described in 

Chapter 5.4. Step by step, in each (discontinuous) cycle, 9-hour ensemble GFS 

forecasts are conducted (blue lines in Figure 7.2), and the observations are assimilated 

with the LETKF (black dashed lines in Figure 7.2), and then the additional ensemble 

forecasts initialized from the LETKF analysis (red lines in Figure 7.2) and also the 

ensemble mean forecast initialized from the LETKF first guess (or the LETKF 

analysis in the previous cycle; cyan lines in Figure 7.2) are conducted. The results 
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after the above steps are therefore sufficient to compute the EFSO for the 

observations assimilated in the second step (black dashed lines in Figure 7.2). As we 

did with the Gaussianity statistics in Chapter 5.4, in order to save computational time 

but still collect samples over one year, this EFSO computation is conducted by 

skipping 4 of every 5 cycles (30 hours) in the year 2008. The use of 30 hours instead 

of a multiple of a day is to avoid always computing the EFSO in the same time of the 

diurnal cycle. 

 

Figure 7.2:  Formation of samples of observation impacts computed by the EFSO. Note that 

in our study, cycles in between every 5 cycles are skipped in order to save computational time. 

Ota et al. (2013) used 24 hours as the evaluation forecast time. Inspired by the 

research carried out by Daisuke Hotta, in this study we compared the precipitation 

EFSO results using a 6-, 12-, and 24-hour evaluation forecast time and, in agreement 

with his previous results, we found that there are qualitatively no distinct differences 

among these choices (no shown). As pointed out by Hotta, there are several 

advantages to use a shorter evaluation time: First, the EFSO computation becomes 

computationally cheaper; Second, the advection of localization functions (Ota et al. 
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2013) may not be required since the observation impacts have not propagated far 

away; Third, it also benefits the implementation of the proactive quality control (Ota 

et al. 2013; Hotta et al. 2013). Therefore, the evaluation forecast time   of the EFSO 

computation is set to 6 hours (as shown in Figure 7.2), and the advection of 

localization functions (Ota et al. 2013) is not used. 

7.4 Results 

7.4.1 Global distributions of precipitation observation impacts 

Based on the 1 year (30 hourly) samples of the precipitation EFSO described 

above, Figure 7.3 shows the maps of average observation impacts (i.e., changes in 6-

hour forecast errors) of precipitation measured by the MTE norm, using the GTbz 

transformation of precipitation. Figure 7.3a shows the results with all precipitation 

observations (passing the basic gross error control in the LETKF) and Figure 7.3b 

shows the results with only precipitation observations passing the 24mR criterion 

(more than 23 precipitating members in the background). Green (red/yellow) shading 

colors stand for the positive (negative/neutral) impacts or reduction (increase/no 

change) in forecasts errors. Overall, the areas most benefitted by the precipitation 

assimilation are the storm-track regions, located within 30–50 degree north and south 

over the three major oceans. Most of the ocean shows positive impacts. The tropical 

region and the land show marginal or negative impacts. Particularly, the marine 

stratocumulus regions, Africa, and the Tibetan Plateau show the worst impacts. The 

magnitudes of impacts in terms of forecast errors are very non-uniform, with average 

error reduction as much as         J kg
-1

 in the extratropical storm-track regions 
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but less than         J kg
-1

 in many other regions (note that the color scale in the 

figure is nonlinear). It is important to note that Figure 7.3 suggests that precipitation 

observations at latitudes beyond 50 degree north and south may lead to large positive 

impacts as well. These regions are not covered by the TMPA data since the orbit of 

the TRMM satellites has lower inclination, but the incoming data from the GPM 

mission will cover these higher-latitude regions. The global distribution of these 

EFSO results is somewhat similar to the non-Gaussianity map shown in Chapter 5.4 

and the correlation map shown in Section 6.2.2, but differences still exist. 

Comparison among these figures will be discussed in Chapter 7.5. 

 

Figure 7.3:  The maps of average observation impacts (i.e., change in 6-hour forecast errors) 

of precipitation measured by the moist total energy norm (10
-4

 J kg
-1

). (a) All precipitation 

observations; (b) precipitation observations with more than 24 precipitating members in the 

background. The GTbz transformation of precipitation is used. 
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Interestingly, over those negative impact regions, the average negative impacts of 

only the precipitation observations passing the 24mR criterion is even larger (Figure 

7.3b) than those of all precipitation observations. This is probably because the 24mR 

criterion only picks up observations with sufficient ensemble spread in the 

background, so it actually tends to pick up the high-impact (both positive and 

negative impacts) observations, thus the net effect is to amplify both the positive and 

negative impacts. Note that in our cycling precipitation assimilation experiments in 

Chapter 6, the precipitation observations in the average negative impacts areas are 

mostly not assimilated because of the use of the Corr0.35 criterion. 

The overall effect of the precipitation assimilation can also be shown with the 

rate of observations leading to positive impacts (i.e., reduction in 6-hour forecast 

errors). For a type of observations with very non-uniform impacts, this index could 

lead to different pictures of effectiveness of assimilating observations than the simple 

arithmetic mean error reduction. As shown in Figure 7.4, the distribution of the 

positive impact rate is generally similar to the average impacts (Figure 7.3), but the 

“bad” regions over the land are much clearly highlighted with the positive impact rate. 

If no background based quality control (XmR criterion) is used, the positive impact 

rate is less than 50% in almost all land regions. However, the 24mR criterion can 

greatly increase the positive impact rate, leading to much wider areas having greater-

than-50% positive impact rates, even over the land. 
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Figure 7.4:  As in Figure 7.3, but for the percentage (%) rate of observations leading to 

positive impacts (i.e., reduction in 6-hour forecast errors). 

7.4.2 Observation impacts with respect to precipitating members 

In addition to spatially averaging the observation impacts computed by the EFSO, 

we can also average them in terms of other factors, such as the numbers of 

precipitating members in the background, and the observed precipitation amounts. 

This can be a powerful methodology to verify the conclusions we reached in the 

previous assimilation experiments. In this section, we show the results with respect to 

the number of precipitating members. 

Figure 7.5 shows the average observation impacts of precipitation (10
-4

 J kg
-1

), 

measured by different energy norms, versus the numbers of precipitating members in 
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the background. The GTbz transformation of precipitation is used in the assimilation. 

It is found that, in terms of all energy norms, the forecast error reduction increases 

with the number of precipitating members when it is less than about 16–24 (out of 32), 

and then slightly decreases when the number increases from 24 to 32. When the 

precipitating members are few, the average impacts are very small or even negative 

(in the KE norm), which is consistent to our previous finding that assimilating 

precipitation with too few background precipitating members can be harmful (Section 

3.5.1). On the other hand, a possible explanation of the decreasing trend of the error 

reduction when the number of precipitating members increases from 24 to 32 is that 

the model background is already accurate in this regime, so the average impacts by 

assimilating the precipitation observations are smaller. Comparing among the KE, PE, 

and ME norms, it is found that the impact on the KE norm is the largest, the impact 

on the ME norm is the second, and the impact on the PE norm is the smallest, roughly 

with a ratio of 4:3:2. The large impact on the KE norm would be critical for 

improving the longer-term model forecasts, and the also large impact on the ME norm 

indicates the benefits of precipitation assimilation on improving the moisture field. 

Besides, the maximum moist error reduction is found more towards fewer 

precipitating members (about 16), as compared to other energy norms. The DTE (i.e., 

KE + PE) and MTE (i.e., KE + PE + ME) represent the combined effects of these 

independent norms. In our other figures in this chapter, we only show the results with 

the MTE norm. 
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Figure 7.5:  The average observation impacts of precipitation (10
-4

 J kg
-1

), measured by (a) 

the kinetic energy norm, (b) the potential energy norm, (c) the moist energy norm, (d) the dry 

total energy norm, and (e) the moist total energy norm, versus the numbers of precipitating 

members in the background. The GTbz transformation of precipitation is used. 

In addition to the average observation impacts, the rate of observations leading to 

positive impacts, in terms of the MTE norm, versus the number of precipitating 

members is shown in Figure 7.6d. This index also displays an increasing trend with 

the increasing precipitating members. The positive impact rate is about 54% when all 

background members are precipitating. However, it is a little bit surprising that the 

greather-than-50% positive impact rates are seen at all numbers of precipitating 
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members except only for completely all zero precipitation in the background 

ensemble. This is in contrast with our experimental results with the SPEEDY and 

GFS models, where the precipitation observations with too few background 

precipitating members are actually difficult to use. 

In the other subplots in Figure 7.6, we add a condition of observed zero or 

positive precipitation in the EFSO statistics. In the case of the positive precipitation 

observations, both the average error reduction and the positive impact rates are much 

larger than when all observations are considered. The average error reduction peaks at 

17 precipitating members, and the positive impact rate can be as large as 60–70%. On 

the other hand, in the case of zero precipitation observations, the positive observation 

impact is smaller. The average impact becomes negative when the number of 

precipitating members is less than or equal to 20. The positive impact rate is also less 

than 50% when the number of precipitating members is less than 28. These results 

lead to a conclusion that the zero precipitation observations are more difficult to use 

in the data assimilation, which is consistent to our experience. However, when there 

are enough members having positive precipitation values in the background, the zero 

precipitation observations can still be useful and lead to positive impacts of 6-hour 

forecast errors because they can correct large model forecast errors. 
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Figure 7.6:  (a)–(c) The average observation impacts of precipitation (10
-4

 J kg
-1

) and (d)–(f) 

the rate (%) of observations leading to positive impacts, measured by the moist total energy 

norm in 6-hour forecasts, versus the numbers of precipitating members in the background. (a) 

(d) All precipitation observations; (b) (e) positive precipitation observations; (c) (f) zero 

precipitation observations. The GTbz transformation of precipitation is used. 

7.4.3 Observation impacts with respect to observed precipitation values 

Figure 7.7 shows the average observation impacts of precipitation and the rate of 

observations leading to positive impacts with respect to the precipitation amount in 

the observations. In Figure 7.7a, c, all observations are considered (passing the basic 

gross error control that observations whose innovation magnitudes are greater than 5 
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times of the observation errors are discarded); in Figure 7.7b, d, only the observations 

passing the 24mR criterion are considered. The GTbz transformation of precipitation 

is still used. It is shown that the average observation impacts generally increase with 

the observed precipitation amount, but become saturated near 10 mm (6h)
-1

. The 

positive impact rates can be higher than 60% when the observed precipitation 

amounts are greater than 1.2 mm (6h)
-1

. The zero precipitation observations are not 

very useful. When no background based quality control is applied, the average 

observation impact is marginal but the positive impact rate is only 36%; when the 

24mR criterion is imposed, the average forecast error reduction becomes notable and 

the positive impact rate becomes slightly greater than 50%. Therefore, the conclusion 

regarding the effectiveness of the zero precipitation observations is the same as the 

previous subsection: they can be useful only when the ensemble model background 

have enough positive precipitating members. 
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Figure 7.7:  (a) (b) The average observation impacts of precipitation (10
-4

 J kg
-1

) and (c) (d) 

the rate (%) of observations leading to positive impacts, measured by the moist total energy 

norm in 6-hour forecasts, versus the observed precipitation values [mm (6h)
-1

]. (a) (c) All 

precipitation observations; (b) (d) precipitation observations with more than 24 precipitating 

members in the background. The GTbz transformation of precipitation is used. 

7.4.4 Observation impacts using different transformation methods 

Figure 7.8 shows the average observation impacts of precipitation using different 

transformation methods in the LETKF assimilation. The two Gaussian transformation 

methods with different algorithms to transform the zero precipitation lead to very 

similar EFSO results, both in the magnitudes of the average impacts and in the 
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Figure 7.8:  (a)–(d) The average observation impacts of precipitation (10
-4

 J kg
-1

) and (e)–(h) 

the rate (%) of observations leading to positive impacts, measured by the moist total energy 

norm in 6-hour forecasts, versus the numbers of precipitating members in the background, 

using (a) (e) the GTbz, (b) (f) the GTcz, (c) (g), the logarithm, and (d) (h) no transformation 

of precipitation. 

relationship with number of precipitating members in the background. Specifically, 

the GTbz method shows slightly better impacts when the background precipitating 

members are many but the GTcz method performs slightly better when the 

background precipitating members are few. The logarithm transformation (Log) also 

results in average positive impacts and also favors more background precipitating 

members, while the positive impact rates are only close to or less than 50%. However, 

if no transformation of precipitation is used (NT), the EFSO results are very bad. The 

observation impacts are all negative (increase in forecast errors), regardless of the 
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number of precipitating members in the background. Looking at the contribution of 

separate energy norms, we find the precipitation assimilation without transformation 

is most deteriorating in the ME norm and also the PE norm (not shown). With this 

comparison of the EFSO results with different transformation methods, we reach the 

same conclusion regarding the effects of the precipitation transformations as what we 

found in the real precipitation assimilation experiments (Section 6.3.1). Therefore, the 

usefulness and the accuracy of the EFSO computation are confirmed. 

7.5 Reconsideration of the quality control criteria 

So far we have seen several similar maps showing the geographic distributions of 

different factors regarding the effectiveness of the precipitation assimilation, 

including the correlation between the model background precipitation and 

precipitation observations in long-term samples (Figure 6.1), the average 

(non)Gaussianity of the background errors of precipitation (Figure 5.12), the average 

observation impacts (Figure 7.3) and the positive impact rates (Figure 7.4) of 

precipitation observations computed by the EFSO method. We put these figures 

together in Figure 7.9 for comparison. To make the comparison easier, the same color 

sequence is used. The green shading colors represent “good” numbers for the 

precipitation assimilation: high correlation between the model backgrounds and 

observations, high Gaussianity of the background errors, large forecast error 

reductions, and high positive impact rates; the red shading colors represent the 

opposite directions (“bad” numbers); and the yellow shading color is in between. 
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Figure 7.9:  The maps of (a) correlation between precipitation in the GFS model backgrounds 

and in the TMPA observations, (b) the average    values (a measure of non-Gaussianity) of 

background precipitation errors, (c) the average observation impacts of precipitation (10
-4

 J 

kg
-1

), and (d) the rate (%) of observations leading to positive impacts measured by the moist 

total energy norm in 6-hour forecasts during (a) the 2001–2010 period, (b)–(d) the year 2008. 

The GTbz transformation of precipitation is used in all figures. 
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All of these figures show that the precipitation assimilation is generally more 

useful over the ocean than the land. The tropical region, the marine stratocumulus 

regions, Africa, and the Tibetan Plateau are the regions where the precipitation 

assimilation could be harmful. Among the four figures, the correlation map (Figure 

7.9a) and the average EFSO map (Figure 7.9c) are the two that most resemble each 

other, but it is noted that the color scale is linear in the correlation map but very 

nonlinear in the EFSO map. The Gaussianity map (Figure 7.9b) is similar to the 

previous two in most regions, but it does not show warning signs over the marine 

stratocumulus regions, where the precipitation assimilation should be very difficult 

because of the large inconsistency between the model precipitation climatology and 

the observation climatology. The tropical ocean is also too “good” compared to the 

previous two maps. It is not surprising that this Gaussianity figure cannot show bad 

signals over these regions, since it is the only factor among four that only considers 

the model background but does not take into account the observations, so it does not 

“know” about the inconsistency between the model and the observations. Lastly, the 

positive impact rate map (Figure 7.9d) puts too much highlight over the bad regions. 

Almost all land areas show less-than-50% rates of positive impacts. It may be a 

widely used index for us to present the EFSO results but may not be a good index to 

indicate the effectiveness of precipitation assimilation. 

In all, we think the correlation map and the average EFSO map are the two maps 

that better indicate the “good” and “bad” regions for assimilating precipitation. In our 

real precipitation assimilation experiments, we actually used the correlation as the 

index to define the Corr0.35 quality control criterion (i.e., precipitation is assimilated 
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only at where the correlation between the model backgrounds and observations are 

higher than 0.35) and thus obtained good results of the precipitation assimilation 

(Section 6.2.2). One of the advantages of this choice is that the correlation map can be 

easily computed given the long-term samples of the model background and 

observations. In contrast, the EFSO may be the best index of the effectiveness of the 

precipitation assimilation since it is exactly the estimate of the forecast error 

reduction, but the computation is more complex and may not be possible to prepare it 

in advance of the precipitation assimilation. However, the “proactive quality control” 

method proposed by Ota et al. (2013) and Hotta et al. (2013) that uses short-term 

EFSO to refine the quality control should be a promising method for the precipitation 

assimilation. 

7.6 Summary and discussion 

The ensemble forecast sensitivity to observations (EFSO) method is used in this 

chapter to gain more insights on the precipitation assimilation. It is a powerful 

technique to systematically estimate the impact on the short-range forecasts by any 

subset of observations in the same time, with only a small amount of additional 

computation. We computed the 6-hour EFSO for every single precipitation 

observation every 30 hours over one year. Since all good and bad precipitation 

observations are assimilated in order to compute their EFSO, we do not carry out 

cycling assimilation so that the continuous degradation of the analysis and the 

background is prevented. 

By averaging the observation impacts in terms of various factors, such as 

geographic locations, numbers of precipitating background members, and the 
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observed precipitation amounts, the findings coming from the EFSO and our previous 

precipitation assimilation experiments regarding the effectiveness of the precipitation 

assimilation in every situation are found to agree well. The spatial map of the average 

EFSO is similar to the map of correlation computed between the long-term samples 

of GFS model background precipitation and the TMPA data, showing the best 

impacts over most ocean areas, marginal impacts in the tropics, and the worst impacts 

over the marine stratocumulus regions, Africa, and the Tibetan Plateau areas where 

the model precipitation is not accurate when compared to observations. 

The forecast error reduction increases with the number of precipitating members 

when it is less than about 16–24 (out of 32), and then slightly decreases with the 

number when it is close to all-member precipitation. The precipitation assimilation 

helps to reduce the 6-hour forecast errors measured by all of the KE norm, PE norm, 

and ME norm, while the impacts on the KE norm is the largest and the impact on the 

PE norm is the smallest. The zero precipitation observations are more difficult to use 

in the data assimilation than the positive precipitation observations. The existence of 

clear positive impacts by zero precipitation observations is only possible when the 

majority of the members has positive precipitation values in the background (i.e., 

when most of the forecasts are wrong). In addition, among the different precipitation 

transformation algorithms, the GTbz and GTcz methods result in quite similar 

observation impacts. The logarithm transformation also works for precipitation 

assimilation, but with smaller impacts. The precipitation assimilation without using 

any transformation leads to very poor results. 
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All of the results are generally consistent to what we found with the SPEEDY 

OSSEs and the GFS model experiments. One of the notable differences here is that 

the precipitation EFSO results seem to indicate that the average impact of 

precipitation assimilation can be still positive when there are fewer (i.e., 8–16) 

precipitating members in the background, while in our experience this category of 

observations can lead to degradation. We think that the EFSO results may be too 

optimistic compared to reality, but it may also indicate that there are still room for 

improvement if we can make better use of the precipitation observations in this 

category. 

This chapter also provides a demonstration of how the EFSO can be used to 

analyze the effectiveness of ineffectiveness of a new observing system. In this 

dissertation, we first conducted a great number of the assimilation experiments before 

doing the EFSO computation and then used the EFSO to verify our assimilation 

strategies, but the opposite route may also be workable. Since we are able to 

efficiently obtain a grand picture of the observation impacts by the EFSO method 

without conducting many computationally expensive OSEs, appropriate assimilation 

strategies for a new observing system may be developed faster. In addition, the 

proactive quality control based on the EFSO may also be implemented to further 

improve the data assimilation results. 
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Chapter 8: Summary and future directions 

8.1 Summary 

This dissertation investigates the assimilation of global large-scale satellite 

precipitation data using the LETKF. Assimilation of precipitation has been a difficult 

topic because of the nonlinear observation operator related to the model precipitation 

parameterization, the non-Gaussianity of precipitation variables, the large and 

unknown model errors and observation errors. Most of the past studies to assimilation 

precipitation have used nudging or variational methods, and the general experience is 

that it is relatively easier to force the forecasts of precipitation to be close to the 

observed precipitation during the assimilation, but the resulting forecast impacts 

quickly decay after a day or less. 

In this study, we use the LETKF method to assimilate the precipitation. The 

LETKF does not require linearization of the model, and the ensemble can give the 

“error correlation of the day”, essential to produce optimal analyses. Therefore, the 

EnKF is expected to be able to more efficiently improve all “master” variables in the 

model compared to nudging or variational approaches, and thus lead to improvement 

in longer-term model forecasts. In addition to using the LETKF, we propose to use 

the Gaussian transformation for precipitation based on its climatological distribution 

in the model and observations, and also some quality control criteria specialized for 

precipitation. The precipitation observations are assimilated only when there are 

enough background members having positive precipitation (XmR criterion) and, in 

the case that the model or observation may have large errors, only at the location 
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where the model climatology and the observation climatology show adequate 

correlation (CorrX criterion). 

We test our ideas of precipitation assimilation in two systems of different 

complexity. The proof-of-concept experiments are conducted with the SPEEDY 

model, which is a simplified but still realistic GCM. Within an identical-twin OSSE 

framework, we achieve larger improvement in both the analysis and the 5-day 

forecasts by assimilating global precipitation. The effect of precipitation assimilation 

is largest in the southern hemisphere extratropical region where the rawinsonde 

observations are sparse. The tropical region shows the least improvement probably 

because of its prevailing convective precipitation type. 

After the success in this proof-of-concept system, the precipitation assimilation 

experiments are further conducted with the NCEP GFS model, assimilating the real 

TMPA satellite precipitation data. Since the model errors and observation errors are 

large in the real case, a naïve replication of the SPEEDY model experiments would 

not lead to acceptable results. Therefore, we first compute several statistics with the 

precipitation variable in the model background and observations from the point of 

view of the LETKF data assimilation. Based on the insight gained from the statistical 

results, we refine the Gaussian transformation method considering both the model 

climatology and the observation climatology to better extract information form the 

“useful” part of the observation data, and define effective quality control criteria to 

reject the other “difficult-to-use” part of observation data. Consequently, we obtain, 

for the first time, positive results using a realistic model (GFS) and real data (TMPA). 

The GFS model experiments show improvements in both the analysis and 5-day 
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forecasts, which is qualitatively comparable to our results of the SPEEDY model 

experiments. 

In the last part of this dissertation, the EFSO of a sample of precipitation data is 

computed. By averaging the observation impacts in terms of various factors, the 

validity of our methods of precipitation assimilation, such as the XmR and CorrX 

criteria, and the Gaussian transformation of precipitation, are verified. The EFSO 

approach, as demonstrated here, has been shown to be an efficient way to assess the 

effectiveness of any new observing system, and thus to develop appropriate 

assimilation strategies of it, rather than the standard observing system experiments 

normally used to estimate the impact of the new type of observations on the forecasts. 

We note that although we test the precipitation assimilation not only in the 

idealized system but also in the realistic system, the complexity of our realistic 

system is still less than operational NWPs. The resolution of the GFS model used in 

our study is still low, and we use a rawinsonde-only experiment as the baseline in 

order to have large room for improvement. In addition, we only focus on the 

assimilation of the global low-resolution precipitation data to improve the large-scale 

analysis and forecasts. The observation data are made by conducting spatial/temporal 

averages of the high-resolution raw data. Therefore, our strategies need to be 

modified in order to be applicable to the assimilation of convective scale precipitation, 

such as meteorological radar observations. 

Nevertheless, this dissertation shows, for the first time, the great potential of the 

remote-sensed precipitation data to improve the medium-range model forecasts. A 

more in-depth understanding of the merit and the limitation of the precipitation 



155 

assimilation has been gained, especially for the ensemble data assimilation systems. 

Many assimilation and diagnostic methods used in this study can only be 

implemented with ensemble systems, such as the quality control based on the number 

of precipitating members in the background, the Gaussianity statistics of the 

background error distribution, and the EFSO diagnostics. Therefore, this study 

contributes to our knowledge of the precipitation assimilation using the ensemble data 

assimilation methods. 

8.2 Future directions 

In the short term, we would like to finish some parts of work that are closely 

related to the outline of this dissertation but have not yet been done, including the 

verification of the precipitation forecasts and the separation of large-scale and 

convective precipitation during the assimilation. We showed the precipitation 

assimilation improves the 5-day forecasts in the GFS model in terms of winds, 

temperature, and moisture variables, but did not show the verification of the 

precipitation forecasts. It is not good to verify the precipitation by computing the 

RMS errors and biases as we did for other variables because of the very non-uniform 

characteristics of the precipitation field. Some other scores such as the equitable 

threat score (ETS; Hamill and Juras 2006) may be used. 

In Chapter 6, we defined the quality control of precipitation assimilation based 

on the number of the precipitating members in the background and the correlation 

between the model background and the observations in long-term samples, and in 

Chapter 7, we compared the average observation impacts using the EFSO method, 

grouped by these factors. Our results suggest that the precipitation types (e.g., 
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stratiform or convective precipitation) can be another important factor that can help 

us to refine the assimilation of precipitation. After examining the statistical 

characteristics of different precipitation types, we can adopt separate procedures to 

different precipitation types. This separate consideration of different types of 

precipitation data would be advantageous to gain more understandings of the 

precipitation assimilation and could lead to additional improvement of the model 

analysis and forecasts. 

As to the longer-term directions, we would like to exploit more the power of the 

ensemble data assimilation. The precipitation in the model is a diagnostic variable 

that does not affect the subsequent model forecasts; therefore, in our study, the 

precipitation variable is not updated during the LETKF assimilation. This leads to no 

improvement of the model precipitation in the analysis time (   ). However, with 

the ensemble method, we can easily apply a no-cost smoother (Kalnay et al. 2007) so 

that the model can “reproduce” the precipitation output at the analysis time based on 

the improved first guess 6 hours ago, thus we should be able to obtain better 

precipitation analyses. Besides, since the precipitation is tightly related to the past 

trajectory of the model moist physics, more sophisticated methods, such as the 

“running in place” (RIP; Kalnay and Yang 2010; Yang et al. 2012), could also be 

used in order to more efficiently adjust the past model trajectory towards the 

observations. These techniques may not necessarily bring advantages over the 

operational NWP, but they can be very useful in creating a global precipitation 

analysis that is consistent to both the model dynamics and the source observations. 
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Additionally, as demonstrated in Chapter 7, the EFSO method is a very 

promising tool to systematically investigate the effectiveness or ineffectiveness of a 

new observing system. A more in-depth study of the application of the EFSO to the 

precipitation assimilation is recommended. In particular, Ota et al. (2013) and Hotta 

et al. (2013) proposed the proactive quality control method based on the EFSO, which 

can pick up good observations for data assimilation and use them in a cycling run. By 

this method, we may be able to know the potential “best” impact of an observation 

dataset given the existent data assimilation system. 

The other possible future directions are listed as follows: 

 After we are confident with our method of precipitation assimilation, we can 

use a more accurate baseline experiment instead of the rawinsonde-only 

experiments in Chapter 6, and assimilate precipitation on top of it. This can 

help us to gain an idea about the benefits of the precipitation assimilation in 

the state-of-the-art operational NWP when many other types of observations 

are already used. 

 The determination of the observation errors of the precipitation observations is 

a topic that we have not addressed in this dissertation. A better way to 

investigate this issue would be to use some kind of adaptive methods to 

objectively determine the observation error under the assimilation system. For 

example, following Li et al. (2009), the optimal observation errors can be 

estimated based on the innovation vector statistics with an ensemble data 

assimilation system. 
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 The proposed Gaussian transformation is a general transformation method that 

can be applied to any variable as long as we know its long-term cumulative 

distribution in the model and/or the observation data. It would be worthwhile 

to apply this technique to other highly non-Gaussian variable, especially for 

those moisture-related variables. 

 The Global Precipitation Measurement (GPM) mission is the successor of the 

TRMM project. It is expected to be able to provide more accurate real-time 

precipitation estimates at a better spatial/temporal coverage. Therefore, using 

the GPM data that will be available in the near future, larger impacts of the 

assimilation of precipitation are expected. In particular, the GPM can measure 

the precipitation at the latitudes beyond 50 degree north and south. Based on 

our EFSO results, these extratropical precipitation data may be very valuable 

for data assimilation. 

 In addition, as indicated before, combining the power of the LETKF and GPM 

and other satellite precipitation estimations can create a more accurate global 

reanalysis of precipitation and its properties. 
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