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Agalinis acuta (Orobanchaceae) is a federally listed endangered plant species native 

to the mid-Atlantic and northeastern coastal plains of the United States.  Due to 

morphological ambiguity and molecular similarity between A. acuta and Agalinis tenella 

and Agalinis decemloba a conservation priority is to determine whether A. acuta 

represents an evolutionarily distinct entity worthy of protection under the Endangered 

Species Act.  To resolve this question, a phylogenetic study was first conducted based on 

seven chloroplast DNA loci and the nuclear DNA locus ITS from 79 individuals 

representing 29 Agalinis species.  A study evaluating the utility of those cpDNA loci and 

three analytical techniques for the purpose of DNA barcoding was also conducted.  The 

phylogenetic study indicated that A. acuta was perhaps evolutionarily indistinct from A. 

decemloba and A. tenella.  Based on the results of subsequent analyses of 21 

microsatellite loci and morphological data evaluated under myriad species concepts, A. 



  

acuta, A. decemloba, and A. tenella best represent a single species with two subspecies; 

the former two putative species would constitute a subspecies called A. decemloba ssp. 

decemloba and A. tenella would be A. decemloba ssp. tenella.   

With evolutionary distinct entities described, a phylogeographic study was 

conducted to determine the extent to which historical processes rather than 

contemporaneous events can explain extant patterns of genetic and phenotypic diversity 

within A. decemloba.  The dispersal of a few individuals out of southern refugial 

populations likely represents the process through which northern populations were 

established; however, recent anthropogenic effects that disproportionately affected 

northern populations may have also contributed to extant patterns of diversity.  Neutral or 

adaptive explanations for phenotypic variation among populations are also investigated.   

The conservation implications of population genetic analyses were assessed for 

members of A. decemloba ssp. decemloba.  Despite the evidence that this taxon is self-

compatible, the high levels of inbreeding and low levels of heterozygosity are of such a 

magnitude in certain populations that genetic factors may be negatively impacting fitness.  

Because of the small effective population sizes and degree of isolation, all populations 

should be managed to reduce the risk of extinction associated with demographic and 

environmental stochasticity.   
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PREFACE 

This dissertation contains an overall abstract, introduction, general objectives, five 

chapters, and three appendices.  Each chapter contains an abstract and is represented in 

manuscript form; background information and methods may be repeated and pronoun 

usage reflects manuscript authorship.  The tables and figures appear at the end of each 

chapter and the numbering of those also reflects the syntax associated with a manuscript 

(i.e., the “S” in the title of some tables or figures identifies them as representing 

supplemental material).  A bibliography that includes all references cited throughout the 

dissertation is found at the very end.  
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GENERAL INTRODUCTION 

Given that species are the fundamental unit of study within many disciplines (e.g., 

conservation biology), a great deal of literature has been published regarding what 

constitutes a species, with much of the contemporary discussion rooted in the merging of 

genetics and evolution during the Modern Evolutionary Synthesis (Dobzhansky 1937; 

Mayr 1942; Stebbins 1950).  There are also a plethora of empirical methods that have 

been advocated as appropriate for delimiting the taxonomic boundaries associated with 

species (Sites & Marshall 2004).  However, the numerous species concepts and 

delimitation methods that have been developed make determining when a collection of 

individuals or populations warrants recognition as a species challenging as well as highly 

contentious (Coyne & Orr 2004).  Despite this controversy, the potentially negative 

consequences associated with inaccurate taxonomy (e.g., the importance of accurate 

estimates of species richness in ecology and inefficient use of funds for conservation 

management due to erroneous taxonomy) illustrate the importance of being able to 

resolve such issues (Isaac et al. 2004).  As a means of overcoming the controversy, de 

Quieroz (2007) has suggested that there is an underlying concept that unifies the myriad 

species concepts: that species are “separately evolving segments of metapopulation 

lineages”.  In contrast to early typological views of species, de Queiroz (2007) embraces 

the fact that in absence of gene flow, there is a continuum of evolutionary differentiation 

that proceeds after a speciation event (Cummings et al. 2008).  

Given that alternative species concepts emphasize different characteristics that will 

be acquired at different times following a speciation event, adherence to different 

concepts will potentially result in different species boundaries (de Queiroz 2007).  
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Further, different types of data will be informative at different stages of differentiation 

(Baum 1998; Marshall et al. 2006). Given this continuum of variation and the fact that 

investigators have little idea about where putative species may lie on that continuum, it is 

not possible to recommend a single type of data or exact characteristic that will define a 

species in all cases.  However, a strategic and efficient approach to resolving questions of 

taxonomic uncertainty is to begin with applying the most restrictive definitions and 

delimitation methods (e.g., genealogical exclusivity; Baum and Shaw 1995).  Additional 

analyses that can detect more subtle differences would be conducted only if the more 

restrictive definitions are not met.  Results of subsequent analyses would be evaluated in 

light of the properties associated with a range of commonly used species concepts and 

delimitation criteria.  Analyses would also include taxa beyond the specific entities of 

concern and sampling intensively within the entities of concern.  This combination of 

broad and deep sampling provides context that is needed to understand the magnitude of 

differences that distinguish closely related entities and allows assessment of whether 

those differences are of sufficient magnitude to warrant the taxonomic rank of species 

(Baum 2009). 

The ability to determine the accuracy of historical taxonomic alignments is 

particularly important within the field of conservation biology where it is assumed that a 

species is evolutionarily distinct upon being listed under the Endangered Species Act 

(ESA) (U.S.C. 1973).  Issues of taxonomic uncertainty are among the concerns for many 

rare species and have also played a large role in the delisting of species.  As of April 3, 

2007 1,326 species were listed as endangered and 41 of these have been delisted.  That 8 

of those 41 delistings were due to taxonomic revisions illustrates the importance of 
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adequate methods for delimiting species. Given the direct impact taxonomic status has on 

the listing of a species (Fallon 2007) and that a taxonomic revision has on the allocation 

of limited funds for the purposes of conservation management, it is important to have a 

strategic and efficient approach to resolving questions of taxonomic uncertainty.  

As well as determining the accuracy of historical taxonomic alignments ascribing 

individuals to a species, there is the need to be able to quickly identify the species to 

which an individual of unknown taxonomic identity belongs.  Given the increasing ease 

with which sequence data can be obtained from a range of taxa, DNA barcoding has 

emerged as a potential method to determine the taxonomic identity of an individual by 

sequencing a small portion of its genome and comparing this nucleotide sequence with 

sequences in a reference database (e.g., Hebert et al. 2003).  DNA barcoding should be a 

valuable tool to a number of disciplines including conducting rapid biodiversity 

assessments, forensics, detecting illegal wildlife trade, identifying species during cryptic 

life stages, and monitoring invasive species (Armstrong & Bar 2005; Darling & Blum 

2007; Dawnay et al. 2007; Little & Stevenson 2007; Vogler 2006).  Barcoding has also 

been shown to be a useful tool in the discovery of new species (Burns et al. 2008; Murray 

et al. 2008; Yassin et al. 2008).  However, the grand promises made by proponents of 

DNA barcoding have generated concern and there is extensive debate over exactly what 

it can contribute to various disciplines (e.g., Rubinoff 2006; Trewick 2008; Will et al. 

2005).  In particular, DNA barcoding may be problematic when used to differentiate 

among sequences representing closely related species where the issues of inaccurate 

taxonomy and incomplete lineage sorting are likely to be most prevalent.   
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With taxonomic questions resolved, the extent to which observed patterns of 

intraspecific genetic diversity are the result of historical processes related to the 

establishment of populations (e.g., founder or vicariance events) rather than recent 

anthropogenically induced changes (Eckert et al. 2008) can be investigated.  The 

likelihood of historical events, and the time over which they may have occurred, is 

strongly dependent on past environmental conditions.  For example, with regard to 

eastern North America, the environment associated with the Wisconsin glaciation 

(maximum at about 18,000 yr BP) during the Pleistocene was vastly different than 

current conditions where ice sheets reached as far south as 40º N (e.g., New York, NY) 

and tundra and boreal forest habitats extended even further south (Hewitt 2000; Lomolino 

et al. 2006).  Therefore, extant species or populations may have migrated relatively 

recently into northern regions that historically were inhabitable (i.e., “the leading edge 

hypothesis;" Cwynar & Macdonald 1987; Hewitt 1996; Soltis et al. 1997) or northern 

populations persisted throughout the ice ages of the Pleistocene as refugia (i.e., “north-

south recolonization hypothesis”; Soltis et al. 1997).  In addition to understanding the 

processes responsible for extant patterns, differentiating between historical and 

anthropogenic hypotheses as causes for extant patterns is particularly important to 

conservation geneticists (e.g., Crandall et al., 2000; Eckert et al. 2008).  

Once issues of taxonomic uncertainty have been resolved regarding putative taxa of 

conservation concern, population genetic analyses can be conducted to determine 

whether a taxon faces an increased extinction risk as a result of genetic factors.  Such 

information is important because it can be used to better ensure the efficient use of 

management resources (e.g., Haig 1998).  Through the analysis of molecular variation 
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(e.g., microsatellite loci), population genetics can help quantify the amount of inbreeding, 

the degree of isolation, and whether populations have experienced a bottleneck, all of 

which are related to the probability of persistence of a population or species (Ellstrand & 

Elam 1993; Frankham 1995; Frankham et al. 2002; Luikart & Cornuet 1998).  Molecular 

data can also provide a measure of the genetic diversity within a population, which is 

indicative of a population’s ability to adapt to environmental changes (Frankham et al. 

2002).  However, patterns of genetic diversity that are often associated with an increased 

extinction risk may also be the result of a species’ life-history characteristics (e.g., self-

compatible short-lived gravity dispersed species exhibit low levels of allelic diversity and 

isolation among populations; Nybom 2004).  Based on theoretical and empirical research, 

self-compatible species may also have purged the deleterious recessive alleles known to 

cause inbreeding depression (Hedrick 1994; Holsinger 1988).  Consequently, rather than 

genetic factors, protecting against the negative consequences of demographic and 

environmental stochasticity may represent the dominant conservation priority for self-

compatible species.   
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OBJECTIVES 

 The primary objective of my research was to evaluate the evolutionary 

distinctiveness of the federally listed plant species Agalinis acuta Pennell 

(Orobanchaceae), which is native to eastern North America where it is found on the 

coastal plain in eastern Massachusetts, Rhode Island, Connecticut, New York, and the 

piedmont in Maryland.  The species was listed as endangered in 1987 due to conversion 

of its grassland habitat to agricultural, residential, and commercial uses, which were also 

cited as the most serious threats to the persistence of the species (U. S. Fish and Wildlife 

Service 1988). Vegetation succession to closed-canopy forest has also caused habitat loss 

and is a continuing threat at all remaining sites (U. S. Fish and Wildlife Service 1988).  

However, due to morphological and molecular similarity with putative heterospecific 

individuals (Neel & Cummings 2004; U.S. Fish and Wildlife Service 1989b), resolving 

taxonomic uncertainty became a major objective since a species is assumed to be 

evolutionarily distinct upon being listed under the Endangered Species Act.   

My strategy for accomplishing this primary objective was to begin with conducting a 

phylogenetic analysis of multiple individuals from the majority of North American 

Agalinis species.  Through the phylogenetic analysis I was able to assess whether putative 

A. acuta individuals exhibited the expected criteria of genealogical exclusivity.  The 

dense sampling design allowed me to determine the level of differentiation that supports 

the taxonomic status of other species within the genus and identify the species from 

which A. acuta may not be evolutionarily distinct.  The next step was to conduct analyses 

using microsatellite loci and morphological data assayed from multiple individuals from 

a number of populations representing each of the species with which A. acuta was 
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polyphyletic.  A conclusion was then made regarding the taxonomic status and rank of A. 

acuta by considering the results from the analyses of multiple sources of data in light of 

numerous species concepts and delimitation methods.   

In addition to identifying the taxonomic status of A. acuta, I conducted studies within 

the realms of DNA barcoding, phylogeography, and conservation genetics.  A brief 

description follows of the studies that were conducted to elucidate the evolutionary 

relationships and conservation concerns of A. acuta. 

1. A phylogenetic hypothesis was constructed based on molecular DNA 

sequence variation assayed from putative A. acuta individuals and an 

additional 28 congeneric species, all but two of which were represented by 

more than one accession.  The purpose of the phylogenetic study was to test 

section and subsection levels of classification within the genus and provide a 

measure of differentiation that is characteristic within and among Agalinis 

species.  The phylogenetic study also was used to identify the species from 

which A. acuta may not be distinct based on the criteria of genealogical 

exclusivity.   

2. Based on the results from the phylogenetic study and other sources 

suggesting taxonomic uncertainty, the purpose my second chapter was to 

analyze DNA sequence, microsatellite, and morphological variation sampled 

from putative individuals of A. acuta, A. decemloba, A. obtusifolia, A. 

skinneriana, and A. tenella.  To determine the taxonomic status and rank of 

those putative species, the results were considered in light of multiple species 
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concepts.  The conservation status of the taxon that would include A. acuta is 

also discussed. 

3. The purpose of my third chapter was to evaluate the efficacy of DNA 

barcoding in correctly identifying closely related species.  Specifically, I 

conducted a DNA barcoding study to assess the utility of seven chloroplast 

loci and three analytical techniques (i.e., genetic distance, tree-based, and 

diagnostic characters) in discriminating among sequences that represent 29 

congeneric species, 27 of which were represented by multiple accessions.  

The results highlight the issues of inaccurate taxonomy and incomplete 

lineage sorting of ancestral polymorphisms, which will decrease the efficacy 

of DNA barcoding and are most likely to be of concern when closely related 

species are considered.  The application of DNA barcoding to conservation 

biology is also discussed. 

4. The primary objective of my fourth chapter was to differentiate among 

alternative phylogeographic hypotheses in explaining the distribution and 

relationships among populations of the species that includes individuals that 

were what were historically ascribed to Agalinis acuta.  In addition to 

historical processes related to the Pleistocene, I also considered whether more 

contemporaneous events associated with anthropogenic activities that have 

increased the degree habitat fragmentation and isolation among populations 

could explain extant patterns.   

5. The goal of my fifth chapter was to evaluate the conservation implications of 

population genetic analyses based on microsatellite variation assayed from 
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individuals of the taxon that includes A. acuta.  A range exists among the 

populations in the estimates of population genetic parameters, some of which 

are quite extreme and suggest that individuals within those populations are 

suffering a reduction in fitness due to genetic factors.  I also discuss the 

extent to which patterns of genetic diversity may be explained by the species 

life history characteristics and, therefore, might not be indicative of genetic 

factors having a detrimental effect on fitness.   
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CHAPTER 1: PHYLOGENETIC PATTERNS AND CONSERVATION AMONG 

NORTH AMERICAN MEMBERS OF THE GENUS AGALINIS 

(OROBANCHACEAE) 

ABSTRACT 

North American Agalinis Raf. species represent a taxonomically challenging group and 

there have been extensive historical revisions at the species, section, and subsection 

levels of classification. The genus contains many rare species, including the federally 

listed endangered species Agalinis acuta.  In addition to evaluating the degree to which 

historical classifications at the section and subsection levels are supported by molecular 

data sampled from 79 individuals representing 29 Agalinis species, we assessed the 

monophyly of 27 species by sampling multiple individuals representing different 

populations of those species.  Twenty-one of these species are of conservation concern in 

at least some part of their range.  Phylogenetic relationships estimated using maximum 

likelihood analyses of seven chloroplast DNA loci (aligned length = 11 076 base pairs 

(bp) and the nuclear ribosomal DNA ITS (internal transcribed spacer) locus (733 bp); 

indicated no support for the historically recognized sections except for Section Erectae.  

Our results suggest that North American members of the genus comprise six major 

lineages, however we were not able to resolve branching order among many of these 

lineages. .  The North American Agalinis species sampled form a well supported, 

monophyletic group within the family Orobanchaceae relative to the outgroups sampled.  

Monophyly of 24 of the 29 sampled species was supported based on significant branch 

lengths of and high bootstrap support for subtending branches.  Lack of support for 

monophyly of Agalinis acuta leaves the important question regarding its taxonomic status 
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unanswered.  Lack of resolution is potentially due to incomplete lineage sorting of 

ancestral polymorphisms among recently diverged species; however the gene regions 

examined did distinguish among almost all other species in the genus. Due to the 

important policy implications of this finding we are further evaluating the evolutionary 

distinctiveness of A. acuta using morphological data and loci with higher mutation rates.  
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INTRODUCTION 

 The increase in use of molecular systematics in studies of angiosperm evolution has 

resulted in numerous phylogenies describing relationships across a range of evolutionary 

history (Soltis 2000). Studies of closely related species (Beardsley et al. 2004) are 

particularly important for filling in the tips on the angiosperm tree of life (Palmer et al. 

2004). Phylogenetic hypotheses of the evolutionary relationships among members of the 

same genus provide frameworks for comparative research on mechanisms of 

diversification and speciation (Barraclough & Nee 2001). These phylogenies are also 

valuable resources for people concerned with conservation in that they provide a 

relatively objective means of quantifying evolutionary distinctiveness and resolving 

taxonomic ambiguities involving rare taxa (Andreasen 2005; Crandall et al. 2000; Fallon 

2007; Soltis & Gitzendanner 1999). It is this application to identifying lineages that are 

sufficiently distinct to warrant taxonomic status and thus are eligible for legal protection 

(i.e., species, subspecies, and varieties) that greatly interests us. 

A basic assumption of many species concepts (e.g. Baum & Shaw 1995; Donoghue 

1985; Mallett 1995; Sokal & Crovello 1970; e.g. Wu 2001) and operational species 

delimitation methods (Sites & Marshall 2004) is that individuals of one species share 

common ancestry to the exclusion of members of other species. This shared common 

ancestry, which is a logical consequence of reproductive isolation between two groups, is 

expected to ultimately be reflected by genealogical exclusivity or monophyletic 

relationships inferred from phylogenetic analysis of DNA sequence or fragment data 

(Baum & Shaw 1995). However, the rapidly accumulating phylogenies of congeneric 

taxa with mismatches between gene trees and an expected species tree (Funk & Omland 
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2003; Syring et al. 2007) is yielding a startling picture of the extent to which the 

expectation of monophyly is not met. Such mismatches can indicate imperfect taxonomy, 

lack of sufficient variation to detect differentiation, incomplete lineage sorting of shared 

ancestral polymorphisms, or contemporary hybridization or introgression. The amount of 

evolutionary time required for mutations to accumulate and for shared ancestral 

polymorphisms to sort out after speciation events (Hudson & Coyne 2002; Tajima 1983; 

Takahata 1989) can make distinguishing among recently diverged taxa quite challenging. 

Coalescent theory predicts that it will take on the order of ~8.7 Ne generations for 

reciprocal monophyly of neutral, biparentally inherited loci to evolve in diverging 

lineages (Hudson & Coyne 2002; Rosenberg 2003). Thus, although the degree and 

duration of isolation necessary to achieve monophyly (especially across multiple loci) 

guarantees the evolutionary independence of monophyletic operational taxonomic units, 

absence of evidence for such independence, however, cannot automatically be assumed 

to mean that two entities are not reproductively isolated (Knowles & Carstens 2007). In 

these cases, additional evidence will be required to resolve ambiguities. 

In this study, we examined phylogenetic relationships among 29 North American 

Agalinis (Raf.) species. This genus of flowering plants is restricted to the Western 

Hemisphere where approximately 40 species occur in the eastern and central United 

States and Canada and approximately 30 species are found in South America, Mexico, 

and Central America (Canne-Hilliker 1988; Missouri Botanical Garden 2007; Pennell 

1928, 1929, 1935; USDA NRCS 2008). Due to taxonomic uncertainties, the exact 

number of species in the genus is unclear; acceptance of particular taxa varies across 

authors and taxonomic revision is in progress. Historically, Agalinis was considered to be 
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part of the family Scrophulariaceae but multiple phylogenetic analyses support placement 

in the family Orobanchaceae (dePamphilis et al. 1997; Olmstead et al. 2001; Olmstead & 

Reeves 1995). This plant family was traditionally associated with holoparasitism; 

however the broadened concept includes a number of autotrophic genera, such as 

Agalinis, that are hemiparasitic. 

The majority of North American Agalinis species grow on the coastal plains of 

southern and southeastern North America. A secondary concentration of species occurs in 

the midwestern part of the continent and an even smaller number of species extend to the 

piedmont and to the coastal plains of the Mid-Atlantic, New England and the southern 

reaches of the Maritime Provinces in Canada (Pennell 1913a, 1913b, 1928, 1929, 1935). 

Throughout this geographic range, habitats occupied by Agalinis species are typically 

grasslands and savannas, grassy openings in woodlands and forests, or other herb 

dominated habitats. Soil moisture requirements vary greatly across taxa, ranging from 

inundated wetlands (including bogs, streams, ponds, and salt marshes), to wetland edges, 

to dry uplands. Because Agalinis species thrive in relatively open sites with no or low 

cover of shrubs and trees, many of them are found in early successional habitats and are 

most abundant following fire or other disturbance events. Due to overall declining trends 

in grassland extent and condition resulting from both development and lack of natural 

disturbance, a number of Agalinis species are increasingly restricted to forest edges and 

anthropogenically maintained openings such as utility corridors, and road verges. 

Although the more ruderal species can be extremely abundant and widespread in these 

highly modified habitats, our observation indicated that some less abundant and more 

geographically restricted species are susceptible to mowing during the reproductive 
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season, insufficient disturbance to remove woody vegetation, herbicide applications, and 

invasions of aggressively competitive non-native species. 

General characteristics of the genus Agalinis include membranaceous, ephemeral 

corollas mostly with red-purple spots and yellow guide lines and wingless seeds that have 

variously reticulate seed coats (Canne 1979, 1980; Pennell 1929, 1935). Beyond the 

above characteristics, life form, morphology, anatomy, and floral form and color are 

variable, particularly in South American taxa. Unfortunately, relationships among the 

South American taxa are poorly understood, they are not included in any published 

classification schemes for the genus, and we were unable to obtain material to include 

them in this work. With exception of the perennial species A. linifolia, all North 

American species are annual herbs and all but three species (A. auriculata, A. densiflora, 

and A. heterophylla) have linear to filiform or scale-like leaves. Although mating systems 

have not been described for all members of the genus, the species that have been 

investigated include obligate outcrossing (A. strictifolia (Dieringer 1991)), mixed mating 

(A. acuta (Neel 2002), A. skinneriana (Dieringer 1999), A. obtusifolia (Snider 1969), A. 

decemloba (Snider 1969), and A. auriculata (Mulvaney et al. 2004)), and predominantly 

selfing due to cleistogamy (A. neoscotica (Stewart et al. 1996)). 

The genus is taxonomically difficult and there have been numerous revisions of 

species and subspecies. In addition to taxonomic uncertainties, relationships among 

Agalinis species have been enigmatic and section-level classifications have been anything 

but stable. Pennell (1929) originally suggested five sections within the genus but later 

suggested only three sections with five subsections (Pennell 1935). Work based on seed, 

stem and leaf, and seedling characteristics as well as karyotypes (Canne-Hilliker 1987; 
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Canne-Hilliker & Kampny 1991; Canne 1979, 1981, 1983, 1984; Stewart & Canne-

Hilliker 1998) yielded revisions to Pennell’s classification that recognized five sections 

(Erectae, Heterophyllae, Linifolieae, Purpureae, and Tenuifolieae) and three subsections 

within the Purpureae (Pedunculares, Purpureae, and Setaceae). Previous phylogenetic 

analysis of 15 Agalinis species based on 7323 aligned bp of nucleotide sequence variation 

at three cpDNA loci (rbcL, ndhF, and matK) (Neel & Cummings 2004) did not fully 

support either Pennell’s or Canne-Hilliker’s section-level classifications, although one 

section and some subsections suggested by Canne-Hilliker appeared to represent natural 

groups. Specifically, monophyly of Section Erectae was supported but Sections 

Purpureae and Heterophyllae were polyphyletic. Subsection Pedunculares was 

monophyletic but did not appear to be related to other Section Purpureae taxa as had been 

presumed. Limited taxon sampling and relatively low cpDNA sequence variation in that 

study prevented more thorough evaluation of relationships among Sections Linifoliae and 

Tenuifolieae and other subsections within the Purpureae.  

In the present study, we provide a more comprehensive phylogenetic treatment of the 

genus by examining 29 North American Agalinis species using 7 cpDNA loci and 1 

nuclear locus. Our specific objectives included simultaneously evaluating the monophyly 

of sections, subsections, and species that have been named solely based on anatomy and 

morphology. Every polytypic section and subsection is represented by multiple species 

and 27 species are represented by multiple individuals. In contrast to traditional sampling 

approaches in systematics studies that include only one representative per species (Syring 

et al. 2007; Wiens & Servedio 2000), we were able to treat species labels as testable 

hypotheses (Baum 1998). The extensive sampling also provides a genus-wide context in 
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which to evaluate the amounts and patterns of divergence among putative species that can 

be detected using the loci we sampled. This context is particularly critical for interpreting 

cases in which we fail to detect differentiation. 

In addition to describing the evolutionary relationships among the sampled 

individuals, this study has important implications for conservation. We sampled 21 

species that are considered imperiled (S2) or critically imperiled (S1) in at least 1 state in 

which they occur; 6 of these species are also globally vulnerable (G3 or G3-G4) and 3 are 

critically imperiled (G1) (Table 1.1; NatureServe 2007). Data on the divergence of and 

relationships among such a large number of species of conservation concern can help 

prioritize rare species for conservation (Moritz 1995; Redding & Mooers 2006) by 

estimating their degree of uniqueness within the genus. We were specifically interested in 

addressing questions regarding the taxonomic status of three sets of species whose 

distinctiveness from one another and thus conservation status had previously been 

questioned: A. acuta and A. tenella, A. tenella and A. obtusifolia, A. decemloba and A. 

obtusifolia. The status of A. acuta has been questioned previously and Neel and 

Cummings (2004) found only a single nucleotide difference between A. acuta and A. 

tenella across 4048 bp of cpDNA that included rbcL and matK. Agalinis acuta occurs on 

the coastal plain in eastern Massachusetts; Rhode Island; on Long Island, New York; and 

in Maryland. Agalinis tenella occurs on the coastal plain from South Carolina south to 

Florida and west to Alabama (Pennell 1935). Morphologically, A. acuta is distinguished 

from A. tenella by having a shorter corolla, smaller seeds, and shorter pedicels (Pennell 

1935). We were interested in the other two sets of species because the current taxonomic 

treatment in the USDA PLANTS database (USDA NRCS 2008) suggests that A. tenella 
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and A. decemloba are synonymous with A. obtusifolia (Kartesz 1999). If this taxonomic 

treatment is accurate and A. acuta is also not distinguishable, combining all four taxa 

would be appropriate and there would be important conservation policy consequences. As 

originally described, A. decemloba grows on the piedmont in Virginia, North Carolina, 

and South Carolina (Pennell 1929, 1935). Agalinis obtusifolia is known from collections 

from Maryland south to Florida and then west through Georgia to Louisiana on both the 

piedmont and the coastal plain. Clarifying the taxonomic status of A. acuta (U. S. Fish 

and Wildlife Service 1988) is essential because if it is not a species, subspecies, or variety 

it is not eligible for listing under the U.S. Endangered Species Act (U.S.C. 1973). If it is 

synonymous with other species, the status of A. acuta would need to be revised based on 

the distribution, abundances, and threats of the populations representing those other 

species. 

METHODS 

Taxon sampling 

A total of 79 individuals representing 29 out of the ~40 putative North American 

Agalinis species were included in this study (Table 1.1). The sampled species represented 

all North American sections and subsections and all polytypic groups were represented 

by more than one species. The number of individuals per species ranged from 1-9 and 

when multiple individuals were used, they were from different populations. Sample 

locations for most species were selected somewhat opportunistically and often coincided 

with locations sampled for anatomical and morphological work by Dr. J. Canne-Hilliker. 

We attempted to include samples from geographically distinct locations for each species 

in order to capture the potential range of within-species variation (Appendix A). Samples 
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of A. acuta represent all geographic regions from which this species is known, and 

include most extant populations (Appendix A). Samples of A. obtusifolia and A. tenella 

were also distributed to represent the range of each species (Appendix A). The two A. 

decemloba populations were from the north central portion of the range. One 

representative of each of four outgroup species was also sampled: Aureolaria pedicularia 

(L) Raf., Aureolaria pectinata (L) Raf., Brachystigma wrightii (A. Gray) Pennell, and 

Dasistoma macrophylla (Nutt.) Raf. Fifteen of the Agalinis individuals and three of the 

four outgroup individuals were the same as those used in the previous phylogenetic study 

of the genus and related genera (Aureolaria pectinata is new and Seymeria pectinata 

Pursh was not included) (Neel & Cummings 2004). Vouchers are located at University of 

Guelph, University of Maryland, Iowa State University, and University of Texas Austin. 

Specific information on the location of particular specimens is available on request. We 

did not collect voucher specimens from the endangered A. acuta because these 

populations are well documented by state Natural Heritage Programs and the U.S. Fish 

and Wildlife Service. 

DNA isolation, amplification, and sequencing 

Total genomic DNA was isolated from fresh or frozen (-80°C) leaves and flower 

buds by grinding 50-100 mg of tissue to powder in liquid nitrogen with a mortar and 

pestle, and then using GenElute Plant Genomic DNA Kits (Sigma Chemical Company, 

St. Louis, Missouri, USA) or Qiagen DNEasy Kits (Qiagen Corporation, Valencia, 

California USA) following manufacturer’s instructions.  

We analyzed sequences from seven chloroplast gene regions (matK, rbcL, ndhF, 

trnT (UGU)-trnF (GAA), rps2, rpoB, and psbA-trnH) and the nuclear DNA (nDNA) 
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locus ITS (18S-5.8S-26S). The first three cpDNA loci were used in the previously 

mentioned study (Neel & Cummings 2004) and they represent relatively slowly evolving 

portions of the chloroplast genome. Although there is rate variation among sites within 

these loci (Neel & Cummings 2004) that inform different levels of the phylogeny, they 

are most useful for resolving more ancestral relationships. The other chloroplast loci and 

the nuclear ITS locus were chosen because they have been shown to be informative at 

distinguishing among recently diverged taxa and even among populations within species 

(Baldwin 2007; Shaw et al. 2005; Small et al. 1998). Our strategy was to assay rbcL and 

matK from at least one individual of each species to resolve the deeper relationships 

within the genus. We then attempted to sequence the other five loci from all sampled 

individuals. All but two of these loci were amplified using a single forward and reverse 

primer pair. The exceptions were trnT-trnF which required two PCR reactions per 

individual using trnT-a/trnL-d and trnL-c/trnF-f (Taberlet et al. 1991). The rps2 locus 

was problematic for certain species but amplifications using the alternative forward 

primer rps2-47F, instead of rps2-18F, were successful. Details of amplification and 

sequencing for rbcL and matK are given in Neel and Cummings (2004). In previous work 

ndhF was extremely difficult to amplify from a number of Agalinis species and although 

we did not pursue additional ndhF sequences, we used the ones available from Neel and 

Cummings (2004) in our analysis. 

Despite the well documented problems with using ITS for phylogenetic analyses, 

due to high copy number and difficulty optimizing PCR (e.g., Alvarez & Wendel 2003), 

we reliably obtained sequences using two primer pairs (ITS4 and ITS5 or ITS1 and 

ITS4). These primers did yield multiple PCR products and attempts to design species-
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specific primers for these taxa did not sufficiently reduce the number of copies. We 

therefore extracted the desired PCR product, (identified as the brightest band nearest to 

the target size), from an agarose gel using Qiagen's QIAquick Gel Extraction Kit 

according to the manufacturer’s protocol. Inspection of the sequence trace curves 

confirmed that only a single copy had been sequenced.  

All polymerase chain reactions (PCR) were done with Eppendorf MasterTaq PCR 

kits (Brinkman, Westbury, New York, USA) on MJ Research PTC-200 Thermal Cyclers. 

In general, the PCR temperature profile was 30 cycles of 94°C for 60 s, annealing 

temperature set approximately 5°C below the lower of the two primer melting 

temperatures for 90 s, 72°C for 150 s, and a final 15 min elongation period at 72°C. 

Amplified DNA fragments were purified using the Qiagen QIAQuick PCR Purification 

Kit according to manufacturer's instructions, unless noted otherwise. 

Because many of the individuals and species we investigated were closely related 

and thus sequence variation was likely to be low, four replicate sequencing reactions 

were carried out for both forward and reverse primers for a given locus, resulting in 

eight-fold coverage across most regions of all loci. This conservative sequencing strategy 

ensured accuracy and prevented erroneous base calls associated with sequencing error 

that can cause serious issues when only single sequences are analyzed. Sequencing 

reactions were conducted with BigDye Terminator v3.1 Cycle Sequencing chemistry 

(Applied Biosystems, Foster City, California, USA) with reactions set up in 96-well 

microtiter plates. Total reaction volume was 7 µl (1-3 µl DNA template, 1.5 µl 5X 

Sequencing Buffer, 1 µl primer [25 µM], 0.5 µl BigDye Terminator, and 1-3 µl ddH2O). 

Cycle sequencing of purified PCR product was performed on an MJ Research PTC-200 
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Thermal Cycler and subsequent cleanup and preparation for sequencing was performed 

according to the manufacturer's protocol.  

Data analysis 

The program Sequencher v4.6 (Gene Codes Corporation, Ann Arbor, Michigan, 

USA) was used for base calling, quality assignments, and assembling consensus 

sequences for each sample from the replicate bi-directional sequence reads. Contigs for 

each locus exported from Sequencher were aligned using the default settings of 

MUSCLE (Edgar 2004b). BioEdit (Hall 1999) was used to manually edit alignments of 

the cpDNA loci rps2, trnT-trnF, and psbA-trnH which had numerous 

insertions/deletions. Alignments were exported as FASTA files and then converted to 

non-interleaved NEXUS files using MacClade v4.06 (Maddison & Maddison 2001). 

Three different data matrices were created: 1) cpDNA only, 2) nuclear ITS sequences 

only, and 3) a concatenation of all sequences.  

To evaluate the variability of each locus, we calculated the number of characters that 

were constant, parsimony informative, and autapomorphic using the default parsimony 

settings in PAUP* (Swofford 2003). We also estimated the maximum likelihood pairwise 

distances between sampled individuals within and among Agalinis species for each locus 

separately. Nucleotide substitution model parameters for the maximum likelihood 

distance measures were chosen using MODELTEST (Posada & Crandall 1998). 

MODELTEST evaluates the likelihood scores of the same neighbor-joining tree for each 

of the 56 nucleotide substitution models calculated using PAUP* and the best fitting 

model was chosen using Akaike’s Information Criterion (AIC).  
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Phylogenetic analyses were performed using the program GARLI v0.951 (Genetic 

Algorithm for Rapid Likelihood Inference) (Zwickl 2006). GARLI performs heuristic 

phylogenetic searches under the GTR + Γ + I (General Time Reversible with Gamma 

distributed rate heterogeneity and a proportion of invariant sites (Gu et al. 1995; Yang 

1994)) nucleotide substitution model where topologies are evaluated based on their 

likelihood. The program calculates the maximum likelihood of a topology in the same 

manner as PAUP* but uses a genetic algorithm (Lewis 1998) to more efficiently evaluate 

alternative topologies. For each dataset, the best tree was found by running GARLI on the 

original data matrix with the default settings. We used likelihood ratio tests as 

implemented in PAUP* to assess whether branch lengths associated with the best 

topology inferred with GARLI were significantly greater than zero. To estimate the 

support for each node, phylogenies were created for 1000 bootstrap replicates of each 

dataset. A 50% majority rule consensus tree of the 1000 bootstrap replicates from GARLI 

was then created using PAUP*. The support values at each node on the consensus tree 

were added to the best tree found by GARLI, which allowed us to display both node 

support values and branch lengths. 

To decrease the computational time required to complete the bootstrap replicates we 

reduced the number of generations that were performed without finding a better scoring 

topology before a replicate was terminated from 10 000 to 5000. To complete the 

bootstrap analyses for the cpDNA and all loci combined datasets in a relatively short time 

we used Grid computing through The Lattice Project (Bazinet & Cummings in press). 

The GARLI executable was converted to a Grid service such that batches of bootstrap 

replicates were distributed among hundreds of computers where they were conducted 
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asynchronously in parallel (Bazinet et al. 2007). The 1000 bootstrap replicates for the 

smaller ITS dataset were accomplished on a single desktop computer.  

We used the approximately unbiased (AU) test (Shimodaira 2002) as implemented in 

the program CONSEL (Shimodaira & Hasegawa 2001) to evaluate whether a tree that 

constrained both A. acuta and A. tenella to be monophyletic was significantly worse than 

the best tree from an unconstrained analysis using the same data set. We repeated this test 

for each of the three data matrices. The AU test calculates a probability value of different 

topologies from bootstrap replicates of the site-likelihoods (Shimodaira 2002). We also 

used the AU test to determine the influence of missing data on phylogenies inferred from 

the cpDNA and ITS datasets and to assess the degree of congruence between the 

phylogeny based on cpDNA loci and the phylogeny based on the complete data set. It is 

not possible to directly assess the incongruence between the topologies from the 

concatenated cpDNA dataset and the ITS locus because the data matrices differed in the 

number of individuals. However, given that the cpDNA dataset and the all-loci-combined 

dataset differed only in the inclusion of ITS, we used the AU test to compare these two 

topologies as a means to estimate the incongruence with the cpDNA phylogeny 

introduced by the ITS locus.  

RESULTS AND DISCUSSION 

Characteristics of the sampled loci 

Despite extensive efforts, it was not possible to obtain sequences of all loci for all 

species (Table 1.2 & Appendix A). Total aligned length of the cpDNA dataset was 11 076 

bp and the total aligned length for ITS was 733 bp including only a few small (tri- or 
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tetranucleotide) insertions. The aligned concatenated dataset of ITS and the 7 cpDNA 

loci was 11 809 bp (Table 1.2).  

The percent of constant characters among Agalinis species varied from 68.76% - 

93.95% for ITS and ndhF respectively (Table 1.2). After ndhF, rbcL had the largest 

percentage of constant characters (90.53%). The number of parsimony informative sites 

for individual loci ranged from 52 (rpoB) to 320 (trnT-trnF) (Table 1.2). ITS exhibited 

the widest range of pair-wise maximum likelihood distances among species within the 

genus, ranging from 0.14% - 21.26%. The most conserved locus was rbcL with pairwise 

distances among Agalinis species ranging from 0 - 3.07% and averaging 1.07%; psbA-

trnH had the largest range of among-species pairwise maximum likelihood distance of all 

the cpDNA loci, ranging from 0 - 20.50% and averaging 7.75% (Table 1.2). 

Levels of variation we observed were similar to those found in other phylogenetic 

studies of congeneric species. The extensive length variation we observed in trnT-trnF 

(shortest sequence length of 1228 bp compared to the length of the alignment of 1868 bp) 

has also been observed within the confamilial genus Pedicularis (Yang & Wang 2007). A 

study of Mimulus (Phrymaceae) (Beardsley et al. 2004) in which only the trnL-trnF 

portion of trnT-trnF was sampled found a similar degree of variability expressed as the 

percent of parsimony informative characters (20.7% compared to 17.13% observed in 

this study). In Lymania (Bromeliaceae) 577 of 602 (96%) bases of psbA-trnH were 

constant (de Oliveira et al. 2007) compared to 669 of 884 (75.68%) constant characters 

within this study. The maximum level of variation we observed at the nuclear ITS locus 

(ML distance = 21.26%) is similar to that found in other genera within the 
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Orobanchaceae (Pedicularis (Yang et al. 2003) and Orobanche (Schneeweiss et al. 

2004)).  

General phylogenetic hypotheses 

The phylogenies inferred from the three data matrices differed in tree shape and 

support for specific relationships (Figs 1.1 - 1.3). Results of the AU test (Shimodaira 

2002) suggested that topologies derived from the cpDNA and the complete data set (Figs. 

1.1 & 1.3) were significantly different from one another (P < 0.05). To rule out the 

possibility that samples missing from the ITS dataset (Appendix A) were causing some of 

the incongruence with the cpDNA phylogeny a reduced data matrix of the cpDNA loci 

was created that included only those samples also present in the ITS dataset. Results of 

the AU test (P < 0.05), indicated that the resulting topology (data not shown) was similar 

to the one from the complete cpDNA dataset, suggesting that missing individuals are not 

responsible for the incongruence between the nuclear and chloroplast DNA datasets.   

Incongruences between phylogenies based on nDNA and cpDNA are not uncommon 

(e.g., Baumel et al. 2002; e.g., Levin et al. 2004; Soltis & Kuzoff 1995) and can indicate 

specific biological processes in species evolution. For example, hybridization has often 

been posited as an explanation for incongruence (Holder et al. 2001; Kimball et al. 2003). 

Alternatively, differences between the topologies might simply reflect the stochastic 

nature of the coalescent process (Kaplan et al. 1988). The lack of bootstrap support for 

many of the internal nodes on the phylogenies (particularly those on the phylogeny 

inferred with the ITS dataset) prevent us from making strong statements regarding the 

meaning of the incongruences. Our discussion of relationships among putative taxa relies 

primarily on the full and chloroplast data sets because they tended to provide better 



27 
 

  

support for inferred relationships. We point out specific instances where the estimates of 

relationships are different and well supported in the ITS data set. 

All three topologies we examined provided strong statistical support for the 

monophyly of the sampled Agalinis species relative to the sampled outgroup species. 

Species now recognized as Agalinis have variously been included in the genera Gerardia, 

Tomanthera, and Virgularia. Gerardia had previously been applied to another taxon and 

the name was abandoned in favor of Agalinis (Pennell 1913a); Tomanthera and 

Virgularia are now synonymous with Agalinis. Aureolaria, Brachystigma, Dasistoma, 

Seymeria, and Esterhazya are considered close allies and at times have been considered 

congeneric with Agalinis (Pennell 1929; 1935). Morphological evidence suggested 

Agalinis was a distinct genus from Brachystigma and Aureolaria (Canne 1980), which 

our results clearly support. Phylogenetic analysis of the Orobanchaceae based on a single 

locus (phytochrome A) (Bennett & Mathews 2006) indicates that the South American 

genus Esterhazya may be more closely related to Agalinis than are Aureolaria or 

Seymeria. South American species of Agalinis have not been included in any systematic 

studies and the only publicly available sequence from Esterhazya represents a locus we 

did not sample (Bennett & Mathews 2006). Sampling additional Esterhazya species and 

South American Agalinis species will be essential to fully understanding evolutionary 

relationships in this group as a whole and to confirm the monophyly of the genus.  

Section-level hypotheses 

Agalinis linifolia is the only perennial Agalinis species in North America and has 

additional distinguishing characters that have resulted in placement in its own monotypic 

section (Table 1.1) that has been suggested to be basal to the rest of the species. The 
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unique ensemble of traits includes the type of thickenings on the inner walls of the seed 

coat cells (Canne 1979), lack of yellow lines on the corolla, dense pubescence at the 

bases of the posterior corolla lobes, presence of aerenchyma in stems, conspicuous 

endodermis in roots, and palisade tissue in leaves that is developed more strongly towards 

the lower surface (Pennell 1929). Monophyly of A. linifolia was supported; however, its 

placement within the genus remains ambiguous due to lack of support for surrounding 

nodes in all trees (Figs. 1.1 - 1.3). Despite this ambiguity, there is no evidence that this 

taxon is basal because it is placed within a relatively derived clade that is well supported. 

Further, a tree placing A. linifolia as basal had a significantly worse likelihood score than 

the best tree from the unconstrained analyses (P < 0.05). Thus, the perennial growth habit 

appears to be derived within this genus of otherwise annual species. 

Members of Section Heterophyllae have also been suggested to be basal within the 

genus based on having relatively large, broad, lanceolate leaves; leaf-like calyx lobes that 

are longer than the calyx tube; oblong or ovoid-oblong capsules, and glabrous stems 

(Pennell 1935). In particular, Pennell (1935) suggested that A. auriculata most closely 

resembled the ancestral state of the genus based on also having relatively large corollas 

with pubescence limited to the area below the posterior sinus, and having posterior anther 

cells that are smaller than the anterior cells in addition to the characters described above 

(Pennell 1929). Diagnostic aspects of leaf anatomy include thickened epidermal cell 

walls, bands of sclerids and fibers between the cortex and phloem, patterns of the 

subepidermal collenchyma on the leaf midribs, and lack of specialized trichomes (Canne-

Hilliker & Kampny 1991; Canne 1984). We found only two of the three species 

hypothesized to comprise this section (A. heterophylla and A. calycina) to be 
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monophyletic, and this well supported clade is indeed basal within the genus in the 

cpDNA and full data sets. Of these two species, we could obtain ITS sequence only for A. 

heterophylla, which was placed sister to the Subsection Pedunculares clade, but with low 

bootstrap support. The third species, A. auriculata, is not closely related to this group in 

any of the trees (Figs. 1.1 – 1.3). Agalinis auriculata was known to differ from A. 

heterophylla in leaf and stem pubescence (Canne-Hilliker & Kampny 1991), and the 

perceived importance of differences suggested by those features are supported by our 

molecular data (Figs. 1.1 - 1.3). 

Section Tenuifolieae has long been taxonomically problematic (Canne-Hilliker & 

Kampny 1991). Pennell (1929) united Agalinis tenuifolia, A. divaricata and A. filicaulis 

in this section based on lack of pubescence on the posterior corolla and upper corolla 

lobes being arched forward rather than erect or reflexed back as is seen in the rest of the 

genus. Canne-Hilliker and Kampny (1991) placed A. tenuifolia in Section Purpureae 

based on morphological and anatomical features, while retaining A. divaricata and A. 

filicaulis in Section Tenuifolieae. Most obviously, the upper corolla lobes in A. divaricata 

and A. filicaulis are less than 1/3 the length of the lower lobes and the corolla is greatly 

flattened, occluding the opening to the throat. In contrast, the upper corolla lobes of A. 

tenuifolia are more equal in length to the lower lobes and the corolla throat is closer to 

round in cross section. Agalinis divaricata and A. filicaulis also share peculiar seedling 

and trichome types (Canne 1983) and stem anatomy (Canne-Hilliker & Kampny 1991) 

that are not similar to any other Agalinis species and thus their placement has been 

challenging. High bootstrap support and the relatively long branch length supporting this 

clade in both the cpDNA and nDNA trees (Figs. 1.1 & 1.2) strongly support a sister 



30 
 

  

relationship between A. divaricata and A. filicaulis. At the same time, branch lengths 

separating these two species are the longest of any sister-taxon pairs in the data set (Fig. 

1.3). Relationships of this clade to other members of the genus depicted in the cpDNA 

tree conflict with those in the ITS tree. The cpDNA sequence data indicate that the most 

likely placement of the A. divaricata/A. filicaulis clade is sister to a clade including 

Section Purpureae (Fig. 1), and in the phylogenies from the ITS and the full data set these 

species have a more basal placement within the genus (Figs. 1.2 & 1.3).  

Relationships of A. tenuifolia to other taxa are ambiguous; the cpDNA phylogeny 

supports a sister relationship of A. tenuifolia with all Agalinis species except the A. 

heterophylla/A. calycina clade (bootstrap support = 100%) (Fig. 1.1). Phylogenies based 

on the ITS and full data sets indicate an alliance with A. maritima and A. gattingeri 

(bootstrap support = 84%) (Figs. 1.2 & 1.3). In no case, however, does this species 

appear to be closely related to A. divaricata and A. filicaulis. 

With the exception of A. gattingeri, which is found within the clade discussed above, 

the monophyly of Section Erectae is strongly supported in the full data tree (bootstrap 

support = 95%) (Fig. 1.3). This section is united by the following genetic, anatomical, 

and morphological characters: chromosome number of n = 13 (Canne 1984), yellow-

green colored foliage that does not blacken upon drying, small flowers that have 

relatively short corolla tubes and reflexed corolla lobes, pedicels longer than the calyx 

tube and light brown seeds (Canne-Hilliker & Kampny 1991; Canne 1979). Lack of 

blackening upon drying is thought to be due to low concentrations of aucubosides (Snider 

1969) that are at higher concentrations in other members of the genus. Placement of A. 

gattingeri apart from other members of the Erectae is problematic because it contradicts 
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evidence that suggests close evolutionary relationships based on chromosome number 

(Canne 1981) and the unique seed type (Canne 1979) shared by other members of the 

section. However, A. gattingeri was always considered peripheral within Section Erectae 

due to its lack of anatomical features of the stem that are characteristic of the rest of the 

group (Canne 1984). Additional sampling is necessary to determine if this placement 

outside the Erectae is accurate or due to misidentification of the collections we sequenced 

or misinterpretation of the anatomical and morphological features. 

Section Purpureae as defined by both Canne-Hilliker and Pennell was the largest 

section in the genus and it has been considered to have 3-5 subsections. Members were 

united by having globose capsules, dark brown seeds, narrow leaves that turn black upon 

drying and calyx lobes that are shorter than the calyx tube. We found little support for 

any of the historical concepts of this section or the majority of the recognized subsections 

(Figs. 1.1 -1.3). Only Subsection Pedunculares appears to be a natural group (Figs. 1.1 & 

1.3); however, this subsection is sister to taxa comprising Section Erectae rather than to 

other taxa considered to be in the Purpureae. Subsection Pedunculares was considered to 

be distinct from the Erectae based on corolla form and pubescence patterns, seed color 

and surface patterns, and stem and leaf anatomy (Canne 1984). Neel and Cummings 

(2004) had previously suggested a sister relationship between the Pedunculares and the 

Erectae but their results were based on fewer species and the relationship did not have 

strong bootstrap support. Aligning the Pedunculares with the Erectae unites all the taxa 

with 13 chromosomes except A. gattingeri, which is placed with species considered to be 

in Section Purpureae. If not for the problematic placement of A. gattingeri, it would 
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appear that n = 14 was ancestral and the haploid chromosome number of 13 arose only 

once in the genus.  

We found no support for the monophyly of Subsections Purpureae or Setaceae and 

many nodes supporting members that have been recognized to comprise these groups 

have weak bootstrap support (Fig. 1.3). Thus, despite the fact that most species are 

separated by well supported branches with non-zero lengths (exceptions will be discussed 

below), higher level relationships among species remain unclear. We did, however, find 

support for some hypothesized relationships. For example, our data support close 

relationships of A. fasciculata, A. purpurea, and A. paupercula in all trees (Fig 1.3). We 

also found support for a sister relationship between A. setacea and A. plukenettii in the 

full data set (Fig. 1.3) that had previously been hypothesized based on both species 

having acute trichomes (Canne 1983). We found no support for a close relationship of A. 

laxa to these two taxa in the full data set but A. laxa and A. plukenettii were part of a 

poorly supported clade that also comprised the A. tenuifolia/A. gattingeri/A.maritima 

clade in the ITS tree. Although it had been classified with A. setacea and A. plukenettii in 

Subsection Setaceae, Agalinis laxa was known to differ in having capitate trichomes on 

the hypocotyls and lacking acute trichomes (Canne 1983).  

Overall, our results suggest that North American members of the genus comprise six 

major lineages, however we were not able to resolve branching order among many of 

these lineages. We propose that Section Heterophyllae consisting of A. calycina, A. 

heterophylla (and potentially A. densiflora but we did not sample this species) represents 

the basal group. Following the divergence of Section Heterophyllae, a rapid 

diversification resulted in five additional primary lineages. These lineages include one 
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comprising what have been considered Section Erectae and Subsection Pedunculares, two 

unrelated monospecific lineages (one comprising A. auriculata and the other A. linifolia), 

a fourth lineage corresponding roughly to Section Tenuifolieae, and a fifth consisting of 

the remaining taxa that have been included in Section Purpureae. We further recognize 

Section Erectae (sans A. gattingeri) and what was Subsection Pedunculares as distinct 

sister lineages that are relatively derived within the genus.  

One potential explanation for lack of bootstrap support for the more basal 

relationships in the genus is a rapid diversification of lineages (i.e., a hard polytomy) 

(e.g., Page & Holmes 1998). This explanation is also supported by presence of 

comparatively short branches towards the base of the phylogeny (Fig. 1.3). Alternatively 

our data may simply not be sufficient to determine the order of branching (i.e., a soft 

polytomy) (e.g., Page & Holmes 1998). Although there is the potential that sequencing 

additional nuclear loci may be able to resolve the branching order at interior nodes on the 

phylogeny, we believe that a soft polytomy seems unlikely given the amount of DNA 

sequence we sampled and the levels of variation we observed in those sequences. 

Because our objectives included estimating both deep and shallow relationships, we 

specifically chose an array of loci that were expected to be useful for estimating 

relationships across the ranges of divergence anticipated.  

Testing Species-level hypotheses 

Our results corroborate most of the species designations in the genus and clarify 

some previous taxonomic ambiguities. Based on likelihood ratio tests, 83% (24 of 29) 

sampled species in the genus have significant (non-zero) branch lengths and 78% of 

species with multiple samples have bootstrap support > 98%. There are also multiple 
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cases in which branch lengths between conspecific individuals are greater than zero (e.g. 

the two A. aphylla samples (Fig. 1.3)) indicating that there is substantial differentiation 

among conspecific populations. Although we do not believe that there is a single 

particular amount of differentiation that determines a cutoff for recognizing a species-

level distinction, we do expect populations within species to lack strong hierarchical 

structure due to tokogenetic processes (Posada & Crandall 2001). The hierarchical 

structure indicated by significant branch lengths and high bootstrap support within 

species (e.g., A. skinneriana, A. decemloba, A. oligophylla, A. fasciculata, and A. 

tenuifolia) indicates the need for closer examination of the biological basis of the 

observed patterns. Sampling additional loci and populations and using phylogeographic 

analytical methods would contribute to understanding whether these populations actually 

represent different species.  

Exceptions to overall pattern of monophyly described above are the apparent 

polyphyly of A. harperi; the lack of differentiation between A. purpurea and A. 

paupercula; and the lack of differentiation among A. decemloba, A. tenella, and A. acuta 

(Fig. 1.3). All rare species that are of conservation concern except A. acuta and A. 

paupercula were supported as distinct. 

The two sampled A. harperi individuals had identical ITS sequences (Fig. 1.2) but 

were polyphyletic based on cpDNA data (Fig. 1.1). Both individuals were part of a 

moderately supported clade (bootstrap support = 83%) consisting of representatives of 

putative A. purpurea and A. paupercula, A. fasciculata and A. gattingeri individuals. 

However, A. harperi 13FL is most closely related to A. gattingeri and the other appears 

sister to the A. fasciculata/A. purpurea/A. paupercula clade (Fig. 1.1). Reamplification 
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and sequencing of rpoB, rps2, and trnT-trnF loci from the two A. harperi samples 

yielded sequences that were identical to those used in constructing the phylogenies, thus 

ruling out the possibility that samples were mishandled. Therefore, the difference 

between the cpDNA and nDNA may be best explained by hybridization or introgression 

from another species that is represented by chloroplast capture (Tsitrone et al. 2003). 

Although it is not possible to say with much certainty given the lack of statistical support 

for the relationship between the A gattingeri samples and A. harperi 13FL, A. gattingeri 

may be the species from which cpDNA has introgressed into the A. harperi collection 

from Florida. Sampling from more A. harperi and A. gattingeri individuals and 

populations is required to resolve this issue. 

Agalinis purpurea and A. paupercula have been the subject of debate, with 

taxonomic hypotheses ranging from treating them as two species, as two varieties of A. 

purpurea, or synonymizing them under a single species. Pennell suggested relatively 

recent divergence related to the last ice age (Pennell 1935). These putative taxa differ 

from one another in that A. paupercula is reported to have smaller corollas (10-20 mm) 

and broader calyx lobes that are greater than half the length of the calyx tube (Pennell 

1935). Agalinis purpurea has corollas ranging from 18-38 mm long and narrow calyx 

lobes that are less than half the length of the tube. Although they share many features 

during floral ontogeny, they do differ in A. paupercula var. borealis having different 

anther orientation, filament insertion points closer to the ovary height, later stigma 

initiation, and less exsertion of the stigma at anthesis than A. purpurea (Stewart & Canne-

Hilliker 1998).  The effect of these characteristics on mating system or reproductive 

isolation is unknown. It is also not known if these characteristics extend to other A. 
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paupercula varieties. Our data do not support recognizing A. paupercula as a distinct 

taxon. However, we did not thoroughly sample from a large number of putative 

populations of A. paupercula and it remains possible that some populations that have 

been attributed to that species represent a distinct entity. Further it is possible that higher 

resolution markers would allow us to differentiate A. paupercula and A. purpurea as is 

discussed below for A. acuta. 

One of the primary objectives of this study was to evaluate the evolutionary 

distinctiveness of the federally listed endangered species Agalinis acuta. Potential 

synonymy of A. acuta with A. tenella was raised by Neel and Cummings (2004) due to 

lack of sequence divergence in two cpDNA loci between two individuals. Sampling nine 

representatives of A. acuta and five of A. tenella in this study allowed us to more 

thoroughly examine this issue. Previous taxonomic revisions (Kartesz 1999) that 

synonymized A. tenella and A. decemloba with A. obtusifolia necessitated inclusion of 

accessions attributed to the latter two species. Rather than clarifying relationships among 

these taxa, our results show a more convoluted situation than was previously thought to 

exist. The ITS phylogeny shows A. tenella, A. acuta, A. decemloba and A. obtusifolia to 

be polyphyletic (Fig. 1.3); however, there is little support for this topology. The 

phylogenies based on cpDNA loci alone and all loci combined (Figs. 1.1 & 1.3, 

respectively) show A. tenella to be monophyletic and subtended by a branch with a length 

that is significantly different from zero based on the likelihood ratio test. There is, 

however, no bootstrap support for this clade and it is nested within a clade that includes 

A. acuta and A. decemloba. On both topologies, A. acuta and A. decemloba are 

polyphyletic (Figs. 1.1 & 1.3) and an AU test indicated that forcing the monophyly of A. 
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acuta and A. tenella yielded a topology that was significantly worse than the best 

topology for all three datasets (P < 0.05). Although A. acuta, A. decemloba, and A. 

tenella form a highly supported monophyletic clade, one accession of A. decemloba 

(6VA) is distinguished from all other accessions of these three taxa based on branch 

lengths that are significantly different than zero and 98% bootstrap support (Fig. 1.3). 

This differentiation is the result of differences within the trnT-trnF locus. These include 

numerous single nucleotide differences and a 16 bp deletion, the majority of which are 

also present in the A. obtusifolia samples.  

 Regardless, our results do not provide statistical support for separate species status 

for A. acuta, A. decemloba, and A. tenella under the criteria of either a phylogenetic 

species concept (de Queiroz & Donoghue 1988) or a genealogical species concept (Baum 

& Shaw 1995). Agalinis obtusifolia comprises a monophyletic clade that is sister to the 

clade containing A. skinneriana, and A. tenella, A. acuta, and A. decemloba, thus strongly 

refuting the recent taxonomic revision synonymizing both A. decemloba and A. tenella 

with A. obtusifolia (e.g., Kartesz 1999; USDA NRCS 2008). 

Lack of monophyly of even morphologically well defined species can result from 

incomplete lineage sorting of shared ancestral polymorphism or contemporary gene flow 

(Broughton & Harrison 2003; Funk & Omland 2003; Hudson & Coyne 2002). Given that 

it takes on the order of ~8.7 Ne generations for an 0.95 probability of reciprocal 

monophyly to evolve at a single locus after speciation events (Hudson & Coyne 2002; 

Rosenberg 2003), it can be challenging to distinguish among closely related taxa using 

phylogenetic methods. It is also possible that the DNA sequences we examined do not 

have sufficient mutation rates to have accumulated nucleotide differences in the time 
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since divergence. However, the loci sampled appear to have a sufficient amount of 

variation to distinguish ~83% of the 29 sampled species in the genus, some of which are 

likely to have recently diverged from a common ancestor. Due to the important policy 

implications of combining A. acuta, A. tenella, and A. decemloba into a single taxon, 

additional research is being conducted on the morphological and genetic differences, 

using more variable loci, from samples collected from throughout the range of each 

species.  

As mentioned above, we found that A. skinneriana formed a well supported clade 

that was sister to the clade containing A. tenella, A. decemloba, and A. acuta (Figs. 1.1 & 

1.3). Prior to this work, taxonomic boundaries and phylogenetic affinities of A. 

skinneriana were not understood. Additionally, the Maryland populations that we 

sampled were problematic for experts to identify because these populations were beyond 

the known range for the species at the time they were discovered. The morphological 

characteristics of A. skinneriana most closely matched these populations, but there was 

some lingering question as to their identity. Our results confirm that these populations are 

sister to the A. skinneriana sample from Missouri and they represent an extension of this 

otherwise Midwestern prairie taxon to the grasslands of the Atlantic coastal plain. 

However, the branch separating the Maryland populations from the Missouri population 

is significantly different from zero indicating that further investigation of the 

phylogeography of this putative species may be warranted to determine if the Maryland 

populations are actually an unrecognized species. Clarifying these relationships is 

important because this species is considered rare in the state of Maryland and correct 
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identification is essential for both protecting a rare entity and not imposing restrictions 

for something that does not warrant them.  

CONCLUSIONS 

 In conclusion, the sampled Agalinis species form a well supported, monophyletic 

group relative to the other genera sampled from within the family Orobanchaceae. 

Despite the well known taxonomic difficulty in this genus, 24 of the 29 the species we 

sampled that had been recognized based on anatomy and morphology were well 

supported. We confirmed the monophyly of 19 rare species, thus supporting their 

eligibility for receiving conservation attention. The species that do not form well 

supported clades based on DNA sequence data include the federally listed species A. 

acuta and the state-rare species A. paupercula. Although we were able to resolve some 

relationships among these species, most notably that the synonymization of the latter two 

with A. obtusifolia is unwarranted, a number of ambiguities remain. Due to the important 

policy implications raised by this finding, we are examining relationships among A. 

acuta, A. decemloba, and A. tenella further by sampling more individuals and populations 

using higher resolution molecular markers and morphological data. It is clear that most 

hypotheses regarding section- and subsection-level relationships based on morphology 

are not supported and taxonomic revisions are warranted.  
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Table 1.1.1North American Agalinis species including the number of individuals (N) and conservation 
status of all species included in this study. 

Taxon1 N2 Status3 
Section Erectae (n = 13)   

A. acuta 9 G1/S1 
A. aphylla 2 G3-G4/S2 
A. decemloba 2 NR 
A. gattingeri 3 G4/S1 
A. obtusifolia 5 G4-G5-Q/S1 
A. oligophylla 3 G4/S1 
A. skinneriana 3 G3/S1 
A. tenella 6 NR 
A. viridis 2 G4/S1 
A. keyensis NS  

Section Heterophyllae (n = 14) 
A. auriculata 2 G3-G4/S1 
A. calycina 1 G1/S1 
A. heterophylla 3 G4-G5/S1 
A. densiflora NS  

Section Linifoliae (n = 14)   
A. linifolia 2 G4?/S1 

Section Purpureae   
Subsection Pedunculares (n = 13) 

A. edwardsiana 1 G4/S4 
A. homalantha 2 G5/S1 
A. pulchella 2 G4-G5/S3? 
A. strictifolia 2 G4/SNR 
A. navasotensis 2 G1/S1 
A. peduncularis NS  
A. aspera NS  

Subsection Purpureae (n= 14) 
A. fasciculata 3 G5/S1 
A. harperi 2 G4?/SNR 
A. maritima 2 G5/S2 
A. paupercula 2 G5/S1 
A. purpurea 4 G5/S1 
A. tenuifolia 3 G5/S1 
A. pinetorum NS  
A. neoscotica NS  
A. virgata NS  

Subsection Setaceae (n=14) 
A. laxa 2 G3-G4/S3? 
A. plukenettii 2 G3-G5/S1 
A. setacea 2 G5? 
A. stenophylla NS  
A. filifolia NS  

Section Tenuifolieae (n=14)   
A. filicaulis 2 G3-G4/S1 
A. divaricata  2 G3?/S1 
A. nutallii NS  

Outgroup Species   
Aureolaria pectinata 1 G5? 
Aureolaria pedicularia 1 G5 
Brachystigma wrightii 1 G4 
Dasistoma macrophylla 1 G4 

1Chromosome counts represent those known for the section or subsection based on extensive species 
sampling (Canne 1983; Stewart and Canne-Hilliker 1998).  2NS = Not Sampled.  3Conservation Status: 
global ranking (G1=critically imperiled; G2=imperiled; G3=vulnerable to extinction or extirpation; 
G4=apparently secure; G5=demonstrably secure or widespread)/highest state ranking for each species (S1-
S5 are equivalent to the global scale but applied to within a single state) (USA); when a range or question 
mark (?) is given the precise conservation status is uncertain.; NR and SNR= not ranked.  
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Table 1.2.2Summary of the cpDNA loci and the nDNA locus ITS used in this study. N = the number of Agalinis species for each 
locus. Pairwise distances were calculated using Agalinis species only and do not include outgroup taxa.  
 

Locus N 

Aligned 
Length 

(bp) 
 Characters 

Constant (percent) 
Parsimony Informative 

Characters (percent) 
Autapo-
morphies 

Nucleotide 
Substitution 

Model1 
matK 21 3822 3379 141 302 GTR+Г+I 

   (88.40%) (3.68%)   
ndhF 6 2131 2002 66 63 TVM 

   (93.95%) (3.10%)   
rbcL 37 1331 1205 53 73 GTR+I 

   (90.53%) (4.00%)   
rpoB 78 375 306 52 17 GTR+Г 

   (81.60%) (13.87%)   
rps2 77 665 520 135 10 TVM+Г+I 

   (78.20%) (20.30%)   
trnT-trnF 79 1868 1479 320 69 TVM+Г+I  

   (79.68%) (17.13%)   

psbA- trnH 79 884 669 189 26 TVM+Г 
   (75.68%) (21.38%)   

All cpDNA 
Loci 79 11076 9592 950 545 TVM+Г+I  

   (86.51%) (8.57%)   
ITS 68 733 504 175 54 GTR+Г+I  

   (68.76%) (23.87%)   
All Loci 79 11809 10096 1125 599 GTR+Г+I  

       (85.41%)  (9.52%)    
 
1 Nucleotide substitution model as selected using MODELTEST. 
2 Pairwise differences are based on the maximum likelihood distances calculated using the nucleotide substitution parameters associated with the best fitting 
model identified using MODELTEST 
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Table 1.2. Continued. 

 
Locus 

Average Pairwise Difference 
(range)2 

Primer Source 
Within 
Species Among Species 

matK n/a 3.12% see (Neel and Cummings 
2004) 

  (0 – 6.20%)  

ndhF n/a 2.97% see (Neel and Cummings 
2004) 

  (0.42 – 5.00%)  

rbcL 0.17% 1.07% see (Neel and Cummings 
2004) 

 (0– 0.39%)  (0 – 3.07%)  

rpoB 0.31% 2.15% http://www.kew.org/barco
ding/update.html 

 (0-3.19%) (0 – 5.40%)  
rps2 0.11% 4.37% de Pamphilis et al. 1997 

 (0-2.84%) (0 – 8.59%)  
trnT-trnF 0.29% 3.24% Taberlet et al. 1991 

 (0-3.29%) (0 – 6.04%)  

psbA- trnH 0.20% 7.75% Sang et al. 1997; Tate and 
Simpson 2003 

 (0-2.94%) (0 – 20.50%)  

All cpDNA 
Loci 

0.31% 3.82%  

 (0-2.0%) (0 – 7.40%)  
ITS 0.75% 6.51% White et al. 1990 

 (0-3.93%) (0.14 -21.26%)  
All Loci 0.36% 4.05%  

  
(0.02-

1.94%) (0.04-7.99%)   
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Figure 1.1.1Phylogenetic tree depicting evolutionary relationships among sampled taxa 
based on seven cpDNA loci. Branch lengths depict the inferred number of nucleotide 
substitutions per site. Numerals at nodes represent the percent of 1000 bootstrap 
replicates supporting that clade. The ln likelihood of the tree is -30816.271. 
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Figure 1.2.2Phylogenetic tree depicting evolutionary relationships among sampled taxa 
based on the nDNA ITS locus. Branch lengths depict the inferred number of nucleotide 
substitutions per site. Numerals at nodes represent the percent of 1000 bootstrap 
replicates supporting that clade. The ln likelihood of the tree is -4250.1813. 
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Figure 1.3.3Phylogenetic tree depicting evolutionary relationships among sampled taxa 
based on a concatenated dataset of the seven cpDNA loci and the nDNA ITS locus. 
Branch lengths depict the inferred number of nucleotide substitutions per site. Numerals 
at nodes represent the percent of 1000 bootstrap replicates supporting that clade. The ln 
likelihood of the tree is -35900.524. 
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CHAPTER 2: COMPREHENSIVE GENETIC AND MORPHOLOGICAL 

ANALYSES DO NOT SUPPORT THE TAXONOMIC RANK OF SPECIES FOR 

THE FEDERALLY LISTED ENDANGERED PLANT AGALINIS ACUTA 

(OROBANCHACEAE) 

ABSTRACT 

Agalinis acuta (Orobanchaceae) is a federally listed endangered plant species that is at 

risk of extinction due to habitat loss and degradation.  The taxonomic status of A. acuta 

has been questioned based on DNA sequence and morphological similarity with A. 

decemloba and A. tenella.  However, those latter two species have been synonymized 

with A. obtusifolia.  To better understand the evolutionary distinctiveness and 

phylogenetic affinities of these putative species and an additional closely related 

congener, A. skinneriana, we sampled six chloroplast DNA loci from representatives of 

35 different populations representing the five putative species, characterized variation at 

14 microsatellite loci across 20 populations representing A. acuta, A. decemloba, A. 

tenella, and A. obtusifolia, and measured 61 morphological characters assayed from 

multiple individuals from 18 populations. These different datasets provide evidence for 

five identifiable lineages that correspond to each of the five putative species.  However, 

the magnitude and patterns of differences observed do not support the taxonomic rank of 

species for all taxa investigated.  There is strong support for species status for both A. 

obtusifolia and A. skinneriana, but there is insufficient evidence to warrant the 

designation of species for the putative samples of the listed species A. acuta.  The most 

appropriate taxonomic alignment is treating A. acuta and A. decemloba as one subspecies 

and A. tenella as another subspecies of a single species.  Nomenclatural precedence 
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dictates that the former taxon would be Agalinis decemloba ssp. decemloba and the latter 

would be Agalinis decemloba ssp. tenella.  We also discuss whether Agalinis decemloba 

ssp. decemloba represents a taxon deserving of federal protection under the Endangered 

Species Act. 
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INTRODUCTION 

The fundamental importance of species in biology is reflected in the extensive 

literature regarding the conceptual basis of this taxonomic and evolutionary category 

(Baum & Shaw 1995; Cracraft 1989; Mallett 1995; Mayr 1942; Nixon & Wheeler 1990; 

Van Valen 1976).  A large body of literature also describes empirical methods that have 

been advocated for delimiting species (Knowles & Carstens 2007; Sites & Marshall 

2004; Wiens 2007).  The numerous species concepts and delimitation methods make 

determining when a collection of individuals or populations warrants recognition as a 

species challenging as well as highly contentious (Coyne & Orr 2004). Yet understanding 

this fundamental aspect of biological diversity is essential (Isaac et al. 2004).  Wrongly 

assuming that the historical taxonomy ascribing individuals to species is accurate can 

have negative consequences for understanding patterns of biodiversity in that incorrect 

species circumscription will yield inaccurate species richness estimates and erroneous 

estimation of macroecological patterns (Isaac et al. 2004).  More importantly, taxonomic 

misunderstandings can have negative ecological and evolutionary consequences as 

happened when invasion of vernal pool habitat in California by the non-native low 

mannagrass Glyceria declinata went undetected because it was erroneously synonymized 

with the native western mannagrass Glyceria occidentalis (Gerlach et al. 2009).  This 

invasion negatively impacted the vernal pool ecosystem and increased the extinction risk 

of protected species. 

Taxonomic uncertainty also directly affects the status of federally listed plant species 

in that improved taxonomy has caused downlisting of one and delisting of seven plant 

taxa (U. S. Fish and Wildlife Service 1996; U.S. Fish and Wildlife Service 1989a, 1999).  
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Only evolutionarily distinct species, subspecies, or varieties (and distinct population 

segments of vertebrates) that are at elevated risk of extinction due to anthropogenic 

effects are eligible for listing under the Endangered Species Act (ESA; U.S.C. 1973).  

Listing entities that are later synonymized wastes time and resources that could be spent 

conserving truly imperiled taxa.  At the same time, failing to recognize a taxon due to 

cryptic variation can result in the unwitting loss of significant evolutionary diversity if 

extinction results due to lack of protection.  In spite of controversy due to different 

species concepts and delimitation methods, rigorous and objective methods must be 

utilized to resolve taxonomic uncertainty and reduce the negative consequences that such 

uncertainty can have for species of conservation concern.  

To resolve the controversy surrounding which species concept one should adhere to, 

de Quieroz (2007) has suggested that there is an underlying concept that unifies the 

myriad species concepts: that species are “separately evolving segments of 

metapopulation lineages”.  Although his use of the term metapopulation is not in 

accordance with its original definition (Levins 1969), the concept of species comprising 

sets of interacting populations in space and time that are related to one another through 

ancestry and descent is perhaps useful.  In contrast to early typological views of species, 

de Queiroz (2007) embraces the fact that in absence of gene flow, there is a continuum of 

evolutionary differentiation that proceeds after a speciation event (Cummings et al. 

2008).  Characteristics emphasized under alternative species concepts will be acquired at 

different times following such an event, thus adherence to different concepts or use of 

different types of data to detect differences can result in different species boundaries 

(Baum 1998; de Queiroz 2007; Marshall et al. 2006).  Therefore, it is most productive to 
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use multiple methods and data sources to determine where putative species lie on the 

divergence continuum; such a sampling strategy will likely be required to differentiate 

among recently diverged species (e.g., Leache et al. 2009).  The importance of using 

multiple lines of evidence is well accepted in evolutionary biology (Shaw 2002) and 

biogeography (Petit et al. 2003; Petit et al. 2002; Schaal et al. 1998) and has recently 

been emphasized as being essential for conservation decisions (Fallon 2007).   

Beyond simply using multiple types of data, we suggest that it is most cost effective 

and efficient to use a sequential process starting with the most restrictive definitions and 

delimitation methods (e.g., genealogical exclusivity); additional analyses that can detect 

more subtle differences would be conducted only if the more restrictive definitions are 

not met.  Therefore, rather than requiring one predetermined characteristic or property for 

species status, we evaluated which properties were present against a range of commonly 

used species concepts and delimitation criteria.  We also suggest taxonomic sampling 

beyond the specific entities of concern and sampling intensively within the entities of 

concern.  This combination of broad and deep sampling provides context that is needed to 

understand the magnitude of differences that distinguish closely related entities and 

allows assessment of whether those differences are of sufficient magnitude to warrant the 

taxonomic rank of species based on biological significance, utility, predictive power, 

robustness, and precedence (Baum 2009).  Such an approach will potentially use data and 

analytical techniques associated with both systematics and population genetics.  Although 

techniques from these two fields have different assumptions derived from different 

theoretical frameworks, both are necessary to quantify patterns at species boundaries 
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because prior to completion of an investigation it is not clear whether the individuals of 

interest represent a single species or different species.   

We illustrate the power of this sequential approach to determining where a putative 

taxon falls along the continuum of divergence with a study of the taxonomic boundaries 

of the federally listed endangered plant species Agalinis acuta Pennell (Family 

Orobanchaceae) in which we sequentially assayed DNA sequences, microsatellite allele 

frequencies, and morphology.  The observed patterns at those different data types were 

then compared with expectations from different species concepts.  Agalinis acuta is a fall 

blooming annual plant native to eastern North America where it is found on the coastal 

plain in eastern Massachusetts, Rhode Island, Connecticut, and New York, as well as on 

the piedmont in Maryland (Fig. 2.1).  The type locality was a historic location near 

Edgartown, Massachusetts on the island of Martha’s Vineyard (Pennell 1929).  The 

species was listed under the Endangered Species Act (ESA; U.S.C. 1973) in 1987 

primarily due to threats associated with declining grassland habitat (U. S. Fish and 

Wildlife Service 1988). A recovery plan approved in 1989 required meeting three criteria 

(20 stable and wild occurrences, protection of at least 15 of these occurrences, and ability 

to propagate plants from seed) in order to downlist the species to threatened status (U.S. 

Fish and Wildlife Service 1989b). The recovery plan also identified the need to resolve 

uncertainty in the distinctness of A. acuta from closely related taxa due to morphological 

similarities (Table 1).  Based on the recovery plan and prior work, the other species we 

considered were Agalinis decemloba Greene (Pennell), Agalinis tenella Pennell, Agalinis 

obtusifolia Raf., and Agalinis skinneriana (Alph. Wood) Britton. 
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Agalinis decemloba has been recorded from Pennsylvania south to South Carolina 

with a type locality in the District of Columbia (Pennell 1935).  The Pennsylvania 

populations are thought to be extirpated, as is the type locality.  Agalinis tenella ranges 

from North Carolina south to northern Florida and west to Alabama, with a type locality 

in Thomas County, Georgia (Pennell 1935).  In 1994, A. decemloba and A. tenella were 

synonymized with A. obtusifolia (Kartesz 1994; USDA NRCS 2004).  However, recent 

phylogenetic analyses showed that A. obtusifolia was monophyletic (Figs. 1 & 3 in 

Pettengill & Neel 2008 or Figs. 1.1 & 1.3 in Chapter 1), which strongly refutes the 

taxonomic revision of Kartesz (1994).  A. obtusifolia is known from the eastern seaboard 

from Maryland south to Florida and west to Mississippi on the Gulf coast.  Agalinis 

skinneriana (Alph. Wood) Britton is primarily recognized as a Midwestern prairie taxon 

and, thus, the putative identification of this species in Maryland would represent a range 

expansion that includes the grasslands of the Atlantic coastal plain.  Despite the broad 

geographic range represented by these putative species, they all occupy similar habitats: 

open canopied sites with nutrient poor soils that are dominated by bunchgrasses and other 

herbaceous species. 

To be considered a separate species, we expect A. acuta to be reproductively isolated 

and somehow recognizably different from other species, whether that recognition is based 

on morphology, ecological function, or genetic diversity.  Below we briefly describe the 

characteristics and associated techniques that scientists have advocated to be appropriate 

for determining if entities meet these expectations and discuss the results of previous 

studies of A. acuta relevant to those characteristics and techniques.  We then describe 

how we further evaluated the evolutionary distinctiveness of A. acuta in light of these 
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criteria using DNA sequence data, microsatellite allele frequencies, and morphological 

variation. 

Reproductive isolation 

Historically, the biological species concept has been a dominant definition of 

whether a group of individuals represents a species.  Under this concept a species is a 

group of potentially interbreeding individuals that are reproductively isolated relative to 

other putatively heterospecific individuals (Mayr 1942).  The classic way to demonstrate 

reproductive isolation in plants is to directly compare reproductive success of crosses 

among versus within putative species (Stebbins 1950; Turesson 1922).  Alternatively, 

reproductive isolation can be inferred indirectly based on patterns of genetic 

differentiation, with the null hypothesis that sampled individuals representing different 

putative species constitute a relatively homogenous gene pool (e.g., King et al. 2006). If 

that null hypothesis is refuted, reproductive isolation can be inferred. 

Unfortunately, attempts at germinating A. acuta seeds did not yield sufficient 

germination to grow plants for crossing experiments (unpublished data); other 

investigators have also had low germination success for A. acuta seeds (Brumback & 

Kelley 1990). Instead of directly quantifying the reproductive compatibility of putative A. 

acuta individuals and putative heterospecifics, we indirectly assessed the degree of 

reproductive isolation using an array of techniques from the fields of systematics and 

population genetics as described below. 

Genealogical exclusivity 

According to the original genealogical species concept (Baum & Shaw 1995), when 

using DNA sequence data all putative conspecific individuals should be monophyletic 
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(i.e., they should share a most recent common ancestor to the exclusion of putative 

heterospecific individuals). This genealogical exclusivity reflects long-term reproductive 

isolation, thus fulfilling the criterion of the biological species concept.  The biological 

species concept does not require monophyly; rather monophyly based on DNA sequence 

data signifies that the groups in question have been reproductively isolated for a 

substantial amount of time.   

 Phylogenetic analysis of relationships among Agalinis species based on 11,076 base 

pairs (bp) of cpDNA and 733 bp of nuclear DNA indicated that A. acuta was not 

monophyletic with respect to A. decemloba and A. tenella  (Pettengill & Neel 2008).  

Although reciprocal monophyly definitively indicates reproductive isolation, its absence 

does not necessarily indicate that putative heterospecifics are interbreeding; rather it may 

be due to lack of sufficient time for the sorting of shared ancestral polymorphism to have 

occurred (Cummings et al. 2008; Hudson & Coyne 2002; Knowles & Carstens 2007).  

Many empirical studies have found that entities that are considered ‘good species’ based 

on behavioral or morphological criteria are paraphyletic or polyphyletic based on 

sequence data (Carstens & Knowles 2007; Funk & Omland 2003).  Further, due to the 

stochastic nature of the coalescent process, individual gene trees may not be concordant 

with the species tree expected based on a taxonomic classification and different gene 

trees from within one species may not be concordant with one another (Hudson & Coyne 

2002; Maddison 1997; Maddison & Knowles 2006). The loci we examined did yield 

monophyletic groups of 24 of 29 of the Agalinis species included in a previous 

phylogenetic study (Pettengill & Neel 2008).  Sampling broadly in the genus thus allows 

us to know that failure to detect differences among A. acuta, A. tenella and A. decemloba 
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is not due to inability of these loci to detect species level differences in Agalinis more 

generally.  

It is still possible that the lack of monophyly observed among A. acuta, A. tenella, 

and A. decemloba reflects recent divergence.  Because it can take on the order of 8.7 Ne 

generations after speciation events for mutations to accumulate and for shared ancestral 

polymorphisms to sort out at a single neutral locus many recently diverged species will 

remain polyphyletic (Hudson & Coyne 2002; Rosenberg 2003).  Short of monophyly, 

determining what threshold level of concordance among gene trees supports a taxonomic 

designation is somewhat arbitrary.  Baum (2009) has proposed that a taxon should show 

genealogical exclusivity for a plurality of sampled gene regions and should show more 

exclusivity than any other conflicting grouping of individuals.  Cummings et al. (2008) 

have developed a method for quantifying the degree of exclusive ancestry of groups 

along the continuum of divergence, thus departing from the typological view of 

relationships being either monophyletic or not.  

  The previous phylogenetic results combined with morphological and ecological 

similarities led us to further evaluate the nature and degree of polyphyly among 

putatively heterospecific populations of A. acuta, A. decemloba, A. tenella, and A. 

obtusifolia.  We also included Agalinis skinneriana (Alph. Wood) Britton because it is 

morphologically similar to A. acuta and A. tenella (Table 2.1) and its taxonomic 

boundaries and phylogenetic affinities had not been investigated.  For this examination, 

we incorporated previously unsampled populations (i.e., those not sampled in Neel & 

Cummings 2004 or Pettengill & Neel 2008) into additional phylogenetic analyses.  We 
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also used the method developed by Cummings et al. (2008) to quantify the degree of non-

random genealogical exclusivity among groups.   

Diagnostic molecular characters 

Under the phylogenetic species concept as conceived by Cracraft (1989), a species is 

an irreducible cluster of organisms that is diagnosably distinct from other such clusters 

and within which there is a pattern of ancestry and descent.  Diagnostic characters are 

taken as evidence of reproductive isolation because even small amounts of gene flow 

among putative heterospecific populations would disrupt a diagnostic pattern.  We 

examined the two most variable cpDNA loci we sampled for diagnostic 

insertions/deletions or single nucleotide polymorphisms corresponding with the putative 

species boundaries (Goldstein & DeSalle 2000; Goldstein et al. 2000). We do not 

consider single base changes alone to be sufficient to delineate a species, but rather a 

collection of such polymorphisms or diagnostic insertions/deletions would provide 

evidence of reproductive isolation. 

Evidence of differentiated gene pools 

Differentiation of gene pools is often documented using data derived from allele or 

haplotype frequencies among individuals and populations as measured by, for example, 

measures of pairwise genetic distances (Sites and Marshall 2004).  Generally, differences 

based on allele frequencies alone are not considered sufficient to support species level 

designations.  Rather, they are thought to reflect geographic structuring of populations 

within species, and thus to support designation as management units or possibly 

subspecies (Goldstein et al. 2000; King et al. 2006; Moritz 1994).  However, in 

conjunction with other information such as ecological or behavioral differences, allele 
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frequency differences could provide support for considering species status if recent 

divergence is suspected.  

In this study, we used microsatellite data collected from multiple individuals and 

populations per species to assess whether there was evidence that putatively 

heterospecific populations differed in terms of allele frequencies and gene pools.  High 

mutation rates in microsatellites allow differences to arise relatively quickly after a 

speciation event, making them a useful complement to sequence data for investigations of 

recently diverged taxa.  Most of the population genetic methods we have employed allow 

inferences about the degree of reproductive isolation from analysis of genetic distances or 

deviations from Hardy-Weinberg equilibrium and linkage equilibrium among putative 

conspecific versus heterospecific individuals or populations.  Because these different 

measures are all derived from the same allele frequency data, they do not provide 

independent lines of evidence.  Rather, the different analytical approaches provide 

multiple perspectives on the patterns in the data. 

Morphological differentiation 

Morphological differentiation can be detected based on fixed, categorical character 

differences (Goldstein et al. 2000) or based on significant differences in continuous traits 

(Wiens & Servedio 2000).  Ideally species will be well differentiated with no or 

extremely few individuals having intermediate morphology (Mallett 1995).  Studies 

quantifying patterns of morphological variation in plants are best carried out in common 

garden or reciprocal transplant experiments to isolate genetic from environmentally 

dependent phenotypic variation (Claussen et al. 1940).  Unfortunately, we were unable to 

conduct a common garden study due to the low germination rates discussed previously.  
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Rather we present the analysis of a suite of morphological traits that were measured on 

individual plants in the field.  

Together, these comprehensive analyses provide a rigorous framework against which 

we can evaluate where along the continuum of diversification the putative Agalinis taxa 

exist.  Although the final assignment of a collection of individuals to any particular 

taxonomic rank can be subjective (Baum 2009), we have attempted to limit that 

subjectivity and to make the rationale for such assignments transparent by evaluating data 

against established species concepts and associated delimitation criteria.  

MATERIALS AND METHODS 

Phylogenetic and population sampling 

Multiple samples representing different and often geographically distant populations 

of each species of interest were included in a phylogenetic analysis (10 A. acuta, 5 A. 

decemloba, 9 A. obtusifolia, 3 A. skinneriana, and 8 A. tenella) (Table 2.S1).  Fourteen of 

these 35 samples were not part of previously published phylogenetic treatments (Neel & 

Cummings 2004; Pettengill & Neel 2008).  Based on Pettengill and Neel (2008) we chose 

single representative of A. calycina to serve as the outgroup.  

Samples from populations used in the analysis of microsatellite and morphological 

variation were collected during the blooming season from 2003 through 2008.  We 

collected tissue for genomic DNA extraction from approximately 30 individuals from 11 

populations of A. acuta, 4 populations of A. tenella, 2 populations of A. decemloba, 3 

populations of A. skinneriana, and 3 populations of A. obtusifolia (Table 2.2).  When 

population sizes were <30, we sampled all individuals we could locate.  From these 

sampling efforts, we acquired DNA samples from 662 individuals from 24 populations 
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representing five putative Agalinis species (Table 2.2).  As allowed by phenology, we 

sampled morphological traits from 395 individuals in 18 of the populations of the five 

species from which we collected DNA (Table 2.2).  Because we collected material 

throughout the growing season in three years, we encountered a wide range of 

phenological conditions during our visits and we could not measure all morphological 

variables on all individuals.  In particular, flowers were not always present and thus floral 

characters were not measured for many individuals. 

DNA extraction 

Total genomic DNA for all samples used in the phylogenetic and population genetic 

analyses was isolated by grinding 50-100 mg fresh or frozen (-80°C) leaves and flower 

buds to powder in liquid nitrogen with a mortar and pestle, and then using GenElute Plant 

Genomic DNA Kits (Sigma Chemical Company, St. Louis, Missouri, USA) or Qiagen 

DNEasy Kits (Qiagen Corporation, Valencia, California USA) following manufacturer’s 

instructions.  Some extractions were carried out on a Qiagen BioSprint 96 robotic 

workstation using Qiagen’s BioSprint 96 DNA Plant Kit, which is a high throughput 

extraction procedure that processes samples in 96-well microtiter plates using proprietary 

magnetic particle technology (MagAttract).  

Phylogenetic loci and analyses 

The phylogenetic analyses were based on six chloroplast loci (trnT-trnF, rpoB, rps2, 

psbA-trnH, rbcL, and matK) following protocols used Pettengill and Neel (2008).  

However, in this study we used more recently developed universal primers to amplify 

rbcL (Kress & Erickson 2007) and matK (Cuénoud et al. 2002). All sequences were 

aligned using the program MUSCLE (Edgar 2004a, 2004b) with the default settings.  
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The number of constant characters and variable characters at each locus and in the 

concatenation of all loci were calculated using PAUP v4.0 (Swofford 2003). We 

estimated intra- and interspecific Kimura-2-paramater (K2P) distances (Kimura 1980) 

using the program MEGA (Kumar et al. 2004).  These analyses were conducted 

excluding the outgroup A. calycina.  

Phylogenetic inference was conducted in the same manner described in detail in 

Pettengill and Neel (2008), which was based on a maximum-likelihood method 

implemented in the computer program GARLI (Genetic Algorithm for Rapid Likelihood 

Inference; Zwickl 2006). Statistical support for topological relationships was assessed 

through 1000 bootstrap replicates.  To evaluate the range of topologies and associated 

likelihood scores across independent runs, we conducted 1000 analyses of the original 

non-bootstrapped dataset.  Because the topologies from these independent runs differed 

in terms of monophyly of A. tenella, we used the approximately unbiased test (AU-test) 

(Shimodaira 2002) as implemented in the program CONSEL (Shimodaira & Hasegawa 

2001) to evaluate whether the likelihoods of these alternative topologies were 

significantly different from one another. For the AU-test, the site-likelihoods were 

estimated using PAUP v4.0 where the appropriate nucleotide substitution model was 

determined with MODELTEST (Posada & Crandall 1998) under Akaike’s information 

criterion (AIC; Akaike 1974).   

We calculated the genealogical sorting index (gsi) (Cummings et al. 2008) for each 

of the putative species to provide a measure of the genealogical exclusivity among 

putative conspecific individuals when species were not reciprocally monophyletic. The 

gsi represents the ratio of the minimum number of nodes necessary to unite all 
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conspecific individuals into a monophyletic group to the actual number of nodes that 

unite all conspecifics on a rooted phylogeny.  This normalized index ranges between 0 

and 1, with 0 representing a total lack of monophyly or a random arrangement of putative 

conspecifics on the tree and 1 representing monophyly.  We calculated the ensemble gsiT 

statistic for the 1000 trees from the bootstrap analyses in GARLI; each topology was 

weighted by the proportion of times it was observed among the 1000 replicates.  

Significance of the gsiT statistic was assessed through 1000 permutations of each 

topology where the labels on the tips of each tree were randomized (Cummings et al. 

2008). 

Diagnostic cpDNA characters 

Two of the cpDNA loci that were used for the phylogenetic study (psbA-trnH and 

trnT-trnF) were further evaluated to determine whether they possessed diagnostic 

characters that could be used to discriminate among the species of interest based on the 

35 individuals included in the phylogenetic analysis.  These regions were chosen because 

they were the most informative in terms of percentage of variable sites in Pettengill and 

Neel (2008) and they have been advocated in the plant DNA barcoding literature as 

having the most power to distinguish closely related species (Kress et al. 2005; Shaw et 

al. 2005).  

The program DNAsp v4.10.8 (Rozas et al. 2003) was used to calculate the number of 

segregating sites that were fixed between each pair of putative species with gaps in 

sequences treated as missing data. We also manually inspected the alignments for 

substantial insertion/deletion events that were diagnostic of putative species.  We 

admittedly did not sample sufficiently to guarantee that characters were truly fixed within 
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species (Wiens & Servedio 2000); however, the presence of such characters in relatively 

slowly evolving DNA regions across geographically distant populations provides 

compelling evidence of their utility in delimiting species. 

Microsatellite genotyping 

Twenty-one microsatellite loci that were developed from four microsatellite libraries 

corresponding to the repeat motifs CA-, AAG-, CAG-, and TACA- (Appendix B; 

Pettengill et al. 2009) were assayed across all populations of putative A. acuta, A. 

decemloba, A. tenella, A. obtusifolia, and A. skinneriana. Amplification success varied 

across species and populations; virtually all microsatellites failed to amplify in the A. 

skinneriana populations and as a result, that species was not included in the population 

genetic analyses.  Additionally, due to amplification failures, the data set with all 21 loci 

and 20 populations representing A. acuta, A. decemloba, A. tenella, and A. obtusifolia 

was missing 9.4% of the total possible genotypes (Tables 2.S2 & 2.S3).  Seventy-five 

percent of the missing genotypes were from putative A. obtusifolia individuals.  Because 

this degree of missing data is problematic for the analyses we wished to use, we 

constructed a reduced dataset that consisted of 14 loci and included all 20 populations.  

The 14-locus data set used in all subsequent analyses was missing 4.6% of the total 

possible genotypes, 57% of which were from A. obtusifolia individuals (Table 2.3). 

Population genetic analyses 

The program ARLEQUIN (Excoffier et al. 2005) was used to calculate observed 

(Ho) and expected (He) heterozygosity for each species and for each population within 

species. The program FSTAT (Goudet 1995) was used to estimate allelic richness (AR) 

using rarefaction to account for differences in sample size. The program GENEPOP 
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(Raymond & Rousset 1995) was used to estimate inbreeding within populations as 

measured by RIS (Rousset 1996).  We also calculated Jost’s DEST (Jost 2008) to estimate 

population differentiation using SMOGD v1.2.3 (Software for the Measurement of 

Genetic Diversity) (Crawford submitted).  Jost’s DEST is proposed to be a more accurate 

measure of population differentiation than those used previously (e.g., Gst and Fst) in that 

it does not produce erroneous results that suggest low levels of differentiation among 

populations with few or no alleles in common or underestimate the degree of 

differentiation when hypervariable loci (e.g., microsatellites) are used (Hedrick 1999; 

Heller & Siegismund 2009; Jost 2008).  For comparison, we also calculated the 

traditional measure of population differentiation, Fst, using GENEPOP. 

 We used Analysis of Molecular Variance (AMOVA), as implemented by 

ARLEQUIN to assess the statistical support for different taxonomic alignments.  One 

model included four groups corresponding to each of the putative species A. acuta, A. 

decemloba, A. tenella, and A. obtusifolia.  We also constructed three models that 

excluded A. obtusifolia to help determine the most likely grouping among the three 

putative species that were not monophyletic in Pettengill and Neel (2008): 1) three 

different groups corresponding to A. acuta, A. decemloba, and A. tenella; 2) two groups 

total, with A. acuta and A. decemloba representing one group and A. tenella representing 

the second group; and 3) two groups total, with A. decemloba and A. tenella representing 

one group, A. acuta representing the second group. Support was assessed by quantifying 

the amount of variance in genetic distance that was explained at each level in each model: 

among individuals within populations, among populations within putative species, and 

among putative species.  We expect that a model that best reflects the correct species 
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classification will have the largest amount of variation explained at the species level 

when compared with competing models (e.g., King et al. 2006).  Because the same 

populations are grouped differently among the models, we were not able to use the AIC 

as a statistical method of determining which AMOVA model is best supported by the 

data (Burnham & Anderson 1998) 

We calculated Nei’s estimate of genetic distance (Da) (Nei et al. 1983) among all 

pairs of populations with the program DISPAN (Ota 1993); DISPAN was also used to 

construct a tree based on the neighbor-joining algorithm (Saitou & Nei 1987) where node 

support was calculated from 1000 bootstrap replicates. We chose Da because simulation 

and empirical studies have shown that this distance exhibits a better linear relationship 

with evolutionary time when the groups of interest have only recently diverged and that it 

is more accurate at recovering the correct topology than alternative distance measures 

(Paetkau et al. 1997; Takezaki & Nei 1996). 

Because pooling individuals into populations can mask similarities among 

heterospecific individuals and artificially inflate apparent differences among entities, we 

constructed a neighbor-joining tree based on genetic distances (Da) among all individuals 

using the program Populations 1.2.30 (Langella 2002). Due to the large number of 

missing genotypes, putative A. obtusifolia individuals were excluded from this analysis. 

We used the Bayesian program STRUCTURE (Falush et al. 2003; Pritchard et al. 

2000) to investigate group assignments of individuals.  This model-based clustering 

method does not incorporate a priori knowledge about the group membership of 

individuals; rather, individuals are assigned to groups based on maximizing the degree of 

Hardy-Weinberg equilibrium and linkage equilibrium.  Operationally, independent runs 
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of STRUCTURE are carried out varying the number of clusters (k) to which individuals 

are assigned and likelihood scores for these different values of k are evaluated to make 

inferences about population structure and genetic similarity.  We also employed the 

statistic ∆k to help identify the optimum value of k based on changes in the likelihood 

score among successive values of k (Evanno et al. 2005). We conducted 100 replicate 

runs at each value of k from 1 to 21 and present the results from the replicate with the 

highest likelihood score at each k.  The analyses were performed using a model that 

allows for admixture and correlated allele frequencies; Markov Chain Monte Carlo 

sampling consisted of 50000 generations for burnin and an additional 250000 

generations.  Our primary focus was the composition of the groups at k = 4 because we 

were interested in testing the hypothesis that the individuals we sampled represent four 

species.  

We used the program FreeNA (Chapuis & Estoup 2007) to estimate the frequency of 

null alleles, which can occur within microsatellite loci due to preferential amplification of 

one allele or mutations in the priming site of certain alleles (Chapuis & Estoup 2007). 

Using the dataset created by FreeNA that corrects for the presumed presence of null 

alleles, we conducted a subset of the analyses described above to determine if the patterns 

and amounts of differentiation differed substantially from those associated with our 

observed genotypes.  

Morphological analyses 

Data for 61 morphological characters (Appendix C) were collected from 395 

individuals in 18 populations of five species in Section Erectae (Table 2).  The 

morphological characters measured were selected either because they represented traits 
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that potentially influence the deposition of pollen and pollinator behavior and thus could 

contribute to reproductive isolation or because the characters were previously identified 

as diagnostic for the species of concern (Table 1).  Descriptions of all variables including 

details of how they were measured and statistical properties (e.g., means and standard 

deviations) are provided in Tables 2.S4 & 2.S5.  To avoid biasing our conclusions due to 

strong correlations among variables, if two variables were correlated at r2 > 0.6 we 

included only one of the two in the analyses.  A variable was chosen preferentially for 

removal if it was highly correlated with many other variables or was found, based on 

exploratory analyses, to contribute little information in differentiating groups.  

We used linear discriminant function analysis (DFA) to assess whether A. acuta, A. 

tenella, A. decemloba, A. obtusifolia, and A. skinneriana could be distinguished based on 

morphology and, if so, which morphological characters best discriminated them.  

Specifically, we constructed two DFA models, one in which species was the grouping 

variable and another using population as the grouping variable.  In all cases DFA was 

performed using all sampled plants that had complete data (i.e., plants with missing data 

were casewise deleted).  This casewise deletion yielded a data set with 294 individuals in 

18 populations.  We chose to use DFA because the technique is designed specifically to 

distinguish between two or more groups using more than one variable at a time (Neff & 

Marcus 1980; Statsoft 2004).  Incorporating multiple variables simultaneously is 

desirable because often taxa or populations are distinguished by suites of characters 

rather than a single character (James & McCulloch 1990).  

We used forward stepwise procedures to enter variables in each model where the 

tolerance for a variable to enter was set at 0.01 to prevent redundancy of variables; F-to-
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Enter the model was set between 2 and 2.8.  Statistical significance of the discriminatory 

power of the model was then assessed based on Wilks’ lambda and its associated F and p 

values.  We examined partial Wilks’ lambda for each variable to understand its 

independent contribution to discrimination among the groups.  We used the eigenvalue of 

and cumulative proportion of variance explained by each discriminant function to 

understand its unique contribution to discriminating among groups in each model; factor 

structure coefficients and standardized canonical coefficients were used to assign 

meaning to each of the DFA axes.  

Group separation was assessed by classification success which is a function of 

pairwise Mahalanobis distances (d2) (Titus et al. 1984). Cross-validation for the 

comparisons in which species was the grouping variable was used to provide a more 

conservative evaluation of classification success.  We created 10 independent data sets in 

which half of the individuals in each population were randomly assigned to a training set 

that was used to build the DFA model.  The remaining individuals were assigned to a test 

set that was then classified using the model created with the training set.  Next, we 

calculated the median number of individuals classified into each species and the median 

percent correct classification for each species across the 10 runs.  Small sample sizes in a 

number of populations precluded use of cross validation when population was used as the 

grouping variable.  

RESULTS 

Phylogenetic analysis and monophyly 

We obtained sequences of trnT-trnF, rpoB, and psbA-trnH, from all sampled 

individuals (Table 2.4 and 2.S1).  We obtained reliable sequences of matK from all 
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individuals except A. decemloba 1VA; of rbcL from all but five samples (A. obtusifolia 

18FL, A. obtusifolia 10AL, A. decemloba 19NC, A. tenella 79GA, and A. tenella 91GA) 

(Tables 2.4 & 2.S1); and sequences of rps2 from all but two samples (A. obtusifolia 8AL 

and A. obtusifolia 14AL).   

Concatenating the six loci produced an alignment of 4799 bp that had 216 variable 

sites (4.71%).  The number of polymorphic sites at a single locus ranged from 16 sites 

(4.56%) among the rpoB sequences to 79 sites (8.33%) among the psbA-trnH sequences 

(Table 2.4).  The average intraspecific K2P distances was 0.001, which was an order of 

magnitude smaller than the average interspecific distances (0.018) (Table 2.4).  matK 

exhibited the smallest average interspecific distance (K2P = 0.009 across all five species) 

and was monomorphic within three putative species (A. acuta, A. decemloba, and A. 

tenella); rps2 had the highest average interspecific distance (K2P = 0.025).  Across all 

loci, Agalinis skinneriana had the highest intraspecific distance (K2P = 0.002); A. 

obtusifolia and A. skinneriana had the largest average interspecific distances (K2P = 

0.028 and 0.025, respectively) (Table 2.4).  

Pairwise interspecific K2P distances based on cpDNA loci among all Agalinis 

species previously examined (i.e., samples in Pettengill and Neel 2008 and Pettengill and 

Neel in review) except A. acuta, A. decemloba, and A. tenella (26 species; 57 accessions) 

averaged 0.0292 (st. dev. = 0.0092).  Intraspecific distances within those same species 

averaged 0.0021 (st. dev. = 0.0041).  In contrast, interspecific genetic distances among 

only A. acuta, A. decemloba, and A. tenella averaged 0.0011 (st. dev. = 0.0005) while 

intraspecific distances averaged 0.0008 (st. dev. = 0.0022) (Table 2.5).  Agalinis 
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obtusifolia and A. skinneriana differed from one another and from A. acuta, A. 

decemloba, and A. tenella by distances of 0.021 – 0.031. 

In general, the results of the phylogenetic analysis including additional samples 

representing populations not previously assayed were congruent with the observations of 

Pettengill and Neel (2008).  Specifically, monophyly of both A. skinneriana and A. 

obtusifolia was strongly supported (bootstrap support = 100%)  (Fig. 2.2) and both A. 

acuta and A. decemloba were polyphyletic.  The tree with the best likelihood score (-ln 

8729.079657) from the 1000 independent runs of the non-bootstrapped dataset showed A. 

tenella to be polyphyletic.  However, an alternative topology showing A. tenella to be 

monophyletic had a statistically indistinguishable likelihood score (-ln 8734.027845; AU-

test P >> 0.05).  Because additional information based on microsatellite loci supports the 

monophyly of A. tenella (discussed below) and the difference between alternative 

topologies lacked significance, we present a topology in which A. tenella is monophyletic 

(Fig. 2.2).  

Given that both A. obtusifolia and A. skinneriana were monophyletic, gsiT for both 

species was 1.0.  The gsiT statistic was significant for the other three species (P << 0.05) 

but was substantially less than 1.0 (A. acuta, gsiT = 0.394; A. decemloba, gsiT = 0.284; 

and A. tenella, gsiT = 0.415).  If A. acuta and A. decemloba are combined, gsiT = 0.689. 

Diagnostic cpDNA characters 

We found fixed nucleotide differences in psbA-trnH and trnT-trnF between either A. 

obtusifolia and all other species, A. skinneriana and all other putative species, or these 

two putative species and the other three species (Table 2.S6).  There were no fixed 

differences that distinguished A. acuta, A. decemloba, and A. tenella from each other 
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(Table 2.S6).  Of the two loci, psbA-trnH had more fixed differences among groups and 

had an 18bp insertion that was diagnostic of A. obtusifolia.  There was a ~200bp insertion 

in psbA-trnH present in both A. obtusifolia and A. skinneriana.  Within this large 

insertion, there was a 5bp insertion unique to A. obtusifolia and a 21bp insertion within A. 

skinneriana that distinguished between the two species.  The trnT-trnF locus had two 

insertion/deletion events, one of which was diagnostic of A. obtusifolia and one that was 

present in both A. skinneriana and A. obtusifolia. 

Microsatellite amplification success 

We successfully genotyped nearly 100% of the 14 microsatellite loci in all A. acuta 

and A. decemloba populations; amplification across loci in A. tenella samples was ~95% 

successful and in A. obtusifolia was ~86% successful (Table 2.3).  The differential 

success is not too surprising given that the loci were developed from genomic DNA for 

A. acuta and amplification across species is known to be challenging (Barbara et al. 

2007). At the same time, if A. acuta, A. tenella, and A. decemloba all represent one 

species, cross-amplification should not be an issue.  Therefore, amplification success 

provides useful information about the evolutionary relationships in that individuals that 

can be genotyped at a given locus are more likely more closely related to one another 

than they are to individuals in which the same locus could not be genotyped.  Patterns of 

amplification failure indicate the highest degree of similarity between A. acuta and A. 

decemloba, somewhat less similarity between these two putative taxa and A. tenella, and 

A. obtusifolia being the least similar (Tables 2.S2 & 2.S3).  
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Levels of genetic diversity 

Agalinis acuta had by far the largest number of individuals sampled and yet we 

detected 113 alleles at the 14 loci compared to 79 in A. decemloba, 271 in A. tenella, and 

227 in A. obtusifolia (Table 2.3).  When rarefaction, as implemented in FSTAT, was used 

to account for sample size differences, AR per locus at the species level ranged from 5.12 

in A. acuta, to 12.88 in putative A. tenella (Table 2.3).  The high AR in A. tenella was due 

in large part to one population (ATE-LCGA) that had large numbers of alleles at multiple 

loci, many of which were exclusive to that population (Table 2.3).  

Species-level He ranged from 0.51 in A. decemloba to 0.79 in A. tenella (Table 2.3).  

The average Ho within species was substantially lower in A. acuta and A. decemloba (Ho 

= 0.10 and Ho = 0.18, respectively) than it was in A. tenella (Ho = 0.60), and A. 

obtusifolia (Ho = 0.34; Table 2.3).  Consequently, both A. acuta and A. decemloba had 

high values of RIS (0.92 and 0.70, respectively). 

Population-level allele richness mirrored species level patterns in that A. acuta had 

the lowest average AR per locus (AR =1.78), with 8 populations averaging < 2.0 alleles per 

locus (Table 2.3).  Agalinis tenella had the highest average AR within populations (AR 

=5.04).  The proportion of polymorphic loci within populations was substantially lower 

in A. acuta than it was for populations of the other species, ranging from 0.07-0.93.  The 

only other population that had a value lower than the highest value for A. acuta was one 

A. obtusifolia population (AOB-DCSC; P=0.86).  The low levels of polymorphism for A. 

acuta are particularly striking because sampling was biased towards polymorphic loci for 

this species.  
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Levels of within-population He were <0.2 in all but 1 population of A. acuta and in 1 

of the 2 populations of A. decemloba (Table 2.3).  Ho within A. acuta was exceptionally 

low in the populations at Shadmoor (AAC-SHNY), Montauk Downs (AAC-MDNY), and 

Soldiers Delight (AAC-SDMD) (Table 2.3).  The low heterozygosity in the latter 

population is surprising given its size and extent.  Soldiers Delight also had the highest 

RIS value of any population.  

Across all four putative species, mean pairwise intraspecific Jost’s DEST values for 

individual populations were lower than mean pairwise interspecific values (Table 2.3).  

Although intraspecific levels of differentiation were lowest among the A. tenella 

populations (intraspecific 384.0=ESTD ) and greatest among the A. obtusifolia 

populations (intraspecific 647.0=ESTD ) (Table 2.3), these levels of intraspecific 

differentiation suggest that conspecific populations are substantially different from one 

another.  Agalinis obtusifolia populations were also the most differentiated from putative 

heterospecific populations followed by A. acuta populations with A. decemloba 

populations being the least differentiated from putative heterospecific populations.   

Heterozygosity estimates based on the synthetic data set that we created using 

FreeNA (Chapuis & Estoup 2007) to correct for potential presence of null alleles were 

larger than those observed in the original data, with averages across populations ranging 

from Ho = 0.31 in A. acuta to Ho = 0.77 in A. tenella (Table 2.3). Despite these large 

changes in estimates of observed heterozygosity, there was little difference in measures 

of differentiation based on our observed data (overall FST = 0.45) versus the data set that 

was calculated with FreeNA (overall FST = 0.43).  
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Analysis of molecular variance 

In the AMOVA model treating each of the four putative species as a separate group, 

the largest amount of variance in genetic distances was explained by the species level 

(55.37%; P <0.001).  Substantially less variation was explained by differences among 

populations within species and among individuals within populations (22.52% and 

22.11%, respectively; P <0.001) (Table 2.6a). 

Although the three models excluding putative A. obtusifolia populations from the 

analyses also had a significant portion of variance in genetic distances explained by the 

‘species’ level, the magnitude was approximately 50% less than when that taxon was 

included (Table 2.6).  Of the three models excluding A. obtusifolia, the largest amount of 

variance explained at the ‘species’ level was found in the model treating A. acuta and A. 

decemloba as one group and A. tenella as a second group (31.12%) (Table 2.6c).  The 

model treating A. acuta, A. decemloba, and A. tenella each as a separate ‘species’ only 

explained 22.93% of the variance in genetic distance at the ‘species’ level (Table 2.6b).  

The final model combining A. decemloba and A. tenella into one group and treating A. 

acuta as a separate group explained the smallest amount of genetic variance (20.9%) at 

the ‘species’.  These results indicate that A. obtusifolia is responsible for the majority of 

the differences among the four putative species and when it is not included, the model 

treating A. acuta and A. decemloba as one group explained the most amount of variance 

at the ‘species’ level (Table 2.6).  

Genetic distance among populations and individuals based microsatellites 

Pairwise interspecific Da distances between A. acuta and A. decemloba populations 

averaged 0.47, which was identical to intraspecific distances among A. acuta populations 
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and slightly higher than intraspecific distances between the two A. decemloba populations 

(Table 2.5).  Distances between these two species and A. tenella were larger (Da = 0.57-

0.59; Table 2.5).  Distances between both A. acuta and A. decemloba combined and A. 

obtusifolia was ~0.74 and between A. tenella and A. obtusifolia Da was ~0.65.  All 

interspecific distances except those between A. acuta and A. decemloba were 

substantially larger than intraspecific distances (Table 2.5). 

The neighbor-joining tree inferred from Da distances placed all A. acuta populations 

in the same clade with moderate support (bootstrap value of 73%)  (Fig. 2.3).  The two 

putative A. decemloba populations form a clade with 91% bootstrap support.  Together 

these two clades form a strongly supported group (bootstrap value of 94%; Fig. 2.3).  

All of the putative A. tenella populations also formed a strongly supported clade 

(bootstrap value of 99%).  However, there was substructuring within the clade, with 

ATE-CCSC placed outside the group containing the other three populations (ATE-

BCGA, ATE-LCGA, and ATE-GCGA), which were grouped together with bootstrap 

support of 95% (Fig. 2.3).  The A. obtusifolia populations were united into a strongly 

supported clade to the exclusion of the other three putative taxa.   

The relationships depicted on the neighbor-joining trees based on Da distances 

calculated among individuals were congruent with the results based on distances among 

populations.  Although the A. obtusifolia populations could not be included in the 

analysis because of the substantial amount of missing data, the other three putative taxa 

each formed clusters consisting of only putative conspecifics (Fig. 2.4).  The sister 

relationship between the clade consisting of the two A. decemloba populations and the 
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clade representing all A. acuta populations detected at the population level was also 

recovered.  

The neighbor-joining tree based on Da distances calculated from the data set created 

by FreeNA had nearly identical topology to the tree based on uncorrected data (Figs. 2.3 

& S1) with differences being in the relationships among conspecific rather than 

heterospecific populations and in having lower bootstrap support values.  Thus, if the null 

alleles were present in our dataset, the resulting bias does not dramatically affect the 

relationships we inferred with our observed data. 

Population structure and assignment tests 

Assignment of individuals using STRUCTURE when k = 4, which corresponds to the 

number of putative species we sampled, yielded monospecific clusters of A. obtusifolia 

and A. tenella individuals with minimal amounts of admixture and two groups composed 

of combinations of both A. acuta and A .decemloba.  Examination of ∆k did not yield an 

obvious number of most likely populations.  Rather multiple values of k showed an 

appreciable improvement in the likelihood score relative to k -1.  At k = 2 and 3, ∆k was 

4.09 and 4.75, respectively, and k = 5 and 6 both had values of ∆k greater than 1 that 

represented peaks when ∆k was plotted against k.  The individuals that formed putatively 

heterospecific clusters varied among these values of k (Fig. 2.5).  At k = 2, all A. 

obtusifolia and A. tenella individuals occupy one cluster and representatives of the other 

two species comprise the second cluster.  At k = 3, all A. obtusifolia individuals occupy a 

single cluster with minimal admixture, A. acuta individuals represent a second cluster, 

and the third includes all A. decemloba and A. tenella samples.  For k = 5 and 6, all A. 

obtusifolia and A. tenella individuals form monospecific clusters but the apparent group 
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assignments of A. decemloba and A. acuta individuals varies.  At k = 5, AAC-HPNY and 

AAC-WANY populations are grouped with the two A. decemloba populations and at k = 

6, the A. decemloba populations form a single cluster and AAC-HPNY and AAC-WANY 

are clustered with AAC-BVMA and AAC-PEMA.  Similar likelihoods of multiple values 

of k can be explained by hierarchical relationships among the individuals  (e.g., 

differentiation among taxa and differentiation among the populations within those taxa) 

(Evanno et al. 2005).  Even with such a hierarchy, we still expected that at k = 4 putative 

conspecifics would form a single cluster and as k increased beyond 4 that conspecifics 

would either form a single cluster or multiple clusters with no heterospecifics present.  

This was the case for A. tenella and A. obtusifolia but not A. decemloba or A. acuta which 

at k = 4 and 5 resulted in heterospecific groups. 

Morphology 

Using a DFA model with species as the grouping variable and 19 of the 

morphological variables (Table 2.S7) we distinguished among the five putative species 

with greater than 89% accuracy (Table 2.S8) when the same cases were used to build and 

evaluate the model.  Median correct classification rates based on cross-validation of 50% 

of the cases in each species in 10 independent runs were at least 75% for all species, and 

were above 95% for A. acuta and A. obtusifolia.  

Although this model yielded four significant canonical axes, the first two axes 

explained 83% of the variance (Table 2.S9).  The first axis accounted for 65% of the 

explained variance and was most important in distinguishing A. obtusifolia and A. tenella 

from the other three species (Fig. 2.6 and Table 2.S9).  The most important distinguishing 

character on this axis was the ratio of pedicel length to bract length, which was larger in 
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A. obtusifolia and A. tenella.  These species have comparatively long pedicels (median 

length 10.7 mm and 12.9 mm, respectively), short bracts (median length 3.4 mm and 4.8 

mm, respectively), and shorter calyx lobes.  Agalinis obtusifolia tended to have much 

wider leaves that were also wide relative to their length.  Based on both the standardized 

canonical coefficients and the factor structure coefficients the second DFA axis was 

explained by increasing values of dorsal anther length, the ratio of pedicel to calyx 

length, and decreasing values of stigma length.  This axis primarily separates A. 

decemloba and A. skinneriana from the three other taxa (Fig. 2.6).  Agalinis obtusifolia 

and A. tenella tended to have much longer dorsal anthers (median length 2.0 mm and 2.3 

mm respectively) compared to median lengths of ~ 1.5 mm in A. decemloba and A. 

skinneriana.  Dorsal anther length was correlated with ventral anther length and both 

dorsal and ventral filament lengths, thus this one variable represents overall stamen size.   

A DFA model with population as the grouping variable and 18 predictor variables 

yielded 11 significant axes, 4 of which explained a cumulative ~79% of variance (Table 

2.S10).  This model indicated substantial variation within and among populations within 

species.  Specifically, 5 populations had correct classification rates of < 75%, rates for 6 

populations were between 75% and 90%, and 8 populations had ≥ 90% correct 

classification (Table 2.S11).  Of the 35 misclassified individuals, 80% were classified 

into a conspecific population.  All 12 A. obtusifolia misclassifications were into 

conspecific populations (Table 2.S11).  Both misclassified A. decemloba, 2 out of 5 

misclassified A. tenella individuals, and 4 of 14 misclassified A. acuta individuals were 

assigned to heterospecific populations.  As with the species level model (Fig. 2.6), there 

was substantial overlap in the morphological variation captured by DFA Axis 1 that 



78 
 

  

followed primarily a south to north gradient (Fig. 2.7).  Axis 2 distinguished the A. 

tenella population from Colleton County, South Carolina (ATE-CCSC) from all other 

populations. 

In addition to the continuous variables discussed above, the absence of pink spots and 

yellow guidelines from A. obtusifolia has been considered diagnostic for this species.  

Based on our sampling and other field observations we found this to be a consistent 

diagnostic character for this species. 

DISCUSSION 

The combined evidence from the analysis of DNA sequence, microsatellite, and 

morphological variation in putative A. acuta, A. tenella, A. decemloba, A. obtusifolia, and 

A. skinneriana suggests there are four recognizable lineages that are congruent with what 

were historically classified as five species based on morphology and anatomy (Bicknell 

1915; Greene 1899; Pennell 1913b, 1929; Rafinesque 1836).  Further, not all of those 

lineages met the criteria we and other investigators require for recognition as species.  

Only A. obtusifolia and A. skinneriana were monophyletic based on cpDNA sequences at 

multiple loci.  Agalinis obtusifolia and A. skinneriana also differed from the other taxa 

and from each other based on diagnostic insertions/deletions at two of those loci.  

Amplification failure of microsatellite loci due to loss of priming sites or absence of 

microsatellites altogether represents additional diagnostic differences.  Morphological 

similarities between A. obtusifolia and what has been called A. tenella (e.g., Fig. 2.6) 

have led to difficulty in distinguishing the two taxa in the field (J. Hays and J. Canne-

Hilliker, personal communication) and resulted in the erroneous synonymization of A. 

obtusifolia with A. tenella, as well as A. decemloba (Kartesz 1999).  However, we found 
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the absence of pink spots and yellow guidelines on the corolla of A. obtusifolia to 

distinguish it from the other taxa.  This species also has relatively short and wide leaves, 

long pedicels, and short bracts compared to the other species (Table 2.1). 

In contrast, relationships among A. acuta, A. decemloba, and A. tenella based on 

cpDNA sequences were polyphyletic (Fig. 2.2) and there were no diagnostic cpDNA 

characters distinguishing these putative taxa from one another.  Absence of reciprocal 

monophyly and diagnostic characters among those three taxa is in stark contrast to the 

strongly supported monophyletic relationships and diagnosability of almost all other 

species in the genus (Pettengill & Neel 2008).  Branch lengths separating individuals of 

these three species were similar to those within other species in the genus, and were 

substantially shorter than branches subtending species (Fig. 2 and Neel and Pettengill 

2008 or Fig. 1.2 Chapter 1).  We also found no strong breaks in morphological characters 

that were concordant with species labels (Fig 2.6).  Rather, we saw relatively continuous 

and overlapping morphological variation among populations along a latitudinal gradient 

(Table 2.1 and Fig. 2.7).  The neighbor-joining tree based on Da distances among 

populations calculated using microsatellite allele frequencies also strongly supported A. 

acuta, A. decemloba, and A. tenella a single clade (Fig. 2.3).  Given this combined 

evidence, the most parsimonious taxonomic alignment is to treat them as a single species.  

This synonymization is in accordance with Baum (2009) in that the resulting group 

exhibits more genealogical exclusivity (e.g., gsiT = 1) than does the historical taxonomic 

alignment or grouping A. acuta and A. decemloba as one species and A. tenella as 

another.  Based on nomenclatural precedence, they would be merged under Agalinis 

decemloba.    
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 Within A. decemloba, which would now include what was historically known as A. 

acuta, A. decemloba, and A. tenella, there is support for infraspecific differences that 

warrant the designation of two subspecies.  Agalinis acuta and A. decemloba would 

comprise A. decemloba ssp. decemloba; A. tenella would represent A. decemloba ssp. 

tenella.  Although recognition of a group of individuals as an infraspecific taxon can be 

as controversial as species level decisions (e.g., Haig et al. 2006; Paetkau 1999; Ryder 

1986), Baum (2009) proposes that infraspecific taxa should be distinguished by, at most, 

“minor traits.”  We have employed this reasoning in making our decision that A. acuta 

and A. decemloba represent a distinct subspecies from A. tenella because it is based 

primarily on microsatellite allele frequency differences.   

Support for subsuming putative A. acuta and A. decemloba populations within a 

single subspecies to the exclusion of Agalinis tenella comes from near identity at cpDNA 

loci among individuals from those two species (Table 2.5).  Although A. decemloba ssp. 

tenella and A. decemloba ssp. decemloba are differentiated based on those same cpDNA 

loci, the magnitude of the differences are not similar to what is found among other 

Agalinis species and, therefore, are not indicative of species-level differences.  

Microsatellite-based distances between these two taxa (alone or combined) and A. tenella 

are greater than infraspecific distances in A. tenella.  However, distances of A. tenella 

from A. acuta and A. decemloba were lower than distances observed among other well-

supported species (Table 2.5).  Differential amplification success among the three 

putative species across the 21 microsatellite loci provides additional support for separate 

subspecific rank for A. tenella.  Agalinis acuta and A. decemloba had nearly 100% 

amplification success while A. tenella had only 95% success (Tables 2.S2 & 2.S3), 
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suggesting that there is a greater evolutionary and genetic similarity between the former 

two taxa than between either and A. tenella.  The substantially higher failure rates for A. 

obtusifolia (36.64%) and A. skinneriana (~100%) illustrate that although A. tenella 

differs from A. acuta and A. decemloba, the magnitude of that difference is substantially 

less than we observed among other species. The neighbor-joining tree based on Da 

distances among populations calculated using microsatellite allele frequencies also 

strongly supported two distinct clades, one which includes A. acuta and A. decemloba 

and the other A. tenella (Fig. 2.3).  One could argue that the well-supported clades on the 

neighbor-joining tree support that A. acuta, A. decemloba, and A. tenella should all be 

subspecies (Fig. 2.3), we suggest that the other analyses of microsatellite allele 

frequencies indicate those groupings best represent phylogeographic substructure. 

The lack of genealogical exclusivity of A. acuta and A. decemloba based on cpDNA 

is mirrored in the heterospecific clusters at k = 4 and k = 5 in the STRUCTURE analyses 

based on microsatellites.  At the same time, all A. tenella individuals were placed in a 

separate cluster at those values of k (Fig. 2.5).  At k = 3, however, A. decemloba and A. 

tenella were grouped together.  The AMOVA analyses evaluating the alternative 

taxonomic groupings of putative A. acuta, A. decemloba, and A. tenella populations, 

indicate a higher proportion of variance in genetic distances when A. acuta and A. 

decemloba represent a single group than when all three putative species are treated 

separately (Table 2.6).  Among A. acuta populations, the average Da distance was 0.489, 

which is similar to interspecific differentiation between A. acuta and A. decemloba (Da = 

0.476) (Table 2.5).  Thus, many A. acuta populations are more different from one another 

than these populations are from putative A. decemloba populations.  Consequently, some 
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interspecific distances among putative A. decemloba and A. acuta populations are less 

than intraspecific distances within either putative species; such a pattern is not expected 

for different species or even subspecies.       

This comprehensive investigation evaluating the evolutionary distinctiveness of A. 

acuta shows the power of sequentially analyzing multiple data types in context of 

different species concepts to determine the degree of differentiation among putative 

species.  The negative consequences of inaccurate taxonomy render it essential to apply 

such a rigorous approach to test taxonomic hypotheses.  Phylogenetic methods provide an 

objective test of the accuracy of species designations if monophyly based on sequence 

data is observed.  Because that criterion is an extreme requirement that takes a significant 

amount of evolutionary time to acquire and represents the end of the continuum of 

diversification in the speciation process (Cummings et al. 2008; de Queiroz 2007), there 

will be many cases in which historically accepted species are neither monophyletic nor 

diagnosable (e.g., Comes & Abbott 2001; Dueck & Cameron 2008; e.g., Edwards et al. 

2008a; Funk & Omland 2003; Syring et al. 2007; Yi et al. 2008).  In these cases, the point 

at which an entity will be considered discreet or differentiated enough to warrant species 

status will be subjective.  However, the rationale for making a determination needs to be 

transparent. 

Because genealogical exclusivity in DNA sequences may not be present for recently 

diverged species (Baum 2009; Funk & Omland 2003; Hudson & Coyne 2002), lack of 

monophyly should trigger analysis with more rapidly evolving genomic regions, a more 

comprehensive sampling of the genome, extensive population-level sampling (e.g., 

Edwards et al. 2008a) and sampling morphological traits (e.g., Olfelt et al. 2001).  
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Although questions of evolutionary distinctiveness have resulted from a lack of 

confidence in the morphological characters upon which taxonomic classifications of a 

number of rare species were based (e.g., Bacon & Bailey 2006; e.g., Brunsfeld et al. 

1991; Case et al. 1998; Mymudes & Les 1993; Nicole et al. 2007; Wood & Nakazato 

2009),  there have been few comprehensive studies investigating the evolutionary 

distinctiveness of species listed under the Endangered Species Act.  In one such study, six 

morphologically distinct species in the genus Conradina (Lamiaceae) species native to 

the southeastern United States were found to be paraphyletic based on 3642 bp of 

combined chloroplast and nuclear DNA sequence (Edwards et al. 2008a; Edwards et al. 

2008b).  Subsequent analyses employing 10 microsatellite loci found patterns of 

differentiation that the authors considered sufficient to support recognition of 6 putative 

species (e.g., STRUCTURE analyses showed all conspecifics forming single clusters at k 

= 6 with minimal or no admixture) (Edwards et al. 2008a; Edwards et al. 2008b).  

Interestingly, Edwards et al. (2008) also suggest that three populations of Conradina 

canescens warrant species status because they corresponded to three clusters at k = 8, 

although those cluster each had an appreciable amount of admixture; a similar claim was 

made regarding the genetic distinctness of a group of recently discovered populations 

from Santa Rosa, FL (Edwards et al. 2008b).  We have employed a stricter requirement 

for species level distinctiveness (e.g., Goldstein et al. 2000) and do not consider 

microsatellite variation alone to be sufficient to support species level designations. 

In contrast, evolutionary distinctiveness of the federally listed narrowly endemic 

species Spiranthes parksii (Orchidaceae) from the more widespread Spiranthes cernua 

was not supported when examined using multiple lines evidence (Dueck & Cameron 
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2008; Walters 2005).  The two species are often sympatric, possess many morphological 

similarities, and the differences that have been used historically to differentiate S. parksii 

were considered reflect local phenotypes of the more widespread and highly variable S. 

cernua (Dueck & Cameron 2008).  Phylogenetic analyses of 3191 bp of DNA sequence 

at 4 loci showed S. parksii to be nested within S. cernua.  The patterns of relatedness 

among conspecific individuals based on AFLP and microsatellite variation showed little 

concordance with the pattern expected of species and as provided no evidence of 

substructure that would indicate infraspecific taxonomic groups.  After explicitly 

considering different species concepts (e.g., biological, morphological/phenetic, and 

phylogenetic) in light of the patterns of relatedness they observed, they recommended 

that the two species be synonymized.   

Conservation implications 

The ESA allows listing of taxa below the rank of species (U.S.C. 1973), thus A. 

decemloba ssp. decemloba would represent a listable entity.  However, to receive federal 

protection, it must either be in danger of extinction throughout all or a significant portion 

of its range (endangered) or at risk of becoming endangered in the foreseeable future 

(threatened) (U.S.C. 1973).  The southward range extension from northern Maryland to 

central North Carolina, and possibly to South Carolina that results from merging A. 

decemloba and A. acuta has three potential outcomes: 1) the extinction risk to A. 

decemloba ssp. decemloba remains high enough to warrant continued listing as 

endangered; 2) the increased range decreases the threat to the taxon such that it is at risk 

of endangerment rather than immediate extinction and thus is more appropriately listed as 

threatened; or 3) the taxon is not at risk of immediate extinction or of endangerment in 
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the foreseeable future and no longer warrants listing.  Determining which of these 

alternatives is true is the purview of the USFWS and would require a full status review, 

but observations during our sampling efforts provide some insight into the status of the 

taxon. 

We obtained locations of 24 documented occurrences of A. decemloba from local 

and state agencies, major herbaria, and taxonomic experts in the genus.  Across multiple 

years, we visited 22 of these occurrences but found plants at only 3 of them.  One of these 

locations supported only a single individual and thus was not included in our samples.  

We also searched appropriate habitat at many other locations and found no additional 

occurrences.  Many of the potential explanations for the absence of populations at sites 

we visited (e.g., succession of grassland habitat to forest, mowing, herbicide spraying on 

road verges and utility corridors, road construction, and conversion of habitat to 

agricultural and commercial development) would have been less likely to occur if these 

populations had received federal protection.  Our inability to locate populations may also 

have been the result of drought conditions, thus some populations we were unable to 

locate might still be extant.  In some cases, we found other Agalinis species at the sites 

indicating potential misidentifications in the original collections.  Taxonomic confusion 

was evident on old herbarium specimens.  For example, A. setacea specimens were often 

originally erroneously attributed to A. decemloba (Pettengill and Neel, in review).  Due to 

uncertainty in identification and the fact that A. decemloba ceased to be tracked by 

natural heritage programs when it was synonymized with A. obtusifolia, we are not able 

to determine how many populations of what would be attributable to what we suggest be 

considered A. decemloba ssp. decemloba actually exist.   
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Due to extirpation or original misidentification, very few of the documented A. 

decemloba sites in the portion of the range beyond what was recognized as the listed 

entity A. acuta remain extant.  We anticipate that focused surveys would locate additional 

populations, but there is no way to know how many.  At the same time, all remaining 

populations of what was known as A. acuta in the northeast are small and isolated and are 

vulnerable to extirpation if habitat protection and management were not ongoing through 

implementation of the recovery plan (U.S. Fish and Wildlife Service 1989b).  The two 

populations of A. decemloba we sampled exist along utility rights of way (one electrical 

transmission line and one petroleum pipeline).  The transmission line is located within 

William B. Umstead State Park (ADE-WCNC), which affords a measure of protection 

and management.  The other population from Virginia (ADE-L1VA), which exists along 

a petroleum pipeline, is unprotected and is likely at risk of extirpation due to an irregular 

disturbance regime.  The third occurrence consisting of a single individual was in a small 

opening along a trail in an undeveloped portion of the North Carolina Zoological Park.  

Furthermore, populations ADE-L1VA and ADE-WCNC have high inbreeding 

coefficients and low levels of allelic richness (Table 2.3) that appear to be of such a 

magnitude that genetic issues could negatively affect fitness and adaptive potential 

(Frankham et al. 2002).  All populations that would represent A. decemloba ssp. 

decemloba are also highly differentiated from one another and all but one possess unique 

allelic diversity such that extirpation of any single population would reduce the amount 

of genetic diversity within the subspecies (Table 2.3).  Based on all this evidence 

combined, it appears that the range extension that results from merging A. acuta and A. 
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decemloba into A. decemloba ssp. decemloba does not substantially reduce the risk of 

extinction. 

Conclusions 

Using a sequential approach with decreasing levels of restrictiveness provides a 

rigorous framework in which to assess three different issues that are crucial to 

determining the evolutionary distinctiveness of Agalinis acuta from other species.  We 

were able to 1) identify where along the divergence continuum this entity lies, 2) 

rigorously compare the observed patterns against the criteria of multiple species concepts, 

and 3) assign the taxonomic rank for the groupings best supported by the data (Baum 

2009; de Queiroz 2007).  Including additional putative species beyond the few that were 

our primary focus provided perspective that the degree of differentiation among other 

closely related Agalinis species was substantially higher than among Agalinis tenella, 

Agalinis acuta, and Agalinis decemloba (e.g., Baum 2009).  Using this comprehensive 

sequential approach, we have determined that A. acuta does not represent a distinct taxon 

and recommend that it be synonymized with what have been called A. decemloba and A. 

tenella into the species A. decemloba.  We further consider A. acuta and A. decemloba 

populations to form the subspecies A. decemloba ssp. decemloba, which is a distinct 

taxon that is a listable entity under the Endangered Species Act. 

Whether the newly defined A. decemloba ssp. decemloba still meets the definition of 

endangerment according to the five listing factors under Section 4 of the Endangered 

Species Act is ultimately a decision for the United States Fish and Wildlife Service.  

Although we visited a large number of historic locations that we compiled from herbaria, 

natural heritage programs, and experts in the genus, a full status review would require a 
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more thorough search for historic locations and a level of field survey that was beyond 

the scope of this study.  Based on the following three observations, we suggest that 

despite the range expansion associated with creation of A. decemloba ssp. decemloba the 

taxon is still at risk of extinction throughout its range: 1) we could only locate a small 

number of putative A. decemloba populations (i.e., 3) that would be attributed to A. 

decemloba ssp. decemloba, 2) all 12 populations of A. acuta in the northeast require 

ongoing management to avoid extirpation, and 3) the estimates of population genetic 

parameters associated with all populations we sampled suggests that genetic factors may 

have a negative impact on levels of fitness. 
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Table 2.1.3Morphological characteristics that have been used historically to differentiate among A. acuta, A. decemloba, A. tenella, A. 
obtusifolia, and A. skinneriana. All measurements are in millimeters. 
 

 Floral Characteristics 

Species Corolla Length 
Calyx Tube 

Length 
Calyx Teeth/ 
Lobe Length 

Yellow Lines 
on Corolla 

Pedicel Length 
to Calyx Ratio 

Pedicel to 
Bract Ratio 

Pedicel Length 
(at anthesis) 

A. acuta 10-13‡ 3‡ 0.5-1.0 ‡ Present*‡ 1-3:1‡ 1-2:1‡ 5-15‡ 
A. decemloba 10-15*‡ 2.5-3‡ 0.05-0.2‡ Present* 2.5:1* 2-3:1‡ 5-20*‡ 
A. tenella 15-20*‡ 1.5-2.0‡ 1.5-2.0‡ Present*‡ 2.5:1* 3-8:1‡ 5-20*, 8-20‡ 
A. obtusifolia 10-15† , 12-16‡ 1.8-3†, 2.0-2.5‡ 0.1-0.4† Absent* 2.5:1* 3-5:1‡ 5-20*, 3-18‡ 
A. skinneriana 10-15†, 12-15‡ 2.5-3.5†‡ 0.5†, 0.3-0.8 ‡ Present† >1†, 1.5:1‡ 1-2:1‡ 5-20*, 5-17‡ 
* Weakley (2008) 
†  Brown and Brown (1984) 
‡  Pennell (1929)
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Table 2.2.4Location of sampled populations and the number of samples for microsatellites and morphological characters obtained 
from five Agalinis species. Agalinis skinneriana populations were not used in analyses because microsatellites failed to amplify. 

Species –  
    population location 

Population 
Code 

# of Individuals 
(Morphology) Latitude          Longitude 

Agalinis acuta    
Bay View, Barnstable Co., MA AAC-BVMA 29 (27) +41°34'53.68"     -70°31'35.48" 
Percival Cemetery, Barnstable Co., MA AAC-PEMA 29 (14) +41°41'13.00"   -70°27'22.00" 
Scrubby Neck, Dukes Co., MA AAC-SNMA 16 (0) +41°21'0.65         -70°36'55.80  
Richmond Cemetery, Washington Co., RI ACC-RCRI 20 (0) +41°29'41.70"   - 71°37'16.44"" 
Eppley Wildlife Sanctuary, Washington Co., RI AAC-EPRI 30 (29) + 41°31'41.62"   - 71°34'35.99"" 
Plainfield Cemetery, Windham Co., CT AAC-PCCT 30 (30) +41°41'12.98"   -71°55'22.01" 
Montauk Downs, Suffolk Co., NY AAC-MDNY 30 (14) + 41° 3'6.53"N  -71°56'20.32" 
Shadmoor State Park, Suffolk Co., NY AAC-SHNY 24 (10) + 41° 2'20.34"   - 71°55'37.23" 
Hempstead Plains, Nassau Co., NY AAC-HPNY 31 (28) +40°44'2.18"   -73°35'9.77" 
Warhol Preserve, Suffolk Co., NY AAC-WANY 9 (0) +41° 2'49.40""   - 71°53'31.22" 
Soldiers Delight, Baltimore Co., MD AAC-SDMD 30 (30) +39°25'2.26"   -76°49'47.37" 
Total: 11 populations  Total: 278 (182)  
Agalinis tenella    
Colleton Co. SC ATE-CCSC 12 (12) +32°56'4.00"   -80°37'22.22" 
Lowndes Co. GA ATE-LCGA 30 (30) +30°47'45.42"   -83°22'49.86" 
Brooks Co, GA ATE-BCGA 31 (6) +30°42'47.76"   -83°29'24.06" 
Grady Co., GA ATE-GCGA 30 (30) +30°45'4.86"   -84°5'11.22" 
Total: 4 populations  Total: 103 (78)  
Agalinis decemloba    
Lunenberg Co. VA ADE-L1VA 24 (8) +36° 58'17.46"   -78° 21’30.42" 
Wake Co. NC ADE-WCNC 33 (29) +35° 52'36.12"   -78° 45’58.80" 
Total: 2 populations  Total: 57 (37)  
Agalinis obtusifolia    
Lee Co. SC AOB-LCSC 30 (30) +34°2’37.96”   -80°8’14.74” 
Dorchester Co. SC AOB-DCSC 24 (17) +33°2’56.04”   -80°23’12.84” 
Liberty Co. FL AOB-LCFL 35 (30) +30°5’1.56”   -85°3’22.92” 
Total: 3 populations  Total:  89 (77)  
Agalinis skinneriana    
Chesapeake Forest, Dorchester Co., MD ASK-CFMD 82 (0) +38°32’51.43”  -75°47’58.44” 
Barton Co., MO ASK-BCMO 4 (0)  
Vernon Co., MO ASK-VCMO 4 (0)  
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Species –  
    population location 

Population 
Code 

# of Individuals 
(Morphology) Latitude          Longitude 

Prince Georges Co., MD ASK-PGMD 45 (21) +38°45’15.19”  -76°51’55.80” 
Total: 4 populations   135 (21)  
Grand Total:  24 populations  Total: 662 (395)  
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Table 2.3.5Population genetic characteristics of species and populations based on microsatellite loci. Values within species are calculated based on 14 
loci.  P = proportion of polymorphic loci; A = number of alleles; AP = number of private alleles; AR = allelic richness as calculated in FSTAT using a 
rarefaction method; Ho

* = observed heterozygosity based on the FreeNA dataset; intraspecific and interspecific estimates of Jost’s DEST.  
Species 

  Population N 
Amplification 
Success (%) P A AP AR Ho Ho

* HE RIS

DEST 
(intra) 

DEST 
(inter)

Agalinis acuta 271 98.08 1.0 113 22 5.12 0.10 0.29 0.60 0.92 n/a 0.680 
AAC-BVMA 29 97.29 0.71 29 1 1.58 0.07 0.26 0.19 0.59 0.533 0.870 
AAC-SNMA 16 100.00 0.50 23 2 1.43 0.08 0.20 0.16 0.45 0.576 0.844 
AAC-PEMA 29 99.01 0.57 26 3 1.59 0.07 0.26 0.20 0.74 0.493 0.856 
AAC-PCCT 29 98.52 0.77 38 5 1.94 0.16 0.38 0.32 0.82 0.503 0.799 
AAC-EPRI 24 92.26 0.93 50 3 2.52 0.18 0.54 0.45 0.65 0.526 0.793 
AAC-RCRI 20 98.93 0.79 37 2 2.28 0.28 0.45 0.40 0.11 0.511 0.828 
AAC-HPNY 31 99.08 0.64 27 3 1.76 0.13 0.35 0.29 0.53 0.543 0.761 
AAC-MDNY 30 99.76 0.07 15 0 1.04 0.01 0.02 0.01 0.48 0.561 0.839 
AAC-SHNY 24 97.92 0.50 21 3 1.19 0.04 0.06 0.05 0.03 0.520 0.821 
AAC-WANY 9 93.65 0.79 37 2 2.45 0.13 0.52 0.44 0.77 0.462 0.730 
AAC-SDMD 30 99.29 0.64 31 7 1.82 0.05 0.37 0.30 0.94 0.579 0.843 

Mean of populations  24.64 97.79 0.63 30.4 2.8 1.78 0.11 0.31 0.25 0.56 0.528 0.817 
             
Agalinis decemloba 57 99.37 1.0 79 7 4.61 0.18 0.49 0.51 0.70 n/a 0.678 

ADE-WCNC 33 99.35 0.93 54 7 2.32 0.21 0.43 0.36 0.63 0.420 0.722 
ADE-L1VA 24 99.40 1.00 49 8 2.52 0.15 0.57 0.47 0.69 0.420 0.709 

Mean of populations 28.5 99.38 0.96 51.5 7.5 2.42 0.18 0.50 0.41 0.66 0.420 0.716 
             
Agalinis tenella 103 95.08 1.00 271 126 12.88 0.60 0.77 0.79 0.31 n/a 0.724 

ATE-GCGA 30 95.48 1.00 148 21 5.20 0.57 0.77 0.75 0.26 0.367 0.805 
ATE-CCSC 12 93.45 1.00 87 11 4.52 0.61 0.76 0.73 0.37 0.478 0.815 
ATE-LCGA 30 96.19 1.00 179 46 5.59 0.60 0.77 0.75 0.24 0.323 0.792 
ATE-BCGA 31 94.24 1.00 126 17 4.86 0.60 0.77 0.74 0.14 0.367 0.831 

Mean of populations 25.75 94.48 1.00 135 23.8 5.04 0.60 0.77 0.74 0.25 0.384 0.811 
             
Agalinis obtusifolia 89 85.71 1.00 227 120 11.13 0.34 0.69 0.77 0.60 n/a 0.797 

AOB-LCFL 35 79.59 1.00 146 52 4.98 0.42 0.77 0.74 0.56 0.709 0.880 
AOB-LCSC 30 90.00 1.00 104 26 4.05 0.30 0.68 0.62 0.51 0.730 0.912 
AOB-DCSC 24 89.29 0.86 76 25 3.52 0.27 0.60 0.54 0.41 0.501 0.917 

Mean of populations 29.66 86.29 0.95 108. 7 34.3 4.18 0.33 0.68 0.63 0.49 0.647 0.903 
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Table 2.4.6Characteristics of the sampled cpDNA loci used in the phylogenetic analyses based on 35 samples representing A. 
acuta (n = 10), A. decemloba (n = 5), A. obtusifolia (n = 9), A. tenella (n = 8), and A. skinneriana (n = 3).  Intraspecific and 
average interspecific K2P distances are also shown. 

Locus N 
Aligned 
Length* 

Constant 
Characters 

(%) 

Variable 
Characters 

(%) 
matK 34 872 853 (97.82) 19 (2.23) 

psbA-trnH 35 585 540 (92.31) 45 (8.33) 
rpoB 35 367 351 (95.64) 16 (4.56) 
rps2 35 651 614 (94.32) 37 (6.03) 
rbcL 31 617 597 (96.76) 20 (3.35) 

trnT-trnF 35 1707 1628 (95.37) 79 (4.85) 
Combined 35 4799 4583 (95.50) 216 (4.71) 

 
Table 2-4 (continued) 

Locus N 

Species Level K2P Distances 
A. acuta A. decemloba A. tenella A. obtusifolia A. skinneriana Total 

intra inter intra inter intra inter intra inter intra inter intra inter 
matK 34 0 0.006 0 0.006 0 0.006 0.001 0.013 0.002 0.014 0.001 0.009 

psbA-trnH 35 0.002 0.0143 0 0.011 0.001 0.014 0.002 0.026 0.001 0.023 0.001 0.018 
rpoB 35 0.001 0.011 0.002 0.011 0.002 0.012 0.002 0.024 0.004 0.019 0.002 0.015 
rps2 35 0.0 0.017 0.002 0.018 0.001 0.018 0.001 0.045 0.003 0.030 0.002 0.025 
rbcL 31 0 0.001 0.001 0.009 0.003 0.008 0.003 0.007 0 0.015 0.002 0.010 

trnT-trnF 35 0.001 0.014 0 0.011 0.001 0.014 0.002 0.026 0.001 0.023 0.001 0.018 
Combined 35 0.001 0.012 0.001 0.012 0.001 0.014 0.001 0.028 0.002 0.025 0.001 0.018 
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Table 2.5.7Interspecific and intraspecific genetic distances among five putative Agalinis species.  Da distances based on 14 
microsatellite loci are above the diagonal and K2P distances based on the cpDNA loci are below the diagonal.  On the diagonal are the 
intraspecific Da distances followed by K2P distances within putative species.  Intraspecific Da distances are the average among 
putative conspecific populations and interspecific Da distances are based on combining putative conspecific individuals together into 
one group and comparing with the other three groups. 
 

 A. acuta A. decemloba A. tenella A. obtusifolia A. skinneriana 
A. acuta 0.489/0.00062 0.476 0.568 0.743 n/a 

A. decemloba 0.000477 0.386/0.000729 0.589 0.749 n/a 
A. tenella 0.001443 0.001253 0.386/0.001055 0.646 n/a 

A. obtusifolia 0.025936 0.025784 0.028107 0.474/0.001395 n/a 
A. skinneriana 0.022109 0.021481 0.023264 0.031711 (n/a)/0.001956 
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Table 2.6.8Results from analysis of molecular variance based on different taxonomic 
hypotheses (* denotes statistical significance at P < 0.001).  

6a. The full model including all four putative species treated separately.  

Source of Variation d.f. 
Sum of 
Squares 

Variance 
Components 

Percentage of  
Variation 

Among putative species 3  1853677.390 2487.15409 55.37* 
     

Among populations 
within putative species 16 836913.486 1011.69325 22.52* 

     
Within populations 1020 1012776.967      992.91859 22.11* 

Total 1039 3703367.842   4491.76593  
 
 

6b. Agalinis tenella, A. acuta and A. decemloba comprise separate species; A. 
obtusifolia is not included in the model.  

Source of Variation d.f. 
Sum of 
Squares 

Variance 
Components 

Percentage of  
Variation 

Among putative species 2 339760.1 492.552 22.93* 
     

Among populations 
within putative species 14 704192.2 1001.143 46.6* 

     
Within populations 845 553140.8 654.6045 30.47* 

Total 861 1597093 2148.3  
 
6c. A. acuta and A. decemloba comprise one taxon and A. tenella represents another; 
A. obtusifolia is not included in the model.  

Source of Variation d.f. 
Sum of 
Squares 

Variance 
Components 

Percentage of 
Variation 

Among putative species 1 289085.4 743.5039 31.12* 
     

Among populations 
within putative species 15 754866.9 991.1479 41.48* 

     
Within populations 845 553140.8 654.6045 27.4* 

Total 861 1597093 2389.256  
 
6d. Agalinis tenella and A. decemloba comprise one ‘taxon’ and A. acuta represents 
a separate taxon; A. obtusifolia is not included in the model.  

Source of Variation d.f. 
Sum of 
Squares 

Variance 
Components 

Percentage of 
Variation 

Among putative species 1 240974 451.5327 20.9* 
     

Among populations 
within putative species 15 802978.3 1054.82 48.81* 

     
Within populations 845 553140.8 654.6045 30.29* 

Total 861 1597093 2160.957  
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Table 2.S1.9Samples of A. acuta, A. decemloba, A. obtusifolia, A. skinneriana, and A. tenella that were included in the phylogenetic 
analyses and the loci for which sequences were obtained. The EU numbers below certain loci refer to the Genebank accession 
numbers and those loci that have a YES will be deposited into Genbank; those samples for which a sequence could not be obtained for 
a given locus are denoted with NO. Information regarding the other samples included in the phylogenetic analyses (Fig. 2.1) can be 
found in Pettengill and Neel (2008) 

Taxon Sampled Location 

Population 
Code for 

Microsatellite 
Analyses matK rbcL rps2 trnT -trnF trnH-psbA rpoB 

Focal Species         

A. acuta 125CT Windham Co., CT AAC-PCCT YES YES EU827965 YES EU827882 EU828046 

A. acuta 139RI Washington Co., RI AAC-EPRI YES YES EU827966 EU828129 EU827883 EU828047 

A. acuta 13PCMA Sandwich, Barnstable Co. MA AAC-PEMA YES YES EU827967 EU828130 EU827884 EU828048 

A. acuta 1BVMA Waquoit Bay,  Barnstable Co. MA AAC-BVMA YES YES EU827968 EU828131 EU827885 EU828049 

A. acuta 211HPNY Nassau Co., NY AAC-HPNY YES YES EU827969 EU828132 EU827886 EU828050 

A. acuta 229MDNY Montauk Downs, Suffolk Co. NY AAC-MDNY YES YES EU827970 EU828133 EU827887 EU828051 

A. acuta 265SMNY Shadmoor,Suffolk Co., NY AAC-SHNY YES YES EU827971 EU828134 EU827888 EU828052 

A. acuta 33SNMA Dukes Co., MA AAC-SNMA YES YES EU827972 EU828135 EU827889 EU828053 

A. acuta 51MD Baltimore Co., MD AAC-SDMD YES YES EU827973 EU828136 EU827890 EU828054 

A. acuta 161RI Washington Co., RI AAC-RCRI YES YES YES YES YES YES

A. decemloba 1VA Lunenberg Co., VA  NO YES YES YES YES YES

A. decemloba 6VA Lunenberg Co., VA  YES YES EU827982 EU828145 EU827899 EU828063 

A. decemloba 45VA Lunenberg Co., VA ADE-L1VA YES YES YES YES YES YES

A. decemloba 19NC Wake Co., NC ADE-WCNC YES NO YES YES YES YES

A. decemloba 9NC Randolph Co., NC  YES YES EU827983 EU828146 EU827900 EU828064 

A. obtusifolia 177SC Dorchester Co., SC AOB-DCSC YES YES YES YES YES YES

A. obtusifolia 169SC Lee Co., SC AOB-LCSC YES YES YES YES YES YES

A. obtusifolia 18FL Fl.  YES NO YES YES YES YES

A. obtusifolia 10AL Baldwin Co., AL  YES NO YES YES YES YES

A. obtusifolia 13AL Geneva Co., AL  YES YES EU828008 EU828171 EU827925 EU828089 

A. obtusifolia 14AL Mobile Co., AL  YES YES YES EU828172 EU827926 EU828089 

A. obtusifolia 20FL Liberty Co., FL  AOB-LCFL YES YES EU828010 EU828174 EU827928 EU828092 

A. obtusifolia 6AL Mobile Co., AL  YES YES EU828011 EU828175 EU827929 EU828093 

A. obtusifolia 8AL Geneva Co., AL  YES YES YES EU828176 EU827930 EU828094 
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Taxon Sampled Location 

Population 
Code for 

Microsatellite 
Analyses matK rbcL rps2 trnT -trnF trnH-psbA rpoB 

A. skinneriana 106MD Prince Georges Co., MD  YES YES EU828028 EU828193 EU827947 EU828110 

A. skinneriana 78MD Dorchester Co., MD  YES YES EU828029 EU828194 EU827948 EU828111 

A. skinneriana 90MO Vernon Co., MO  YES YES EU828030 EU828195 EU827949 EU828112 

A. tenella 1GA Ware Co., GA  YES YES EU828009 EU828173 EU827927 EU828091 

A. tenella 79GA Brooks Co., GA ATE-BCGA YES NO YES YES YES YES

A. tenella 11GA Lowndes Co., GA ATE-LCGA YES YES EU828032 EU828197 EU827951 EU828114 

A. tenella 13GA Grady Co., GA  YES YES EU828033 EU828198 EU827952 EU828115 

A. tenella 91GA Grady Co., GA ATE-GCGA YES NO YES YES YES YES

A. tenella 3SC Colleton Co., SC ATE-CCSC YES YES EU828034 EU828199 EU827953 EU828116 

A. tenella 4GA Ware Co., GA  YES YES EU828035 EU828200 EU827954 EU828117 

A. tenella 9GA Lanier Co., GA  YES YES EU828036 EU828201 EU827955 EU828118 

Outgroup         
A. calycina  Pecos Co., TX Pecos Co., TX EU828219 EU827978 EU828141 EU827895 YES YES EU827978 EU828141 EU827895 EU827895
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Table 2.S2.10The number of genotypes per locus resolved from populations of Agalinis acuta.  
 

Agalinis acuta 

Locus 

AAC-
SDMD 

(N = 30) 

AAC-
WANY 
(N = 9) 

AAC-
PCMA 
(N =29) 

AAC-
BVMA 
(N = 29) 

AAC-
MDNY 
(N =30) 

AAC-
SHNY 
(N =24) 

AAC-
HPNY 

(N = 31) 

AAC-
EPRI 

(N =24) 

AAC-
PCCT 

(N = 29) 

AAC-
RCRI 

(N =20) 

AAC-
SNMA 

(N = 16) 
% 

Success 
1)  Agac.M1* 29 9 28 28 27 24 29 24 29 20 16 97.05 
2)  Agac.M6* 30 8 27 29 30 22 31 24 29 19 16 97.79 
3)  Agac.M33 30 9 29 26 30 24 31 18 26 20 16 95.57 
4)  Agac.M11 29 9 29 29 29 24 30 24 29 20 16 98.89 
5)  Agac.M14 29 8 29 29 30 23 31 22 28 20 16 97.79 
6) Agac.M28 30 9 28 27 30 24 31 23 28 20 16 98.15 
7) Agac.M42 30 7 28 28 30 23 31 23 29 20 16 97.79 
8)  Agac.M46 29 7 28 27 30 24 31 23 28 20 16 97.05 
9)  Agac.ca 11 30 9 29 29 30 24 31 24 29 20 16 100.00 
10)  Agac.ca20 30 9 29 29 30 21 30 24 29 20 16 98.52 
11)  Agac.ca26 30 9 29 29 30 23 30 21 29 19 16 97.79 
12)  Agac.aag46 30 6 28 29 30 23 31 19 29 18 16 95.57 
13)  Agac.ca10 30 9 29 29 30 24 30 18 29 20 16 97.42 
14)  Agac.aag29* 30 9 29 29 30 23 31 24 29 20 16 99.63 
15)  Agac.ca48* 30 9 29 29 30 24 31 24 29 20 16 100.00 
16)  Agac.ca 21 30 9 29 29 30 24 31 24 29 20 16 100.00 
17)  Agac.taca12* 30 9 29 29 30 24 31 24 29 20 16 100.00 
18)  Agac.taca45* 30 9 29 29 30 24 31 23 29 20 15 99.26 
19)  Agac.taca04 30 9 29 29 30 24 31 23 29 20 16 99.63 
20)  Agac.ca45* 30 8 29 29 30 24 31 24 29 20 16 99.63 
21)  Agac.ca33 30 9 29 26 30 24 31 24 29 20 16 98.89 
% Success  99.37 94.71 98.85 98.03 99.37 98.02 99.08 94.64 99.01 99.05 99.70  

 
* Due to the large number of missing genotypes these loci were not included in the analyses. 
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Table 2.S3.11The number of genotypes per locus resolved from populations of Agalinis 
decemloba, Agalinis tenella, and Agalinis obtusifolia. Populations with genotypes 
missing from >50% of individuals sampled for a locus are indicated in bold. 

 

 Agalinis decemloba Agalinis tenella 

Locus 

ADE-L1VA 
(N = 24) 

ADE-WCNC 
(N = 33) 

ATE-CCSC 
(N = 12) 

ATE-GCGA 
(N = 30) 

ATE-LCGA 
(N =30) 

ATE-
BCGA 

(N = 31) 
1)  Agac.M1* 24 33 9 14 27 13 
2)  Agac.M6* 24 33 12 30 28 31 
3)  Agac.M33 24 33 12 29 29 31 
4)  Agac.M11 24 33 12 30 27 31 
5)  Agac.M14 24 32 12 20 27 25 
6) Agac.M28 24 33 11 24 25 19 
7) Agac.M42 24 33 7 29 30 31 
8)  Agac.M46 24 33 11 29 29 31 
9)  Agac.ca 11 24 33 12 30 30 31 
10)  Agac.ca20 24 33 12 30 29 29 
11)  Agac.ca26 22 33 12 30 30 31 
12)  Agac.aag46 24 33 10 30 30 29 
13)  Agac.ca10 24 33 10 30 29 31 
14)  Agac.aag29* 24 27 12 30 30 31 
15)  Agac.ca48* 24 33 4 30 25 30 
16)  Agac.ca 21 24 33 12 30 29 31 
17)  Agac.taca12* 23 15 9 9 13 0 
18)  Agac.taca45* 24 33 12 30 29 30 
19)  Agac.taca04 24 31 12 30 30 29 
20)  Agac.ca45* 24 33 12 29 26 31 
21)  Agac.ca33 24 33 12 30 30 30 

% Success  99.40 96.10 90.07 90.95 92.38 88.33 
 
Table 2.S3 continued. 

 Agalinis obtusifolia  

Locus 
AOB-LCFL 

(N = 35) 
AOB-LCSC 

(N = 30) 
AOB-DCSC 

(N = 24) % Success 

1)  Agac.M1* 13 1 0 53.82 
2)  Agac.M6* 0 0 22 72.29 
3)  Agac.M33 5 9 9 72.69 
4)  Agac.M11 29 29 24 95.98 
5)  Agac.M14 33 30 23 90.76 
6) Agac.M28 26 22 23 83.13 
7) Agac.M42 18 26 23 88.76 
8)  Agac.M46 29 30 24 96.39 
9)  Agac.ca 11 34 30 24 99.60 
10)  Agac.ca20 25 26 20 91.57 
11)  Agac.ca26 25 29 21 93.57 
12)  Agac.aag46 34 30 24 97.99 
13)  Agac.ca10 34 29 23 97.59 
14)  Agac.aag29* 0 0 0 61.85 
15)  Agac.ca48* 1 16 24 75.10 
16)  Agac.ca 21 33 30 22 97.99 
17)  Agac.taca12* 0 15 7 36.55 
18)  Agac.taca45* 0 0 0 63.45 
19)  Agac.taca04 33 30 24 97.59 
20)  Agac.ca45* 0 0 0 62.25 
21)  Agac.ca33 32 28 16 94.38 

% Success  54.97 65.07 70.04  

 
 
* Due to the large number of missing genotypes these loci were not included in the analyses. 
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Table 2.S4.12Description of the morphological characters measured for each plant. N = the total number of individuals sampled from 
each species. Population assignments to species are according to the original identifications. The actual number for which there are 
data varies by character 

 

    
Mean 

(standard deviation) 

Character Short Name Measurement Description Units 
AAC 

N=175 
ADE 
N=67 

ATE 
N=78 

AOB 
N=76 

ASK 
N=21 

Plant height Height 
Distance from ground to highest point on 
plant cm 

21.26 
(7.24) 

32.17 
(13.17

) 

52.79 
(10.5

3) 

53.30 
(14.74

) 
13.55 
(2.12) 

Plant width Width 

Average of two measurements: widest 
distance across the plant canopy and 
distance perpendicular to the widest point. cm 

5.72 
(3.24) 

13.04 
(11.41

) 

33.19 
(14.1

6) 

19.86 
(12.59

) 
2.42 

(1.01) 

Height to width ratio H/W Height / Width none 
4.41 

(1.83) 
4.14 

(2.88) 
1.86 

(0.78) 
4.06 

(3.25) 
6.50 

(2.73) 
Number of primary 
branches nmbrnch 

Number of primary branches originating 
from near the base of a plant count 

3.52 
(2.15) 

4.91 
(4.33) 

9.17 
(4.72) 

4.67 
(3.39) 

2.48 
(1.47) 

Leaf length LeafL 

Distance from the point at which the leaf 
inserts on the stem to the tip of the leaf. 
Measurements from five leaves per plant 
averaged to give one value per plant. mm 

14.15 
(3.03) 

16.02 
(6.74) 

12.69 
(2.72) 

10.20 
(1.86) 

8.47 
(1.33) 

Leaf width LeafW 

Distance across the widest point of a leaf. 
Measurements from five leaves per plant 
averaged to give one value per plant. mm 

1.05 
(0.17) 

0.88 
(0.17) 

0.93 
(0.24) 

1.20 
(0.19) 

0.99 
(0.14) 

Leaf length to width 
ratio LeafL/W Length / Width none 

13.63 
(2.92) 

18.51 
(7.50) 

14.03 
(2.77) 

8.55 
(1.32) 

8.69 
(1.80) 

Pedicel length at anthesis Pedicel 

Distance from the point at which the 
pedicel inserts on the stem to the base of 
the calyx. Measurements from five pedicels 
per plant averaged to give one value per 
plant. mm 

9.86 
(4.80) 

8.76 
(4.60) 

13.12 
(2.48) 

10.79 
(2.53) 

4.77 
(1.06) 

Bract length Bract 

Distance from the point at which the bract 
subtending a pedicel inserts on the stem to 
the tip of the bract. mm 

6.94 
(1.93) 

7.25 
(5.25) 

4.22 
(1.29) 

3.42 
(0.95) 

4.63 
(2.23) 
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Mean 

(standard deviation) 

Character Short Name Measurement Description Units 
AAC 

N=175 
ADE 
N=67 

ATE 
N=78 

AOB 
N=76 

ASK 
N=21 

Pedicel to bract ratio Ped/Bract Pedicel / Bract none 
1.43 

(0.57) 
1.55 

(0.82) 
3.30 

(0.86) 
3.25 

(0.66) 
1.29 

(0.69) 

Adaxial corolla tube 
length CorollaAd 

Distance from the base of the corolla to the 
sinus between corolla lobes on the adaxial 
side of the corolla (the side towards the 
centerline of the plant, (i.e., the top of the 
flower)).  mm 

6.03 
(1.24) 

6.93 
(1.49) 

6.60 
(1.18) 

6.77 
(1.06) 

5.57 
(0.87) 

Abaxial corolla tube 
length CorollaAb 

Distance from the base of the corolla to the 
sinus between corolla lobes on the abaxial 
side of the corolla (away from the 
centerline of the plant, (i.e., the bottom of 
the flower)).  mm 

8.50 
(1.53) 

10.58 
(1.74) 

10.68 
(1.65) 

9.90 
(1.34) 

6.91 
(0.75) 

Corolla tube height TubeDiH 

Diameter of the corolla tube, measured 
from top to bottom at the mid-point of the 
distance between the base of the corolla 
tube and the base of the corolla lobes. mm 

3.25 
(0.66) 

3.53 
(0.68) 

3.61 
(0.57) 

3.72 
(0.72) 

2.67 
(0.41) 

Corolla tube width TubeDiW 

Diameter of the corolla tube, measured 
from side to side at the mid-point of the 
distance between the base of the corolla 
tube and the base of the corolla lobes. mm 

4.25 
(0.87) 

5.26 
(0.92) 

5.24 
(0.70) 

5.30 
(1.02) 

3.85 
(0.61) 

Corolla tube height to 
width ratio CorTubH/W Corolla tube height / Corolla tube width none 

0.78 
(0.14) 

0.67 
(0.09) 

0.70 
(0.13) 

0.71 
(0.11) 

0.71 
(0.14) 

Corolla throat height ThroatDiH 
Diameter of the corolla throat opening 
measured top to bottom. mm 

4.18 
(1.05) 

5.06 
(0.93) 

5.21 
(0.71) 

5.27 
(0.79) 

3.52 
(0.64) 

Corolla throat width 
ThroatDiW 
 

Diameter of the corolla throat opening 
measured side to side. mm 

4.63 
(1.28) 

6.62 
(1.21) 

7.06 
(1.03) 

7.02 
(1.11) 

4.75 
(1.01) 

Corolla throat height to 
width ratio ThroatH/W 

Throat diameter height / Throat diameter 
width. none 

0.92 
(0.18) 

0.77 
(0.10) 

0.74 
(0.09) 

0.76 
(0.12) 

0.75 
(0.12) 

Upper corolla lobe 
length UprLobeL 

Distance from the base of the sinus 
between corolla lobes to the tip of an upper 
corolla lobe. mm 

4.17 
(1.10) 

4.71 
(1.02) 

5.55 
(1.07) 

4.73 
(0.86) 

3.28 
(0.48) 

Upper corolla lobe width UpLobeW 
Widest distance across the upper corolla 
lobe. mm 

4.22 
(0.90) 

5.44 
(0.97) 

6.71 
(1.24) 

5.81 
(1.09) 

3.65 
(0.52) 
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Mean 

(standard deviation) 

Character Short Name Measurement Description Units 
AAC 

N=175 
ADE 
N=67 

ATE 
N=78 

AOB 
N=76 

ASK 
N=21 

Upper corolla lobe 
length to width ratio CoUprLobL/W Upper corolla lobe length / width none 

1.00 
(0.25) 

0.88 
(0.20) 

0.84 
(0.16) 

0.83 
(0.18) 

0.91 
(0.16) 

Lower corolla lobe length lowLobeL 

Distance from the base of the sinus 
between corolla lobes to the tip of a lower 
corolla lobe. mm 

3.89 
(0.87) 

4.58 
(0.87) 

5.28 
(0.96) 

4.55 
(0.96) 

2.85 
(0.53) 

Lower corolla lobe width lowLobeW 
Widest distance across the upper corolla 
lobe. mm 

4.70 
(0.99) 

5.59 
(0.81) 

6.64 
(1.27) 

6.15 
(1.12) 

3.76 
(0.57) 

Lower corolla lobe 
length to width ratio CoLLobeL/W Lower corolla lobe length / width none 

0.85 
(0.18) 

0.82 
(0.13) 

0.82 
(0.22) 

0.75 
(0.11) 

0.76 
(0.13) 

Distance from corolla 
tube to upper lobe tip DistTubeLobe 

Straight-line distance from top surface of 
the corolla tube to the tip of the upper 
corolla lobe. Measures the degree to which 
the upper corolla is reflexed backwards. mm 

3.06 
(1.16) 

2.65 
(0.56) 

3.40 
(1.04) 

3.31 
(0.86) 

2.01 
(0.70) 

Style length Style 

Distance from point at which style inserts 
onto the ovary to the point at which the 
stigmatic surface begins; does not include 
the length of the stigmatic surface. mm 

6.74 
(1.17) 

8.85 
(2.48) 

8.40 
(1.11) 

7.68 
(0.81) 

5.44 
(0.59) 

Stigma length Stigma Length of the stigmatic surface. mm 
1.28 

(0.42) 
1.67 

(0.44) 
1.90 

(0.43) 
1.54 

(0.33) 
1.70 

(0.42) 

Length of Style+Stigma stylstig Style+Stigma mm 
8.02 

(1.34) 
10.52 
(2.69) 

10.30 
(1.27) 

9.22 
(0.94) 

7.14 
(0.79) 

Ratio of length of the 
stigma/style complex to 
corolla tube length stigexsert Stylestig/Corollab none 

1.37 
(0.33) 

1.53 
(0.26) 

1.60 
(0.31) 

1.39 
(0.21) 

1.30 
(0.18) 

Dorsal anther length DAntherL Length of one of the two dorsal anthers mm 
1.65 

(0.28) 
1.53 

(0.29) 
2.34 

(0.35) 
1.99 

(0.26) 
1.43 

(0.11) 

Dorsal anther width DAntherW Width of one of the two dorsal anthers mm 
0.87 

(0.24) 
0.92 

(0.20) 
1.25 

(0.24) 
1.08 

(0.20) 
0.78 

(0.19) 
Dorsal anther length to 
width ratio DAntherL/W Dorsal anther length / width none 

2.02 
(0.62) 

1.70 
(0.34) 

1.94 
(0.42) 

1.89 
(0.40) 

1.92 
(0.42) 

Dorsal stamen filament 
length DFilament 

Length of dorsal stamen filament from 
point of insertion on the corolla tube to 
insertion on the anther mm 

3.97 
(0.96) 

4.50 
(0.84) 

4.85 
(0.86) 

4.35 
(0.56) 

3.79 
(0.64) 
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Mean 

(standard deviation) 

Character Short Name Measurement Description Units 
AAC 

N=175 
ADE 
N=67 

ATE 
N=78 

AOB 
N=76 

ASK 
N=21 

Dorsal anther to 
filament ratio Danth/Fil_ratio Dorsal anther length / filament length none 

0.44 
(0.13) 

0.35 
(0.07) 

0.50 
(0.11) 

0.46 
(0.08) 

0.39 
(0.07) 

Ventral anther length VAntherL Length of one of the two ventral anthers mm 
1.63 

(0.24) 
1.61 

(0.34) 
2.09 

(0.33) 
1.82 

(0.24) 
1.42 

(0.11) 

Ventral anther width VAntherW Width of one of the two ventral anthers mm 
0.99 

(0.29) 
1.05 

(0.17) 
1.42 

(0.38) 
1.30 

(0.28) 
0.95 

(0.18) 
Ventral anther length to 
width ratio VAntherL/W Ventral anther length / width none 

1.76 
(0.56) 

1.56 
(0.36) 

1.58 
(0.47) 

1.47 
(0.38) 

1.54 
(0.29) 

Ventral stamen filament 
length VFilament 

Length of ventral stamen filament from 
point of insertion on the corolla tube to 
insertion of the anther mm 

5.47 
(1.18) 

6.69 
(1.05) 

6.71 
(1.34) 

6.43 
(0.68) 

4.40 
(0.65) 

Ventral anther to 
filament ratio Vanth/Fil Ventral anther length / filament length none 

0.31 
(0.08) 

0.24 
(0.04) 

0.33 
(0.09) 

0.29 
(0.05) 

0.33 
(0.05) 

Adaxial calyx tube 
length CalyxAdaxial 

Distance from the base of the calyx to the 
sinus between calyx lobes on the adaxial 
side of the calyx (the side towards the 
centerline of the plant, (i.e., the top of the 
flower)).  mm 

3.52 
(0.67) 

3.80 
(0.75) 

3.59 
(0.82) 

3.14 
(0.37) 

3.60 
(0.60) 

Abaxial calyx tube length CalyxAbaxial 

Distance from the base of the calyx to the 
sinus between calyx lobes on the abaxial 
side of the calyx (away from the centerline 
of the plant, [i.e., the bottom of the 
flower]).  mm 

3.28 
(0.65) 

3.89 
(0.78) 

3.52 
(0.82) 

3.17 
(0.42) 

3.21 
(0.47) 

Ratio of pedicel length 
to calyx length Ped/Cal Pedicel/(CalyxAbaxial+CalyxlowL) none 

2.36 
(1.04) 

1.93 
(0.94) 

3.14 
(0.75) 

2.88 
(0.82) 

1.24 
(0.28) 

Calyx diameter height CalyxdiH 
Distance across the opening of the calyx, 
measured from top to bottom mm 

1.77 
(0.28) 

2.05 
(0.25) 

2.18 
(0.28) 

1.87 
(0.27) 

1.76 
(0.26) 

Calyx diameter width CalyxDiamterW 
Distance across the opening of the calyx, 
measured from side to side mm 

1.76 
(0.29) 

2.05 
(0.25) 

2.16 
(0.29) 

1.87 
(0.27) 

1.77 
(0.22) 

Calyx diameter height to 
width ratio CaDiL/W Calyx diameter height / width none 

1.02 
(0.17) 

1.00 
(0.00) 

1.01 
(0.05) 

1.00 
(0.00) 

0.99 
(0.07) 

Calyx upper lobe length CalyxupL 
Distance from base of sinus between calyx 
lobes to the tip of an upper lobe mm 

1.03 
(0.26) 

0.93 
(0.18) 

0.84 
(0.29) 

0.77 
(0.20) 

0.87 
(0.19) 
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Mean 

(standard deviation) 

Character Short Name Measurement Description Units 
AAC 

N=175 
ADE 
N=67 

ATE 
N=78 

AOB 
N=76 

ASK 
N=21 

Calyx upper lobe width CalyxupW 
Distance from sinus to sinus at the base of 
an upper calyx lobe mm 

1.18 
(0.27) 

1.37 
(0.20) 

1.34 
(0.34) 

1.23 
(0.23) 

1.25 
(0.17) 

Calyx upper lobe length 
to width ratio CaUpLobeL/W Upper calyx lobe length / width none 

0.90 
(0.27) 

0.69 
(0.14) 

0.76 
(0.63) 

0.63 
(0.16) 

0.70 
(0.15) 

Calyx lower lobe length CalyxlowL 
Distance from base of sinus between calyx 
lobes to the tip of a lower lobe mm 

0.97 
(0.24) 

0.82 
(0.20) 

0.74 
(0.31) 

0.72 
(0.17) 

0.81 
(0.22) 

Calyx lower lobe width CalyxlowW 
Distance from sinus to sinus at the base of 
a lower calyx lobe mm 

1.21 
(0.31) 

1.55 
(0.23) 

1.51 
(0.43) 

1.24 
(0.17) 

1.31 
(0.19) 

Calyx lower lobe length 
to width ratio CaLLobeL/W Lower calyx lobe length / width none 

0.82 
(0.24) 

0.53 
(0.12) 

0.65 
(0.67) 

0.59 
(0.15) 

0.62 
(0.17) 



105 
 

  

Table 2.S5.13Medians and quartile values for characters measured for five Agalinis 
species. AAC = A. acuta, ADE = A. decemloba, ATE = A. tenella, AOB = A. obtusifolia, 
and ASK = A. skinneriana. Population assignments to species are according to the 
original identifications. 

   

Character 
AAC 

N=175 
ADE 
N=67 

ATE 
N=78 

AOB 
N=76 

ASK 
N=21 

Height Median 20.5 32.0 53.0 54.5 13.0 

Height quartiles 16 to 26 23.0 to 42 47.0 to 59 43.0 to 65 12.5 to 14.5 

Width Median 5.0 9.0 30.0 18.8 2.3 

Width quartiles 3.3 to 7.5 3.5 to 20.5 22.0 to 44.5 11.0 to 26.3 1.5 to 3 

H/W Median 4.0 3.0 1.7 3.0 6.0 

H/W quartiles 3.1 to 5 2.1 to 5.3 1.3 to 2.2 2.0 to 4.4 4.3 to 8.6 

nmbrnch Median 3.0 3.0 8.0 4.0 3.0 

nmbrnch quartiles 1.0 to 5 2.0 to 8 6.0 to 11 2.0 to 6 1.0 to 3 

LeafL Median 14.2 15.1 12.4 10.1 8.3 

LeafL quartiles 12.3 to 16.1 10.9 to 19.7 10.8 to 14.6 8.7 to 11.4 7.4 to 9.5 

LeafW Median 1.1 0.9 0.9 1.2 1.0 

LeafW quartiles 0.9 to 1.1 0.8 to 1 0.7 to 1.1 1.1 to 1.3 0.9 to 1.2 

LeafL/W Median 13.7 16.7 13.5 8.6 9.0 

LeafL/W quartiles 11.8 to 15.2 13.0 to 22.8 11.9 to 15.7 7.7 to 9.3 7.1 to 9.7 

Pedicel Median 9.1 8.1 13.2 10.8 4.7 

Pedicel quartiles 6.7 to 11.4 5.5 to 11.1 11.3 to 14.7 8.8 to 12.3 4.0 to 5.8 

Bract Median 7.1 5.0 4.1 3.3 4.6 

Bract quartiles 5.8 to 8 3.1 to 10.8 3.4 to 4.9 2.8 to 3.9 3.1 to 5.9 

Ped/Bract Median 1.3 1.4 3.2 3.2 1.1 

Ped/Bract quartiles 1.1 to 1.7 0.9 to 1.9 2.7 to 3.8 2.8 to 3.7 0.8 to 1.6 

CorollaAd Median 6.0 7.0 6.7 6.8 5.7 

CorollaAd quartiles 5.4 to 6.6 5.7 to 8.1 6.0 to 7.5 6.1 to 7.2 5.1 to 6.2 

CorollaAb Median 8.4 10.8 10.8 9.7 7.0 

CorollaAb quartiles 7.6 to 9.4 9.7 to 11.7 10.1 to 11.9 8.9 to 10.9 6.2 to 7.5 

TubeDiH Median 3.3 3.5 3.6 3.7 2.5 

TubeDiH quartiles 2.7 to 3.6 3.2 to 4 3.3 to 4 3.1 to 4.2 2.4 to 3 

TubeDirW Median 4.1 5.2 5.3 5.2 4.0 

TubeDirW quartiles 3.6 to 4.7 4.7 to 5.8 4.8 to 5.8 4.6 to 6 3.3 to 4.4 

CorTubH/W Median 0.8 0.7 0.7 0.7 0.7 

CorTubH/W quartiles 0.7 to 0.9 0.6 to 0.7 0.6 to 0.8 0.6 to 0.8 0.6 to 0.8 

ThroatDiH Median 4.0 4.9 5.3 5.3 3.5 

ThroatDiH quartiles 3.5 to 5 4.3 to 5.7 4.8 to 5.7 4.8 to 5.8 2.9 to 4 
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Character 
AAC 

N=175 
ADE 
N=67 

ATE 
N=78 

AOB 
N=76 

ASK 
N=21 

ThroatDiW Median 4.4 6.7 7.1 7.1 4.7 

ThroatDiW quartiles 3.7 to 5.4 5.8 to 7.5 6.4 to 7.7 6.3 to 7.6 4.1 to 5.6 

ThroatH/W Median 0.9 0.8 0.7 0.7 0.7 

ThroatH/W quartiles 0.8 to 1 0.7 to 0.8 0.7 to 0.8 0.7 to 0.8 0.7 to 0.8 

UprLobeL Median 4.2 4.7 5.6 4.6 3.5 

UprLobeL quartiles 3.3 to 4.9 4.1 to 5.4 4.9 to 6.5 4.1 to 5.2 2.9 to 3.6 

UpLobeW Median 4.2 5.4 6.7 5.7 3.5 

UpLobeW quartiles 3.6 to 4.9 4.7 to 6.2 5.7 to 7.7 5.2 to 6.5 3.4 to 3.9 

CoUprLobL/W Median 1.0 0.8 0.8 0.8 0.9 

CoUprLobL/W quartiles 0.8 to 1.1 0.7 to 1.1 0.7 to 1 0.7 to 0.9 0.8 to 1 

lowLobeL Median 3.8 4.7 5.2 4.3 3.0 

lowLobeL quartiles 3.3 to 4.5 3.9 to 5.2 4.8 to 5.7 3.8 to 5.3 2.4 to 3.3 

lowLobeW Median 4.6 5.7 6.5 6.1 3.7 

lowLobeW quartiles 4.0 to 5.4 5.0 to 6.2 5.7 to 7.8 5.3 to 6.8 3.4 to 4.2 

CoLLobeL/W Median 0.8 0.8 0.8 0.8 0.7 

CoLLobeL/W quartiles 0.7 to 0.9 0.7 to 0.9 0.7 to 0.9 0.7 to 0.8 0.7 to 0.9 

DistTubeLobe Median 3.0 2.8 3.2 3.2 2.0 

DistTubeLobe quartiles 2.2 to 3.8 2.3 to 3.1 2.7 to 3.8 2.7 to 4 1.2 to 2.5 

Style Median 6.8 8.0 8.5 7.7 5.5 

Style quartiles 5.9 to 7.6 6.8 to 11.4 7.8 to 9.1 7.1 to 8.2 5.1 to 5.9 

Stigma Median 1.2 1.7 1.8 1.5 1.7 

Stigma quartiles 1.0 to 1.5 1.4 to 1.9 1.6 to 2.2 1.3 to 1.7 1.5 to 2 

stigstyle Median 7.9 9.8 10.3 9.2 7.3 

stigstyle quartiles 7.1 to 9 8.5 to 13.2 9.8 to 11.1 8.5 to 9.9 6.4 to 7.8 

stigexsert Median 1.3 1.5 1.6 1.4 1.3 

stigexsert quartiles 1.2 to 1.5 1.4 to 1.7 1.4 to 1.8 1.2 to 1.5 1.2 to 1.4 

DAntherL Median 1.6 1.5 2.3 2.0 1.5 

DAntherL quartiles 1.5 to 1.9 1.3 to 1.7 2.1 to 2.6 1.8 to 2.2 1.4 to 1.5 

DAntherW Median 0.9 0.9 1.2 1.1 0.8 

DAntherW quartiles 0.7 to 1 0.8 to 1 1.1 to 1.4 1.0 to 1.2 0.6 to 0.9 

DAntherL/W Median 1.9 1.7 2.0 1.9 1.9 

DAntherL/W quartiles 1.6 to 2.3 1.5 to 1.9 1.6 to 2.2 1.6 to 2.2 1.6 to 2.2 

DFilament Median 3.8 4.5 4.5 4.4 3.6 

DFilament quartiles 3.4 to 4.5 4.0 to 5.2 4.3 to 5.3 4.0 to 4.6 3.5 to 4.3 

Dant/Fil_ratio Median 0.4 0.3 0.5 0.5 0.4 

Dant/Fil_ratio quartiles 0.4 to 0.5 0.3 to 0.4 0.4 to 0.6 0.4 to 0.5 0.3 to 0.4 
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Character 
AAC 

N=175 
ADE 
N=67 

ATE 
N=78 

AOB 
N=76 

ASK 
N=21 

VAntherL Median 1.6 1.7 2.1 1.9 1.4 

VAntherL quartiles 1.5 to 1.8 1.3 to 1.8 1.9 to 2.3 1.7 to 2 1.4 to 1.5 

VAntherW Median 1.0 1.1 1.4 1.3 1.0 

VAntherW quartiles 0.8 to 1.1 0.9 to 1.2 1.2 to 1.7 1.1 to 1.5 0.8 to 1 

VAntherL/W Median 1.7 1.5 1.5 1.4 1.5 

VAntherL/W quartiles 1.4 to 2 1.3 to 1.8 1.2 to 1.9 1.2 to 1.7 1.3 to 1.7 

VFilament Median 5.3 6.7 6.9 6.4 4.5 

VFilament quartiles 4.8 to 6.1 5.9 to 7.4 6.2 to 7.6 5.9 to 6.9 4.2 to 4.8 

Vanth/Fil Median 0.3 0.2 0.3 0.3 0.3 

Vanth/Fil quartiles 0.3 to 0.4 0.2 to 0.3 0.3 to 0.4 0.3 to 0.3 0.3 to 0.3 

CalyxAdaxial Median 3.5 3.9 3.5 3.2 3.6 

CalyxAdaxial quartiles 3.0 to 3.9 3.3 to 4.3 3.0 to 4.4 2.9 to 3.3 3.3 to 3.9 

CalyxAbaxial Median 3.3 3.9 3.5 3.2 3.2 

CalyxAbaxial quartiles 2.8 to 3.7 3.3 to 4.4 3.0 to 4.1 2.9 to 3.5 3.0 to 3.5 

Ped/Cal Median 2.1 1.8 3.1 2.8 1.3 

Ped/Cal quartiles 1.6 to 2.8 1.2 to 2.6 2.6 to 3.5 2.3 to 3.3 1.0 to 1.4 

CalyxdiH Median 1.8 2.0 2.2 1.9 1.7 

CalyxdiH quartiles 1.5 to 2 1.9 to 2.3 2.0 to 2.3 1.7 to 2 1.5 to 2 

CalyxDiamterW Median 1.7 2.0 2.2 1.9 1.7 

CalyxDiamterW quartiles 1.5 to 2 1.9 to 2.3 2.0 to 2.3 1.7 to 2 1.6 to 2 

CaDiL/W Median 1.0 1.0 1.0 1.0 1.0 

CaDiL/W quartiles 1.0 to 1.1 1.0 to 1 1.0 to 1 1.0 to 1 0.9 to 1 

CalyxupL Median 1.0 1.0 0.8 0.7 0.9 

CalyxupL quartiles 0.9 to 1.2 0.8 to 1.1 0.7 to 1 0.6 to 0.9 0.7 to 1 

CalyxupW Median 1.2 1.3 1.4 1.2 1.3 

CalyxupW quartiles 1.0 to 1.3 1.2 to 1.5 1.2 to 1.6 1.1 to 1.4 1.2 to 1.3 

CaUpLobeL/W Median 0.9 0.7 0.5 0.6 0.7 

CaUpLobeL/W quartiles 0.7 to 1 0.6 to 0.8 0.4 to 0.7 0.5 to 0.7 0.6 to 0.8 

CalyxlowL Median 1.0 0.8 0.6 0.7 0.8 

CalyxlowL quartiles 0.8 to 1.1 0.7 to 1 0.5 to 0.8 0.6 to 0.8 0.7 to 1 

CalyxlowW Median 1.2 1.5 1.6 1.2 1.3 

CalyxlowW quartiles 1.0 to 1.4 1.4 to 1.7 1.4 to 1.7 1.1 to 1.4 1.2 to 1.5 

CaLLobeL/W Median 0.8 0.5 0.4 0.6 0.6 

CaLLobeL/W quartiles 0.7 to 0.9 0.5 to 0.6 0.3 to 0.6 0.5 to 0.7 0.5 to 0.7 
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Table 2.S6.14The number of segregating sites that are fixed within each putative species for a) psbA-trnH and b) trnT-trnF. Numbers 
in parentheses represent the number of variable nucleotides that are shared between putative groups and the numbers on the diagonal 
are the number of nucleotides that are variable within each group. 
a) 

 A. acuta A. decemloba A. tenella A. obtusifolia A. skinneriana
A. acuta 1 0 (1) 0 (1) 14 (16) 19 (21)
A. decemloba 0 0 (0) 14 (15) 19 (20)
A. tenella 0 14 (15) 19 (20)
A. obtusifolia 1 34 (37)
A. skinneriana 2

 
 
b) 

 A. acuta A. decemloba A. tenella A. obtusifolia A. skinneriana
A. acuta 0 0 (0) 0 (1) 12 (13) 16 (19) 
A. decemloba  0 0 (1) 10 (14) 14 (16) 
A. tenella   1 6 (6) 12 (15) 
A. obtusifolia    1 27 (30) 
A. skinneriana     3 
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Table 2.S7.15Summary of 19 variables entered into the discriminant function model with 
species as the grouping variable and including all five species: A. acuta, A. decemloba, A. 
tenella, A. obtusifolia, and A. skinneriana. 

 
 

Variable 
Wilks' 

Lambda 
Partial 

Lambda 
F-

remove  p-level Toler. 
1-Toler. 
(R-Sqr.) 

Ped/Bract 0.022011 0.877632 9.37665 0.000000 0.321348 0.678652
DAntherL 0.025314 0.763113 20.87586 0.000000 0.803159 0.196841
LeafL/W 0.020037 0.964085 2.50527 0.042581 0.083257 0.916743
Bract 0.020126 0.959826 2.81477 0.025782 0.308507 0.691493
CalyxdiH 0.023155 0.834282 13.35823 0.000000 0.751041 0.248959
LeafW 0.022509 0.858215 11.11032 0.000000 0.102208 0.897792
CalyxupL 0.023893 0.808503 15.92840 0.000000 0.714342 0.285658
Stigma 0.024940 0.774575 19.57183 0.000000 0.563059 0.436941
UprLobeL 0.020560 0.939558 4.32621 0.002083 0.445640 0.554360
LeafL 0.021536 0.896987 7.72321 0.000007 0.072539 0.927461
Ped/Cal 0.021080 0.916407 6.13445 0.000097 0.269076 0.730924
CalyxAdaxial 0.020282 0.952443 3.35791 0.010540 0.597827 0.402173
Vanth/Fil 0.020338 0.949840 3.55140 0.007640 0.775474 0.224526
stigstyle 0.020621 0.936777 4.53872 0.001455 0.441775 0.558225
CorTubH/W 0.020931 0.922932 5.61558 0.000235 0.830105 0.169895
H/W 0.020416 0.946192 3.82437 0.004842 0.906629 0.093371
DistTubeLobe 0.020263 0.953336 3.29174 0.011763 0.710476 0.289524
CorollaAd 0.020565 0.939331 4.34347 0.002023 0.534778 0.465222
ThroatDiH 0.020522 0.941336 4.19103 0.002616 0.467072 0.532928
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Table 2.S8.16Classification matrix for discriminant function analysis for five Agalinis 
species AAC=A. acuta, ADE=A. decemloba, ATE=A. tenella, AOB=A. obtusifolia, and 
ASK=A. skinneriana. The value p is the prior probability of group membership based on 
the proportion of the total number of individuals attributable to a species. 

 
  Classified Into 

Classified From Percent 
Correct 

AAC 
p=0.503 

ADE 
p=0.096 

ATE 
p=0.140 

AOB 
p=0.195 

ASK 
p=0.065 

AAC (n=148) 98.65 146 0 0 0 2 
ADE (n=27) 89.29 2 25 0 0 1 
ATE (n=42) 90.48 0 0 38 4 0 
AOB (n=58) 96.55 0 0 2 56 0 
ASK (n=19) 100.0 0 0 0 0 19 

Total (n=294) 96.27 148 25 40 60 22 
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Table 2.S9.17Standardized coefficients, eigenvalues, and cumulative variance explained 
for discriminant functions for five Agalinis species: A. acuta, A. decemloba, A. tenella, A. 
obtusifolia, and A. skinneriana. These coefficients reflect the change in the canonical 
scores per unit change in the standardized independent variables. Therefore, these 
coefficients may be compared in order to determine the magnitudes and directions of the 
unique contributions of the variables to each canonical function. 

 
Variable Axis 1 Axis 2 Axis 3 Axis 4 

Ped/Bract 0.642403 0.013663 -0.22705 0.033991 
DAntherL 0.437788 0.385772 0.03390 -0.410813 
LeafL/W 0.417725 0.169043 -0.65884 0.336543 
Bract -0.287743 0.118611 -0.26566 -0.229688 
CalyxdiH 0.322809 -0.282887 0.37135 0.163636 
LeafW 0.518859 0.253336 -1.41990 0.180586 
CalyxupL -0.528154 0.169779 0.11513 0.147049 
Stigma -0.216532 -0.632211 0.21334 -0.618533 
UprLobeL 0.255026 0.063978 0.33717 0.257003 
LeafL -0.802219 0.318072 1.21144 -0.015347 
Ped/Cal -0.009853 0.668685 0.23500 0.100136 
CalyxAdaxial -0.267214 -0.053810 0.09677 -0.226819 
Vanth/Fil 0.108525 0.050508 -0.00556 -0.483228 
stigstyle 0.314276 0.306380 0.01021 0.045113 
CorTubH/W -0.159067 0.302105 -0.15825 0.057251 
H/W -0.076725 -0.097514 -0.29037 0.093483 
DistTubeLobe 0.075778 0.271060 -0.14981 0.110198 
CorollaAd -0.321105 0.056607 -0.20262 -0.062627 
ThroatDiH 0.243649 -0.268398 -0.04217 0.358623 
Eigenval 5.803960 1.641988 1.22570 0.293857 
Cum.Prop 0.647366 0.830511 0.96722 1.000000 
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Table 2.S10.18Summary of variables entered into the discriminant function model with 18 
populations of five Agalinis species: A. acuta, A. decemloba, A. tenella, A. obtusifolia, 
and A. skinneriana 
 

Variable 
Wilks' 

Lambda 
Partial 

Lambda 
F-to-

remove p-level Toler. 
1-Toler. 
(R-Sqr.) 

Ped/Bract 0.000172 0.746729 5.12751 0.000000 0.414763 0.585237
UprLobeL 0.000182 0.707471 6.25092 0.000000 0.694464 0.305536
Bract 0.000148 0.866721 2.32470 0.002606 0.345977 0.654023
CaUpLobeL/W 0.000243 0.529907 13.41123 0.000000 0.553112 0.446888
LeafL/W 0.000230 0.559707 11.89228 0.000000 0.568269 0.431731
DAntherL 0.000207 0.622336 9.17413 0.000000 0.514110 0.485890
Vanth/Fil 0.000197 0.654900 7.96627 0.000000 0.751000 0.249000
CalyxupL 0.000186 0.691370 6.74857 0.000000 0.476574 0.523426
LeafL 0.000195 0.659821 7.79411 0.000000 0.524061 0.475939
DistTubeLobe 0.000186 0.692861 6.70151 0.000000 0.825337 0.174663
CalyxdiH 0.000174 0.737567 5.37900 0.000000 0.805398 0.194602
Stigma 0.000179 0.720569 5.86250 0.000000 0.691770 0.308230
Dant/Fil_ratio 0.000171 0.754375 4.92232 0.000000 0.525997 0.474003
Ped/Cal 0.000175 0.734754 5.45747 0.000000 0.434070 0.565930
DAntherL/W 0.000170 0.759072 4.79832 0.000000 0.766103 0.233897
CalyxAdaxial 0.000163 0.788098 4.06480 0.000000 0.716577 0.283423
stigstyle 0.000166 0.775930 4.36563 0.000000 0.633813 0.366187
CorollaAd 0.000163 0.788720 4.04968 0.000000 0.820391 0.179609
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Table 2.S11.19Classification matrix for discriminant function analysis of 18 populations in five Agalinis species: A. acuta, A. 
decemloba, A. tenella, A. obtusifolia, and A. skinneriana. The value p is the prior probability of group membership based on the 
proportion of the total number of individuals attributable to a species. Gray shading highlights putatively conspecific populations. 
Population codes are given in Table 2.3. 

  
  

Classified Into 

Classified From 
% 

Correct 

AAC- 
BVMA 
p=.0764 

AAC- 
PEMA 

p=.0255 

AAC- 
EPRI 

p=.0764 

AAC- 
PCCT 

p=.0924 

AAC- 
HPNY 

p=.0064 

AAC- 
MDNY 
p=.0350 

AAC- 
SMNY 
p=.0796 

AAC- 
SDMD 
p=.0764 

AAC-BVMA 96.00 24 0 0 0 0 0 0 0
AAC-PEMA 70.00 3 7 0 0 0 0 0 0
AAC-EPRI 92.00 0 0 23 0 1 0 0 0
AAC-PCCT 89.65 0 0 3 26 0 0 0 0
AAC-HPNY 88.00 1 0 2 0 22 0 0 0
AAC-MDNY 83.33 0 0 0 0 2 10 0 0
AACSMPNY 33.33 1 0 0 0 0 0 1 0
AAC-SDMD 96.00 0 0 0 0 0 0 0 24
ADE-L1VA 100.00 0 1 0 0 0 0 0 0 
ADE-WCNC 100.00 0 0 0 0 0 0 0 0 
ATE-CCSC 100.00 0 0 0 0 0 0 0 0 
ATE-BCGA 85.71 0 0 0 0 0 0 0 0 
ATE-LCGA 89.47 0 0 0 0 0 0 0 0 
ATE-GCGA 73.68 0 0 0 0 0 0 0 0 
AOB-LCFL 91.66 0 0 0 0 0 0 0 0 
AOB-LCSC 68.75 0 0 0 0 0 0 0 0 
AOB-DCSC 100.00 0 0 0 0 0 0 0 0 
ASK-PGMD 96.00 0 0 0 0 0 0 0 0 
Total 88.49 29 8 28 26 25 10 1 24 
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Table 2.S11. Continued. 
 

  Classified Into 

Classified From 
% 

Correct 

ADE- 
L1VA 

p=.0223 

ADE- 
WCNC 
p=.0669 

ATE- 
CCSC 

p=.0191 

ATE- 
BCGA 

p=.0573 

ATE- 
LCGA 

p=.0414 

ATE- 
GCGA 
p=.0127 

AOB- 
LCSC 

p=.0764 

AOB- 
DCSC 

p=.0509 

AOB- 
LCFL 

p=.0541 

ASK-
PGMD 
p=.0605 

AAC-BVMA 96.00 1 0 0 0 0 0 0 0 0 0 
AAC-PEMA 70.00 0 0 0 0 0 0 0 0 0 0 
AAC-EPRI 92.00 0 0 0 0 0 0 0 0 0 1 
AAC-PCCT 89.65 0 0 0 0 0 0 0 0 0 0 
AAC-HPNY 88.00 0 0 0 0 0 0 0 0 0 0 
AAC-MDNY 83.33 0 0 0 0 0 0 0 0 0 0 
AAC-SMNY 33.33 1 0 0 0 0 0 0 0 0 0 
AAC-SDMD 96.00 1 0 0 0 0 0 0 0 0 0 
ADEL1VA 71.43 5 0 0 0 0 0 0 1 0 0 
ADEWCNC 100.00 0 21 0 0 0 0 0 0 0 0 
ATECCSC 100.00 0 0 7 0 0 0 0 0 0 0 
ATEBCGA 85.71 0 0 0 4 0 0 0 0 0 0 
ATELCGA 89.47 0 0 0 0 12 2 0 0 0 0 
ATEGCGA 73.68 0 0 0 0 1 17 0 1 0 0 
AOBLCFL 91.66 0 0 0 0 0 0 14 1 4 0 
AOBLCSC 68.75 0 0 0 0 0 0 0 22 2 0 
AOBDCFL 100.00 0 0 0 0 0 0 2 3 11 0 
ASKPGMD 96.00 0 0 0 0 0 0 0 0 0 19 
Total 88.49 8 21 7 4 13 19 16 28 17 20 



115 
 

 

Figure 2.1.4Locations of the 20 populations representing four putative species, A. acuta, 
A. decemloba, A. tenella, and A. obtusifolia.  Top map shows the northeastern 
populations and the bottom map shows the locations of the southeastern populations. 
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Figure 2.2.5Phylogenetic tree depicting evolutionary relationships among sampled taxa 
based on six cpDNA loci.  Samples in red are the representatives of the populations used 
in the microsatellite analyses.  Branch lengths depict the inferred number of nucleotide 
substitutions per site. Numerals above or below branches represent the percent of 1000 
bootstrap replicates supporting that clade.  The ln likelihood of the tree is -ln 
8734.027845.  
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Figure 2.3.6Neighbor-joining tree based on the genetic distance Da (Nei et al. 1983) 
among populations.  Branch lengths are proportional to Da units and numerals above the 
branches represent the percent of 1000 bootstrap replicates supporting that cluster.  
Bootstrap replicates are based on the resampling, with replacement, of loci. 
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Figure 2.4.7Unrooted Neighbor-joining tree based on the genetic distance Da (Nei et al. 
1983) among individuals.  Branch lengths are proportional to Da units. 
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Figure 2.5.8Distruct (Rosenberg 2004) diagram representing the assignment of individuals to clusters inferred using STRUCTURE. 
The results associated with the replicate at each value of k that had the highest likelihood score are presented.  Each line represents an 
individual and each block represents a population.  The degree to which a line has multiple colors is indicative of the degree of 
admixture. 
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Figure 2.6.9Scatterplot of discriminant function scores on DFA Axis 1 and DFA Axis 2 
for five Agalinis species:  AAC = A. acuta, ADE = A. decemloba, ATE = A. tenella, 
AOB = A. obtusifolia, and ASK = A. skinneriana.  
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Figure 2.7.10Scatterplot of discriminant function scores for 18 populations of five species:  
AAC = A. acuta, ADE = A. decemloba, ATE = A. tenella, AOB = A. obtusifolia and ASK 
= A. skinneriana. Population codes are provided in Table 2.3. 
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Figure 2.S1.11Neighbor-joining tree based on the genetic distance Da (Nei et al. 1983) 
derived from a data set created using FreeNA to account for potential null alleles. Branch 
lengths are proportional to Da units and numerals above or below the branches represent 
the percent of 1000 bootstrap replicates supporting that cluster. 
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CHAPTER 3: AN EVALUATION OF CANDIDATE PLANT DNA BARCODES 

AND ASSIGNMENT METHODS IN DIAGNOSING 29 SPECIES IN THE GENUS 

AGALINIS (OROBANCHACEAE) 

ABSTRACT 

Application of DNA barcoding to plants has focused on evaluating the success of 

candidate barcodes across a broad spectrum of evolutionary divergence while less 

attention has been paid to the performance when distinguishing closely related species or 

to differential success of analytical techniques.  Lack of monophyly that indicates 

incomplete lineage sorting in closely related species or inaccurate taxonomy will pose 

challenges for barcoding and dictate the degree to which query sequences can be 

accurately assigned.  We examine these issues using 11 candidate barcodes and three 

analytical methods (i.e., genetic distances, hierarchical tree-based, and diagnostic 

character differences) in 92 samples representing 29 putative species in the genus 

Agalinis (Orobanchaceae).  Based on questions of evolutionary distinctiveness raised by 

previous studies, we evaluated success under two taxonomic hypotheses. We found that 

psbA-trnH and trnT-trnL in conjunction with the ‘best close match’ distance-based 

method best met the objectives of DNA barcoding.  Successful assignment was also a 

function of the taxonomy used.  In addition to accurately identifying the taxonomy of a 

query sequence, our results show that DNA barcoding is useful for detecting taxonomic 

uncertainty, but determining whether erroneous taxonomy or incomplete lineage sorting 

is the cause requires additional information provided by traditional taxonomic 

approaches. 
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INTRODUCTION 

DNA barcoding promises to provide a fast and reliable way to determine the 

taxonomic identity of an individual by sequencing a small portion of its genome and 

comparing this nucleotide sequence with sequences in a reference database (e.g., Hebert 

et al. 2003). This promise along with the increasing ease with which sequence data can be 

obtained from a range of taxa has spawned the ambitious goal of creating a genetic 

catalog of the world's biodiversity (Chase et al. 2005; Hebert et al. 2003; Kress et al. 

2005; Savolainen et al. 2005). Such a reference collection can be an important tool for a 

broad range of applications including conducting rapid biodiversity assessments, 

forensics, detecting illegal wildlife trade, identifying species during cryptic life stages, 

and monitoring invasive species (Armstrong & Bar 2005; Darling & Blum 2007; Dawnay 

et al. 2007; Little & Stevenson 2007; Vogler 2006).  Barcoding has also been shown to be 

a useful tool in the discovery of new species (Burns et al. 2008; Murray et al. 2008; 

Yassin et al. 2008).  However, the grand promises made by proponents of DNA 

barcoding have generated concern and there is extensive debate over exactly what it can 

contribute to various disciplines (e.g., Rubinoff 2006; Trewick 2008; Will et al. 2005).   

The application of DNA barcoding requires that a reference database of DNA 

sequences for many species be developed.  It is most desirable to have a single locus or a 

few loci that have highly conserved universal primer sequences and at the same time 

exhibit sufficient nucleotide variation to diagnose species.  Due to exceedingly low rates 

of nucleotide substitution and high rates of chromosomal rearrangements within the plant 

mitochondrial genome (Palmer 1985) and extensive gene duplication in the nuclear 
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genome (Alvarez & Wendel 2003), plastid loci are the most promising candidate 

barcodes for plant species (e.g., Chase et al. 2005; Kress et al. 2005; Lahaye et al. 2008).  

Candidate barcodes from the plastid genome include both slowly evolving coding regions 

(e.g., rbcL, rpoB, or matK) and more rapidly evolving loci (e.g., rps2, psbA-trnH,and  

trnT-trnF).  However, when used alone the more conserved loci may not possess enough 

nucleotide variation to discriminate among closely related species and the more variable 

loci may be problematic because of homoplasy, lack of conserved priming regions, and 

difficulties in alignment among distantly related species.  To overcome these problems a 

multi-locus DNA barcoding system has been suggested (CBOL Plant Working Group 

2009; Chase et al. 2005; Fazekas et al. 2008; Kress & Erickson 2007) in which slowly 

evolving loci delineate individuals into families, genera, or groups within genera and the 

more rapidly evolving loci differentiate species within those higher groups.   

In addition to a barcoding locus, application of DNA barcoding requires analytical 

methods that accurately assign query sequences of unknown taxonomic identity to 

species based on the sequences contained in the reference database.  The Barcode of Life 

Data Systems (BOLD), which is an online initiative to facilitate the implementation of 

DNA barcoding, assigns taxonomy to a query sequence based on a pairwise genetic 

distance threshold (i.e., of 1% for animals) below which signifies conspecific 

relationships (Ratnasingham & Hebert 2007).  Pairwise genetic distances were also used 

to in the analysis that resulted in determining the plant DNA barcode of rbcL coupled 

with matK (CBOL Plant Working Group 2009).  The primary criticism of a distance 

based method is that there will undoubtedly be instances where intraspecific and 
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interspecific distances will exceed and be below, respectively, the distance threshold 

value (DeSalle et al. 2005; Ferguson 2002; Little & Stevenson 2007; Meyer & Paulay 

2005).  Methods based on the clustering of individuals on a phylogenetic tree have been 

suggested as alternatives to distance methods because through the bootstrap a measure of 

statistical support can be achieved and the resulting tree provides a visual representation 

of the affinities of the query sequence (Armstrong & Bar 2005).  However, they have also 

been criticized because of the difficulties in assigning taxonomy to a query sequence 

based on a hierarchical tree-like structure (DeSalle et al. 2005) and the fact that low 

levels of divergence at a candidate barcode may be able to differentiate among sequences 

despite its lack of ability to sufficiently estimate phylogenetic relationships (Erickson et 

al. 2008).  An additional method identifies combinations of nucleotide character states 

that are unique to members of a species (i.e., diagnostic characters) and, therefore, can be 

used to assign taxonomy if a query sequences possess that combination of nucleotide 

characters.  However, the recently developed character-based method (Sarkar et al. 2008) 

relies on a phylogenetic tree and, therefore, suffers to some extent from the concerns 

associated with tree based methods.  In addition to these drawbacks, different 

implementation of assignment techniques can also result in different correct classification 

rates when evaluating the same DNA barcode.  As such, the efficacy of DNA barcoding 

may be highly dependent on the assignment method, which has likely contributed to the 

lack of consensus in identifying a suitable locus to serve as the plant DNA barcode 

(Erickson et al. 2008).   
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Although the search for loci and the development of analytical techniques has been 

crucial, most of the barcoding studies in plants have focused on reliable amplification 

across the evolutionary breadth of land plants (e.g., Chase et al. 2005; Kress et al. 2005) 

or within geographically or ecologically defined communities (Lahaye et al. 2008).  

Much less effort has been spent assessing potential to distinguish closely related species 

(for an exception see Fazekas et al. 2009).  Regardless of the analytical methods used, 

DNA barcoding will be highly successful in divergent taxa that have much smaller 

intraspecific than interspecific differences (i.e., the ‘barcoding gap’; Meyer & Paulay 

2005), are reciprocally monophyletic, and have diagnostic character differences (Fazekas 

et al. 2009).  However, when the time since divergence between species is too short for 

sorting of shared ancestral polymorphisms (e.g., 8.7 Ne (effective population size) 

generations; Hudson & Coyne 2002; Rosenberg 2003), using short sequences of DNA to 

diagnose species will potentially be challenging regardless of the assignment method 

employed (Ross et al. 2008).  Simulations show failure rates become excessive when 

overlap between intra- and interspecific distances is >10% and when <80% of species are 

monophyletic (Ross et al. 2008).  Lack of differentiation can be due to inaccurate 

taxonomy or low levels of divergence, both of which result in non-monophyletic 

relationships.  Polyphyly and paraphyly have been observed in 23% of 2319 animal 

species (Funk & Omland 2003), suggesting that such overlap in distances may be 

widespread.  Paraphyly may be even more extensive among plant species (e.g., Crisp & 

Chandler 1996; Fazekas et al. 2009; Rieseberg & Brouillet 1994).  The frequency of 

occurrence of such relationships is also likely to be greatest among closely related 
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species; therefore, it is critical to understand the degree to which DNA barcoding can 

distinguish sequences representing recently diverged species (Hollingsworth et al. 2009).  

Performance of DNA barcoding in this realm has only begun to be tested (Fazekas et al. 

2009; Meyer & Paulay 2005; Newmaster et al. 2008).   

The purpose of the present research was to evaluate the ability to distinguish 29 

putative species in the plant genus Agalinis (family Orobanchaceae) using DNA 

barcoding.  We evaluated the utility of the 11 barcodes (8 single-locus and 3 2-locus 

barcodes) first by considering how easy it was to obtain a full sequence across all 

individuals.  We then evaluated the combined utility of loci under each of three 

assignment techniques as a barcode’s ability to classify individuals to species correctly 

and to determine accurately when a sequence had no conspecific in the reference 

database.  The first method was based on genetic distances (Meier et al. 2006), the second 

was based on the relationships depicted when a hierarchical clustering algorithm was 

applied to a matrix of pairwise distances (Ross et al. 2008), and the third was based 

unique combinations of nucleotide character states that differentiate taxa (i.e., diagnostic 

nucleotide character differences; Sarkar et al. 2008).   

The genus Agalinis provides an excellent test case for barcoding.  It is well studied 

taxonomically (Canne-Hilliker 1987; Canne-Hilliker & Dubrule 1993; Canne-Hilliker & 

Kampny 1991; Canne 1979, 1980, 1981, 1982, 1983, 1984; Kampny & Canne-Hilliker 

1987; Pennell 1913a, 1913b, 1928, 1929, 1935), and the array of evolutionary divergence 

is relatively well understood and ranges from taxa that are highly differentiated to those 

that may not be evolutionarily distinct (Neel & Cummings 2004; Pettengill & Neel 2008).  
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As such, it reflects the array of evolutionary distinctiveness one expects in plant genera.  

Lack of distinction among several taxa indicates that some taxonomic alignments may 

not be warranted (Neel & Cummings 2004; Pettengill & Neel 2008), which allows us to 

investigate the consequences of taxonomic uncertainty for barcoding.  By focusing on the 

practical application of our results to the conservation of rare Agalinis species, we are 

also able to evaluate the utility of DNA barcoding to conservation biology.  Twenty-one 

of the sampled species are considered imperiled (S2) or critically imperiled (S1) in at 

least 1 state in which they occur; 7 of these species are also globally vulnerable (G3 or 

G3-G4) and 4 are critically imperiled (G1) (Table 3.1; NatureServe 2007).  Because 

many of the species are particularly difficult to distinguish in the field, we are interested 

in knowing whether DNA barcoding can serve as a tool for field botanists from state and 

federal agencies to identify quickly the taxonomy of individuals that represent species 

that are challenging to classify based on morphology.  Greater certainty in identification 

can increase understanding of the true distribution and abundance of putatively rare 

species and facilitate appropriate management and priority setting.   

MATERIALS AND METHODS 

Sampling 

 The database used to assess performance of how the different loci and methods 

consisted of sequences from 92 individuals representing 29 out of the ~40 putative North 

American Agalinis species (Table 3.1); no specimens were available of the approximately 

30 additional Agalinis species that exist in the South America, Mexico, and Central 

America. The sampled species represented all North American sections and subsections 
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of the genus and 27 species were represented by more than one accession.  The number 

of individuals per species ranged from 1-10.  When multiple individuals were sampled 

for a species, they were from different populations that often encompassed a majority of 

the species range and therefore may provide a means of assessing how well DNA 

barcoding performs when there is the potential for substantial intraspecific differentiation 

due to geographic isolation.  The two species represented by a single individual allow us 

to assess the performance of methods when there is no conspecific reference sequence in 

the database, which has been identified as problematic when using methods that assign 

taxonomy based on the closest match in the reference database (Ratnasingham & Hebert 

2007).  We did not include representatives of other genera in our database because there 

is strong support for the monophyly of the genus (Neel & Cummings 2004; Pettengill & 

Neel 2008). 

Previous study of the phylogenetic relationships among the sampled individuals 

showed that Agalinis decemloba, Agalinis tenella, and Agalinis acuta were polyphyletic 

as were Agalinis paupercula and Agalinis purpurea (Pettengill & Neel 2008) and 

synonymization may be warranted.  An investigation quantifying the degree of 

differentiation based on phylogenetic, population genetic, and morphological analyses 

among the first three of those named species is in progress to determine whether in fact 

synonymization is warranted.  As a result of this taxonomic uncertainty, we evaluated the 

performance of candidate barcodes using two taxonomic hypotheses.  The first taxonomic 

alignment, which we refer to as the ‘historical taxonomy,’ treated each of these species 

individually and in the second A. decemloba, A. tenella, and A. acuta were synonymized 
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under A. decemloba; A. paupercula and A. purpurea were synonymized under A. 

purpurea.  Synonymizing yielded a data set with 26 species and between 1 and 23 

individuals per species. 

DNA extraction, PCR, and sequencing  

Total genomic DNA was isolated from fresh or frozen (-80°C) leaves and flower 

buds by grinding 50-100 mg of tissue to powder in liquid nitrogen with a mortar and 

pestle, and then using GenElute Plant Genomic DNA Kits (Sigma Chemical Company, 

St. Louis, Missouri, USA) or Qiagen DNEasy Kits (Qiagen Corporation, Valencia, 

California USA) following manufacturer’s instructions.  

We attempted to analyze sequences for all 92 individuals from six chloroplast gene 

regions (4 coding regions (matK, rbcL, rps2, and rpoB) and the non-coding psbA-trnH 

and trnT-trnF spacer regions) that have been recommended for barcoding in plants.  Two 

PCR reactions using the primer pairs trnT-a/trnL-d and trnL-c/trnF-f  (Taberlet et al. 

1991) were required to obtain the full length of the trnT-trnF locus.  Given that it is best 

to use a single primer pair to acquire a barcode, we divided the trnT-trnF locus into three 

separate regions that represent candidate barcodes evaluated by other studies.  These 

three regions are defined by the primers used to amplify them (Taberlet et al. 1991): 1) 

trnT-a/trnL-d that we refer to as the trnT-trnL barcode (evaluated by Edwards et al. 

(2008c)), 2) trnL-c/trnL-d that we refer to as trnL-intron  (suggested by Taberlet et al. 

(2007)), and 3) trnL-c/trnF-f, which we refer to as the trnL-trnF barcode (evaluated by 

Chase et al. (2005)).  This treatment of trnT-trnF as three separate regions brings our 

total assessment to eight single-locus barcodes. 
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All polymerase chain reactions (PCR) were done with Eppendorf MasterTaq PCR 

kits (Brinkman, Westbury, New York, USA) on MJ Research PTC-200 Thermal Cyclers. 

In general, the PCR temperature profile was 30 cycles of 94°C for 60 s, annealing 

temperature set approximately 5°C below the lower of the two primer melting 

temperatures for 90 s, 72°C for 150 s, and a final 15 min elongation period at 72°C. 

Amplified DNA fragments were visualized by agarose gel electrophoresis and purified 

using the QIAQuick PCR Purification Kit according to manufacturer's instructions 

(Qiagen Inc., Valencia, California, USA). 

We employed a conservative sequencing strategy in which four replicates of both 

forward and reverse sequence reads were obtained per sample, resulting in eight-fold 

coverage across the majority of all loci.  Although this strategy is not concordant with the 

rapid and inexpensive acquisition of sequences promoted as an advantage of DNA 

barcoding, we feel it is a necessary step to ensure accuracy of nucleotide sequences when 

considering closely related taxa.  Sequencing reactions were conducted with BigDye 

Terminator v3.1 Cycle Sequencing chemistry (Applied Biosystems, Foster City, 

California, USA) and products were sequenced using an Applied Biosystems 3730xl 

DNA Analyzer. Total reaction volume was 7 µl (1-3 µl PCR template, 1.5 µl 5X 

Sequencing Buffer, 1 µl primer [2.5µM], 0.5 µl BigDye Terminator, and 1-3 µl ddH2O).   

The program Sequencher v4.6 (Gene Codes Corporation, Ann Arbor, Michigan, 

USA) was used for base calling, quality assignments, and assembling consensus 

sequences for each sample from the replicate bi-directional sequence reads. Sequences 

were aligned using the default settings of MUSCLE (Edgar 2004).  We manually 
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inspected alignments to ensure that there were no obvious errors but, in general, we 

avoided manually editing sequences due to the subjectivity and non-reproducibility of 

such actions (Morrison 2009).  A lack of manual editing of sequence alignments is also a 

desirable property of a DNA barcoding (CBOL Plant Working Group 2009).  

Barcoding analyses  

 In addition to evaluating the performance of the eight single-locus barcodes 

described above, we also tested three, two-barcode combinations that have either been 

suggested (matK and psbA-trnH, Chase et al. 2007; rbcL and psbA-trnH, Kress & 

Erickson 2007) or have potential given the objectives of a multi-locus barcode (i.e, rpoB 

and psbA-trnH).  The multi-locus barcodes were constructed by concatenating sequences 

for only those samples that had sequences for both loci.  To avoid confounding issues due 

to DNA sequence alignment differences, multi-locus barcodes were constructed using the 

same alignment associated with the corresponding single locus barcodes.   

We calculated variability of each barcode as the number and percentage of variable 

characters using PAUP*v4b10 (Swofford 2003) and by the mean and range of 

intraspecific and interspecific Kimura 2-parameter distances (K2P; Kimura 1980) using 

MEGA (Kumar et al. 2004).   

The software package TAXONDNA (Meier et al. 2006) was used to assess 

performance of each barcode based on the ‘best close match’ option using K2P distances. 

This method reduces the potential for errors of commission by employing a user-

specified pairwise distance threshold above which a sequence was classified as ‘no 

match’.  Query sequences were classified as ‘ambiguous’ if they could be assigned to 
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both the correct and an incorrect species; ‘correct,’ when pairwise genetic distances 

between query and reference sequences were below the threshold only for conspecifics; 

and ‘incorrect,’ when only heterospecific sequences had pairwise distances with the 

query sequence that were below the threshold.  Performance for each barcode is 

presented as the percentage of the total number of samples for that barcode that fell into 

each of these categories.   

We evaluated the success of each barcode at three different thresholds (2%, 5%, and 

a threshold calculated from the observed levels of intra- and interspecific divergence for 

each barcode). We chose the first two values to test the performance of standard 

thresholds that have been proposed as suitable for assigning sequences to species for 

animals (e.g., Blaxter 2004; Hebert et al. 2003).  The third threshold was calculated 

separately for each barcode to represent the pairwise genetic distance below which 95% 

of all conspecific individuals were correctly classified.  This approach to establishing a 

threshold is appealing because it uses information contained in the reference sequence 

data, thus accounting for the differences in mutation rate among the various loci and 

divergence among taxa.  However, application of a calculated threshold requires multiple 

accessions of most species be present in the reference database. 

We evaluated the success of both the ‘liberal’ and ‘strict’ tree-based methods of 

assigning sequences to species as described by Ross, Murugan, and Li (2008).  With the 

liberal method, a sequence is assigned to a species if it is either sister to or embedded 

within a group.  Thus, when A is the query sequence and there are two representatives of 

species Z in the reference database, A is assigned to species Z if it is either ((Z, A), Z) or 
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((Z, Z), A).  The ‘strict’ tree-based method, which is capable of accounting for sequences 

that have no conspecific sequence in the database, only assigns a sequence to a species if 

it is embedded within a group (e.g., only when ((Z, A), Z)).  Trees were constructed for 

each barcode using PAUP*v4b10 based on the neighbor-joining (NJ) algorithm (Saitou 

& Nei 1987) applied to K2P distances.  Success was determined by how each sequence 

would be classified if it was the query sequence and all other sequences were present in 

the reference database.  Results are presented as the percentage of total sequences that 

were assigned to the categories correct and incorrect for the liberal method and as correct, 

incorrect, or ambiguous for the strict method.  

Diagnostic nucleotide polymorphisms can potentially provide a character based 

approach that captures important differences that are not identified by distance- or tree-

based barcoding methods (DeSalle et al. 2005).  To assess the degree to which a priori 

defined species groups harbored diagnostic nucleotide differences, we used the program 

SITES (Hey & Wakeley 1997) to calculate the number of sites that were fixed between 

species pairs.  To determine how well samples of unknown membership could be 

correctly assigned using diagnostic characters we used the Character Attribute 

Organization System (CAOS) (Sarkar et al. 2002a; Sarkar et al. 2008; Sarkar et al. 

2002b).  The CAOS method involves two steps that are accomplished by the programs P-

Gnome and P-Elf.  A reduced data set that included one sample for each species (i.e., 29 

samples representing 29 species) was used to infer a phylogenetic tree for each barcode 

using two different inference methods: NJ based on K2P distances accomplished using 

PAUP*v4b10 and maximum-likelihood as implemented in GARLI v0.951 (Genetic 
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Algorithm for Rapid Likelihood Inference; Zwickl 2006) using the default parameter 

settings.  The data matrix and associated tree file were then imported into MacClade 

where, based on previous phylogenetic work (Pettengill and Neel 2008), Agalinis 

calycina was placed as sister to the other members of the genus.  The resulting NEXUS 

file was used in P-Gnome to generate rules for diagnosing the species where the tree 

associated with the data matrix served as a guide tree against which the presence and 

absence of nucleotides at a given node were evaluated to determine whether they were 

diagnostic (i.e., characteristic attributes) of the taxa subtending that node.  Samples for 

the guide tree were arbitrarily chosen based on the first sequence for each species when 

sorted alphabetically by sampling location.  The same samples were used across all 

barcodes to prevent confounding our interpretations of barcode performance due to 

inclusion of different samples among guide trees.  The program P-Elf was then used to 

assign sequences not included in the original file to species based on the rules generated 

by P-Gnome.   

RESULTS 

Barcode variation  

Sequences were obtained from at least one representative of all 29 species for all loci 

and sequences for each locus were obtained from at least 92% of the samples (Table 3.2).  

Across all loci, 720 out of a total possible 736 sequences were obtained (98%) and most 

samples required only a single attempt at PCR and sequencing to obtain a high quality 

sequence.  One exception was rps2, which required the alternative forward primer rps2-

47 instead of the typical rps2-18F for 10 individuals (dePamphilis et al. 1997).  Despite 
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these efforts, two individuals were still missing sequences at this locus (Table 3.2).  Only 

91 sequences could be obtained for rpoB and the majority of the missing sequences were 

due to matK and rbcL that failed for 6 and 7 species, respectively.  Both of these latter 

loci proved problematic and required multiple attempts at PCR and sequencing to obtain 

a high quality sequence from samples. 

The percent variable characters ranged from 7.71% to 31.52% for rbcL and psbA-

trnH, respectively (Table 3.2). The number of variable sites for individual loci ranged 

from 55 (rpoB) to 290 (trnT-trnL) (Table 3.2).  The most conserved locus was rbcL with 

K2P pairwise distances among Agalinis species ranging from 0.0 - 2.20% and averaging 

1.02% (Fig. 3.1).  The psbA-trnH locus had the largest range of among-species K2P 

distances (0.0 – 14.89%) and averaged 6.68% (Fig. 3.1).  The combined rpoB/psbA-trnH 

barcode had the largest range of and highest average among-species K2P distances of any 

two locus barcode (0.08 – 9.47 and 4.47, respectively) (Fig. 3.1).  Not surprisingly, the 

average and range of pairwise distances within species generally increased after 

synonymization while among-species distances decreased (e.g., Fig. 3.1). 

Performance of candidate barcodes  

Success of each candidate barcode using the ‘best close match’ distance-based 

method differed depending on the threshold value (Fig. 3.2).  In all cases the calculated 

threshold was substantially less than 2%, varying from 0.25% (matK) to 1.01% (rbcL) 

under the historical taxonomy and from 0.15% (matK) to 1.01% (rbcL) when species 

were synonymized (Table 3.3).  Threshold distance values for the multi-locus barcodes 

were 0.37% (matK/psbA-trnH), 0.46% (rpoB/psbA-trnH), and 0.77% (rbcL/psbA-trnH) 
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under the historical taxonomy and were all lower but in the same rank order in the 

synonymized data set (Table 3.3).  Regardless of the taxonomic hypothesis considered, as 

the distance threshold increased from the calculated one to 2% there was a marginal (i.e., 

few percentage points) increase in correct and incorrect classifications with a 

corresponding decrease in ‘no match’ classifications (Fig. 3.2).  For matK, trnT-trnL, and 

the multi-locus barcodes this pattern was also observed when comparing performance 

between the 2% and 5% thresholds.  Ambiguous classifications remained fairly constant 

across the three thresholds (Fig. 3.2).  Because it generally had the best results, we 

discuss the performance of the candidate barcodes considering only the calculated 

distance threshold. 

Of the single-locus barcodes, trnL-trnF had the highest correct classification rate and 

tied for the lowest incorrect classification rate with trnT-trnL and the trnL-intron under 

the historical taxonomy; the rbcL region had the lowest correct classification rate and had 

the highest percentage of incorrect classifications (Table 3.3).  Although the percent 

incorrect classification rates were relatively low for all single locus barcodes (1.08-

7.14%), there were between 26.37% (psbA-trnH) and 40.47% (rbcL) ambiguous 

assignments using this method (Table 3).  

The multi-locus barcodes rpoB/psbA-trnH and rbcL/psbA-trnH provided marginally 

higher correct classification than when any of the loci were considered individually 

(Table 3.3).  The matK/psbA-trnH barcode had a higher percentage of correct 

classification (62.79%) than when matK was used by itself (61.62%) but performance 

was worse than when psbA-trnH was used alone (64.83%) (Table 3.3).   
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Synonymizing species increased the average correct classification across all 

candidate barcodes from 61.83% to 89.05% and correct classification was >90% for four 

of the single-locus barcodes (Table 3.3).  psbA-trnH had the highest correct classification 

(94.5%) and no misclassification; rbcL had the lowest correct classification (79.76%).  

Performance of trnL-trnF declined relative to when the historical taxonomy was used in 

that there was an increase in the number of query sequences determined to have no match 

(Table 3.3).  The most likely reason for this relative poor performance is that upon 

synonymizing samples with nearly identical sequences (e.g., A. acuta, A. decemloba, and 

A. tenella) the threshold value associated with 95% correct classification was too low 

such that more pairwise conspecific comparisons exceeded that threshold.  The three 

multi-locus barcodes performed similarly to one another after synonymizing species; only 

the rbcL/psbA-trnH multi-locus barcodes had any individuals misclassified (1.17%) 

(Table 3.3).   

The two tree-based methods differed substantially in the degree to which they 

accurately handled query sequences.  The strict method, by default, classified as 

ambiguous every sequence that represented a species for which we had only sampled two 

individuals.  This was a result of treating one sample as a reference sequence and the 

other as a query sequence, under which there is no way for a query sequence to be 

embedded among conspecifics when only one conspecific is in the database (Table 3.4).  

This conservative approach of the strict method resulted in an average 17.07% correct 

classification rate that increased to 41.95% when species were synonymized (Table 3.4).  

However, there were no incorrect classifications using the strict method because query 
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sequences were never incorrectly embedded in a monospecific clade consisting of 

heterospecifics.  Under the historical taxonomy, when samples of A. acuta, A. decemloba, 

A. tenella, A. paupercula, or A. purpurea were treated as query sequences, they were 

embedded within a clade that contained both heterospecifics and conspecifics and as a 

result assignments were considered ambiguous rather than incorrect.  As a consequence 

of the strict method, even when species were synonymized, two of the samples were 

sister to rather than embedded within the synonymized group and were classified as 

ambiguous.   

The liberal tree-based method had an average correct classification of 60.69% under 

the historical taxonomic framework, and 91.69% after syononymization (Table 3.4).  

Despite the inability of this method to identify sequences that do not have a conspecific 

in the database it still had a relatively low incorrect classification rate, which, based on 

the synonymized taxonomic hypothesis ranged from 4.35% for psbA-trnH to 28.24% for 

rbcL (Table 3.4).   

Under both tree-based methods, incorporating a second locus increased the correct 

classification rate relative to the performance when the more slowly evolving locus was 

used alone.  For example, using the synonymized data set and the strict tree-based 

method, the correct classification rates for rbcL and rpoB were 38.82% and 34.07%, 

respectively; when they were combined with psbA-trnH correct classification was 

41.18% and 45.05%, respectively (Table 3.4).  The combination of matK and psbA-trnH 

did not significantly change the correct classification rate; the decrease in correct 
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classification rate of matK/psbA-trnH relative to psbA-trnH is due to differences in 

samples sizes between the two barcodes (Tables 3.2 & 3.4). 

We found diagnostic characters in all barcodes for the majority of putative Agalinis 

species pairs.  The average number of fixed differences among species varied from 4.85 

in rbcL to 30.74 in trnT-trnL for the single locus barcodes.  The matK, rps2, psbA-trnH, 

and all three multi-locus barcodes had fixed nucleotide differences for 82.75% of the 

species.  The rbcL and rpoB barcodes discriminated the fewest species based on the 

presence of fixed nucleotides (58.62% and 72.41%, respectively).  When species were 

synonymized, 3 single-locus and all 3 multi-locus barcodes had fixed nucleotide 

differences that distinguished all 26 species, although the average number of fixed 

differences was generally lower than when the historical taxonomy was used.  

The number of query sequences used to evaluate the CAOS method ranged from 56 

(rbcL) to 63 (psbA-trnH, trnT-trnL, trnL-intron, and trnL-trnF) individuals, which 

always increased by three for the analyses in the synonymized data set (Table 3.5).  

Despite indications of the utility of fixed differences, percent correct classification using 

this method was most often substantially lower than the other methods evaluated (Tables 

3.3 - 3.5), ranging from 17.74% for rpoB to 63.49% for trnL-trnF and psbA-trnH (Table 

5).  Misclassifications were due to both incorrect and ambiguous calls.  The multi-locus 

barcodes all performed worse than single locus barcodes.  This result is surprising given 

that chloroplast loci do not assort independently of one another and, thus should not be in 

conflict.  Additionally, when two chloroplast loci are concatenated they possess the 

combined diagnostic characters and should have more information than each single locus.   
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Using the synonymized data set greatly increased the number of query sequences 

that could be correctly classified using the CAOS method with two barcodes (psbA-trnH 

and trnL-trnF) having correct classification rates >87% (Table 3.5).  The multi-locus 

barcodes still had classification success rates below those of the single locus barcode 

psbA-trnH, the faster evolving locus of the two-locus system. 

In addition to being generally low, barcoding success from CAOS depended on the 

method of inferring the phylogeny that served as the guide tree (NJ or maximum-

likelihood) (Table 3.5). Unfortunately, neither method was consistently better in that the 

percent correct classification was higher for a tree inferred using the NJ algorithm for 

rbcL, rpoB, trnL-trnF and the maximum likelihood tree yielded better classification for 

psbA-trnH; the two methods did not differ for rps2, trnT-trnL, and trnL-intron.  In 

general, the maximum likelihood method had fewer ambiguous and more incorrect calls 

than the neighbor joining method. 

Species-specific performances  

No DNA barcode locus or analytical technique correctly classified all samples of A. 

acuta, A. decemloba, A. tenella, A. paupercula, A. purpurea, or A. harperi.  When A. 

acuta, A. decemloba, and A. tenella were synonymized as A. decemloba and A. 

paupercula and A. purpurea were synonymized as A. purpurea, the distance- and tree-

based method always classified all relevant sequences into the correct synonymized 

group.  However, the CAOS method did not correctly classify all of the samples for five 

barcodes (matK/psbA-trnH, rbcL, rbcL/psbA-trnH, trnT-trnL, and rpoB).  The two A. 

harperi samples were never correctly classified as conspecifics. 
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 For the distance-based methods, although the results varied depending on the DNA 

barcode, 10 samples were typically classified as ‘no match’ because the distances among 

the conspecific individuals exceeded the designated threshold (e.g., A. skinneriana 

90MO, the two A. linifolia samples, A. oligophylla 12AL and 5AL, A. heterophylla TX 

and 5TX, A. pulchella 3GA, A. fasciculata 1LA, and A. setacea 76VA).  The two species 

for which we only had a single representative (i.e., A. calycina and A. edwardsiana) were 

correctly treated as having no conspecific match in the database when using trnL-trnF, 

psbA-trnH, rpoB/psbA-trnH, and matK/psbA-trnH.  However, for the other barcodes 

(i.e., rps2, matK, rbcL, rpoB, trnL-intron, trnT-trnL, and rbcL/psbA-trnH) classifications 

of A. calycina and A. edwardsiana were incorrect or ambiguous due to insufficient 

differentiation from heterospecific samples in the database.   

Species-specific misclassification was high for the strict tree-based method where 

the samples from all but one species (i.e., A. harperi) that were represented by two 

individuals were classified as ambiguous.  For the liberal tree-based method, the only 

incorrect classifications using the best performing locus (i.e., psbA-trnH) involved the 

query sequences that did not have conspecifics in the database (i.e., A. calycina and A. 

edwardsiana) and the two polyphyletic A. harperi samples.  The higher incorrect 

classification rates associated with other loci (e.g., rbcL and rpoB) was due to lack of 

sufficient nucleotide variation to depict accurately the relationships among the samples. 

Under the diagnostic character based method of CAOS, a number of species-specific 

classifications depended on the inference method used to create the guide tree.  For 

example, using the psbA-trnH barcode and the NJ algorithm, seven samples were 
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misclassified (A. fasciculata 2GA, A. fasciculata 4LA, A. harperi 12NC, A. setacea 

7MD, and A. tenuifolia 5IA were classified as A. skinneriana; A. setacea 3VA was 

classified as A. tenuifolia; and A. tenuifolia 2VA was classified as A. aphylla), and for the 

same barcode, but using a guide tree inferred using a maximum likelihood-based method, 

there were only four incorrect classifications (A. setacea 7MD, A. setacea 3VA, and A. 

tenuifolia 5IA were classified as A. skinneriana and A. tenuifolia 2VA was classified as 

A. aphylla). 

DISCUSSION 

The need to catalog the earth’s rapidly declining biodiversity makes the promise of 

DNA barcoding highly appealing (Savolainen et al. 2005).  In addition to facilitating 

basic inventorying of poorly studied areas, barcoding has been proposed as an effective 

means of delineating and monitoring species distributions (DeSalle et al. 2005).  

Sequence databases created as a result of DNA barcoding have also been advocated as 

being useful for understanding the evolutionary diversity within rare species (Faith & 

Baker 2006).  Achieving these purposes requires the ability to distinguish among closely 

related species including sister taxa.  Because most barcoding evaluations to date have 

been in search of universally amplifiable loci, thorough tests of this ability are only 

beginning to accumulate (e.g., Newmaster & Ragupathy 2009; Starr et al. 2009).  

Although limited in taxonomic breadth, our analysis of 92 samples representing 29 

Agalinis species using three analytical techniques is one of the most extensive 

examinations to date and clearly shows that barcoding has potential for distinguishing 

among congeners using single barcodes.  Although we have examined only one genus, 
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the range of evolutionary distances within and among the 29 species likely reflect 

patterns in many angiosperm genera and in certain instances even represent the level of 

differentiation among members from different genera (e.g., Kress et al. 2005; e.g., 

Lahaye et al. 2008). 

The ability to distinguish closely related species means that barcoding can be useful 

in conservation biology to confirm identities in taxonomically challenging groups that are 

difficult to identify in the field.  Such information can serve to improve understanding of 

species distributions.  A specific example from our study is the case of the state rare A. 

skinneriana, whose geographic range was thought to not include Mid-Atlantic coastal 

states.  When samples from Maryland were first collected they were tentatively attributed 

to A. skinneriana, but local botanists had concerns because no other populations of this 

species occur within 400-500 km; barcoding unambiguously confirmed the taxonomic 

identity of those samples.  We were also able to confirm identifications from collection 

locations from which individuals had originally been identified as Agalinis decemloba 

but later annotated as A. setacea.  However, as discussed below, successful application of 

DNA barcoding depends on the barcode locus, the analytical method, and the underlying 

taxonomy used. 

Candidate barcodes  

Of the loci we tested, psbA-trnH and trnT-trnL most closely met the three 

requirements of a suitable DNA barcode identified by the Consortium for the Barcode of 

Life in that those loci were routinely retrievable with a single primer pair, easy to obtain 

bidirectional sequences, required little to no manual editing of sequence traces, and 



146 
 

 

provided maximal discrimination among species (CBOL Plant Working Group 2009) 

(Table 3.2, Fig. 3.1).  When evaluating the data set in which phylogenetically dubious 

taxa had been synonymized, these two loci had a greater than 83% correct classification 

rate across all methods except the strict tree method.  Under the historical taxonomic 

framework, accuracy was closer to 50-70%, mostly due to ambiguous classifications 

among the species that were synonymized in the other data set.  Although they worked 

well for Agalinis and have been advocated by others (Kress & Erickson 2007), these loci 

are known to have alignment issues (psbA-trnH; Lahaye et al. 2008) or suffer from a lack 

of significant interspecific differentiation (trnT-trnL; Edwards et al. 2008) in some taxa.   

Another barcode that has been advocated, either alone (Lahaye et al. 2008) or as part 

of multi-locus system (Newmaster et al. 2008), matK, performed well under both the 

distance- and tree-based methods, but not with the diagnostic character-based system 

(Tables 3.3 – 3.5).  However, a serious issue with using matK is that we were only able to 

acquire 86 sequences from the 92 samples and multiple sequencing attempts were 

necessary to obtain high quality reads.  Difficulty in amplifying matK has been noted in 

studies including a broad range of angiosperm orders and families (Fazekas et al. 2008; 

Sass et al. 2007) but we were surprised that even among closely related species, primer 

regions were not sufficiently conserved to yield reliable PCR amplification.   

We found no benefit to using multi-locus barcodes.  At best, they showed marginal 

improvement, and at worst showed an actual decrease in performance compared to the 

best performing single locus barcodes (Tables 3.3 – 3.5).  Therefore, the additional work 

and cost necessary to acquire a second locus does not seem warranted.  Although one 
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could argue that the closely related species we investigated do not represent the situation 

under which a multi-locus barcode may be useful, the benefits have also been shown to 

be negligible with more evolutionarily divergent samples (e.g., Lahaye et al. 2008).  

However, multi-locus barcodes have yielded improved performance in some studies (e.g., 

Fazekas et al. 2008; e.g., Hollingsworth et al. 2009). 

Given that different methods and loci have been used across plant DNA barcoding 

studies (CBOL Plant Working Group 2009; Chase et al. 2005; Fazekas et al. 2008; Kress 

& Erickson 2007; Lahaye et al. 2008; Newmaster et al. 2008; Sass et al. 2007) it is still 

not possible to determine for certain if there will be a single locus to barcode all plants.  

Given the accumulated evidence, it appears unlikely. However, as reference databases 

become more complete in terms of loci and species and more studies are completed using 

consistent methods of evaluation, a small number of loci may emerge that work across an 

array of taxa.   

Metrics such as the “probability of correct identification” (PCI) (Erickson et al. 

2008) allow comparison of rates of correct classification across barcodes, analytical 

methods, and databases.  Erickson and Kress (2008) suggest that the level of 

unambiguous correct classification to be expected is on the order of 60%-70%, which is 

similar to the conclusion of 71% success described in Fazekas et al. (2008).  Empirical 

results have yielded both substantially lower (e.g.,  0-~30% success across three genera 

of land plants;  Hollingsworth et al. 2009) and higher (e.g., 94.7% success across 

congeneric species; Newmaster et al. 2008) correct classification, the latter being similar 
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to what we observed.  Correct classification rates are useful when the identities of taxa 

are known with confidence, which is the case when developing reference databases. 

In real barcoding applications, samples of unknown identity that are compared with 

reference sequences will either be unambiguously assigned to one species, assigned to 

multiple species, or assigned as having ‘no match’ depending on the methods used.  

Some percentage of unambiguous, apparently correct assignments will in fact be 

incorrect (i.e., will be false positives).  We argue that understanding the potential for false 

positives resulting from unambiguous assignment to the wrong species is more critical 

than knowing the potential for correct identifications.  A means of estimating this 

potential is to assume that it will be similar to the percent of incorrect matches among 

samples of known taxonomic identity (i.e., those in the reference database).  Using 

distance methods, our percentage of false positives was 1.25% when species were 

synonymized and 3.5% under the historical taxonomy (Table 3.3), which is comparable 

to levels found by Newmaster et al. (2008).  Thus, the low levels of correct classification 

under the historical taxonomy were due to ambiguous classifications because sequences 

were assigned to multiple species; a few samples were also classified as ‘no match’ 

because they were sufficiently distinct from all species.  Methods that provide ambiguous 

and ‘no match’ classifications are essential because they disclose patterns that would be 

masked if query sequences were forced into only species that exist in the database and 

thus highlight the need for further research to understand the cause of the ambiguities.  



149 
 

 

Differential success of assignment methods  

Although some loci were generally better than others, performance of a given 

barcode was highly dependent on the analytical method being used.  The ‘best close 

match’ method as implemented in TAXONDNA (Meier et al. 2006) yielded the best 

overall results across most loci.  In addition to high correct classification rates, most of 

the samples that were not classified correctly were ‘ambiguous’ rather than incorrect 

(Table 3.3).  This method also has the beneficial property discussed above of having the 

potential to avoid errors of commission by identifying sequences as having no match 

rather than forcing incorrect classification as the closest species.  Although there were 

cases in which samples were erroneously identified as having no conspecific match in the 

database, these misclassifications represent an exception to the behavior of the majority 

of conspecifics we examined.  Such cases yield opportunities for further examination to 

determine if they resulted from misidentification, contamination, or something 

biologically interesting such as presence of phylogeographic structure or presence of 

cryptic species. 

The primary criticism of distance-based methods is that no single distance threshold 

delineates all species (DeSalle et al. 2005; Ferguson 2002; Little & Stevenson 2007).  

Calculating thresholds from the data has been proposed as a way to overcome this 

disadvantage (e.g., Meier et al. 2006).  Our calculated values were lower than the 

arbitrary fixed threshold distances that have been suggested and distances calculated 

among other taxa.  For example, calculated thresholds for psbA-trnH and matK in the 

synonymized data set were 0.56% and 0.15%, respectively, whereas Newmaster et al. 
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(2008) documented thresholds of 2.52% and 0.26%, respectively, for these same loci.  

Although the differences in calculated threshold reinforce the idea that a single threshold 

may not be appropriate, there was little practical consequence of the three different 

threshold values we evaluated.  For most loci, both correct and incorrect classification 

rates increased by only a few percentage points, with a concomitant reduction in 

ambiguous and ‘no match’ classifications as the threshold is increased.  The exception 

was trnL-trnF for which the 2% and 5% thresholds yielded ~10% higher correct 

classification than did the calculated threshold (Fig. 3.2a and 3.b).  Because multiple 

conspecific accessions are required to calculate thresholds and a 2% universal threshold 

performed reasonably well, the latter could be used in small reference databases with the 

caveat that there could be a marginal increase in incorrect classifications at the cost of 

identifying biologically interesting situations through ambiguous or ‘no match’ 

classifications.  If a reference database contains sufficient accessions, a calculated 

threshold is preferred. 

Although the liberal tree-based clustering method yielded correct classification rates 

as high as 71.76%-95.65% in the synonymized data set, the inability of this method to 

accurately handle sequences that do not have a conspecific in the reference database 

render it inferior to other methods based on distances and diagnostic character 

differences.  This conclusion is in contrast to Ross et al. (2008) who found the liberal 

tree-based method superior to distance methods in this regard.  The strict method can 

identify sequences that have no conspecific in the database; however, because a query 

sequence needs to be embedded in a clade in order for a taxonomic identity to be 
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assigned to it (Ross et al. 2008), success is highly dependent on the number of reference 

sequences in the database.  Given that one sequence was treated as the reference and the 

other as a query sequence, the 14 species for which we sampled two individuals represent 

the extreme situation in which any query sequence will at best be sister to a conspecific 

and thus will be identified as ambiguous.  Given the dependence of the success of this 

method on the number of conspecifics sampled, it has been suggested that at least five 

conspecifics should be present in the reference database to ensure accurate identifications 

(Ross et al. 2008).  The authors note that this level of sampling may not be achievable for 

the majority of species. 

The number of segregating sites that were fixed among a priori groups representing 

putative species suggests that such characters could be useful for diagnosing species.  The 

character-based CAOS method (Sarkar et al. 2008) that uses fixed nucleotide differences 

is conceptually appealing because it does not require multiple conspecifics to be in the 

reference database and it can handle query sequences with no conspecific in the database.  

Unfortunately, this method yielded a wide range in the percent correct classification rate 

and some barcodes performed dismally compared to their performance using other 

methods (e.g., matK, rbcL, rpoB and the multi locus barcodes; Table 3.5).  A number of 

the samples that failed to be correctly classified under the CAOS method were accurately 

identified by the distance- and tree-based methods and formed strongly supported 

monophyletic groups in Pettengill and Neel (2008) (e.g., the phylogenetically distinct 

samples A. setacea 7MD and A. tenuifolia 5IA were classified as A. skinneriana using the 

psbA-trnH barcode).  These misclassifications might have resulted because basal 
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relationships among these species lack statistical support such that few diagnostic 

characters exist within individual barcodes to differentiate such historical relationships 

(Pettengill & Neel 2008).  This lack of resolution is exacerbated in the CAOS method 

because the guide tree is based on a single locus or two loci that differ in their 

phylogenetic informativeness and the topologies based on them; for the same barcode 

topologies also differed between the two inference methods.  Another potential problem 

with the CAOS method is whether enough diagnostic character differences will be 

present for any one barcode when many species (e.g., thousands) are considered in the P-

Gnome process.  The issue is similar to the problem observed in phylogenetic studies 

where the degree of homoplasy increases with increased taxon sampling (Sanderson & 

Donoghue 1989).  In barcoding, such a phenomenon would result in a situation where 

diagnostic characters that distinguish certain species may no longer be diagnostic when 

additional species are considered.  Given the degree of single nucleotide polymorphisms 

as well as the number of insertion-deletion polymorphisms we observed (data not 

presented) we suggest that the utility of loci for plant barcoding would increase if an 

automated means of identifying and incorporating these polymorphisms into assignments 

were developed. 

Importance of taxonomy  

Beyond barcode characteristics and analytical methods, classification success was 

conditional upon the taxonomic hypothesis used.  Results under the historical taxonomy 

of 29 species and the ‘best close match’ distance method yielded correct identification of 

~60% of Agalinis individuals using the loci we sequenced (Table 3.3).  Such low correct 
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classification rates can result from polyphyletic or paraphyletic relationships among 

species that are in fact reproductively isolated and distinguishable by experts based on 

morphological features or from incorrect taxonomy.  There is no way to distinguish these 

two possible causes of misclassification without additional information.  In the case of 

Agalinis, previous phylogenetic studies (Neel & Cummings 2004; Pettengill & Neel 

2008) suggested that separate species status may be unwarranted for two groups of 

species, first A. acuta, A. decemloba, and A. tenella and second A. paupercula and A. 

purpurea).  When species in these two groups were synonymized with one another, 

correct classification exceeds 80% for all loci and was above 90% for the best performing 

loci (Table 3.3). Given that all three of the barcoding methods we evaluated can be 

misleading when species are not reciprocally monophyletic (Ross et al. 2008) and the 

potentially high frequency of such relationships (Crisp & Chandler 1996; Funk & 

Omland 2003; Rieseberg & Brouillet 1994), there is there is potential that DNA 

barcoding may challenging in many taxonomic groups (Hollingsworth et al. 2009).   

Although DNA barcoding alone cannot resolve taxonomic uncertainty, it may be a 

useful tool for detecting it.  The ability to detect cryptic species with barcoding is well 

known (e.g., Elias-Gutierrez & Valdez-Moreno 2008; e.g., Ragupathy et al. 2009; Yassin 

et al. 2008).  The technique can also be a useful tool for detecting when two putative 

entities may not actually be different (Fazekas et al. 2009). The ‘best close match’ 

method effectively identified reference samples of A. acuta, A. decemloba, and A. tenella 

as ambiguous and, therefore, sequences of these species were assignable to more than one 

reference species.  Had we had no other information prior to this study, the ambiguous 
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classifications would have triggered further investigation.  Thus, rather than replacing 

traditional taxonomic approaches, DNA barcoding can be seen as part of an iterative 

process in which query sequences that do not match sequences in the database or that are 

assigned to multiple taxa prompt examination of taxonomic hypotheses used to assign 

membership.  The results from these additional studies may either support the current 

taxonomic hypothesis or suggest taxonomic revisions.  There is an undeniably 

disconcerting circularity to this logic: if samples that cannot be delineated to a single 

species using barcoding are synonymized then those samples become distinguishable 

with barcodes.  However, not all instances of ‘no match’ or ambiguous classifications 

will result in taxonomic revisions when additional data are examined.  The ability to 

detect incorrect taxonomy is highly dependent on the density of taxonomic coverage in 

the reference database (e.g., Ross et al. 2008) and the frequency at which this iterative 

process will be repeated will depend on the degree to which current taxonomic 

hypotheses are incorrect and putative species are not reciprocally monophyletic. 

Conclusions  

 Our results show that the success of DNA barcoding varies depending on three 

factors: 1) the actual barcode being employed; 2) the analytical method being used to 

determine the taxonomic identity of a query sequence; and 3) the related factors of 

accuracy of the taxonomy associated with the sequences in the reference database and the 

degree to which species are not monophyletic.  Within limits imposed by the factors 

above, we found two loci (psbA-trnH and trnT-trnL) to be effective at distinguishing 

among congeners in the genus Agalinis.  The ‘best close match’ distance method 
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generally outperformed other methods due to its correct classification rates, potential for 

ambiguous classification, and identification of query sequences with no match in the 

database.   

This success indicates that DNA barcoding can be useful in a conservation context 

by determining the identity of morphologically confusing species or populations that 

appear to represent an extension of a species’ range.  Although it has been argued that 

application of DNA barcoding to conservation is dependent on having taxonomically 

extensive representation in the reference database (e.g., Rubinoff 2006), our results 

suggest this is not the case because methods exist that can accurately identify samples 

that have no conspecifics present in the database.  Assuming that taxonomic hypotheses 

are accurate and given an appropriate method, DNA barcoding will provide a means of 

identifying understudied and putatively rare species that warrant additional studies to 

evaluate their evolutionary distinctiveness and phylogenetic affinity.  
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Table 3.1.20The number of conspecifics, general locations of sampled individuals, and 
conservation status for the 29 Agalinis species investigated. 

Taxon N State  Status1 

Section Erectae     
A. acuta  10 CT, RI, MA, NY, MD  G1/S1 
A. aphylla  2 FL, AL G3-G4/S2 
A. decemloba  5 VA, NC NR 
A. gattingeri  3 MO, LA G4/S1 
A. obtusifolia  9 AL, SC, FL G4-G5-Q/S1 
A. oligophylla  4 AL, TX G4/S1 
A. skinneriana  3 MD, MO G3/S1 
A. tenella  8 GA, SC NR 
A. viridis  2 LA G4/S1 
Section Heterophyllae     
A. auriculata  2 IA, IL G3-G4/S1 
A. heterophylla  3 TX G4-G5/S1 
A. calycina 1 TX G1/S1 
Section Linifoliae     
A. linifolia 2 FL, GA G4?/S1 
Section Purpureae    
A. edwardsiana  1 TX G4/S4 
A. homalantha 2 TX G5/S1 
A. pulchella  2 GA, FL G4-G5/S3? 
A. strictifolia  2 TX G4/SNR 
A. navasotensis 2 TX G1/S1 
A. fasciculata 3 TX, GA, LA G5/S1 
A. harperi  2 FL, NC G4?/SNR 
A. maritima  2 TX, MA G5/S2 
A. paupercula  2 MA, NY G5/S1 
A. purpurea  4 VA, AL, MD, SC G5/S1 
A. laxa  2 SC, GA G3-G4/S3? 
A. plukenettii  2 FL, GA G3-G5/S1 
A. setacea  4 VA, MD  
Section Tenuifoliae    
A. filicaulis  2 FL, AL G3-G4/S1 
A. divaricata  2 FL G3?/S1 
A. tenuifolia 4 LA, VA, IA, MD G5/S1 

1Conservation Status: global ranking (G1=critically imperiled; G2=imperiled; G3=vulnerable to extinction 
or extirpation; G4=apparently secure; G5=demonstrably secure or widespread)/highest state ranking 
for each species (S1-S5 are equivalent to the global scale but applied to within a single state) (USA); 
when a range or question mark (?) is given the precise conservation status is uncertain.; NR and 
SNR= not ranked   
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Table 3.2.21Summary characteristics of the 11 DNA barcodes evaluated.   
 

Locus 

N 
individuals 
(N species) 

Aligned 
length 
(bp) 

Variable 
characters  
(percent) 

matK 86 (29) 899 168 (18.69%) 
rbcL 85 (29) 1012 78 (7.71%) 
rpoB 91 (29) 368 55 (14.95%) 
rps2 90 (29) 660 146 (22.12%) 

trnT-trnL 92 (29) 1397 290 (20.76%) 
trnL-intron 92 (29) 548 84 (15.32%) 
trnL-trnF 92 (29) 965 182 (18.86%) 

psbA- trnH 92 (29) 809 255 (31.52%) 
rpoB/ psbA-trnH 91 (29) 1177 310 (26.33%) 
rbcL/psbA-trnH 85 (29) 1821 333 (18.28%) 

matK/ psbA-trnH 86 (29) 1708 422 (24.71%) 
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Table 3.3.22Performance as measured by percent of samples for the candidate barcodes 
when ‘best close match’ distance method (Meier et al. 2006) is used to identify sample 
sequences.  Threshold distances were calculated from the observed sequences for each 
locus.  Numbers in parentheses indicate the performance of barcodes when species are 
synonymized based on the results of Pettengill and Neel (2008).   

Barcode Correct Ambiguous Incorrect No match  Threshold  
matK 61.62 31.39 1.16 5.81 0.25 

(93.02) (0.0) (1.16) (5.81) (0.15) 
rbcL 50.0 40.47 7.14 2.38 1.01 

(79.76) (14.28) (3.57) (2.38) (1.01) 
rpoB 58.42 31.46 4.49 5.61 0.54 

(86.51) (4.49) (3.37) (5.61) (0.54) 
rps2 60.0 28.88 6.66 4.44 0.58 

(92.22) (2.22) (1.11) (4.44) (0.58) 
psbA-trnH 64.83 26.37 3.29 5.49 0.64 

(94.5) (0.0) (0.0) (5.49) (0.56) 
trnT-trnL 60.86 33.69 1.08 4.34 0.54 

(92.39) (2.17) (1.08) (4.34) (0.46) 
trnL-intron 59.78 34.78 1.08 4.34 0.38 

(85.86) (2.17) (1.08) (10.86) (0.18) 
trnL-trnF 67.39 27.17 1.08 4.34 0.56 

(79.34) (3.26) (1.08) (16.3) (0.21) 
rpoB and 

psbA-trnH 
67.39 21.73 4.34 6.52 0.46 

(93.47) (0.0) (0.0) (6.52) (0.34) 
rbcL and 

psbA-trnH 
67.05 23.52 4.7 4.7 0.77 

(90.58) (0.0) (1.17) (8.23) (0.54) 
matK and 
psbA-trnH 

62.79 26.74 3.48 6.97 0.37 
(91.86) (0.0) (0.0) (8.13) (0.2) 

Average 61.83 29.65 3.50 4.99 0.55 
(89.05) (2.60) (1.25) (7.10) (0.43) 

 
  



159 
 

 

Table 3.4.23Performance of the candidate barcodes based on the strict and liberal tree 
based methods of Ross, Murugan, and Li (2008).  Numbers in parentheses indicate the 
performance of barcodes when species are synonymized based on the results of Pettengill 
and Neel (2008). 

Barcode 
Strict method Liberal method 

Correct Ambiguous Correct Incorrect 
matK 17.44% 82.56% 63.95% 36.05% 

 (44.19%) (55.81%) (95.35%) (4.65%) 
rbcL 12.94% 87.06% 52.94% 47.06% 

 (38.82%) (61.18%) (71.76%) (28.24%) 
rpoB 18.68% 81.32% 57.14% 42.86% 

 (34.07%) (65.93%) (89.01%) (10.99%) 
rps2 16.67% 83.33% 55.56% 44.44% 

 (45.56%) (54.44%) (95.56%) (4.44%) 
psbA-trnH 18.48% 81.52% 64.13% 35.87% 

 (45.65%) (54.35%) (95.65%) (4.35%) 
trnT-trnL 17.39% 82.61% 60.87% 39.13% 

 (44.57%) (55.43%) (92.39%) (7.61%) 
trnL-intron 17.39% 82.61% 60.87% 39.13% 

 (44.57%) (55.43%) (92.39%) (7.61%) 
trnL-trnF 17.39% 82.61% 60.87% 39.13% 

 (44.57%) (55.43%) (92.39%) (7.61%) 
rpoB/psbA-trnH 18.68% 81.32% 62.64% 37.36% 

 (45.05%) (65.93%) (93.41%) (6.59%) 
rbcL/psbA-trnH 15.29% 84.71% 64.71% 35.29% 

 (41.18%) (58.82%) (95.29%) (4.71%) 
matK/psbA-trnH 17.44% 82.56% 63.95% 36.05% 

  (44.19%) (55.81%) (95.35%) (4.65%) 
Average 17.07% 82.93% 60.69% 39.31% 

(41.95%) (58.05%) (91.69%) (8.31%) 
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Table 3.5.24Performance of the candidate barcodes in terms of percentage of query 
sequences (N) classified into each category based on the diagnostic character based 
method CAOS (Sarkar et al. 2008).  Numbers in parentheses indicate the performance of 
barcodes when species are synonymized based on the results of Pettengill and Neel 
(2008). 
 

Barcode N 
Neighbor-joining Maximum-likelihood 

Correct Ambiguous Incorrect Correct Ambiguous Incorrect 
matK 57 29.82 43.86 26.32 36.84 10.53 52.63 

 (60) (68.33) (6.67) (25.00) (68.33) (5.00) (26.67) 
rbcL 56 30.36 25.00 44.64 25.00 28.57 46.43 

 (59) (27.12) (30.51) (42.37) (28.81) (30.51) (40.68) 
rpoB 62 22.58 59.68 17.74 17.74 58.06 24.19 

 (65) (53.85) (23.08) (23.08) (53.85) (24.62) (21.54) 
rps2 61 44.26 45.90 9.84 54.10 22.95 22.95 

 (64) (84.38) (12.50) (3.13) (82.81) (10.94) (6.25) 
psbA-trnH 63 58.73 30.16 11.11 63.49 30.16 6.35 

 (66) (87.88) (1.52) (10.39) (87.88) (1.52) (10.39) 
trnT-trnL 63 55.56 12.70 31.75 55.56 14.29 30.16 

 (66) (83.33) (0.0) (16.67) (84.85) (0.00) (15.159) 
trnL-intron 63 46.03 50.79 3.17 46.03 50.79 3.17 

 (66) (83.33) (9.09) (7.58) (83.33) (12.12) (4.55) 
trnL-trnF 63 63.49 7.94 28.57 61.90 7.94 30.16 

 (66) (87.88) (6.06) (6.06) (84.85) (13.64) (1.51) 
rpoB/psbA-trnH 62 45.16 19.35 35.48 41.94 9.68 48.39 

 (65) (70.77) (1.54) (27.69) (75.38) (1.54) (23.08) 
rbcL/psbA-trnH 56 53.57 8.93 37.50 58.93 8.93 32.14 

 (59) (76.27) (0.0) (23.73) (54.24) (0.0) (45.76) 
matK/psbA-trnH 57 42.11 22.81 35.09 49.12 19.30 31.58 

 (60) (68.33) (0.0) (31.67) (68.33) (0.0) (31.67) 
Average 59.67 43.34 29.29 27.37 45.45 21.79 32.76 

(63.27) (71.95) (8.27) (19.78) (70.24) (9.08) (20.68) 
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 Figure 3.1.12Histograms of the number of intraspecific and interspecific comparisons that 
fell into 0.5% K2P distance categories for three candidate barcodes under two taxonomic 
hypotheses. 
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Figure 3.2.13Performance of 11 candidate barcodes across three different threshold values 
for the ‘best close match’ distance-based method (Meier et al. 2006).  Top panel 
represents classifications under the historical taxonomic alignment and the bottom panel 
are results after synonymization based on the results of Pettengill and Neel (2008). 
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CHAPTER 4: DIFFERENTIATING AMONG ALTERNATIVE 

PHYLOGEOGRAPHIC HYPOTHESES WITHIN AGALINIS DECEMLOBA 

(OROBANCHACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL 

VARIATION 

ABSTRACT 

Differentiating between historical processes related to the establishment of populations 

and contemporaneous events as explanations for extant patterns of diversity is central to 

understanding the temporal dynamics of microevolutionary forces.  Two dominant 

phylogeographic hypotheses are that following deglaciation during the Pleistocene 

northern populations were founded by dispersal events out of southern refugial 

populations (i.e., the leading edge hypothesis) or that northern populations persisted as 

refugia throughout the glacial cycles.  However, the patterns expected under these 

hypotheses could potentially be the result of more recent anthropogenic actions that have 

caused a decrease in suitable habitat or resulted in the extirpation of populations.  We 

evaluated the likelihood of these alternative hypotheses in explaining extant patterns of 

differentiation at 20 microsatellite loci and a suite of morphological traits sampled from 

14 Agalinis decemloba Pennell (Orobanchaceae) populations located in eastern North 

America.  We found a significant negative correlation between allelic richness and 

observed heterozygosity with increasing latitude, which are expected under the leading 

edge phylogeographic hypothesis.  Neighbor-joining trees based on microsatellite and 

morphological variation were congruent with a cladogram representing the expected 

northward colonization route under the leading edge hypothesis.  Forward in time 

simulations of each hypothesis under a metapopulation model showed that it is highly 
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unlikely that northern populations persisted as refugia throughout the glacial cycles of the 

Pleistocene.  Indicative of strong genetic drift, isolation by distance at both 

morphological and genetic variation was only observed among relatively close 

populations.  We conclude that extant patterns of phenotypic and genetic differentiation 

within A. decemloba are primarily due to the establishment of populations from southern 

refugia, however, recent anthropogenic events may have also contributed to observed 

patterns of differentiation.    
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INTRODUCTION 

In addition to contemporary interactions among populations, patterns of 

differentiation may also be explained by the historical processes associated with the 

establishment of those populations (e.g., long distance dispersal colonization or 

vicariance events; Avise et al. 1987; Lomolino et al. 2006; Schaal et al. 1998).  The 

likelihood of those historical events, and the time over which they may have occurred, is 

strongly dependent on past environmental conditions.  Although glacial cycles during the 

Pleistocene affected species on a global scale, of particular importance to North 

American taxa are the environmental conditions associated with the Wisconsin glaciation 

(maximum at about 18,000 years before present (ybp)).  During that glacial episode, ice 

sheets reached as far south as 40º N (e.g., New York, NY) and tundra and boreal forest 

habitats extended even further south (Hewitt 2000; Lomolino et al. 2006).  As a result of 

these historical conditions that rendered many northern areas inhabitable, species or 

populations may have migrated relatively recently into northern regions where they 

currently exist (i.e., the leading edge hypothesis; Cwynar & Macdonald 1987; Hewitt 

1996; Soltis et al. 1997).  An alternative phylogeographic hypothesis is that isolated areas 

of suitable habitat remained in otherwise glaciated regions and allowed northern 

populations to persist throughout the glacial cycles of the Pleistocene (i.e., north-south 

recolonization hypothesis; Soltis et al. 1997).  

Given that different genetic signatures are expected to result from the leading edge 

and north-south recolonization hypotheses, molecular markers provide a means of 

determining which is most probable (Comes & Kadereit 1998; Cwynar & Macdonald 

1987; Hewitt 2000; Petit et al. 2002).  For example, following a south to north range 
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expansion (i.e., leading edge hypothesis), levels of genetic diversity and heterozygosity 

are expected to be greatest in the southern portion of a species’ range due to northern 

populations being established by the long distance dispersal of a few individuals.  As a 

consequence of northward dispersal events, phylogenetic reconstructions would show 

northern populations being successively sister to southern populations (Nason et al. 

2002).  In contrast, under the north-south recolonization hypothesis recent gene flow 

among populations that had been isolated during glaciation would result in genetic 

diversity not being correlated with latitude and populations would show a genetic 

signature similar to that of hybridization or secondary contact (e.g., Hewitt 2001).  The 

creation and persistence of these historical signatures within molecular variation is 

determined by the magnitude of ongoing genetic drift, gene flow, and natural selection 

(Comes & Kadereit 1998).   

In addition to historical processes, scenarios under which microevolutionary forces 

acting over a relatively short time (e.g., hundreds rather than thousands of years) may 

also explain observed patterns of genetic diversity and differentiation.  The rationale for 

these scenarios is that landscape changes in the eastern United States over the past 2-3 

centuries as a result of human activities are well documented (Foster et al. 2002; Hall et 

al. 2002; Russell et al. 1993) such that anthropogenic actions have likely had a substantial 

impact on the evolutionary dynamics and population genetic structure of species (e.g., 

Carroll & Fox 2008; e.g., Crutzen 2002).  If anthropogenic induced fragmentation and 

habitat destruction were more severe in the northern portions of a species’ range relative 

to the southern regions a similar genetic pattern to that of the leading-edge hypothesis 

could result.  We refer to this as the anthropogenic hypothesis.    
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Historical processes associated with each of the alternative hypotheses may also 

affect morphological variation in predictable ways (e.g., Cwynar & Macdonald 1987).  

The degree to which phenotypic and genetic patterns of differentiation are congruent with 

the same phylogeographic hypothesis and correlated with one another may be indicative 

of the relative roles of genetic drift, gene flow, and natural selection in determining levels 

of phenotypic differentiation (Streisfeld & Kohn 2005).  If variation at putatively neutral 

molecular markers and phenotypic traits both show similar degrees of isolation by 

distance then perhaps the latter is also determined by neutral processes (Gould & 

Johnston 1972).  Although evaluating whether phenotypic isolation by distance is the 

result of natural selection associated with a latitudinal cline is difficult (e.g., Mitchell-

Olds & Schmitt 2006), partial mantel tests among geographic, genetic, and morphological 

distances provide a potential method for differentiating between genetic drift and natural 

selection.  For example, after accounting for differentiation at neutral loci, a significant 

correlation between morphological differentiation and geographic distance may be 

indicative of a latitudinal environmental effect (e.g., Storz 2002).  Alternatively, if neutral 

molecular variation exhibits a pattern of isolation by distance, which is strongly 

discordant with patterns depicted based on phenotypic variation, there may be evidence 

for non-neutral processes acting on those quantitative traits.  However, there is much 

debate regarding the interpretation of the magnitude of differentiation between molecular 

(FST) and quantitative trait (QST) data assayed among wild populations due to the inability 

to control for an environmental effect on phenotypic variation (Hendry 2002; McKay & 

Latta 2002; Pujol et al. 2008).   
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Studies analyzing both phenotypic and neutral genetic variation can also quantify the 

degree of genetic and ecological exchangeability among different populations, which has 

been advocated as a means of prioritizing units for conservation (e.g., Crandall et al. 

2000).   Importantly, ecological exchangeability is rejected if differences among 

populations in phenotypic traits exist, regardless of whether those differences are the 

result of natural selection or genetic drift (Crandall et al. 2000).  Short-term declines in 

fitness due to inbreeding depression are often a greater conservation concern for the 

persistence of a species than long-term erosion of genetic diversity as a result of genetic 

drift (Amos & Balmford 2001); evaluating the plausibility of historical versus recent 

phylogeographic hypotheses can inform conservation managers which of those 

temporally dependent conservation issues is at play.  Furthermore, the conservation value 

of peripheral populations is often debated in that they should be preserved because they 

are usually genetically and morphological distinct (Channell & Lomolino 2000; Lesica & 

Allendorf 1995) or should not be a conservation priority because habitat at the margins of 

a species range may be sub-optimal and therefore conservation efforts should focus on 

preserving populations at the center of a species’ distribution (Griffith et al. 1989).   

Again, phylogeographic studies can help to determine whether in fact peripheral 

populations harbor unique genetic diversity and are worthy of conservation efforts 

(Eckert et al. 2008).    

Our primary objective was to determine which of three alternative phylogeographic 

hypotheses best explains the founding of 14 populations of Agalinis decemloba, which 

represents what has been historically identified as three separate species (i.e., A. acuta, A. 

decemloba, and A. tenella).  The conclusion reached from a comprehensive study 
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evaluating the evolutionary distinctiveness of these putative plant species was that the 

levels of differentiation among individuals best represent those found within a single 

species; the most parsimonious intraspecific taxonomic alignment is that there are two 

subspecies (Pettengill and Neel, in prep.).  One subspecies, Agalinis decemloba ssp. 

tenella, includes individuals that were historically known as Agalinis tenella.  The other 

subspecies is Agalinis decemloba ssp. decemloba that includes individuals previously 

ascribed to A. acuta and A. decemloba.  Agalinis acuta is currently listed as federally 

endangered under the Endangered Species Act (ESA; 1973); it was listed in 1987 due to 

conversion of its grassland habitat to agricultural, residential, industrial, and commercial 

development; destruction of habitat was also cited as the most serious threat to the 

persistence of the species (U. S. Fish and Wildlife Service 1988).  Based on those reasons 

for listing the species, it is particularly relevant to differentiate between the 

anthropogenic and more historical phylogeographic hypotheses in explaining extant 

patterns of genetic diversity. 

Although chloroplast DNA (cpDNA) loci have been the dominant markers in plant 

phylogeographic studies (Comes & Kadereit 1998), in this study we use microsatellite 

loci because even the most variable regions within the chloroplast genome lack sufficient 

variation to discern intraspecific relationships within Agalinis species (Pettengill & Neel 

2008).  To differentiate among the alternative hypotheses we determined which 

populations had high genetic diversity and, therefore, represent refugial populations.  We 

also tested for congruence between cladograms based on variation at microsatellite loci 

and phenotypic traits with a cladogram representing the leading edge hypothesis (e.g., 

Nason et al. 2002).  We conducted forward in time simulations of the leading edge, 
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recolonization, and anthropogenic hypotheses to help determine the most likely 

phylogeographic scenario responsible for the patterns we observed.  Furthermore, to 

determine whether the observed levels of divergence are the product of historical rather 

than contemporaneous events, we conducted analyses capable of detecting recent 

evolutionary events (i.e., migration and/or population bottlenecks).  We also investigated 

the congruence between patterns at microsatellite loci and morphological traits as a 

means to distinguish between neutral and adaptive processes in explaining phenotypic 

differences.   

MATERIALS AND METHODS 

Study system 

Agalinis decemloba is a fall blooming annual species where subspecies decemloba is 

native to eastern North America and found on the coastal plain in eastern Massachusetts; 

Rhode Island; Connecticut; and New York; the piedmont in Maryland; southern Virginia; 

and central North Carolina (Fig. 4.1).  Agalinis decemloba ssp. tenella is native to the 

southeastern United States (e.g., South Carolina, Georgia, and Florida) (Fig. 4.1).  The 

species is found in sandplain grassland habitats and in openings in pine–oak forest on 

nutrient poor soils (e.g., glacial outwash or serpentine).  Large fluctuations in population 

size have been documented; censuses in the two naturally occurring populations on Cape 

Cod between 1980 and 2000 ranged from 1 to 4253 plants at one site and from 0 to 3674 

plants at the other (Neel & Somers 2001).  A. decemloba lacks an obvious mechanism for 

long distance dispersal in that seeds are primarily gravity dispersed.  The primary 

pollinators documented among northeastern populations are Bumble Bees (i.e., Bombus 

sp.); other pollinators include members of the Syrphidae (Order Diptera) (Neel 2002).  
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The degree of self-compatibility within the species is extremely high with 97% of selfed 

flowers setting fruit, however, fruits resulting from selfed flowers exhibited a 17-20% 

reduction in seed set (Neel 2002).  Geitonogamy (i.e., the transfer of pollen to different 

flowers on the same individual) and autonomous selfing late in anthesis as corollas 

dehisce (i.e., ‘corolla dragging;’ Dole 1990) are likely mechanisms through which selfing 

naturally occurs. 

DNA extraction and microsatellite genotyping 

 Tissue was collected from 386 individuals representing 14 populations during the fall 

blooming seasons of 2005-2007 (Table 4.1 & Fig. 4.1).  Where possible, we sampled 30 

individuals per population and values less than that reflect the total number of individuals 

we could locate (Table 4.1).  Total genomic DNA from all samples was isolated from 

fresh or frozen (-80°C) leaves and flower buds by grinding 50-100 mg of tissue to 

powder in liquid nitrogen with a mortar and pestle, and then using GenElute Plant 

Genomic DNA Kits (Sigma) or QIAGEN DNEasy Kits (QIAGEN) following 

manufacturer instructions.  Extractions were also carried out on a QIAGEN BioSprint 96 

robotic workstation using QIAGEN’s BioSprint 96 DNA Plant Kit.   

 All samples were assayed for variation at 20 microsatellite loci.  The development, 

characterization, and amplification protocol of these loci are described in Appendix B 

(Pettengill et al. 2009).   

Morphological measurements  

We also measured 61 morphological traits per individual (Appendix C).  The traits 

included those related to the size of the plant, vegetative features such as leaf length, and 

a suite of floral characters that likely affect pollination.  Because we collected throughout 
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the season, not all individuals were in bloom and some samples for which tissue could be 

acquired for molecular analyses were not assayed for all morphological characteristics.  

For comparisons with genetic differentiation we would have preferred to conduct 

common garden experiments to control for environmental effects, however, due to 

difficulties in growing a sufficient number of individuals in a controlled environment of 

what was historically known as A. acuta (pers. obs.; Brumback & Kelley 1990), we are 

limited to inferences made based on phenotypic traits assayed in the wild. 

Genetic diversity analysis  

 For each population we calculated the proportion of polymorphic loci (P), number of 

alleles (A), number of private alleles (AP), and the observed (Ho) and expected (He) 

heterozygosity using the program POPGENE v1.32 (Yeh et al. 1997); allelic richness 

(AR) was estimated in FSTATv2.9.3.2 (Goudet 1995) using a rarefaction method to 

account for differences in sample size.  The inbreeding coefficient (RIS) and pairwise RST 

values were estimated with GENEPOP v4.0 (Raymond & Rousset 1995).  Pairwise 

estimates of Jost’s DEST were also calculated using the program SMOGD (Software for 

the Measurement of Genetic Diversity; Crawford submitted).  Jost’s DEST is argued to be 

a more accurate measure of population differentiation than those used previously (e.g., 

GST and FST) in that it does not produce erroneous results that imply low levels of 

differentiation among populations with few or no alleles in common or underestimate the 

degree of differentiation when hypervariable loci (e.g., microsatellites) are used (Heller & 

Siegismund 2009; Jost 2008).     

We used the program DISPAN (Ota 1993) to construct neighbor-joining trees 

(Saitou & Nei 1987) based on Da distances (Nei et al. 1983) among the 14 populations.  
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Significance of the relationships depicted on the topology was assessed through 1000 

bootstrap replicates conducted in DISPAN where a locus was the unit resampled with 

replacement.   

Morphological analyses 

 To avoid biasing our conclusions by analyzing highly correlated morphological 

traits, we identified pairs of traits that had an R2 > 0.6; of those two traits, the one with 

the greater sum of R2 values across the other traits was removed.  From this procedure, 

we identified 44 morphological characters that were relatively independent of one 

another.  To provide a measure of the distance between populations in multivariate space, 

we also calculated squared Mahalanobis distances using the General Discriminant 

Analysis procedure in STATISTICA v6.1 (Statsoft 2004).  A phenogram based on the 

pairwise Mahalanobis distances between populations was constructed in MEGAv4.0 

(Tamura et al. 2007) using the UPGMA clustering algorithm (Sokal & Michener 1958).   

 To provide a measure of phenotypic variation that could be compared with measures 

of genetic differentiation (e.g., RST), we first performed two-way ANOVAs among all 

pairs of populations (population was a fixed factor) for each of the 44 morphological 

traits to obtain within and among population variance components of phenotypic 

differentiation.  We then calculated the average of the within (σw
2) and between (σb

2) 

population variance components for all 44 traits, which were used to estimate PST as 

σb
2/(σb

2 + 2σw
2) (e.g., Saether et al. 2007; Storz 2002).  PST is a measure of phenotypic 

differentiation that can be interpreted as an analog of RST assuming that populations are in 

migration drift-equilibrium and that phenotypic differentiation is due to additive genetic 

effects (Lynch & Walsh 1998; Spitze 1993).  Because we did not control for the effect of 
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environment on quantitative traits, we refer to this measure of differentiation as PST (e.g., 

Pujol et al. 2008) rather than QST (Lynch & Walsh 1998; Spitze 1993).  In estimating PST, 

we used two times the observed variance within populations as the measure of within 

population phenotypic variance, which corresponds to a narrow sense heritability of 0.5. 

After accounting for the divergence due to drift (i.e., the level of differentiation 

inferred with microsatellite loci), the degree to which phenotypic divergence is correlated 

with geographic distance may provide an indirect estimate of the potential effects of a 

latitudinal gradient on phenotypic variation.  We used the program Le Progiciel R 

(Legendre & Vaudor 1991) to conduct a partial Mantel test (Smouse et al. 1986) among 

the three different matrices (i.e., differentiation based on PST (P), genetic differentiation 

based on RST (G), and geographic distance (D)).  Specifically, we calculated the 

correlation between a matrix of the residuals, P’, from regressing P on G, and geographic 

distances D.  The correlation was deemed significant if our observed correlation was 

greater than 95% of those calculated from 9,999 permutations. 

Phylogeographic analyses 

We conducted regression analyses of AR and He on the latitude of each population to 

determine the statistical support for the expectations under the leading-edge hypothesis 

that higher levels of genetic diversity would be present in southern populations than more 

northern populations. 

 We used Mantel tests, performed using GENEPOPv4.0, to determine if pairwise 

genetic differentiation (RST) or pairwise phenotypic differentiation (PST) was positively 

correlated with geographic proximity calculated as the natural log of Euclidean distance 

in kilometers among populations (i.e., isolation by distance).  We also tested the 



175 
 

 

significance of the correlation between those two measures of differentiation.  

Significance was assessed through 10,000 permutations.  To better understand the scale 

over which either genetic or morphological differentiation were correlated with 

geographic distance, we used the program GenAlExv6.0 (Peakall & Smouse 2006) to 

calculate correlation coefficients at 7 distance classes representing 250km increments 

according to the method described in Smouse and Peakall (1999).  The minimum and 

maximum number of pairs that fell into each distance class was 5 and 23, respectively; 

the mean was 13 pairs.  Significance was based on 9,999 permutations.   

To explore the congruence of relationships based on Da distances and Mahalanobis 

distances with those expected under the range expansion hypothesis, we used MacClade 

v4.06 (Maddison & Maddison 2001) to construct a cladogram representing one possible  

topology expected under that hypothesis (e.g., Nason et al. 2002).  The southern 

populations in Georgia and South Carolina constituted a single clade and northern 

populations were successively nested within one another reflecting sequential 

colonization (Fig. 4.1).  We then used the program GENETREE v1.3.0 (Page 1998) to 

calculate a measure of discordance (i.e., the number of extinct and unsampled lineages or 

deletion and duplication events necessary to reconcile two topologies) between the 

hypothetical cladogram and each of our observed topologies based on Da and 

Mahalanobis distances.  Significance was determined through comparing our observed 

measure of discordance to the distribution of discordance values associated with 10,000 

randomly generated cladograms.  Significance was inferred if no more than 50 

comparisons between the randomized topologies and our observed topologies had 

discordance values less than our observed value (α = 0.05) (e.g., Nason et al. 2002).  
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To determine the extent to which relatively recent events may be responsible for the 

observed patterns of diversity and population differentiation we tested for recent 

bottlenecks and migration events.  We used the program BOTTLENECK v1.2.02 (Piry et 

al. 1999) to determine whether populations had recently experienced a population 

bottleneck.  Tests were carried out under the two-phased mutational model, which is 

recommended for microsatellite loci (BOTTLENECK documentation) and the one-tailed 

(for a heterozygote excess) Wilcoxon-sign rank test (α = 0.05 based on 1,000 

permutations).  Second, we used the program GENECLASS v2.0 (Piry et al. 2004) to 

identify whether individuals represent recent migrants into the populations from which 

they were sampled.  Detection of first generation migrants was based on the Bayesian 

method of Rannala and Mountain (1997; Soltis et al. 1997) and using the Λ statistic 

recommended in Paetkau et al. (2004).  Significance was assessed through the resampling 

algorithm of Paetkau et al. (2004), the simulation of 10,000 genotypes, and at α = 0.01 

(i.e., the null hypothesis that an individual germinated in the population from which it 

was sampled is rejected if the Λ for that individual is greater than 99% of the distribution 

of simulated genotypes).  

Forward in time simulations 

 To help determine the most likely scenario responsible for our observed patterns of 

genetic diversity, we conducted forward in time simulations of the three alternative 

phylogeographic hypotheses (leading-edge, recolonization, and anthropogenic) using the 

program quantiNemo (Neuenschwander et al. 2008).  We employed a metapopulation 

model in which the total number of patches was 14.  Patches were arranged such that 

migrants could only disperse to the two neighboring patches (i.e., 1-dimensional stepping 
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stone).  The parameter settings were chosen to generally represent those expected for A. 

decemloba.  The number of offspring was determined by a logistic growth rate of 0.5-2.  

The dispersal rate was set to 1.0-3 migrants/generation and reflective dispersal boundaries 

were enforced such that dispersers were not lost within border patches if they dispersed in 

the opposite direction of the one neighboring patch.  The breeding model was set so 

individuals were hermaphroditic and the proportion of offspring created through selfing 

was 0.4.  We simulated 20 microsatellite loci that could have a maximum of 20 alleles 

and that mutated according to the K-allele model at a rate of 1.0-4.  At the onset of the 

simulations, occupied patches were set to be maximally polymorphic, which is consistent 

with the idea that ancestral populations should be centers of high diversity (e.g., Hewitt 

2000).   

To simulate the leading edge hypothesis a single southern border patch was occupied 

and the 13 other patches were empty; only the 1st and 12th patches were initially occupied 

under the recolonization hypothesis.  Each of these two simulations were run for 12,000 

generations and the carrying capacity was 500 within all patches, which is a reasonable 

estimate based on documented census sizes within natural populations of A. decemloba 

(Neel & Somers 2001).  Although A. decemloba is an annual, we chose 12,000 

generations because populations likely have a seed bank, which increases the generation 

time.  For the anthropogenic hypothesis, all populations were occupied and simulations 

were run for 5,000 generations.  To model recent anthropogenic influences on habitat, 

during the final 200 generations the dispersal rate decreased to 1.0-4, which represented 

decreasing the likelihood of migration among existing populations.  There was also a 

linear reduction in population size such that the smallest populations had a carrying 
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capacity of 45 individuals.  Based on exploratory analyses, the initial 4,800 generations 

ensured that mutation-drift equilibrium had been established.     

RESULTS 

Population level polymorphism and differentiation 

The proportion of polymorphic loci within each population ranged from 0.10 within 

MDNY to 1.0 in both GCGA and BCGA; the mean proportion of polymorphic loci was 

0.75 (Table 4.1).  The number of alleles, A, harbored within each population averaged 

88.8; levels of allelic richness when corrected for differences in sample size, AR, were 

low and averaged 2.52.  The southern populations in South Carolina and Georgia showed 

the highest levels of allelic diversity and MDNY possessed only 27 and 1.11 alleles for A 

and AR, respectively (Table 4.1).  On average each population possessed an appreciable 

number of private alleles ( 8.11=PA ), but the four most southern populations are 

primarily responsible for this value given that more northern populations had values 

closer to 4; the BVMA population had only one private allele and MDNY harbored no 

private alleles 

Observed levels of heterozygosity were consistently lower than expected 

heterozygosity with some populations consisting of individuals that were nearly 

homozygous across all loci.  For example, Ho = 0.007, 0.039, 0.047, and 0.064 for 

MDNY, SHNY, SDMD, and BVMA, respectively; estimates of He for all those 

populations was an order of magnitude greater (Table 4.1).  In contrast, southern 

populations had Ho values closer to 0.5 and had no large discrepancy between Ho and He.  

As expected based on the levels of heterozygosity, the inbreeding coefficient, RIS, was 
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extremely high for both MDNY (RIS = 0.997) and SHNY (RIS = 0.831).  The populations 

in South Carolina and Georgia had much lower RIS values (Table 4.1).   

Estimates of RST were similar to the levels of differentiation based on DEST (averages 

across all pairs of populations were 0.628 and 0.664, respectively).  Both measures 

suggest a strong level of population structure.  However, the two methods differ as to 

which populations are most similar and different from one another.  RST was smallest 

between LCGA and GCGA (RST = 0.116) but DEST was smallest between BCGA and 

GCGA (DEST = 0.128).  Rst was largest between PCCT and CCSC (RST = 0.925) and the 

DEST was greatest between MDNY and BVMA (DEST = 0.844) (Table 4.2).   

 Based on the morphological traits, squared Mahalanobis distances ranged from 15.59 

between PCCT and EPRI to 255.03 PCCT and CCSC; the mean value was 96.02 (Table 

4.3).  However, CCSC is quite different from all populations.  Tests for significant 

differences in Squared Mahalanobis distances were highly significant (P << 0.05) among 

all populations.   

 The amount of phenotypic variance within populations was significantly less than 

that among populations for 62% of the 91 pairwise comparisons across all 44 

morphological traits.  Variance for height, pedicel, pedicel to bract ratio, and corolla 

throat width were significantly greater among than within populations for over 70 

pairwise comparisons (i.e., >75%; P <0.05).  Calyx diameter width showed the least 

amount of differentiation between populations in that only 24 of the 91 (26%) 

comparisons were significant (P <0.05).  After averaging all pairwise variance 

components, the average pairwise estimate of PST was 0.651; PST was lowest between 
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BVMA and SMNY (PST = 0.412) and greatest between LCGA and EPRI (PST = 0.871) 

(Table 4.2).   

Phylogeographic results 

We found a significant negative relationship between latitude and AR and He 

(P<<0.05) (Fig. 4.2).  No populations showed evidence of a statistically significant 

excess of heterozygosity, which would be present had the populations recently 

experienced a population bottleneck (Luikart et al. 1998).  The results from 

GENECLASS v2.0 showed no statistical support for any of the samples being recent 

immigrants into the population from which they were sampled.   

 Based on the Mantel test, there was a positive and statistically significant correlation 

(r2
 = 0.151, P < <0.01) between pairwise RST values and geographic distances (Fig. 4.3); 

the relationship between PST and geographic distances was also significant but stronger 

than that observed based on genetic differentiation (r2
 = 0.416, P <<0.01; Fig. 4.4).  

However, the spatial autocorrelation tests indicate that the overall correlation of both PST 

and RST with geographic distance is predominantly due to relatively geographically close 

populations.  Pairwise RST values were only significant for populations less than 250km 

or between 250-500km apart; pairwise PST values were only significantly correlated with 

geographic distances for populations less than 250km apart (P <0.05).  PST and RST were 

also significantly positively correlated with one another (r2
 = 0.114; P <0.01; Fig. 4.3).  

After removing the degree to which PST and RST were correlated (i.e., the degree of 

differentiation based on putatively neutral loci), the correlation between the residuals of 

PST and geographic distance was still positive and statistically significant (r2 = 0.420; P 

<< 0.01). 
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Our observed measure of discordance between the neighbor-joining tree based on Da 

distances and the hypothetical cladogram representing the leading edge hypothesis was 

21 (i.e., 4 deletion and 17 insertion events were necessary for the two cladograms to be 

identical; Fig. 4.1).  The mean level of discordance between the topology based on Da 

distances and 10,000 randomly generated topologies, which can be interpreted as 10,000 

randomly generated phylogeographic hypotheses, was 47.96 and the minimum value was 

25 and the maximum was 73; there is statistically significant support that the topology 

based on Da distances is concordant with a topology reflecting our phylogeographic 

hypothesis in that no random topologies had discordance values less than our observed 

value (P < 0.001).  The level of discordance between the topology based on squared 

Mahalanobis distances and the hypothetical topology was also significant in that only 10 

of the 10,000 random topologies had discordance values less than our observed value of 

38 additional events ( 78.56=x , min = 31 and max = 87; P < 0.01).   

Simulations 

 The simulation of the leading edge hypothesis showed the expected decrease in 

allelic diversity and observed heterozygosity as the distance from the initial occupied 

patch (e.g., refugial population) increased (Fig. 4.4), which was most similar to our 

observed results.  The observed heterozygosities of the initial patch and neighboring 

patches were greatest than the other patches but smaller than those we observed among 

the southern populations, ~0.5 and 0.6, respectively; the farthest populations from the 

initial occupied patch had levels of heterozygosity similar to those found in the northern 

populations of A. decemloba (i.e., < 0.2; Fig. 4.4).  Levels of allelic diversity under the 

leading edge scenario were also similar to observed values in A. decemloba (Fig. 4.4).   
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The results of the simulations of the anthropogenic hypothesis were also similar to 

our observed results.  A population bottleneck for the final 200 generations of the 

simulation resulted in decreased Ho and allelic diversity in the ‘northern’ patches (Fig. 

4.4).  Based on the parameters we used, this implies that 200 generations of increased 

isolation and bottlenecking of populations that were previously large and founded from a 

large number of individuals is a sufficient amount of time for a pattern indicative of a 

range expansion to arise.     

The results of the recolonization simulation showed the expected pattern of little 

difference in allelic diversity and heterozygosity among border patches (Fig. 4.4).  

Although not substantially lower, the projected reduction in those genetic measures 

among populations in the middle of the distribution was observed (Fig. 4.4).  

Consequently, the patterns resulting from this simulation are quite different than those we 

observed among A. decemloba populations.         

DISCUSSION 

 Historical range expansions and contractions as a result of glacial cycles during the 

Pleistocene have likely had a profound effect on the geographic distribution and patterns 

of differentiation among conspecific populations (Hewitt 2000).  Consequently, in 

addition to contemporaneous events, the process by which populations were established 

may be a prevailing explanation for extant patterns of relatedness.  Based on the analysis 

of 20 microsatellite loci and morphological traits, we found that the distribution and 

patterns of relatedness among of 14 populations of Agalinis decemloba closely matched 

the expectations under a unidirectional range expansion (i.e., northern emigration events 

out of southern refugial populations).  The observed patterns may have also arisen as a 
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result of recent anthropogenic events that caused the extirpation of populations and 

population genetic bottlenecks.  We found that it is highly unlikely that A. decemloba 

populations existed in northern latitudes during the Wisconsin glaciations (i.e., north-

south recolonization hypothesis; Soltis et al. 1997).   

In accordance with the leading-edge phylogeographic hypothesis, we found that 

allelic diversity and heterozygosity within populations of A. decemloba decreased with 

increasing latitude (Fig. 4.2).  The neighbor-joining trees inferred with Da distances and 

phenetic similarity were statistically compatible with the cladogram depicting the 

colonization route expected under the leading edge hypothesis (Fig. 4.1).  There was 

evidence that morphological variation, in addition to genetic diversity, decreased with 

increasing latitude (i.e., a negative relationship between the average standard error across 

all morphological traits within each population and latitude (r2 = 0.163)); however, this 

relationship was not significant (P = 0.152).   

Within eastern North America, the southeast has been characterized as having a high 

number of endemic species and, consequently, likely represents a refugium for species 

during periods when more northern regions were inhabitable (Estill & Cruzan 2001; 

Sorrie & Weakley 2001).  In addition to our results, other studies support this hypothesis.  

For example, allozyme variation in northern populations of Asclepias exaltata 

(Asclepiadaceae) was significantly less than that found in the southern putatively refugial 

populations in southern Appalachian mountains (Broyles 1998).  A comparative study of 

11 species of Polygonella (Polygonaceae) found the unexpected pattern of higher levels 

of allozyme diversity within the more narrowly distributed southern species relative to 

the species in the north with larger geographic ranges (Lewis & Crawford 1995).  As a 
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means of resolving this paradox, the authors state that northern species were recently 

established as a result of dispersal out of and subsequent reproductive isolation from 

southern species located in Florida; establishment from only a few individuals explains 

the unexpected pattern of lower allelic diversity within the more widespread Polygonella 

species (Lewis & Crawford 1995).  However, northern populations of the herbaceous 

perennial Trillium grandiflorum (Melanthiaceae) did not show a significant decrease in 

allozyme diversity relative southern populations (Griffin & Barrett 2004).  The authors 

do not suggest that northern populations existed during glaciations but that larger 

effective population sizes in northern populations maintained high levels of diversity 

(Griffin & Barrett 2004).    

Alternatively, studies of species in eastern North America have found that northern 

populations may have persisted throughout the last glacial maximum in putatively 

glaciated regions.  For example, northern populations of both the red maple (Acer 

rubrum) and beech (Fagus granifolia) tree species in eastern North America do not have 

substantially reduced haplotype diversity relative to southern populations (McLachlan et 

al. 2005).  Two distinct northern and southern cpDNA haplotypes are also found within 

Liriodendron tulipifera leading to the conclusion that two geographically isolated refugial 

populations existed during the glacial cycles of the Pleistocene (Sewell et al. 1996).  

However, there is also evidence that tree species (e.g., spruce Picea spp.) were forced out 

of northern regions during the last glacial advance and subsequently migrated north 

following deglaciation events (Davis & Shaw 2001). 
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Recent anthropogenic effects 

Another alternative phylogeographic hypothesis we evaluated invokes more 

contemporaneous events (i.e., the anthropogenic hypotheses) and begins with the 

assumption that historically a greater number of populations existed and that populations 

were larger than that of today.  Fragmentation or extirpation events resulting from 

anthropogenic activity over the past 200-300 years would have increased the isolation 

and reduced population sizes causing a corresponding increase in population 

differentiation and decrease in allelic diversity.  The putative extirpation of multiple 

populations (e.g., the type locality from Washington DC and Pennsylvania populations of 

Agalinis decemloba; loss of the A. acuta type locality from Martha’s Vineyard, MA; and 

the fact that 52 populations were known historically but only 12 natural occurrences 

existed upon listing A. acuta (Suckling 2006)) provides strong evidence that fewer 

northern populations exist today than were present during the early 20th century.  

Additionally, the height of deforestation of many parts of the northeastern United States 

occurred during the early to late 1800s where approximately 80% of land was unforrested 

(Foster 1992; Motzkin et al. 1999).  Estimates of the degree of loss and degradation of 

habitat show that in addition to California, the Southern, Midwestern, and Northeastern 

regions all have been extensively impacted (Noss et al. 1995); over the past few decades 

the southern United States also has had the highest rate of conversion of rural lands to 

urban uses (Alig et al. 2004).   

Our own experience trying to locate populations provides evidence that, in addition 

to the northeast, habitat loss and fragmentation is frequent in southeast.  For example, 

across multiple years of sampling, we were not able to locate 22 of 30 historically 
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documented populations visited in Virginia, North Carolina, South Carolina and Georgia.  

Seasonal fluctuations in flowering time and a severe drought during 2007 suggest that 

populations may still exist and could explain why we could not locate some populations.  

We also found that many sites had either been converted to commercial or residential 

properties, been subjected to disturbances associated with construction for the widening 

of a road, or the habitat had transitioned to a later successional stage, all of which would 

facilitate the extirpation of those populations.  However, based on personal observations, 

northern populations in New England are more frequently found in small areas of suitable 

habitat that likely restricts population sizes relative to more southern populations.  As a 

result, there is evidence that populations have been extirpated throughout the species 

range but smaller population sizes are more frequent in the northern populations relative 

to those in the south.     

Despite the evidence that anthropogenic activities have impacted A. decemloba, 

many empirical studies have found that there has been an insufficient amount of time 

since anthropogenically induced changes to the landscape occurred for the manifestation 

of the expected genetic consequences.  A study of the endangered grassland species, 

Globularia bisnagarica, using AFLP data found little evidence that the increased 

fragmentation and reduction of Belgian grasslands since the late 16th century has 

significantly eroded genetic similarity or allelic diversity likely (Honnay et al. 2007).  

Based on variation at inter-simple sequence repeat (ISSR) markers, a study of Viola 

pubescens found that increased urbanization over the last century had not substantially 

reduced genetic diversity (Culley et al. 2007).  The timescale over which 

anthropogenicaly induced deforestation occurred within Madagascar (i.e., over the past 
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200-300 years), was also found to be insufficient to explain the levels of diversity and 

connectivity observed among populations of the tree species Dalbergia monticola 

(Andrianoelina et al. 2009).  However, a generation time of approximately 50 years for 

Dalbergia monticola makes it less likely to exhibit patterns associated with relatively 

recent fragmentation and bottlenecking events.  A phylogeographic investigation of 

Trillium reliquum also found that recent habitat fragmentation due to anthropogenic 

development would have been too recent, and that populations would therefore still 

maintain a signature associated with shared evolutionary history (Gonzales & Hamrick 

2005).   

In contrast, the results of our simulations show that relatively recent anthropogenic 

events can in fact have a significant effect on population genetic patterns.  Simulated 

populations subjected to a reduction in size for 200 generations had low levels of allelic 

diversity and heterozygosity that closely resembled the leading-edge hypothesis and our 

observed patterns (Fig. 4.4).  However, the magnitude of change between the southern 

and northern populations of A. decemloba in observed heterozygosity is substantially 

greater than observed among the different simulations.  A potential explanation for this 

discrepancy is that southern A. decemloba populations, in addition to being larger, also 

outcross more frequently than northern populations; we did not vary selfing rate within 

the simulations.  Assuming that northern populations of A. decemloba are 

disproportionately affected by human activities, results from the simulation of the 

anthropogenic hypothesis show that recent events can produce a pattern indicative of a 

unidirectional range expansion.  Consequently, it is likely that the magnitude of 

differences we observed may have primarily resulted from the establishment of 
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populations, but those differences have also been facilitated by evolutionary processes 

acting after establishment (e.g., Broyles 1998; e.g., Griffin & Barrett 2004). 

Dispersal dynamics 

An important component to the range expansion hypothesis is determining the 

mechanism responsible for the establishment of northern populations.  Reid’s paradox 

states that a species’ assumed dispersal potential is often insufficient to account for the 

rapid range expansion following deglaciation and/or geographic distances found among 

plant populations in general (Clark et al. 1998; Reid 1899).  Since Reid’s study on the 

distribution of Oaks in Britain (Reid 1899) many other studies have also documented the 

existence of a paradox.  For example, a study investigating Daviesia triflora 

(Papilionaceae) found that the primary dispersal mechanism of ants could not account for 

source-sink dynamics observed among populations in that the average dispersal distance 

of ants was two to three orders of magnitude too short (He et al. 2009).  Another study on 

the ant-dispersed Asarum canadense (Aristolochiacae) also found that the distribution of 

populations could not be explained by the putative primary dispersal mechanism (Cain et 

al. 1998).  As such, those two studies suggest that long distance dispersal events through 

either unknown or less likely mechanisms (e.g., rare wind or animal mediated dispersal) 

are necessary to resolve the observed paradox.  Simulation studies show that Reid’s 

paradox can also be resolved by increasing the probability of long distance dispersal 

events through modeling a dispersal kernel with longer tails (Ibrahim et al. 1996).  

Dispersal potential has also been modeled, and empirically validated, to be a dynamic 

process in that the availability of suitable habitat associated with, for example, the 
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receding glaciers could drive the evolution of increased dispersal distance (e.g., spatial 

selection; Phillips et al. 2008). 

Seeds of A. decemloba are primarily gravity dispersed and thought to stay within a 

3.5-meter radius of the parental plant, which also reflects a minimum potential annual 

dispersal distance (NatureServe 2007).  Since the recession of the glaciers, the species 

could have only have dispersed tens of kilometers; thus, we face a paradox given the 

geographic range among populations relative to the dispersal potential of A. decemloba.  

Wind, which is more plausible for taller trees than low-growing woodland or grassland 

species (Pakeman 2001), is highly unlikely to have served as a long-distance dispersal 

mechanisms for A. decemloba seeds.  Endozoochory, the ingestion of seeds and 

subsequent dispersal after passing through the gut of an animal, provides an additional 

mechanism that could facilitate the long distance dispersal of low-growing plant species.  

It is documented that rabbits can explain the recolonization of disturbed grassland habitat 

(Pakeman et al. 1999); deer have also been shown to disperse seeds of Trillium 

grandiflorum > 3km in the northeastern United States (Vellend et al. 2003).  Given that 

grazing by small animals such as meadow voles (Microtus pennsylvanica) or rabbits 

(e.g., Sylvilagus spp.) has been observed among populations of A. decemloba 

(NatureServe 2007; Neel 2002), endozoochory represents a probable mechanism through 

which post-glacial long distance dispersal events could have occurred.  

Molecular and phenotypic evolution 

Statements about natural selection are increasingly being made based on the 

magnitude of differences observed between phenotypic traits (PST, which is analogous to 

QST) and neutral genetic markers (FST) assayed from wild populations (Gay et al. 2009; 
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Raeymaekers et al. 2007; Saether et al. 2007; Storz 2002).  However, due to the inability 

to differentiate between differences in phenotypic traits that are due to additive genetic 

variance versus environmentally induced phenotypic plasticity (e.g., Pujol et al. 2008), 

we agree that caution must be exercised in making statements about natural selection 

when morphological traits are assayed among natural populations.  Our average estimates 

of phenotypic and genetic differentiation were similar (i.e., 0.628 and 0.615, respectively; 

Table 4.2), which could be interpreted to mean that neutral processes are primarily 

responsible for divergence at phenotypic traits (e.g., Hendry 2002).  However, rather than 

focusing on the magnitude of differences, we discuss the spatial autocorrelation of the 

phenotypic and genetic differences and the correlation between them as a means to make 

statements about the relative roles of genetic drift and natural selection.     

Differentiation based on both microsatellite and morphological variation showed a 

pattern indicative of isolation by distance (Fig. 4.3).  Given the putative neutrality of the 

microsatellite loci, this pattern is likely the result of restricted gene flow and the influence 

of genetic drift, which have facilitated divergence (Slatkin 1993).  However, the 

coefficient of determination is relatively low between differentiation at neutral genetic 

markers and geographic distance (r2 = 0.151) and the correlation is only significant over a 

short distance (e.g., <500km) relative to the distribution of the populations; therefore,  

genetic drift is likely the dominant force and populations are not in migration-drift 

equilibrium (e.g., Hutchison & Templeton 1999).  The strength of the isolation by 

distance pattern observed with phenotypic traits was much stronger (r2 = 0.416), which 

could be the result of either neutral processes (e.g., Merila & Crnokrak 2001; e.g., 

Mitchell-Olds & Schmitt 2006) or an adaptive response as a result of a latitudinal 
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gradient (e.g., Claussen et al. 1940).  Examples of the latter include the legume 

Chamaecrista fasciculata, in which reciprocal transplant experiments of populations 

spanning a large latitudinal gradient in the central United States clearly showed that 

populations had adapted to their local environments (Etterson 2004a); populations at 

lower latitudes were also found to have lower heritabilities and, therefore, may be more 

susceptible to extirpation due to the inability to adapt to changing environments (Etterson 

2004b).  Latitudinal clines associated with adaptive differences have also been found 

among European populations of Arabidopsis thaliana and changes in flowering time have 

been identified as key drivers of diversification (Mitchell-Olds & Schmitt 2006).   

The partial Mantel test, which was employed as a means to differentiate between 

adaptive and neutral explanations for phenotypic differentiation, indicated that the strong 

correlation between PST and geographic distance remained after accounting for the degree 

of differentiation expected due to genetic drift (e.g., that observed based on RST).  Such a 

result has been interpreted as evidence for natural selection due to spatial differences in 

that a latitudinal cline causes local adaptation and subsequent greater phenotypic 

differentiation than that expected as a result of neutral processes (Storz 2002).  However, 

although the correlation between PST and RST may be significant, that relationship is 

relatively week (r2 = 0.114; Fig. 4.3) such that genetic differentiation is not a good 

indicator of phenotypic differentiation.  As a result there is evidence that the two are 

either not being controlled by the same evolutionary force or are influenced differently by 

the same force.  Because we did not control for environmental differences we are not able 

to distinguish between natural selection or phenotypic plasticity in explaining patterns of 

phenotypic differentiation.  Unfortunately, due to low germination rates in a common 
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garden environment, the additional studies necessary to adequately address the 

evolutionary forces responsible for the phenotypic pattern we observed among A. 

decemloba populations may not be possible.   

Conclusions 

This study is one of only a few that explicitly considers the influence of historical 

geologic and recent anthropogenic events on shaping extant patterns of diversity of 

herbaceous species with ranges spanning both glaciated and unglaciated regions of 

eastern North America (e.g., Griffin & Barrett 2004).  Although this investigation was 

enriched by analyzing morphological data, difficulties in differentiating between neutral 

processes and natural selection as explanations for the phenotypic differences we 

observed further illustrates the problems with sampling phenotypic variation in the wild 

(e.g., Pujol et al. 2008).  Given the degree of concordance between the expected patterns 

associated with the leading edge hypothesis and those observed through the analysis of 

molecular and phenotypic variation it appears that northward colonization events 

following deglaciation during the Pleistocene played a predominant role in shaping 

patterns of differentiation among extant populations of Agalinis decemloba.  In addition 

to historical processes, anthropogenically induced extirpations and decreases in 

population sizes may have contributed to the observed patterns and levels of genetic 

diversity, which suggests that recent human activities may be significantly altering the 

evolutionary dynamics of extant taxa.
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Table 4.1.25Population genetic characteristics of species and populations based on 20 microsatellite loci across 14 Agalinis 
populations. Collection locality; latitude and longitude; sample sizes, N and in parentheses the number of samples for which 
morphological data was acquired; proportion of polymorphic loci, P; number of alleles, A, NA; number of private alleles, AP; allelic 
richness as calculated in FSTAT using a rarefaction method, AR; observed (Ho) and expected (HE) heterozygosity; and, fixation index, 
RIS.   

Population Collection locality Latitude Longitude 
N 

(morphology) P A AR AP Ho He RIS
A. decemloba 
ssp. decemloba 

           

AACPEMA Barnstable Co., MA 41.687 -70.456 29 (14) 0.65 45 1.67 4 0.072 0.227 0.372 
AACBVMA Barnstable Co., MA 41.582 -70.527 29 (27) 0.7 45 1.58 1 0.064 0.191 0.528 
AACPCCT Windham Co., CT 41.687 -71.923 29 (30) 0.7 52 1.82 9 0.167 0.293 0.730 
AACEPRI Washington Co., RI 41.528 -71.577 24 (29) 0.85 70 2.30 5 0.165 0.414 0.630 
AACMDNY Suffolk Co., NY  41.052 -71.939 30 (14) 0.1 27 1.11 0 0.007 0.029 0.997 
AACSHNY Suffolk Co., NY 41.039 -71.927 24 (10) 0.45 31 1.21 4 0.039 0.062 0.831 
AACHPNY Nassau Co., NY 40.734 -73.586 31 (28) 0.65 47 1.85 5 0.137 0.295 0.669 
AACSDMD Baltimore Co., MD 39.417 -76.830 30 (30) 0.6 46 1.79 11 0.045 0.291 0.642 
ADEL1VA Lunenberg Co. VA 36.972 -78.358 24 (8) 0.95 80 2.55 9 0.168 0.490 0.569 
ADEWCNC Wake Co. NC 35.877 -78.766 33 (29) 0.9 87 2.42 7 0.237 0.398 0.525 
A. decemloba 
ssp. tenella            

ATECCSC Colleton Co. SC 32.934 -80.623 12 (12) 0.95 108 3.65 13 0.518 0.648 0.305 
ATELCGA Lowndes Co. GA 30.796 -83.381 30 (30) 0.95 230 4.56 50 0.579 0.709 0.184 
ATEGCGA Grady Co., GA 30.751 -84.086 30 (30) 1 207 4.54 25 0.523 0.739 0.247 
ATEBCGA Brooks Co, GA 30.713 -83.490 31 (6) 1 168 4.16 22 0.557 0.708 0.182 
Mean across populations   27.57 (21.21) 0.75 88. 8 2.52 11.8 0.234 0.392 0.529 
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Table 4.2.26Measures of pairwise differentiation among 14 populations of A. decemloba.  Populations are arranged in order of 
decreasing latitude; above and below the diagonal are PST and RST values, respectively.   
 

 Population 
 PCMA BVMA PCCT EPRI MDNY SHNY HPNY SDMD L1VA WCNC CCSC LCGA GCGA BCGA 

PCMA  0.439 0.555 0.590 0.505 0.451 0.612 0.616 0.521 0.634 0.704 0.801 0.777 0.715 
BVMA 0.397  0.635 0.518 0.564 0.411 0.630 0.629 0.488 0.736 0.740 0.829 0.821 0.681 
PCCT 0.526 0.541  0.459 0.658 0.528 0.683 0.778 0.565 0.783 0.742 0.834 0.796 0.649 
EPRI 0.519 0.547 0.660  0.624 0.552 0.571 0.725 0.521 0.785 0.810 0.871 0.823 0.689 

MDNY 0.648 0.679 0.869 0.454  0.587 0.558 0.549 0.608 0.582 0.663 0.723 0.733 0.638 
SHNY 0.602 0.638 0.713 0.538 0.516  0.581 0.623 0.441 0.599 0.645 0.759 0.766 0.661 
HPNY 0.502 0.565 0.514 0.509 0.540 0.525  0.623 0.663 0.754 0.686 0.825 0.774 0.677 
SDMD 0.839 0.842 0.831 0.736 0.894 0.848 0.754  0.654 0.584 0.670 0.707 0.766 0.603 
L1VA 0.372 0.220 0.283 0.596 0.637 0.454 0.367 0.620  0.635 0.687 0.748 0.727 0.669 
WCNC 0.573 0.684 0.657 0.236 0.439 0.555 0.371 0.734 0.503  0.713 0.668 0.719 0.589 
CCSC 0.893 0.915 0.925 0.596 0.888 0.846 0.812 0.897 0.796 0.584  0.721 0.719 0.518 
LCGA 0.804 0.840 0.831 0.398 0.677 0.703 0.722 0.833 0.740 0.410 0.340  0.497 0.444 
GCGA 0.795 0.845 0.837 0.376 0.703 0.728 0.704 0.835 0.748 0.353 0.262 0.116  0.429 
BCGA 0.830 0.874 0.872 0.501 0.799 0.802 0.750 0.857 0.779 0.458 0.304 0.274 0.352  
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 Figure 4.1.14Location of the 14 populations analyzed, A; fictional cladogram 
corresponding to the phylogeographic hypothesis being tested, B; the neighbor-joining 
tree based on Da distances calculated from 20 microsatellite loci (numbers represent 
percentage of 1000 bootstrap replicates a given clade was present and branches are in Da 
units), C; and a UPGMA phenogram based on squared Mahalanobis distances among 
populations. 
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Figure 4.2.15Regressions of genetic diversity on latitude for 14 populations of A. 
decemloba.  (A) allelic richness, AR;  (B) Hardy-Weinberg expected heterozygosity, He.  
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Figure 4.3.16(A) Patterns of isolation by distance based on genetic (RST) and phenotypic 
(PST) differentiation and the correlation between those two measures of differentiation 
(B). 
A. 

 

B. 
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Figure 4.4.17The observed results and those from each of the three alternative 
phylogeographic hypothesis.  Populations are ordered based on increasing latitude for the 
observed data or, in the case of simulations, with increasing distance from putative 
southern refugia. (A) Observed heterozygosity, Ho; and (B) allelic richness. 
A. 

 

B. 
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CHAPTER 5:  ASSESSING THE CONSERVATION IMPLICATIONS OF 

POPULATION GENETIC ANALYSES IN THE SELF-COMPATIBLE ANNUAL 

AGALINIS DECEMLOBA SSP. DECEMLOBA (OROBANCHACEAE) 

ABSTRACT 

The levels of diversity within and differentiation among populations are in large part 

determined by a species’ life-history characteristics.  For a self-compatible annual taxon 

with gravity dispersed seeds, the patterns of genetic diversity that are expected based on 

those life-history characteristics (e.g., low levels of allelic diversity among isolated 

populations) may also be indicative of an increased risk of extinction due to genetic 

factors.  Consequently, the expected correlation between population genetic parameters 

and fitness may not always hold true for those species which, if true, would have 

important conservation implications.  In this study, we conducted population genetic 

analyses based on 21 microsatellite loci to determine the extent to which genetic factors 

pose an extinction risk for the Agalinis decemloba ssp. decemloba (Orobanchaceae), 

which includes individuals that have been historically ascribed to the federally 

endangered species Agalinis acuta.  Of the 13 populations sampled, 6 exhibited 

extremely low levels of observed heterozygosity (< 0.09); the mean estimate of the 

population level inbreeding coefficient (RIS) was 0.615.  Selfing rates estimated with a 

Bayesian clustering method were also high and maximum-likelihood estimates of the 

pairwise relationships within populations revealed most individuals to be full-sibs.  

Populations are also highly differentiated from one another (DEST = 0.573; Θ = 0.565).  

Although the patterns we observed are expected based on the taxon’s life history 

characteristics (i.e., self-compatible annual with gravity dispersed seeds), a conservative 
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approach is to assume that those populations with the highest levels of homozygosity and 

inbreeding are likely suffering a reduction in fitness due to genetic factors.  However, the 

lack of gene flow and low levels of allelic diversity among all populations signify that a 

major conservation priority should be to protect all occurrences from the extinction risks 

associated with demographic and environmental stochasticity.  Empirical detection of 

seed augmentation and creation of de novo populations from various seed sources are 

also documented.   
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INTRODUCTION 

Based on the correlation between population genetic parameters and fitness, the 

analysis of molecular variation among individuals (e.g., differences in allele length at 

microsatellite loci) can provide an indirect measure of whether a species is facing an 

increased risk of extinction due to genetic factors (Frankham et al. 2002).  Such 

information is of particular use to conservation managers since it can be incorporated to 

increase the efficacy of management actions (e.g., Haig 1998).  However, the proposed 

utility of population genetic analyses for conservation is also controversial (e.g., 

Spielman et al. 2004); it has been argued that demographic and environmental 

stochasticity are likely to be of greater importance because they can drive a species to 

extinction before the negative effects associated with genetic factors can impact a species 

(Lande 1988).  The interpretation of population genetic analyses for the conservation of a 

species is also complicated by the correlation between life-history characteristics and 

specific patterns of genetic diversity that are often associated with a reduction in fitness 

(e.g., populations of self-compatible annual plant taxa often exhibit low allelic diversity 

and strong population differentiation; Nybom 2004).  Furthermore, the strength of the 

expected positive relationship between genetic diversity, population size, and fitness 

within plants likely varies depending on a species’ life-history characteristics (i.e., fitness 

and genetic variation were independent of one another in self-compatible species; Leimu 

et al. 2006).   

The risks that species may face because of genetic factors can be broadly 

summarized as short-term declines in fitness due to inbreeding depression and the long-

term erosion of genetic diversity as a result of genetic drift and consecutive bottlenecks 
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(Amos & Balmford 2001).  Inbreeding is of particular interest because when high there is 

the possibility that a species’ progeny may be experiencing a reduction in fitness due to 

the increased probability that recessively deleterious alleles will be present as 

homozygous genotypes (Charlesworth & Charlesworth 1999; Frankham 1995).  

Molecular markers can also be used to estimate the effective population size which, when 

low, genetic drift may be facilitating the loss of allelic diversity through increased rates 

of fixation(Amos & Balmford 2001), promote the fixation of selectively disadvantageous 

alleles (i.e., drift load; Whitlock 2000), and increase population differentiation (Kimura 

1983).  Low values of Ne and the lack of genetic diversity associated with such 

populations may also inhibit a species’ ability to withstand environmental fluctuations 

(Reed & Frankham 2003).  Given that habitat loss is the greatest threat to the persistence 

of most species (Wilcove et al. 1998), populations may frequently experience a reduction 

in populations size which is expected to increase inbreeding depression and genetic load 

(Frankham et al. 2002; Ingvarsson 2001; Petit et al. 1998; Young et al. 1996).  

Consequently, the ability to detect population bottlenecks through the analysis of 

molecular data (Luikart et al. 1998) may be a particular useful tool for conservation 

biologists. 

Despite the expectations regarding the relationship between genetic diversity and 

fitness, the patterns of genetic variation observed within a species are partially 

determined by its life history characteristics (i.e., breeding system, dispersal potential and 

lifespan).  Outcrossing plant species often have higher levels of genetic diversity and a 

smaller amount of population differentiation than selfing species; populations of species 

that have gravity dispersed seeds are more differentiated from one another than species 
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with wind dispersed seeds; annual species show higher levels of population 

differentiation than long-lived perennials (e.g., Hamrick & Godt 1996; Hamrick et al. 

1979; Nyborn & Bartish 2000).  Based on these generalities, within self-compatible 

annual taxa with gravity dispersed seeds the patterns of genetic diversity may also be 

similar to those that are often associated with an increased extinction risk as a result of 

genetic factors.  Selfing rates are also known to vary depending on pollinator availability 

and population size , which may have negative fitness consequences (e.g., Herlihy & 

Eckert 2002) or represent an evolved reproductive assurance mechanism that does not 

(Jain 1976; Lloyd 1979) (Kalisz et al. 2004).  Consequently, for conservation managers it 

may be particularly difficult to determine whether low levels of allelic variation and high 

levels of inbreeding and population differentiation within self-compatible taxa confers a 

reduction in fitness as a result of anthropogenic effects or reflects a stable situation that is 

best explained by life history characteristics.   

In this study, we investigate the conservation implications of population genetic 

analyses for Agalinis decemloba ssp. decemloba (Orobanchaceae) based on the analysis 

of 21 microsatellite loci.  Recent analyses evaluating the evolutionary distinctiveness of 

Agalinis acuta Pennell have shown that it does not appear to be distinct from Agalinis 

decemloba Greene (Pennell) (Pettengill & Neel 2008) such that it has been proposed the 

two be synonymized as subspecies Agalinis decemloba ssp. decemloba (Pettengill and 

Neel in prep).  Another subspecies, A. decemloba ssp. tenella, is represented by what has 

historically been known as Agalinis tenella Pennell.  Agalinis acuta was listed under the 

Endangered Species Act (ESA; 1973) in 1987 due to conversion of its grassland habitat 

to agricultural, residential, industrial, and commercial development; destruction of habitat 
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was also cited as the most serious threat to the persistence of the species (U. S. Fish and 

Wildlife Service 1988). Vegetation succession to closed-canopy forest has also caused 

habitat loss and is a continuing threat at all remaining sites (U. S. Fish and Wildlife 

Service 1988). As such, remaining populations of this species persist only at sites that are 

consistently managed to reduce cover of competing vegetation through mowing or 

prescribed burning (e.g., regular mowing or prescribed burning maintains an unforested 

sandplain grassland community at the two remaining naturally occurring populations on 

Cape Cod, Massachusetts, USA).   

MATERIALS AND METHODS 

Study system 

Agalinis decemloba ssp. decemloba is a fall blooming annual native to eastern North 

America where it is found on the coastal plain in eastern Massachusetts; Rhode Island; 

Connecticut; and New York; the piedmont in Maryland; southern Virginia; and central 

North Carolina.  Individuals are found in habitats characterized by open vegetation such 

as sandplain grassland and in openings in pine–oak forest on nutrient poor soils such as 

glacial outwash sands or serpentine.  Large population fluctuations have been 

documented.  Censuses in the two naturally occurring populations on Cape Cod between 

1980 and 2000 ranged from 1 to 4253 plants at one site and from 0 to 3674 plants at the 

other (Neel & Somers 2001).  Mechanisms responsible for fluctuations include weather 

conditions (e.g., lowest population sizes followed Hurricane Bob in 1991) and mowing 

regimes (e.g., populations increased dramatically after altering the mowing regime at one 

site) (Neel 2002; Neel & Somers 2001).  In addition to being an annual, A. decemloba 

ssp. decemloba lacks any obvious mechanism for long distance dispersal and seeds are 
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primarily gravity dispersed.  Bumble bees, Bombus spp., are likely the primary pollinator, 

but members of the Syrphidae (Order Diptera) have also frequently been observed 

visiting flowers (Neel 2002).  The species is highly self-compatible species with 97% of 

selfed flowers setting fruit; however, fruits resulting from selfed flowers exhibited a 17-

20% reduction in seed set compared with open pollinated flowers (Neel 2002).  

Geitonogamy (i.e., the transfer of pollen to different flowers on the same individual) and 

autonomous selfing late in anthesis as corollas dehisce (i.e., ‘corolla dragging;’ Dole 

1990) are likely mechanisms through which selfing occurs. 

Population sampling, DNA extraction and microsatellites 

 Tissue was collected from 328 individuals representing 13 populations during the fall 

blooming seasons of 2005-2007 (Fig. 5.1).  Where possible, we sampled 30 individuals 

per population, but for many populations the number of samples is less than 30, which 

reflects the total number of individuals we could locate (Table 5.1).  Two populations, 

WANY and EPRI, are known to have been anthropogenically created or modified with 

seed from different populations (M. Jordan, C. Raithel, and S. Ruhren pers. comm.).  At 

SDMD, we sampled to represent the extent of variation within that relatively large area 

such that we collected individuals from potentially spatially isolated patches.  L1VA 

individuals were collected from different sides of a road along a powerline corridor.  

Other populations consisted of individuals within one relatively continuous patch.  We 

also attempted to obtain samples from an additional 20 populations that were known 

based on historical records (e.g., herbarium specimens and Natural Heritage records) or 

on information provided by local botanists.  No individuals could be located at these 

additional sites due to either unsuitable habitat (e.g., commercial development, recently 
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mowed, or habitat was in a later successional stage), severe drought, or that our sampling 

efforts did not coincide with flowering times that vary annually.   

Total genomic DNA from all samples was isolated from fresh or frozen (-80°C) 

leaves and flower buds by grinding 50-100 mg of tissue to powder in liquid nitrogen with 

a mortar and pestle, and then using GenElute Plant Genomic DNA Kits (Sigma) or 

QIAGEN DNEasy Kits (QIAGEN) following manufacturer instructions.  Extractions 

were also carried out on a QIAGEN BioSprint 96 robotic workstation using QIAGEN’s 

BioSprint 96 DNA Plant Kit.   

 All samples were assayed for variation at 21 microsatellite loci that were developed 

for Agalinis acuta; the development of which is described in Appendix B (Pettengill et al. 

2009).   

Genetic diversity and Ne  

Allelic richness (AR) using rarefaction to account for differences in sample size was 

calculated using FSTAT v.2.9.3.2 (Goudet 1995).  FSTAT was also used to test for 

deviations from Hardy-Weinberg equilibrium (HWE) and linkage equilibrium (LE). The 

program GENEPOP v4.0 (Raymond & Rousset 1995) was used to estimate inbreeding 

within populations as measured by RIS (Rousset 1996). We calculated the observed (Ho) 

and expected (He) heterozygosity at the locus, population, and subspecies level using the 

program ARLEQUIN v3.1 (Excoffier et al. 2005).   

Single sample estimates of Ne based on the degree of linkage disequilibrium (Waples 

2006) were calculated using the program LDNE (Waples & Do 2008).  This method is 

based on Burrows’ ∆ estimate of linkage disequilibrium that does not depend on the 

assumption of random mating making it particularly useful in systems where selfing and 
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consanguineous matings are likely (Waples 2006).  Because alleles with extreme 

frequencies (i.e., close to 0 or 1) can result in a biased but also more precise estimate, we 

estimated Ne by excluding alleles with frequencies below two critical thresholds (Pcrit = 

0.1 and 0.01).  We present the 95% confidence intervals based on the jackknife procedure 

in which new estimates are calculated after removing in turn each of the 210 pairwise 

locus combination.  The jackknife method is less biased than the parametric method that 

assumes independence among the pairwise comparisons and results in too narrow of 

confidence intervals (Waples 2006; Waples & Do 2008).  We also evaluated coalescent-

based estimates of effective population size scaled by the mutation rate (i.e., Θ from 

LAMARC; Kuhner 2006) but found results to be unreliable.  Estimates of Θ consistently 

approached the upper bound of the prior for populations with higher levels of 

heterozygosity and allelic diversity (e.g., when the upper bound on Θ was 30, estimates 

of Θ were ~28) .  The large range of intrapopulation diversity and heterozygosity among 

the populations is likely responsible for the unreliable estimates in that invariant 

populations are known to cause problems for coalescent based methods (Kuhner 2006). 

 Given the small population sizes observed upon sampling (e.g., the targeted 30 

individuals could not be located and sampled from six populations), we were interested in 

whether any of the populations had experienced a recent bottleneck.  We used the 

program BOTTLENECK v1.2.02 (Piry et al. 1999) to test for recent bottlenecks with 

significance based on 1000 permutations.  We present the results from the two-phased 

mutational model, which is recommended for microsatellite loci and the one-tailed (for a 

heterozygote excess) Wilcoxon-sign rank test (α = 0.05) that is the most powerful of three 

tests offered by the program (Piry et al. 1999). 
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Population differentiation and migration analyses 

We used the program MARK v3.1 (Ritland 2006) to estimate the relationships of 

individuals within and among populations as the probability that pairs of individuals were 

full-sibs, parent-offspring, half-sibs, first cousins, or unrelated.  MARK uses a maximum-

likelihood method to assign pairs of individuals to a specific relationship class (described 

in Mousseau et al. 1998).  The likelihood of a relationship is equal to the observed level 

of relatedness, r, which is calculated as the product across the 21 microsatellite loci of the 

probabilities of identity by descent of alleles from two individuals, given the probability 

of identity by descent expected of that relationship.  The results are presented as the 

probabilities that two individuals fall into each of the relationship classes; the class that 

has the highest probability represents the relationship that best describes the two 

individuals.   

We calculated Jost’s DEST  (Jost 2008) using the program SMOGD v1.2.3 (Software 

for the Measurement of Genetic Diversity) (Crawford accepted) to provide an estimate of 

population structure.  Jost’s DEST is argued to be a more accurate measure of population 

differentiation than those used previously (e.g., GST and FST) in that it does not suggest 

low levels of differentiation among populations that share few or no alleles in common or 

underestimate the degree of differentiation when within population heterozygosity is high 

(Heller & Siegismund 2009; Jost 2008).  We also estimate the more traditional measure 

of population differentiation, FST (i.e., Θ of Weir & Cockerham 1984) using GENEPOP 

to facilitate comparisons with other studies and with DEST. 

To evaluate the differences among populations in allelic composition, we conducted 

an inter-class principal components analysis (Dolédec & Chessel 1987) using the 
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program adegenet (Jombart 2008) written in R (R Development Core Team 2008).  This 

method maximizes the variance among populations while also displaying the relationship 

of individuals (i.e., multilocus genotypes) in ordination space.  Analyses were based on 

the variance-covariance matrix and the significance of the difference among populations 

was based on 999 permutations using the randtest.between function.  For each population, 

95% inertia ellipses are shown that depict the amount variance among individuals. 

We used the model based method implemented in InStruct (Gao et al. 2007) to 

estimate the degree of genetic structure among samples.  We chose InStruct because, in 

addition to quantifying the degree of nonrandom mating as a result of restricted gene 

flow, it also incorporates a measure of selfing or inbreeding within clusters (Gao et al. 

2007).  Therefore, the model implemented in InStruct is well suited for organisms such as 

A. decemloba ssp. decemloba in which both selfing and restricted dispersal are likely to 

cause nonrandom mating.  Furthermore, clustering methods that do not account for 

mating among close relatives (e.g., STRUCTURE; Pritchard et al. 2000) can result in 

erroneous signatures of population structure (Anderson & Dunham 2008; Gao et al. 

2007).  We ran InStruct treating the number of clusters as a random variable to be 

estimated by the MCMC algorithm with a maximum value of 19.  A run consisted of two 

independent chains of 205 generations with 105 generations serving as burnin.  We 

considered chains at a given value of K (i.e., the number of populations) converged if the 

Gelman-Rubin statistic (an ANOVA based measure comparing within-chain and among-

chain variance where when equal indicates stationarity; Gelman & Rubin 1992) was <1.1 

(Gao et al. 2007).  The value of K with the lowest Deviance Information Criteria was 

chosen as the best fitting model.     
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We used the program GENECLASS v2.0 (Piry et al. 2004) to determine whether any 

of the sampled individuals represented recent immigrants into the population from which 

they were sampled using the Bayesian method of Rannala and Mountain (1997) and the 

Λ statistic, which is the recommend measure of whether an individual is a migrant 

(Paetkau et al. 2004).  Individuals are identified as migrants based on the degree of 

genotypic disequilibrium they exhibit relative to the other members of the population 

from which they were sampled.  The population within which an immigrant has the 

maximum level of LE is identified as the most likely source population.  Significance 

was assessed through creating populations of the same size as the original populations 

using the resampling algorithm of Paetkau et al. (2004), which was carried out until 

10000 simulated assignment criteria had been estimated; α was 0.01 (i.e., the null 

hypothesis that an individual germinated in the population from which it was sampled is 

rejected if the observed Λ for that individual is greater than 99% of the distribution 

associated with the 10000 Λs from the simulated data).   

RESULTS 

Genetic diversity and Ne 

 Among the 328 samples, 718 alleles were observed across all 21 microsatellites, the 

proportion of which were polymorphic was 0.95 (Table 5.1).  Ho was low (ݔҧ ൌ 0.018) 

and was an order of magnitude lower than He (ݔҧ ൌ 0.634) (Table 5.1).  The mean 

proportion of polymorphic loci within all 13 populations was 0.61 and the average 

number of alleles per population was 56; on average 9.23 of these alleles were private 

(Table 5.1).  The 30 samples from Montauk Downs, NY (MDNY) were polymorphic at 

only a tenth of the loci and had only 28 alleles, 2 of which were exclusive to that 
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population (Table 5.1).  This population also had the lowest Ho and He, 0.006 and 0.028, 

respectively, and the highest RIS (0.997).  The two most southern populations had the 

greatest portion of polymorphic loci (L1VA, 0.95; WCNC, 0.81) and the largest number 

of alleles.  Of the northern populations, RCRI had the greatest portion of polymorphic 

loci (0.71) and had a high Ho (0.239) (Table 5.1). 

 99 out of 2730 possible comparisons of loci within populations were out of HWE 

and all populations showed a significant departure from HWE.  After a bonferroni 

correction for multiple tests, 2.7% (75 of 2730) of the locus-by-locus comparisons 

significantly deviated from LE.  However, 84% of these significant deviations were 

exclusive to two populations; SDMD had 22 and L1VA had 41 pair-wise locus deviations 

from linkage equilibrium.   

 Although Ne varied depending on the critical threshold associated with the minimum 

allele frequency, the averages under each threshold were extremely low; average Ne when 

Pcrit = 0.01 was 21.6 and when Pcrit = 0.1 Ne averaged 12.6 (Table 5.2).  Those averages 

exclude two instances where estimates of Ne are unrealistic (i.e., a negative estimate for 

SNMA and the exceedingly large estimate of Ne = 1x108 for MDNY; Table 5.2).  The 

upper bounds to the confidence intervals for six and four populations under Pcrit = 0.01 

and Pcrit = 0. 1, respectively, are infinity.  Rather than actually representing truly large 

effective population sizes, infinite upper bounds can also result when there are very low 

values of heterozygosity within populations or insufficient power to estimate Ne (Waples 

pers. comm.).  Exploratory analyses using the parametric method of calculating 

confidence intervals produced the expected narrower intervals (i.e., the upper bound was 

infinity for 2 rather than 4 confidence intervals), which illustrate the bias that arises when 
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independence among pairwise locus comparisons is assumed (Waples 2006; Waples & 

Do 2008).  The larger estimates under a lower allele frequency were also observed by 

(Waples 2006), and can be explained by the fact that more alleles present at a locus will 

likely reduce the degree of linkage disequilibrium thus increasing the estimate of Ne 

compared to when such alleles are excluded.  Focusing on Pcrit = 0.01, which may be a 

more appropriate threshold for hypervariable loci such microsatellites, the largest 

estimate of Ne was 132.5 and the smallest was 1.5 that were observed in WCNC and 

SDMD, respectively.  In addition to WCNC, BVMA and PCCT were the only other 

populations with estimates of Ne > 15 (Table 5.2).  

Only two populations, SHNY and WCNC, showed evidence of having experienced a 

recent bottleneck under the two-phased mutational model and using the one-tailed 

Wilcoxon sign-rank test for heterozygote excess.   

Population structure and migration  

The pairwise relationships of the vast majority of individuals within populations 

were best described as being full-sibs and individuals from different populations were 

best described as unrelated (Fig. 5.2).  There were very few intermediate levels of 

relatedness in that we did not find a substantial number of pairs of individuals being 

classified as parent-offspring, half-sibs, or first cousins.  Exceptions are the individuals 

from L1VA that do exhibit intermediate levels of relatedness, which may be an artifact of 

collecting individuals across a potential barrier to gene flow in that different locally 

breeding neighborhoods were sampled.  Individuals within WANY also show 

intermediate relationships, which likely reflects how that population was created from 

seed from at least three different populations (Fig. 5.2). 
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The levels of differentiation among populations estimated with Jost’s DEST and Θ 

averaged 0.573 and 0.565, respectively.  Pairwise population estimates of DEST and Θ 

were both lowest between RCRI and EPRI (DEST = 0.086, Θ = 0.0716), which is to be 

expected given that the latter was created from seeds from the former population (Table 

5.4).  However, the two measures differed in the pair of populations that were depicted to 

be the most differentiated.  DEST was greatest between WCNC and BVMA (DEST = 

0.828), but between those two populations Θ was 0.650.  More surprisingly was that 

based on Θ, SHNY and MDNY showed the largest degree of differentiation (Θ = 0.878), 

but between those two populations DEST was 0.333 (Table 5.4).  Although differences 

exist, both measures indicate a high degree of population differentiation.. 

A global test for the significance of the degree of differentiation among populations 

based on the inter-class principal components analysis was highly significant in that our 

observed level of differentiation among populations was greater than all values from 999 

permuted datasets (P < 0.0001).  The first two axes from the inter-class principal 

components analysis explained 37% of the variance among populations.  The first 

principal components axis primarily explained differences among the populations in the 

northern portion of the species range; the second principal components axis explained the 

variance due to the latitudinal cline associated with the populations (Fig. 5.3).  The 

distribution of multilocus genotypes from individuals sampled from WANY are quite 

spread out relative to the mean and hence the 95% inertia ellipse is large.  Most other 

populations have small 95% inertia ellipses and individual multilocus genotypes are a 

short distance from the within population centroid (i.e., mean; Fig. 5.3).    
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The value of K with the lowest Deviance Information Criteria from the InStruct was 

12 (logL= -6269.513; DIC = 12539.026) (Fig. 5.4).  The Gelman-Rubin statistic was 

0.999 indicating that the independent chains associated with each analysis had converged.  

Interestingly, the L1VA population is divided into two separate clusters, and the EPRI 

and RCRI populations are found in the same cluster with individuals from EPRI also 

showing a similarity to individuals from PCCT.  The majority of individuals from 

WANY are found within the cluster also occupied by HPNY but with admixture 

indicating a similarity to individuals from MDNY (Fig. 5.4).  Estimates of the selfing rate 

were high ( ;730.0=S  Table 5.2), which can be interpreted as the proportion of offspring 

produced via selfing within a cluster and indicates that in addition to restricted gene flow 

genetic, mating among close relatives also contributes to the degree of nonrandom mating 

(Fig. 5.4). 

 The results from GENECLASS v2.0 identified only four samples as being recent 

immigrants into the population from which they were sampled.  Three individuals from 

EPRI were classified as recent migrants from RCRI and one individual from EPRI was 

identified as being a recent migrant from RCRI.   

DISCUSSION 

Populations of the self-compatible taxon, Agalinis decemloba ssp. decemloba, 

exhibited a wide range in the levels of genetic diversity, inbreeding, and effective 

population size such that the extent to which genetic issues are of conservation concern 

likely depends on the population being considered.  However, there is also the possibility 

that extremely low levels of heterozygosity and high levels of inbreeding could be 

explained by the taxon’s life history characteristics and, therefore, may not represent a 
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conservation concern.  To help differentiate between levels of diversity that are an artifact 

of life-history characteristics and those that are emblematic of an extinction risk due to 

extrinsic factors (e.g., population bottlenecks and habitat fragmentation as a result of 

anthropogenic factors; Michalski & Durka 2007), below we discuss our results in light of 

other experiments involving taxa with similar life history characteristics and studies 

investigating the correlation between fitness and genetic parameters among self-

compatible species.   

Genetic diversity, Ne, and population structure 

All populations showed a significant deviation from HWE but, like many plants, A. 

decemloba ssp. decemloba exhibits a degree of self-compatibility and the sessile nature 

of individuals can result in small local breeding neighborhoods, both of which violate the 

assumption of random mating associated with HWE (Clegg 1980).  The Wahlund effect 

(Wahlund 1928) may also explain departures from HWE, particularly within L1VA and 

SDMD because individuals from these populations may have been sampled across a 

barrier to gene flow.  Regardless of the explanation for the observed departures from 

HWE, the deficit of heterozygosity and corresponding high levels of homozygosity may 

have vital consequences for the fitness of populations.   

Important for the conservation of A. decemloba ssp. decemloba is that the low levels 

of Ho and AR we observed may be indicative of an increased extinction risk due to the 

inability of individuals to adapt to changes in the environment (Frankham et al. 2002).  

However, the expected relationship between genetic variation and fitness depends 

strongly on the mating-system of a species.  Fitness and genetic variation have been 

shown to be positively correlated within outcrossing species but independent of each 
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other within self-compatible taxa (Leimu et al. 2006).  Based on previous empirical 

research, we know that A. decemloba ssp. decemloba is highly self-compatible in that 

97% of selfed flowers set fruit (e.g., Neel 2002).  Comparisons with other studies provide 

support for the conclusion that some populations of the A. decemloba ssp. decemloba 

have levels of Ho that are characteristic of predominantly selfing species.  From a 

summary of investigations of  plant species using microsatellite loci, mixed-mating 

species had an average Ho of 0.51; selfing species had an average Ho of 0.05 and (Nybom 

2004).  Among the 13 populations we sampled Ho ranged from 0.006 to 0.239, which is 

suggestive of a predominantly selfing population and moderately outcrossed population, 

respectively.  Although the evidence for self-compatibility and the lack of correlation 

between genetic variation and fitness within such taxa (Leimu et al. 2006) make it 

difficult to determine whether low genetic diversity is causing a reduction in fitness, a 

conservative conclusion is that a lack of genetic diversity decreases the ability of 

populations to withstand environmental fluctuations.  The 6 populations with Ho < 0.100 

and AR < 2.0 would be the most at risk (Table 5.2). 

Unlike the estimates of genetic diversity, populations of A. decemloba ssp. 

decemloba are more differentiated from one another and have Ne estimates that are 

substantially lower than those found in many species with similar life history 

characteristics.  For example, the average of the geometric mean of census sizes from 

different conspecific populations for the 26 self-compatible species assayed in Leimu et 

al. (2006) was 437.3.  If we assume a Ne/N ratio of 0.27, which was the mean value from 

the analysis of 26 studies involving species of conservation concern (Palstra & Ruzzante 

2008), then the average Ne value from Leimu et al. (2006) is 118.1.  The mean estimate of 
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Ne, under the same Ne/N ratio of 0.27, for the 22 plant species that are both rare and self-

compatible from Leimu et al. (2006) is 126.9.  In stark contrast, estimates of Ne for the 

majority of populations of A. decemloba spp. decemloba are < 10 and drastically lower 

than either that documented in Leimu et al. (2006).  Consequently, the influence of drift 

in reducing allelic diversity or fixing deleterious alleles is a conservation concern within 

A. decemloba spp. decemloba.  The level of differentiation among populations we 

observed ( 0.56=Θ ) was greater than the mean Θ  of 0.40 observed across other studies 

involving annual species (Nybom 2004).  This degree of isolation among populations 

suggests that populations are not benefitting from the infusion of novel alleles that can 

reduce the level of inbreeding depression (Richards 2000) and increase the ability of 

populations to adapt to changes in the environment (Lande 1988; but see Lenormand  

(2002) for a discussion of ‘migration load’).   

Our results imply that only SHNY and WCNC may have recently experienced a 

recent population bottleneck and, therefore, suffer from the increased extinction risk 

associated with a reduction in size (Holsinger 2000; Young et al. 1996).  The other 

populations may have undergone a more historical bottleneck (i.e., greater than a dozen 

generations in the past; Luikart et al. 1998), but have persisted long enough to reach 

mutation-drift equilibrium.  Although fluctuations in census sizes have been documented 

for some populations (i.e., BVMA and PEMA; Neel & Somers 2001), the existence of a 

seed bank may also explain why those populations do not exhibit the genetic signature 

associated with population bottlenecks (e.g., Nunney 2002).  If other populations did in 

fact experience a more historical population bottleneck (e.g., upon being founded), their 

persistence may suggest that they are resilient and purged the problems associated with 
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such demographics events.  Studies illustrating that self-compatible taxa are less likely 

than outcrossing species to suffer the negative consequences (i.e., substantial decrease in 

He, P, A, and increase in FIS) associated with a reduction in population size and habitat 

fragmentation (Aguilar et al. 2008; Honnay et al. 2007) also support the idea that A. 

decemloba ssp. decemloba may be resilient to the effects associated with a reduction in 

population size.   

Inbreeding depression, self-compatibility, and reproductive assurance 

Although low levels of genetic diversity may inhibit the ability of individuals to 

withstand environmental variation (Reed & Frankham 2003), the degree of inbreeding 

within populations has been stated to be a greater threat to the persistence of populations 

(Amos & Balmford 2001).  A high level of self-compatibility has been observed for what 

was known as A. acuta (i.e., 97% of self-pollinated A. acuta flowers set fruit; Neel 2002), 

but our results are the first to document that populations are also highly inbred (mean 

population RIS = 0.607, Table 5.1).  In particular, three populations have RIS values close 

to unity (e.g., SHNY, RIS = 0.831; WANY, RIS = 0.898; and MDNY, RIS = 0.997).  

However, given the low levels of allelic diversity within populations, our estimates of 

inbreeding may be an artifact of outcrossing among individuals with similar genotypes, 

which could also explain the results from MARK and InStruct that indicate most 

individuals within populations are full-sibs and there is high rate of selfing within 

clusters, respectively.   

There is a large body of literature describing how the high levels of inbreeding that 

we observed within many populations of A. decemloba ssp. decemloba may in fact not 

result in a substantial decrease in fitness.  Through successive generations of selfing or 
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inbreeding the level of inbreeding depression can be reduced along with purging of the 

genetic load (e.g., Crnokrak & Barrett 2002).  This scenario is supported by empirical 

research documenting that inbreeding depression is negatively correlated with selfing rate 

(i.e., predominantly selfing species exhibited a 43% reduction in inbreeding depression 

relative to outcrossing species (Husband & Schemske 1996));  a lack of a correlation 

between selfing and inbreeding depression may also be more prominent in annual rather 

than perennial plant species (Byers & Waller 1999).  Based on simulation studies, the 

likelihood of this scenario is greatest when recessive genes associated with negative 

fitness are lethal, rather than detrimental, as homozygotes.  This is because a high degree 

of inbreeding (e.g., full-sib mating) provides a mechanism through which the genetic load 

of a population can be purged; high fecundity of individuals that are not killed can help 

reduce the risk of extirpation during the purging process (Hedrick 1994; also see 

Holsinger 1988).     

Studies estimating fitness consequences associated with different levels of 

inbreeding within congeneric taxa also provide evidence that inbreeding may not result in 

a decrease in fitness within populations of A. decemloba ssp. decemloba.  For example, a 

study involving two populations of Agalinis skinneriana found no difference in fruit set 

within each population among different crossing treatments (e.g., selfed and xenogamous 

matings) (Dieringer 1999).  Between two populations of Agalinis auriculata, self-

pollinated individuals also did not show a reduction in fruit set, seed set, or seed mass 

relative to outcrossed individuals where seed germination and availability of host plants, 

because the species is hemiparasitic, were identified as more likely causes for a decrease 

in population size than inbreeding depression (Mulvaney et al. 2004).     
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The high levels of inbreeding within populations of A. decemloba ssp. decemloba 

may also reflect an evolved response to assure reproduction when population sizes are 

small and pollinator availability is low (e.g., Jain 1976).  Autogamous pollination was 

also suggested to be a reproductive assurance mechanism in small populations of A. 

skinneriana within which there was a significantly greater potential selfing rate (99%) 

relative to the larger population (85%) (Dieringer 1999).  Other empirical studies show 

that this shift can result from natural fluctuations in pollinator visitation or due to 

anthropogenic induced fragmentation that may cause decline in pollinator visitation rates 

(Aguilar et al. 2008).  In terms of conservation, some have argued that such a shift 

indicates that populations may not suffer the negative fitness consequences often 

associated with low levels of genetic diversity and high inbreeding.  For example, among 

populations of the annual Collinsia verna (Scrophulariaceae) pollinator failure strongly 

influenced the degree of selfing within populations; inbreeding depression on early acting 

traits within selfed individuals was actually lower than that observed among outcrossed 

individuals (Kalisz et al. 2004).  Kalisz et al. (2004) also state that years of complete 

pollinator failure (i.e., when no pollinators were present) have likely occurred and that 

under such conditions selfing would have been extremely high, which would have 

reduced the genetic load.  Based on nine microsatellite loci there were strong differences 

among selfing (Ho = 0.02–0.06) and outcrossed (Ho = 0.13–0.31) populations of 

Arabidopsis lyrata (Brassicaceae) and the authors suggest that selfed populations may 

have purged deleterious recessive mutations (Mable & Adam 2007).  However, the 

degree of seed discounting within selfing individuals of the perennial Aquilegia 

canadensis (Ranunculaceae) from 10 populations was shown to negatively impact fitness 
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relative to outcrossed individuals (Herlihy & Eckert 2002).  The authors state that the 

reproductive assurance provided by selfing within Aquilegia canadensis will be 

advantageous if there are mechanisms that delay autogamous mating and, thus, maximize 

the potential for outcrossing (Herlihy & Eckert 2002).  The dimorphism of the two pairs 

of stamens within A. decemloba ssp. decemloba (i.e., a ventral and dorsal pair relative to 

the stigmatic surface) may represent an evolved trait that facilitates outcrossing when 

pollinators are present but ensures autogamous selfing upon corolla senescence.   

Conservation implications 

Agalinis acuta (which we have advocated be subsumed under Agalinis decemloba 

ssp. decemloba) received federal protection on public lands under the ESA due to the 

threat of extinction posed by a decrease in suitable habitat.  Because of this decrease in 

habitat, most extant populations are small and dramatic fluctuations in population sizes 

have also been documented; our results from the analysis of 21 microsatellite loci are 

concordant with the expectations associated with such a history (i.e., low levels of 

heterozygosity and allelic richness within and strong differentiation among populations).  

However, the observed pattern of genetic diversity is common within self-compatible 

annual taxa (Hamrick & Godt 1989; Nybom 2004) and the expected correlation of our 

observed levels of genetic variation and fitness is not always true of self-compatible taxa 

(Leimu et al. 2006).  As for the levels of inbreeding, there are empirical and simulation 

studies that provide evidence to support the claim that Agalinis decemloba ssp. 

decemloba may have purged deleterious recessive alleles through high rates of selfing 

and not suffer a reduction in fitness due to inbreeding depression (e.g., Crnokrak & 

Barrett 2002).  However, the magnitude of inbreeding estimates within three populations 
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of Agalinis decemloba ssp. decemloba (e.g., MDNY, SHNY, and WANY; Table 5.2) 

warrants additional studies to investigate whether such populations do suffer an increased 

risk of extinction.   

 Due to the low levels of allelic diversity and small estimates of Ne, populations of 

Agalinis decemloba ssp. decemloba may not be able to adapt to environmental changes 

(e.g., Reed & Frankham 2003; e.g., Stebbins 1957).  Additionally, populations are 

strongly isolated and harbor unique genetic diversity such that the priority for 

conservation should be to ensure the persistence of all extant populations.  Given these 

conservation concerns, conservation managers should strive to increase the size of these 

populations and help buffer against any stochastic events that could result in extirpation.  

These management actions would facilitate achieving two of the three criteria stated in 

the recovery plan for A. acuta (i.e., 20 stable and wild occurrences and protection of at 

least 15 of these occurrences; U.S. Fish and Wildlife Service 1989b).  The third criterion 

was to determine whether plants could be propagated from seed.  In addition to the fact 

that populations have been established from seed from different populations (e.g., EPRI 

from RCRI), our results show that molecular techniques can detect and confirm the 

source population (e.g., Figs. 5.3 & 5.4).  The successful creation of populations from 

multiple seed sources also implies that conservation managers of A. decemloba ssp. 

decemloba may not have to be particularly concerned about a decrease in fitness 

associated with outbreeding depression (Lynch 1991); experiments are needed to validate 

this assumption.  Assuming that A. decemloba ssp. decemloba receives the federal 

protection afforded A. acuta, if the number of populations can be increased and they are 
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protected against habitat destruction, then A. decemloba ssp. decemloba could be among 

the few taxa to be delisted as a direct result of management actions (Noecker 1998).  

Conclusions  

We suggest that a conservative approach is to assume that the populations of A. 

decemloba ssp. decemloba with extremely high inbreeding coefficients are experiencing 

an increased extinction risk due to inbreeding (e.g., MDNY, SHNY, and WANY).  

However, as a result of strong population differentiation and low values of allelic 

diversity and Ne within populations, a conservation priority should be to guard against the 

risk posed by habitat destruction and environmental stochasticity.  Additional meta-

analyses that differentiate taxa based on mating system and empirical studies that directly 

measure fitness differences among populations of highly selfing plant species will help to 

clarify whether, in general, demographic, and environmental stochasticity rather than 

genetic factors are of primary concern in ensuring the persistence of such species.  
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Table 5.1.27Characteristics of 21 microsatellite across 328 A. decemloba ssp. decemloba 
individuals representing 13 putative populations.  (A, number alleles, Ho, observed 
heterozygosity; He, expected heterozygosity; RIS inbreeding coefficient; DEST, Jost’s 
unbiased estimator of population differentiation; and percent amplification success) 

Locus Range Size 
(bp) A Ho He RIS DEST

Success 
(%) 

Agac.M1 242-310 29 0.182 0.930 0.805 0.933 97.26 
Agac.M6 272-360 21 0.146 0.920 0.841 0.904 98.17 
Agac.M33 203-219 10 0.063 0.582 0.891 0.488 96.34 
Agac.M11 200-232 9 0.077 0.580 0.867 0.484 99.09 
Agac.M14 185-244 21 0.137 0.861 0.841 0.851 97.87 
Agac.M28 271-291 6 0.031 0.282 0.890 0.194 98.48 
Agac.M42 271-293 9 0.115 0.801 0.857 0.797 98.17 
Agac.M46 212-286 21 0.216 0.866 0.751 0.831 97.56 
Agac.ca 11 148-174 12 0.125 0.682 0.817 0.512 100.00 
Agac.ca20 404-436 14 0.136 0.686 0.802 0.639 98.78 
Agac.ca26 218-252 8 0.169 0.760 0.778 0.714 97.56 
Agac.aag46 457-484 6 0.108 0.597 0.820 0.529 96.34 
Agac.ca10 158-170 8 0.146 0.379 0.614 0.183 97.87 
Agac.aag29 335-343 4 0.028 0.202 0.861 0.156 97.87 
Agac.ca48 280-300 6 0.070 0.429 0.837 0.374 100.00 
Agac.ca 21 144-160 6 0.070 0.415 0.831 0.342 100.00 
Agac.taca12 430-470 10 0.155 0.792 0.804 0.731 94.21 
Agac.taca45 185-375 33 0.298 0.934 0.681 0.929 99.39 
Agac.taca04 311-427 14 0.108 0.714 0.849 0.585 99.09 
Agac.ca45 292-294 2 0.000 0.164 1.000 0.122 98.17 
Agac.ca33 214-286 13 0.104 0.719 0.855 0.668 99.70 
Average n/a 12.47 0.118 0.633 0.823 0.570 98.24 
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Table 5.2.28Population genetic characteristics at the subspecies and population level based on 21 microsatellite loci across 13 
populations of A. decemloba ssp. decemloba. Sample sizes, n; proportion of polymorphic loci, P; number of alleles, A; number of 
private alleles, AP; allelic richness as calculated in FSTAT using a rarefaction method, AR; observed (Ho) and expected (He) 
heterozygosity; fixation index, RIS; and, the selfing rate inferred with InStruct, S.    

 

Population Collection Locality n 
Amplification 
Success (%) P A AP AR Ho He RIS S

A. decemloba 
ssp. 
decemloba 

 
328 98.24 0.95 718 n/a 12.476 0.018 0.634 n/a n/a 

BVMA Bay View, Barnstable Co., MA 29 98.03 0.57 46 5 1.665 0.061 0.182 0.528 0.802 
SNMA Scrubby Neck, Dukes Co., MA 16 99.70 0.62 44 5 1.745 0.087 0.224 0.233 0.780 
PEMA Percival Cemetery, Barnstable Co., MA 29 98.85 0.62 46 8 1.755 0.069 0.216 0.372 0.813 
PCCT Plainfield Cemetery, Windham Co., CT 29 99.01 0.67 55 5 1.993 0.177 0.302 0.717 0.546 
EPRI Eppley Wildlife Sanctuary, Washington Co., RI 24 94.64 0.67 74 9 2.563 0.169 0.416 0.629 0.622 
RCRI Richmond Cemetery, Washington Co., RI 20 99.05 0.71 60 3 2.502 0.239 0.405 0.195 0.622 
HPNY Hempstead Plains, Nassau Co., NY 31 99.08 0.67 51 4 2.030 0.151 0.312 0.663 0.645 
MDNY Montauk Downs, Suffolk Co., NY  30 99.37 0.10 28 2 1.148 0.006 0.028 0.997 0.943 
SHNY Shadmoor State Park, Suffolk Co., NY 24 98.02 0.43 32 6 1.264 0.037 0.059 0.831 0.841 
WANY Warhol Preserve, Suffolk Co., NY 9 94.71 0.48 58 5 2.609 0.124 0.421 0.898 0.794 
SDMD Soldiers Delight, Baltimore Co., MD 30 99.37 0.62 49 10 1.926 0.046 0.302 0.645 0.861 
L1VA Lunenberg Co. VA 24 96.10 0.95 83 30 2.849 0.168 0.496 0.577 0.606 
WCNC William B. Umstead State Park, Wake Co. NC 33 99.40 0.81 92 28 2.874 0.226 0.415 0.530 0.611 

Mean across populations 25.2 98.11 0.61 56 9.23 2.630 0.125 0.290 0.607 0.730 
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Table 5.3.29Estimates of Ne based on linkage disequilibrium; Pcrit represents the threshold 
allele frequency below which alleles are not included in the estimation procedure.  
Numbers in parentheses are 95% confidence intervals based on the parametric method 
described in WAPLES 2006. 
 Ne 
Population Pcrit = 0.01 Pcrit = 0.1 
BVMA 29.1 (7.7 - ∞) 6 (1.8 - 23.1) 
PCMA 3.3 (2.3 - 8) 1.2 (0.9 - 1.7) 
SNMA - 84* (11 - ∞) 18.7 (1.6 - ∞) 
PCCT 47.4 (18.3 - ∞) 28.9 (8 - ∞) 
EPRI 10.3 (7.5 - 14.3) 11.6 (6 - 24.9) 
RCRI 6.7 (4 - 9.9) 3.9 (2.6 - 7.1) 
HPNY 13.3 (5.5 - 33) 3.9 (2.1 - 13) 
MDNY 2 (-9.8 - ∞) 1 x 108* (1 x 108  - ∞) 
SHNY 4.6 (0.8 - ∞) 0.5 (0.1 - 1.6) 
WANY 6.4 (2.8 - 15.3) 2.4 (1.6 - 5) 
SDMD 1.5 (1.1 - 1.9) 0.7 (0.5 - 0.8) 
L1VA 2.2 (1.9 - 2.5) 0.7 (0.6 - 0.7) 
WCNC 132.5 (51 - ∞) 72.6 (18.1 - ∞) 
Average 21.6 12.6  
* Not included in calculating the average estimate of Ne. 
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Table 5.4.30Measures of pairwise differentiation among 13 populations of A. decemloba ssp. decemloba; Θ (Weir & Cockerham 1984) 
is above and DEST (Jost 2008) is below the diagonal.   

 Population 
 BVMA SNMA PCMA PCCT EPRI RCRI HPNY MDNY SHNY WANY SDMD L1VA WCNC 

BVMA  0.706 0.642 0.604 0.557 0.551 0.619 0.845 0.805 0.583 0.647 0.559 0.650 
SNMA 0.635  0.619 0.588 0.526 0.532 0.598 0.857 0.793 0.543 0.547 0.511 0.559 
PCMA 0.487 0.520  0.587 0.537 0.554 0.560 0.826 0.781 0.511 0.606 0.534 0.617 
PCCT 0.543 0.588 0.548  0.382 0.390 0.537 0.712 0.653 0.417 0.499 0.424 0.524 
EPRI 0.567 0.589 0.542 0.410  0.072 0.470 0.716 0.646 0.388 0.487 0.401 0.486 
RCRI 0.526 0.581 0.552 0.380 0.086  0.463 0.715 0.659 0.389 0.498 0.402 0.489 
HPNY 0.585 0.612 0.526 0.587 0.582 0.545  0.711 0.664 0.186 0.516 0.442 0.445 
MDNY 0.647 0.687 0.665 0.514 0.653 0.591 0.561  0.878 0.732 0.695 0.674 0.691 
SHNY 0.607 0.592 0.621 0.495 0.589 0.587 0.548 0.333  0.671 0.628 0.607 0.639 
WANY 0.522 0.572 0.472 0.451 0.551 0.521 0.190 0.451 0.462  0.420 0.359 0.408 
SDMD 0.634 0.517 0.612 0.503 0.579 0.579 0.573 0.506 0.469 0.506  0.484 0.526 
L1VA 0.675 0.720 0.687 0.587 0.679 0.674 0.580 0.699 0.656 0.586 0.703  0.334 

WCNC 0.828 0.715 0.777 0.685 0.730 0.716 0.517 0.697 0.657 0.548 0.684 0.514  
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Figure 5.1.18Locations of the 13 A. decemloba ssp. decemloba populations included in this 
study.  See Table 5.2 for population codes. 
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Figure 5.2.19The most probable relationships inferred using the program MARK (Ritland 
2006) of pairs of individuals sampled within a population (2a) and the distribution of the 
relationships of intra - and inter-population  pairs of individuals (2b). 
2a) 

.  
2b) 
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Figure 5.3.20Inter-class principal components analysis based on 21 microsatellite loci 
from 13 populations of A. decemloba ssp. decemloba.  Points represent individuals (i.e., a 
multilocus genotype) and lines indicate the distance of an individual to the mean of the 
population from which they were sampled.  Circles depict the 95% inertia ellipses and the 
histogram in the upper right corner shows the relativity of the eigenvalues of each 
principal component.  Individuals from the same population have the same color and 
population codes are within rectangles.   
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Figure 5.4.21Distruct (Rosenberg 2004) diagram of the assignment of individuals to 
clusters based on the program InStruct where K = 12 are the assignments when K was 
treated as a random variable.  Numbers to the right of the figures represent selfing rates 
within each population and can be interpreted as the proportion of offspring within each 
cluster that were produced through selfing.   
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APPENDIX A   

General population locations and Genbank accession numbers for loci sampled from North American Agalinis species examined in 
Chapter 1 (Pettengill and Neel 2008).  Section and subsection classifications follow J.M. Canne-Hilliker.  Genbank accession numbers 
for those sequences with “N & C (2004)” can be found in Neel and Cummings (2004). 

Taxon Sampled Location matK rbcL ndhF rps2 trnT -trnF trnH-psbA rpoB ITS 

Section Erectae           

A. acuta 125CT Windham Co., CT      EU827965 EU828128 EU827882 EU828046 EU827810 

A. acuta 139RI Washington Co., RI      EU827966 EU828129 EU827883 EU828047 EU827811 

A. acuta 13PCMA Sandwich, Barnstable Co. MA      EU827967 EU828130 EU827884 EU828048 EU827812 

A. acuta 1BVMA Waquoit Bay,  Barnstable Co. MA N & C (2004) N & C (2004) 
N & C 
(2004) EU827968 EU828131 EU827885 EU828049 EU827813 

A. acuta 211HPNY Nassau Co., NY      EU827969 EU828132 EU827886 EU828050 EU827814 

A. acuta 229MDNY Montauk Downs, Suffolk Co. NY      EU827970 EU828133 EU827887 EU828051 EU827815 

A. acuta 265SMNY Shadmoor,Suffolk Co., NY      EU827971 EU828134 EU827888 EU828052 EU827816 

A. acuta 33SNMA Dukes Co., MA      EU827972 EU828135 EU827889 EU828053 EU827817 

A. acuta 51MD Baltimore Co., MD      EU827973 EU828136 EU827890 EU828054 EU827818 

A. aphylla 3FL Liberty Co., FL  N & C (2004) N & C (2004) 
N & C 
(2004) EU827974 EU828137 EU827891 EU828055 EU827819 

A. aphylla 4AL Geneva Co., AL      EU827975 EU828138 EU827892 EU828056 EU827820 

A. decemloba 6VA Lunenberg Co., VA EU828211 EU828220   EU827982 EU828145 EU827899 EU828063  

A. decemloba 9NC Randolph Co., NC      EU827983 EU828146 EU827900 EU828064 EU827826 

A. gattingeri 45MO Crawford Co., MO   EU828224   EU827993 EU828156 EU827910 EU828074 EU827836 

A. gattingeri 8MO Hickory Co., MO      EU827994 EU828157 EU827911 EU828075 EU827835 

A.  gattingeri 1LA Webster Parish, LA      EU827992 EU828155 EU827909 EU828073 EU827823 

A. obtusifolia 13AL Geneva Co., AL      EU828008 EU828171 EU827925 EU828089 EU827849 

A. obtusifolia 14AL Mobile Co., AL   EU828233    EU828172 EU827926 EU828089 EU827851 

A. obtusifolia 20FL Liberty Co., FL  N & C (2004) N & C (2004) 
N & C 
(2004) EU828010 EU828174 EU827928 EU828092 EU827852 

A. obtusifolia 6AL Mobile Co., AL      EU828011 EU828175 EU827929 EU828093  

A. obtusifolia 8AL Geneva Co., AL   EU828234    EU828176 EU827930 EU828094  

A. oligophylla 12AL Tyler Co., TX      EU828012 EU828177 EU827931 EU828095  

A. oligophylla 1AL Mobile Co., AL EU828216 EU828235   EU828013 EU828178 EU827932 EU828096  

A. oligophylla 5AL Mobile Co., AL      EU828014 EU828179 EU827933 EU828097  
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Taxon Sampled Location matK rbcL ndhF rps2 trnT -trnF trnH-psbA rpoB ITS 
A. oligophylla 8TX Vernon Parish, LA      EU828015 EU828180 EU827934 EU828098  

A. skinneriana 106MD Prince Georges Co., MD   EU828239   EU828028 EU828193 EU827947 EU828110 EU827864 

A. skinneriana 78MD Dorchester Co., MD      EU828029 EU828194 EU827948 EU828111 EU827865 

A. skinneriana 90MO Vernon Co., MO   EU828240   EU828030 EU828195 EU827949 EU828112 EU827866 
A. tenella 1GA Ware Co., GA EU828215 EU828241  EU828009 EU828173 EU827927 EU828091 EU827850 
A. tenella 11GA Lowndes Co., GA      EU828032 EU828197 EU827951 EU828114 EU827868 
A. tenella 13GA Grady Co., GA      EU828033 EU828198 EU827952 EU828115 EU827869 
A. tenella 3SC Colleton Co., SC      EU828034 EU828199 EU827953 EU828116 EU827870 
A. tenella 4GA Ware Co., GA N & C (2004) N & C (2004)   EU828035 EU828200 EU827954 EU828117 EU827871 
A. tenella 9GA Lanier Co., GA      EU828036 EU828201 EU827955 EU828118 EU827872 
A. viridis 2LA Natchitoches Parish, LA EU828218 EU828242   EU828040 EU828205 EU827959 EU828122 EU827876 
A. viridis 9IL DeSoto Parish, LA      EU828041 EU828206 EU827960 EU828123 EU827877 

Section Heterophyllae           
A. auriculata 1IA Story Co., IA       EU827976 EU828139 EU827893 EU828057 EU827821 
A. auriculata 7IL Will Co., IL N & C (2004) N & C (2004)  EU827977 EU828140 EU827894 EU828058 EU827822 
A. calycina Pecos Co., TX   EU828219   EU827978 EU828141 EU827895 EU828059  
A. heterophylla 5TX Cameron Co., TX      EU827997 EU828160 EU827914 EU828078  
A. heterophylla 8TX Stephens Co., TX      EU827998 EU828161 EU827915 EU828079 EU827839 

A. heterophylla TX Grimes Co., TX N & C (2004) N & C (2004) 
N & C 
(2004) EU827979 EU828142 EU827896 EU828060  

Section Linifoliae           

A. linifolia 2FL Liberty Co., FL N & C (2004) N & C (2004) 
N & C 
(2004) EU828003 EU828166 EU827920 EU828084 EU827844 

A. linifolia 4GA Cinch Co., GA   EU828231   EU828004 EU828167 EU827921 EU828085 EU827845 
Section Purpureae          

Subsection Pedunculares           
A. edwardsiana 1TX  Stephens Co., TX EU828212 EU828221   EU827986 EU828149 EU827903 EU828067 EU827829 
A. homalantha 1TX Tyler Co., TX   EU828227   EU827999 EU828162 EU827916 EU828080 EU827840 
A. homalantha 2TX Jasper Co., TX   EU828228   EU828000 EU828163 EU827917 EU828081 EU827841 
A. pulchella 3GA Grady Co., GA N & C (2004) N & C (2004)   EU828020 EU828185 EU827939 EU828102 EU827857 
A. pulchella 4FL Florida   EU828237   EU828021 EU828186 EU827940 EU828103  
A. strictifolia 4 Stephens Co., TX      EU828031 EU828196 EU827950 EU828113 EU827867 
A.  strictifolia TX Cameron Co., TX      EU827981 EU828144 EU827898 EU828062 EU827825 
A. navasotensis 1TX Tyler Co. TX   EU828232   EU828006 EU828169 EU827923 EU828087 EU827847 
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Taxon Sampled Location matK rbcL ndhF rps2 trnT -trnF trnH-psbA rpoB ITS 
A. navasotensis 5TX Grimes Co., TX      EU828007 EU828170 EU827924 EU828088 EU827848 

 
Subsection Purpureae     

 

 

 

   
A. fasciculata 1LA Grimes Co., TX EU828213 EU828222   EU827987 EU828150 EU827904 EU828068 EU827830 
A. fasciculata 2GA Long Co., GA N & C (2004) N & C (2004)   EU827988 EU828151 EU827905 EU828069 EU827831 
A. fasciculata 4LA Caddo Parish, LA      EU827989 EU828152 EU827906 EU828070 EU827832 
A. harperi 13FL Liberty Co., FL   EU828225   EU827995 EU828158 EU827912 EU828076 EU827837 
A. harperi 14NC Brunswick Co., NC   EU828226   EU827996 EU828159 EU827913 EU828077 EU827838 
A.. maritima TX Cameron Co., Texas      EU827980 EU828143 EU827897 EU828061 EU827824 
A. maritima 2MA Barnstable CO. MA      EU828005 EU828168 EU827922 EU828086 EU827846 
A. paupercula 4MA Barnstable CO. MA      EU828016 EU828181 EU827935 EU828099 EU827853 
A. paupercula 7NY Shadmoor, Suffolk Co. NY      EU828017 EU828182 EU827936 EU828100 EU827854 
A. purpurea 101VA Fauquier Co, VA      EU828022 EU828187 EU827941 EU828104 EU827858 
A. purpurea 1AL Mobile Co., AL EU828217 EU828238   EU828023 EU828188 EU827942 EU828105 EU827859 
A. purpurea 64MD Dorchester Co., MD      EU828024 EU828189 EU827943 EU828106 EU827860 

A. purpurea 6SC Harry Co. SC      EU828025 EU828190 
EU827941
4 EU828107 EU827861 

A. tenuifolia 2VA  Prince Edward Co., VA      EU828038 EU828203 EU827957 EU828120 EU827874 

A. tenuifolia 5IA  Story Co., Iowa N & C (2004) N & C (2004) 
N & C 
(2004) EU828039 EU828204 EU827958 EU828121 EU827875 

A. tenuifolia 10LA Caddo Parish, LA      EU828037 EU828202 EU827956 EU828119 EU827873 
Subsection Setaceae          

A. laxa 3SC Colleton Co., SC EU828214 EU828229   EU828001 EU828164 EU827918 EU828082 EU827842 
A. laxa 4GA Long Co., GA   EU828230   EU828002 EU828165 EU827919 EU828083 EU827843 
A. plukenettii 2FL Washington Co., FL N & C (2004) N & C (2004)   EU828018 EU828183 EU827937  EU827855 
A. plukenettii 4GA Georgia   EU828236   EU828019 EU828184 EU827938 EU828101 EU827856 
A. setacea 3VA Prince Edward Co., VA N & C (2004) N & C (2004)   EU828026 EU828191 EU827945 EU828108 EU827862 
A. setacea 7MD Wicomico Co., MD      EU828027 EU828192 EU827946 EU828109 EU827863 

Section Tenuifolieae           
A. filicaulis 5FL Grady Co., GA   EU828223   EU827991 EU828154 EU827908 EU828072 EU827833 
A. filicaulis 1AL Mobile Co., AL      EU827990 EU828153 EU827907 EU828071 EU827834 
A. divaricata 3FL Liberty Co., FL      EU827985 EU828147 EU827901 EU828065 EU827827 
A. divaricata 5FL Washington Co., FL N & C (2004)    EU827985 EU828148 EU827902 EU828066 EU827828 

Outgroup Species          
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Taxon Sampled Location matK rbcL ndhF rps2 trnT -trnF trnH-psbA rpoB ITS 
Aureolaria pectinata Liberty  Co., Florida      EU828042 EU828206 EU827961 EU828124 EU827878 

Aureolaria pedicularia Prince Edward Co., VA N & C (2004) N & C (2004) 
N & C 
(2004) EU828043 EU828208 EU827962 EU828125 EU827879 

Brachystigma wrightii Cochise Co., AZ N & C (2004) N & C (2004) 
N & C 
(2004) EU828044 EU828209 EU827963 EU828126 EU827880 

Dasistoma macrophylla Ames, Iowa N & C (2004) N & C (2004) 
N & C 
(2004) EU828045 EU828210 EU827964 EU828127 EU827881 
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APPENDIX B 

Below is the Molecular Ecology Resources article published by Pettengill et al. (2009).  It 

describes the development and characteristics (e.g., primer sequences and repeat motifs) 

of the 21 microsatellites that were used in Chapters 2, 4, and 5.   

 
Characterization of 21 microsatellite loci within Agalinis acuta (Orobanchaceae) 

and cross-species amplification among closely related taxa  

 
ABSTRACT 

We report the isolation and characterization of 21 microsatellites from the federally listed 

endangered plant species Agalinis acuta (Orobanchaceae).  Within A. acuta, these loci 

show moderate levels of allelic variation (averaging 2.61 alleles per locus) and low levels 

of heterozygosity (average observed heterozygosity = 0.177).  Because of taxonomic 

ambiguity surrounding this listed species, these microsatellites were also tested for cross-

species amplification in five additional congeneric species.  In addition to being useful 

for evaluating the evolutionary distinctiveness of A. acuta, these microsatellites can also 

provide information relevant to conservation management strategies by characterizing 

genetic diversity within A. acuta. 
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Agalinis acuta Pennell (Family Orobanchaceae) is a fall-blooming annual plant 

native to eastern North America.  Recent phylogenetic evidence has suggested that A. 

acuta may not be distinct from A. tenella or A. decemloba (Neel & Cummings 2004; 

Pettengill & Neel 2008).  The latter two species have also been synonymized with A. 

obtusifolia (Kartesz 1994), which further complicates the issue of resolving the 

taxonomic status of A. acuta.  The microsatellites described here were developed to 

provide molecular markers suitable for elucidating the relationships among these four 

closely related species.   

Total genomic DNA from putative A. acuta samples and the additional species that 

were evaluated for cross-species amplification success (A. decemloba, A. tenella, A. 

obtusifolia, A. setacea, and A. skinneriana) was isolated from fresh or frozen (-80°C) 

leaves and flower buds by grinding 50-100 mg of tissue to powder in liquid nitrogen with 

a mortar and pestle, and then using GenElute Plant Genomic DNA Kits (Sigma) or 

QIAGEN DNEasy Kits (QIAGEN) following manufacturer instructions.  Extractions of 

additional samples were also carried out on a QIAGEN BioSprint 96 robotic workstation 

using QIAGEN’s BioSprint 96 DNA Plant Kit.   

Using genomic DNA pooled from two A. acuta individuals from Soldiers Delight 

Natural Environment Area, Baltimore Co., MD, four microsatellite libraries 

corresponding to four motifs (CA-, AAG-, CAG-, and TACA-) were created by Genetic 

Identification Services Inc., Chatsworth, CA, USA (GIS; http://www.genetic-id-

services.com/) using proprietary magnetic bead capture technology. A total of 244 clones 

were sequenced (100 by GIS and a subsequent 144 at the University of Maryland College 

Park (UMCP)).  Clones were sequenced on an ABI PRISM® 377 DNA Sequencer using 
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the DYEnamic™ ET Terminator Cycle Sequencing Kit (Amersham Biosciences) (GIS 

protocol) or on an ABI 3730xl DNA Analyzer with a BigDye® Terminator v3.1 Cycle 

Sequencing Kit (UMCP).  Ninety-five sequences (n = 48, GIS; n = 47, UMCP) contained 

an acceptable number of repeats and sufficient flanking region within which primers 

could be designed (48 CA-, 32 AAG-, 15 TACA-).  Primers were designed for these 

candidate loci using DesignerPCR version 1.03 (Research Genetics, Inc. Huntsville, AL) 

(GIS) or PRIMER3 (Rozen & Skaletsky 2000) (UMCP). 

Amplification of each candidate microsatellite locus was tested in two individuals 

representing two A. acuta populations.  Upon successful amplification in A. acuta, primer 

pairs were further tested for cross amplification in at least two individuals from each of 

the other putative species (A. decemloba, A. tenella, A. obtusifolia, A. setacea, and A. 

skinneriana).  Polymerase chain reactions (PCR) were conducted using a PTC-200 

Thermal Cycler (MJ Research, Watertown, MA, USA). Reaction volumes were 10μl and 

included 1μl of genomic DNA (2 – 5ng), 1X PCR buffer (Tris·Cl, KCl, (NH4)2SO4, 15 

mM MgCl2, stabilizers (QIAGEN); pH 8.7), 1X Q-solution (QIAGEN), 1 mM MgCl2, 

0.25 mM dNTPs, 0.075uM of each primer, and 0.25U of TopTaq DNA polymerase 

(QIAGEN). The amplification cycle for all loci was the following touchdown program: 

94C, 3min; 30 cycles of (94C, 40sec; 63C, 40sec [-0.3C/cycle]; 72C, 30sec); 5 cycles of 

(94C, 40sec; 55C, 40sec; 72C, 30sec); 72C, 10min. Amplification success was 

determined through agarose gel electrophoresis and subsequent ethidium bromide 

staining.   

Loci for which we obtained a product within the expected repeat size range were 

further tested in four individuals from each of two A. acuta populations to determine if 
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they yielded polymorphic products that could be reliably scored.  Loci that appeared 

monomorphic in A. acuta were evaluated further for polymorphism across the other taxa.  

For fragment analysis we used the same reaction mixture and amplification program 

described above, except for the substitution of the fluorescently labeled forward primer 

(6-FAM, VIC, or NED from Applied Biosystems).  PCR products were electrophoresed 

with an ABI 3730xl DNA Analyzer and using GeneScan™ -500 ROX™ Size Standard 

(Applied Biosystems).  Allele sizes were initially estimated using GENEMAPPER 

version 3.7 (Applied Biosystems), but all electropherograms were examined manually 

before assigning final genotypes.  Loci that could not be scored reliably were no longer 

pursued.   

The screening process yielded 15 microsatellite loci that were polymorphic in 29 A. 

acuta samples from Windham Co., CT (Table 1).  An additional six loci were 

polymorphic when evaluated across all putative species.  We successfully genotyped 99% 

of the A. acuta and 96% of the A. decemloba samples (Tables 1 & 2).  Amplification 

success was slightly lower in A. tenella (92%) and substantially lower among the A. 

obtusifolia (55%) and A. setacea (62%) samples (Table 2).  All loci failed to amplify 

across the majority of individuals in A. skinneriana.  The lack of any product from the 

PCR indicates that failure to acquire genotypes was due to alteration of priming sites. 

The computer program ARLEQUIN (Excoffier et al. 2005) was used to calculate 

number of alleles, observed (Ho) and expected (He) heterozygosity (Tables 1 & 2) and to 

test for departures from Hardy-Weinberg equilibrium (HWE) and linkage equilibrium 

(LE) among loci within the A. acuta population. The A. acuta samples had fewer alleles 

than the other species (Tables 1 & 2).  Certain loci could not be amplified in A. 
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obtusifolia and A. setacea (Table 2). After a Bonferroni correction for multiple 

comparisons (Rice 1988), significant deviations from HWE and LE were observed for 5 

loci (Table 1) and 2 pairwise locus combinations (Agac.ca20 - Agac.taca12 and 

Agac.ca26 - Agac.taca12), respectively.  This number of departures from HWE is not 

surprising given the degree of self-compatibility that has been observed within A. acuta 

(Neel 2002) and the fact that many populations exist as small isolated groups of 

individuals. 

In addition to the fact that the majority of the microsatellites described here cross 

amplify within A. decemloba, A. tenella, and A. obtusifulia, preliminary analyses have 

further confirmed their utility in elucidating the evolutionary distinctiveness of A. acuta 

(e.g., presence of private alleles within each of the putative species and monospecific 

groupings based on genetic distances).  The difference in the degree of allelic diversity at 

the microsatellite loci among these species suggests that the loci will also be useful in 

additional population genetic and comparative phylogeography studies. 
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Table 1. Characteristics of 21 microsatellite loci developed for A. acuta: locus name, repeat motif, primer sequences, GenBank 
Accession no., number of alleles, range of PCR product, observed heterozygosity, and expected heterozygosity.  Loci that were 
monomorphic among the A. acuta samples are listed because they were polymorphic in the other putative species (Table 2). 

 

Locus 
Repeat Motif 

in Clone Primer Sequences (5’-3’)± GenBank 
Accession no. 

% 
success 

No. of 
Alleles 

Size 
(bp) Ho HE

Agac.M1 CA[25] 
For –  6FAM - TTGATGTAGCACCACAAGTCAC 
Rev – CATGACCAAGTAATTGCAGTCA FJ754652 100 3 283-

302 0.379 0.399 

Agac.M6* CA[22]CT[21] 
For –  6FAM - GGTGATCGACGTAAATGTGA 
Rev – CGTCAGTTGTACGAAGCAGT FJ754649 100 4 354-

360 0.138 0.407 

Agac.M33* CA[7]T[1]CA[6] 
For –  6FAM - GGAGCTAACGCCTAACAGTAG 
Rev – ACAAAATGTGTTCTTGAGAGGT FJ754648 89.66 5 205-

219 0.115 0.590 

Agac.M11 CA[27] 
For – 6FAM - GGAGCAGAAGTTGGGATTC 
Rev – AAATGCCTTACGGATGACC FJ754647 100 3 208-

212 0.103 0.220 

Agac.M14 CA[31] 
For – NED - CCTCGACAAGGTAACAAGAA 
Rev – AAGCTGCTAACGATGACAAC FJ754646 96.55 5 197-

221 0.357 0.485 

Agac.M28 CA[13] 
For – NED - TAAACCAGCCCGCTAAGC 
Rev – ATCCTGCCGCCAAAATAC FJ754650 96.55 1 285-

285 0.0 n/a 

Agac.M42 CA[25] 
For –  6FAM - GTACCCTTCAAGTTTGACCTAA 
Rev – GCGGTTTTTGGAAATAGAG FJ754651 100 2 283-

285 0.172 0.216 

Agac.M46* CATA19] 
For – 6FAM - TCGGCAAACTCCAGTGAC 
Rev – TTGAGCCCATCCTCTGTG FJ754666 96.55 3 230-

254 0.250 0.544 

Agac.ca11* CA[15] 
For – VIC - GCTTCCTCTTTCCACCTGAGTA 
Rev – GCCAATGAAAGTCGGTAAGTTG FJ754653 100 3 150-

160 0.001 0.455 

Agac.ca20 CA[16] 
For – VIC - AATTGAGCAGGAATCAAGTCAT 
Rev – CTGTTTTACGAGAACTGCCTGA FJ754654 100 2 406-

410 0.414 0.503 

Agac.ca26 CA[4]CGCACA
A[1]TA[3]CA[12] 

For – NED - AAATGAAACAGTGACCAGGGAA 
Rev – GCAATCCGAAAAAGATGAGAGC FJ754655 100 3 248-

252 0.379 0.493 

Agac.aag46 AAG[10] 
For – VIC - GTGACGATAAGTCGGTCAATCA 
Rev – CACAGTCTTACCATGCGAACTA FJ754656 100 1 475-

475 0.0 n/a 

Agac.ca10 CA[12] 
For –  6FAM - GCCCTTACTCTCACATTTGCTA 
Rev – GGTTTGTCGATTGAACCTCTCT FJ754657 100 3 160-

165 0.276 0.272 

Agac.aag29 AAG[10] 
For – NED - TTGACGAAGTAAAGGACATCGG 
Rev – TCACTATCTCAGACACCGTCAT FJ754658 100 1 339-

339 0.0 n/a 

Agac.ca48 CA[12] 
For –  6FAM - CCAGATGCACAGACTCCATAAA 
Rev – CGTGGGATCAGGTAGATACGTT FJ754659 100 1 296-

296 0.0 n/a 
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Agac.ca 21 CA[10] 
For – NED - TTTGTTGCGTTGAAATCCTCAC 
Rev – GACTAGACTCCAAGCTCGATCA FJ754660 100 1 156-

156 0.0 n/a 

Agac.taca12 TACA[11] 
For – NED - CGAGATCGAAGGAACAACTTCA 
Rev – CGATCACAAAGCACGAACTAAC FJ754661 100 3 442-

454 0.379 0.482 

Agac.taca45 TACA[35] 
For – 6FAM - TTCCATAATGCCCCCATCAAAT 
Rev – AGCGACCAAAGTGTATTTTCCT FJ754662 100 4 329-

341 0.552 0.635 

Agac.taca04 TACA[21] 
For – 6FAM - CTCACTCCATACAAGGATGCTC 
Rev – CGTTTCGGTCCGGTTCTC FJ754663 100 2 331-

335 0.103 0.100 

Agac.ca45 CA[7] 
For – NED - CAGTGCTCGTGTTGTATTTTGG 
Rev – GATTTTGTCAACTTGCTCCACC FJ754664 100 1 294-

294 0.0 n/a 

Agac.ca33* CA[24] 
For – VIC - GGCTAGTTTGTCCACCATCATA 
Rev – ACTTAGTAGCATCGTTTGAGCC FJ754665 100 4 214-

284 0.103 0.540 

* = Loci that exhibited significant deviations from HWE 
 ± = 6FAM, NED, and VIC are the fluorescent dyes used to label the forward primer for genotyping
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Table 2. Characteristics of 21 microsatellite loci in A. decemloba, A. tenella, A. obtusifolia, and A. setacea.  Numbers in parentheses 
represent the number of individuals evaluated followed by geographic location.   

Locus 

Cross Amplification Success 
A. decemloba (33) 

(Wake Co. NC) 
A. tenella (30) 

(Lowndes Co. GA) 
A. obtusifolia (35) 
(Liberty Co. FL) 

A. setacea (31) 
(Lunenberg Co. VA) 

Range 
(bp) 

No.of 
Alleles 

% 
Success 

Range 
(bp) 

No.of 
Alleles 

% 
Success 

Range 
(bp) 

No. of 
Alleles % Success Range 

(bp) 
No. of 
Alleles 

% 
Success 

Agac.M1 244-274 6 100 218-296 15 90.00 204-292 9 37.14 200-208 3 100 
Agac.M6 346-356 7 100 272-342 13 93.33 n/a 0 0.00 226-246 2 100 
Agac.M33 209-209 1 100 203-223 10 96.67 133-215 5 14.29 205-223 9 90.32 
Agac.M11 200-223 5 100 168-242 17 90.00 162-166 3 82.86 174-175 2 100 
Agac.M14 209-239 6 96.97 195-297 21 90.00 147-313 9 94.29 225-234 4 100 
Agac.M28 273-285 3 100 243-293 6 83.33 239-288 10 74.29 241-276 6 61.29 
Agac.M42 271-293 6 100 263-295 15 100 271-365 13 51.43 225-245 2 100 
Agac.M46 238-266 3 100 200-270 17 96.67 226-310 14 82.86 n/a 0 0.0 
Agac.ca 11 148-168 5 100 152-198 18 100 158-196 11 97.14 132-160 7 100 
Agac.ca20 408-436 8 100 390-478 23 96.67 440-514 13 71.43 436-436 1 100 
Agac.ca26 238-250 2 93.94 250-254 3 100 216-252 12 71.43 238-250 3 16.13 
Agac.aag46 457-478 3 100 460-511 10 100 481-494 5 97.14 n/a 0 0.0 
Agac.ca10 157-164 3 100 154-160 2 96.67 156-164 5 97.14 152-164 3 41.94 
Agac.aag29 339-343 2 81.82 339-351 4 100 n/a 0 0.00 n/a 0 0.0 
Agac.ca48 280-300 6 100 284-296 3 83.33 292-294 2 2.86 292-296 3 93.55 
Agac.ca 21 150-156 3 100 152-173 9 96.67 144-146 2 94.29 157-157 3 22.58 
Agac.taca12 450-470 5 42.42 434-482 6 43.33 n/a 0 0.00 n/a 0 0.0 
Agac.taca45 202-337 11 100 178-261 15 96.67 n/a 0 0.00 191-196 3 100 
Agac.taca04 311-365 4 93.94 295-381 16 100 335-459 30 94.29 300-348 3 96.77 
Agac.ca45 294-294 1 100 292-292 1 86.67 n/a 0 0.00 n/a 0 0.0 
Agac.ca33 230-232 2 100 216-246 12 100 214-248 14 91.43 238-248 3 100 
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APPENDIX C  

Data sheet used to record morphological characteristics.   
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