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GYROSCOPIC CONTROL AND STABILIZATION
Li-Sheng Wang * P.S. Krishnaprasad {

ABSTRACT. In this paper, we consider the geometry of gyroscopic systems with
symmetry, starting from an intrinsic Lagrangian viewpoint. We note that natural
mechanical systems with exogenous forces can be transformed into gyroscopic
systems, when the forces are determined by a suitable class of feedback laws. To
assess the stability of relative equilibria in the resultant feedback systems, we extend
the energy-momentum block-diagonalization theorem of Simo, Lewis, Posbergh,
and Marsden to gyroscopic systems with symmetry. We iliustrate the main ideas
by a key example of two coupled rigid bodies with internal rotors. The energy-
momentum method yields computationally tractable stability criteria in this and

other examples.

1. Introduction

Geometric control theory has led to the development of a large body of results to analyze
and design nonlinear feedback systems. There is a beautiful structure theory of nonlinear control
systems that relates internal representations (state space models) to external representations (input
output models). Methods from the differential geometry of foliations play a key role in the solution
of fundamental problems such as disturbance decoupling, non-interacting control etc. cf. [21][33].
Inspired in part by the success of the linear theory and partly by the search for suitable feedback
invariants [10], the paradigm of feedback linearization has had diverse applications [38]. Much of
this work is however concerned with generic dynamics and often does not specialize well to the
context of natural mechanical systems. However, there is a growing body of literature devoted to
development of a geometric control theory for hamiltonian systems. See [12], [33], [22] for recent

developments.
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A parallel intellectual program to geometrize mechanics has been very successful and has had
tremendous impact in many areas of mathematics (e.g. symplectic geometry and topology) and
physics (e.g. gauge theory, geometric quantization). Some of the roots of this program may be
traced to the problems of stability [4], symmetry and reduction [44] [43] [13] [32], and investigation
of the topology of phase space [42]. Modern expositions of these de{relopments may be found in [1]
[5] [6]. An exciting recent result is the block diagonalization theorem for simple mechanical systems
with symmetry [39] [41]. This theorem provides refined criteria for stability assessment for natural
mechanical systems by careful exploitation of the underlying geometric structure.

One of the principal goals of the present paper is to demonstrate the applicability of geometric
ideas to a large class of feedback systems derived from natural mechanical systems. Here the
feedback controls are of the gyroscopic type. A key point is that simple mechanical systems with
symmetry, when subject to exogenous forces determined by suitable classes of feedback laws, also
admit hamiltonian and lagrangian structures. In [g] [7] the hamiltonian structures so derived are
viewed as deformations (by feedback gains) of the hamiltonian structure governing the open loop
unforced system. There, the methods of geometric mechanics such as reduction, reconstruction
phases, and the energy-Casimir algorithm for stability analysis, are brought to bear on a key
example of rigid body control using external torques (as implemented by gas jets) and internal
torques (via reaction wheels/rotors), and the relationships between these two methods of control.
In the present paper, taking an intrinsic lagrangian viewpoint, we develop a systematic theory
of gyroscopic feedback systems with symmetry. Key examples of such systems include dual-spin
satellites, rigid body satellites with magnetic torquers etc.

The principal reason for taking a lagrangian viewpoint is that it leads very naturally
to the incorporation of exogenous forces/controls. Furthermore, in the setting of constrained
nonholonomic systems, the Lagrange-D’Alembert principle is the basic principle of modeling. (See
however related remarks about vakonomic mechanics and the role of variational principles for
constrained systems in [6].) Good representations of higher order tangent bundles together with
the intrinsic/invariant formulation of lagrangian mechanics lead to effective modeling of the systems
of interest. Here we give variational principles for relative equilibria and their stability. One of
the contributions of this paper is the extension of the (energy-momentum) block-diagonalization
theorem to gyroscopic systems with symmetry. Thus, we are able to establish a set of refined
stability criteria for a wide class of feedback systems by exploiting fully the underlying geometric
and group-theoretic structures.

The outline of the paper is as follows. Section 2 lists relevant notations in geometric mechanics
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and group action. In Section 3, we give a brief treatment of lagrangian mechanics in invariant
form. We formulate the Lagrange-D’Alembert principle in geometric terms. Qur exposition follows
Vershik and Faddeev [45) in large part, except for certain conventions. We then display a useful
representation of the second tangent and cotangent bundles associated to SO(3). In Section 4,
we axiomatize the notion of gyroscopic feedback system with symmetry. The dual-spin equations
are derived as an example. In Section 5, we characterize relative equilibria by the Principle of
Symmetric Criticality. We give a careful exposition of the concept of relative stability in the
abstract setting. In Section 6, we prove the block diagonalization theorem for gyroscopic systems
with symmetry. This extends naturally the previous work of Simo, Lewis, Posbergh, and Marsden
on block-diagonalization of simple mechanical systems with symmetry. A distinctive feature of
the present work is that all computations are done on the velocity phase space TQ, or loosely,
on “lagrangian side”. We are aware that D. Lewis has carried out a similar program [27], but
the present work was done independently and primarily motivated by feedback stability problems*.
The correct modification of the amended and augmented potentials to incorporate gyroscopic terms
vields stability criteria that explicitly display said terms. This is further made clear in the detailed
example of two coupled rigid bodies with internal rotors (the multibody dual-spin problem of [48])

studied in Section 7.

There are other aspe'cts of gyroscopic feedback controls that we do not explore in this paper
but we think are quite promising. Control strategies based on bifurcation of relative equilibria may
be effective in a variety of problems. We see instances in {54}, and [8]. In the present setting it would
be worthwhile to investigate bifurcations with respect to the gyroscopic feedback parameters. In the
context of the dual-spin problem, this has been carried out by Krishnaprasad and Berenstein who
gave a bifurcation diagram [25]. Also, in [7], the authors show in an example how the phenomenon
of geometric phase shift is affected by gyroscopic parameters. We hope to discuss these aspects
in a later paper. Some of the results in this paper appeared in the Ph.D. dissertation of Li-Sheng

Wang [46].

We would like to thank Professor Jerrold Marsden for critical and helpful advice on an earlier

version of this paper.

* A feedback law is a rule that determines exogenous forces/controls as functions of the current
state of a dynamical system. The feedback stabilization problem is to find feedback laws that

achieve prescribed characteristics in the closed-loop system.
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2. Notations and Préliminary

In this section, we introduce the notations used in later sections. First, we collect together
some basic geometric objects of lagrangian mechanics. We follow Vershik and Faddeev [45] closely,
filling in details where needed.

Let Q) be a smooth manifold with local coordinates @, T'Q) be the tangent bundle of ¢ with
local coordinates (z,v),and 7 : TQ — @Q be the canonical projection from 7TQ to Q. Let TTQ be
the second tangent bundle with local coordinates (z, v, u, w). Let T{;,,) be the tangent space of
TQ at (z, v),i.e. T(z,)TQ,and denote the vertical tangent subspace of T(z,) consisting of vectors
tangent to the fiber of T'Q) by T(‘;,v). In local coordinates, each vector in T(‘;’U) can be written as
(0, w), for some w € T,Q. The tangent map Tr of the canonical projection, T'w : TTQ — TQ,
can be expressed in local coordinates as Tz vy (4, w) = u € TxQ), which projects a vector in T(z,q)
to its horizontal component. Define the map Y(z,v) : T2@ = Tz TQ; u > (0, u) € T(‘;U), which
establishes an isomorphism between T,( and T(‘;’U). Let X : TQ — TTQ be a vector field on
TQ. X is called a vertical vector field if X(z,v) € T(Z,v) or X(z, v) = (0, w), for some w € T:Q).
This is equivalent to saying Tz - X = 0. There is a unique vertical vector field XPV called the
principal vertical field defined by XTV(z, v) = vz - v = (0, v).

Now we consider the dual spaces. Let w be a 1-form on T¢). It is said to be horizontal if
for all vertical vector fields X, w(X) = 0, or in local coordinates, w(z, v) = («, 0), for some
o € TrQ. The dual of the map Ty ) : T(z,0)TQ — TxQ can be defined implicitly through
Tripw: To@ — TGunTQ,

(Tﬂ-?cc,v)as ('U,,’UJ)) = (O" Tﬁ(z,v) (uvw)> = <a>u>’

where o € T5Q. Thus, in local coordinates, T#(, ya = (,0). Similarly, the dual of (2,4,

denoted by A/E‘x,v) : T(*x’u)TQ — T*Q,is defined by, in local coordinates,

<7(*a:,v)(a7 ﬁ)7 u) = <(a7 ﬂ)a V(zw)* u) = <'37 u>-

Equivalently, 7(*%1])(@, B8y=24.
With these dual mappings, we define the bundle map 7 : T7(7Q) — T(TQ) as
T(z,v) = Ty Vi) I particular, for (o, 3) € T(“;YU)TQ , we have

T (@ B) = TT(pny Vo (@ 8) = (3, 0). (2.1)

Thus 7(,,) maps any cotangent vector (covector) to a horizontal covector. Globally 7 maps any
1-form on T'Q to a horizontal 1-form on TQ . On the other hand, we may define a bundle map from

A
the second tangent bundle into itself, 7. : TTQ — TTQ as Tu(zw) = V(zw) " LT(z0)- In local
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coordinates we can associate to each (u,w) € T TQ, Tu(z,0) (¥, w) = (0, u). In other words,
Ta(z,v) MAPS any secqnd tangent vector to a vertical tangent vector, and, globally 7, maps a vector
field on TQ to a vertical vector field on TQ.

To treat second-order equations, we need the following concept. A vector field on 70,
X € X(TQ), is a special vector field if and only if 7,.X = XPV. Tn local coordinates, assuming
X(z,v) = (u,w), it says T X (2,v) = (0, v), which is equivalent to the condition u = ». It
then follows that this definition of special vector fleld X is the same as saying X gives rise to a

second-order equation on @, cf. p. 213 of Abraham and Marsden [1].

Let T(*;f{}) denote the space of horizontal covectors at (z,v) in TQ. Define the map
o : T(‘;{{)) — T7Q to be, in local coordinates, T(z,)(, 0) = o, for « € TrQ. This map will
be used later in defining the Legendre transformation. The maps v, 7, Ty, and ¢ are intrinsic and
do not depend on choices of local trivializations of the bundles involved.

Now we collect together basic notions of group actions on riemannian manifolds necessary
to discuss natural mechanical systems with symmetry. Let (@, < -,- ) be a manifold with
riemannian metric < -,- >. We sometimes write K(z) (v, we) =< vy, w, >, for v € Q, and

Vg Wy € T2€). The riemannian metric induces a vector bundle isomorphism K’ : TQ — T*Q,
defined by

<I(‘b(?1x)a wz)x = KL Vg, Wg g, forall Vzy We € TJ;O

2]

where {(-,-), denotes the pairing between elements in T7Q and T,Q. Here, and in what follows,
the notation {-,-) is used to denote the dual pairing between appropriate spaces. By the Riesz
Representation Theorem, this isomorphism is well defined and we may write K = (K°)!

T*Q — TQ, which is also a fiber-preserving mapping. By definition, for e, € 7*Q and w, € Te,
we have (o, w,), =< K". Oz, Wy ;. Via the isomorphism K%, an induced inner product on

T"@Q) can be defined, for ag, 3, € >Q,

<ag, Be>req = < K'iay, K'f, s>, . : (2.2)

Let G be a Lie group, and &:G x @ — @ be a group action of G on the manifold Q.
We shall use the notations ®(g, z) = $y(2z) = g- 2 interchangeably to denote this action. The
tangent lift ®7 associated with & is defined as <I>§ 2 T®, : TQ — TQ, or, in local coordinates,
@g(z‘, v) = (@4(x), Tpx®, - v). The cotangent [ift ®7 associated to & on the cotangent bundle
T*Q, T :GxT*Q — 7@, is @g’(am) 2 T7® -1 -y, where T*® -1 is the dual of T®,—1. In

local coordinates, we have <<I>g* (2, a), (g2, ) gr = {a, Tyo®y-r - v)z. It is straightforward to
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verify that the tangent lift and cotangent lift are both well-defined actions on the spaces TQ and
T*() respectively.

Let the Lie algebra of a Lie group ’G be denoted by G, with its dual G*. Recall that the Lie
algebra G is identified as the tangent space to G at the identity element e or, equivalently, the set

of left invariant vector fields on G, cf. also [34]. Given £ € G, for a group action @ on a manifold
@, we define

A d
fa(e) & | Bupeele) € L0,
€ e=0

the infinitesimal generator of the action corresponding to £. The group G acts on G through the

adjoint action

Ad : G X G = G; (9,8 — Te(Rg-10Ly )¢ = Ady, (2.3)

where L,, R, denote the left and right translation of a group element by g € G, respectively. The

map ¢ — Ad, is also called the adjoint representation of G in G. The infinitesimal generator of

this adjoint action,

d
fg(n) = E’g Adexpeg(n)
e=0

can be shown to be equal to the Lie bracket of ¢ and 7, namely,

Eo(n) = [& 0] = aden.

(We follow the sign convention for Lie brackets used in [1].) The group G also acts on the dual of

the Lie algebra G* through the coadjoint action

Ad™ 2 G x G = G5 (g, p) = Adjap,

which is defined by, { Adju, &) 2 {p, Ady€), for all £ € G, where (-,-) denotes the duality pairing

on G* x G. The corresponding infinitesimal generator, {g- can be shown to be determined by

(Ea-(p)y M) = —(u, [&, m)) & = (adip, 1),

for all 7 € G. From the previous definitions, it is easy to establish the identity, {adiu,n) =
(i, aden). With the above structure, group G acts on @ and G through the actions ¢ and Ad~
respectively. A map J : Q — G* is called Ad* -equivariant if J o ®, = Ad7_, o J. For pn e G*, we
define the isotropy subgroup of u by

Gy, = {geCG : Adyp = p}, (2.4)

with isotropy Lie algebra



Gu = {n€G : adiy = 0}, (2.5)

which can be shown to be a subalgebra of G.

The notion of invariance is now ready to be introduced. A riemannian metric is G-invariant
if it is invariant under the pull-back of the mapping ®,, i.e. forall g € G, &} - K = K,vor
in local coordinates, K(z)(v, w) = K(g-2)(Tx®, - v, T3P, - w), Yo, w € TpQ. It then follows
that the inner product on 7@ defined in (2.2) is invariant under the cotangent lift, namely,

< ogy Pz >Teg=< @g*am f_ﬁg*ﬂx >p-q, for all g € G. This can be shown by using the following

identities,

K4 8T oy = Tp0, K'-ay, fora, € T*Q, (2.6a)
K" T8, w, = @1 - K’ w,, forw, € TQ. (2.60)

Similarly, a 1-form Y € T7Q is called G -invariant if @;-Y =Y, forall g € G. A smooth function
V :Q — R is a G-invariant function on the manifold if, for all g € G, V (®4(2z)) = V(). A vector
field Y on Q is a G-invariant vector field ifforall g € G, (®,)«Y =Y, 01 Y(2) = T8, V(g7 2),
forze@,ged.

Recall that a differential operator on the full tensor algebra can be deﬁned from its restrictions
on functions and vector fields, cf. the theorem of Willmore [52]. Accordingly, the Lie derivative of
a vector field on the tensor algebra can be found from its Lie derivative on functions (directional
derivative) and Lie derivative on vector fields (Lie bracket). The following two lemmas are essential

to the developments in Section 6. Their proofs can be found in, e.g. [1], and [46].

LEMMA 2.1

Let Y, K be G-invariant vector field and riemannian metric, respectively. Their Lie
derivatives with respect to vector field ng, where 7 € G, vanish, namely, Ly, Y = 0, and
Ly, K =0.

LEMMA 2.2
Let X1, X, € %(Q), the vector fields on Q. For n € G, we have

LnQ < *lea ‘YQ D =<K LnQ AY1~ «Y‘Z > + K }{13 LnQ —X—B > -



3. Lagrangian Mechanics in Invariant Form

Lagrangian mechanics provides a systematic formulation of mechanical problems from a
unified point of view. In contrast with working on the cotangent bundle as in most of hamiltonian
mechanics, lagrangian mechanics formulates the problems on the tangent bundle, or the velocity
phase space. As we shall see, it admits greater freedom in interpreting and formulating intuitive
physical notions such as exogenous forces and the principle of virtual power. In this Section, we
present the invariant form of lagrangian mechanics through local representations and show that the
invariant form of the Lagrange-d’Alembert Principle gives rise to the Euler-Lagrange equations in
local coordinates. Moreover, a similar equation can be applied to model mechanical systems on the
special orthogonal group (rotation group) SO(3) in a global sense.

Let @ be a smooth manifold viewed as the configuration space. Let T'Q, TT@ denote its
tangent bundle, second tangent bundle, respectively. Since lagrangian mechanics is about second-
order equations, we need to consider the corresponding elements in the jet spaces of ¢, namely the
second tangent vectors. Let L : TQ — R be a smooth function (or Lagrangian). The corresponding

differential 1-form dL : TQ — T*(T'Q) can be written in local coordinates as,

(dL(z,v), (v, w)) = Tl (u, w) (3.1)
or, in terms of Fréchét partial derivatives, dL(z,v) = (D1L(z,v), D2L(z,v)). The horizontal
1-form O on TQ corresponding to L is defined to be, cf. (2.1),

oL 2 r-dL. (3.20)

In local coordinates, @r(z,v) = T(z,) * dL(z,v) = (D2L(z,v), 0). Taking the exterior derivative
of the 1-form Oy, we associate to L a 2-form on 7Q, Qp:T7TQ x TTQ — R, defined as

>

Q, 2 —doy. (3.30)

If we write ©p = D,iL dz?, then, by taking exterior derivatives on both sides, we get

Q; = —dD,L A dat = DyDyLda' A dz? + Dy DyLdz’ A dv. (3.3b)

On the other hand, let (uy,w1), (w2, w2) € T(4,»TQ . From (3.3a), we derive the following formula

in local coordinates,
Qrn(z, v)((u1, w1), (ug, w2)) = (D1DaL(z,v)-u2) - wy + (D2DayL(z,v) wa) -t 330
(3.3¢
— (D1DoL(z,v) - ug)-us — (DaDy L(z,v) - wy) - U2
Next, we give the intrinsic form of Legendre transformation which maps the velocity phase

space to the momentum phase space. The Legendre transformation corresponding to the Lagrangian

L can be defined as

o)



b : TQ — T°Q; (2, v) = (2, 0(s,0) - OL(z,v)), (3.4)

or, equivalently, £z(z, v) = (z, D2L(z,v)), cf. the definition through fiber derivatives in pp. 209,
219 of [1].

Assuming now that £y, is a diffeomorphism (or L is hyperregular), we have £7' : T*Q — TQ.
(This condition implies that, in local coordinates, DDy L(z,v) is nonsingular.) Denote the space
of k-forms on a manifold M as w*(M). By the pull-back of {71, (£71)* : @*(TQ) — =*(T*Q),
we can define a 2-form on T*Q as wy 2 (Zzl)*QL. Although Qp is L-dependent, wy defined
above is invariant under the change of L. In fact, letting (2, p) be local coordinates of T*Q , where
(p, w) = (D2 L(x,v), w), for w € TxQ, it can be shown that wy = dz A dp, which is the canonical
symplectic 2-form on the cotangent bundle.

Thus, when the Legendre transformation is diffeomorphic, the two approaches, either based
on the cotangent bundle or directly on the tangent bundle, are equivalent. Moreover, (T%Q, wq),

(TQ, Q1) are both symplectic manifolds, carrying associated Poisson structures.

REMARK 3.1

The closed 2-form €y in (3.3a) is well-defined for every Lagrangian L. It is however
nondegenerate, and therefore a symplectic structure, only when L is regular. For a singular or
irregular L, 1, becomes presymplectic, namely Qp is no longer of maximal rank. Discussions of

this case may be found in, e.g. [14] [15].

With the symplectic 2-form 7, one constructs a correspondence between vector fields and

1-forms, M1 :@}(TQ)— %(TQ) through, for w € ='(TQ),
QL(HL(w), Z) =w(Z), VZe X(TQ). (3.5)
In terms of the inverse of II;, an alternative expression is Qr(X, Z) = 7 (X)(Z), for all
Ze X(TQ),or
LX) () = 9 (X, -). (3.6)
It can be shown that II; maps horizontal 1-forms to vertical vector fields [45] [46]. Now define the
energy function on TQ, Hp:TQ — IR, as,
H, & 40 (XPY) - I, (3.7)
where XTV is the principal vertical field defined in Section 2. In local coordinates, we have
Hr(z,v) = {{r(z,v), v) — L(z, v) which is exactly the same notion as the energy defined in p.213
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in [1]. In particular, the function dL(XTV) is sometimes called the action corresponding to L.

From the energy function Hj, on the velocity phase space, define the hamiltonian on the momentum

phase space as

H:T'Q - R; H = Hpof;h (3.8)

The hamiltonian system (T7Q,wo, H) is the customary object of study in hamiltonian mechanics.
The Lagrangian vector field determined by L is defined as,

Xy, 2 Ny (dH.), (3.9)

or, equivalently, Qr(Xpg,, Z) = dH(Z), for all Z € %X(TQ). In local coordinates, the matrix

form is XIT{L Q1] Z = VHLT Z. Thus we may write the Lagrangian vector field as

X, = ([0 ) vHL. (3.95)

One could also think of Xy, as the Hamiltonian vector field corresponding to the Hamiltonian Hj,
on the symplectic manifold (TQ,.), and thus Hy is a first integral (conserved quantity) along
the vector field Xp, . We say that we can define consistent equations of motion if such an Xp,
exists. It can be shown that X, is a special vector field and thus gives rise to a second-order
equation.

Now we introduce the important notion of Lagrangian force. Recall that in lagrangian
mechanics [45], virtual displacements can be thought as special vector fields on T'Q, and forces
can be modeled as horizontal 1-forms on TQ . For a Lagrangian L, the associated Lagrangian force

on a virtual displacement X, F1(X), is defined through

FL(X)2) & Qu(X,2) — dHL(Z), VY Z € %(TQ) (3.10a)

The Lagrangian force Fp,(X) is a 1-form on TQ. This 1-form can be shown to be a horizontal

1-form on TQ. In fact, in local coordinates, with X (z,v) = (v, w), we have
Fr(X)(z,v) (u,wy) = (=D1DyL(z,v) v~ DyDaL(z, v)-w+ DiL(z,v) ) - u. (3.100)

Thus it is a well-defined force.

Definition in (3.10a) holds even for L singular, ¢f. Remark 3.1. If L is hyperregular, we may
write, cf. (3.5), Fp(X)=I7Y(X)~dHy. This is the definition used in [45] for the Lagrangian
force. In the above setting, the Lagrange-d’Alembert Principle can be now stated in the following

form.
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LAGRANGE D’ALEMBERT PRINCIPLE 3.2

For a holonomic mechanical system, on the virtual displacement (special vector field) that
determines the real trajectory of motion, the sum of the Lagrangian force and the exterior force

vanishes.
R
For natural systems, the Lagrangian force consists of resultant force of inertia and forces
coming from the potential energy. Thus the principle here corresponds to the classical d’Alembert
principle, see e.g. [26]. As discussed in [26], a fundamental entity in analytical mechanics is virtual
work, instead of the classical notion of force. Here we present a unified treatment in terms of
horizontal 1-forms, where the classical forces are represented by the coordinates of this 1-form.

Let w be an exterior force or a horizontal 1-form. The d’Alembert principle says that

Fu(X) + w = 0, (3.11)

where X is a special vector field. The trajectories of motion of the mechanical system with
Lagrangian I obey the flow of this vector field. In the absence of any exterior force and L being
regular, from (3.10a), we write Qp(X,Z) = dH(Z), for all Z € X(T'Q), which, by definition of
Xpg, , implies that X = Xy, , i.e. the Lagrangian vector fleld gives the real trajectories of motion.:

Now we express the d’Alembert principle in local coordinates where (3.11) reads
Fr(X) (z, v) + w(z, v) = 0.
Letting w = (e, 0), X(z,v) = (v, w), we have, cf. (3.10b),

(~D1D2L(m,v)-v—DngL(a:,v)-w—’rDﬂ)(z,v)) uta-u = 0, VueT.Q.

By including time derivatives as v = &, w = v, we get

% DyL(z,v)-u = DiL(z,v) v + o-u, Vue T.0. (3.12)

Integrating both sides with respect to the variable ¢, this equation can be rewritten as

DyL{z,v)-u

T T T
— / Dy L(z,v) - us dt = / (D1L(z,v)-u + o - u)dt.
0 0 0

This corresponds to the Principle of Virtual Power in analytical mechanics, cf. e.g. [51]. The
tangent vector u is sometimes called test function. In the case that the pairing is nondegenerate,

for example, in the finite dimensional case, we can write (3.12) as

—%DQL(:L',U‘) = DiL(z,v) + a, (3.13)

which is the classical form of the Euler-Lagrange equation.
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EXAMPLE 3.3. (On the group SO(3))

Now we illustrate the Lagrange-d’Alembert Principle in the setting of the Special Orthogonal
Group SO(3) as configuration space. Recall that each element A in SO(3) is an element in
GL(3), the group of all 3 X 3 nonsingular matrices, which satisfies the condition ATA = 1 and
det(A) = 1. Let the operator ~ denote the natural isomorphism from R? to so(3), the space of

3 X 3 skew-symmetric matrices, defined by

Un 0 - Ws wa
Wa = W3 0 — Wi . (3 . ].4)
w3 —ws Wy 0

Given A € SO(3), recall that (4,AQ) is an element in TSO(3). In rigid body mechanics, the
variable € corresponds to the instantaneous angular velocity of the motion in body coordinates.

With the representation of the elements in the second tangent bundle T7T'SO(3) as
(A, AQ, A, A(m+w)>, (3.15)
and the trace pairing in GL(3)

(4, B) = %tv-(ATB), for A, B € GL(3), (3.16)

we can write elements in T*7.50(3) canonically as

<A, AQ, AGDO + a), AB). (3.17)

Here u, w, a, b are vectors in R®, and the pairing between T*TSO(3) and TTSO(3) becomes

(4, 40, 460+ a), 4bY, (4, 40, 4z, A +9))) = arutbew.

We remark here that these parametrizations of T7°'SO(3) and T*TSO(3) are globally defined
via the embedding of SO(3) in GL(3). Our goal has been to make the pairing analogous to that
on Euclidean space. The global representations (3.15), (3.17) of the second tangent bundle and the
dual of the second tangent bundle on SO(3) also prove to be useful in computing the derivatives or
variations of a function (Lagrangian) on T'SO(3) and in deriving the reduced Poisson bracket [49].
In the following, we state the Lagrange-d’Alembert Principle in terms of these representations.

On TSO(3), let a system be described by a Lagrangian L. The Lagrange-d’Alembert
Principle in the invariant form (3.11) applied to motions on SO(3) gives rise to the Buler-Lagrange
equation, namely for all A% € T4S0(3),

(% DyL(A, AQ), Ad) = (D1L(4, AQ), Ad) + (o, Ad), (3.18)
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where « is the exterior force. See [46] for detailed discussions.

4. Gyroscopic Control

In this section we demonstrate a class of feedback control laws which transform a simple
mechanical system with symmetry with ezogenous forces (controls) into a gyroscopic system with
symmetry, cf. Theorem 4.4 below. Although the concept of a Lagrangian system with symmetry
is by now well-known (see [1], and [5]), in the interest of keeping our treatment self-contained, we

give a rapid exposé of the basic ideas around the concept of a gyroscopic system with symmetry.

DEFINITION 4.1

A Gyroscopic System with Symmetry is a 5-tuple, (Q, K, Y, V, G), where

(1) (@, K) is a riemannian manifold.

(2) Y is a vector field on @, called a gyroscopic field.

(3) V isa function on @, a potential.

(4) G is a Lie group with an action ® : G X @ — @, which leaves I, Y, V invariant and is
referred to as the symmetry group.

(5) The associated Lagrangian L : T() — IR is given by

L(vs) = —;—K(x)(vx, ve) + K(2)(vsy Y(2)) — V(). (4.1)

On the other hand, in the framework of hamiltonian mechanics, a gyroscopic system with

symmetry is characterized by a Hamiltonian H : T*@Q) — IR in the following form,

H(ag) = % <oy - KNV (1), ap — K°(Y(2)) >1-¢ + V(2). (4.2)

where < -, >7wq is the induced metric on T*Q defined in (2.2).

The word “gyroscopic” comes from the second term in the Lagrangian (4.1), which includes
the gyroscopic field ¥. This term is linear in the velocity variables and is responsible for the
paradoxical behavior of gyroscopes. The Coriolis force in a rotating reference system and the
magnetic force due to electric currents are examples of the effect of gyroscopic terms in the

Lagrangian function. To see how the gyroscopic term enters the dynamical equations, we restrict
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our attention for the moment to a gyroscopic system (without symmetry consideration) on IR™ (or

in local coordinates) described by the Lagrangian

L(z, v) = —;— <v, Mw> + <Y(z), v> — V(z), (4.3)

where M (z) is a symmetric positive-definite second-order tensor, vectors z, v(= &) arein R", Y
is a map from R"™ to R", and V is a real-valued function. The notation < -, > denotes the inner

product on the Euclidean space R"™. This is a gyroscopic system in the sense of Definition 4.1 with

K(@)(v, v) = vTM(2)v, and Y(z) = M(z)7'Y(z).

Abstractly, Y should be regarded as a 1-form in T*Q.
To obtain the dynamical equations associated with the Lagrangian in (4.3), we invoke the

classical Euler-Lagrange equations, cf. (3.13). First, we find
aL

3, = M(z)-v + Y(2).

By taking time derivatives, we get

d 9L , oM oY
——— = M(z)-0 + (—EM—(x)v> ‘v o+ —a?(:n)vv,

where OM/dz is a third-order tensor, and 8Y/dz is a second-order tensor. With standard

notations in Tensor Algebra, cf. e.g. [3], the above equation can be rewritten as

AL ywyen + 2

gz UV T g

() v. | (4.4)

Now we compute the partial derivative of L with respect to z. By definition,

%(UTM(:E)v) W= —— vI M (2 + ew),

de

e=0

Mz +ew): (vv)

- (%jgzx)-w> : (vv) = (%(iv)*:(vﬂ)) - W,

where (OM/0z)* is the cyclic transpose of 831 /Jz defined through

?lf(m)*-u-v-w = “-BM(HJ)'W‘“'Vy Vu,v,weR"™
T

Oz
Accordingly, we have
aM

(T%(‘UTM(:U)U) = 02 (&)« (vv). (4.5)

On the other hand,



ik
<

q
!
&
b
il

f

)Y oY
= (g(m)-w)v = (—a;(m)T-v) ‘w

where the superscript 7 denotes the transpose of the second-order tensor. Thus we have

a T<r _ 24 T
5 (v Y(z)) = Eg(w) -, (4.6)
By substituting (4.4), (4.5), and (4.6) in the Euler-Lagrange equations, we obtain
.M, oY _10M, ., oY .1 oV
M(z)-0o + —5;—(33)(1)1)) + %(m)v = 5—55—(:1:) t(vv) + -5;(16) ‘v — —a—x—(a:),

which can be further written as

M(z)-v = <% %ﬂg—(r)* - %l};[—("c)) t(vv) — (gl—/— x) — _3_3;_ a:)T> v = gz(m)

Oz 0 Oz
Define
2 _0_?_ _ Qy; T
R = o (z) s (z)*, (4.7a)
A 1OM, . OM

The equations of motion for a gyroscopic system with Lagrangian of the form (4.1) can be then

expressed as,

N . . av
M{z) & =T -2-¢ -~ R-¢ — 5@—(3:) (4.8)
Note that R is a skew-symmetric tensor, thus the second term on the right of (4.8) gives the
gyroscopic force in the dynamical equations as discussed in [11]. We remark here that the component
form of M(2)~!7 is nothing but the Christoffel symbol associated with the geodesic flow. Cf. e.g.

[1]. By multiplying both sides of (4.8) with M ™!, we get

& - Mz)'T-2-2 = M) 'R ¢ - A/I(:L')—l%—%(z). (4.9)

In terms of covariant differentiation, we can write the left hand side of (4.9) as V;&. Moreover,

with ¥V being a 1-form, by taking exterior derivative of Y , we obtain, in local coordinates,

aF (2)(v, w) = (DY (&) 0)-w — (D¥(2)-w)- v
= Df’(m)w-w - DY) vow = R-v-w
Thus we may write
R-& = dY(z)(&, -),
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which is actually a 1-form. On the other hand, the third term on the right of (4.8) also corresponds
to a 1-form, namely, dV. Recall that K" transforms a 1-form to a vector field. We define the
following notations

gradV 2 K*.4v,

&

(curvy Y)Y = K'. d¥(z)(g, ).

Here grad V' denotes the gradient of V. As a consequence, (4.9) can be expressed in its invariant

form as follows.

THEOREM 4.2

The invariant form of the equations of motion of a gyroscopic system (@), K, Y, V) is

Vid 4+ (curvyY ) = —gradV. (4.10)

These are the equations of motion of a charged particle in a magnetic field dY. They are thus a
special (simplest, abelian) case of Wong’s equation for the motion of a particle in a Yang-Mills field

53], [17]. The term (curv;Y)! is the corresponding force of interaction with the field.
P g

EXAMPLE 4.3

We consider the dynamical system treated in [11] in the following form.

§ = —az - gy, § = —By + gi. (4.11)

The skew terms in velocities —gy and g constitute the gyroscopic forces which do no net work
but affect the stability of the system. It is easily checked that this is a gyroscopic system with the

Lagrangian in the form (4.3) with the following entities,

MG = () D). T = () vew = 560 (5 5) (3):

R

With the equations of motion of a gyroscopic system (4.8), or (4.10), we are ready to state

the main ideas of gyroscopic control. This notion is isolated here to highlight the role of the
gyroscopic term from the viewpoint of designing control algorithms. A simple mechanical system
with symmetry with exterior forces can be transformed into a gyroscopic systemn with symmetry
by using suitable feedback laws, that we refer to as gyroscopic feedback. This process is described

in the following theorem.
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THEOREM 4.4

Consider a simple mechanical system with symmetry, (Q,K,V,G). Let the exterior force
exerted on this system be denoted by a horizontal 1-form (e, 0). Let ¥ be any G-invariant

1-form on @. Then, with the feedback law (gyroscopic feedback),

a(vg) = —dY{vg,-), : (4.12)

the closed-loop system becomes a gyroscopic system with symmetry (Q, K,Y,V,G) where,

Y = KP.Y. (4.13)

Proof

We prove this theorem in local coordinates where the riemannian metric is expressed as

K(z)(v, w) = »F M(2)w.
Also the feedback law (4.12) can be written in local coordinates as

- -~ T
oz, v) = — (‘ZZ (o —%% (:c)) 0. (4.14)

Recalling the derivation of equation (4.8), the dynamical equations for (Q, K,V, ) with exterior

force can be found to be, in local coordinates,

M(z)-3 = T-3-3 — %%(x) + a, (4.15)

where 7 is defined in (4.7b). With the feedback law (4.14), it is then easy to see that (4.15)
becomes (4.8) which, in turn, corresponds to a system with Lagrangian in the form of (4.3). With

the transformation rule (4.13) expressed in local coordinates,

Y(z) = M(z)™! Y(z),

the system can be further identified as a gyroscopic system with symmetry, (@, X,Y,V,G). The

G -invariance property of Y follows from the G-invariance of the riemannian metric and the 1-
form Y.

i

Accordingly, we have a family of gyroscopic feedback laws induced by G-invariant 1-forms.

The techniques used for analyzing gyroscopic systems with symmetry can then be applied to study

the corresponding closed-loop system. In particular, the method for stability analysis based on the

energy-momentum method which will be developed in the following is applicable. The gyroscopic

term affects the dynamical behavior in many ways. For example, it changes the location of equilibria
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as well as their stability properties. As a consequence, suitable gyroscopic feedbacks may be chosen
to fulfill design objectives. Much work remains to be done on general methods for selecting Y. The

dual-spin problem illustrated below gives a simple example of gyroscopic systems with symmetry.

EXAMPLE 4.5 (Dual-spin Problem)

Consider the system consisting of a rigid body (platform) with on-board rigid symmetric
rotors moving in free space, cf. Figure 4.1. With the rotors spinning at constant rates relative to

the platform, the dynamical behavior can be captured by a gyroscopic system with symmetry.

Figure 4.1. Dual-spin Configuration.

First we consider the system dynamics with locked rotors. We assume that the center of mass
of the system is fixed in some inertial frame. Let B € SO(3) denote the orthogonal transformation
from the body frame to the spatial frame, and then describe the attitude of the body. We have
B = BQ, where the operator ~ is defined in (3.14) and Q is the instantaneous angular velocity of
the body relative to the body frame. Let J be the total moment of inertia of the platform with

locked rotors. The Lagrangian for this locked system can be written as

. 1
L(B, BY) = (2, IQ).

With this Lagrangian, we now invoke Lagrange-d’Alembert Principle specialized to the current
situation, cf. (3.18). Using the parametrizations introduced in Section 3, the dynamical equations

are nothing but the Euler’s equation for rigid body dynamics,

JO = —QxJIO.

Next we let the rotors spin at constant rates. Let 8;, 1 = 1,2,3 denote the relative angles between
the three rotors and platform, respectively, and © = (6,, 83, 03). Let the corresponding moments

of inertia of rotors relative to the spinning axis be denoted by (Ig, )i, ¢ = 1,2,3, respectively. The
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reaction force exerted on the platform from the rotors can be derived from the following gyroscopic

1-form,

¥(B) = B(150), (4.16)

where I = diag{ (Is,)1, (Is,)2, (Is,)s }. In fact, by using the formula (4.12), it can be shown
that

o(B,BQ) = —B(Q x 156).

With this exogenous force, the dynamical equations for the closed-loop system become,

IO = —OxIQ + 150). (4.17)

It is readily checked that this system is a gyroscopic system with symmetry with the following

entities,
Q = 50(3), K(Bty, Bta) = {(uy, Jua),

— (4.18)
Y(B) = B(J-11°0), V(B) = 0, G = S0(3)

where By, Biy € TpSO(3). The group action here is G x Q@ — @, (R, B) — RB, and the

Lagrangian is

1

I(B, BQ) = :

(Q, IQ) + (9, 1°0). (4.19)

Keeping in focus our program of understanding the closed-loop behavior of a system with
gyroscopic feedback, we return to the abstract framework of gyroscopic systems with symmetry. We
remark first that a simple mechanical system with symmetry in the sense of Smale [42] is a special
case of a gyroscopic system with symmetry. We simply take ¥ = 0 and consider the quadruple
(@, K,V,G). Many key results in the category of simple mechanical systems with symmetry can be
extended to gyroscopic systems [46]. First, for a gyroscopic system with symmetry, the Lagrangian
(4.1) is invariant under the tangent lift ®7, which follows directly from the invariance of the
metric I, the gyroscopic field Y, and the potential V. The Legendre transformation, cf. (3.4), is

given by

(r(ve) = K’(vy 4+ Y(2)). (4.20)

Its inverse can be then found as, for a, € T7Q,

(T ag) = KYag) — Y(x).
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It follows that £y is a diffeomorphism, and L is hyperregular. As a consequence, the space
(TQ, Qr = —dOy) is a symplectic manifold, where the symplectic form € is defined as in

(3.3) through the 1-form ©p, which in turn can be written as
Or(vz) - (wy,w) = K(z)(v+Y(z), u).

From Lemma 4.6, the group G acts on T'Q through the tangent lift ®7 as a symmetry group.
It can be further verified that this action is symplectic, namely, (®7)*Q; = Q7. Within this
framework, a momentum mapping J : TQ — G* can be constructed such that the infinitesimal
generator of the action ® corresponding to ¢ € G is the vector field induced by the function
(J, & + TQ — R, through the symplectic structure, cf. (3.9). Consequently, we have the

following theorem.

THEOREM 4.6

The gyroscopic system with symmetry (Q, K,Y,V,G) has the following properties:
(i) The 1-form corresponding to L defined in (3.2) is invariant under the tangent lift, i.e.
(@g)* O = Or.

(ii) There is an associated Ad*-equivariant momentum mapping J : T'Q — G*,

J(v=)(§) = {€L(ve), (@) = K vz +Y(z), £o(z) >, (4.21)
where £ € G is an element in the Lie algebra of G, {g(z) denotes the infinitesimal generator
of £ on Q. Here G* denotes the dual of the Lie algebra G.
(iii) The momentum mapping defined in (4.21) is a vector-valued integral of any vector field
induced by a G-invariant function on 7@ through an analogous formula in (3.9). In particular,
it is an integral of the Lagrangian vector field Xy, . A
Proof
For (1), we note that (@Z)*L = L,by Lemma 4.6. Since the exterior differentiation commutes
with the pull-back operator, (i) follows immediately. Statements (ii), and (iii) can be shown by
directly applying Theorem 4.2.2 and Corollary 4.2.14. in [1].
i
The quadruple (T'Q, 2z, ®T,J) is an example of a hamiltonian G-space. The energy function

for the gyroscopic system can be derived as, cf. (3.7),

<€L(U:Z:)7 vr)x - L(?)x),

1 .
<L vz + Y(Z’),'Uw Pz — '): L Vg Ve g — K 'Ux-,Y(g;) Pk V(l‘),

Hi(vg)

il

i

Il

1
5 Ko v o+ V(z). (4.22)
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It is easy to see that the energy function is not affected by the presence of the gyroscopic field Y.
However, the dynamics are different from what one would see if ¥ = 0. The differences in
the dynamical behavior arise from the Y -dependent symplectic 2-form Q. In particular, the
gyroscopic term in the Lagrangian gives rise to the magnetic terms in the symplectic 2-form. On

the other hand, on the momentum phase space T*@Q, the Hamiltonian associated to the system is,
cf. (4.2),

H(ag) = Hp ol (as),

== < K¥Nap) - Y(2), K¥ay) - Y(2) >z + V(z),

< ap— KM(Y(2), ax — K°(Y(2)) >0 + V(2).

Accordingly, on the momentum phase space, the Hamiltonian is affected by the gyroscopic term
through a momentum shift, while the canonical 2-form wqy is unchanged. This subtlety is best

explained by the following example.

EXAMPLE 4.7

We consider again the system in Example 4.3. The energy associated with (4.11) on 7°Q is

. 1., . 9 2
HL(m,y,m,y) = 5 (:U‘ + yQ + az” + ﬂyu)a

with the symplectic 2-form in matrix representation

0 g 1 0

=g 0 0 1
[©r] = -1 0 00
0 -1 0 0

This can be checked from the differential equation (4.11), cf. (3.9b),
k= X, (x) = (007 VAL

where x = (2,¥,2,7). The left-upper 2x 2 block in [Q] is called the magnetic part. On the other

hand, on 7*Q, we have the conjugate momentum variables defined by
pr =& + gy, p2 = 9.
The dynamical equatrion (4.11) can be written as
¢ =p -9y, ¥ = P2
po= —az, P2 = =By + g(p1 - gy)
which is a hamiltonian system with the Hamiltonian function
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1 92 9 9 9
H(z,y,p1p2) = 3 ((pr—gy) + 3 + a2 + By).

The symplectic structure is the canonical symplectic 2-form wy, i.e. in matrix representation,

0 0 1 0
lwo] = 0 0 01
-1 0 0 0
0 -1 0 0

In summary, the gyroscopic term affects the symplectic 2-form on T'Q side while, on T*Q
side, it affects the Hamiltonian function. To gain more insight on how the gyroscopic field enters
the symplectic structure 0y, we consider an even simpler case than (4.3). We assume that the
second-order tensor AJ is independent of x in (4.3). It can be easily seen that the symplectic

2-form is now, cf. (3.3),

QL(Q,U)((’UJ, w1)7 (Ug, wQ))

oy oy
2—55"’!@"1/.1—]-]‘{[-102"&1-0—1"11,1"&2—1\/1'?171'11,3
o o T
oYy Yy
= (’lLl wl) . EENCE M ( U2 >
~MT 0 2

" o T
The block %)xi — % is the so-called magnetic term.

5. Reduction, Relative Equilibria and Stability

By recognizing the symmetry, under suitable regularity hypotheses, it is possible to reduce a
gyroscopic system with symmetry (Q, K,Y,V,G) to alower-order dynamical system. The reduction
process has a long history. For Jacobi and Liouville[1] [5], this meant reduction of the Hamilton’s
equation via first integrals in involution. For Routh [37], this meant a process of eliminating
ignorable variables. In the following, we shall discuss the reduction from two modern points of
view, namely, symplectic reduction and Poisson reduction.

First, we consider symplectic reduction in the sense of [32]. As discussed in Section 3,if L is
regular, (TQ, Qp) is a well-defined symplectic manifold. By the Property (i) in Theorem 4.6, the
Lie group G acts symplectically on (TQ, Q1 ). Also, from Property (ii) in Theorem 4.6, there is an

Ad*-equivariant momentum mapping J for this action. Thus all the conditions in the Symplectic
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Reduction Theorem, see Theorems 4.3.1, 4.3.5, pp. 299, 304 in [1] are satisfied, and we can state

the following reduction theorem specialized to gyroscopic systems with symmetry.

THEOREM 5.1 (Marsden-Weinstein)

Consider the gyroscopic system with symmetry (Q,K,Y,V,G). Assume that p € G* isa
regular value of the momentum mapping J, as defined in (4.21), and that the isotropy subgroup
G, defined by G, = { g € G : Ady.p = i}, under the Ad* action on G* acts freely
and properly on J'l(p), then (T'Q), 2 -t (#)/Gu, has a unique symplectic form Q, with
the property w,Q, = 1}, Qr, where m,: J™Y(p) — (TQ), is the canonical projection and
iy J7H(p) = TQ is the inclusion map. Letting Hy be as in (4.22), the flow F; of Xp, induces
a flow Ff on (TQ), satisfying =, F, = F} -m,. This flow is a Hamiltonian flow on (7Q), with
a Hamiltonian function H} satisfying H} -7, = Hp-1,, with respect to the symplectic structure
Q,.

|

The function Hz on the reduced space is called the reduced energy. The corresponding
vector field Xp» on the reduced space (T'Q), is called the reduced dynamics. Thus in symplectic
reduction, we first restrict the dynamics to a level set of the momentum mapping, and then factor
out the isotropy subgroup.

Next, we consider Poisson reduction [31]. We first recall the basic setup of Poisson manifolds.
A Poisson manifold P is a smooth manifold equipped with an IR-bilinear map (Poisson structure)
on the space of smooth functions, {-,-}p : C®(P) x C®(P)— C*®(P) satisfying the axioms,
for f,g € C*(P),

(i) {fogtp = —{g,.f}p
(i) {fg.h}p = g{f.h}p + flg,R}p
(i) {f, {g,htp tp + {9,k fYrtr + {h{f,9}pP}p =0.
Associated to a Poisson structure, there is a unique twice contravariant skew-symmetric,
smooth tensor field A on P such that {f,g}p = A(df,dg), where df, dg are differentials of f,

g, respectively. The tensor field A defines a vector-bundle morphism, A# : T*P — TP; ap +—
A#(ag) € T, P, satisfying,

B: (A*(az)) = A(2) (ar,B) forall 8, € TP
Let G bea Lie group andlet ¥ :Gx P — P, (g,z)+ ¥, (), be agroup action such that
¥, (-) is a Poisson morphism for every g € G, ie. ¥, : P — P is an isomorphism and preserves
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the Poisson structure. Suppose that the action is proper and free. Then the quotient space P/G

is a manifold which carries a Poisson structure {-,-}p/s induced from the one on P satislying,

for f,g € C*(P/G),
{f,9}pjgom = {form, gor}p. (5.1)

Here n: P — P/G is the canonical projection. By construction, it is a Poisson morphism.
G -equivariant dynamics on P induce dynamics on P/G. Suppose h: P — R isa G-

invariant Hamiltonian function on P,i.e., h(¥,(z)) = h(z), ¥ g € G. Define a vector field X,
through

Xulfl = {f, h}p, YV [ eCT(P). (5.2)

where X[f] denotes the Lie-derivative of the vector field X} on the function f. The Hamiltonian

h descends to A : P/G — R and determines a Poisson-reduced dynamics Xj; on P/G by

X3 1 = Af, RYpsa, VI e O™ (P/G). (5-3)

Here A ([z]) = h(z) for an equivalence class [z] in P.
Recall that the symplectic manifold (7Q,§r) has a Poisson structure induced from the

symplectic structure, namely, for f,g € C*(TQ),

{f, 93e(vs) = df(va)- Xy(vs) = Qulve)(IL(df), Trldg)), (5.4)

cf. (3.5). Since the energy function Hp is G-invariant, we carry out the Poisson reduction as
follows. Assume G acts on TQ freely and properly. Let 7 be the projection from TQ to TQ/G,
f,§€ C®(TQ/G), the induced Poisson bracket of f and 7 is defined analogous to (5.1) as

{f, gYio7 = {fof, goflr. (5.5)

Referring to the framework of Poisson reduction, we can identify the induced Hamiltonian Fy and

associated dynamics Xz as:

ﬁL 071('09:) = HL(U;L’)7 (56)
‘YFIL[]Z] = {f, Hp}i, ¥V f€C®(TQ/G). (5.7)

Here the vector field Xpg, is called the projected Hamiltonian vector field on TQR/G.
The reductions discussed here are on the lagrangian side. or T'Q side. We could perform a

similar reduction process on T*Q side, or hamiltonian side, by noting that the Hamiltonian function
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on T*Q, namely H in (4.2), is invariant under the cotangent lift 7" (this follows from (2.6)).

The underlying symplectic manifold is (T*Q, wo), with the corresponding momentum mapping,

J 2 T7°Q — G5 (J(ag), §) = (a5, o(2))s, VEEG. (5.8)

Since L is hyperregular, the reductions on 7°Q) and T™*() are equivalent, but we shall use the one
on T'Q) side in the following development, bearing in mind that the Lagrange-d’Alembert Principle
is formulated there.

We proceed to discuss a characterization of relative equilibria. The concept of relative
equilibrium goes back to Poincaré. In the context of symplectic reduction, we define the notion of

relative equilibrium as follows, cf. Theorem 5.1.

DEFINITION 5.2

A point v, in TQ is called a relative equilibrium if 7 ,(v;) € (T'Q), is a fixed point for the
symplectic-reduced vector field Xz, where 1 = J(vg).

1

In the context of Poisson reduction, we can define a similar notion, cf. (5.6), (5.7). A

point v, in TQ is called a relative equilibrium for Xpg, with respect to the Poisson reduction

if Xg, (7(v;)) = 0. It turns out that the two notions of relative equilibrium are equivalent. In

fact, it can be shown, cf. [1], that, for both cases, v, is a relative equilibrium iff there exists a

¢ € G such that the flow of Xpg,,

F}:&'HL (vﬂ?) = @e:z:p(tg) (Uz)y (59)

namely, the dynamical orbit is simply a group orbit. Thus if the observer were to be set in uniform
motion according to the one-parameter group exp(t¢), then for such a moving observer, a relative
equilibrium will appear to be stationary. For instance, if G = SO(3), then Flf(HL (vg) corresponds
to a uniform rotation about a fixed axis £ in space with the rotational speed [£]. In a central force
field, a relative equilibrium for the motion of a point mass corresponds to a circular orbit, cf. [49].

Relative equilibria can be characterized by the following result of Souriau-Smale-Robbin.

THEOREM 5.3

vy € TQ is arelative equilibrium for Xz iff there exists a £ € G such that v, is a critical point
of He 2 Hrp—{J, &), where {J, §):TQ — R is thereal-valued function given by v, — (J(vz), £),
associated to the the momentum mapping J.

In particular, for gyroscopic systems with symmetry, we have, cf. (5.8), (4.22),

25



He(vy) = L Vg, Vg > + V(2) - v+ Y (), £o(a) >q,

L vy — £(a), ve —Eq(T) >,

FV(@) = < Y(2), Eole) e —5 < Eals), £a(e) >= (5.10)

From Theorem 5.3, it is then easy to check that the necessary and sufficient conditions for v, to

be a relative equilibrium are
vy = Eg(a), (5.11)
and

LIV() ~ <Y (2), @) s — 5 < £o(z), o(x) >:] = O

We thus have the following algorithm (principle of symmetric criticality [35]) to find relative

equilibria.

ALGORITHM 54

0. Pick £ €4.
1. Search for the critical points z, of the function
- A . 1 |
Ve:Q — R; Ve(z) = V(z) - «Y(z), fo(z) > — 5 < Eo(z),€o(2) >, . (5.12)

2. Substitute z, in (5.11) to find the corresponding ve = £g(z.).
i

We note that the computation in step 1 is fully on the configuration space. Thus the process
of searching for a relative equilibrium is greatly simplified. We remark that, for simple mechanical
systems with symmetry, the principle of symmetric criticality stated above appears as Theorem 1.1
in Part IT of Smale[42]. Smale also notes that special versions have been known earlier, e.g. in
the study of symmetric geodesics. See also p. 355 of [1], Theorem 16.7 in Hermann[19], Arnold[6],
and Palais[35]. Here the augmented potential function V; has one additional term to accommodate
the gyroscopic effects. Through this term, we can change the number and locations of the critical
points. This provides us an effective tool in controlling the phase portrait. Cf. [46].

There is an additional symmetry in the augmented potential V. First, we define the stabilizer
of ¢ tobe G = {ge G| Ady(§) =&} C G, where Ad is the adjoint action of G on G defined
in (2.3). G¢ is actually a subgroup of G, and thus defines an action on . By an argument similar
to the one in the proof of Lemma 4.6, it can be shown that V¢ is invariant under the action of G¢

on @, i.e.
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Vg(q)g(.’l?)) = Vg(z), Yge Gg. (5.13)

We assume that the quotient space Q/G¢ is well defined. Denote the projection from @ to Q /G
by m¢. By (5.13), we can define an induced function f/g on @/G¢ from the augmented potential

such that the diagram in Figure 5.1 commutes, namely,

Vg o mg = Vi (5.14)
Ve
Q » IR
')TE 175
S
Q/Ge

Figure 5.1. Symmetry of V¢

This symmetry of V; will be used later in establishing a stability result associated with V.

As mentioned earlier, reductions could be worked out on the Hamiltonian side as well. Thus
there is a similar algorithm corresponding to Algorithm 5.4 on the T*Q side. We only need to
find the corresponding conjugate momentum variable p., by substituting z, obtained in Step 1 of
Algorithm 5.4 in the formula, p, = K’ (Y(z.) — €g(z.)). The point (2., p.) in the momentum
phase space T*() is then a relative equilibrium corresponding to the reduction on 7@ with respect
to the cotangent lift action.

We now address the stability of relative equilibria. Although both symplectic reduction and
Poisson reduction lead to equivalent notions of relative equilibria, the associated stability issues are
quite different. In the following, we shall state the main ideas in a somewhat more general setting
than needed for this paper. However, we think that this added generality keeps the treatment free of
confusing details. In general, let B, P be differentiable manifolds, and G be a Lie group. Consider
a principal G -bundle, (P, G, B), namely, G acts differentiably on P {reely and properly, B = P/G
is the quotient space of P with the canonical projection = : P — B being differentiable. Moreover,
P is locally trivial, that is, every point u € B has a neighborhood U such that there is a mapping
from 7 H(U) to U X G, z+ (7(z), é(z)) which is a diffeomorphism and é(g-z) = g-¢(2), for
all g € G. See Figure 5.2 for an illustration of the geometric structure of such an object. For more

details, see, e.g. [34].
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Figure 5.2. Principal G -bundle

A vector field X on P is said to be projectable if for each f € F(B), there exists a f e F(B)
such that X[ for] = fom, cf, eg. [30], [18]. Now, given a projectable vector field X on P,
the corresponding projected vector field X on B is defined in the following way. Given a smooth

function f on B, the Lie derivative of X on f is defined as

1

Xl

F. oor X[flom = X[for] (5.15)

1

~

It is easy to verify that the vector field X, defined in (5.2) is projectable with the projected vector
field X; defined in (5.3) in the above sense.

DEFINITION 5.5

For the principal G-bundle, (P,G,B), a point z € P is called a relative equilibrium of a
projectable vector field X € X (P) if m(2) is an equilibrium of the associated projected vector field
X € %(B). Moreover, a relative equilibrium z € P is relatively stable modulo G if the equilibrium
7(z) is Lyapunov stable with respect to the pro jected vector fleld X.

i
REMARK 5.6

In [28], the smooth manifold structure of the quotient space P/G is not explicitly invoked in
defining the notion of stationary motion and relative stability modulo G . However, when the group
action is free and proper, P/G is a manifold. This is the case considered in this paper, and hence

Definition 8.13, p. 242 in [28] is equivalent to Definition 5.5.
|
For a gyroscopic system with symmetry, the definition of relative equilibrium vy € 76

in Definition 5.4 matches with the Definition 5.5 by noting that the principal G-bundle is
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now (TQ,G,TQ/G). Accordingly, the relative equilibrium v, is relatively stable modulo G
in TQ if 7(v;) is a stable equilibrium with respect to the projected Hamiltonian vector field
Xg,- On the other hand, in the symplectic reduction process, we have the bundle structure
(J7Hw), G, (TQ),). The relative equilibriurﬁ defined in Definition 5.2 can be regarded as a
relative equilibrium with respect to this principal G-bundle. Correspondingly, we may define
relative stability modulo G, in J~(u) with respect to the reduced dynamics XH*L‘- Since the
space (T'Q), is diffeomorphic to a symplectic leaf in TQ/G, relative stability modulo G in TQ
implies relative stability modulo G, in J~!(p). The converse is illustrated by the following theorem

from [28], Theorem 8.17, p. 244, see also [50] [24].

THEOREM 5.7

Let v¢ be a relative equilibrium, cf. Definition 5.2. Definiteness of the Hessian D?*H/ ‘at
Tu(ve) € (T'Q), implies the relative stability modulo G in T'Q of v;, if there exists a neighborhood
W of #(v2) € TQ/G such that the rank of the Poisson structure {-,-};, defined in (5.5), is constant
in W.

i

Those points v, in T'Q satisfying the constant-rank condition stated in the above theorem will
be referred to as generic points. The following example demonstrates that the sufficient condition
in Theorem 5.7 is essential. This example is from [28]. A detailed discussion can be also found in

[24].
EXAMPLE 5.8

Consider a symplectic manifold (P, w), where
P=R = {(q, @ p,p)}, w=da Adp + dgz A dpa (5.16)
Let
G = Aff+(R) = { (a,b) € R? } with the group structure

(a,b)-(¢e,d)=(a+c, b+e”d).

(5.17)

It can be shown that G defined in (5.17) is a Lie group. We define the action of G' on P as

G x P — P; ((a,0), (1,92, P15p2)) — (a+ @1, b+eq, pi, e7%pa).

It is easy to check that this is a symplectic action on P. This action is also free and proper. It
follows that P/G is a manifold (~ R*). The symplectic structure w in (5.16) defines a Poisson
bracket on F(P) which, in turn, induces a Poisson structure on P/G. Let a Hamiltonian function

H be defined as H(q1,q2,p1,p2) = p2 e, which is a G-invariant function. It can be checked
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that (0,¢,0,0) € P is a relative equilibrium corresponding to the vector field Xz . Moreover, this
relative equilibrium is relatively stable modulo G, in J~!(u), since the quotient space J Y w)/G,
degenerates to a point. However, it has been shown in [24] that this relative equilibrium is not
relatively stable modulo G in P. Note also that that the induced Poisson structure doesn’t have

a constant rank at (0,¢,0,0) and hence the condition in Theorem 5.7 does not hold.

There are several methods for determining relative stability in the appropriate sense. For
example, the Energy-Casimir method [20] [46], or the Lagrange-Multiplier method [29] [49] [46]
can be used to determine relative stability modulo G in 7Q. On the other hand, the Ernergy-
Momentum method [39] [41] is useful in determining relative stability modulo G, in J~'(u). For
simplicity, we will drop the underlying spaces in the definition of relative stability, e.g. we say
merely relative stability modulo G,. The underlying space is clear from the context. In the next
section, the Energy-Momentum method will be adopted to study stability properties of relative

equilibria for gyroscopic systems with symmetry.

6. Energy-Momentum Method for Gyroscopic Systems

As pointed out in Section 4, the use of gyroscopic feedback laws can affect the location of
relative equilibria and their stability properties. In the work of Bloch, Krishnaprasad, Marsden, and
Alvarez [7], an example of rigid body stabilization using such a control law is considered. Here we
give a general method to explore stability under gyroscopic feedback laws. A key requirement is to

obtain stability criteria that are explicit in the parameters of the feedback law, e.g. the gyroscopic

field.

In this section, the relative stability modulo G, will be examined via the energy-momentum
mapping. Here we apply the energy-momentum method to the general framework of gyroscopic
systems with symmetry. The block-diagonalization techniques for simple mechanical systems with
symmetry is extended here to account for gyroscopic terms. The decomposition of the symplectic

structure is also presented. Key references for this Section are [39] [41].

Let (P,w) be a symplectic manifold on which the Lie group G acts symplectically and
let J : P — G* be an Ad*-equivariant momentum mapping for this action (see Section 2 for
definitions). Assume we could perform symplectic reduction on P in the sense of Marsden and

Weinstein [32]. The reduced phase space is denoted by P, = J ' (u)/G,. Let H : P — R
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be invariant under the action of G'. It induces a Hamiltonian function H¥ on P, satisfying
H*om, = Hoti,, where m,:J }(u) — P, is the canonical projection and i, : J=1(n) — P is
the inclusion map. We are interested in the stability property of a relative equilibrium associated
with the reduced dynamics X on the reduced space P,, or the relative stability modulo G,
in J7!(p). By construction, H* is a first integral of the reduced dynamics. Thus if H* has a
strict local minimum at 7,(z.) where 2, is a relative equilibrium, then H* serves as a Lyapunov

function. Standard Lyapunov stability analysis can be applied to conclude stability. Since, for

ze J Y p) C P,
HH(my(2)) = H(in(2)) = H| 0, (2),

the condition for 7,(z.) being a strict local minimum of H* is equivalent to the condition for
z. being a strict local minimum of H‘J_l(#) modulo the tangent directions of the group orbit,
G, -z. This in turn corresponds to checking that the relative equilibrium z, solves the constrained

minimization problem,

minimize  H(z) subject to  J(z) = pe = J(z.).

This problem could be further formulated as checking z. to be a strict local minimum of H —{J, )
in all directions on J~(u,) except along the tangent directions to the group orbit generased by
G, where { serves as the Lagrange multiplier. These heuristic remarks are formalized in the
following, giving rise to the energy-momentum method, cf. [40], [41], [36], [39]-

Define the energy-momentum functional
He(z) = H(z) ~{J(z), &) (6.1)

From the relative equilibrium theorem, cf. Theorem 5.3, each relative equilibrium of the system is

a critical point of H¢, for some £ € G, namely,

DHe(ze) 6z = 0, Véz € T, P.

From previous discussions, the definiteness of the second variation of H¢ on a subspace S of T, P

satisfying

S = TzeJ—l(/"e) [ Te(Gu- ze), (6.2)
implies the relative stability modulo G, of the relative equilibrium z.. One way to find such a space
S is to construct a complement of T, (G -2 ) in T=, J ~*(pe) such that T, J ™ (p.) = S & 7. (G,

z¢). Since T, J 7 (pe) = Ker D.J(z.), which is the kernel of the operator DJ(z.), we summarize

the energy momentum method for relative stability as follows.
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ALGORITHM 6.1 (Energy-Momentum Method)
Pick £ € G.
Solve the problem DH(z)-8z = 0, V 6z € T, P, for a relative equilibrium z

Le .

Compute p. = J(2.) and determine the space Ker DJ(z,).
Find S C Ker DJ(z.) such that Ker DJ(z.) = S & T, (G, - z).

- W NP O

Check the second variation of H¢ on S. Definiteness of the second variation implies stability.

For visualizing the geometric picture, see Figure 6.1.

Figure 6.1. Energy-Momentum Method

Now we restrict our consideration to gyroscopic systems with symmetry introduced in
Section 4. The underlying space is P = T'Q) with the symplectic structure Q. In this setting, the

momentum mapping is given by, cf. (4.21),

J(v)(§) = < ve +Y(2), folz) >0, (6.3)

and the energy-momentum functional is He(vy) = Ke(vy) + Ve(z), where, cf. (5.12),
Ke(vs) = 5 < v~ £0(@), vz — a(z) >,
Vele) = V(a)- < Y(2), Eqlx) 3 3 < Eol2). Sale) >
We define the space
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N. & {ng(e) : neg}, (6.4)

o A .

which is a subspace of T,Q, and thus N = Ugzeg N, is asubbundle of 7Q. We then decomipose
T,Q = Ny ® N+ where NV} is the orthogonal complement of A; with respect to the inner product
associated with the riemannian metric. Every element v € T,Q can be thus written uniquely as

v = no(z) + o, for n € G, 3 € N . With this decomposition, the function K¢ could be further

wriften as,
- 1 2 Lowe
Kz, v) = 5 lna(e) = &@)I° + 315

Note that at relative equilibrium (z., £g(z.)), we have v, = {g(z.), and ¥ = 0. Thus the second
term in K, is nonnegative and vanishes at a relative equilibrium with a positive semi-definite

secorid variation. Define
. 1 _
He(z,n) = rz"ll ne(z) — Lo(@) P + Ve(z) (6.5)

From the above observations, relative stability modulo G, can be determined from this modified
function on the space of Q x G. Moreover, taking variations in the space @ X G correspouds to

taking variations in the subbundle A" C TQ. We define the following embedding
Z:QxG — TQ; (z, n) — (z, no(x)).

Hence Hg = H¢;oZ. A G-action on the space () X G can be constructed as
¥ Gx(@xG) - Q%G
(6.6)
(9, (=, m) = (g9-2, Adgn),
where Ad is the adjoint action defined in (2.3). It can be checked that
3702 = Zo¥, (6.7)
Define the pre-momentum mapping
J(z, n) = JoZ(z. n) = J(z, nolz)) (6.8)
A straightforward argument shows that the pre-momentum mapping J 1 QxG — G*is Ad*-

equivariant. Thus the level set J~1(p) is invariant under the action of the isotropy subgroup G .
Furthermore, let A : Q xG — R be defined as H = HoZ. From (6.7), the function H isinvariant
under the group action ¥. The functional fIé can be now written as ﬁg = H - <j, &). By

the invariance properties of H and J, the restriction of f[g on J 1w,
Hﬁ‘J () — jj[lj—l(“) - (P‘v 5)



is invariant under the group action of G,. As a consequence, the geometric picture is the same
as in Figure 6.1. An algorithm analogous to Algorithm 6.1 can then be applied to check if (z.,¢)
is a local minimizer of H restricted to J™Y(u). Before doing so, we introduce a few notations.
The riemannian metric restricted to the subspace A, provides an z-dependent bilinear form on

the Lie algebra G. This, in turn, induces a pairing (locked inertia tensor associated to z € Q),

Yioek(z) : G — G*, defined through
(&, Lioek(z)n)

S <o), nola) > (6.9)

for £, n € G. From the symmetry property of the riemannian metric, we have

<§7 Ilock(x)"ﬁ = (Ilock(x)fa 77>7

namely, Ij,04(2) is symmetric. Also, we assume that, at @, the locked inertia tensor has an inverse,
Lier(z)™t : G* — G. On the other hand, the gyroscopic field also induces for each = € @ an
element Iy(z) in G* defined by,

(Iy(z), n) & <Y(z), ng(z) »e; Vned (6.10)

We refer to Iy(z) as the (z-dependent) gyro-momentum. The function H¢ can now be expressed

as

fl

?:12: (77 - €7 Ilock(w)(n - £)>
V() = Sl Toa(@)) — (Ir(a), 6), (6.11)

= %(n-{, Lioer(2)(n—€)) + Ve(z)

He(, n)

with the pre-momentum mapping, from (6.3), (6.8), for n € G,

(J(z, m), €) = (J(=, n10(2)), ¢)
< 1g(2), (o) >z + K Y(2), (o) o
(Lioer(z)m, €) + (Iv(z), ¢},

i

or we may write

J(z, 1) = Loer(z)n + Iy(2). (6.12)

For i € G*, the associated isotropy subalgebra G, is defined in (2.4). With the inner product
induced on G by the locked inertia tensor at z., we define the orthogonal complement of G,, to

be

L 2
G, =

&

{CE G : (C) Ilock(we)n> = 0, v ne gug } (6.13)
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Following the notations used in [39], we define the maps A:G — G*,and A:G — G, by

A(n) £ adipe, A() B Loek(ze) Al), (6.14)

respectively. As proved in [3g], we have the following lemma.

LEMMA 6.2

Provided that g;‘; is finite dimensional or A is elliptic with respect to the inner product

induced by Ijck(ze), we have
(i) A maps G onto G, .

(i) A maps G onto G2 C G*, where Gi = {p e g : {u, 1) =0, Vneg, }, s the

annihilator of G, .

i
With these notations, we are ready to apply Algorithm 6.1 to check if (z.,£) is a local

minimizer of H, restricted to JY(p). We proceed as follows.

Step 0. Fix £€G.

Step 1. It is straightforward to derive

DHe(z, 1) (6, &)
1
= DVe(z)8z + (&, Loer(z)(n— &) + 5(77—57 (DLioer(z)82) (1 — €))-
The relative equilibrium is given by the conditions DVi(z.) = 0, 7. = &, which match with
the conditions we obtained in Algorithm 5.4.

Step 2.

For the relative equilibrium determined by the pair (2., &), we have
He = j(.’l?e, 6) = Ilock(a:e)g + IY(l'e)~ (615)

Now we find the space Ker DJ(z,, £). From (6.12),
. d -
DJ(z, )6z, &n) = —| J(z+ ez, n+edn)
o) )= e =0 (6.16)

= (DLier(z)6x)n + Lier(2)on + Dly(a)éz.

Here again z + €6z denotes the integral curve corresponding to the tangent vector ér at z. For

(éz, 6n) to be in Ker Dj(.v;e. ¢), we must have, from (6.16),
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& = —Lock(2e) ™ ((DLiper(ze)62)E + Dly(z.)éz),
= I;ock(we)”l identyé(:ve)ém.
where the map identY: G x TQ — G* is defined by, for (z,éz) € TQ,
ident Y¢(z)8x s _ ((DI,Ock(x)(Sx)& + DIy(:U)632>. (6.17)

This map specializes to the map ident; defined in [39] when ¥ = 0, i.e., for simple mechznical

systems with symmetry. The properties of this map play an important role in our subsequent

development. We need the following lemma.

LEMMA 6.3

For ¢ € @ and (, v, n € G, we have the following identities,

(¢, (DLioer(2)nq(2))v) = (I¢, 7y Lock(2)r) + ([v, 1], TLioek(2)S), (6.18)
(6, DIy (z)ng(z)) = (Iv(z), [C, nl)- (6.19)
Proof
The proof of (6.18) can be found in [39]. Here we only verify (6.19). By definition (6.10),
. d
(¢, DIy(z)e(e)) = —=|  (Iy(expen-2), ()
e=0
d
= ZZ‘" <<Y(6XPE77'417)> CQ(QXPEU°$) >>exp€n-:ca
€le=o

= Lp, <Y, (g > (2),
=L Ln Y (2), Co2) > + <Y (), Ly,(o(x) >,

by using Lemma 2.2. Also we have the identity L,,(qo = [(, n]lg. With Lemma 2.1, it {ollows
that

(¢, DIy(z)ng(e)) = <Y (z), [(, nle(@) >« = (Ir(z), [¢, n]).

i
We now evaluate the map ident ¥¢(2.) restricted to the space A, .
LEMMA 6.4
For n € G, at relative equilibrium (z., &),
identyg(we)nQ(we) = adjpe + Toer(ze)n, £ (6.20)
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Proof
From the definition (6.17), for arbitrary v € G,

(identyg(me)nQ(a:e), v) = —{v, (DIlock(we)nQ(me))@ — (DIy(ze)ng(ze), v),
From Lemma 6.3, this could be further written as
—([v, 1, Lioer(ze)§) — (&, M, Tioek(ze)v) = (Ix(ze), (v, nl)
= (Tiock ()6 + Iv(ze), [0, V) 4+ (Tioek(ze)[§s ml, v),

= (ad:)p’e’ V) + (IlOCk(me)[f’ 77]7 l/>'
where the formula for pe in (6.15) has been used. We thus established (6.20).

The discussions in Step 2. can be summarized by writing
Ker DJ(z.,€) = { (82, 0) € Tz, (@ X §) : (621)
n = Ler(ze)™! ident¥(z.) & }.
Step 3.
As seen in (6.21), the component of G in Ker DJ(z.,£) is determined from the variation dz

in T, Q. We thus only need to decompose the kernel space with respect to Ty, (G, - Te). Bince

Noe & T, (G -wo) = {n0(ze) €TeQ : M€ G }, (6.22)

we find the orthogonal complement of N with respect to the riemannian metric as,

V= {6z€Ts@Q :<bx, ng(ze) >z, = 0, VNEGu } (6.23)

Consequently, the space S can be written as

S = {(6z,n)eVxG :n = Tiocr(2e) ™" idente(z.) 8z }. (6.24)

and we obtain Ker DJ(z¢,&) = S @ T(Jvug)(GMe -(:L'e,é)), where, with respect to the action ¥
defined in (6.6),

T(Ie,é)(Gue '(we,ﬁ)) = {(CQ(I'E)’ ad(é) s (€ gp.e }1
can be shown to be a subspace of Ker DJ(z.,£).

Step 4.
Now we check the definiteness of the second variation of fIE on the space S. The block
diagonalization techniques prove to be useful in this context. First, we note that, under conditions

specified in Lemma 6.6 (see below), the space V can be decomposed as
V = Vric © VINT, (6.25)
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where

Vrie = {Colze) : CEGE ), (6.26)

Ving = {& eV : (¢, ident¥(z.)fz) = 0, V(€ Gy }. (6.27)

It is this decomposition that the block diagonalization is based on. On the other hand, by definitions

(6.4), (6.22) and (6.26), we have N; = MNFe & Vgrg. The relationship between these spaces is
geometrically depicted in Figure 6.2.

A

Vric

NE

VINT

Figure 6.2. Decomposition of T,

Next we check the second variation of H ¢ given by,

D*He(ze, &) - (621, m) - (632, M)
= <7717 Ilock(me)n2> -+ D2V§($e) . 61'1 . (S(L‘-z,

= (identyg(me)éwl, Lioer(ze) ™t identyg(:ce)&cg) + D2V5(ze) cdzq - by,

for (éz1, m), (6x2, m2) € Ker Dj(ze,f). For convenience, a bilinear form on T, @ X T, Q is

defined as,

B¢(bz1, 6x2) 2 (identyé(xe)éxl, Ilock(:ce)'lidentyg(xe)&cg) (6.29)
+ D*Ve(z.) - 6z1 - 6as.
Accordingly,

Dgﬁg(ﬂﬂe,f)'(&ﬂla 771)'(5102» 772) = B£<6-'L'17 dxg).

We have the following key proposition.
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PROPOSITION 6.5

For ng(z.) € VriG, and & € VinT, Bg(’l]Q(LL‘e), bz) = 0.
Proof
We first find the second variation of Vg. By the property that V is G-invariant and

Lemma 6.3, we have

DVe(z) - ng(z) = DV (z)-ne(z) — %(5, (Dioer(z) - n@(2))€) — (DIy(z) - ne(2), £).

= - ([67 77]7 Ilock(m>‘$ + Iy($)>

It is then easy to see that, cf. (6.17),

D*Ve(x) - ng(z) - 8

—{[¢, ), (DLier(z) - 62)€ + DIy(z) - bz).

(I€, 1), ident¥e(2)8z). (6.29)

Il

Next we evaluate the bilinear form on Vrig XViInT - Combining (6.28), (6.29) and using Lemma 6.4,

we obtain

Be(ng(e.), o) =(ident%(ze) no(ze), Lioer(ze) ! ident¥e(c.) o) + (1€, 7], ident’(z.) 6x),
:<ad;ﬁte + Ilock(xe)[na é]’ Ilock(me)_1 identyé(xe) (5$II> *+ <[£7 77]7 ident}z(we) 57‘>7
:(ad%ue,llock(z’e)“l identyg(we) sz,

=(A(n), iden’t}é(xe) 8z), (6.30)

where A is defined in (6.14). From Lemma 6.2, A(n) € G+ . For éo € Vinr, by the definition of
Vint, cf. (6.27), the desired property follows.
i
With this proposition, the second variation of szg on S at relative equilibrium is diagonalized
into two blocks. Checking the definiteness of D*H¢ on S is thus equivalent to checking the
definiteness of B¢ on the spaces of Vric X Vric and Vint X VINT independently, under the
assumption that (6.25) holds. These techniques often simplify the computations quite significantly.
In particular, the form of B¢ on Vgic X Vg1 can be worked out explicitly. From (6.30),
Be(no(ze), mo(ze)) = (A(n), ident’e(zec) ng(ze)),
— (AG), ad%pie + Tioer(2), €1 (6.31)
= (adpfie, Lioer(ze) tadype) + (adjpe, adnp€).
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This is the Arnold block analogous to the one in simple mechanical systems with symmetry [41].
The gyro-momentum is buried in p. and can affect definiteness of this block. Definiteness cf this

block ensures the decomposition (6.25) of the space V, which is proved in the following lemma.

LEMMA 6.6

Positive definiteness of B¢ on Vpig X Vrig implies that V = Vrig @ VinT.
Proof

The proof is analogous to the one in [39]. We only consider here the finite dimensional case.

Letting (o(ze) € Vric N VinT, we have ( € (]f;e , and

(v, ident % (z.)(o(z.)) = 0, VVE-GLt. (6.32)

We choose, in (6.32), v = A(¢) € G, which is ensured by Lemma 6.2. By comparing with
(6.31), we get

B (Calze), Colze)) = 0.

Since, by assumption, B¢ is positive definite, this implies ( = 0. Namely, Vrie N Vint = {0}
On the other hand, dim Vgrre + dimVinr = dim V. Thus the decomposition (6.25) holds.

|
With this Lemma, we do not need to verify the decomposition (6.25) explicitly. It is guaranteed
by checking the definiteness of the Arnold block. We summarize the discussion in this step in the

following theorem.

THEOREM 6.7

If the bilinear form B, is positive definite on both Vrrg X Vrig and VinT X VinT, then the

relative equilibrium (2., {o(z.)) € TQ is relatively stable modulo G, .

Now we have completed the process of Algorithm 6.1 of determining the relative stability
for a gyroscopic system with symmetry. The block diagonalization of the second variation of H ¢
is achieved on the constrained subspace S. A few explanatory remarks follow. First, we note a

necessary condition for relative equilibrium. Namely, at relative equilibrium (z., £),
adg pe = 0. (6.33)

This result holds in the general setting of hamiltonian systems with symmetry, see Proposition 1.2

of [39] for the proof. Next we consider the amended potential introduced for simple mechanical

4

systems with symmetry. From (6.12), we may construct a mapping from @ x G~ to @ X ¢/ as
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(‘T’ ﬂ) = (IZI, Ilock(x)—l (/l - Iy(x))) .
With this transformation, the functional fIE on the space ) X G* can be expressed as, from (6.11),
He(z, p) = V() = (m, €),

where the function

T 1

V(@) + 5 {p=Ty(2); Loe(@) ™ (1 = Ir (), (6.34)

is called the amended potential. It can be shown that, at relative equilibrium (z.,&), we have
DV,(z.) 8z = DV¢(z.)oe,
DZV“(we) 0xy - bdzy = Be(bzy, b29).
Thus the stability conditions in Theorem 6.7 are equivalent to the conditions for the relative
equilibrium to be a constrained strict local minimizer of the function V. This conclusion is

analogous in spirit to the Lagrange-Dirichlet theorem [6]. We phrase it as a theorem.

THEOREM 6.8

For gyroscopic systems with symmetry, the components of relati\_/e equilibria in the config-
uration space are the critical points of the function V. If the configuration component z, of a
relative equilibrium is a constrained strict local minimizer of the function V), (i.e. by taking out
the neutral directions tangent to G, - z.), then the associated relative equilibrium is relatively

stable modulo G, .

REMARK 6.9

In most practical problems, the augmented potential V; is easier to compute than the
amended potential V,. From Theorem 6.7 and (6.28), it is clear that positive-definiteriess of
the second variation of V¢ on V is sufficient for stability. Following arguments similar to the
discussion regarding V),, we get an analogous statement as in Theorem 6.8 with V), replaced by
the augmented potential V. However, sufficient conditions obtained from V,, are clearly weaker

than the conditions from V¢.

REMARK 6.10

Theorem 4.4 and Theorem 6.8 can be combined to assess the stability of closed-loop relative
equilibria obtained by the application of a gyroscopic feedback law, cf. 4.12, to a simple mechanical

svstem with symmetry and exterior force.

41



In the following, we consider two special cases. First, it is easy to see that for the case of

Q@ = G, cf. Figure 6.2, Viyr = {0 }. Consequently, we only need to consider the Arnold block
for stability. Secondly, for the case of G = SO(3), we have

—
~

adg ) = £xn, adz b= pxé (6.35)

where €, 1) € s0(3), and /i € s0*(3). Thus, condition (6.33) implies
Be X &€ =0, or p, = AL, (6.36)
where A € R is a scalar. It follows that G, is the subspace spanned by the vector £, which, in
turn, implies that G, = Gg. Recall that from (5.13), V¢ is invariant along the group orbit,

Ge - .. From Remark 6.9, we conclude that for this case, the function Ve defined in (5.14) is

sufficient for determining stability. We summarize the discussion in the following corollary.

COROLLARY 6.11

We consider a gyroscopic system with symmetry (@, K,Y,V,G).

(i) For the case that @ = G, positive definiteness of By at relative equilibrium, defined in (6.28),
on Vrig X Vrig implies relative stability modulo G, .

(ii) For the case that G' = SO(3), a strict local minimizer of the function V¢, defined in (5.14)
on the space Q/G¢ induced by the augmented potential V; gives rise to a stable relative
equilibrium.

|

These observations are very useful in applying the energy-momentum method to specific problems.
After discussing the block-diagonalization of the bilinear form, or the second variation of H,

we cousider the decomposition of the symplectic structure on 7@ side for gyroscopic systems
with symmetry. We follow closely the derivations in [39]. Recall that for gyroscopic systems with
symmetry, the symplectic structure on 7@ side is unaffected by the presence of the gyroscopic
term, and is hence the canonical one. The associated momentum mapping is given by J : T*Q — G~
with (J(z,p), &) = (p, €g(z)). We define the fundamental mechanical connection o : T} — G

as

a(ve) 2 Ink () J(z, K°(vs)). (6.37)

It can be shown that « is a connection on the G-bundle Q — Q/G and a(fg(z)) = . Given

w€ G alform Z,:Q — T*Q is induced through the connection o,
(Zul@), va) = (1, a(ve)). (6.38)
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Regarding Z, as a map from ¢ to 7@, we can find the corresponding tangent map T'Z, : TQ —
TT*Q . Recall that the space V C T,Q is decomposed into Vgrrg and Vinr as defined in (6.26),
(6.27), respectively, by assuming that the Arnold’s block is definite. We define

{Te, 2y, - Colze): CE g;t 1,
{ Te, 2y, -6z : bz € VinT }, (6.39)
{(0, é&p): (fp, nolz.)) = 0, Yneg}.

It can be verified that & = Sgrig ® Wint @ Winp- Also, we have the following proposition.

>

SriG

e

Wint

e

*
WINT

PROPOSITION 6.12

At the relative equilibrium, z, = (2., p.) € 77, we have
(1) for ¢, v € G,

wO("@)(Teruc “Co(ze)s Ts 2y, ’VQ(%)) = —(ue, [C, V],

(2) for ¢ € gje , (6z, 6p) € Wint © WinT,

wo(ze)(To. Zu, * C(e)y (82, 8p)) = (e, [¢, al@)]),

(3) for bz, 622 € VinT,
wo(2e) (To, Zp, - 621, To, 2y, - S22) = d2,, (623, b21) — (2., [fvs, 21]),

(4) for n€ G, (0, ép) € WinT, WO(Ze)(Terue -ng(ze), (0, (5]])) = 0,
(5) for (0, &p1), (0, 6p,) € Wing,  wo(2)((0, ép1), (0, épy)) = 0.

The proof is omitted here. It is very similar to that in proving Proposition IV.4, pp. 61-62 in [39].

Define the map

Pt Gr X VINT X [Q’-_fve]A -,
where [G - z.]? is the annihilator of G-z, in T7Q, as
p(C, 82, ) = TuZy, - Colwe) + ToZp 6o + (0, 6p).
This map induces a bilinear form
w, ((Ca, 621, 8p1)s (Coy S22, 6p2)) = wolze)(p(Cry S21, 8py)s pC2y 2o, 8ps)) -
From Proposition 6.12, this bilinear form can be written as
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G VINT G-z.)4

gL Lie-Poisson Bracket :  Rigid-Internal Coupling : 0 \
e

ViNT — Rigid-Internal Coupling Canonical Symplectic Structure }

(G-z.]4 0 . plus a Magnetic Term 4

Figure 6.3. Block-diagonalization of w,

wp(((la 6:1;1, 6p1)7 (CZa &E?: 5]?2))

= —(fte, [C1, D) = (e, [, a(622)]) + (pe, [C2, alz1)])
+ dZ, (6xq, bx1) — (2,., [6x2, bz1]) + (Opy, 6z1) — (6py, Sw2).
This shows that the restriction of the symplectic structure can be block-diagonalized as in
Figure 6.3. This is analogous to the case of simple mechanical systems with symmetry [39].
However, the gyroscopic effects enters through the definition of ., cf. (6.15).

Upon the completion of the discussion of the abstract framework, now we implement the
energy-momentum method in more detail for the special case of G = S0O(3). This physically
corresponds to the study of stability properties of rotating structurés. Through the isomorphism
between R’ and skew symmetric matrices defined in (3.14), we define the locked inertia dyadic

Iloock(a;) as
<£7 Ilock(x)ﬁ> = 6'1?001:(3")777 (640)

where we have used the trace pairing, cf. (3.16). The matrices Ijocx(z), If,.,(2) are related by the

following formula. For

Ly Ly Iis 1 Iyo + I33 —Iis ~hs
Lioek(z) = | [y Loy s}, ILa(z) = 5 ~Iyy Iy + 133 —Ir3
Ly Iy Iss —Ii3 ~Ins I+ D2

Also, we define
Iy(z) = I3 (2), (6.41)
where I$.(2) € IR®. Namely,
(Iv(z), ) = Li(z) 7. (6.42)
With these two objects, we have the following new representations,
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T2, §) = Rul2) + T(a), (6.43a)
Ve = V(o) = 36 (o) - ()6, (6.430)
ident}?(m)& = —(DI},.,(z)6z) ¢ ~ DIy (z)éz, (6.43¢)

The bilinear form defined in (6.28) is now

Bg(bz1, bz2) = identiéo(:ve)éml 19k (ze) T ident Y0 (2, ) b2

E (6.44)
+ D?Ve(z.) - b1 - bzs.
The Arnold block in (6.31) can be then written as, cf. (6.35),
(ad3fie, Toek(ze) ™  adifie) + (adifie, adsé)
= (e X 0) - Ier(@e) ™ (e X 1) + (pe x 1) (0 X&) (6.45)

Il

2 (ex ) (T(ed™ = J1) (€x0)

It is thus clear that for the Arnold block, we need to check the definiteness of the matrix
I2 ()™ — 11 along all directions except £. Note that here A is not an eigenvalue of the
locked inertia dyadic in contrast with the case of simple mechanical systems with symmetry. The
gyroscopic field affects A through the gyro-momentum term, cf. (6.36). The above formulae will
be used in the following section for the example of two rigid bodies with rotors coupled via a

ball-in-socket joint.

7. Two Coupled Rigid Bodies with Internal Rotors

We now apply the energy-momentum method developed in Section 6 to a multibody analog
of the dual-spin problem. In [48], we show that, with appropriate damping mechanism, the system
depicted in Figure 7.1 asymptotically approaches one of the stable relative equilibria corresponding
to an associated gyroscopic system with symmetry. Here we will compute certain stable relative
equilibria.

The system under consideration consists of two rigid bodies connected by a three-degree-
of-freedom spherical (ball-in-socket) joint and three symmetric rotors mounted on the center of
mass of one body along its three principal axes, see Figure 7.1. These rotors, called driven rotors,
are set in constant motion relative to the carrier body. We assume that the assembly is moving
in a free space. For simplicity, the inertial reference frame is placed at the center of mass of

the assembly. This corresponds to the reduction by the translational invariance of the system
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as discussed in [16], [47]. Let my, mo, ms,, i = 1,2,3,and Iy, I, Is;, ¢ = 1,2,3 denote
the masses and the moments of inertia of body 1, body 2 and driven rotors, respectively. Let
e = ma(my + ms, + ms, + ms,) / (M1 + ms, + mg, + ms, + ma), the reduced mass. As in
the classical dual-spin example of Section 4, this system can be put in the category of gyroscopic

systems with symmetry with the following entities, cf. [46],

Body 2

Figure 7.1. Two Rigid Bodies with Rotors

Q = 50(3)x SO(3),

. . . . r 31 Ji2 wy
K ((Byi1, Bada), (Biihy, Boto)) = (uf u3) | .7 R
Y(By, B2) = (Biih, Bai), V(DB1, By) = 0, G = 50(3),

where,
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3
Ji = N + edld, + > s,

i=1
3

Jy = X, + edidy + ZID,», Ji» = ediBY Bydy,
i=1

and the components y;, y» of the gyroscopic field are given by solving the equations

Jinn +Jdpy =1=1%, IhLhy + Iy =0

The associated Lagrangian is
1 1
L(B1, 4, By, ) = 5 <8, > t5 < Qo, T2Qy >
+e < Ql, (213{3262292 >4 <O, 1>

This system can be also viewed as a closed-loop system of a simple mechanical systém with

gyroscopic feedback as described in Example 4.5.
Now we find the quantities introduced in Section 6. For the system under consideratian, the
locked inertia dyadic, cf. (6.40), can be determined from
< &, Lo (B1, Ba)n >
= < £o(B1, Bs), fig(Bi1, By) >
= <& (BiIB{ + BoJ2BY + B13nBY + B35 B )y > .
Thus we have

Iock(B1,By) = ByJ3yBf + ByJ2BT + B33y BT + B, 3%, BT,

The gyro-momentum in G* induced by the gyroscopic field Y can be shown, cf. definition (6.42)

b

to be

I‘;’ = Bl l.

Accordingly, the momentum mapping is
po= ()l + I(2)
= (B1JyBf + B2J,BY + B3, BY + B35BT ¢ + Byl

The augmented potential function V¢ is

1
Vg(Bl,BQ) = —':'2‘ < f, Iloock£> - < Bll, £>,

= ﬁ% < &, (B1I1BY + ByJy B + B1319BY + By 3L, BT )¢ >

- <§7 Bll >,

‘% <&, (B1J1B{F+B2JQB§+SEE1§Q2+513’/2\d}B/17l1)§>
- <€7 Bll >,



Now we apply the Principle of Symmetric Criticality to find the conditions for re.ative
equilibria. The first variation of the augmented potential is derived as follows,

DVg(Bl, Bg)'(ﬂlBl, ﬂng) =< gBlJlBirg + éBll + 8@155\2326, Uy >
+ < E€ByJyBTE + € BodobBrdi, ug > .

From the above formula, we immediately read out the conditions for the configuration companents

of the relative equilibrium (B, Ba.) as satisfying

£ X (B1J1BT €+ Bil) + € Bydy x (€ x (Bada x €))
EX (B2JyBTE) + & Bady x (€ X (Bydy x £))

il

07 (72@)

1l

0, (7.2b)

These are very similar to the conditions derived in [47], except that a gyroscopic term enters. By
taking dot product with £ on both side of (7.2a), and letting s; = Bidy, sy = Bads, we obtain

the coplanarity condition, cf. [47],

€ - (s1 X s3) = 0. (7.3)

Accordingly, the gyroscopic term does not affect the coplanarity condition for the relative equilib-

rium for this problem. With this condition (7.3), equations (7.2) may be re-expressed as

£ X (B1I1B € + B1l) — &(Bidy -€)(Bada x &) = 0, (7.4a)
€% (B2JyBY¢) — e(Bady - €)(Bidi x €) = 0. (7.4b)

Now we find a particular relative equilibrium for this problem. Let {e;,e2,e3}, {f1,f2,f3} be the

coordinate frames corresponding to body 1, body 2, respectively, such that

Jlei = Jlieb J2fi = J?ifi, 2213293

It can be checked that if the following conditions hold,

§ = || By ex = €] By 11, (7.5a)
l = ll €1, (75[))
di = ay es, dy = aq 1a, (7.5¢)

conditions (7.4) are satisfied. Thus the conditions (7.5) are associated to a relative equilibrium

(Bie, Bae). From (7.5a), we know that

By, e1 = By, fi. (7.6)
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By substituting (7.5a), (7.5¢) in the coplanarity condition (7.3), we get

e - (eg X Befz) = 0,

where B, = B B,.. With (7.6), this only happens when B, f» = =+ e,. Thus, we have two

sets of relative equilibria expressed in terms of the relative shape variable B,,

B.fy = e;, B.fy = ez, B.f3 = e, (7.7a)

B, f; = e;, B.fy = —ey, DB fy3 = —ejz. (7.7b)

In the following, we will study the stability property of the relative equilibrium corresponding to

(7.7b) with (7.5). This configuration is depicted in Figure 7.2.

Al

Figure 7.2. Relative Equilibrium Configuration.

The energy-momentum method is adopted here to determine the stability. We first need to

compute the second variation of the augmented potential. It can be found as follows,
D*V¢(By, By) - (1 By, 913 B2) - (1 By, 2. Bs)

= i DVE(eealBl,eéang)‘(ﬂ166ﬁ1B1,ﬂ265azB~2)
de |, _q

= < B3y BT — ByI1 Bl € + @1 B1l, @6 >
+ < fiyByJyBT€ — ByJo BT €, g€ >
+ & < (WBd)EBdE, w >+ < (i9Bado)iBidié, uy >
+ 2 < (711737611)57 (ﬁ'zgdz)ﬁ > .
Define
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e

& pT
uy = Bleul, Un Bg;u:g.

Uz, U23), respectively.

The components of uy, uz will be denoted by (ui1, uiz, wz) and (uas,

Also, we will use the notations,
Jy = diag{ Jo1, J22, J23 }.

Jy = diag{ Ju1, J12, Ju3 },

At relative equilibrium (Bye, Bae) such that (7.7b), (7.5) hold, we can further write the second

variation of the augmented potential as
D2V£(Blea BQe) : (Bleﬂy BQea\Z) : (B1e1/ﬁ, B2eﬁa)

el€)2ar as(uir ~ ) + ((J11 — Jus)l€] + ln) |€ful,

+ (11 = Iz + 2 ara)lé + 1) [€fuds + (Io1 — Jos)[€f7ud,

(7.9)

+ (Jo1 — Joo +€a1(12)]5|2u33'

From Remark 6.9, we check the positive definiteness of the second variation of the augmented
For the relative equilibrium under investigation, we have the

potential on the space of V.

momentum mapping, cf. (7.1),
He = ((311 + Jo1 + 2 ayaz)|€| + 11) By, e;.

Thus the Lie algebra corresponding to the isotropy group is G,, = Span{ Bi.ep }. with the

orthogonal complement with respect to the locked inertia tensor,

gjﬂ = Span{ -Ble €q, Bleeg }

The space V is given by,
v = { (Bleﬁz’BZeuAZ) K (Bleﬁ;,BZEGTZ% (ﬁBlw ﬁBQe) > = 03 V 7 € gl/'e }7
= { (Biely, B2ez) 1 (J11 +earaz)uyy + (Jo1 + cajaz)uy; = 0 }.

The second variation of the augmented potential restricted to V is now

«(Byelly, Baoliz) - (B1eliy, Baeliz)

Dz‘/f(Blea B?e)
VxV
' (7.10)

2 Jo1 +€a1ay 2
= “ 0 | ————— 11 5
¢ léffar as ( Jii +earar + ) =
(311 = T)lE]+ W)1€udy + ((Jun = iz +earaz)ié] + 11)|€[us

+
+ (Ja1 — Joa)l€Pudy + (Jo1 — Jaz + € a1a0) | uds.
Consequently, we can read off the sufficient conditions for stability from (7.10) as,
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(311 = Jw3)lél + &1 > 0,
(Ji1 = Jig+eaa)ll] + &4 > 0,
Jo1—Jag > 0,

Jog — Joa +cara; > O.

The above discussions are summarized in the following theorem.

THEOREM 7.1

For the multibody dual-spin problem, conditions (7.5), (7.7b) give rise to a relative equilibrium

(Bies Bae). Furthermore, assuming that

I I
T > Ji3 — Ju, and = > Ji2 — Jin — €ajar,

¢l

the relative equilibrium (Bje, Bs.) is stable if

Jo1 — Jos > 0, and Jog — Joo +€ayay > 0.

REMARK 7.2

It may be checked that the positive definiteness conditions for the Arnold block are

(J11 = J13+ Jo1 — Jaa)lél + b > 0,

(J1g — Jio + Joy — Joo + 2 aqan)|€] + 1 > O.

These conditions ensure the decomposition of the space V, c¢f. Lemma 6.6. It is easy to see that

these conditions are implied by the conditions in Theorem 7.1. However, this is not sufficient for

stability. There are additional conditions coming from the other block. Thus, for such a coupled

system, we could never regard the system as a whole rigid body. The coupling effects should be
suitably accommodated.

|

Now we consider the other relative equilibrium coming from (7.7a). The second variation of

the augmented potential corresponding to the case that the relative shape is identity, or the two

bodies are folded can be found from (7.8) to be, cf. (7.9),
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D*Ve(Bie, Bae) - (Brely, BooW3) - (Bi.ay, Bjcus)
= —¢|tlarar(ur —uar)® + ((J11 = Jua)]é] + 1) ]€ud,
+ {(Ju = 312 —e@mag)l€] + ) |€luly + (Jo1 — J23)|€] w3,

+ (J21 — Jao2 — £ agas) | uls.

Even restricted to the space V, there is always one negative term. This fact suggests that this

relative equilibrium may be unstable, irrespective of the rotor speed. Further analysis is needed to

justify this statement.

8. Conclusions

The Lagrange-d’Alembert principle is a starting point for modeling natural mechanical
systems subject to exogenous forces. If the forces are determined through feedback laws, then
the structure of the closed-loop system can be used to assess stability properties of the system. In
the present paper, using an intrinsic formulation of the Lagrange-d’Alembert principle, we have
identified a class of feedback laws that lead to gyroscopic systems with symmetry. The (energy-
momentum) block-diagonalization theorem for simple mechanical systems with symmetry has been
extended to gyroscopic systems with symmetry, or the closed-loop system. Working consistently
on the tangent bundle side, we establish the splitting that block-diagonalizes the second variation
of the energy-momentum function at a relative equilibrium. The splitting depends on a quantity
that we refer to as the gyro-momentum which can be computed in terms of the given gyroscopic
vector field.

The gyro-momentum also enters the stability criteria. From the viewpoint of this paper,
the gyro-momentum is the key control parameter and thus it is possible, using the methods of
this paper, to determine whether a specific gyroscopic feedback law is a stabilizing feedback law.
This is illustrated in the example of Section 7 on two coupled rigid bodies with internal rotors.
This example is a natural generalization of the single rigid body dual-spin problem studied by
P.S. Krishnaprasad [23], Sanchez de Alvarez [2], and more recently in the collaborative work with
Bloch and Marsden [7]. Other more complicated examples, including dual-spin satellites in central
gravitational fields aﬁd with flexible attachments, appear in the dissertation of Wang [46].

In future work, we plan to investigate bifurcations of relative equilibria with respect to the
gyro-momentum. Examples of this appear in the work of Krishnaprasad and Berenstein [23].

Control strategies based on bifurcation of relative equilibria may be effective in a variety of problems.
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We hope to discuss these and other aspects in a later paper.
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