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This dissertation studies physical layer security in wireless networks using an

information theoretic framework. The central theme of this work is exploring the

effect of delayed or no channel state information (CSI) on physical layer security in

various wireless channel models.

We begin with the fast Rayleigh fading wiretap channel, over which a legiti-

mate transmitter wishes to have secure communication with a legitimate receiver in

the presence of an eavesdropper. Subject to an average power constraint on the in-

put, and with no CSI at any user, we show that the input distribution that achieves

the secrecy capacity for this wiretap channel is discrete with a finite number of

mass points. This enables us to evaluate the exact secrecy capacity of this channel

numerically.

Next, we consider multi-user models, specifically, the wiretap channel with M

helpers, the K-user multiple access wiretap channel, and the K-user interference

channel with an external eavesdropper, when no eavesdropper’s CSI is available



at the transmitters. In each case, we establish the optimal sum secure degrees of

freedom (s.d.o.f.) by providing achievable schemes and matching converses. We

show that the unavailability of the eavesdropper’s CSI at the transmitter (CSIT)

does not reduce the s.d.o.f. of the wiretap channel with helpers. However, there

is loss in s.d.o.f. for both the multiple access wiretap channel and the interference

channel with an external eavesdropper. In particular, we show that in the absence

of eavesdropper’s CSIT, the K-user multiple access wiretap channel reduces to a

wiretap channel with (K−1) helpers from a sum s.d.o.f. perspective, and the optimal

sum s.d.o.f. reduces from K(K−1)
K(K−1)+1

to K−1
K

. For the interference channel with an

external eavesdropper, the optimal sum s.d.o.f. decreases from K(K−1)
2K−1

to K−1
2

in the

absence of the eavesdropper’s CSIT. Our results show that the lack of eavesdropper’s

CSIT does not have a significant impact on the optimal s.d.o.f. for any of the three

channel models, especially when the number of users is large.

We, then, study multiple-input multiple-output (MIMO) multi-user channels.

We begin with the case when full CSIT is available. We consider a two-user MIMO

multiple access wiretap channel with N antennas at each transmitter, N antennas

at the legitimate receiver, and K antennas at the eavesdropper. We determine the

optimal sum s.d.o.f. for this model for all values of N and K. We subdivide our

problem into several regimes based on the values of N and K, and provide achievable

schemes based on real and vector space alignment techniques for fixed and fading

channel gains, respectively. To prove the optimality of the achievable schemes, we

provide matching converses for each regime. Our results show how the number of

eavesdropper antennas affects the optimal sum s.d.o.f. of the multiple access wiretap



channel.

In line with the theme of this dissertation, we next consider the MIMO wiretap

channel with one helper and the two-user MIMO multiple access channel when no

eavesdropper CSIT is available. In each case, the eavesdropper has K antennas

while the remaining terminals have N antennas. We determine the optimal sum

s.d.o.f. for each channel model for the regime K ≤ N , and we show that in this

regime, the multiple access wiretap channel reduces to the wiretap channel with a

helper in the absence of eavesdropper CSIT. For the regime N ≤ K ≤ 2N , we obtain

the optimal linear s.d.o.f., and show that the multiple access wiretap channel and

the wiretap channel with a helper have the same optimal s.d.o.f. when restricted

to linear encoding strategies. In the absence of any such restrictions, we provide

an upper bound for the sum s.d.o.f. of the multiple access wiretap channel in the

regime N ≤ K ≤ 2N . Our results show that unlike in the single-input single-output

(SISO) case, there is loss of s.d.o.f. for even the wiretap channel with a helper due

to lack of eavesdropper CSIT, when K ≥ N .

Finally, we explore the effect of delayed CSIT on physical layer security. In

particular, we consider the two user multiple-input single-output (MISO) broadcast

channel with confidential messages, in which the nature of CSIT from each user

can be of the form Ii, i = 1, 2 where I1, I2 ∈ {P,D,N}, and the forms P, D and

N correspond to perfect and instantaneous, completely delayed, and no CSIT, re-

spectively. Thus, the overall CSIT can be any of nine possible states corresponding

to all possible values of I1I2. While the optimal sum s.d.o.f. in the homogeneous

settings corresponding to I1 = I2 are already known in the literature, we focus on



the heterogeneous settings where I1 6= I2 and establish the optimal s.d.o.f. region in

each case. We further consider the case where the CSIT state varies with time. Each

state I1I2 can then occur for λI1I2 fraction of the total duration. We determine the

s.d.o.f. region of the MISO broadcast channel with confidential messages under such

an alternating CSIT setting, with a mild symmetry assumption, where λI1I2 = λI2I1 .
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Chapter 1: Introduction

The focus of this dissertation is on physical layer security in wireless communication

networks. Wireless communication networks are ubiquitous in the modern world;

common examples include cellular networks, Wi-Fi and Bluetooth. Yet the wireless

medium is inherently open to eavesdropping, and securing the information being

transmitted through wireless networks against potential eavesdroppers presents a

significant challenge. This dissertation explores the paradigm of physical layer secu-

rity, which seeks to exploit inherent physical layer channel properties such as noise,

fading, and multiple antennas at the terminals to guarantee security. The derived

security guarantees are based on an information theoretic framework, and are not

vulnerable to potential advances in the computational abilities of an eavesdropper.

The main thrust of this dissertation is on investigating how the availability

of channel state information (CSI) at the terminals affects physical layer security

in wireless networks. Wireless channels exhibit fading, that is, the channel gain

for each receiver varies with time. To ensure reliable communication, in practical

systems, the receivers measure the channel gains periodically and feed them back

to the transmitters. These channel measurements available at a terminal constitute

the CSI at the terminal. In this dissertation, we explore the role of CSI in securing
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Figure 1.1: Fading wiretap channel with no CSI anywhere.

wireless communication for various channel models, such as the wiretap channel, the

wiretap channel with helpers, the multiple access wiretap channel, the broadcast

channel with confidential messages and the interference channel with an external

eavesdropper.

We begin, in Chapter 2, with a fast fading Rayleigh wiretap channel where

each terminal is equipped with only one antenna, as shown in Fig. 1.1. We consider a

fast Rayleigh fading scenario, where the channel gains of both the legitimate link and

the eavesdropper link fade in an independent identically distributed (i.i.d.) fashion

from one symbol to the next with a Rayleigh distribution. This models a fast fading

wireless communication channel with coherence time of one symbol duration. Under

such a fast fading condition, the channel may change too quickly for receivers to

estimate it. In addition, the eavesdropper will not feed her CSI estimate back even

if she measures it. Thus, we assume no CSI is available at any terminal before

the communication begins. For this system model, we determine the exact secrecy

capacity.

We first show that this channel is equivalent to a degraded wiretap channel.

This implies that no channel prefixing is needed [1]. We then consider the secrecy

2



rate, which is the difference of mutual informations, as the objective function, which

is concave, and determine the optimal input distribution as the result of a functional

optimization problem. To analyze the Karush-Kuhn-Tucker (KKT) optimality con-

ditions, we use a proof technique originally developed by Smith [2] to evaluate the

channel capacity of an amplitude constrained Gaussian channel and later extended

by Abou-Faycal et al. [3] to determine the channel capacity of a fast fading Rayleigh

channel under an average power constraint. We extend the KKT conditions to the

complex plane and use the identity theorem to prove that the optimum input dis-

tribution cannot have an infinite support over any finite interval. We then show

that the optimal distribution has a finite support. Though we do not have a closed

form expression for the secrecy capacity, it can be computed numerically by solving

a finite dimensional optimization problem.

In Chapter 3, we extend our investigation of the impact of no CSI to several

multi-terminal channel models. In particular, we consider three channel models:

the wiretap channel with M helpers, the K-user multiple access wiretap channel,

and the K-user interference channel with an external eavesdropper, when no eaves-

dropper CSI is available at the transmitters. For each of these channel models,

the secrecy capacity regions remain unknown, even with full eavesdropper CSIT.

In the absence of exact capacity regions, we study the secure degrees of freedom

(s.d.o.f.) of each channel model in the high signal-to-noise (SNR) regime. For the

wiretap channel with M helpers and full eavesdropper CSIT, reference [4] deter-

mines the optimal s.d.o.f. to be M
M+1

. Further, reference [5] determines the optimal

sum s.d.o.f. for the K-user multiple access wiretap channel with full eavesdropper
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Figure 1.2: Wiretap channel with M helpers.

CSIT to be K(K−1)
K(K−1)+1

. For the interference channel with an external eavesdropper,

the optimal sum s.d.o.f. is shown to be K(K−1)
2K−1

in reference [6], with full eavesdrop-

per CSIT. Here, we focus on the case when no eavesdropper CSIT is available. We

show that for the wiretap channel with M helpers, an s.d.o.f. of M
M+1

is achiev-

able even without eavesdropper’s CSIT; thus, there is no loss of s.d.o.f. due to the

unavailability of eavesdropper CSIT in this case. For the multiple access wiretap

channel and the interference channel with an external eavesdropper, however, the

optimal s.d.o.f. decreases when there is no eavesdropper CSIT. In particular, with-

out eavesdropper CSIT, the K-user multiple access wiretap channel reduces to a

wiretap channel with (K − 1) helpers and the optimal sum s.d.o.f. decreases from

K(K−1)
K(K−1)+1

to K−1
K

. For the interference channel with an external eavesdropper, the

optimal sum s.d.o.f. decreases from K(K−1)
2K−1

to K−1
2

with no eavesdropper CSIT.

In order to establish the optimal sum s.d.o.f., we propose achievable schemes

and provide matching converse proofs for each of these channel models. First, we

consider the wiretap channel with M helpers shown in Fig. 1.2, and the K-user
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Figure 1.3: K-user multiple access wiretap channel.

multiple access wiretap channel, shown in Fig. 1.3. We note that any achievable

scheme for the wiretap channel with (K − 1) helpers is also an achievable scheme

for the K-user multiple access wiretap channel. Further, a converse for the K-user

multiple access wiretap channel is an upper bound for the wiretap channel with

(K−1) helpers as well. Thus, we provide achievable schemes for the wiretap channel

with helpe2rs and a converse for the multiple access wiretap channel. We consider

both fixed and fading channel gains. For the wiretap channel with helpers and

the multiple access wiretap channel, we present schemes based on real interference

alignment [7] and vector space alignment [8] for fixed and fading channel gains,

respectively.

For the interference channel, see Fig. 1.4, our achievable schemes are based on

asymptotic real alignment [7,9] and asymptotic vector space alignment [8] for fixed

and fading channel gains, respectively. As in [6], every transmitter sacrifices a part

of its message space to transmit cooperative jamming signals in the form of artificial

noise. However, instead of one artificial noise block as in [6], our scheme requires two

noise blocks from each transmitter. The 2K noise blocks from the K transmitters
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Ŵ2

ŴK
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are then aligned at each legitimate receiver to occupy only (K+1) block dimensions

out of the full space of 2K dimensions, thus, achieving K−1
2K

s.d.o.f. per receiver.

At the eavesdropper, however, the noise blocks do not align, and therefore, occupy

the full space of 2K block dimensions, ensuring security of the message blocks. An

interesting aspect of our proposed schemes for the interference channel is that they

provide confidentiality of the messages not only from the external eavesdropper but

also from the unintended legitimate receivers. Thus, our schemes for both fixed and

fading channel gains achieve the optimal sum s.d.o.f. for the K-user interference

channel with both confidential messages and an external eavesdropper, with no

eavesdropper CSIT.

To prove the converses, we combine techniques from [4,6] and [10]. We exploit

a key result in [10] that the output entropy at a receiver whose CSIT is not available

is at least as large as the output entropy at a receiver whose CSIT is available, even

when the transmitters cooperate and transmit correlated signals. This result is

similar in spirit to the least alignment lemma in [11], where only linear transmission

strategies are considered. Intuitively, no alignment of signals is possible at the

6



receiver whose CSIT is unavailable; therefore, the signals occupy the maximum

possible space at that receiver. We combine this insight with the techniques of

[4, 6]. Specifically, we use discretized versions of the secrecy penalty lemma, which

quantifies the loss of rate due to the presence of an eavesdropper, and the role of a

helper lemma, which captures the trade-off, arising out of decodability constraints,

between the message rate and the entropy of an independent helper signal. Together,

these techniques enable us to establish the optimal sum s.d.o.f. for the multiple

access wiretap channel with no eavesdropper CSIT to be K−1
K

and the optimal sum

s.d.o.f. for the interference channel with no CSIT from the external eavesdropper to

be K−1
2

.

In Chapter 4, we consider a multiple-input multiple-output (MIMO) version of

the multiple access wiretap channel. However, the optimal sum s.d.o.f. of the MIMO

multiple access wiretap channel is unknown even with two users and under full CSIT

assumptions. Thus, we deviate from our theme of no CSIT in this dissertation and

consider the two-user MIMO multiple access wiretap channel with full CSIT, where

each transmitter has N antennas, the legitimate receiver has N antennas and the

eavesdropper has K antennas; see Fig. 1.5. We study the case when the channel

gains are fixed throughout the duration of the communication, as well as the case

when the channel is fast fading and the channel gains vary in an i.i.d. fashion across

time. Our goal is to characterize how the optimal sum s.d.o.f. of the MIMO multiple

access wiretap channel varies with the number of antennas at the legitimate users

and the eavesdropper.

To that end, we partition the range of K into various regimes, and propose

7



H1

G2

H2

G
1

N antennas N antennas

N antennas K antennas

W1

W2
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achievable schemes for each regime. Our schemes are based on a combination of zero-

forcing beamforming and vector space interference alignment techniques. When the

number of antennas at the eavesdropper is less than the number of antennas at the

transmitters, the nullspace of the eavesdropper channel can be exploited to send

secure signals to the legitimate transmitter. This strategy is, in fact, optimal when

the number of eavesdropper antennas is sufficiently small (K ≤ N
2

) and the optimal

sum s.d.o.f. is limited by the decoding capability of the legitimate receiver. We note

that the optimal scheme requires a single channel use and thus, can be used for both

fixed and fading channel gains.

However, zero-forcing beamforming does not suffice when K ≥ N
2

. In the

regime N
2
≤ K ≤ 4N

3
, the optimal sum s.d.o.f. is of the form 2

(
d+ l

3

)
, l = 0, 1, 2,

where d is an integer. For the case of fading channel gains, we use vector space

interference alignment [8] over three time slots to achieve the optimal sum s.d.o.f.

The structure of the optimal signaling scheme is inspired by ideas from the optimal

real alignment scheme presented in [4] for the single-input single-output (SISO)

8



multiple access wiretap channel. Unlike the previous regime, this scheme for fading

channel gains cannot be directly extended to the fixed channel gains case, except

for the case l = 0, for which the sum s.d.o.f. is an integer and carefully precoded

Gaussian signaling suffices. When l 6= 0, the s.d.o.f. has a fractional part, and

Gaussian signaling alone is not optimal.

In order to handle the fractional s.d.o.f., we decompose the channel input at

each transmitter into two parts: a Gaussian signaling part carrying d (the integer

part) d.o.f. of information securely, and a structured signaling part carrying l
3

(the

fractional part) d.o.f. of information securely. The structure of the Gaussian signals

carrying the integer s.d.o.f. resembles that of the schemes for the fading channel

gains. When l = 1, we design the structured signals carrying 2
3

sum s.d.o.f. according

to the real interference alignment based SISO scheme of [4]. However, when l = 2,

a new scheme is required to achieve 4
3

sum s.d.o.f. on the MIMO multiple access

wiretap channel with two antennas at every terminal. To that end, we provide a

novel optimal scheme for the canonical 2× 2× 2× 2 MIMO multiple access wiretap

channel. Interestingly, the scheme relies on asymptotic real interference alignment [9]

at each antenna of the legitimate receiver.

When the number of eavesdropper antennas K is large enough K ≥ 4N
3

, the

optimal sum s.d.o.f. is given by (2N−K), which is always an integer. In this regime

Gaussian signaling along with vector space alignment techniques suffices. In fact, the

scheme uses only one time slot and can be used with both fixed and fading channel

gains. When the number of antennas at the eavesdropper is very large (K ≥ 3N
2

),

the two-user multiple access wiretap channel reduces to a wiretap channel with one

9



helper, and, thus, the scheme for the MIMO wiretap channel with one helper in [12]

is optimal.

To establish the optimality of our achievable schemes, we present matching

converses in each regime. A simple upper bound is obtained by allowing cooperation

between the two transmitters. This enhances the two-user multiple access wiretap

channel to a MIMO wiretap channel with 2N antennas at the transmitter, N an-

tennas at the legitimate receiver and K antennas at the eavesdropper. The optimal

s.d.o.f. of this MIMO wiretap channel is well known to be min((2N−K)+, N) [13,14],

and this serves as an upper bound for the sum s.d.o.f. of the two-user multiple access

wiretap channel. This bound is optimal when the number of eavesdropper antennas

K is either quite small (K ≤ N
2

), or quite large (K ≥ 4N
3

). When K is small, the

sum s.d.o.f. is limited by the decoding capability of the legitimate receiver, and the

optimal sum s.d.o.f. is N which is optimal even without any secrecy constraints.

When K is large, the s.d.o.f. is limited by the requirement of secrecy from a very

strong eavesdropper. For intermediate values of K, the distributed nature of the

transmitters dominates, and we employ a generalization of the SISO converse tech-

niques of [4] for the converse proof in the MIMO case, similar to [12].

In Chapter 5, we return to our theme of no eavesdropper CSIT, and study two

channel models: the MIMO wiretap channel with one helper where the transmitter,

the helper and the legitimate receiver each have N antennas, and the eavesdropper

has K antennas; see Fig. 1.6, and the MIMO multiple access wiretap channel, where

both transmitters and the legitimate receiver have N antennas and the eavesdropper

has K antennas; see Fig. 1.7. In both cases, the channel is fast fading and the
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channel gains vary in an i.i.d. fashion across the links and time. We consider the

case when the eavesdropper’s CSI is not available at the transmitters. Our goal is to

investigate the optimal sum s.d.o.f. of the MIMO wiretap channel with one helper

and the MIMO multiple access wiretap channel as a function of N and K.

To that end, we provide an achievable scheme based on vector space align-

ment [8], that attains 1
2
(2N − K) s.d.o.f. for the wiretap channel with one helper

for all values of 0 ≤ K ≤ 2N . When K ≤ N , this value coincides with the optimal

s.d.o.f. for the wiretap channel with one helper in the case where full eavesdropper

CSIT is available. Therefore, for the regime K ≤ N , there is no loss of s.d.o.f. for

the wiretap channel with one helper due to the lack of eavesdropper CSIT. Further,

the proposed scheme which does not require eavesdropper CSIT, is optimal. The

achievable scheme for the wiretap channel with one helper also suffices as an achiev-

able scheme for the multiple access wiretap channel, since we can treat one of the

transmitters as a helper and use time-sharing among the two transmitters.

To prove the optimality of the proposed scheme for the multiple access wiretap
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Figure 1.7: The MIMO multiple access wiretap channel with no Eve CSIT.

channel in the regime K ≤ N , we provide a matching converse for this regime. For

the converse proof, we use MIMO versions of the secrecy penalty lemma and the role

of a helper lemma [4], and exploit channel symmetry at the eavesdropper. Since the

transmitters do not have the eavesdropper’s CSIT, the output at the K antennas

of the eavesdropper are entropy symmetric [15], i.e., any two subsets of the antenna

outputs have the same differential entropy, if the subsets are of equal size. Finally,

we use a MIMO version of the result in [10, 16], which states that the differential

entropy at the output of the terminal which does not provide CSIT is the greatest

among terminals having equal number of antennas. The converse in the regime

K ≤ N shows that the sum s.d.o.f. cannot exceed 1
2
(2N−K) for the multiple access

wiretap channel. Since a converse for the multiple access wiretap channel is valid for

the wiretap channel with one helper as well, together with the achievable scheme,

this shows that the optimal s.d.o.f. for both the wiretap channel with one helper

and the multiple access wiretap channel in this regime is 1
2
(2N −K); therefore, as

in the SISO case, which is a subset of this regime with N = K = 1, the multiple

12



access wiretap channel reduces to the wiretap channel with one helper when the

eavesdropper’s CSIT is not available. Recalling that with full eavesdropper CSIT,

the optimal sum s.d.o.f. of the multiple access wiretap channel in this regime is

min(N, 2
3
(2N − K)); this also illustrates the loss of s.d.o.f. for the multiple access

wiretap channel due to the lack of eavesdropper’s CSIT.

Next, we consider the regime N ≤ K ≤ 2N . In this regime, we provide a

loose upper bound which shows that the sum s.d.o.f. of the multiple access wiretap

channel cannot be larger than 2N(2N−K)
4N−K . This bound is clearly loose; at the point

N = K, it equals 2N
3

, which is achievable with full eavesdropper CSIT, but not

without eavesdropper CSIT. However, noting that 2N(2N−K)
4N−K < (2N − K), we can

conclude that there will be loss of s.d.o.f. due to lack of eavesdropper CSIT, even for

the wiretap channel with one helper, in the regime 3N
2
≤ K ≤ 2N , where (2N −K)

s.d.o.f. is achievable with full eavesdropper CSIT [12].

In order to further investigate the optimality of 1
2
(2N−K) as the sum s.d.o.f. for

the multiple access wiretap channel in the regime N ≤ K ≤ 2N , we then restrict

ourselves to linear encoding strategies [11,17], where the channel input of each an-

tenna in every time slot is restricted to be a linear combination of some information

symbols intended for the legitimate receiver and some artificial noise symbols to

provide secrecy at the eavesdropper. We show that under this restriction to linear

encoding schemes, the linear sum s.d.o.f. can be no larger than 1
2
(2N − K). The

key idea of the proof is that since no alignment is possible at the eavesdropper,

the artificial noise symbols should asymptotically occupy the maximum number of

dimensions available at the eavesdropper; consequently, the dimension of the linear
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signal space at the eavesdropper should be Kn + o(n) in n channel uses. Thus,

1
2
(2N − K) is the optimal s.d.o.f. for the multiple access channel in the regime

N ≤ K ≤ 2N , at least when restricted to linear encoding strategies.

In Chapter 6, we explore the delay aspect of CSI in the context of physical layer

security. In practice, the delay occurs due to the time required for the acquisition

of the channel measurements at the receivers as well as the transmission of those

measurements to the transmitters. We adopt a simple modeling of the delay whereby

the CSIT from a user can be one of three possible states: perfect or instantaneous

(P), delayed (D) [18] or none (N). In state P, the transmitter has precise channel

knowledge before the start of the communication. In state D, the transmitter does

not have the CSI at the beginning of the communication. In slot t, the receiver may

send any function of all the channel coefficients upto and including time t as CSI

to the transmitter. However, the CSIT becomes available only after a delay such

that the CSI is completely outdated, that is, independent of the current channel

realization. In state N, no CSIT is available from the user.

We focus on the fading two-user multiple-input single-output (MISO) broad-

cast channel with confidential messages, in which the transmitter with two antennas
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has two confidential messages, one for each of the single antenna users; see Fig. 1.8.

The CSIT state of each of the two receivers may be either P, D or N. The optimal

sum s.d.o.f. of the two-user MISO broadcast channel with confidential messages is

well known in the existing literature under the homogeneous CSIT settings: PP,

DD and NN. In state PP, i.e., when both receivers provide perfect or instantaneous

CSIT, the sum s.d.o.f. is 2, which is achievable by beamforming. In state NN, i.e.,

when there is no CSIT from either receiver, the sum s.d.o.f. is zero as the two users

are statistically equivalent and hence no secrecy is possible. On the other hand, in

state DD, with completely outdated CSIT from both users, [15] showed that the

sum s.d.o.f. increases to 1.

In practice, however, the nature of CSIT can vary across users. This observa-

tion naturally leads to the setting of heterogeneous (or hybrid) CSIT which models

the variability in the quality/delay of channel knowledge supplied by different users.

In contrast to homogeneous CSIT, the setting of heterogeneous CSIT is much less

understood. To the best of our knowledge, the complete characterization of the

d.o.f. of all fixed heterogeneous CSIT configurations is only known for the two-user

MISO broadcast channel: see [19,20] for state PD for which the optimal sum d.o.f. is

shown to be 3/2; and [10] which recently settled the states PN and DN through a

novel converse proof and showed that the optimal sum d.o.f. is given by 1. Beyond

these results, partial results are available for the three-user MISO broadcast channel

with hybrid CSIT in [21, 22] but by and large the problem of heterogeneous CSIT

even without secrecy constraints remains open. In this chapter, we determine the

optimal s.d.o.f. region of the MISO broadcast channel with confidential messages in

15



all three heterogeneous CSIT scenarios: PD, PN and DN. We show that the optimal

sum s.d.o.f. is 1 for both PD and PN states, while it is 1
2

for state DN.

Besides exhibiting heterogeneity across users, the nature of channel knowl-

edge may also vary over time/frequency. Such variability can arise either naturally

(due to the time variation in tolerable feedback overhead from a user) or it can be

artificially induced (by deliberately altering the channel feedback mechanism over

time/frequency). For example, instead of requiring perfect CSIT from one user and

delayed CSIT from the other user throughout the duration of communication, one

may require that for half of the time, the first user provide perfect CSIT while

the second user provide delayed CSIT (state PD), and the roles of the users are

reversed for the remaining half of the time (state DP), the total network feedback

overhead being the same in both cases. This leads naturally to the setting of alter-

nating CSIT in which multiple CSIT states, for instance, PD and DP in the above

example, arise over time. The alternating CSIT framework was introduced in [23]

where the d.o.f. region was characterized for the two-user MISO broadcast channel.

It was shown that synergistic gains in d.o.f. are possible by jointly coding across

these states. We show that similar synergistic gains are possible even with security

constraints for the MISO broadcast channel with confidential messages.

Our main contribution in this problem is the characterization of the optimal

s.d.o.f. region for the general model with all nine possible CSIT states: PP, PD,

PN, DP, NP, DD, DN, ND, and NN, where we assume that these states occur for

arbitrary fractions of time, except for a mild condition of symmetry, which is that

states I1I2 and I2I1 occur for equal fractions of the time if I1 6= I2. With 9 states,
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each occurring for arbitrary fractions of the time, it is not immediately clear how

to optimally code across the states and the achievability of the s.d.o.f. region is

highly non-trivial. To this end, we first develop several key constituent schemes,

where each scheme uses a subset of the 9 states to achieve a particular s.d.o.f. value.

Now given an arbitrary1 probability mass function (pmf) on the 9 CSIT states,

we judiciously time share between the constituent schemes to achieve the optimal

s.d.o.f. region.This is achieved by considering different sub-cases based on the relative

proportions of the various states and explicitly characterizing how the constituent

schemes should be time shared to obtain the optimal s.d.o.f. region in each sub-case.

Next, we provide a matching converse for the full region. The idea behind

the converse is to first enhance the channel by providing more CSIT to obtain a

new channel with fewer number of states but at least as large secrecy capacity

as the original channel. We introduce the local statistical equivalence property,

which states that if we consider the outputs of a receiver for such states in which

it supplies delayed or no CSIT, the entropy of the channel outputs conditioned on

the past outputs is the same as that of another artificial receiver whose channel is

distributed identically as the original receiver. Outer bounds on the s.d.o.f. region

for the enhanced channel are then derived using the local statistical equivalence

property and combining the obtained outer bounds give us the desired outer bounds

for the original channel.

1Arbitrary subject to mild symmetry, i.e., λI1I2 = λI2I1
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1.1 Related Work

The study of security under an information theoretic framework was pioneered by

Shannon in his seminal paper [24], where two legitimate parties wish to communi-

cate in the presence of an eavesdropper through noiseless channels. It was shown

that secret keys shared among the legitimate parties and one-time-pad encryption

was necessary for secure communications in this case. The noisy wiretap channel

was introduced by Wyner, who determined the capacity equivocation region for the

degraded case [1]. It was shown that secure communication is possible using stochas-

tic encoding even without any pre-shared secret keys, if the eavesdropper’s channel

observation is degraded with respect to the legitimate user’s channel. Csiszár and

Körner generalized his result to arbitrary, not necessarily degraded, wiretap chan-

nels [25]. Leung-Yan-Cheong and Hellman determined the capacity-equivocation

region of the Gaussian wiretap channel [26], and showed that the optimal channel

input was Gaussian and the secrecy capacity is the difference between the capacities

of the legitimate users’ channel and the eavesdropping links in this case.

Recently, the study of information theoretic security in the physical layer has

been extended to a variety of channel models ranging from fading channels [27–29],

MIMO wiretap channels [13, 14, 30, 31], multiple access channels [5, 32–35], broad-

cast channels with confidential messages (BCCM) [36–38], wiretap channels with

helpers [4, 39], and interference channels with confidential messages and external

eavesdroppers [40–43]. In this dissertation, we will mostly discuss the fading wire-

tap channel, the wiretap channel with helpers, the multiple access wiretap channel,
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the interference channel with external eavesdroppers and the broadcast channel with

confidential messages.

References [27,28,44,45] consider the fading wiretap channel where all parties

had complete and perfect CSI of both links. Modeling the fading wiretap under

full CSI as a bank of independent parallel channels, these references show that the

capacity achieving channel inputs are independent Gaussian random variables in all

parallel channels, and the variances of these random variables are found via water-

filling. Reference [29] considers the case where the transmitter has the legitimate

channel’s CSI but no eavesdropper CSI under the assumption of infinite coherence

times for channel fading, where the channel state of the eavesdropper, although

unknown at the transmitter, remains constant for an infinite duration, and shows

the optimality of Gaussian channel inputs in this model. Reference [46] considers the

same model under a fast fading condition, i.e., when the eavesdropper channel gain

is unknown at the transmitter and also varies at the order of symbol duration, and

shows that MQAM signaling or Gaussian signaling with added Gaussian artificial

noise, may outperform plain Gaussian signaling. The s.d.o.f. in each case is, however,

zero, irrespective of the availability or quality of CSI at the terminals.

In multi-user scenarios, however, positive s.d.o.f. values can be achieved, as in

multiple access wiretap channels introduced in [32, 33] and wiretap channels with

helpers introduced in [39, 47]. The multiple access wiretap channel was introduced

by [32,33], where the technique of cooperative jamming was introduced to improve

the rates achievable with Gaussian signaling. Reference [34] provides outer bounds

and identified cases where these outer bounds are within 0.5 bits per channel use
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of the rates achievable by Gaussian signaling. While the exact secrecy capacity

remains unknown, the achievable rates in [32–34] all yield zero s.d.o.f. Reference [35]

proposed scaling-based and ergodic alignment techniques to achieve a sum s.d.o.f. of

K−1
K

for theK-user MAC-WT; thus, showing that an alignment based scheme strictly

outperforms i.i.d. Gaussian signaling with or without cooperative jamming at high

SNR. Finally, references [4,48] establish the optimal sum s.d.o.f. to be K(K−1)
K(K−1)+1

and

the full s.d.o.f. region, respectively, for the SISO multiple access wiretap channel.

The K-user interference channel with an external eavesdropper is studied

in [40]. When the eavesdropper’s CSIT is available, [40] proposes a scheme that

achieves sum s.d.o.f. of K−1
2

. The optimal s.d.o.f. in this case, however, is estab-

lished in [6] to be K(K−1)
2K−1

, using cooperative jamming signals along with interference

alignment techniques. When the eavesdropper’s CSIT is not available, reference [40]

proposes a scheme that achieves a sum s.d.o.f. of K−2
2

.

The broadcast channel with confidential messages is studied in [36–38]. Ref-

erence [36] provided inner and outer bounds for the discrete memoryless broadcast

channel with confidential messages. References [37,38] establish the secrecy capacity

region of the MIMO broadcast channel with confidential messages when precise and

instantaneous CSIT is available. Using these results, it follows that for the two-user

MISO BCCM, the sum s.d.o.f. is 2 with perfect (P) CSIT. Even without any secrecy

constraints, the sum d.o.f. of the MISO broadcast channel is 2 with perfect CSIT.

With no CSIT (N) however, reference [49] showed that the sum d.o.f. collapses to

1. With delayed CSIT (D), it is shown in [18] that the sum d.o.f. for the two-user

MISO broadcast channel increases to 4
3
; with confidential messages, the optimal sum
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s.d.o.f. is 1 [15]. Reference [18] also presents novel results for the more general setting

of K-user MISO broadcast channel, for K ≥ 2. With delayed CSI, [50] established

the d.o.f. region for the two-user MIMO broadcast channel. References [19,20] con-

sider the two-user MISO broadcast channel in state PD and determine the optimal

d.o.f. to be 3
2

in this case. The optimal d.o.f. in states PN and DN are shown to be 1

in reference [10]. Partial results are also available for the three-user MISO BC with

hybrid CSIT in [21, 22]. Other channel models where the effect of delayed CSIT

has been investigated include the MIMO interference channel with delayed CSIT

and output feedback [51], the X-channel [17,52–55], the X-channel with global feed-

back [56], and the two-user SISO X-channel with confidential messages and global

output feedback, [57].

A line of research closely related to imperfect or unavailable CSIT investigates

the wiretap channel, the multiple access wiretap channel, and the broadcast chan-

nel with an arbitrarily varying eavesdropper [58–60], when the eavesdropper CSIT

is not available. The eavesdropper’s channel is assumed to be arbitrary, without

any assumptions on its distribution, and security is guaranteed for every realization

of the eavesdropper’s channel. This models an exceptionally strong eavesdropper,

which may control its own channel in an adversarial manner. Hence, the optimal

sum s.d.o.f. is zero in each case with single antenna terminals, since the eavesdrop-

per’s channel realizations may be exactly equal to the legitimate user’s channel

realizations. On the other hand, in our model, the eavesdropper’s channel gains

are drawn from a known distribution, though the realizations are not known at the

transmitters. We show that, with this mild assumption, strictly positive s.d.o.f. can

21



be achieved even with single antennas at each transmitter and receiver for almost

all channel realizations for helper, multiple access, and interference networks.
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Chapter 2: The Wiretap Channel with No CSI

2.1 Introduction

In this chapter, we consider the Gaussian wiretap channel under Rayleigh fading,

where the channel gains of both the legitimate link and the eavesdropper link fade

in an independent identically distributed (i.i.d.) fashion from one symbol to the

next with a Rayleigh distribution, see Fig. 2.1. This models a fast fading wireless

communication channel with coherence time of one symbol duration. Under such a

fast fading condition, the channel may change too quickly for receivers to estimate

it. In addition, the eavesdropper will not feed her CSI estimate back even if she

measures it. Thus, we assume no channel state information (CSI) is available at

any terminal at the start of communication. The goal is to characterize the exact

secrecy capacity for this channel model.

To that end, we use the proof technique that was originally developed by

Smith [2] to evaluate the channel capacity of an amplitude constrained Gaussian

channel. This technique was further used and extended by Abou-Faycal et al. [3] to

determine the channel capacity of a fast fading Rayleigh channel under an average

power constraint. Our work may be viewed as a wiretap version of Abou-Faycal et

al.’s paper, which considered only reliable communication between two terminals,
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Figure 2.1: Fading wiretap channel with no CSI anywhere.

whereas we consider both reliability and secrecy. Our work is also closely related

to [61] which considers secret key generation for a similar channel model.

We first show that this channel is equivalent to a degraded wiretap channel;

thus, no channel prefixing is needed [1]. We then consider the secrecy rate, which is

the difference of mutual informations, as the objective function, which is concave,

and determine the optimal input distribution as the result of a functional optimiza-

tion problem. We obtain the KKT optimality conditions, and extend these condi-

tions to the complex plane and reach a contradiction using the identity theorem to

conclude that the optimum input distribution cannot have an infinite support over

any finite interval. We then show that the optimal distribution has a finite support.

The secrecy capacity can then be evaluated numerically.

2.2 System Model, Definitions and Preliminaries

The fast Rayleigh fading wiretap channel, see Fig. 2.1 is given by:

Vi = AiUi +N1i (2.1)

Wi = BiUi +N2i (2.2)
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where Ui is the channel input, Vi and Wi are the channel outputs of the legitimate

receiver and the eavesdropper, respectively, and Ai and Bi are identically distributed

complex circular Gaussian random variables with zero-mean and variance σ2
h, repre-

senting fading. The realizations of Ai and Bi are unknown to all users, though their

statistics are known. The noise terms N1i and N2i are zero-mean complex circular

Gaussian random variables with variances σ2
1 and σ2

2, respectively, with σ2
2 > σ2

1.

The random variables Ai, Bi, N1i, N2i are i.i.d. in time. The channel input is

average power constrained: E [|Ui|2] ≤ P .

As in [3], since the channel is stationary and memoryless, we can drop the time

index i without any loss of generality. Also, since the phases of the fading parameters

A and B are uniform, |V |2 and |W |2 are sufficient statistics to characterize the

conditional distributions of V and W respectively, given the input U . Conditioned

on |U |, |V |2 and |W |2 are exponentially distributed with parameters 1
σ2
h|u|2+σ2

1
and

1
σ2
h|u|2+σ2

2
. We let Y = |V |2, Z = |W |2 and X = |U |, then

pY |X(y|x) =
1

σ2
hx

2 + σ2
1

exp

[
− y

σ2
hx

2 + σ2
1

]
(2.3)

pZ|X(z|x) =
1

σ2
hx

2 + σ2
2

exp

[
− z

σ2
hx

2 + σ2
2

]
(2.4)

The transmitter sends a message M , uniformly chosen from M, by encoding

it to an n-length codeword Un = ϕ(M) using a stochastic encoding function ϕ.

The legitimate receiver detects the message M̂ = ψ(V n) using a decoding function

ψ. The rate of communication is R = 1
n

log |M|, and the probability of error is

Pe = P[M̂ 6= M ]. The secrecy is measured by the equivocation of the message at
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the eavesdropper 1
n
H(M |W n). The secrecy capacity is defined as the supremum of

all rates R where Pe ≤ ε, and the message is transmitted information-theoretically

securely, i.e., 1
n
H(M |W n) ≥ 1

n
H(M)− ε, in the limit as ε→ 0.

We note that encoding and decoding depend only on the input distribution and

the conditional marginals of the legitimate and eavesdropper channels. Thus, the

secrecy capacity of the channel given in (2.1)-(2.2) is equal to the secrecy capacity

of the following channel:

Vi = AiUi +N1i (2.5)

Wi = AiUi +N1i + Ñi (2.6)

where Ñi ∼ CN (0, σ2
2 − σ2

1) and Ñi is independent of N1i. It is clear that in the

channel model of (2.5)-(2.6) the eavesdropper’s output is a degraded version of the

legitimate receiver’s output, and U → V → W . In addition, since I(U ;V ) =

I(X;Y ) and I(U ;W ) = I(X;Z), the secrecy capacity is [1]

Cs = sup
F∈F

I(U ;V )− I(U ;W ) (2.7)

= sup
F∈F

I(X;Y )− I(X;Z) (2.8)

where F denotes the input distribution drawn from the class of distributions F which

satisfy the given power constraint. Furthermore, the Markov chain X → Y → Z

holds, because Z is independent of X given V , which follows from the Markov chain

U → V → W , and that the phase of V is independent of X given Y , since the
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phase of the fading parameter A is uniform and independent of X. As shown by

van Dijk [62] for the discrete case, for this continuous case also, we can show that

I(X;Y )−I(X;Z) is a concave function of the input distribution, whenX → Y → Z.

Thus, to find the secrecy capacity of the channel in (2.5)-(2.6), it suffices to solve

the convex optimization problem in (2.8).

Before we determine the secrecy capacity, we note an upper bound on it as:

Cs ≤ log

(
1 +

σ2
hP

σ2
1

)
− log

(
1 +

σ2
hP

σ2
2

)
(2.9)

This upper bound can be derived as follows:

I(U ;V )− I(U ;W ) = (h(V )− h(W ))− (h(V |U)− h(W |U)) (2.10)

The first term on the right side of (2.10) can be upper bounded by using the entropy

power inequality:

h(V )− h(W ) ≤ log

(
σ2
hP + σ2

2

σ2
hP + σ2

1

)
(2.11)

and the second term can be lower bounded by noting

h(V |U)− h(W |U) ≥ h(V |A,U)− h(W |A,U) = log
σ2

1

σ2
2

(2.12)

giving the desired upper bound in (2.9). The inequality in (2.12) can be derived by

noting that I(V ;A|U) ≥ I(W ;A|U). The significance of the upper bound in (2.9) is
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that it shows that the secrecy capacity is always finite, even when the power goes to

infinity, and also that the secure degrees of freedom of this system is zero as in the

cases of non-fading Gaussian wiretap channel and fading Gaussian wiretap channel

with perfect CSI.

2.3 KKT Optimality Conditions

For a channel with continuous alphabet, the supremum in (2.8) need not be achiev-

able. A sufficient condition for the achievability of the supremum is that there exists

a topology on which mutual information is continuous in the input distribution, im-

plying that the difference of two mutual information quantities induced by the same

input distribution is also continuous, and the set of allowable input distributions F

is compact. Both of these criteria hold in our case, as was shown in [3, Appendix I].

We solve the maximization in (2.8) using convex optimization techniques following

Smith [2] and Abou-Faycal et al. [3]. The channel input X∗ with distribution F ∗

that achieves the secrecy capacity must satisfy the KKT optimality condition:

γ(x2 − P ) + Cs −
∫
pY |X(y|x) ln

[
pY |X(y|x)

pY (y;F ∗)

]
dy

+

∫
pZ|X(z|x) ln

[
pZ|X(z|x)

pZ(z;F ∗)

]
dz ≥ 0, ∀x ∈ R (2.13)

for some γ ≥ 0, which is the Lagrange multiplier due to the average power constraint

on the channel input. Furthermore, (2.13) is satisfied with equality if x lies in the

support of X∗. Note that, in (2.13), pY (y;F ) and pZ(z;F ) are the probability distri-

28



butions of Y and Z, respectively, which are induced by the probability distribution

F , of X, i.e.,

pY (y;F ) =

∫
pY |X(y|x) dF (x) (2.14)

pZ(z;F ) =

∫
pZ|X(z|x) dF (x) (2.15)

In the next section, we will examine the implications of the KKT conditions in (2.13)

on the optimum probability distribution for the channel input X.

2.4 Characterization of X∗

Theorem 1 The optimal X∗ is discrete with only a finite number of points in any

bounded interval.

Proof: To prove the theorem, we need to rule out the following two cases:

1. The support of X∗ contains an interval.

2. X∗ is discrete but there exists a bounded interval containing infinitely many

points belonging to the support of X∗.

We proceed by contradiction. Therefore, let us assume that either of the two cases

1) or 2) holds. Let E be the support set of X∗. Noting that

∫
pY |X(y|x) ln pY |X(y|x) dy = ln

(
1

σ2
hx

2 + σ2
1

)
− 1 (2.16)
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one can simplify (2.13) as:

f(x) ≥ 0, ∀x ∈ R (2.17)

with equality if x ∈ E, where f(x) is given by

f(x) =γ(x2 − P ) + Cs + ln

(
σ2
hx

2 + σ2
1

σ2
hx

2 + σ2
2

)
+

∫
pY |X(y|x) ln (pY (y;F ∗)) dy

−
∫
pZ|X(z|x) ln (pZ(z;F ∗)) dz (2.18)

Now, E contains a bounded set S with an infinite number of distinct points.

Let Sc be a compact neighbourhood containing S. By the Bolzano-Weierstrass

theorem, the set S must have an accumulation point in Sc. We extend f(x) to the

complex domain, and by letting lnx be the principal branch of the logarithm, f is

well defined and analytic on the complex plane. The KKT conditions in (2.17) tell

us that, f which is an analytic function on a domain D, is identically zero on a set

with an accumulation point in D. The identity theorem tells us that f must be

identically zero everywhere on D. More specifically, f must be zero on the entire

real line. Thus, the equality in (2.17) holds, i.e., f(x) = 0, for all x ∈ R. Since

X → Y → Z,

pZ|X(z|x) =

∫
pY,Z|X(y, z|x)dy (2.19)

=

∫
pY |X(y|x)pZ|Y (z|y)dy (2.20)
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We use (2.20) in (2.18) and exchange the order of integrals using Fubini’s theorem,

which is permissible since | ln pZ(z;F ∗)| is bounded by α+ βz for some constants α

and β, as will be shown in (2.31) and (2.43). This enables us to rewrite the equation

f(x) = 0, for all x ∈ R, equivalently as

∫
pY |X(y|x)g(y) dy =γ(P − x2)− Cs − ln

(
σ2
hx

2 + σ2
1

σ2
hx

2 + σ2
2

)
, ∀x ∈ R (2.21)

where

g(y) = ln pY (y;F ∗)−
∫
pZ|Y (z|y) ln(pZ(z;F ∗)) dz (2.22)

Next, we define

s =
1

σ2
hx

2 + σ2
1

and ∆ =
1

σ2
2 − σ2

1

(2.23)

and get, after some simplification,

∫
e−syg(y) dy =− 1

s

γ

σ2
h

(
1

s
− σ2

1 − σ2
hP

)
− 1

s
Cs −

1

s
ln ∆ +

1

s
ln(s+ ∆) (2.24)

Now, we recognize the left hand side of (2.24) as the Laplace transform of g(y), and

by taking an inverse Laplace transform of both sides, we get

g(y) = − γ

σ2
h

y − e−∆y ln y −∆

∫ y

0

e−∆t ln t dt−K (2.25)

where K = −γ σ2
1

σ2
h
− γP +Cs + ln ∆ +CE is a constant, and CE is Euler’s constant.
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Thus, we have

ln pY (y;F ∗) =

∫
pZ|Y (z|y) ln pZ(z;F ∗) dz − γ

σ2
h

y

− e−∆y ln y −∆

∫ y

0

e−∆t ln t dt−K (2.26)

Now, we bound each term on the right hand side of (2.26) to obtain a lower bound

on pY (y). First, we note

∆

∫ y

0

e−∆t ln t dt ≤ ∆

∫ y

0

e−∆t ln y dt = (1− e−∆y) ln y (2.27)

and thus,

e−∆y ln y + ∆

∫ y

0

e−∆t ln t dt ≤ ln y (2.28)

To bound the first term on the right hand side of (2.26), we first bound pZ(z) as,

pZ(z) =

∫
1

σ2
hx

2 + σ2
2

e
− z

σ2
h
x2+σ2

2 dF (x) (2.29)

≥
∫

1

σ2
hx

2 + σ2
2

e
− z

σ2
2 dF (x) (2.30)

≥ 1

σ2
hP + σ2

2

e
− z

σ2
2 (2.31)

where we used the fact that 1
σ2
hx

2+σ2
2

is convex in x2, Jensen’s inequality and the

power constraint. Thus, the first term on the right hand side of (2.26) can be
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bounded as:

∫
pZ|Y (z|y) ln pZ(z;F ∗) dz ≥ lnK1 −K2E[Z|Y = y] (2.32)

where K1 = 1
σ2
hP+σ2

2
and K2 = 1

σ2
2
.

From (2.6), W = V + Ñ . Denoting the real and imaginary parts of a complex

number by subscripts R and I, respectively, we note that,

Z = |W |2 = Y + |Ñ |2 + 2VRÑR + 2VIÑI (2.33)

and therefore,

E[Z|Y = y] = y + (σ2
2 − σ2

1) (2.34)

Using (2.32), (2.34) and (2.28) along with (2.26), we get,

ln pY (y;F ∗) ≥ lnK1 −K2y −K2(σ2
2 − σ2

1)− γ

σ2
h

y − ln y −K (2.35)

which implies that

pY (y) ≥ c1

y
e−c2y, y ≥ 0 (2.36)
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for some constants c1 and c2. We note that

∫ 1

0

c1

y
e−c2ydy =∞ (2.37)

for any value of c1 and c2, and hence pY (y) cannot be a valid probability density

function and thus we have reached a contradiction. This contradiction implies that

the two cases stated at the beginning cannot occur, i.e., the optimum probability

distribution cannot contain a continuous interval, or an infinite number of discrete

points in a finite interval. Therefore, the optimum probability distribution contains

at most a finite number of discrete points in any given finite interval. �

In the following theorem, we show that, in fact, X∗ has a finite number of

mass points.

Theorem 2 The support of X∗ has a finite number of points.

Proof: Again, we proceed by contradiction. Assume that the support of X∗ has

infinitely many points. Let us denote the mass points by the increasing sequence

{xi}∞i=1 and their corresponding probabilities by the sequence {pi}∞i=1. Since, by

Theorem 1, there are only finitely many points in any bounded interval, we must

have limi→∞ xi =∞. Then, the output probability is bounded as

pY (y) =
∞∑

i=1

pipY |X(y|xi) (2.38)

≥ pipY |X(y|xi) (2.39)

=
pi

σ2
hx

2
i + σ2

1

e
− y

σ2
h
x2
i
+σ2

1 (2.40)
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A similar bound clearly holds for pZ(z) as well. Also, pY (y) can be upper-bounded

as,

pY (y) =

∫
1

σ2
hx

2 + σ2
1

e
− y

σ2
h
x2+σ2

1 dF (x) (2.41)

≤
∫

1

σ2
1

e
− y

σ2
h
x2+σ2

1 dF (x) (2.42)

≤ 1

σ2
1

e
− y

σ2
h
P+σ2

1 (2.43)

where we have used the fact that e
− y

σ2
h
x2+σ2

1 is concave in x2, Jensen’s inequality and

the power constraint.

Now we observe that f(x) in (2.18) is a continuously differentiable function in

x. Also, KKT conditions in (2.17) imply that f(xi) = 0,∀i ∈ N and f(x) ≥ 0,∀x ∈

R. Denoting the derivative of f(x) by f ′(x), we must have f ′(xi) = 0,∀i. If not,

f(x) will change sign in the neighbourhood of xi, which is not possible. To compute

the derivative of f(x), we note

dpY |X(y|x)

dx
=

2σ2
hx

(σ2
hx

2 + σ2
1)2

[
y − (σ2

hx
2 + σ2

1)
]
pY |X(y|x) (2.44)

and obtain,

f ′(x) =2γx+
2σ2

hx

σ2
hx

2 + σ2
1

− 2σ2
hx

σ2
hx

2 + σ2
2

+
2σ2

hx

(σ2
hx

2 + σ2
1)2

∫
ypY |X(y|x) ln (pY (y)) dy

− 2σ2
hx

(σ2
hx

2 + σ2
1)

∫
pY |X(y|x) ln (pY (y)) dy
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− 2σ2
hx

(σ2
hx

2 + σ2
2)2

∫
zpZ|X(z|x) ln (pZ(z)) dz

+
2σ2

hx

(σ2
hx

2 + σ2
2)

∫
pZ|X(z|x) ln (pZ(z)) dz (2.45)

Using the bounds in (2.40) and (2.43) to bound the different terms in (2.45), we

obtain

f ′(x) ≥2γx+
2σ2

hx

σ2
hx

2 + σ2
1

− 2σ2
hx

σ2
hx

2 + σ2
2

− 2σ2
hx

σ2
hx

2
i + σ2

2

+
2σ2

hx

σ2
hx

2 + σ2
1

ln

(
pi

σ2
hx

2
i + σ2

1

)
− 4σ2

hx

σ2
hx

2
i + σ2

1

− 2σ2
hx

σ2
hx

2 + σ2
1

ln
1

σ2
1

+
2σ2

hx

σ2
hx

2 + σ2
2

ln

(
1

σ2
hx

2
i + σ2

2

)

− 2σ2
hx

σ2
hx

2 + σ2
2

ln
1

σ2
2

+
2σ2

hx

σ2
hP + σ2

1

+
4σ2

hx

σ2
hP + σ2

2

(2.46)

Therefore, we have

f ′(xi) ≥
(

2γ +
2σ2

h

σ2
hP + σ2

1

+
4σ2

h

σ2
hP + σ2

2

)
xi + o(xi) (2.47)

where o(x) denotes a function such that o(x) → 0 as x → ∞. By our assumption,

xi → ∞ as i → ∞. Thus, (2.47) implies that f ′(xi) → ∞ as i → ∞ which is

a contradiction, since, f ′(xi) = 0, for every i. We conclude, therefore, that the

support of the optimal input distribution has a finite number of points. �
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2.5 Numerical Results

In this section, we present simple numerical examples to verify and illustrate the

results of this chapter. Fig. 2.2 shows an example of how the KKT conditions

are satisfied for a particular value of power P . The plot shows that there are two

mass points, one at 0 and the other at 1.7348, with probabilities 0.9668 and 0.0332,

respectively. The secrecy capacity for this case is 0.03 bits per channel use.

Fig. 2.3 shows how the positions of the optimum probability mass points

change with power. Note that there is always a mass point at zero. As the power

increases, the optimum probability distribution has more and more mass points.

At the transitions, where a new mass point is introduced, the numerical algorithm

becomes unstable, nevertheless, it seems that the mass points originate far from the

origin with very low probabilities (as seen in Fig. 2.4), then come closer towards

the origin before receding away again with increasing power. Fig. 2.4 shows the

probabilities of the corresponding mass points. As expected, at very low power, the

probability of the point at zero is high, and it decreases as power is increased. The

probabilities stabilize asymptotically.

2.6 Conclusions

In this chapter, we considered the fast Rayleigh fading wiretap channel with coher-

ence time of one symbol duration. We proved that the optimal input distribution

that achieves the secrecy capacity is discrete with finite number of mass points.

37



0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Position x

K
K

T

KKT vs x

Figure 2.2: An optimal distribution satisfying the KKT conditions with P = 0.1,
σh = σ1 = 1, σ2 = 2, γ = 0.2461, Cs = 0.03 and F (x) = 0.9668δ(x) + 0.0332δ(x −
1.7348).

The secrecy capacity does not scale with power and the secure degrees of freedom

(s.d.o.f.) is zero.
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Figure 2.3: The position of the mass points versus power.
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Figure 2.4: The probabilities of the mass points versus power.
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Chapter 3: Secure Degrees of Freedom of One-hop Wireless Networks

with No Eavesdropper CSIT

3.1 Introduction

In this chapter, we investigate how the unavailability of the eavesdropper’s chan-

nel state information at the transmitter (CSIT) affects the optimal secure rates for

three important channel models: the wiretap channel with helpers, the multiple

access wiretap channel, and the interference channel with an external eavesdropper.

With full eavesdropper CSIT, references [4,63] determine the optimal s.d.o.f. of the

wiretap channel with M helpers to be M
M+1

. Further, references [5,64] determine the

optimal sum s.d.o.f. for the K-user multiple access wiretap channel with full eaves-

dropper CSIT to be K(K−1)
K(K−1)+1

, while for the interference channel with an external

eavesdropper, the optimal sum s.d.o.f. is shown to be K(K−1)
2K−1

in references [6, 43].

In this chapter, we show that for the wiretap channel with M helpers, an

s.d.o.f. of M
M+1

is achievable even without eavesdropper’s CSIT; thus, there is no

loss of s.d.o.f. due to the unavailability of eavesdropper CSIT in this case. For

the multiple access wiretap channel and the interference channel with an external

eavesdropper, however, the optimal s.d.o.f. decreases when there is no eavesdrop-
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per CSIT. In particular, without eavesdropper CSIT, the K-user multiple access

wiretap channel reduces to a wiretap channel with (K − 1) helpers and the optimal

sum s.d.o.f. decreases from K(K−1)
K(K−1)+1

to K−1
K

. For the interference channel with an

external eavesdropper, the optimal sum s.d.o.f. decreases from K(K−1)
2K−1

to K−1
2

in the

absence of eavesdropper CSIT.

In order to establish the optimal sum s.d.o.f., we propose achievable schemes

and provide matching converse proofs for each of these channel models. Our achiev-

able schemes are based on real interference alignment [7] and vector space align-

ment [8] for fixed and fading channel gains, respectively. To prove the converse, we

combine techniques from [4, 6] and [10]. We exploit a key result in [10] that the

output entropy at a receiver whose CSIT is not available is at least as large as the

output entropy at a receiver whose CSIT is available, even when the transmitters

cooperate and transmit correlated signals. Intuitively, no alignment of signals is

possible at the receiver whose CSIT is unavailable; therefore, the signals occupy the

maximum possible space at that receiver. We combine this insight with the tech-

niques of [4, 6] to establish the optimal sum s.d.o.f. for the multiple access wiretap

channel with no eavesdropper CSIT to be K−1
K

and the optimal sum s.d.o.f. for the

interference channel with an external eavesdropper and no eavesdropper CSIT to be

K−1
2

.
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3.2 System Model and Definitions

In this chapter, we consider three fundamental channel models: the wiretap channel

with helpers, the multiple access wiretap channel, and the interference channel with

an external eavesdropper. For each channel model, we consider two scenarios of

channel variation: a) fixed channel gains, and b) fading channel gains. For the case

of fixed channel gains, we assume that the channel gains are non-zero and have

been drawn independently from a continuous distribution with bounded support

and remain fixed for the duration of the communication. On the other hand, in

the fading scenario, we assume a fast fading model, where the channel gains vary

in an i.i.d. fashion from one symbol period to another. In each symbol period, the

channel gains are non-zero and are drawn from a common continuous distribution

with bounded support. The common continuous distribution is known at all the

terminals in the system. While we consider only real channel gains in this chapter, we

believe our results can be extended for complex channel gains; for further discussion,

see [4, Section X].

Let Ω denote the collection of all channel gains in n channel uses. We assume

full CSI at the receivers, that is, both the legitimates receivers and the eavesdropper

know Ω. In the following subsections we describe each channel model and provide

the relevant definitions.
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Figure 3.1: Wiretap channel with M helpers.

3.2.1 Wiretap Channel with Helpers

The wiretap channel with M helpers, see Fig. 3.1, is described by,

Y (t) =h1(t)X1(t) +
M+1∑

i=2

hi(t)Xi(t) +N1(t) (3.1)

Z(t) =g1(t)X1(t) +
M+1∑

i=2

gi(t)Xi(t) +N2(t) (3.2)

where X1(t) denotes the channel input of the legitimate transmitter, and Y (t) de-

notes the channel output at the legitimate receiver, at time t. X(i), i = 2, . . . ,M+1,

are the channel inputs of the M helpers, and Z(t) denotes the channel output at

the eavesdropper, at time t. In addition, N1(t) and N2(t) are white Gaussian noise

variables with zero-mean and unit-variance. Here, hi(t), gi(t) are the channel gains

of the users to the legitimate receiver and the eavesdropper, respectively, and gi(t)s

are not known at any of the transmitters. All channel inputs are subject to the

average power constraint E[Xi(t)
2] ≤ P , i = 1, . . . ,M + 1.

The legitimate transmitter wishes to transmit a message W which is uniformly
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distributed in W . A secure rate R, with R = log |W|
n

is achievable if there exists a

sequence of codes which satisfy the reliability constraints at the legitimate receiver,

namely, Pr[W 6= Ŵ ] ≤ εn, and the secrecy constraint, namely,

1

n
I(W ;Zn,Ω) ≤ εn (3.3)

where εn → 0 as n → ∞. The supremum of all achievable secure rates R is the

secrecy capacity Cs and the s.d.o.f., ds, is defined as

ds = lim
P→∞

Cs
1
2

logP
(3.4)

3.2.2 Multiple Access Wiretap Channel

The K-user multiple access wiretap channel, see Fig. 3.2, is described by,

Y (t) =
K∑

i=1

hi(t)Xi(t) +N1(t) (3.5)

Z(t) =
K∑

i=1

gi(t)Xi(t) +N2(t) (3.6)

where Xi(t) denotes the ith user’s channel input, Y (t) denotes the legitimate re-

ceiver’s channel output, and Z(t) denotes the eavesdropper’s channel output, at

time t. In addition, N1(t) and N2(t) are white Gaussian noise variables with zero-

mean and unit-variance. Here, hi(t), gi(t) are the channel gains of the users to

the legitimate receiver and the eavesdropper, respectively, and gi(t)s are not known

at any of the transmitters. All channel inputs are subject to the average power
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Figure 3.2: K-user multiple access wiretap channel.

constraint E[Xi(t)
2] ≤ P , i = 1, . . . , K.

The ith user transmits message Wi which is uniformly distributed in Wi. A

secure rate tuple (R1, . . . , RK), with Ri = log |Wi|
n

is achievable if there exists a

sequence of codes which satisfy the reliability constraints at the legitimate receiver,

namely, Pr[Wi 6= Ŵi] ≤ εn, for i = 1, . . . , K, and the secrecy constraint, namely,

1

n
I(WK ;Zn,Ω) ≤ εn (3.7)

where εn → 0 as n → ∞. Here, WK denotes the set of all the messages, i.e.,

{W1, . . . ,WK}. An s.d.o.f. tuple (d1, . . . , dK) is said to be achievable if a rate tuple

(R1, . . . , RK) is achievable with di = lim
P→∞

Ri
1
2

logP
. The sum s.d.o.f., ds, is the largest

achievable
∑K

i=1 di.
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Figure 3.3: K-user interference channel with an external eavesdropper.

3.2.3 Interference Channel with External Eavesdropper

The K-user interference channel with an external eavesdropper, see Fig. 3.3, is

described by

Yi(t) =
K∑

j=1

hji(t)Xj(t) +Ni(t), i = 1, . . . , K (3.8)

Z(t) =
K∑

j=1

gj(t)Xj(t) +NZ(t) (3.9)

where Yi(t) is the channel output of receiver i, Z(t) is the channel output at the

eavesdropper, Xj(t) is the channel input of transmitter j, hji(t) is the channel gain

from transmitter j to receiver i, gj(t) is the channel gain from transmitter j to the

eavesdropper, and {N1(t), . . . , NK(t), NZ(t)} are mutually independent zero-mean

unit-variance white Gaussian noise random variables, at time t. The channel gains

to the eavesdropper, gi(t)s are not known at any of the transmitters. All channel

inputs are subject to the average power constraint E[Xi(t)
2] ≤ P , i = 1, . . . , K.

Transmitter i wishes to send a message Wi, chosen uniformly from a set Wi,
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to receiver i. The messages W1, . . . ,WK are mutually independent. A secure rate

tuple (R1, . . . , RK), with Ri = log |Wi|
n

is achievable if there exists a sequence of

codes which satisfy the reliability constraints at all the legitimate receivers, namely,

Pr[Wi 6= Ŵi] ≤ εn, for i = 1, . . . , K, and the security condition

1

n
I(WK ;Zn,Ω) ≤ εn (3.10)

where εn → 0, as n→∞. An s.d.o.f. tuple (d1, . . . , dK) is said to be achievable if a

rate tuple (R1, . . . , RK) is achievable with di = lim
P→∞

Ri
1
2

logP
. The sum s.d.o.f., ds, is

the largest achievable
∑K

i=1 di.

3.3 Main Results and Discussion

In this section, we state the main results of this chapter. We have the following

theorems:

Theorem 3 For the wiretap channel with M helpers and no eavesdropper CSIT,

the optimal sum s.d.o.f., ds, is given by,

ds =
M

M + 1
(3.11)

for fading channel gains and almost surely, for fixed channel gains.

Theorem 4 For the K-user multiple access wiretap channel with no eavesdropper
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CSIT, the optimal sum s.d.o.f., ds, is given by,

ds =
K − 1

K
(3.12)

for fading channel gains and almost surely, for fixed channel gains.

Theorem 5 For the K-user interference channel with an external eavesdropper with

no eavesdropper CSIT, the optimal sum s.d.o.f., ds, is given by,

ds =
K − 1

2
(3.13)

for fading channel gains and almost surely, for fixed channel gains.

We present the proofs of Theorems 3 and 4 in Section 3.4 and the proof of

Theorem 5 in Section 3.5. Let us first state a corollary obtained from Theorems 3

and 4, which establishes the entire s.d.o.f. region of the K-user multiple access

wiretap channel with no eavesdropper CSIT.

Corollary 1 The s.d.o.f. region of the K-user multiple access wiretap channel with

no eavesdropper CSIT is given by,

di ≥ 0, i = 1, . . . , K, and
K∑

i=1

di ≤
K − 1

K
(3.14)

The proof of Corollary 1 follows directly from Theorems 3 and 4. In partic-

ular, we can treat the K-user multiple access wiretap channel as a (K − 1) helper

wiretap channel with transmitter i as the legitimate transmitter, and the remaining
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Channel model With Eve CSIT Without Eve CSIT

Wiretap channel with M
helpers

M
M+1

M
M+1

K-user multiple access
wiretap channel

K(K−1)
K(K−1)+1

K−1
K

K-user interference channel
with an external eavesdropper

K(K−1)
2K−1

K−1
2

Table 3.1: Summary of s.d.o.f. values with and without eavesdropper CSIT.

transmitters as helpers. This achieves the corner points di = K−1
K

and dj = 0 for

j 6= i from Theorem 3. Therefore, given the sum s.d.o.f. upper bound in Theorem 4,

and that each corner point with s.d.o.f. of K−1
K

for a single user is achievable, the

region in Corollary 1 follows.

It is useful, at this point, to compare our results to the cases when the eaves-

dropper’s CSI is available at the transmitter. Table 3.1 shows a comparison of the

optimal s.d.o.f. values with and without eavesdropper CSIT. Interestingly, there is

no loss in s.d.o.f. for the wiretap channel with helpers due to the absence of eaves-

dropper’s CSIT.

However, for the multiple access wiretap channel and the interference channel

with an external eavesdropper, the optimal s.d.o.f. decreases due to the unavailabil-

ity of eavesdropper CSIT. For the multiple access wiretap channel, as the number

of users, K increases, the optimal sum s.d.o.f. approaches 1 as ∼ 1
K2 with eaves-

dropper’s CSIT but only as ∼ 1
K

without eavesdropper’s CSIT. Therefore, the loss

of s.d.o.f. as a fraction of the optimal sum s.d.o.f. with eavesdropper CSIT is ∼ 1
K

for large K.
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For the interference channel with an external eavesdropper too, there is a loss

in s.d.o.f. due to the unavailability of the eavesdropper’s CSIT. However, in this

case, the optimal s.d.o.f. without eavesdropper CSIT closely tracks the s.d.o.f. with

eavesdropper CSIT. In fact, it can be verified that the s.d.o.f. loss is bounded by

1
4
, which implies that the loss of s.d.o.f. as a fraction of the optimal s.d.o.f. with

eavesdropper CSIT is ∼ 1
K

for large K, in this case also.

For the multiple access wiretap channel, we also consider the case where some

of the transmitters have the eavesdropper’s CSI. We state our achievable s.d.o.f. in

this case in the following theorem.

Theorem 6 In the K-user MAC-WT, where 1 ≤ m ≤ K transmitters have eaves-

dropper CSI, and the remaining K −m transmitters have no eavesdropper CSI, the

following sum s.d.o.f. is achievable,

ds =
m(K − 1)

m(K − 1) + 1
(3.15)

for fading channel gains and almost surely, for fixed channel gains.

We present the proof of Theorem 6 in Section 3.6. In this case, we note that

when only one user has eavesdropper CSIT, i.e., m = 1, our achievable rate is the

same as when no user has eavesdropper CSIT as in Theorem 4. On the other hand,

when all users have eavesdropper CSIT, i.e., m = K, our achievable rate is the same

as the optimal sum s.d.o.f. in [4]. We note that our achievable sum s.d.o.f. varies

from the no eavesdropper CSIT result in Theorem 4 to the full eavesdropper CSIT
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sum s.d.o.f. in [4] as m increases from 1 to K.

3.4 Proofs of Theorems 3 and 4

First, we note that an achievable scheme for Theorem 3 implies an achievable scheme

for Theorem 4, since the K-user multiple access wiretap channel may be treated as a

wiretap channel with (K−1) helpers. Further, we note that a converse for Theorem 4

suffices as a converse for Theorem 3. Thus, we will only provide achievable schemes

for Theorem 3 and a converse proof for Theorem 4. An alternate converse for

Theorem 3 also follows from the converse presented in [4] for the wiretap channel

with M helpers and with eavesdropper CSIT, as the converse for the case of known

eavesdropper CSIT serves as a converse for the case of unknown eavesdropper CSIT.

Next, we note that under our fixed and fading channel models, it suffices

to provide an achievable scheme for the case of fixed channel gains and prove a

converse for the case of fading channel gains. In general, the optimal sum s.d.o.f. ds

for fixed channel gains may depend on the channel realization, and we denote by

dfixeds (ω), the optimal sum s.d.o.f. for the fixed channel realization ω
∆
= (h, g), where

h and g denote the channel realizations of the legitimate receivers’ channels and the

eavesdropper’s channel, respectively. We provide, in Section 3.4.1, a real alignment

based achievable scheme for the wiretap channel with M helpers, and thus, show

that the optimal sum s.d.o.f. dfixeds (ω) ≥ K−1
K

for almost all channel gains ω. Now,
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we show that

dvars ≥ Eω[dfixeds (ω)] (3.16)

where dvars is the optimal sum s.d.o.f. in the fading channel gains case, by showing

that a sum s.d.o.f. of Eω[dfixeds (ω)] is achievable on the fading channel. To that end,

we argue along the lines of [65]. Essentially, we quantize the (finite) range of each

legitimate user’s channel gain hi, i = 1, . . . , K into m equal intervals [hki , h
k+1
i ),

k = 1, . . . ,m. This results in the quantization of h into mK rectangles Rj, j =

1, . . . ,mK . Let nj be the number of channel uses when the channel realization

h ∈ Rj. Due to the i.i.d. nature of channel variation,
nj
n
→ P(h ∈ Rj), as n →

∞. When the channel realization h ∈ Rj, one can achieve the s.d.o.f. given by

ess infh∈Rj d
fixed
s (h, g), almost surely, over nj channel uses as nj →∞, where ess inf

denotes the essential infimum. Therefore, over n channel uses, one can achieve

an s.d.o.f. of at least
∑mK

j=1 ess infh∈Rj d
fixed
s (h, g)P(h ∈ Rj) which converges to

Eω[dfixeds (ω)] as m→∞, using the fact that
∑mK

j=1 ess infh∈Rj d
fixed
s (h, g)I(h ∈ Rj)

converges pointwise almost everywhere to dfixeds (h, g), and noting that for each

m,
∑mK

j=1 ess infh∈Rj d
fixed
s (h, g)I(h ∈ Rj) is bounded by 1 for the multiple access

wiretap channel.

Next, we prove the converse for the multiple access wiretap channel with fading

channel gains in Section 3.4.2, and show that

dvars ≤ K − 1

K
(3.17)
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Combining (3.16), (3.17) and the fact that dfixeds (ω) ≥ K−1
K

for almost all ω, we

have

dvars =
K − 1

K
(3.18)

In order to determine the optimal sum s.d.o.f. in the fixed channel gains case,

we first note using (3.16) and (3.18) that

Eω[dfixeds (ω)] ≤ dvars =
K − 1

K
(3.19)

Combined with the fact that dfixeds (ω) ≥ K−1
K

for almost all channel gains ω, which

follows from the achievable scheme we provide in Section 3.4.1, we have that

dfixeds (ω) =
K − 1

K
(3.20)

for almost all channel gains ω.

Thus, the achievable scheme for the wiretap channel with M helpers and fixed

channel gains in Section 3.4.1, and the converse for the multiple access wiretap

channel with fading channel gains in Section 3.4.2 suffice for the proofs of Theorems

3 and 4.
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3.4.1 Achievability for the Wiretap Channel with Helpers

We now present achievable schemes for the wiretap channel with M helpers for fixed

channel gains. We provide an achievable scheme for the case of fading channel gains

in Appendix 3.8.1. Although one can utilize the achievable scheme developed for

the fixed channel gains case on a symbol-by-symbol basis in the fading channel gains

case, the alternative scheme provided in Appendix 3.8.1 is worth examining as it

is designed to reveal similarities in the achievable schemes for the fixed and fading

channel gains cases.

For fixed channels, we use the technique of real interference alignment [7, 9].

Let {V2, V3, · · · ,

VM+1, U1, U2, U3, · · · , UM+1} be mutually independent discrete random variables,

each of which uniformly drawn from the same PAM constellation C(a,Q)

C(a,Q) = a{−Q,−Q+ 1, . . . , Q− 1, Q} (3.21)

where Q is a positive integer and a is a real number used to normalize the trans-

mission power, and is also the minimum distance between the points belonging to

C(a,Q). Exact values of a and Q will be specified later. We choose the input signal

of the legitimate transmitter as

X1 =
1

h1

U1 +
M+1∑

k=2

αkVk (3.22)
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where {αk}M+1
k=2 are rationally independent among themselves and also rationally

independent of all channel gains. The input signal of the jth helper, j = 2, · · · ,M+

1, is chosen as

Xj =
1

hj
Uj (3.23)

Note that, neither the legitimate transmitter signal in (3.22) nor the helper signals in

(3.23) depend on the eavesdropper CSI {gk}M+1
k=1 . With these selections, observations

of the receivers are given by,

Y =
M+1∑

k=2

h1αkVk +

(
M+1∑

j=1

Uj

)
+N1 (3.24)

Z =
M+1∑

k=2

g1αkVk +
M+1∑

j=1

gj
hj
Uj +N2 (3.25)

The intuition here is as follows: We use M independent sub-signals Vk, k =

2, · · · ,M + 1, to represent the original message W . The input signal X1 is a lin-

ear combination of Vks and a jamming signal U1. At the legitimate receiver, all of

the cooperative jamming signals, Uks, are aligned such that they occupy a small

portion of the signal space. Since {1, h1α2, h1α3, · · · , h1αM+1} are rationally inde-

pendent for all channel gains, except for a set of Lebesgue measure zero, the signals

{
V2, V3, · · · , VM+1,

∑M+1
j=1 Uj

}
can be distinguished by the legitimate receiver. This

is similar to the case when there is full eavesdropper CSIT [4]. However, unlike the

scheme in [4], we can no longer align signals at the eavesdropper due to lack of eaves-

dropper CSIT. Instead, we observe that
{
g1

h1
, · · · , gM+1

hM+1

}
are rationally independent,

and therefore, {U1, U2, · · · , UM+1} span the entire space at the eavesdropper; see
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Figure 3.4: Illustration of the alignment scheme for the Gaussian wiretap channel
with M helpers with no eavesdropper CSI.

Fig. 3.4. Here, by the entire space, we mean the maximum number of dimensions

that the eavesdropper is capable of decoding, which is (M + 1) in this case. Since

the entire space at the eavesdropper is occupied by the cooperative jamming signals,

the message signals {V2, V3, · · · , VM+1} are secure, as we will mathematically prove

in the sequel.

The following secrecy rate is achievable [25]

Cs ≥ I(V;Y )− I(V;Z) (3.26)

where V
∆
= {V2, V3, · · · , VM+1}. Note that since Ω is known at both the legitimate

receiver and the eavesdropper, it can be considered to be an additional output at

both the legitimate receiver and the eavesdropper. Further, since V is chosen to

be independent of Ω, Ω should appear in the conditioning of each of the mutual

information quantities in (3.26). We keep this in mind, but drop it for the sake of

notational simplicity.

First, we use Fano’s inequality to bound the first term in (3.26). Note that the
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space observed at receiver 1 consists of (2Q+1)M(2MQ+2Q+1) points in (M +1)

dimensions, and the sub-signal in each dimension is drawn from a constellation of

C(a, (M + 1)Q). Here, we use the property that C(a,Q) ⊂ C(a, (M + 1)Q). By

using the Khintchine-Groshev theorem of Diophantine approximation in number

theory [7,9], we can bound the minimum distance dmin between the points in receiver

1’s space as follows: For any δ > 0, there exists a constant kδ such that

dmin ≥
kδa

((M + 1)Q)M+δ
(3.27)

for almost all rationally independent {1, h1α2, h1α3, · · · , h1αM+1}, except for a set

of Lebesgue measure zero. Then, we can upper bound the probability of decoding

error of such a PAM scheme by considering the additive Gaussian noise at receiver

1,

P
[
V 6= V̂

]
≤ exp

(
−d

2
min

8

)
(3.28)

≤ exp

(
− a2k2

δ

8((M + 1)Q)2(M+δ)

)
(3.29)

where V̂ is the estimate of V by choosing the closest point in the constellation based

on observation Y . For any δ > 0, if we choose Q = P
1−δ

2(M+1+δ) and a = γP
1
2/Q, where

γ is a constant independent of P , then

P
[
V 6= V̂

]
≤ exp

(
− k2

δγ
2(M + 1)2P

8((M + 1)Q)2(M+δ)+2

)
(3.30)

= exp

(
− k2

δγ
2(M + 1)2P δ

8(M + 1)2(M+1+δ)

)
(3.31)
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and we can have P
[
V 6= V̂

]
→ 0 as P →∞. To satisfy the power constraint at the

transmitters, we can simply choose

γ ≤ min





[
1

|h1|
+

M+1∑

k=2

|αk|
]−1

, |h2|, |h3|, · · · , |hM+1|



 (3.32)

By Fano’s inequality and the Markov chain V→ Y → V̂, we know that

H(V|Y ) ≤ H(V|V̂) (3.33)

≤ 1 + exp

(
− k2

δγ
2(M + 1)2P δ

8(M + 1)2(M+1+δ)

)
log(2Q+ 1)M (3.34)

= o(logP ) (3.35)

where δ and γ are fixed, and o(·) is the little-o function. This means that

I(V;Y ) = H(V)−H(V|Y ) (3.36)

≥ H(V)− o(logP ) (3.37)

= log(2Q+ 1)M − o(logP ) (3.38)

≥ logP
M(1−δ)

2(M+1+δ) − o(logP ) (3.39)

=
M(1− δ)
M + 1 + δ

(
1

2
logP

)
− o(logP ) (3.40)

Next, we need to bound the second term in (3.26),

I(V;Z) = I(V,U;Z)− I(U;Z|V) (3.41)

= I(V,U;Z)−H(U|V) +H(U|Z,V) (3.42)
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= I(V,U;Z)−H(U) +H(U|Z,V) (3.43)

= h(Z)− h(Z|V,U)−H(U) +H(U|Z,V) (3.44)

= h(Z)− h(N2)−H(U) +H(U|Z,V) (3.45)

≤ h(Z)− h(N2)−H(U) + o(logP ) (3.46)

≤ 1

2
logP − 1

2
log 2πe− log(2Q+ 1)M+1 + o(logP ) (3.47)

≤ 1

2
logP − (M + 1)(1− δ)

2(M + 1 + δ)
logP + o(logP ) (3.48)

=
(M + 2)δ

M + 1 + δ

(
1

2
logP

)
+ o(logP ) (3.49)

where U
∆
= {U1, U2, · · · , UM+1}, and (3.46) is due to the fact that given V and

Z, the eavesdropper can decode U with probability of error approaching zero since

{
g1

h1
, · · · , gM+1

hM+1

}
are rationally independent for all channel gains, except for a set of

Lebesgue measure zero. Then, by Fano’s inequality, H(U|Z,V) ≤ o(logP ) similar

to the step in (3.35). In addition, h(Z) ≤ 1
2

logP + o(logP ) in (3.47), since all the

channel gains are drawn from a known distribution with bounded support.

Combining (3.40) and (3.49), we have

Cs ≥ I(V;Y )− I(V;Z) (3.50)

≥ M(1− δ)
M + 1 + δ

(
1

2
logP

)
− (M + 2)δ

M + 1 + δ

(
1

2
logP

)
− o(logP ) (3.51)

=
M − (2M + 2)δ

M + 1 + δ

(
1

2
logP

)
− o(logP ) (3.52)

where again o(·) is the little-o function. If we choose δ arbitrarily small, then we

can achieve M
M+1

s.d.o.f. for this model where there is no eavesdropper CSI at the
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transmitters.

3.4.2 Converse for the Fading Multiple Access Wiretap Channel

We combine techniques from [4] and [10] to prove the converse. Here, we use Xi

to denote the collection of all channel inputs {Xi(t), t = 1, . . . , n} of transmitter i.

Similarly, we use Y and Z to denote the channel outputs at the legitimate receiver

and the eavesdropper, respectively, over n channel uses. We further define XK
1 as the

collection of all channel inputs from all of the transmitters, i.e., {Xi, i = 1 . . . , K}.

Finally, for a fixed j, we use X−j to denote all channel inputs from all transmitters

except transmitter j, i.e., {Xi, i 6= j, i = 1 . . . , K}. Since all receivers know Ω, it

appears in the conditioning in every entropy and mutual information term below.

We keep this in mind, but drop it for the sake of notational simplicity. We divide

the proof into three steps.

3.4.2.1 Deterministic Channel Model

We will show that there is no loss of s.d.o.f. in considering the following integer-input

integer-output deterministic channel in (3.53)-(3.54) instead of the one in (3.5)-(3.6)

Y (t) =
K∑

i=1

bhi(t)Xi(t)c (3.53)

Z(t) =
K∑

i=1

bgi(t)Xi(t)c (3.54)
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with the constraint that

Xi ∈
{

0, 1, . . . ,
⌊√

P
⌋}

(3.55)

To that end, we will show that given any codeword tuple (XG
1 , . . . ,X

G
K) for the

original channel of (3.5)-(3.6), we can construct a codeword tuple (XD
1 , . . . ,X

D
K)

with XD
i (t) =

⌊
XG
i (t)

⌋
mod b

√
P c, for the deterministic channel of (3.53)-(3.54),

that achieves an s.d.o.f. no smaller than the s.d.o.f. achieved by (XG
1 , . . . ,X

G
K) on the

original channel. Let us denote by YG and ZG, the outputs of the original channel

of (3.5)-(3.6), when (XG
1 , . . . ,X

G
K) is the input, that is,

Y G(t)
∆
=

K∑

i=1

hi(t)X
G
i (t) +N1(t) (3.56)

ZG(t)
∆
=

K∑

i=1

gi(t)X
G
i (t) +N2(t) (3.57)

Similarly, define

Y D(t)
∆
=

K∑

i=1

⌊
hi(t)X

D
i (t)

⌋
(3.58)

ZD(t)
∆
=

K∑

i=1

⌊
gi(t)X

D
i (t)

⌋
(3.59)

It suffices to show that

I(Wi; Y
G) ≤I(Wi; Y

D) + no(logP ) (3.60)

I(WK ; ZD) ≤I(WK ; ZG) + no(logP ) (3.61)
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for every i = 1, . . . , K. Here, (3.60) states that the information rate to the legitimate

receiver in the discretized channel is at least as large as the information rate in the

original Gaussian channel, and (3.61) states that the information leakage to the

eavesdropper in the discretized channel is at most at the level of the information

leakage in the original Gaussian channel, both of which quantified within a o(logP ).

The proof of (3.60) follows along similar lines as the proof presented in [10,

66]; we include a sketch here for completeness. First, note that there is no loss

of d.o.f. due to integer inputs and outputs. To see this, let us define Ȳ D(t) =

∑K
i=1

⌊
hi(t)

⌊
XG
i (t)

⌋⌋
, and E(t) = Y G(t)− Ȳ D(t). We have

I(Wi;Y
G|Ω) =I(Wi; Ȳ

D +E|Ω) (3.62)

≤I(Wi; Ȳ
D,E|Ω) (3.63)

=I(Wi; Ȳ
D|Ω) + I(Wi;E|Ȳ D,Ω) (3.64)

≤I(Wi; Ȳ
D|Ω) + h(E|Ω)− h(E|Ȳ D,Wi,X

K
1 ,Ω) (3.65)

≤I(Wi; Ȳ
D|Ω) +

n∑

t=1

EΩ

[
1

2
log

(
K∑

i=1

(hi(t) + 1)2 + 1

)]
− h(N1)

(3.66)

≤I(Wi; Ȳ
D|Ω) + no(logP ) (3.67)

Next, we show that imposing per-symbol power constraints as in (3.55) does

not incur any additional loss of d.o.f. It suffices to prove:

I(Wi; Ȳ
D|Ω)− I(Wi;Y

D|Ω) ≤ no(logP ) (3.68)
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We define X̂i(t) =
⌊
XG
i (t)

⌋
−XD

i (t) and Ŷ = Ȳ D − Y D, and

I(Wi; Ȳ
D|Ω) ≤I(Wi;Y

D, Ŷ |Ω) (3.69)

≤I(Wi;Y
D|Ω) +H(Ŷ |Ω) (3.70)

≤I(Wi;Y
D|Ω) +

n∑

t=1

H(Ŷ (t)|Ω) (3.71)

≤I(Wi;Y
D|Ω) +

n∑

t=1

K∑

i=1

H(X̂i(t)) + no(logP ) (3.72)

Now, it can be shown that H((X̂i(t)) ≤ o(logP ) using the steps in [10][eqns. (138)-

(158)]. Thus, (3.68) is proved. This concludes the sketch of proof of (3.60).

To prove (3.61), we first define

Z̄(t)
∆
=

K∑

i=1

⌊
gi(t)

⌊
XG
i (t)

⌋⌋
(3.73)

Ẑ(t)
∆
=Z̄(t)− ZD(t) (3.74)

Z̃(t)
∆
=
⌊
ZG(t)

⌋
− Z̄(t)− bN2(t)c (3.75)

Then, we have,

I(WK ; ZD) ≤I(WK ; ZD,ZG, Z̄) (3.76)

=I(WK ; ZG) + I(WK ; Z̄|ZG) + I(WK ; ZD|Z̄,ZG) (3.77)

≤I(WK ; ZG) +H(Z̄|ZG) +H(ZD|Z̄,ZG) (3.78)

≤I(WK ; ZG) +H(Z̄|bZGc) +H(ZD|Z̄) (3.79)

≤I(WK ; ZG) +H(Z̄|Z̄ + Z̃ + bN2c) +H(Ẑ) (3.80)
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≤I(WK ; ZG) +
n∑

t=1

H(Z̄(t)|Z̄(t) + Z̃(t) + bN2(t)c) +
n∑

t=1

H(Ẑ(t))

(3.81)

≤I(WK ; ZG) + no(logP ) (3.82)

where bZGc =
(
bZG(1)c, . . . , bZG(n)c

)
. Here, (3.82) follows sinceH(Ẑ(t)) ≤ o(logP )

following the steps of the proof in [10, Appendix A.2]. In addition, recalling that Ω

appears in the conditioning of each term in (3.81), note that H(Z̄(t)|Z̄(t) + Z̃(t) +

bN2(t)c ,Ω) ≤ E
[
H(Z̄(t)|Z̄(t) + Z̃(t) + bN2(t)c , gK1 = g̃K1 )

]
. To bound this term,

in going from (3.81) to (3.82), we have used the following lemma [67, Lemma E.1,

Appendix E]

Lemma 1 Consider integer valued random variables x, r and s such that

x ⊥ r (3.83)

s ∈ {−L, . . . , 0, . . . , L} (3.84)

P(|r| ≥ k) ≤ e−f(k) (3.85)

for all positive k, for some integer L and a function f(.). Let

y = x+ r + s (3.86)
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Then,

H(x|y) ≤ log(2L+ 1) + 2 log2 e

( ∞∑

k=1

f(k)e−f(k)

)
+

2L+ 1

2
+Nf (3.87)

where

Nf =

∣∣∣∣
{
n ∈ Z+|e−f(n) >

1

2

}∣∣∣∣ (3.88)

Note that, in our case, Z̃(t) is integer valued and is bounded by
∑K

i=1 g̃i(t) +

K + 1 for each realization g̃i(t) of gi(t), and we have

P(| bN2(t)c | > k) =P(|N2(t)− {N2(t)} | > k) (3.89)

≤P(|N2(t)|+ | {N2(t)} | > k) (3.90)

≤P(|N2(t)|+ 1 > k) (3.91)

≤e (k−1)2

2 (3.92)

Thus, using the choice f(k) = (k−1)2

2
, Nf is clearly bounded and thus, H(Z̄(t)|Z̄(t)+

Z̃(t) + bN2(t)c ,Ω) ≤ o(logP ), which is the step going from (3.81) to (3.82).

Therefore, the s.d.o.f. of the deterministic channel in (3.53)-(3.54) with integer

channel inputs as described in (3.55) is no smaller than the s.d.o.f. of the original

channel in (3.5)-(3.6). Consequently, any upper bound (e.g., converse) developed

for the s.d.o.f. of (3.53)-(3.54) will serve as an upper bound for the s.d.o.f. of (3.5)-

(3.6). Thus, we will consider this deterministic channel in the remaining part of the
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converse.

3.4.2.2 An Upper Bound on the Sum Rate

We begin as in the secrecy penalty lemma in [4], i.e., [4, Lemma 1]. Note that,

unlike [4, Lemma 1], channel inputs are integer here and satisfy (3.55):

n
K∑

i=1

Ri ≤I(WK ; Y)− I(WK ; Z) + nε (3.93)

≤I(WK ; Y|Z) + nε (3.94)

≤I(XK
1 ; Y|Z) + nε (3.95)

≤H(Y|Z) + nε (3.96)

=H(Y,Z)−H(Z) + nε (3.97)

≤H(XK
1 ,Y,Z)−H(Z) + nε (3.98)

=H(XK
1 )−H(Z) + nε (3.99)

≤
K∑

k=1

H(Xk)−H(Z) + nε (3.100)

where (3.99) follows since H(Y,Z|XK
1 ) = 0 for the channel in (3.53)-(3.54). Also,

to ensure decodability at the legitimate receiver, we use the role of a helper lemma

in [4], i.e., [4, Lemma 2],

n
∑

i 6=j
Ri ≤I(W−j; Y) + nε′ (3.101)

≤I(X−j; Y) + nε′ (3.102)
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=H(Y)−H(Y|X−j) + nε′ (3.103)

=H(Y)−H
(

K∑

i=1

bhiXic |X−j
)

+ nε′ (3.104)

=H(Y)−H(bhjXjc) + nε′ (3.105)

=H(Y)−H(bhjXjc ,Xj) +H(Xj| bhjXjc) + nε′ (3.106)

≤H(Y)−H(Xj) +H(Xj| bhjXjc) + nε′ (3.107)

≤H(Y)−H(Xj) +
n∑

t=1

H(Xj(t)| bhj(t)Xj(t)c) + nε′ (3.108)

≤H(Y)−H(Xj) + nε′ + nc (3.109)

where hjXj
∆
= {hj(t)Xj(t), t = 1, . . . , n}, and recalling that Ω appears in the condi-

tioning of each term in (3.108), (3.109) follows using the following lemma.

Lemma 2 Let X be an integer valued random variable satisfying (3.55), and h

be drawn from a distribution F (h) satisfying
∫∞
−∞ log

(
1 + 1

|h|

)
dF (h) ≤ c for some

c ∈ R. Then,

H(X| bhXc , h) ≤ c (3.110)

The proof of this lemma is presented in Appendix 3.8.3. The constraint imposed

in Lemma 2 is a mild technical condition. A sufficient condition for satisfying the

constraint is that there exists an ε > 0 such that the probability density function

(pdf) is bounded in the interval (−ε, ε). This is due to the fact that log
(

1 + 1
|h|

)
≤
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log
(

1 + 1
|ε|

)
, when |h| > ε and following:

∫ ε

−ε
f(h) log

(
1 +

1

|h|

)
dh ≤M

∫ ε

−ε
log

(
1 +

1

|h|

)
dh (3.111)

≤2M

[∫ ε

0

log (1 + h) dh+

∫ ε

0

| log h|dh
]

(3.112)

≤c (3.113)

where f(h) ≤M on (−ε, ε), and the last step follows since both integrals in (3.112)

are bounded. Most common distributions such as Gaussian, exponential and Laplace

satisfy this condition.

Eliminating H(Xj)s using (3.100) and (3.109), we get,

Kn
K∑

i=1

Ri ≤KH(Y)−H(Z) + nK(ε′ + c) + nε (3.114)

≤(K − 1)
n

2
logP + (H(Y)−H(Z)) + nε′′ (3.115)

where ε′′ = o(logP ). Dividing by n and letting n→∞,

K

K∑

i=1

Ri ≤(K − 1)
1

2
logP + ε′′ + lim

n→∞
1

n
(H(Y)−H(Z)) (3.116)

Now dividing by 1
2

logP and taking P →∞,

K∑

i=1

di ≤
K − 1

K
+

1

K
lim
P→∞

lim
n→∞

H(Y)−H(Z)
n
2

logP
(3.117)
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3.4.2.3 Bounding the Difference of Entropies

We now upper bound the difference of entropies H(Y)−H(Z) in (3.117) as:

H(Y)−H(Z) ≤ sup
{Xi}:Xi |= Xj

H(Y)−H(Z) (3.118)

≤ sup
{Xi}

H(Y)−H(Z) (3.119)

where X |= Y is used to denote that X and Y are statistically independent and

(3.119) follows from (3.118) by relaxing the condition of independence in (3.118).

Since the Xis in (3.119) may be arbitrarily correlated, we can think of the K single

antenna terminals as a single transmitter with K antennas. Thus, we wish to

maximize H(Y) − H(Z), where Y and Z are two single antenna receiver outputs,

under the constraint that the channel gains to Z are unknown at the transmitter.

This brings us to the K-user MISO broadcast channel setting of [10], where it is

shown that the difference of entropies, H(Y)−H(Z) cannot be larger than no(logP ),

if the channel gains to the second receiver are unknown, even without security

constraints. Indeed, we have the following lemma.

Lemma 3 For the deterministic channel model stated in (3.53)-(3.55), with the

channel gains to Z unknown at the transmitter, we have

H(Y|Ω)−H(Z|Ω) ≤ no(logP ) (3.120)

The proof of Lemma 3 follows along the lines of [10, eqns. (75)-(103)]; in order to
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make our proof self-contained1, we provide a sketch of the relevant steps in Appendix

3.8.4.

Using (3.120) in (3.117), we have

K∑

i=1

di ≤
K − 1

K
(3.121)

This completes the converse proof of Theorem 4.

3.5 Proof of Theorem 5

In this section, we present the proof of Theorem 5. We first present separate achiev-

able schemes for fixed and fading channel gains and then present the converse. For

the interference channel, we require asymptotic schemes with both real [9], and

vector space alignment [8] techniques. The converse combines techniques from [43]

and [10].

3.5.1 Achievability for the Interference Channel

An achievable scheme for the interference channel with an external eavesdropper and

no eavesdropper CSIT is presented in [40, Theorem 3]. That scheme achieves sum

s.d.o.f. of K−2
2

. Here, we present the optimal schemes which achieve K−1
2

sum s.d.o.f

for fixed channel gains. In this section, we focus on the case when K = 3, which

highlights the main ideas of the general K-user scheme for fixed channel gains. We

present a corresponding vector space alignment scheme for fading channel gains in

1Based on the suggestion of an anonymous reviewer.
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Ũ1 Ũ2
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Figure 3.5: Alignment for the interference channel with K = 3.

Appendix 3.8.5. We present the general K-user schemes for both fixed and fading

channel gains in Appendix 3.8.6. As in the achievability for the wiretap channel

with helpers, we use real interference alignment techniques for fixed channel gains.

However, unlike the case of wiretap channel with helpers, we need to use asymptotic

alignment in each case.

We use the technique of asymptotic real interference alignment introduced in

[9]. Fig. 3.5 shows the desired signal alignment at the receivers and the eavesdropper.

In the figure, the boxes labeled by V denote the message symbols, while the hatched

boxes labeled with U denote artificial noise symbols. We observe from Fig. 3.5 that

4 out of 6 signal dimensions are buried in the artificial noise. Thus, heuristically,

the s.d.o.f. for each legitimate user pair is 2
6

= 1
3
, and the sum s.d.o.f. is, therefore,
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3× 1
3

= 1, as expected from our optimal sum s.d.o.f. expression K−1
2

= 3−1
2

= 1.

In the K-user case, we have a similar alignment scheme. Each transmitter

sends two artificial noise blocks along with (K − 1) message blocks. At each legit-

imate receiver, the 2K noise blocks from the K transmitters align such that they

occupy only (K + 1) block dimensions. This is done by aligning Ũk with Uk+1 for

k = 1, . . . , (K − 1), at each legitimate receiver. The unintended messages at each

legitimate receiver are aligned underneath the (K + 1) artificial noise dimensions.

To do so, we use two main ideas. First, two blocks from the same transmitter cannot

be aligned at any receiver. This is because if two blocks from the same transmitter

align at any receiver, they align at every other receiver as well, which is clearly not

desirable. Secondly, each message block aligns with the same artificial noise block

at every unintended receiver. Thus, in Fig. 3.5, V21 and V24 appear in different

columns at each receiver. Further, V21 appears underneath U1 at both of the unin-

tended legitimate receivers 1 and 2. It can be verified that these properties hold for

every message block. As an interesting by-product, this alignment scheme provides

confidentiality of the unintended messages at the legitimate transmitters for free.

The (K − 1) intended message blocks at a legitimate receiver occupy distinct block

dimensions; thus, achieving a d.o.f. of K−1
2K

for each transmitter-receiver pair. At the

eavesdropper, no alignment is possible since its CSIT is unavailable. Thus, the 2K

artificial noise blocks occupy the full space of 2K block dimensions. This ensures

security of the messages at the eavesdropper.

Note that we require two artificial noise blocks to be transmitted from each

transmitter. When the eavesdropper CSIT is available, the optimal achievable
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scheme, presented in [6], requires one artificial noise block from each transmitter;

the K noise blocks from the K transmitters are aligned with the messages at the

eavesdropper in order to ensure security. In our case, however, the eavesdropper’s

CSIT is not available. Thus, in order to guarantee security, we need a total of 2K

noise blocks to occupy the full space of 2K block dimensions at the eavesdropper.

This is achieved by sending two artificial noise blocks from each transmitter. Fur-

ther, to achieve an s.d.o.f. of K−1
2K

per user pair, we need to create (K− 1) noise-free

message block dimensions at each legitimate receiver. We ensure this by systemat-

ically aligning the 2K noise symbols to occupy only (K + 1) block dimensions at

each legitimate receiver. To the best of our knowledge, this is the first achievable

scheme in the literature that uses two artificial noise blocks from each transmit-

ter and then aligns them to maximize the noise-free message dimensions at each

legitimate receiver.

Let us now present the 3-user scheme in more detail. Let m be a large integer.

Also, let c1, c2, c3 and c4 be real constants drawn from a fixed continuous distribution

with bounded support independently of each other and of all the channel gains. This

ensures that the cis are rationally independent of each other and of the channel gains.

Now, we define four sets Ti, i = 1, . . . , 4, as follows:

T1
∆
= {hr11

11 h
r12
12 h

r13
13 h

r21
21 h

r31
31 h

r32
32 h

r32
23 c

s
1 : rjk, s ∈ {1, . . . ,m}} (3.122)

T2
∆
=

{
hr21

21 h
r22
22 h

r23
23

(
h12

h11

)r12
(
h13

h11

)r13

hr31
31 h

r32
32 c

s
2 : rjk, s ∈ {1, . . . ,m}

}
(3.123)

T3
∆
=

{
hr31

31 h
r32
32 h

r33
33

(
h21

h22

)r21
(
h23

h22

)r23

hr12
12 h

r13
13 c

s
3 : rjk, s ∈ {1, . . . ,m}

}
(3.124)
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T4
∆
= {hr31

31 h
r32
32 h

r33
33 h

r21
21 h

r12
12 h

r13
13 h

r23
23 c

s
4 : rjk, s ∈ {1, . . . ,m}} (3.125)

Let Mi be the cardinality of the set Ti. Note that all the Mis are the same, which

we denote by M , which is given as,

M
∆
= m8 (3.126)

We subdivide each message Wi into 2 independent sub-messages Vij, j = 1, . . . , 4, j 6=

i, i + 1. For each transmitter i, let pij be the vector containing all the elements of

Tj, for j 6= i, i+1. For any given (i, j) with j 6= i, i+1, pij represents the dimension

along which message Vij is sent. Further, at each transmitter i, let qi and q̃i be

vectors containing all the elements in sets Ti and βiTi+1, respectively, where

βi =





1
hii
, if i = 1, 2

1, if i = 3

(3.127)

The vectors qi and q̃i represent dimensions along which artificial noise symbols Ui

and Ũi, respectively, are sent. We define a 4M dimensional vector bi by stacking

the pijs, qi and q̃i as

bTi =
[
pTi1 . . .p

T
i(i−1) pTi(i+2) . . .pi4 qi q̃i

]
(3.128)

The transmitter encodes Vij using an M dimensional vector vij, and the cooperative

jamming signals Ui and Ũi using M dimensional vectors ui and ũi, respectively. Each
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element of vij, ui and ũi are drawn in an i.i.d. fashion from C(a,Q) in (3.21). Let

aTi =
[
vTi1 . . .v

T
i(i−1) vTi(i+2) . . .vi4 ui ũi

]
(3.129)

The channel input of transmitter i is then given by

xi = aTi bi (3.130)

Let us now analyze the structure of the received signals at the receivers. For

example, consider receiver 1. The desired signals at receiver 1, v13 and v14 arrive

along dimensions h11T3 and h11T4, respectively. Since only Ti (and not Tj, j 6= i)

contains ci, these dimensions are rationally independent. Thus, they appear along

different columns in Fig. 3.5. The artificial noise symbols u1, u2, u3 and ũ3 arrive

along dimensions h11T1, h21T2, h31T3 and h31T4, respectively. Again they are all

rationally separate and thus, appear along different columns in Fig. 3.5. Further,

they are all separate from the dimensions of the desired signals, because T3 and T4

do not contain h11, while T1 and T2 do not contain either c3 or c4. On the other

hand, the unintended signals v21 and v31 arrive along h21T1 and h31T1, and since T1

contains powers of h21 and h31, they align with the artificial noise u1 in T̃1, where,

T̃1
∆
= {hr11

11 h
r12
12 h

r13
13 h

r21
21 h

r31
31 h

r32
32 h

r32
23 c

s
1 : rjk, s ∈ {1, . . . ,m+ 1}} (3.131)
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Similarly, we define

T̃2
∆
=

{
hr21

21 h
r22
22 h

r23
23

(
h12

h11

)r12
(
h13

h11

)r13

hr31
31 h

r32
32 c

s
2 : rjk, s ∈ {1, . . . ,m+ 1}

}

(3.132)

T̃3
∆
=

{
hr31

31 h
r32
32 h

r33
33

(
h21

h22

)r21
(
h23

h22

)r23

hr12
12 h

r13
13 c

s
3 : rjk, s ∈ {1, . . . ,m+ 1}

}

(3.133)

T̃4
∆
= {hr31

31 h
r32
32 h

r33
33 h

r21
21 h

r12
12 h

r13
13 h

r23
23 c

s
4 : rjk, s ∈ {1, . . . ,m+ 1}} (3.134)

We note that the unintended signals v32 and v24 arrive along h31T2 and h21T4 and

thus, align with u2 and ũ3, respectively, in T̃2 and T̃4. Thus, they appear in the

same column in Fig.3.5. Finally, the artificial noise symbols ũ1 and ũ2 align with

u2 and u3, respectively.

At receiver 2, the desired signals v21 and v24 arrive along rationally indepen-

dent dimensions h22T1 and h22T4, respectively. The artificial noise symbols u1, u2,

u3 and ũ3 arrive along dimensions h12T1, h22T2, h32T3 and h32T4, respectively. Thus,

they lie in dimensions T̃1, T̃2, T̃3 and T̃4, respectively. They are all separate from the

dimensions of the desired signals, because T̃1 and T̃4 do not contain h22, while T̃2

and T̃3 do not contain either c1 or c4. The artificial noise symbols ũ1 and ũ2 arrive

along dimensions
(
h12

h11

)
T2 and T3, respectively; thus, they align with u2 and u3 in

T̃2 and T̃3, respectively. The unintended signals v13 and v14 arrive along h12T3 and

h12T4, respectively, and lie in T̃3 and T̃4, respectively. Similarly, v31 and v32 lie in

T̃1 and T̃2, respectively. A similar analysis is true for receiver 3 as well.
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At the eavesdropper, there is no alignment, since the channel gains of the

eavesdropper are not known at the transmitters. In fact, the artificial noise symbols

all arrive along different dimensions at the receiver. Thus, heuristically, they exhaust

the decoding capability of the eavesdropper almost completely.

We note that the interference at each receiver is confined to the dimensions T̃1,

T̃2, T̃3 and T̃4. Further, these dimensions are separate from the dimensions occupied

by the desired signals at each receiver. Specifically, at receiver i, the desired signals

occupy dimensions hiiTj, j 6= i, i + 1. These dimensions are separate from T̃i and

T̃i+1, since only Tj contains powers of cj. Further, T̃j, j 6= i, i + 1 do not contain

powers of hii. Thus, the set

S =

( ⋃

j 6=i,i+1

hiiTj

)⋃(
4⋃

j=1

T̃j

)
(3.135)

has cardinality

MS = 2m8 + 4(m+ 1)8 (3.136)

Intuitively, out of these MS dimensions, 2m8 dimensions carry the desired signals.

Thus, the s.d.o.f. of each legitimate user pair is 2m8

2m8+4(m+1)8 which approaches 1
3

as m → ∞. Thus, the sum s.d.o.f. is 1. We omit the formal calculation of the

achievable rate here and instead present it in Appendix 3.8.7 for the general K-user

case. Further, note that the unintended messages at each receiver are buried in

artificial noise, see Fig. 3.5. Thus, our scheme provides confidentiality of messages
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from unintended legitimate receivers as well.

3.5.2 Converse for the Interference Channel

The steps of the converse are similar to that of the proof in Section 3.4.2. The

notation here is also the same as in Section 3.4.2. Again, we divide the proof into

three steps.

3.5.2.1 Deterministic Channel Model

We consider the deterministic channel given as,

Yk(t) =
K∑

i=1

bhik(t)Xi(t)c (3.137)

Z(t) =
K∑

i=1

bgi(t)Xi(t)c (3.138)

for k = 1, . . . , K, with the constraint that

Xi(t) ∈
{

0, 1, . . . ,
⌊√

P
⌋}

(3.139)

We can show that there is no loss of s.d.o.f. in considering the channel in (3.137)-

(3.138) instead of the one in (3.8)-(3.9), as in Section 3.4.2.1. Thus, we will consider

this deterministic channel in the remaining part of the converse. Since all receivers

know Ω, it appears in the conditioning in every entropy and mutual information

term below. We keep this in mind, but drop it for the sake of notational simplicity.
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3.5.2.2 An Upper Bound on the Sum Rate

We begin as in the secrecy penalty lemma in [4], i.e., [4, Lemma 1]. Note that,

unlike [4, Lemma 1], channel inputs are integer here:

n
K∑

i=1

Ri ≤I(WK ; YK
1 )− I(WK ; Z) + nε (3.140)

≤I(WK ; YK
1 |Z) + nε (3.141)

≤I(XK
1 ; YK

1 |Z) + nε (3.142)

≤H(YK
1 |Z) + nε (3.143)

=H(YK
1 ,Z)−H(Z) + nε (3.144)

≤H(XK
1 ,Y

K
1 ,Z)−H(Z) + nε (3.145)

=H(XK
1 )−H(Z) + nε (3.146)

≤
K∑

k=1

H(Xk)−H(Z) + nε (3.147)

where (3.146) follows since H(YK
1 ,Z|XK

1 ) = 0 for the channel in (3.137)-(3.138).

Also, to ensure decodability at the legitimate receiver, we use the role of a

helper lemma in [4], i.e., [4, Lemma 2],

nRi ≤I(Wi; Yi) + nε′ (3.148)

≤I(Xi; Yi) + nε′ (3.149)

=H(Yi)−H(Yi|Xi) + nε′ (3.150)

=H(Yi)−H(bhjXjc) + nε′ (3.151)
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=H(Yi)−H(bhjXjc ,Xj) +H(Xj| bhjXjc) + nε′ (3.152)

≤H(Yi)−H(Xj) +H(Xj| bhjXjc) + nε′ (3.153)

≤H(Yi)−H(Xj) +
n∑

t=1

H(Xj(t)| bhj(t)Xj(t)c) + nε′ (3.154)

≤H(Yi)−H(Xj) + nε′ + nc (3.155)

for every i 6= j, where (3.155) follows using Lemma 2.

Let Π be any derangement of (1, . . . , n), and let j = Π(i). Then, using (3.155),

we obtain,

K∑

k=1

H(Xk) ≤
K∑

k=1

H(Yk)− n
K∑

k=1

Rk + nK(ε′ + c) (3.156)

Using (3.156) in (3.147), we get,

2n
K∑

i=1

Ri ≤
K∑

k=1

H(Yk)−H(Z) + nK(ε′ + c) + nε (3.157)

≤(K − 1)
n

2
logP + (H(YK)−H(Z)) + nε′′ (3.158)

where ε′′ = o(logP ). Dividing by n and letting n→∞,

2
K∑

i=1

Ri ≤(K − 1)
1

2
logP + lim

n→∞
1

n
(H(YK)−H(Z)) + ε′′ (3.159)
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Now dividing by 1
2

logP and taking P →∞,

K∑

i=1

di ≤
K − 1

2
+

1

2
lim
P→∞

lim
n→∞

H(YK)−H(Z)
n
2

logP
(3.160)

3.5.2.3 Bounding the Difference of Entropies

As we did in Section 3.4.2.3, we enhance the system by relaxing the condition that

channel inputs from different transmitters are mutually independent, and think of

the K single antenna terminals as a single transmitter with K antennas. Thus,

we wish to maximize H(YK) − H(Z), where YK and Z are two single antenna

receiver outputs, under the constraint that the channel gains to Z are unknown at

the transmitter. Using Lemma 3, the difference of entropies, H(YK)−H(Z) cannot

be larger than no(logP ), if the channel gains to the second receiver is unknown.

Thus,

H(YK)−H(Z) ≤ no(logP ) (3.161)

Using (3.161) in (3.160), we have

K∑

i=1

di ≤
K − 1

2
(3.162)

This completes the converse proof of Theorem 5.
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X1 Y

X2

X3

Z

Figure 3.6: Alignment of signals when K = 3 and m = 2.

3.6 Proof of Theorem 6

As in the previous section, we focus on the fixed channel gains case and defer the

achievable scheme for the fading channel gains to Appendix 3.8.9. Our scheme

achieves a sum s.d.o.f. of m(K−1)
m(K−1)+1

, when m of the K transmitters have eaves-

dropper’s CSI for almost all fixed channel gains. In particular, it achieves the

s.d.o.f. tuple (d1, . . . , dm, dm+1, . . . , dK) =
(

K−1
m(K−1)+1

, . . . , K−1
m(K−1)+1

, 0, . . . , 0
)

. We

employ m(K − 1) +K mutually independent random variables:

Vij, i = 1, . . . ,m, j = 1, . . . , K, j 6= i

Uj, j = 1, . . . , K

uniformly drawn from the same PAM constellation C(a,Q) in (3.21). Transmitter

i, i = 1, . . . ,m transmits:

Xi =
K∑

j=1,j 6=i

gj
hjgi

Vij +
1

hi
Ui, i = 1, . . . ,m (3.163)
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while transmitters (m+ 1) to K transmit

Xi =
1

hi
Ui, i = m+ 1, . . . , K (3.164)

The channel outputs are given by,

Y =
m∑

i=1

∑

j 6=i

higj
hjgi

Vij +
K∑

i=1

Ui +N1 (3.165)

Z =
K∑

i=1

gi
hi

(
Ui +

m∑

j=1,j 6=i
Vji

)
+N2 (3.166)

Intuitively, every Vij gets superimposed with Uj at the eavesdropper, thus securing

it. This is shown in Fig. 3.6. The proof of decodability and security guarantee

follows exactly the proof in [4, Section IX-B ] and is omitted here.

3.7 Conclusions

In this chapter, we established the optimal sum s.d.o.f. for three channel models:

the wiretap channel with M helpers, the K-user multiple access wiretap channel,

and the K-user interference channel with an external eavesdropper, in the absence

of eavesdropper’s CSIT. While there is no loss in the s.d.o.f. for the wiretap channel

with helpers in the absence of the eavesdropper’s CSIT, the s.d.o.f. decreases in

the cases of the multiple access wiretap channel and the interference channel with

an external eavesdropper. We show that in the absence of eavesdropper’s CSIT,

the K-user multiple access wiretap channel is equivalent to a wiretap channel with
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(K − 1) helpers from a sum s.d.o.f. perspective. The question of optimality of the

sum s.d.o.f. when some but not all of the transmitters have the eavesdropper’s CSIT

remains a subject of future work.

3.8 Appendix

3.8.1 Achievable Scheme for the Fading Wiretap Channel with Helpers

We present an achievable scheme for the wiretap channel with helpers for the case of

fading channel gains, i.e., when the channel gains vary in an i.i.d. fashion from one

time slot to another. In this scheme, the legitimate transmitter sendsM independent

Gaussian symbols, V = {V2, . . . , VM+1} securely to the legitimate receiver in (M+1)

time slots. This is done as follows:

At time t = 1, . . . ,M + 1, the legitimate transmitter sends a scaled artificial

noise, i.e., cooperative jamming, symbol U1 along with information symbols as,

X1(t) =
1

h1(t)
U1 +

M+1∑

k=2

αk(t)Vk (3.167)

where the αk(t)s are chosen such that the (M + 1)× (M + 1) matrix T , with entries

Tij = αi(j)h1(j), where α1(j) = 1
h1(j)

, is full rank. The jth helper, j = 2, . . . ,M + 1,

transmits:

Xj(t) =
1

hj(t)
Uj (3.168)
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The channel outputs at time t are,

Y (t) =
M+1∑

k=2

h1(t)αk(t)Vk +

(
M+1∑

j=1

Uj

)
+N1(t) (3.169)

Z(t) =
M+1∑

k=2

g1(t)αk(t)Vk +
M+1∑

j=1

gj(t)

hj(t)
Uj +N2(t) (3.170)

Note the similarity of the scheme with that of the real interference scheme

for fixed channel gains, i.e., the similarity between (3.169)-(3.170) and (3.24)-(3.25).

Indeed the alignment structure after (M + 1) channel uses is exactly as in Fig. 3.4.

Note also how the artificial noise symbols align at the legitimate receiver over

(M + 1) time slots. At high SNR, at the end of the (M + 1) slots, the legiti-

mate receiver recovers (M + 1) linearly independent equations with (M + 1) vari-

ables: V2, . . . , VM+1,
∑M+1

j=1 Uj. Thus, the legitimate receiver can recover V
∆
=

(V2, . . . , VM+1) within noise variance.

Formally, let us define U
∆
= (U1, . . . , UM+1), Y

∆
= (Y (1), . . . , Y (M + 1)), and

Z
∆
= (Z(1), . . . , Z(M + 1)). The observations at the legitimate receiver and the

eavesdropper can then be compactly written as

Y = (AV ,AU)




VT

UT


+ N1 (3.171)

Z = (BV ,BU)




VT

UT


+ N2 (3.172)

where AV is a (M + 1)×M matrix with (AV )ij = h1(i)αj+1(i), AU is a (M + 1)×
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(M+1) matrix with all ones, BV is a (M+1)×M matrix with (BV )ij = g1(i)αj+1(i),

and BU is a (M + 1)× (M + 1) matrix with (BU)ij =
gj(i)

hj(i)
. N1 and N2 are (M + 1)

dimensional vectors containing the noise variables N1(t) and N2(t), respectively, for

t = 1, . . . ,M + 1. To calculate differential entropies, we use the following lemma.

Lemma 4 Let A be an M ×N dimensional matrix and let X = (X1, . . . , XN)T be

a jointly Gaussian random vector with zero-mean and variance P I. Also, let N =

(N1, . . . , NM)T be a jointly Gaussian random vector with zero-mean and variance

σ2I, independent of X. If r = rank(A), then,

h(AX + N) = r

(
1

2
logP

)
+ o(logP ) (3.173)

We present the proof of Lemma 4 in Appendix 3.8.2.

Using Lemma 4, we compute

I(V; Y) =h(Y)− h(Y|V) (3.174)

=(M + 1)
1

2
logP − h(AUUT + N1) + o(logP ) (3.175)

=(M + 1)

(
1

2
logP

)
− 1

2
logP + o(logP ) (3.176)

=M

(
1

2
logP

)
+ o(logP ) (3.177)

where (3.175) follows since U and N1 are independent of V and since (AV ,AU) has

rank (M + 1) due to the choice of αi(t)s, and (3.176) follows since AU clearly has
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rank 1. We also have,

I(V; Z) =h(Z)− h(Z|V) (3.178)

=(M + 1)
1

2
logP − h(BUUT + N2) + o(logP ) (3.179)

=(M + 1)
1

2
logP − (M + 1)

1

2
logP + o(logP ) (3.180)

=o(logP ) (3.181)

where we have used the fact that both (BV ,BU) and BU have rank (M + 1), almost

surely, since the αi(t)s do not depend on the gi(t)s and since both the gi(t)s and

hi(t)s come from a continuous distribution. Note that, in both calculations above,

we have implicitly used the fact that Ω is known to both the legitimate receiver and

the eavesdropper, and that it appears in the conditioning of each mutual informa-

tion and differential entropy term. Equation (3.181) means that the leakage to the

eavesdropper does not scale with logP .

Now, consider the vector wiretap channel from V to Y and Z, by treating the

M + 1 slots in the scheme above as one channel use. Similar to (3.26), the following

secrecy rate is achievable

Cvec
s ≥I(V; Y)− I(V; Z) (3.182)

=M

(
1

2
logP

)
+ o(logP ) (3.183)

Since each channel use of this vector channel uses (M + 1) actual channel uses, the
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achievable rate for the actual channel is,

Cs ≥
M

M + 1

(
1

2
logP

)
+ o(logP ) (3.184)

Thus, the achievable s.d.o.f. of this scheme is M
M+1

. The results in (3.52) and (3.184)

complete the achievability of Theorem 3, for fixed and fading channel gains, respec-

tively.

3.8.2 Proof of Lemma 4

Since AX + N is a jointly Gaussian random vector with zero-mean and covariance

PAAT + σ2I, we have [68],

h(AX + N) =
1

2
log(2πe)M

∣∣PAAT + σ2I
∣∣ (3.185)

=
1

2
log(2πe)M

∣∣PWΣWT + σ2I
∣∣ (3.186)

=
1

2

r∑

i=1

log
(
λiP + σ2

)
+ o(logP ) (3.187)

=r

(
1

2
logP

)
+ o(logP ) (3.188)

where we note that AAT is positive semi-definite, with an eigenvalue decomposition

WΣWT , where Σ is a diagonal matrix with r non-zero entries λ1, . . . , λr.
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3.8.3 Proof of Lemma 2

First, note that

H(X| bhXc , h) = Eh
[
H(X| bhXc , h = h̃)

]
(3.189)

Now, for a fixed h, let us define Sh(ν) as the set of all realizations of X such that

bhXc = ν, i.e., Sh(ν)
∆
=
{
i ∈
{

1, . . . , b
√
P c
}

: bihc = ν
}

. Then,

H
(
X| bhXc , h = h̃

)
≤ log |Sh̃(bh̃Xc)| (3.190)

For any ν, we can upper-bound |Sh̃(ν)| as follows: Let, i1 and i2 be the minimum

and maximum elements of Sh̃(ν). Then, bi1h̃c = bi2h̃c implies that (i2 − i1)|h̃| < 1,

which means (i2 − i1) < 1
|h̃| . Hence,

|Sh̃(ν)| ≤i2 − i1 + 1 (3.191)

<1 +
1

|h̃|
(3.192)

Thus, using (3.189) and (3.190), we have,

H (X| bhXc , h) ≤Eh
[
log

(
1 +

1

|h|

)]
≤ c (3.193)

where c is a constant independent of P .
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3.8.4 Proof of Lemma 3

Recall that we wish to prove that for the deterministic channel model stated in

(3.53)-(3.55), with the channel gains to Z unknown at the transmitter, we have

H(Y|Ω)−H(Z|Ω) ≤ no(logP ) (3.194)

We first note that we can bound H(Y|Ω)−H(Z|Ω) as:

H(Y|Ω)−H(Z|Ω) ≤ sup
{Xi}:Xi |= Xj

H(Y|Ω)−H(Z|Ω) (3.195)

≤ sup
{Xi}

H(Y|Ω)−H(Z|Ω) (3.196)

where X |= Y is used to denote that X and Y are statistically independent and

(3.196) follows from (3.195) by relaxing the condition of independence in (3.195).

Since the Xis in (3.196) may be arbitrarily correlated, we can think of the K single

antenna terminals as a single transmitter with K antennas. Thus, we wish to

maximizeH(Y|Ω)−H(Z|Ω), where Y and Z are two single antenna receiver outputs,

under the constraint that the channel gains to Z are unknown at the transmitter.

This brings us to the K-user MISO broadcast channel setting of [10]. The proof

then follows by following the steps of [10, eqns. (75)-(103)]; however, we present it

here for completeness. The proof has the following steps:

Functional Dependence: For a given channel realization ofH
∆
= {hni , i = 1,

. . . , K}, there may be multiple vectors (X1, . . . ,XK) that cast the same image at
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Y . Thus, the mapping from Y ,H to one of these vectors (X1, . . . ,XK) is random.

We denote this map as L, i.e.,

(X1, . . . ,XK) = L(Y ,H) (3.197)

Now, we note that

H(Z|Ω) ≥H(Z|Ω,L) (3.198)

≥ min
L∈{L}

H(Z|Ω,L = L) (3.199)

Let the minimizing mapping be L0. We choose this to be the deterministic mapping

(X1, . . . ,XK) = L0(Y ,H) (3.200)

Essentially, for a given Y andH , we choose the mapping that minimizes the entropy

at Z. Note that this mapping makes Z a deterministic function of (Y ,Ω), which

we denote by Z(Y ,Ω), and that while H(Y |Ω) is not affected, this choice of Z

minimizes H(Z|Ω), i.e.,

H(Y |Ω)−H(Z|Ω) ≤ H(Y |Ω)−H(Z(Y ,Ω)|Ω) (3.201)

Further, note that this selection can be done irrespective of any security or decod-

ability constraints.

Aligned Image Sets: For a given channel realization Ω, define the aligned
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image set A(Ω) as the set of all Y that have the same image in Z:

Aν(Ω) = {y : Z(y,Ω) = Z(ν,Ω)} (3.202)

Bounding Difference of Entropies via Size of Aligned Sets: We have

H(Y |Ω) =H(Y ,Z(Y ,Ω)|Ω) (3.203)

=H(Z(Y ,Ω)|Ω) +H(Y |Z(Y ,Ω),Ω) (3.204)

=H(Z(Y ,Ω)|Ω) +H(AY (Ω)|Ω) (3.205)

≤H(Z(Y ,Ω)|Ω) + E[log |AY (Ω)|] (3.206)

≤H(Z(Y ,Ω)|Ω) + logE[|AY (Ω)|] (3.207)

Therefore, we have,

H(Y |Ω)−H(Z(Y ,Ω)|Ω) ≤ E[|AY (Ω)|] (3.208)

Bounding the Probability of Alignment: Given the channel H and two

realizations y and y′ of Y , such that Xj(y,H) = xj, and X ′j(y
′,H) = x′j, we

bound the probability of image alignment at Z. Note that for alignment, we must

have for all t = 1, . . . , n,

K∑

i=1

bgi(t)xi(t)c =
K∑

i=1

bgi(t)x′i(t)c (3.209)
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⇒ gi∗(t)(t)(x
′
i∗(t)− xi∗(t)) ∈

K∑

i=1,i 6=i∗(t)
bgi(t)xi(t)c − bgi(t)x′i(t)c+ ∆ (3.210)

where ∆ ∈ (−1, 1), and

i∗(t) = arg max
i
|(x′i(t)− xi(t)| (3.211)

Therefore, for any t such that x′i∗(t) 6= xi∗(t), gi∗(t)(t) must lie within an

interval of length 2
|x′
i∗ (t)−xi∗ (t)| . If fmax is the maximum of 1 and an upper bound on

the probability density function of gi(t) (note that the probability density is assumed

to be bounded), we have,

P (y′ ∈ Ay(Ω)) ≤ fnmax

∏

t:x′
i∗(t)(t)6=xi∗(t)(t)

2

|x′i∗(t)(t)− xi∗(t)(t)|
(3.212)

We now express this probability in terms of y(t) and y′(t) as follows: We note

y′(t)− y(t) =
K∑

i=1

(bhi(t)xi(t)c − bhi(t)x′i(t)c) (3.213)

≤
K∑

i=1

bhi(t)(xi(t)− x′(t))c+ (−K,K) (3.214)

Therefore, we have

|y′(t)− y(t)| ≤|x′i∗(t)(t)− xi∗(t)(t)|
K∑

i=1

|hi(t)|+K (3.215)

⇒ 1

|x′i∗(t)(t)− xi∗(t)(t)|
≤

K∑
i=1

|hi(t)|

|y′(t)− y(t)| −K (3.216)
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whenever |y′(t)− y(t)| > K. Thus, we have

P (y′ ∈ Ay(Ω)) ≤ h̄nfnmax

∏

t:|y′(t)−y(t)|>K

1

|y′(t)− y(t)| −K (3.217)

where

h̄n = max


1,

∏

t:x′
i∗(t)(t)6=xi∗(t)(t)

2
K∑

i=1

|hi(t)|


 (3.218)

Bounding the Size of the Aligned Image Set:

E[|Ay(Ω)|] =
∑

y′

P (y′ ∈ Ay(Ω)) (3.219)

≤h̄nfnmax

n∏

t=1


 ∑

y′(t):|y′(t)−y(t)|≤K
1 +

∑

y′(t):K<|y′(t)−y(t)|≤Qy(t)

1

|y′(t)− y(t)| −K




(3.220)

≤h̄nfnmax

(
log
√
P + o(logP )

)n
(3.221)

where Qy(t) ≤
√
P
∑K

i=1 |hi(t)|+K. Therefore, taking logarithms, we have

logE[|Ay(Ω)|] ≤ no(logP ) (3.222)

Now, combining (3.201), (3.208) and (3.222), we have the desired result, i.e.,

H(Y|Ω)−H(Z|Ω) ≤ no(logP ) (3.223)
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which completes the proof of Lemma 3.

3.8.5 Achievability for K = 3 with Fading Channel Gains

Our scheme uses asymptotic vector space alignment introduced in [8]. Let Γ =

(K − 1)2 = (3 − 1)2 = 4. We use Mn = 2nΓ + 4(n + 1)Γ channel uses to transmit

6nΓ message symbols securely to the legitimate receivers in the presence of the

eavesdropper. Thus, we achieve a sum s.d.o.f. of 6nΓ

2nΓ+4(n+1)Γ , which approaches 1 as

n→∞.

First, at transmitter i, we divide its message Wi into 2 sub-messages Vij, j =

1, . . . , 4, j 6= i, i+1. Each Vij is encoded into nΓ independent streams vij(1), . . . , vij(n
Γ),

which we denote as vij
∆
=
(
vij(1), . . . , vij(n

Γ)
)T

. We also require artificial noise sym-

bols Ui and Ũi at each transmitter i. We encode the artificial noise symbols Ui and

Ũi as

ui
∆
=
(
ui(1), . . . , ui((n+ 1)Γ)

)T
, i = 1, 2, 3 (3.224)

ũi
∆
=
(
ũi(1), . . . , ũi(n

Γ)
)T
, i = 1, 2 (3.225)

ũ3
∆
=
(
ũi(1), . . . , ũi((n+ 1)Γ)

)T
(3.226)

In each channel use t ≤ Mn, we choose precoding column vectors pij(t), qi(t) and

q̃i(t) with the same number of elements as vij, ui and ũi, respectively. In channel
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use t, transmitter i sends

Xi(t) =
∑

j 6=i,i+1

pij(t)
Tvij + qi(t)

Tui + q̃i(t)
T ũi (3.227)

where we have dropped the limits on j in the summation for notational simplicity.

By stacking the precoding vectors for all Mn channel uses, we let,

Pij =




pij(1)T

...

pTij(Mn)



, Qi =




qi(1)T

...

qi(Mn)T



, Q̃i =




q̃i(1)T

...

q̃i(Mn)T




(3.228)

Now, letting Xi = (Xi(1), . . . , Xi(Mn))T , the channel input for transmitter i over

Mn channel uses can be compactly represented as

Xi =
∑

j

Pijvij + Qiui + Q̃iũi (3.229)

Recall that, channel use t, the channel output at receiver l and the eavesdrop-

per are, respectively, given by

Yl(t) =
3∑

k=1

hkl(t)Xk(t) +Nl(t) (3.230)

Z(t) =
3∑

k=1

gk(t)Xk(t) +NZ(t) (3.231)

where we have dropped the Gaussian noise at high SNR.

Let Hkl
∆
= diag (hkl(1), . . . , hkl(Mn)). Similarly, define Gk = diag (gk(1), . . . ,
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gk(Mn)). The channel outputs at receiver l and the eavesdropper over allMn channel

uses, Yl = (Yl(1), . . . , Yl(Mn))T and Z = (Z(1), . . . , Z(Mn))T , respectively, can be

represented by

Yl =
3∑

k=1

HklXk + Nl (3.232)

=
3∑

k=1

Hkl




4∑

j=1
j 6=k,k+1

Pkjvkj + Qkuk + Q̃kũk


+ Nl (3.233)

=
4∑

j=1
j 6=l,l+1

HllPljvlj +
3∑

k=1
k 6=l

4∑

j=1
j 6=k,k+1

HklPkjvkj +
3∑

k=1

Hkl

(
Qkuk + Q̃kũk

)
+ Nl

(3.234)

and,

Z =
3∑

k=1

GkXk + NZ (3.235)

=
3∑

k=1

4∑

j=1
j 6=k,k+1

GkPkjvkj +
3∑

k=1

Gk

(
Qkuk + Q̃kũk

)
+ NZ (3.236)

Now, receiver l wants to decode vlj, j = 1, . . . , 4, j 6= l, l + 1. Thus, the

remaining terms in (3.234) constitute interference at the lth receiver. Let CS(X)

denote the column space of matrix X. Then, Il denoting the space spanned by this
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interference is given by

Il =

( ⋃

k 6=l,j 6=k,k+1

CS (HklPkj)

)⋃(
3⋃

k=1

CS (HklQk)

)⋃(
3⋃

k=1

CS
(
HklQ̃k

))

(3.237)

Note that there are 2nΓ symbols to be decoded by each legitimate receiver in 2nΓ +

4(n+1)Γ channel uses. Thus, for decodability, the interference can occupy a subspace

of rank at most 4(n+ 1)Γ, that is,

rank(Il) ≤ 4(n+ 1)Γ (3.238)

To that end, we align the noise and message subspaces at each legitimate receiver

appropriately. Note that no such alignment is possible at the external eavesdropper

since the transmitters do not have its CSI. In addition, note that we have a total

of 2nΓ + 4(n + 1)Γ artificial noise symbols which will span the full received signal

space at the eavesdropper and secure all the messages.

Fig. 3.5 shows the alignment we desire. We remark that the same figure

represents the alignment of signals both for real interference alignment and the

vector space alignment schemes. Now, let us enumerate the conditions for the

desired signal alignment at each receiver. From Fig. 3.5, it is clear that there are 6

alignment equations at each legitimate receiver, corresponding to four unintended

messages and two artificial noise symbols Ũ1 and Ũ2. Table 3.2 shows the alignment

equations for each legitimate receiver.
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Q1 Q2 Q3 Q̃3

Receiver 1
H21P21 � H11Q1 H11Q̃1 � H21Q2 H21Q̃2 � H31Q3 H21P24 � H31Q̃3

H31P31 � H11Q1 H31P32 � H21Q2

Receiver 2
H12Q̃1 � H22Q2 H22Q̃2 � H32Q3

H32P31 � H12Q1 H32P32 � H22Q2 H12P13 � H32Q3 H12P14 � H32Q̃3

Receiver 3
H23P21 � H13Q1 H13Q̃1 � H23Q2 H23Q̃2 � H33Q3 H23P24 � H33Q̃3

H13P13 � H33Q3 H13P14 � H33Q̃3

Table 3.2: Summary of alignment equations.

Now, me make the following selections:

P21 = P31
∆
=P̃1 (3.239)

P32
∆
=P̃2 (3.240)

P13
∆
=P̃3 (3.241)

P14 = P24
∆
=P̃4 (3.242)

Q̃1 =H−1
11 H31P̃2 (3.243)

Q̃2 =H−1
22 H12P̃3 (3.244)

Note that (3.243) and (3.244) imply that the artificial noises ũ1 and ũ2 align exactly

with unintended message symbols v32 and v13 at receivers 1 and 2, respectively.

With these selections, it suffices to find matrices P̃i, i = 1, . . . , 4, Qi, i = 1, 2, 3, and

Q̃3. The alignment equations may now be written as

TijP̃i �Qi, i = 1, 2, 3, j = 1, . . . , 4 (3.245)
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T1j T2j T3j T4j

j = 1 H−1
11 H21 H−1

21 H31 H−1
31 H21H

−1
22 H12 H−1

31 H21

j = 2 H−1
11 H31 H−1

22 H12H
−1
11 H31 H−1

32 H12 H−1
32 H12

j = 3 H−1
12 H32 H−1

22 H32 H−1
33 H23H

−1
22 H12 H−1

33 H23

j = 4 H−1
13 H23 H−1

23 H13H
−1
11 H31 H−1

33 H13 H−1
33 H13

Table 3.3: Values of Tij.

T4jP̃4 �Q̃3, j = 1, . . . , 4 (3.246)

where the Tijs are tabulated in Table 3.3, and the notation A � B is used to denote

that CS(A) ⊆ CS(B) for matrices A and B where CS(X) refers to the column

space of the matrix X.

We can now construct the matrices P̃i, i = 1, . . . , 4, Qi, i = 1, . . . , 3 and Q̃3 as

in [8]

P̃i =

{(
4∏

j=1

T
αj
ij

)
wi : αj ∈ {1, . . . , n}

}
(3.247)

Qi =

{(
4∏

j=1

T
αj
ij

)
wi : αj ∈ {1, . . . , n+ 1}

}
(3.248)

Q̃3 =

{(
4∏

j=1

T
αj
ij

)
w4 : αj ∈ {1, . . . , n+ 1}

}
(3.249)

where each wi is the Mn×1 column vector containing elements drawn independently

from a continuous distribution with bounded support. Note that an element in Pi

is the product of powers of some channel coefficients and an extra random variable,

just like an element in the sets Ti defined for the real interference scheme. Further,
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the set of channel coefficients appearing in Pi is the same as those contained in

set Ti. Thus, there is a loose correspondence between the real and vector space

alignment techniques.

Now, consider the decodability of the desired signals at the receivers. For

example, consider receiver 1. Due to the alignment conditions in Table 3.2, the

interference subspace at receiver 1 is given by

I1 =
[
H11Q1 H21Q2 H31Q3 H31Q̃3

]
(3.250)

The desired signal subspace, on the other hand, is

D1 =
[
H11P̃3 H11P̃4

]
(3.251)

For decodability, it suffices to show that

Λ1 = [D1 I1] (3.252)

is full rank. To do so, we use [69, Lemmas 1, 2]. Consider any row m of the matrix

Λ1. Note that the mth row of Hi1Qi contains the term wmi with exponent 1, but

no wmj for i 6= j, where wmi denotes the element in the mth row of wi. In fact, for

i = 1, . . . , 4, the term wmi occurs nowhere else in the matrix Λl except in Hi1Qi

(H31Q̃3, when i = 4) and H11P̃i. This shows that D1 and I1 have full column ranks

individually. Further, the matrix
[
H11P̃3 H31Q3

]
has full column rank because
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Q3 does not contain any elements of H11. Similarly,
[
H11P̃4 H31Q̃3

]
is full column

rank for the same reason. Thus, Λ1, which is a Mn×Mn matrix, is full column rank,

and hence full rank. This ensures decodability of the desired signals at receiver 1.

a similar analysis holds for the other receivers as well.

The security of the message signals at the eavesdropper is ensured by the fact

that the artificial noises Qi and Q̃i, i = 1, 2, 3, do not align at the eavesdropper,

and instead span the full received signal space at the eavesdropper. Indeed, the

Mn ×Mn matrix

IE =
[
G1Q1 G2Q2 G3Q3 G1Q̃1 G2Q̃2 G3Q̃3

]
(3.253)

is full rank. Thus, if Vi = {vij, j 6= i, i+ 1} denotes the collection of all messages

of transmitter i, and uT =
[
uT1 ,u

T
2 ,u

T
2 , ũ

T
1 , ũ

T
2 , ũ

T
3

]
,

I(V3
1; Z) =h(Z)− h(Z|V3

1) (3.254)

=h(Z)− h(IEu) (3.255)

≤Mn

2
logP − Mn

2
logP + o(logP ) (3.256)

=o(logP ) (3.257)

In the above calculation, we have dropped the conditioning on Ω for notational

simplicity. Now, by treating all Mn channel uses as 1 vector channel use, and
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using [43, Theorem 2], an achievable rate for the vector channel is

RMn
i =I(Vi; Yi)− I(Vi; Z|V−i) (3.258)

=2nΓ logP − o(logP ) (3.259)

where (3.259) follows since the 2nΓ symbols are decodable within noise variance,

and since I(Vi; Z|V−i) ≤ I(V3
1; Z) ≤ o(logP ). Thus, the rate 2nΓ

Mn
is achievable per

user pair per channel use, which gives a sum s.d.o.f. of 6nΓ

2nΓ+4(n+1)Γ , which approaches

1, as n→∞.

3.8.6 Achievability for the K-user Interference Channel with an Ex-

ternal Eavesdropper

Here, we present the general achievable schemes for the K-user interference channel

with an external eavesdropper.

3.8.7 Fixed Channel Gains

Let m be a large constant. We pick (K + 1) points c1, . . . , cK+1 in an i.i.d. fashion

from a continuous distribution with bounded support. Then, c1, . . . , cK+1 are ratio-

nally independent almost surely. Let us define sets Ti, for i = 1, . . . , K + 1, which

will represent dimensions as follows:

T1
∆
=

{(
K∏

k=1

hr1k1k

)(
K∏

j,k=1,j 6=1,k

h
rjk
jk

)
cs1 : rjk, s ∈ {1, . . . ,m}

}
(3.260)
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Ti
∆
=





(
K∏

k=1

hrikik

)(
K∏

k=2

(
h(i−1)k

h(i−1)1

)r(i−1)k

)



K∏

j,k=1
j 6=i,i−1,k

h
rjk
jk


 csi : rjk, s ∈ {1, . . . ,m}




,

i = 2, . . . , K − 1 (3.261)

TK
∆
=





(
K∏

k=1

hrKkKk

)(
K∏

k=1,k 6=2

(
h(K−1)k

h(K−1)2

)r(K−1)k

)



K∏

j,k=1
j 6=K,K−1,k

h
rjk
jk


 csK :

rjk, s ∈ {1, . . . ,m}
}

(3.262)

TK+1
∆
=

{(
K∏

k=1

hrKkKk

)(
K∏

j,k=1,j 6=K,k
h
rjk
jk

)
csK+1 : rjk, s ∈ {1, . . . ,m}

}
(3.263)

Let Mi be the cardinality of Ti. Note that all Mi are the same, thus we denote them

as M ,

M
∆
= m2+K(K−1) (3.264)

First, we divide each message into many sub-messages; specifically, the message of

the ith transmitter, Wi, is divided into (K−1) sub-messages Vij, j = 1, . . . , K+1, j 6=

i, i + 1. For each transmitter i, let pij be the vector containing all the elements of

Tj, for j 6= i, i+1. For any given (i, j) with j 6= i, i+1, pij represents the dimension

along which message Vij is sent. Further, at each transmitter i, let qi and q̃i be

vectors containing all the elements in sets Ti and βiTi+1, respectively, where

βi =





h(i+2)1

hi1
, if 1 ≤ i ≤ K − 2

h12

hi2
, if i = K − 1

1, if i = K

(3.265)

104



The vectors qi and q̃i represent dimensions along which artificial noise symbols Ui

and Ũi, respectively, are sent. We define a (K + 1)M dimensional vector bi by

stacking the pijs, qi and q̃i as

bTi =
[
pTi1 . . .p

T
i(i−1) pTi(i+2) . . .pi(K+1) qi q̃i

]
(3.266)

The transmitter encodes Vij using an M dimensional vector vij, and the cooperative

jamming signals Ui and Ũi using M dimensional vectors ui and ũi, respectively. Each

element of vij, ui and ũi are drawn in an i.i.d. fashion from C(a,Q) in (3.21). Let

aTi =
[
vTi1 . . .v

T
i(i−1) vTi(i+2) . . .vi(K+1) ui ũi

]
(3.267)

The channel input of transmitter i is then given by

xi = aTi b (3.268)

Let us now analyze the structure of the received signals at the legitimate

receivers. The alignment of the interfering signal spaces at receiver i is shown in

Fig. 3.7. The ith row depicts the signals originating from transmitter i. The signals

in the same column align together at the receiver. For simplicity of exposition, let

us consider receiver 1.

At the first receiver, the desired signals v13, . . ., v1(K+1) come along dimen-

sions h11T3, . . ., h11TK+1, respectively. These dimensions are separate almost surely,

since Ti contains powers of ci while Tj, j 6= i does not. Thus, they correspond to
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T1 T2 T3 T4 Tj−1 Tj Tj+1 Tj+2

U1 Ũ1 V13 V14

V21 U2 Ũ2 V24

Ti Ti+1 TK+1

Tx 1

Tx 2

V1KV1(j−1) V1j V1(j+1) V1(j+2) V1i V1(i+1)

V2KV2(j−1) V2j V2(j+1) V2(j+2) V2i V2(i+1)

Tx j Vj1 Vj2 Vj3 Vj4 Vj(j−1) Uj Ũj Vj(j+2) Vji Vj(i+1) VjK

Tx i Ui Ũi

Tx K VK1 VK2 VK3 VK4 VK(j−1) VK(j+2) VKi VK(i+1) ŨKVKj VK(j+1)

Figure 3.7: Alignment of interference signals at receiver i.

separate boxes in the Fig. 3.5 for K = 3. For the same reason, cooperative jam-

ming signals u1, . . ., uK , ũK , which arrive along the dimensions h11T1, . . ., hK1TK ,

hK1TK+1 occupy different dimensions almost surely. Further, the message signals

v13, . . . ,v1(K+1), and the cooperative jamming signals u1, . . . ,uK , ũK do not over-

lap, since none of T3 . . . , TK+1 contain h11. Thus, they appear as separate boxes in

Fig. 3.5.

Now, let us consider the signals that are not desired at receiver 1. A signal

vkl, k 6= 1, K + 1 arrives at receiver 1 along hk1Tl. If we define

T̃1
∆
=

{(
K∏

k=1

hr1k1k

)(
K∏

j,k=1,j 6=1,k

h
rjk
jk

)
cs1 : rjk, s ∈ {1, . . . ,m+ 1}

}
(3.269)

T̃i
∆
=





(
K∏

k=1

hrikik

)(
K∏

k=2

(
h(i−1)k

h(i−1)1

)r(i−1)k

)



K∏

j,k=1
j 6=i,i−1,k

h
rjk
jk


 csi :

rjk, s ∈ {1, . . . ,m+ 1}




, i = 2, . . . , K − 1 (3.270)
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T̃K
∆
=





(
K∏

k=1

hrKkKk

)


K∏

k=1,k 6=2
m=K−1

(
hmk
hm2

)rmk






K∏

j,k=1
j 6=K,K−1,k

h
rjk
jk


 csK :

rjk, s ∈ {1, . . . ,m+ 1}





(3.271)

T̃K+1
∆
=

{(
K∏

k=1

hrKkKk

)(
K∏

j,k=1,j 6=K,k
h
rjk
jk

)
csK+1 : rjk, s ∈ {1, . . . ,m+ 1}

}
(3.272)

we notice that the dimensions in hk1Tl, k 6= 1 are subsets of T̃l, as is hl1Tl for every

l = 1, . . . , K. Thus, each vkl aligns with ul in T̃l, for l = 1, . . . , K, as is shown in

Fig. 3.7. Further, a signal vk(K+1), k 6= 1, K, arrives along the dimensions hk1TK+1,

k 6= 1 which is a subset of T̃K+1, as is hK1TK+1, along which ũK arrives. Thus, each

vk(K+1), k 6= 1, K aligns with ũK , see Fig. 3.7. Finally, the cooperative jamming

signals ũ1, . . . , ũK−2, and ũK−1 arrive at receiver 1 along dimensions h31T2, . . .,

hK1TK−1, and h12

(
h(K−1)1

h(K−1)2

)
TK , respectively, which are all in T̃2 . . ., T̃K−1 and T̃K ,

respectively. Thus, the signal ũi, i = 1, . . . , K − 1 align with ui+1 in T̃i+1, which is

seen in Fig. 3.5 for K = 3, and in Fig. 3.7 for general K.

We further note that the sets h11T3, . . ., h11TK+1, T̃1, . . ., T̃K+1 are all separable

since only Ti and T̃i (and not Tj or T̃j) contain powers of ci, and none of T̃3, . . .,

T̃K+1 contains h11. A similar observation holds for the received signal at any of the

remaining receivers. Thus, the set

S =

(
K+1⋃

i=3

h11Ti

)⋃(
K+1⋃

i=1

T̃i

)
(3.273)
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has cardinality given by

Ms = (K − 1)mK(K−1)+2 + (K + 1)(m+ 1)K(K−1)+2 (3.274)

At the external eavesdropper, there is no alignment and the cooperative jam-

ming signals occupy the full space, thereby exhausting the decoding capability of

the eavesdropper. This secures all the messages at the external eavesdropper.

We next provide an analysis for the achievable sum rate. Since we have only

one eavesdropper, we use [43, Theorem 2] and observe that the rate

Ri = I(Vi;Yi)− I(Vi;Z|V−i) (3.275)

is achievable, where Vi ia an auxiliary random variable satisfying Vi → Xi → Y, Z,

and V−i denotes the collection {Vj, j 6= i}. Note that since Ω is known at all the

legitimate receivers and the eavesdropper, and since Vis are chosen to be indepen-

dent of Ω, Ω should appear in the conditioning of each of the mutual information

quantities in (3.275). We keep this in mind, but drop it for the sake of notational

simplicity.

First, we can upper bound the probability of error at each receiver. Let

Vi
∆
=
(
vi1 . . .vi(i−1) vi(i+2) . . .vi(K+1)

)
(3.276)

Then, for any δ > 0, there exists a positive constant γ, which is independent of P ,

such that if we choose Q = P
1−δ

2(MS+δ) and a = γP
1
2

Q
, then for almost all channel gains
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the average power constraint is satisfied and the probability of error is bounded by

Pr(Vi 6= V̂i) ≤ exp
(
−ηγiP δ

)
(3.277)

where ηγi is a positive constant which is independent of P and V̂i is the estimate for

Vi obtained by choosing the closest point in the constellation based on observation

Yi.

By Fano’s inequality and the Markov chain Vi → Yi → V̂i, we know that,

I(Vi;Yi) ≥ I(Vi; V̂i) (3.278)

= H(Vi)−H(Vi|V̂i) (3.279)

= log(|Vi|)−H(Vi|V̂i) (3.280)

≥ log(|Vi|)− 1− Pr(Vi 6= V̂i) log(|Vi|) (3.281)

=
[
1− Pr(Vi 6= V̂i)

]
log(|Vi|)− 1 (3.282)

= log(|Vi|)− o(logP ) (3.283)

=
(K − 1)M(1− δ)

MS + δ

(
1

2
logP

)
+ o(logP ) (3.284)

where o(·) is the little-o function, Vi is the alphabet of Vi and, in this case, the

cardinality of Vi is (2Q+ 1)(K−1)M = (2Q+ 1)(K−1)mK(K−1)+2
. Here, M is defined in

(3.264).

Now, we bound the second term in (3.275). Let

U
∆
= {ui, ũi, i = 1, . . . , K} (3.285)
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We have,

I(Vi;Z|V−i) =I(Vi, U ;Z|V−i)− I(U ;Z|V K
1 ) (3.286)

=h(Z)− h(Z|U, V K
1 )−H(U |V K

1 ) +H(U |Z, V K
1 ) (3.287)

≤1

2
logP − h(NZ)−H(U) + o(logP ) (3.288)

=
1

2
logP −H(U) + o(logP ) (3.289)

=
1

2
logP − log(2Q+ 1)2KM + o(logP ) (3.290)

=
1

2
logP − (1− δ)2KM

2(MS + δ)
logP + o(logP ) (3.291)

Now, combining (3.284) and (3.291), we have,

Ri ≥
2KmK(K−1)+2 − (K + 1)(m+ 1)K(K−1)+2 −Mδ(3K − 1)

(K − 1)mK(K−1) + (K + 1)(m+ 1)K(K−1)+2

(
1

2
logP

)
+ o(logP )

(3.292)

By choosing δ small enough and choosing m large enough, we can make Ri arbitrarily

close to K−1
2K

. Thus, the sum s.d.o.f. of K−1
2

is achievable with fixed channel gains.

3.8.8 Fading Channel Gains

Here, we present a scheme that achieves K−1
2

s.d.o.f. using asymptotic vector space

alignment with channel extension. Let Γ = (K − 1)2. We use Mn = (K − 1)nΓ +

(K + 1)(n + 1)Γ channel uses to transmit K(K − 1)nΓ message symbols securely

to the legitimate receivers in the presence of the eavesdropper. Thus, we achieve a

sum s.d.o.f. of K(K−1)nΓ

(K−1)nΓ+(K+1)(n+1)Γ , which gets arbitrarily close to K−1
2

as n→∞.
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First, we divide each message into many sub-messages; specifically, the message

of the ith transmitter, Wi, is divided into (K − 1) sub-messages Vij, j = 1, . . . , K +

1, j 6= i, i + 1. Each Vij is encoded into nΓ independent streams vij(1), . . . , vij(n
Γ),

which we denote as vij
∆
=
(
vij(1), . . . , vij(n

Γ)
)T

. We also require artificial noise

symbols Ui and Ũi at each transmitter i. Again, we encode the artificial noise

symbols Ui and Ũi as

ui
∆
=
(
ui(1), . . . , ui((n+ 1)Γ)

)T
, i = 1, . . . , K (3.293)

ũi
∆
=
(
ũi(1), . . . , ũi(n

Γ)
)T
, i = 1, . . . , K − 1 (3.294)

ũK
∆
=
(
ũi(1), . . . , ũi((n+ 1)Γ)

)T
(3.295)

In each channel use t ≤ Mn, we choose precoding column vectors pij(t), qi(t) and

q̃i(t) with the same number of elements as vij, ui and ũi, respectively. In channel

use t, transmitter i sends

Xi(t) =
∑

j

pij(t)
Tvij + qi(t)

Tui + q̃i(t)
T ũi (3.296)

where we have dropped the limits on j in the summation for notational simplicity.

By stacking the precoding vectors for all Mn channel uses, we let,

Pij =




pij(1)T

...

pTij(Mn)



, Qi =




qi(1)T

...

qi(Mn)T



, Q̃i =




q̃i(1)T

...

q̃i(Mn)T




(3.297)
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Now, letting Xi = (Xi(1), . . . , Xi(Mn))T , the channel input for all transmitter i over

Mn channel uses can be compactly represented as

Xi =
∑

j

Pijvij + Qiui + Q̃iũi (3.298)

Recall that, channel use t, the channel output at receiver l and the eavesdrop-

per are, respectively, given by

Yl(t) =
K∑

k=1

hkl(t)Xk(t) +Nl(t) (3.299)

Z(t) =
K∑

k=1

gk(t)Xk(t) +NZ(t) (3.300)

Let Hkl
∆
= diag (hkl(1), . . . , hkl(Mn)). Similarly, define Gk = diag (gk(1), . . . , gk(Mn)).

The channel outputs at receiver l and the eavesdropper over all Mn channel uses,

Yl = (Yl(1), . . . ,

Yl(Mn))T and Z = (Z(1), . . . , Z(Mn))T , respectively, can be represented by

Yl =
K∑

k=1

HklXk + Nl (3.301)

=
K∑

k=1

Hkl




K+1∑

j=1
j 6=k,k+1

Pkjvkj + Qkuk + Q̃kũk


+ Nl (3.302)

=
K+1∑

j=1
j 6=l,l+1

HllPljvlj +
K∑

k=1
k 6=l

K+1∑

j=1
j 6=k,k+1

HklPkjvkj +
K∑

k=1

Hkl

(
Qkuk + Q̃kũk

)
+ Nl

(3.303)
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and,

Z =
K∑

k=1

GkXk + NZ (3.304)

=
K∑

k=1

K+1∑

j=1
j 6=k,k+1

GkPkjvkj +
K∑

k=1

Gk

(
Qkuk + Q̃kũk

)
+ NZ (3.305)

Note that receiver l wants to decode vlj, j = 1, . . . , K + 1, j 6= l, l + 1. Thus,

the remaining terms in (3.303) constitute interference at the lth receiver. Recall

that CS(X) denotes the column space of the matrix X. Then, Il denoting the space

spanned by this interference is

Il =

( ⋃

k 6=l,j 6=k,k+1

CS (HklPkj)

)⋃(
K⋃

k=1

CS (HklQk)

)⋃(
K⋃

k=1

CS
(
HklQ̃k

))

(3.306)

Note that there are (K − 1)nΓ symbols to be decoded by each legitimate receiver in

(K − 1)nΓ + (K + 1)(n+ 1)Γ channel uses. Thus, for decodability, the interference

can occupy a subspace of rank at most (K + 1)(n+ 1)Γ, that is,

rank(Il) ≤ (K + 1)(n+ 1)Γ (3.307)

To that end, we align the noise and message subspaces at each legitimate receiver

appropriately. Note that no such alignment is possible at the external eavesdropper

since the transmitters do not have its CSI. However, note that we have a total of

(K−1)nΓ +(K+1)(n+1)Γ artificial noise symbols which will span the full received
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signal space at the eavesdropper and secures all the messages.

Fig. 3.5 shows the alignment for K = 3 receivers. For the general K-user case,

Fig. 3.7 shows the alignment in the interfering signal dimensions. At receiver l, it

is as follows: First, the artificial noise symbols ũk is aligned with uk+1, for every

k = 1, . . . , K − 1. Thus, we have,

HklQ̃k � H(k+1)lQ(k+1), k = 1, . . . , K − 1 (3.308)

where A � B is used to denote that CS(A) ⊆ CS(B). Thus, the subspace spanned

by the artificial noise symbols can have a rank of at most (K + 1)(n+ 1)Γ.

The unwanted message symbols vkj, k 6= l, are aligned with uj if j ≤ K, or

ũK otherwise. Thus,

HklPkj � HjlQj, j ≤ K (3.309)

HklPk(K+1) � HKlQ̃K (3.310)

for each k 6= l. Since, the unwanted messages at each receiver are aligned under the

artificial noise subspaces, they do not increase the rank of Il any further.

We can group the alignment equations for the artificial noise uk, k = 1, . . . , K,

and ũK for all K legitimate receivers. For u1, we have,

HklPk1 � H1lQ1, k ∈ {2, . . . , K} , l ∈ {1, . . . , K} , l 6= k (3.311)
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Clearly, these are (K − 1)2 alignment equations. Similarly, we have (K − 1)2 align-

ment equations for ũK , given by

HklPk(K+1) � HKlQ̃K , k ∈ {1, . . . , K − 1} , l ∈ {1, . . . , K} , l 6= k (3.312)

For the artificial noises uk, k = 2, . . . , K, we have the following alignment equations:

H(k−1)lQ̃k−1 � HklQk (3.313)

HilPik � HklQk, i 6= k − 1, k, l 6= i (3.314)

Thus, there are (K − 1)2 + 1 alignment equations for each uk, k = 2, . . . , K. Now

we make the following selections:

Pk1 =P̃1, k = 2, . . . , K (3.315)

Pk(K+1) =P̃K+1, k = 1, . . . , K − 1 (3.316)

Pik =P̃k, i 6= k − 1, k, k = 2, . . . , K (3.317)

H(k−1)1Q̃k−1 =H(k+1)1P̃k, k = 2, . . . , K − 1 (3.318)

H(K−1)2Q̃K−1 =H12P̃K (3.319)

Now, note that it suffices to choose the matrices P̃k, k = 1, . . . , K + 1 in order to

specify all the precoding matrices. Using these selections in our alignment equations

in (3.311), (3.312), (3.313) and (3.314), we have (K − 1)2 alignment equations for
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each uk, k = 1, . . . , K and ũK , given by,

TkP̃k �Qk, Tk ∈ τk, k = 1, . . . , K (3.320)

TK+1P̃K+1 �Q̃K , TK+1 ∈ τK+1 (3.321)

where the sets τk, k = 1, . . . , K + 1 are given by

τ1 =
{
H−1

1l Hkl, k ∈ {2, . . . , K} , l ∈ {1, . . . , K} , l 6= k
}

(3.322)

τK+1 =
{
H−1
KlHkl, k ∈ {1, . . . , K − 1} , l ∈ {1, . . . , K} , l 6= k

}
(3.323)

τk =τPk
⋃

τQk (3.324)

where,

τPk =
{
H−1
kl Hil, i /∈ {k − 1, k} , l 6= i, l ∈ {1, . . . , K}

}
(3.325)

τQk =





{
H−1
kl H(k−1)lH

−1
(k−1)1H(k+1)1, l ∈ {1, . . . , K}

}
, if k ∈ {2, . . . , K − 1}

{
H−1
KlH(K−1)lH

−1
(K−1)2H12, l ∈ {1, . . . , K}

}
, if k = K

(3.326)

We can now construct the matrices P̃k, k = 1, . . . , K + 1, Qk, k = 1, . . . , K and Q̃K

as in [8]

P̃k =

{(∏

T∈τk
TαT

)
wk : αT ∈ {1, . . . , n}

}
(3.327)
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Qk =

{(∏

T∈τk
TαT

)
wk : αT ∈ {1, . . . , n+ 1}

}
(3.328)

Q̃K =






 ∏

T∈τK+1

TαT


wK+1 : αT ∈ {1, . . . , n+ 1}



 (3.329)

where each wk is the Mn × 1 column vector containing elements drawn indepen-

dently from a continuous distribution with bounded support. This completes the

description of our scheme.

Decodability: By our construction, the interference space at legitimate re-

ceiver l is given by,

Il =

(
K⋃

k=1

CS(HklQk)

)⋃(
CS(HKlQ̃K)

)
(3.330)

and clearly,

rank(Il) ≤ (K + 1)(n+ 1)Γ (3.331)

We only need to show that desired signals vlj, j 6= l, l+1 fall outside Il. The desired

signal space at receiver l is given by

Dl =
[
HllP̃1 . . .HllP̃l−1 HllP̃l+2 . . . ,HllP̃K

]
(3.332)

We want to show that the matrix

Λl =
[
Dl Ĩl

]
(3.333)
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where,

Ĩl =
[
H1lQ1 . . .HKlQK HKlQ̃K

]
(3.334)

is full rank almost surely. To do so, we will use [69, Lemmas 1, 2]. Note that the mth

row of HklQk contains the term wmk with exponent 1, but no wmk′ for k 6= k′, where

wmk denotes the element in the mth row of wk. In fact, the term wmk occurs nowhere

else in the matrix Λl except in HklQk and HllP̃k. This shows, using [69, Lemmas

1, 2], that Dl and Ĩl are full rank almost surely. Further, it suffices to show that

the matrices
[
HllP̃k HklQk

]
, k = 1, . . . , K, and

[
HllP̃K+1 HKlQ̃K

]
are all full

column rank. First,
[
HllP̃1 HklQ1

]
is full column rank since HklQ1 misses the

term Hll. Similarly,
[
HllP̃K+1 HKlQ̃1

]
is full column rank. Further, if k 6= l, l+1,

HklQk does not contain Hll and hence
[
HllP̃k HklQk

]
is full column rank. Finally,

note that the lth transmitter does not transmit any message signals along P̃k, when

k = l, l+1. Thus, the matrix Λl is full rank almost surely. This ensures decodability

of the desired signals at each receiver.

Security guarantee: Let v = {vij, i, j ∈ {1, . . . , K} , j 6= i, i+ 1}, that is,

v is the collection of all legitimate messages to be secured from the eavesdropper.

Also, let u = {uk, ũk, k = 1, . . . , K}, that is u is the collection of all the artificial

noise symbols. We note that

I(v; Z) =h(Z)− h(Z|v) (3.335)

≤Mn

2
logP − h(Au) + o(logP ) (3.336)
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=
Mn

2
logP − Mn

2
logP + o(logP ) (3.337)

=o(logP ) (3.338)

where A is a Mn ×Mn full rank matrix, and we have used Lemma 4 in (3.337).

Also, we have implicitly used the fact that Ω appears in the conditioning of each

mutual information and differential entropy term in the above calculation. Now, as

before, by treating the vector channel with Mn slots as one channel use, and using

wiretap channel codes, we get,

Ri ≥
(K − 1)nΓ

Mn

logP + o(logP ) (3.339)

for each i = 1, . . . , K, which gives us the required sum s.d.o.f. of K(K−1)nΓ

(K−1)nΓ+(K+1)(n+1)Γ ,

which approaches K−1
2

as n→∞.

3.8.9 Achievable Scheme for the Multiple Access Wiretap Channel

with Partial CSIT and Fading Channel Gains

We construct a scheme that achieves the desired sum s.d.o.f. of m(K−1)
m(K−1)+1

with fad-

ing channel gains. Without loss of generality, assume that the first m transmit-

ters have eavesdropper CSI, while the remaining transmitters have no eavesdropper

CSI. We provide a scheme to achieve the rate tuple (d1, . . . , dm, dm+1, . . . , dK) =

(
K−1

m(K−1)+1
, . . . , K−1

m(K−1)+1
, 0, . . . , 0

)
, thus, achieving the sum s.d.o.f. of m(K−1)

m(K−1)+1
. For

each i = 1, . . . ,m, transmitter i sends Vi = {Vij, , j 6= i, j = 1, . . . , K} symbols in
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m(K − 1) + 1 time slots. Let V = {Vi, i = 1, . . . , K}. Fig. 3.6 illustrates the align-

ment of the signals at the end of the scheme when K = 3 and m = 2. The scheme

is as follows:

At time t ∈ {1, . . . ,m(K − 1) + 1}, the ith transmitter, i = 1, . . . , K, sends,

Xi(t) =





K∑
j=1,j 6=i

gj(t)

hj(t)gi(t)
Vij + 1

hi(t)
Ui, 1 ≤ i ≤ m

1
hi(t)

Ui, m+ 1 ≤ i ≤ K

(3.340)

where Ui is an artificial noise symbol. This ensures that the noise symbols Ui all

align at the legitimate receiver. On the other hand, the artificial noise symbol from

the jth transmitter Uj protects all the messages Vij for every i, at the eavesdropper.

The channel outputs are given by,

Y (t) =
m∑

i=1

∑

j 6=i

hi(t)gj(t)

hj(t)gi(t)
Vij +

K∑

i=1

Ui +N1(t) (3.341)

Z(t) =
K∑

i=1

gi(t)

hi(t)

(
Ui +

m∑

j=1,j 6=i
Vji

)
+N2(t) (3.342)

After the m(K−1)+1 time slots, the legitimate receiver ends up with m(K−

1) + 1 linearly independent equations with m(K− 1) + 1 variables:
∑K

i=1 Ui and the

m(K − 1) variables {Vij}. Thus, it can decode all the m(K − 1) message symbols

Vij. Defining Y = {Y (t), t = 1, . . . ,m(K − 1) + 1} and Z similarly as Y, this

means that I(V; Y) = m(K − 1)1
2

logP + o(logP ), and also I(V; Z) ≤ o(logP ),

concluding the achievability proof.
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Chapter 4: Secure Degrees of Freedom of the Multiple Access Wire-

tap Channel with Multiple Antennas

4.1 Introduction

We consider the two-user multiple-input multiple-output (MIMO) multiple access

wiretap channel where each transmitter has N antennas, the legitimate receiver has

N antennas and the eavesdropper has K antennas; see Fig. 4.1. We consider the case

when the channel gains are fixed throughout the duration of the communication,

as well as the case when the channel is fast fading and the channel gains vary

in an i.i.d. fashion across time. Our goal in this chapter is to characterize how

the optimal sum secure degrees of freedom (s.d.o.f.) of the MIMO multiple access

wiretap channel varies with the number of antennas at the legitimate users and the

eavesdropper.

To that end, we partition the range of K into various regimes, and propose

achievable schemes for each regime. With fading channel gains, our schemes are

based on a combination of zero-forcing beamforming and vector space interference

alignment techniques. In order to achieve the optimal sum s.d.o.f., which is in the

form 2
(
d+ l

3

)
, l = 0, 1, 2, where d is an integer, with fixed real channel gains,
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Figure 4.1: The MIMO multiple access wiretap channel.

we decompose the channel input at each transmitter into two parts: a Gaussian

signaling part carrying d (the integer part) d.o.f. of information securely, and a

structured signaling part carrying l
3

(the fractional part) d.o.f. of information se-

curely. The structure of the Gaussian signals carrying the integer s.d.o.f. resembles

that of the schemes for the fading channel gains. The structured signals carrying 2l
3

sum s.d.o.f. are designed using the real interference alignment technique [9].

We also establish the optimality of our achievable schemes with matching

converses in each regime. A simple upper bound, given by min((2N − K)+, N),

is obtained by allowing cooperation between the two transmitters, which enhances

the two-user multiple access wiretap channel to a MIMO wiretap channel with 2N

antennas at the transmitter, N antennas at the legitimate receiver and K antennas

at the eavesdropper [13,14]. This bound is optimal when the number of eavesdropper

antennas K is either quite small (K ≤ N
2

), or quite large (K ≥ 4N
3

). When K

is small, the sum s.d.o.f. is limited by the decoding capability of the legitimate
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receiver, and the optimal sum s.d.o.f. is N which is optimal even without any secrecy

constraints. When K is large, the s.d.o.f. is limited by the requirement of secrecy

from a very strong eavesdropper. For intermediate values of K, the distributed

nature of the transmitters dominates, and we employ a generalization of the SISO

converse techniques of [4] for the converse proof in the MIMO case.

4.2 System Model

The two-user multiple access wiretap channel, see Fig. 4.1, is described by,

Y(t) =H1(t)X1(t) + H2(t)X2(t) + N1(t) (4.1)

Z(t) =G1(t)X1(t) + G2(t)X2(t) + N2(t) (4.2)

where Xi(t) is an N dimensional column vector denoting the ith user’s channel

input, Y(t) is an N dimensional vector denoting the legitimate receiver’s channel

output, and Z(t) is a K dimensional vector denoting the eavesdropper’s channel

output, at time t. In addition, N1(t) and N2(t) are N and K dimensional white

Gaussian noise vectors, respectively, with N1 ∼ N (0, IN) and N2 ∼ N (0, IK),

where IN denotes the N ×N identity matrix. Here, Hi(t) and Gi(t) are the N ×N

and K × N channel matrices from transmitter i to the legitimate receiver and the

eavesdropper, respectively, at time t. When the channel gains are fixed, the entries

of Hi(t) and Gi(t) are drawn from an arbitrary but fixed continuous distribution

with bounded support in an i.i.d. fashion prior to the start of the communication,

and remain fixed throughout the duration of the communication, i.e., for 1 ≤ t ≤ n.
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When the channel gains are fading, the entries of Hi(t) and Gi(t) are drawn from

the fixed continuous distribution with bounded support in an i.i.d. fashion at every

time slot t. We assume that the channel matrices Hi(t) and Gi(t) are known with

full precision at all terminals, at time t. All channel inputs satisfy the average

power constraint E[‖Xi(t)‖2] ≤ P, i = 1, 2, where ‖X‖ denotes the Euclidean (or

the spectral norm) of the vector (or matrix) X.

Transmitter i wishes to send a message Wi, uniformly distributed in Wi, se-

curely to the legitimate receiver in the presence of the eavesdropper. A secure

rate pair (R1, R2), with Ri = log |Wi|
n

is achievable if there exists a sequence of

codes which satisfy the reliability constraints at the legitimate receiver, namely,

Pr[Wi 6= Ŵi] ≤ εn, for i = 1, 2, and the secrecy constraint, namely,

1

n
I(W1,W2; Zn) ≤ εn (4.3)

where εn → 0 as n → ∞. An s.d.o.f. pair (d1, d2) is said to be achievable if a rate

pair (R1, R2) is achievable with

di = lim
P→∞

Ri

1
2

logP
(4.4)

The sum s.d.o.f. ds is the largest achievable d1 + d2.
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4.3 Main Result

The main result of this chapter is the determination of the optimal sum s.d.o.f. of

the MIMO multiple access wiretap channel. We have the following theorem.

Theorem 7 The optimal sum s.d.o.f. of the MIMO multiple access wiretap channel

with N antennas at the transmitters, N antennas at the legitimate receiver and K

antennas at the eavesdropper is given by

ds =





N, if K ≤ 1
2
N

2
3
(2N −K), if 1

2
N ≤ K ≤ N

2
3
N, if N ≤ K ≤ 4

3
N

2N −K, if 4
3
N ≤ K ≤ 2N

0, if K ≥ 2N.

(4.5)

for almost all channel gains.

We present the converse proof for this theorem in Section 4.4. The achievable

schemes for the case of fading channel gains are presented in Section 4.5, while the

achievable schemes for the case of fixed channel gains are presented in Section 4.6.

Fig. 4.2 shows the variation of the optimal sum s.d.o.f. with the number of

eavesdropper antennas K. Note that as in the SISO case, the optimal sum s.d.o.f. is

higher for the multiple access wiretap channel than for the wiretap channel with one

helper [12], when K < 3N/2. However, when the number of eavesdropper antennas
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Figure 4.2: ds versus K.

K is large enough, i.e., when K ≥ 3N/2, the optimal sum s.d.o.f. of the multiple

access wiretap channel is the same as the optimal s.d.o.f. of the wiretap channel

with a helper.

Further, note that when the number of eavesdropper antennas K is small

enough (K ≤ N
2

), the optimal sum s.d.o.f. is N , which is the optimal d.o.f. of

the multiple access channel without any secrecy constraints. Thus, there is no

penalty for imposing the secrecy constraints in this regime. Also note that allowing

cooperation beteen the transmitters does not increase the sum s.d.o.f. in this regime.

Heuristically, the eavesdropper is quite weak in this regime, and the optimal sum

s.d.o.f. is limited by the decoding capabilities of the legitimate receiver.

On the other hand, when the number of antennas K is quite large (K ≥ 4N
3

),

the optimal sum s.d.o.f. is (2N − K), which is the optimal s.d.o.f. obtained by

allowing cooperation between the transmitters. Intuitively, the eavesdropper is very

strong in this regime and the sum s.d.o.f. is limited by the requirement of secrecy

from this strong eavesdropper. In the intermediate regime, when N
2
≤ K ≤ 4N

3
, the
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distributed nature of the transmitters becomes a key factor and the upper bound

obtained by allowing cooperation between the transmitters is no longer achievable;

see Fig. 4.3.

4.4 Proof of the Converse

We prove the following upper bounds which are combined to give the converse for

the full range of N and K,

d1 + d2 ≤min((2N −K)+, N) (4.6)

d1 + d2 ≤max

(
2

3
(2N −K),

2

3
N

)
(4.7)

where (x)+ denotes max(x, 0).

It can be verified from Fig. 4.3 that the minimum of the two bounds in (4.6)-

(4.7) gives the converse to the sum s.d.o.f. stated in (4.5) for all ranges of N and K.

Thus, we next provide proofs of each of the bounds in (4.6) and (4.7).

4.4.1 Proof of d1 + d2 ≤ min((2N −K)+, N)

This bound follows by allowing cooperation between the transmitters, which reduces

the two-user multiple access wiretap channel to a single-user MIMO wiretap channel

with 2N antennas at the transmitter, N antennas at the legitimate receiver and K

antennas at the eavesdropper. The optimal s.d.o.f. for this MIMO wiretap channel

is known to be min((2N −K)+, N) [13, 14].
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4.4.2 Proof of d1 + d2 ≤ max
(
2
3(2N −K), 23N

)

We only show that d1 + d2 ≤ 2
3
(2N −K), when K ≤ N , and note that the bound

d1 + d2 ≤ 2
3
N for K > N follows from the fact that increasing the number of

eavesdropper antennas cannot increase the sum s.d.o.f.; thus, the sum s.d.o.f. when

K > N is upper-bounded by the sum s.d.o.f. for the case of K = N , which is 2
3
N .

To prove d1 +d2 ≤ 2
3
(2N−K) when K ≤ N , we follow [4,12]. We define noisy

versions of Xi as X̃i = Xi+Ñi where Ñi ∼ N (0, ρ2
i IN) with ρ2

i < min
(

1
‖Hi‖2 ,

1
‖Gi‖2

)
.

The secrecy penalty lemma [4] can then be derived as

n(R1 +R2) ≤I(W1,W2; Yn|Zn) + nε (4.8)

≤h(Yn|Zn) + nc1 (4.9)

=h(Yn,Zn)− h(Zn) + nc1 (4.10)

≤h(X̃n
1 , X̃

n
2 )− h(Zn) + nc2 (4.11)

≤h(X̃n
1 ) + h(X̃n

2 )− h(Zn) + nc2 (4.12)

Now consider a stochastically equivalent version of Z given by Z̃ = G1X̃1 +G2X2 +

NZ , where NZ is an independent Gaussian noise vector, distributed as N (0, IK −

ρ2
1G1G

H
1 ). Further, let G1 = [G̃1 Ĝ1] and X̃T

1 = [X̃T
1a X̃T

1b]
T , where G̃1 is the

matrix with the first K columns of G1, Ĝ1 has the last N −K columns of G1, X̃1a

is a vector with the top K elements of X̃1, while X̃1b has the remaining N − K

elements of X̃1. Then, we have
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Figure 4.3: The two upper bounds.

h(Zn) = h(Z̃n) =h(Gn
1X̃n

1 + Gn
2Xn

2 + Nn
Z) (4.13)

≥h(Gn
1X̃n

1 ) (4.14)

=h(G̃n
1X̃n

1a + Ĝn
1X̃n

1b) (4.15)

≥h(G̃n
1X̃n

1a|X̃n
1b) (4.16)

=h(X̃n
1a|X̃n

1b) + nc3 (4.17)

Using (4.17) in (4.12), we have

n(R1 +R2) ≤h(X̃n
1b) + h(X̃n

2 ) + nc4 (4.18)

The role of a helper lemma [4] also generalizes to the MIMO case as

nR1 ≤I(Xn
1 ; Yn) (4.19)

=h(Yn)− h(Hn
2Xn

2 + Nn
1 ) (4.20)
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≤h(Yn)− h(X̃n
2 ) + nc5 (4.21)

Adding (4.18) and (4.21), we have

n(2R1 +R2) ≤h(Yn) + h(X̃n
1b) + nc6 (4.22)

≤Nn

2
logP + (N −K)

n

2
logP + nc7 (4.23)

=(2N −K)
n

2
logP + nc7 (4.24)

First dividing by n and letting n → ∞, and then dividing by 1
2

logP and letting

P →∞, we have

2d1 + d2 ≤ 2N −K (4.25)

By reversing the roles of the transmitters, we have

d1 + 2d2 ≤ 2N −K (4.26)

Combining (4.25) and (4.26), we have the required bound

d1 + d2 ≤
2

3
(2N −K) (4.27)

This completes the proof of the converse of Theorem 7.
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4.5 Achievable Schemes for Fading Channel Gains

We provide separate achievable schemes for each of the following regimes:

1. K ≤ N/2

2. N/2 ≤ K ≤ N

3. N ≤ K ≤ 4N/3

4. 4N/3 ≤ K ≤ 3N/2

5. 3N/2 ≤ K ≤ 2N

Each scheme described in the following sections can be outlined as follows. We

neglect the impact of noise at high SNR. Then, to achieve a certain sum s.d.o.f.,

ds, we achieve the s.d.o.f. pair (d1, d2) with ds = d1 + d2. We send n1 symbols

v1 = (v11, . . . , v1n1) and n2 symbols v2 = (v21, . . . , v2n2) from the first and second

transmitters, respectively, in nB slots, such that d1 = n1/nB and d2 = n2/nB.

Finally, we show that the leakage of information symbols at the eavesdropper is

o(logP ). We however want a stronger guarantee of security, namely,

1

n
I(W1,W2; Zn)→ 0 (4.28)

as n → ∞. To achieve this, we view the nB slots described in the scheme as a

block and treat the equivalent channel from v1 and v2 to Y and Z as a memoryless

multiple access wiretap channel with Y being the output at the legitimate receiver
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and Z being the output at the eavesdropper. The following sum secure rate is

achievable [70]:

sup(R1 +R2) ≥ I(V; Y)− I(V; Z) (4.29)

where V
∆
= {v1,v2}. Using the proposed scheme, v1 and v2 can be reconstructed

from Y to within noise distortion. Thus,

I(V; Y) =(n1 + n2)
1

2
logP + o(logP ) (4.30)

Also, for each scheme, by design

I(V; Z) =o(logP ) (4.31)

Thus, from (4.29), the achievable sum secure rate in each block is (n1 +n2)1
2

logP +

o(logP ). Since our block contains nB channel uses, the effective sum secure rate is

sup(R1 +R2) ≥
(
n1 + n2

nB

)
1

2
logP + o(logP ) (4.32)

Thus, the achievable sum s.d.o.f. is n1+n2

nB
, with the stringent security requirement

as well.

In the following subsections, we present the achievable scheme for each regime.
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4.5.1 K ≤ N/2

In this regime, the optimal sum s.d.o.f. is N . In our scheme, transmitter 1 sends

(N − K) independent Gaussian symbols v1 ∈ RN−K while transmitter 2 sends K

independent Gaussian symbols v2 ∈ RK , in one time slot. This can be done by

beamforming the information streams at both transmitters to directions that are

orthogonal to the eavesdropper’s channel. To this end, the transmitted signals are:

X1 = P1v1 (4.33)

X2 = P2v2 (4.34)

where P1 ∈ RN×(N−K) is a matrix whose (N −K) columns span the (N −K) di-

mensional nullspace of G1, and P2 ∈ RN×K is a matrix with K linearly independent

vectors drawn from the (N − K) dimensional nullspace of G2. This can be done

since K ≤ N −K. The channel outputs are:

Y =[H1P1 H2P2]




v1

v2


+ N1 (4.35)

Z =N2 (4.36)

Note that [H1P1 H2P2] is an N×N matrix with full rank almost surely, and thus,

both v1 and v2 can be decoded at the legitimate receiver to within noise variance.

On the other hand, they do not appear in the eavesdropper’s observation and thus
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their security is guaranteed.

4.5.2 N/2 ≤ K ≤ N

The optimal sum s.d.o.f. in this regime is 2
3
(2N − K). Thus, transmitter i sends

(2N − K) Gaussian symbols
{
vi ∈ R2K−N , ṽi(t) ∈ RN−K , t = 1, 2, 3

}
, each drawn

independently from N (0, P̄ ), in 3 time slots for i = 1, 2, where P̄ = αP and α is

chosen to satisfy the power constraint. Intuitively, transmitter i sends the (N −K)

symbols ṽi(t) by beamforming orthogonal to the eavesdropper in each time slot

t = 1, 2, 3. The remaining (2K − N) symbols are sent over 3 time slots using a

scheme similar to the SISO scheme of [4]. Thus, the transmitted signals at time t

are:

X1(t) =G1(t)⊥ṽ1(t) + P1(t)v1 + H1(t)−1Q(t)u1 (4.37)

X2(t) =G2(t)⊥ṽ2(t) + P2(t)v2 + H2(t)−1Q(t)u2 (4.38)

where Gi(t)
⊥ is an N × (N −K) full rank matrix with Gi(t)Gi(t)

⊥ = 0N×(N−K), ui

is a (2K −N) dimensional vector whose entries are drawn in an i.i.d. fashion from

N (0, P̄ ), and Pi and Q are N × (2K − N) precoding matrices that will be fixed

later. The channel outputs are:

Y(t) =H1(t)G1(t)⊥ṽ1(t) + H1(t)P1(t)v1 + H2(t)P2(t)v2

+ H2(t)G2(t)⊥ṽ2(t) + Q(t)(u1 + u2) + N1(t) (4.39)

Z(t) =G1(t)P1(t)v1 + G2(t)H2(t)−1Q(t)u2
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+ G2(t)P2(t)v2 + G1(t)H1(t)−1Q(t)u1 + N2(t) (4.40)

We now choose Q(t) to be any N × (2K − N) matrix with full column rank, and

choose

Pi(t) = Gi(t)
T (Gi(t)Gi(t)

T )−1(Gj(t)Hj(t)
−1)Q(t) (4.41)

where i, j ∈ {1, 2} , i 6= j. It can be verified that this selection aligns vi with

uj, i 6= j, at the eavesdropper, and this guarantees that the information leakage

is o(logP ). On the other hand, the legitimate receiver decodes the desired signals

{
ṽi(t) ∈ RN−K , t ∈ {1, 2, 3}

}
,
{
vi ∈ R2K−N , i = 1, 2

}
and the aligned artificial noise

symbols u1 + u2 ∈ R2K−N , i.e., 6(N − K) + 3(2N − K) = 3N symbols using 3N

observations in 3 time slots, to within noise variance. This completes the scheme

for the regime N/2 ≤ K ≤ N .

4.5.3 N ≤ K ≤ 4N/3

In this regime, the optimal sum s.d.o.f. is 2
3
N . Therefore, transmitter i in our scheme

sends N Gaussian symbols, vi ∈ RN , in 3 time slots. The transmitted signals in

time slot t are given by

X1(t) = P1(t)v1 + H1(t)−1Q(t)u1 (4.42)

X2(t) = P2(t)v2 + H1(t)−1Q(t)u2 (4.43)
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where the P1(t), Q(t), and P2(t) are N ×N precoding matrices to be designed. Let

us define

P̃i
∆
=




Pi(1)

Pi(2)

Pi(3)



, Q̃

∆
=




Q(1)

Q(2)

Q(3)




(4.44)

Further, if we define

H̃i
∆
=




Hi(1) 0N×N 0N×N

0N×N Hi(2) 0N×N

0N×N 0N×N Hi(3)




(4.45)

and G̃i similarly, we can compactly represent the channel outputs over all 3 time

slots as

Ỹ =H̃1P̃1v1 + H̃2P̃2v2 + Q̃(u1 + u2) + Ñ1 (4.46)

Z̃ =G̃1P̃1v1 + G̃2H̃
−1
2 Q̃u2 + G̃2P̃2v2 + G̃1H̃

−1
1 Q̃u1 + Ñ2 (4.47)

where Ñi
∆
= [Ni(1)T Ni(2)T Ni(3)T ]T , Ỹ

∆
= [Y(1)T Y(2)T Y(3)T ]T , and Z̃ is

defined similarly. To ensure secrecy, we impose the following conditions

G̃1P̃1 =G̃2H̃
−1
2 Q̃ (4.48)

G̃2P̃2 =G̃1H̃
−1
1 Q̃ (4.49)
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We rewrite the conditions in (4.48)-(4.49) as

Ψ




P̃1

P̃2

Q̃




= 06K×N (4.50)

where

Ψ
∆
=




G̃1 03K×3N −G̃2H̃
−1
2

03K×3N G̃2 −G̃1H̃
−1
1


 (4.51)

Note that Ψ has a nullity 9N − 6K. Since 9N − 6K ≥ N in this regime, we can

choose N vectors of dimension 9N randomly such that they are linearly independent

and lie in the nullspace of Ψ. We can then assign to P̃1, P̃2 and Q̃, the top, the

middle and the bottom 3N rows of the matrix comprising the N chosen vectors.

This guarantees secrecy of the message symbols at the eavesdropper.

To see the decodability, we rewrite the received signal at the legitimate receiver

as

Ỹ = Φ




v1

v2

u1 + u2




+ Ñ1 (4.52)

where Φ
∆
= [H̃1P̃1 H̃2P̃2 Q̃]. We note that Φ is 3N × 3N and full rank almost

surely; thus, the desired signals v1 and v2 can be decoded at the legitimate receiver
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within noise distortion at high SNR.

4.5.4 4N/3 ≤ K ≤ 3N/2

The optimal s.d.o.f. in this regime is 2N − K. To achieve this s.d.o.f., the first

transmitter sends K −N Gaussian symbols
{
v1 ∈ R3N−2K , ṽ ∈ R3K−4N

}
, while the

second transmitter sends 3N − 2K Gaussian symbols
{
v2 ∈ R3N−2K

}
, in one time

slot. The scheme is as follows. The transmitted signals are

X1 = R1ṽ + P1v1 + H−1
1 Qu1 (4.53)

X2 = R2ũ + P2v2 + H−1
2 Qu2 (4.54)

where ũ ∈ R3K−4N and u1,u2 ∈ R3N−2K are artificial noise vectors, whose entries are

drawn in an i.i.d. fashion from N (0, P̄ ). The precoding matrices Ri ∈ RN×(3K−4N),

and Pi,Qi ∈ RN×(3N−2K) will be chosen later. The channel outputs are

Y =H1R1ṽ + H1P1v1 + H2P2v2 + H2R2ũ + Q(u1 + u2) + N1 (4.55)

Z =G1R1ṽ + G2R2ũ + G1P1v1 + G2H
−1
2 Qu2 + G2P2v2 + G1H

−1
1 Qu1 + N2

(4.56)

To ensure secrecy, we want to impose the following conditions:

G1R1 =G2R2 (4.57)

G1P1 =G2H
−1
2 Q (4.58)
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G2P2 =G1H
−1
1 Q (4.59)

To satisfy (4.57), we choose R1 and R2 to be the first and the last N rows of a

2N × 3K − 4N matrix whose columns consist of any 3K − 4N linearly independent

vectors drawn randomly from the nullspace of [G1 −G2]. This is possible since,

3K − 4N ≤ 2N −K in this regime. To satisfy (4.58)-(4.59), we let P1, P2 and Q

to be the first, the second and the last N rows of a 3N × (3N − 2K) matrix whose

columns are randomly chosen to span the (3N − 2K) dimensional nullspace of the

matrix Λ given by

Λ
∆
=




G1 0K×N −G2H
−1
2

0K×N G2 −G1H
−1
1


 (4.60)

To see the decodablity, we can rewrite the observation at the legitimate receiver

as

Y = Φ




ṽ

v1

v2

ũ

u1 + u2




+ N1 (4.61)
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where Φ is the N ×N matrix defined as

Φ = [H1R1 H1P1 H2P2 H2R2 Q] (4.62)

Since Φ is full rank almost surely, the legitimate receiver can decode its desired

symbols ṽ,v1, and v2.

4.5.5 3N/2 ≤ K ≤ 2N

In this regime, it is clear from Fig. 4.2 that the multiple access wiretap channel has

the same optimal sum s.d.o.f. as the optimal s.d.o.f. of the wiretap channel with

one helper. Thus, an optimal achievable scheme for the wiretap channel with one

helper suffices as the scheme for the multiple access wiretap channel as well. Such

an optimal scheme, based on real interference alignment, is provided in [12] for the

wiretap channel with one helper with fixed channel gains. Here, we provide a scheme

based on vector space alignment.

In order to achieve the optimal sum s.d.o.f. of 2N −K in this regime, the first

transmitter sends 2N−K independent Gaussian symbols v ∈ R2N−K securely, in one

time slot. The second transmitter just transmits artificial noise symbols u ∈ R2N−K ,

whose entries are drawn in an i.i.d. fashion from N (0, P̄ ). The transmitted signals

are

X1 = Pv (4.63)

X2 = Qu (4.64)
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where P and Q are N×(2N−K) precoding matrices to be fixed later. The received

signals are

Y =H1Pv + H2Qu + N1 (4.65)

Z =G1Pv + G2Qu + N2 (4.66)

To ensure security, we wish to ensure that

G1P = G2Q (4.67)

This can be done by choosing P and Q to be the top and the bottom N rows of

a 2N × (2N −K) matrix whose linearly independent columns are drawn randomly

from the nullspace of [G1 −G2]. The decodability is ensured by noting that the

matrix [H1P H2Q] is full column rank and 2(2N −K) ≤ N in this regime.

4.6 Achievable Schemes for Fixed Channel Gains

We note that the achievable schemes proposed for the fading channel gains in the

regimes K ≤ N
2

and 4N
2
≤ K ≤ 2N are single time-slot schemes and suffice for the

fixed channel gains case. However, in the regime N
2
≤ K ≤ 4N

3
, the schemes for

the fading channel gains exploit the diversity of channel gains over three time slots;

thus, these schemes cannot be used in the fixed channel gains case. Therefore, we

now propose new achievable schemes for this regime. In this regime, the optimal

sum s.d.o.f. is of the form 2
(
d+ l

3

)
, l = 0, 1, 2, where d is an integer. When l = 0,
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the sum s.d.o.f. is an integer and carefully precoded Gaussian signaling suffices.

However, when l 6= 0, the s.d.o.f. has a fractional part, and Gaussian signaling alone

is not optimal, since Gaussian signals with full power cannot carry fractional d.o.f. of

information.

The general structure of our schemes is as follows: We decompose the channel

input at each transmitter into two parts: a Gaussian signaling part carrying d (the

integer part) d.o.f. of information securely, and a structured signaling part carrying

l
3

(the fractional part) d.o.f. of information securely. The structure of the Gaussian

signals carrying the integer s.d.o.f. d are the same as that of the corresponding

schemes for the fading channel gains. This ensures security at the eavesdropper

as well as decodability at the legitimate receiver as long as the structured signals

carrying the fractional s.d.o.f. 2l
3

from both transmitters can be decoded at the

legitimate receiver. The design of the structured signals is motivated from the SISO

scheme of [4]. In fact, when l = 1, we use the signal structure of the scheme in [4],

where real interference alignment is used to transmit 2
3

sum s.d.o.f. on the SISO

multiple access wiretap channel. However, when l = 2, a new scheme is required

to achieve 4
3

sum s.d.o.f. on the MIMO multiple access wiretap channel with two

antennas at every terminal. To that end, we first provide a novel scheme, based on

asymptotic real interference alignment [7,9], for the canonical 2× 2× 2× 2 MIMO

multiple access wiretap channel.
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4.6.1 Scheme for the 2× 2× 2× 2 System

The optimal sum s.d.o.f. is 4
3
. Since the legitimate receiver has 2 antennas, we

achieve 2
3

s.d.o.f. on each antenna. The scheme is as follows.

Let m be a large integer. Define M
∆
= mΓ, where Γ will be specified later. The

channel inputs are given by

X1 =G−1
1 G2H

−1
2




tT1 v11

t2v12


+ H−1

1




tT1 u11

t2u12


 (4.68)

X2 =G−1
2 G1H

−1
1




tT1 v21

t2v22


+ H−1

2




tT1 u21

t2u22


 (4.69)

where ti, i = 1, 2 are M dimensional precoding vectors which will be fixed later,

and uij,vij are independent random variables drawn uniformly from the same PAM

constellation C(a,Q) given by

C(a,Q) = a {−Q,−Q+ 1, . . . , Q− 1, Q} (4.70)

where Q is a positive integer and a is a real number used to normalize the trans-

mission power. The exact values of a and Q will be specified later. The variables

vij denote the information symbols of transmitter i, while uij are the cooperative

jamming signals being transmitted from transmitter i.
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The channel outputs are given by

Y =A




tT1 v11

t2v12


+ B




tT1 v21

t2v22


+




tT1 (u11 + u21)

t2(u12 + u22)


+ N1 (4.71)

Z =G1H
−1
1




tT1 (u11 + v21)

t2(u12 + v22)


+ G2H

−1
2




tT1 (u21 + v11)

t2(u22 + v12)


+ N2 (4.72)

where A = H1G
−1
1 G2H

−1
2 and B = H2G

−1
2 G1H

−1
1 . Note that the information

symbols vij are buried in the cooperative jamming signals ukj, where k 6= i, at the

eavesdropper. Intuitively, this ensures security of the information symbols at the

eavesdropper. At the legitimate receiver, we can express the received signal Y more

explicitly as




tT2 (a12v12 + b12v22) + tT1 (a11v11 + b11v21 + u11 + u21)

tT1 (a21v11 + b21v21) + tT2 (a22v12 + b22v22 + u12 + u22)


 (4.73)

We define

T1 = {ar111b
r2
11, ri ∈ {0, . . . ,m− 1}} (4.74)

T2 = {ar122b
r2
22, ri ∈ {0, . . . ,m− 1}} (4.75)

Letting Γ = 2, we note that

|T1| = |T2| = M (4.76)
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We choose ti to be the M dimensional vector that has all the elements of Ti. We

note that all elements in Ti are rationally independent, since the channel gains are

drawn independently from a continuous distribution. Also, the elements of Ti can

be verified to be rationally independent of the elements of Tj, if i 6= j. With the

above selections, let us analyze the structure of the received signal at the legitimate

receiver.

At the first antenna, u11 and u21 arrive along the dimensions of T1. The signals

v11 and v21 arrive along dimensions a11T1 and b11T1 and, thus, they align with u11

and u21 in T̃1, where,

T̃1 = {ar111b
r2
11, ri ∈ {0, . . . ,m}} (4.77)

Thus, v11 and v21 cannot be reliably decoded from the observation of the first

antenna. However, the desired signals v12 and v22 arrive along dimensions a12T2

and b12T2, respectively. Note that the elements of a12T2 and b12T2 are rationally

independent and thus, v12 and v22 occupy separate rational dimensions. Also they

are separate from the interference space T̃1. Therefore, v12 and v22 can be reliably

decoded at high SNR. Heuristically, the s.d.o.f. achieved using the first antenna is

2|T1|
2|T1|+|T̃2| = 2m2

2m2+(m+1)2 ≈ 2
3

for large enough m.

At the second antenna, a similar analysis holds. The signals v12, v22, u12 and

u22 align with each other in the dimensions of T̃2, which is defined as

T̃2 = {ar122b
r2
22, ri ∈ {0, . . . ,m}} (4.78)
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The signals v11 and v21 arrive along dimensions that are separate from each other

as well as from the dimensions in T̃2, and thus, can be decoded reliably. The

s.d.o.f. achieved in the second antenna is also 2m2

2m2+(m+1)2 ≈ 2
3

for large m. Therefore,

the sum s.d.o.f. achieved using both antennas is 4
3
, as desired.

Formally, an achievable sum rate is given in equation (4.29), where V
∆
=

{vij, i, j ∈ {1, 2}}. In order to bound the term I(V; Y), we first bound the probabil-

ity of error. Let MS
∆
= 2m2 + (m+ 1)2 be the number of rational dimensions at each

receiver antenna. Also let Vi = {vkj, k = 1, 2; j 6= i} be the desired symbols at the

ith antenna of the receiver. In order to decode, the receiver makes an estimate V̂i

of Vi by choosing the closest point in the constellation based on the signal received

at antenna i. For any δ > 0, there exists a positive constant γ, which is indepen-

dent of P , such that if we choose Q = P
1−δ

2(MS+δ) and a = γP
1
2

Q
, then for almost all

channel gains the average power constraint is satisfied and the probability of error,

Pr(Vi 6= V̂i), is upper-bounded by exp
(
−ηγP δ

)
, where ηγ is a positive constant

which is independent of P . Since V = {Vi, i = 1, 2},

Pr(V 6= V̂) ≤ 2 exp
(
−ηγP δ

)
(4.79)

By Fano’s inequality and the Markov chain V→ Y → V̂,

I(V; Y) = H(V)−H(V|V̂) (4.80)

≥ log(|V|)− 1− Pr(V 6= V̂) log(|V|) (4.81)

= log(|V|)− o(logP ) (4.82)
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=
4M(1− δ)
MS + δ

(
1

2
logP

)
+ o(logP ) (4.83)

where V is the alphabet of V with cardinality (2Q+ 1)4M = (2Q+ 1)4m2
. Next, we

compute

I(V; Z) ≤I


{vij, i, j = 1, 2} ;





vij + uîj,
î 6= i,

i, j = 1, 2






 (4.84)

≤
2∑

i,j=1,̂i 6=i

H(vij + uîj)−H(uîj) (4.85)

≤4M log(4Q+ 1)− 4M log(2Q+ 1) (4.86)

≤4M = o(logP ) (4.87)

Using (4.83) and (4.87) in (4.29), we have

sup(R1 +R2) ≥4M(1− δ)
MS + δ

(
1

2
logP

)
+ o(logP ) (4.88)

By choosing δ small enough and m large enough, we can make the sum s.d.o.f. ar-

bitrarily close to 4
3
.

4.6.2 Achievable Schemes for N
2 ≤ K ≤ N

We use structured PAM signaling along with Gaussian signaling. Let d = b2K−N
3
c,

and l = (2K − N)mod 3 = (2N − K)mod 3. Let v
(1)
i = {vij, j = 1, . . . , d},

where each vij, j = 1, . . . , d is drawn in an i.i.d. fashion ∼ N (0, αP ), and v
(2)
i =
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{
vi(d+1), . . . , vi(d+l)

}
are structured PAM signals to be specified later. When l = 0,

v
(2)
i is the empty set. Let vi =

(
v

(1)
i ,v

(2)
i

)
. Also, let ṽi = {ṽij, j = 1, . . . , N −K}

denote the symbols that can be transmitted securely by beamforming orthogonal to

the eavesdropper channel. Transmitter i sends:

Xi =G⊥i ṽi + Pivi + H−1
i Qui (4.89)

where G⊥i is an N × (N − K) full rank matrix with GiG
⊥
i = 0N×(N−K), ui =

(
u

(1)
i ,u

(2)
i

)
is a (d+l) dimensional vector with the entries of u

(1)
i = {uij, j = 1, . . . , d}

being drawn independently of v and each other from N (0, αP ), and the structure

of u
(2)
i =

{
ui(d+1), . . . , ui(d+l)

}
will be specified later. Pi and Q are N × (d + l)

precoding matrices that will also be fixed later. The received signals are:

Y =H1G
⊥
1 ṽ1 + H1P1v1 + H2P2v2 + H2G

⊥
2 ṽ2 + Q(u1 + u2) + N1 (4.90)

Z =G1P1v1 + G2H
−1
2 Qu2 + G2P2v2 + G1H

−1
1 Qu1 + N2 (4.91)

We now choose Q to be any N × (d + l) matrix with full column rank, and choose

Pi = GT
i (GiG

T
i )−1(GjH

−1
j )Q, where i, j ∈ {1, 2} , i 6= j. It can be verified that this

selection aligns vi with uj, i 6= j, at the eavesdropper, and this guarantees that the

information leakage is o(logP ). Next, let P
(1)
i , Q(1) be matrices containing the first

d columns of Pi and Q, respectively, while P
(2)
i and Q(2) contain the last l columns

of Pi and Q, respectively. Let B be a matrix whose columns lie in the nullspace

of the matrix FT = [H1G
⊥
1 H2G

⊥
2 H1P

(1)
1 H1P

(1)
1 Q(1)]T . Note that F is a
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(N − l)×N matrix and thus there exists a N × l matrix B such that FB = 0. We

consider the filtered output [Ỹ, Ŷ]T = EY, where

E =




Dl×N

IN−l 0(N−l)×l


 (4.92)

and D = (BTQ(2))−1BT and let

Ỹ =DH1P
(2)
1 v

(2)
1 + DH2P

(2)
2 v

(2)
2 + (u

(2)
1 + u

(2)
2 ) + DN1 (4.93)

Note that (4.93) represents the output at the receiver of a multiple access wire-

tap channel with l antennas at each terminal. If l = 1, we let v
(2)
i = vi(d+1)

be drawn uniformly and independently from the PAM constellation C(a,Q), with

Q = P
1−δ

2(3+δ) and a = γP
1
2

Q
. Also, u

(2)
i = ui(d+1) is chosen uniformly from C(a,Q) and

independently from vj, j = 1, 2. The receiver can then decode v1(d+1), v2(d+1) and

(u1(d+1) + u2(d+1)) with vanishing probability of error. On the other hand, if l = 2,

we choose v
(2)
i and u

(2)
i as in the 2× 2× 2× 2 multiple access wiretap channel, i.e.,

vi(d+k) = tTk v̂ik, k = 1, 2, where v̂ik is an M dimensional vector whose entries are

drawn from the PAM constellation C(a,Q) with Q = P
1−δ

2(MS+δ) and a = γP
1
2

Q
, and

ti is chosen appropriately analogous to the selection for the 2 × 2 × 2 × 2 multiple

access wiretap channel, noting the similarity of (4.93) with (4.71). The cooperative

jamming signal u
(2)
i is chosen similarly. Then, the receiver can decode v

(2)
i and also

u
(2)
1 + u

(2)
2 with vanishing probability of error.

Thus, for l = 1, 2, v
(2)
i and u

(2)
1 + u

(2)
2 can be eliminated from Ŷ. Noting that
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2(N −K) + 3d ≤ N − l, ṽi and v
(1)
i can also be decoded from Ỹ. We compute

I(v1,v2, ṽ1, ṽ2; Y) =I(v
(1)
1 ,v

(1)
2 , ṽ1, ṽ2; Y|v(2)

1 ,v
(2)
2 ) + I(v

(2)
1 ,v

(2)
2 ; Y) (4.94)

The second term depends on the value of l. When l = 1,

I(v
(2)
1 ,v

(2)
2 ; Y) = log(2Q+ 1)2 + o(logP ) (4.95)

=2
1− δ

(3 + δ)

(
1

2
logP

)
+ o(logP ) (4.96)

On the other hand, when l = 2, we have

I(v
(2)
1 ,v

(2)
2 ; Y) =

4M(1− δ)
MS + δ

(
1

2
logP

)
+ o(logP ) (4.97)

Thus, in either case, by choosing δ sufficiently small and m large enough when l = 2,

we have

I(v
(2)
1 ,v

(2)
2 ; Y) =

2l

3

(
1

2
logP

)
+ o(logP ) (4.98)

Noting that v
(1)
1 ,v

(1)
2 , ṽ1, ṽ2 can be decoded to within noise variance from Y, given

v
(2)
1 ,v

(2)
2 , the first term of (4.94) is

I(v
(1)
1 ,v

(1)
2 , ṽ1, ṽ2; Y|v(2)

1 ,v
(2)
2 ) ≥2(d+N −K)

(
1

2
logP

)
+ o(logP ) (4.99)
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Using (4.98) and (4.99) in (4.94), we have,

I(v1,v2, ṽ1, ṽ2; Y) ≥2

(
d+N −K +

l

3

)(
1

2
logP

)
+ o(logP ) (4.100)

=
2

3
(2N −K)

(
1

2
logP

)
+ o(logP ) (4.101)

This completes the achievable schemes for the regime N
2
≤ K ≤ N .

4.6.3 Achievable Schemes for N ≤ K ≤ 4N
3

As in the previous regime, we use structured PAM signaling along with Gaussian

signaling. Let d = bN
3
c and l = Nmod 3. Let vi =

(
v

(1)
i ,v

(2)
i

)
be the information

symbols such that the entries of v
(1)
i = {vij, j = 1, . . . , d} are drawn in an i.i.d. fash-

ion ∼ N (0, αP ), and the entries of v
(2)
i = {vij, j = d+ 1, . . . , d+ l} are structured

PAM signals to be designed later. Let ui =
(
u

(1)
i ,u

(2)
i

)
denote the cooperative

jamming symbols such that the entries of u
(1)
i = {uij, j = 1, . . . , d} are drawn in an

i.i.d. fashion ∼ N (0, αP ), and the entries of u
(2)
i = {uij, j = d+ 1, . . . , d+ l} are

structured PAM signals independent of vj, j = 1, 2 and uj, j 6= i. Transmitter i

sends

Xi = Pivi + H−1
i Qui (4.102)
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where the P1, Q, and P2 are N × (d + l) precoding matrices to be designed. The

channel outputs are given by

Y =H1P1v1 + H2P2v2 + Q(u1 + u2) + N1 (4.103)

Z =G1P1v1 + G2H
−1
2 Qu2 + G2P2v2 + G1H

−1
1 Qu1 + N2 (4.104)

To ensure secrecy, we impose that for i 6= j

GiPi =GjH
−1
j Q (4.105)

We rewrite the conditions in (4.105) as

Ψ

[
PT

1 PT
2 QT

]T
= 02K×(d+l) (4.106)

where

Ψ
∆
=




G1 0K×N −G2H
−1
2

0K×N G2 −G1H
−1
1


 (4.107)

Note that Ψ has a nullity 3N−2K. This alignment is feasible if 3N−2K ≥ d+l, i.e.,

if K ≤ 4d+ l. This is satisfied since, in this regime, K ≤ 4d+ l+ 1
3
l, which implies

K ≤ 4d+ 1 for integers N and K, since 0 ≤ l ≤ 2. This guarantees security and the

information leakage is o(logP ). Next, let P =
(
P

(1)
i ,P

(2)
i

)
such that P

(1)
i , contains

the first d columns of Pi. We define Q(1) and Q(2) similarly. Let B be a matrix
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whose columns lie in the nullspace of the matrix FT = [H1P
(1)
1 H1P

(1)
1 Q(1)]T .

Note that F is a (N − l)×N matrix and thus there exists a non-zero N × l matrix

B such that FB = 0. We consider the filtered output [Ỹ, Ŷ]T = EY, where E is as

in (4.92). We have

Ỹ =DH1P
(2)
1 v

(2)
1 + DH2P

(2)
2 v

(2)
2 + (u

(2)
1 + u

(2)
2 ) + DN1 (4.108)

When l = 1, we choose v
(2)
i = vi(d+1) and u

(2)
i = ui(d+1) to be PAM signals drawn

independently from C(a,Q) with Q = P
1−δ

2(3+δ) and a = γP
1
2

Q
. The receiver can then

decode v1(d+1), v2(d+1) and (u1(d+1) + u2(d+1)) with vanishing probability of error.

When l = 2, we choose v
(2)
i and u

(2)
i analogous to the case of the 2 × 2 × 2 × 2

multiple access wiretap channel, i.e., vi(d+k) = tTk v̂ik, k = 1, 2, where v̂ik is an M

dimensional vector whose entries are drawn from the PAM constellation C(a,Q) with

Q = P
1−δ

2(MS+δ) and a = γP
1
2

Q
, and ti is chosen appropriately, noting the similarity

of (4.108) with (4.71). The cooperative jamming signals u
(2)
i , i = 1, 2 are chosen

similarly. Such a selection allows the receiver to decode v
(2)
i and also u

(2)
1 + u

(2)
2

with vanishing probability of error. Thus, they can be eliminated from the received

observation Y.

Thus, we can eliminate v
(2)
i and u

(2)
1 + u

(2)
2 from Ŷ. Noting that 3d ≤ N − l,

v
(1)
i = {vij, j = 1, . . . , d} can also be decoded to within noise variance from Y. As

in (4.96)-(4.97),

I(v
(2)
1 ,v

(2)
2 ; Y) =

2l

3

(
1

2
logP

)
+ o(logP ) (4.109)
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Also, as in (4.99), we have

I(v
(1)
1 ,v

(1)
2 ; Y|v(2)

1 ,v
(2)
2 ) ≥2d

(
1

2
logP

)
+ o(logP ) (4.110)

Using (4.109) and (4.110), we have

I(v1,v2; Y) ≥2

(
d+

l

3

)(
1

2
logP

)
+ o(logP ) (4.111)

=
2

3
N

(
1

2
logP

)
+ o(logP ) (4.112)

4.7 Conclusions

In this chapter, we determined the optimal sum s.d.o.f. of the two-user MIMO

multiple access wiretap channel with N antennas at each transmitter, N antennas

at the legitimate receiver and K antennas at the eavesdropper. For the case of fading

channel gains, we provided vector space alignment based achievable schemes that

exploit the channel variation over multiple time slots in general. When the channel

gains are fixed, such channel diversity is not available, and we provided single time-

slot schemes that use real interference alignment on structured signaling. We also

provided matching converses to establish the optimality of the achievable schemes for

both fixed and fading channel gains. Our results highlight the effect of the number

of eavesdropper antennas on the s.d.o.f. of the multiple access wiretap channel.
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Chapter 5: MIMO One Hop Networks with No Eve CSIT

5.1 Introduction

In this chapter, we study the MIMO wiretap channel with one helper and the MIMO

multiple access wiretap channel without eavesdropper CSIT. In each case, the le-

gitimate transmitters and the receiver have N antennas each, and the eavesdropper

has K antennas; see Fig. 5.1 and Fig. 5.2. In both cases, the channel is fast fading

and the channel gains vary in an i.i.d. fashion across the links and time. Our goal in

this chapter is to investigate the optimal sum s.d.o.f. of the MIMO wiretap channel

with one helper and the MIMO multiple access wiretap channel as a function of N

and K.

To that end, we provide an achievable scheme based on vector space alignment

[8], that attains 1
2
(2N − K) s.d.o.f. for the wiretap channel with one helper for

all values of 0 ≤ K ≤ 2N . Note that when K ≤ N , this value coincides with

the optimal s.d.o.f. for the wiretap channel with one helper in the case where full

eavesdropper CSIT is available, and is, therefore, optimal without eavesdropper

CSIT as well. Further, the proposed scheme suffices as an achievable scheme for the

multiple access wiretap channel as well.

To prove the optimality of the proposed scheme for the multiple access wiretap
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W Ŵ
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Figure 5.1: Wiretap channel with a helper.

channel, we next provide a matching converse for the regime K ≤ N . We use the

MIMO versions of the secrecy penalty lemma and the role of a helper lemma [4],

and exploit channel symmetry at the eavesdropper. Since the transmitters do not

have the eavesdropper’s CSIT, the output at the K antennas of the eavesdropper

are entropy symmetric [15], i.e., any two subsets of the antenna outputs have the

same differential entropy, if the subsets are of equal size. Finally, we use a MIMO

version of the least alignment lemma [10, 16] to complete the proof of the converse.

As in the SISO case, when K ≤ N the multiple access wiretap channel reduces to

the wiretap channel with one helper when the eavesdropper’s CSIT is not available.

Next, for the regime N ≤ K ≤ 2N , we provide an upper bound which shows

that the sum s.d.o.f. of the multiple access wiretap channel cannot be larger than

2N(2N−K)
4N−K . Though loose, this bound suffices to show that, unlike the regime K ≤ N ,

there is loss of s.d.o.f. due to lack of eavesdropper CSIT, even for the wiretap channel
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Figure 5.2: The multiple access wiretap channel.

with one helper, in the regime 3N
2
≤ K ≤ 2N .

Finally, for the regime N ≤ K ≤ 2N , we restrict ourselves to linear encod-

ing strategies [11, 17], where the channel input of each antenna in every time slot

is restricted to be a linear combination of some information symbols intended for

the legitimate receiver and some artificial noise symbols to provide secrecy at the

eavesdropper, and show that under this restriction to linear encoding schemes, the

linear sum s.d.o.f. can be no larger than 1
2
(2N − K). The key idea of the proof

is that since no alignment is possible at the eavesdropper, the artificial noise sym-

bols should asymptotically occupy the maximum number of dimensions available

at the eavesdropper; consequently, the dimension of the linear signal space at the

eavesdropper should be Kn+ o(n) in n channel uses.
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5.2 System Model

We consider two fundamental channel models: the wiretap channel with one helper

and the multiple access wiretap channel. In each case, we assume that the chan-

nel gains are non-zero and are drawn from a common continuous distribution with

bounded support in an i.i.d. fashion in each channel use. The common continuous

distribution is known at all the terminals in the system. We assume no eavesdropper

CSIT, that is, the channel gains to the eavesdropper are not available at any trans-

mitter. In the following subsections we describe each channel model and provide

the relevant definitions.

5.2.1 Wiretap Channel with Helpers

The MIMO wiretap channel with one helper, see Fig. 5.1, is described by,

Y(t) =H1(t)X1(t) + H2(t)X2(t) + N1(t) (5.1)

Z(t) =G1(t)X1(t) + G2(t)X2(t) + N2(t) (5.2)

where X1(t) and X2(t) are the N dimensional column vectors denoting the input

of the legitimate transmitter and the helper, respectively, Y(t) is an N dimensional

vector denoting the legitimate receiver’s channel output, and Z(t) is a K dimensional

vector denoting the eavesdropper’s channel output, at time t. In addition, N1(t)

and N2(t) are N and K dimensional white Gaussian noise vectors, respectively,

with N1 ∼ N (0, IN) and N2 ∼ N (0, IK), where IN denotes the N × N identity
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matrix. Here, Hi(t) and Gi(t) are the N × N and K × N channel matrices from

transmitter i to the legitimate receiver and the eavesdropper, respectively, at time

t. The entries of Hi(t) and Gi(t) are drawn from a fixed continuous distribution

with bounded support in an i.i.d. fashion at every time slot t. We assume that the

channel matrices at the legitimate receiver, Hi(t), are known with full precision at

all terminals, at time t. However, the channel matrices to the eavesdropper, Gi(t)

are not known at any transmitter. All channel inputs satisfy the average power

constraint E[‖Xi(t)‖2] ≤ P, i = 1, 2, where ‖X‖ denotes the Euclidean (or the

spectral) norm of the vector (or matrix) X.

The transmitter wishes to send a message W , uniformly distributed in Wi,

securely to the legitimate receiver in the presence of the eavesdropper. A secure rate

R, with R = log |W|
n

is achievable if there exists a sequence of codes which satisfy

the reliability constraints at the legitimate receiver, namely, Pr[W 6= Ŵ ] ≤ εn, for

i = 1, 2, and the secrecy constraint, namely,

1

n
I(W ; Zn) ≤ εn (5.3)

where εn → 0 as n → ∞. An s.d.o.f. d is said to be achievable if a rate R is

achievable with

d = lim
P→∞

R
1
2

logP
(5.4)
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5.2.2 The Multiple Access Wiretap Channel

The two-user multiple access wiretap channel, see Fig. 5.2, is as follows:

Y(t) =H1(t)X1(t) + H2(t)X2(t) + N1(t) (5.5)

Z(t) =G1(t)X1(t) + G2(t)X2(t) + N2(t) (5.6)

where Xi(t) is anN dimensional column vector denoting the ith user’s channel input,

Y(t) is an N dimensional vector denoting the legitimate receiver’s channel output,

and Z(t) is a K dimensional vector denoting the eavesdropper’s channel output, at

time t. In addition, N1(t) and N2(t) are N and K dimensional white Gaussian noise

vectors, respectively, with N1 ∼ N (0, IN) and N2 ∼ N (0, IK), where IN denotes

the N × N identity matrix. Here, Hi(t) and Gi(t) are the N × N and K × N

channel matrices from transmitter i to the legitimate receiver and the eavesdropper,

respectively, at time t. The entries of Hi(t) and Gi(t) are drawn from a fixed

continuous distribution with bounded support in an i.i.d. fashion at every time slot

t. We assume that the channel matrices to the legitimate receiver, Hi(t), are known

with full precision at all terminals, at time t. However, the channel matrices to the

eavesdropper, Gi(t), are not available at the transmitters. All channel inputs satisfy

the average power constraint E[‖Xi(t)‖2] ≤ P, i = 1, 2.

Transmitter i wishes to send a message Wi, uniformly distributed in Wi, se-

curely to the legitimate receiver in the presence of the eavesdropper. A secure

rate pair (R1, R2), with Ri = log |Wi|
n

is achievable if there exists a sequence of
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codes which satisfy the reliability constraints at the legitimate receiver, namely,

Pr[Wi 6= Ŵi] ≤ εn, for i = 1, 2, and the secrecy constraint, namely,

1

n
I(W1,W2; Zn) ≤ εn (5.7)

where εn → 0 as n → ∞. An s.d.o.f. pair (d1, d2) is said to be achievable if a rate

pair (R1, R2) is achievable with

di = lim
P→∞

Ri

1
2

logP
(5.8)

The sum s.d.o.f. ds is the largest achievable d1 + d2.

5.2.3 A Linear Secure Degrees of Freedom Perspective

In this chapter, we will also consider linear coding strategies as defined in [17, 71].

In such cases, the degrees of freedom simply represents the dimension of the linear

subspace of transmitted signals.

When we focus on linear coding schemes, we consider a communication scheme

of blocklength n, where transmitter i wishes to send mi(n) information symbols

vi ∈ Rmi(n) to the legitimate receiver reliably and securely. In case of the wiretap

channel with one helper, m2(n) = 0. Each information symbol is a zero-mean

Gaussian random variable with variance αP , where α is a constant chosen to ensure

that the power constraints are satisfied at each transmitter. In addition to the

information symbols, transmitter i can use ni(n) artificial noise symbols, ui ∈ Rni(n)
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each of which is a zero-mean Gaussian random variable with variance αP . These

artificial noise symbols need not be decoded at the receiver; instead they help to

drown out the information symbols at the eavesdropper, thus, providing security.

At each time t, the information symbols vi at transmitter i are modulated

by a precoding matrix Pi(t) ∈ RN×mi(n), while the artificial noise symbols ui are

modulated using a precoding matrix Qi(t) ∈ RN×ni(n). Since the channel gains

Hi(t), i = 1, 2 are known at both transmitters at time t, the precoding matrices

Pi(t) and Qi(t) can each depend on {H1(k),H2(k), k = 1, . . . , t}. However, since the

channel gains Gi(t) are not available at any transmitter, Pi and Qi are independent

of {Gi(t), t = 1, . . . , n}.

At time t, transmitter i sends a linear combination of the information and the

artificial noise symbols:

Xi(t) = Pi(t)vi + Qi(t)ui (5.9)

The channel outputs at time t are, therefore,

Y(t) =H1(t)P1(t)v1 + H2(t)P2(t)v2

+ H1(t)Q1(t)u1 + H2(t)Q2(t)u2 + N1(t) (5.10)

Z(t) =G1(t)P1(t)v1 + G2(t)P2(t)v2

+ G1(t)Q1(t)u1 + G2(t)Q2(t)u2 + N2(t) (5.11)

Now letting P̄i = [Pi(1), . . . ,Pi(n)]T , Q̄i = [Qi(1), . . . ,Qi(n)], we can compactly
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write the channel outputs as

Ȳ = H̄1P̄1v1 + H̄2P̄2v2 + H̄1Q̄1u1 + H̄2Q̄2u2 + N̄1 (5.12)

Z̄ = Ḡ1P̄1v1 + Ḡ2P̄2v2 + Ḡ1Q̄1u1 + Ḡ2Q̄2u2 + N̄2 (5.13)

where H̄i and Ḡi are the Nn×Nn and Kn×Nn block diagonal matrices

H̄i =




Hi(1) 0 . . . 0

0 Hi(2) . . . 0

...
...

. . .
...

0 0 . . . Hi(n)




(5.14)

Ḡi =




Gi(1) 0 . . . 0

0 Gi(2) . . . 0

...
...

. . .
...

0 0 . . . Gi(n)




(5.15)

and N̄i = [Ni(1), . . . ,Ni(n)]T for i = 1, 2.

At the legitimate receiver, the interference subspace is

IB = colspan([H̄1Q̄1, H̄2Q̄2]) (5.16)

Let IcB denote the orthogonal subspace of IB. If we ignore the additive Gaussian

noise, i.e., in the high transmit power regime, the decodability of v1 and v2 at the

legitimate receiver corresponds to the constraint that the projection of the subspace
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colspan([H̄1P̄1, H̄2P̄2]) onto IcB must have dimension m1(n) +m2(n), i.e.,

dim
(

ProjIcBcolspan
(
[H̄1P̄1, H̄2P̄2]

))
= dim

(
colspan

(
P̄1

))
+ dim

(
colspan

(
P̄2

))

= m1(n) +m2(n) (5.17)

This can be rewritten as requiring that

rank
(
[H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)
− rank

(
[H̄1Q̄1, H̄2Q̄2]

)
= m1(n) +m2(n)

(5.18)

On the other hand, at the eavesdropper, we require that

lim
n→∞

1

n
dim

(
ProjIcEcolspan

(
[Ḡ1P̄1, Ḡ2P̄2]

))
= 0, a.s. (5.19)

where

IE = colspan([Ḡ1Q̄1, Ḡ2Q̄2]) (5.20)

The security requirement in (5.19) can be reformulated as follows: Let L(n) be the

number of leakage dimensions defined as

L(n) =rank
(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)
− rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
(5.21)
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Then, we want

lim
n→∞

L(n)

n
= 0, a.s. (5.22)

In other words, we want the artificial noise symbols to occupy the full received sig-

nal space at the eavesdropper asymptotically. This secrecy requirement is a weaker

version of the original constraint 1
n
I(W1,W2; Zn) → 0. Indeed, it is analogous to

requiring that limn→∞ limP→∞
I(W1,W2;Zn)

logP
= 0. However, this does not lead to any

loss of generality in our case because the proposed achievable scheme which satisfies

the weakened secrecy requirement may be modified using stochastic encoding tech-

niques [1] to obtain a scheme that satisfies the stronger security constraint as well.

Note that a converse with the weaker secrecy requirement suffices as a converse for

the case of the stronger secrecy requirement.

For the wiretap channel with one helper, a linear s.d.o.f. d with d = m1(n)/n

is said to be achievable if there exists a sequence of precoding matrices P̄1, Q̄1, Q̄2

such that both the reliability constraints in (5.17) and the security constraints in

(5.19) are satisfied.

For the multiple access wiretap channel, a linear s.d.o.f. pair (d1, d2), with

di = mi(n)/n is said to be achievable if there exists a sequence of precoding matrices

P̄i, Q̄i such that both the reliability constraints in (5.17) and the security constraints

in (5.19) are satisfied. The linear sum s.d.o.f. ds is the supremum of d1 + d2, such

that the pair (d1, d2) is achievable.
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5.3 Main Results

The main result of this chapter is the determination of the optimal linear sum

s.d.o.f. for the MIMO wiretap channel with one helper and the MIMO multiple

access channel. We have the following theorem.

Theorem 8 For both the N ×N ×N ×K wiretap channel with one helper and the

multiple access wiretap channel with no eavesdropper CSIT, the optimal linear sum

s.d.o.f. ds is

ds = max

(
1

2
(2N −K), 0

)
(5.23)

for almost all channel gains. Further, without any linearity constraints on the en-

coding schemes, the optimal sum s.d.o.f. ds is

ds





= 1
2
(2N −K), 0 ≤ K ≤ N

≤ 2N(2N−K)
4N−K , N ≤ K ≤ 2N

= 0, K ≥ 2N

(5.24)

We also have the following corollary.

Corollary 2 For the N × N × N × K multiple access wiretap channel with no

eavesdropper CSIT, the linear s.d.o.f. region is given by the set of all nonnegative
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Figure 5.3: Sum s.d.o.f. with number of eavesdropper antennas.

pairs (d1, d2 that satisfy:

d1 + d2 =
1

2
(2N −K) (5.25)

The proof of the corollary follows from the observation that every point in the given

region can be achieved by time sharing between the points
(

1
2
(2N −K), 0

)
and

(
0, 1

2
(2N −K)

)
, which can themselves be attained by treating the multiple access

wiretap channel as a wiretap channel with one helper. Also, no point outside the

given region is achievable since the sum s.d.o.f. is bounded by 1
2
(2N − K), from

Theorem 8.

Fig. 5.3 shows the optimal linear sum s.d.o.f. for the wiretap channel with one

helper and the multiple access wiretap channel with and without eavesdropper CSIT.

Similar to the SISO case in Chapter 3, the MIMO multiple access wiretap channel

reduces to the wiretap channel with one helper when the eavesdropper CSIT is not

available for the regime 0 ≤ K ≤ N , and at least from a linear s.d.o.f. perspective

in the regime N ≤ K ≤ 2N . However, unlike in the SISO case, the linear s.d.o.f. for
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the wiretap channel with one helper decreases due to the lack of eavesdropper CSIT.

Even without any linearity constraints, the optimal s.d.o.f. for the wiretap channel

with one helper does decrease due to lack of eavesdropper CSIT, as can be seen from

the general loose upper bound, especially in the regime 3N
2
≤ K ≤ 2N .

5.4 Proof of Theorem 8

In this section, we will prove Theorem 8 by providing an achievable scheme and a

converse. Since Theorem 8 implies that the wiretap channel with one helper and the

multiple access wiretap channel have the same linear sum s.d.o.f., we first note that

it suffices to provide a linear achievable scheme for the wiretap channel with one

helper, since the multiple access wiretap channel can be treated as a wiretap channel

with one helper with time sharing between the users. Also, since any rate achievable

for the wiretap channel with one helper is achievable for the multiple access wiretap

channel, a converse for the multiple access wiretap channel suffices as a converse for

the wiretap channel with one helper as well. Thus, in the following subsections, we

provide an achievable scheme for the wiretap channel with one helper and a converse

for the multiple access wiretap channel.

5.4.1 Achievable Scheme for the Wiretap Channel with One Helper

In this scheme, the transmitter sends (2N − K) information symbols reliably and

securely to the legitimate receiver in two time slots, in order to achieve 1
2
(2N −K)

s.d.o.f. In the framework of linear coding strategies discussed in Section 5.2.3, we set
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the blocklength n = 2, m1 = 2N −K, m2 = 0. Also, we choose n1 = n2 = K, i.e.,

K artificial noise symbols are sent from each transmitter over the two time slots.

At each time slot, transmitter i sends a linear combination of its information and

artificial noise symbols as in (5.9). Note, however, that for the wiretap channel with

one helper, transmitter 2 does not have any information symbols v2, and hence,

there is no P2. The channel outputs can be written compactly as in (5.12)-(5.13)

as:

Ȳ = H̄1P̄1v1 + H̄1Q̄1u1 + H̄2Q̄2u2 + N̄1 (5.26)

Z̄ = Ḡ1P̄1v1 + Ḡ1Q̄1u1 + Ḡ2Q̄2u2 + N̄2 (5.27)

It remains to choose the precoding matrices P̄1, Q̄1 and Q̄2 appropriately. We make

the following selection:

Q̄i = H̄−1
i Q̄, i = 1, 2 (5.28)

where Q̄ is a 2N ×K matrix with rank K. Also choose P̄1 to be a 2N × (2N −K)

matrix with rank 2N − K, such that the matrix [H̄1P̄1, Q̄] has rank 2N . Note

that this condition will be satisfied almost surely if the elements of P̄1 and Q̄ are

chosen from any continuous distribution in an i.i.d. fashion. With this selection, the

channel outputs are:

Ȳ =H̄1P̄1v1 + Q̄1(u1 + u2) + N̄1 (5.29)
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Z̄ =Ḡ1P̄1v1 + Ḡ1H̄
−1
1 Q̄u1 + Ḡ2H̄

−1
2 Q̄u2 + N̄2 (5.30)

The decodability of v1 at the legitimate receiver in the high transmit power

regime follows immediately since the matrix [H̄1P̄1, Q̄] has rank 2N by our choice

of P̄1 and Q̄. On the other hand, the number of leakage dimensions L is

L =rank[Ḡ1P̄1, Ḡ1H̄
−1
1 Q̄, Ḡ2H̄

−1
2 Q̄]− rank[Ḡ1H̄

−1
1 Q̄, Ḡ2H̄

−1
2 Q̄] (5.31)

≤2K − 2K (5.32)

=0 (5.33)

where we have used the fact that for any full-rank Q̄ chosen independently of Ḡ1, Ḡ2,

rank[Ḡ1H̄
−1
1 Q̄, Ḡ2H̄

−1
2 Q̄] = 2K for almost all channel realizations of (Ḡ1, Ḡ2). This

follows from the following lemma by noting that each row and each column of Ḡi

has at least one entry drawn from a continuous distribution in an i.i.d. fashion and

the matrices H̄−1
i Q̄ for i = 1, 2 do not depend on the Ḡis.

Lemma 5 Let P1 ∈ RN×m1 and P2 ∈ RN×m2 fixed matrices with ranks p1 and

p2, respectively. Let G1 and G2 be K × N matrices whose each row and each

column has at least one entry that is drawn from some continuous distribution in an

i.i.d. fashion, and the remaining elements are arbitrary but fixed. Then,

K ≥ rank[G1P1,G2P2] ≥ min (p1 + p2, K) (5.34)

almost surely.
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The proof of this lemma is relegated to Appendix 5.6.1.

Therefore, the security requirement in (5.22) is satisfied as well. This completes

the achievable scheme. We remark here that though the achievability has been shown

for linear framework, it can be easily shown that the leakage I(v1; Z̄) ≤ o(logP ), as

done in Chapter 4. Further by using stochastic encoding techniques, one can obtain

an achievable scheme for which the leakage 1
n
I(W ; Zn)→ 0 as n→∞.

5.4.2 Converse

In this section, we will prove the converse for the multiple access wiretap channel.

To that end, we consider two regimes of K. When 0 ≤ K ≤ N , we prove the

converse for general transmission schemes without any restrictions of linearity. For

the regime N ≤ K ≤ 2N , we prove the converse under the assumption of linear

coding schemes only. We also provide a general upper bound in this regime which

does not match the achievablity; nevertheless, it shows that there is loss in s.d.o.f. for

the wiretap channel with one helper and the multiple access wiretap channel due to

no eavesdropper CSIT.

5.4.2.1 0 ≤ K ≤ N : Converse with No Restrictions

We wish to show that:

d1 + d2 ≤
1

2
(2N −K) (5.35)

Let us first state three lemmas which are useful for the proof.
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Lemma 6 (Channel symmetry [15, Lemma 3]) Let ZK = {Z1, . . . , ZK} be en-

tropy symmetric, i.e., for any subsets A and B of {1, . . . , K}, with |A| = |B| ≤ K,

h({Zi, i ∈ A}) = h({Zi, i ∈ B}) (5.36)

Then, for any M ≥ N , the following holds:

1

N
h(ZN) ≥ 1

M
h(ZM) (5.37)

Lemma 7 (Least alignment lemma [16, Lemma 3]) Consider two receivers,

each with L antennas. Suppose the channel gains to receiver 2 are not available

at the transmitters. If Y and Z denote the channel outputs at receivers 1 and 2,

respectively, we have

h(Zn) ≥ h(Yn) + no(logP ) (5.38)

Combining the above two lemmas, we have the following lemma.

Lemma 8 For the N ×N ×N ×K MIMO multiple access wiretap channel with no

eavesdropper CSIT, with K ≤ N

h(Zn) ≥ K

N
h(Yn) + no(logP ) (5.39)

We relegate the proof of this lemma to Appendix 5.6.2.

Let us now proceed with the converse proof. As in [4, 12], we define noisy
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versions of Xi as X̃i = Xi+Ñi where Ñi ∼ N (0, ρ2
i IN) with ρ2

i < min
(

1
‖Hi‖2 ,

1
‖Gi‖2

)
.

The secrecy penalty lemma [4] can then be derived as

n(R1 +R2) ≤I(W1,W2; Yn|Zn) + nε (5.40)

≤h(Yn|Zn) + nc1 (5.41)

=h(Yn,Zn)− h(Zn) + nc1 (5.42)

≤h(X̃n
1 , X̃

n
2 )− h(Zn) + nc2 (5.43)

≤h(X̃n
1 ) + h(X̃n

2 )− h(Zn) + nc2 (5.44)

The role of a helper lemma [4] also generalizes to the MIMO case as

nR1 ≤I(Xn
1 ; Yn) (5.45)

=h(Yn)− h(Hn
2Xn

2 + Nn
1 ) (5.46)

≤h(Yn)− h(X̃n
2 ) + nc5 (5.47)

By symmetry, we also have

nR2 ≤h(Yn)− h(X̃n
1 ) + nc5 (5.48)

Adding (5.44), (5.47) and (5.48), we have

2n(R1 +R2) ≤2h(Yn)− h(Zn) + no(logP ) (5.49)

≤2h(Yn)− K

N
h(Yn) + no(logP ) (5.50)
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=
2N −K

N
h(Yn) + no(logP ) (5.51)

≤(2N −K)
(n

2
logP

)
+ no(logP ) (5.52)

where (5.50) follows from Lemma 8 and we have used the fact that h(Yn) ≤

N
2

logP + no(logP ). Therefore, we have,

R1 +R2 ≤
1

2
(2N −K)

(
1

2
logP

)
+ o(logP ) (5.53)

Dividing by 1
2

logP and taking the limit P →∞, we have

d1 + d2 ≤
1

2
(2N −K) (5.54)

which completes the proof of the converse for the regime 0 ≤ K ≤ N .

5.4.2.2 N ≤ K ≤ 2N : Converse with Linear Coding Strategies

We begin with the following lemma.

Lemma 9 For the N × N × N ×K multiple access wiretap channel, and for any

linear achievable scheme satisfying both the reliability and security constraints, and

also d1 + d2 > 0,

lim
n→∞

1

n
rank

(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)
= lim

n→∞
1

n
rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
= K

(5.55)
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We relegate the proof of this lemma to Appendix 5.6.3.

To proceed with the upper bound, first note that since strictly positive sum

s.d.o.f. is achievable for the multiple access wiretap channel using linear schemes,

we can safely discard the case d1 + d2 = 0 for the purpose of the converse. There-

fore, from Lemma 9, the rank of the vector space spanned by the output at the

eavesdropper is Kn+ o(n), i.e.,

lim
n→∞

1

n
rank

(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)
= lim

n→∞
1

n
rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
= K

(5.56)

We have,

m1(n) +m2(n) =rank
(
[H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)
− rank

(
[H̄1Q̄1, H̄2Q̄2]

)

(5.57)

≤rank
(
[H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)
− rank

(
[H̄1Q̄1, H̄2Q̄2]

)

− rank
(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)

+ rank
(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
+ o(n) (5.58)

≤rank
(
[H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)
− 1

2
rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)

− rank
(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)

+ rank
(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
+ o(n) (5.59)

≤rank
(
[H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)
+

1

2
rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)

− rank
(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)
+ o(n) (5.60)
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≤rank
(
[H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)

− 1

2
rank

(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)
+ o(n) (5.61)

≤Nn− 1

2
Kn+ o(n) (5.62)

=
(2N −K)n

2
+ o(n) (5.63)

where (5.57) follows from the decodability constraint, (5.58) follows from the secrecy

constraint (5.22), and (5.59) follows from the following:

2× rank
(
[H̄1Q̄1, H̄2Q̄2]

)
≥ rank

(
[H̄1Q̄1]

)
+ rank

(
[H̄2Q̄2]

)
(5.64)

= rank
(
[Q̄1]

)
+ rank

(
[Q̄2]

)
(5.65)

= rank
(
[Ḡ1Q̄1]

)
+ rank

(
[Ḡ2Q̄2]

)
(5.66)

≥ rank
(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
(5.67)

The above equalities all hold almost surely since H̄i and Ḡi are both full column

rank almost surely.

Now dividing by n and taking limit n→∞, we have

d1 + d2 ≤
1

2
(2N −K) (5.68)

5.4.2.3 N ≤ K ≤ 2N : Converse with No Restrictions

We have the following lemma.

Lemma 10 For the N ×N ×N ×K MIMO multiple access wiretap channel with
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no eavesdropper CSIT, with K ≤ 2N

h(Zn) ≥ K

2N
h(Yn,Zn) + no(logP ) (5.69)

The proof of this lemma is relegated to the Appendix 5.6.4.

Now we proceed with the upper bound as in the case of 0 ≤ K ≤ N :

n(R1 +R2) ≤I(W1,W2; Yn|Zn) + nε (5.70)

≤h(Yn|Zn) + nc1 (5.71)

=h(Yn,Zn)− h(Zn) + nc1 (5.72)

≤
(

1− K

2N

)
h(Yn,Zn) + no(logP ) (5.73)

≤2N −K
2N

(
h(X̃n

1 ) + h(X̃n
2 )
)

+ no(logP ) (5.74)

The role of the helper lemmas yield:

nR1 ≤h(Yn)− h(X̃n
2 ) + no(logP ) (5.75)

nR2 ≤h(Yn)− h(X̃n
1 ) + no(logP ) (5.76)

Eliminating h(X̃n
1 ) and h(X̃n

2 ) from (5.74), (5.75) and (5.76), we have

n(R1 +R2) ≤2(2N −K)

4N −K h(Yn) + no(logP ) (5.77)

≤2N(2N −K)

4N −K
(n

2
logP

)
+ no(logP ) (5.78)
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Dividing by n and letting n→∞, we have

R1 +R2 ≤
2N(2N −K)

4N −K

(
1

2
logP

)
+ o(logP ) (5.79)

Now dividing by 1
2

logP and letting P →∞,

d1 + d2 ≤
2N(2N −K)

4N −K (5.80)

5.5 Conclusions

In this chapter, we considered two fundamental multi-user channel models: the

MIMO wiretap channel with one helper and the MIMO multiple access wiretap

channel. In each case, the eavesdropper has K antennas while the remaining ter-

minals have N antennas. We assumed that the CSIT of the legitimate receiver is

available but no eavesdropper CSIT is available. We determined the optimal sum

s.d.o.f. for each channel model for the regimeK ≤ N , and showed that in this regime,

the multiple access wiretap channel reduces to the wiretap channel with one helper

in the absence of eavesdropper CSIT. For the regime N ≤ K ≤ 2N , we obtained

the optimal linear s.d.o.f., and showed that the multiple access wiretap channel and

the wiretap channel with one helper have the same optimal s.d.o.f. when restricted

to linear encoding strategies. In the absence of any such restrictions, we provided a

loose upper bound for the sum s.d.o.f. of the multiple access wiretap channel in the

regime N ≤ K ≤ 2N . Our results showed that unlike in the SISO case, there is loss

of s.d.o.f. for even the wiretap channel with one helper due to lack of eavesdropper
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CSIT, especially when K ≥ N .

5.6 Appendix

5.6.1 Proof of Lemma 5

First note when N ≤ K, Gis have full column rank almost surely. Therefore,

rank[GiPi] = rank[Pi] = pi (5.81)

almost surely. On the other hand, when N ≥ K, we have

rank[GiPi] ≥ rank[GiP̂i] (5.82)

where P̂i is a N × pi submatrix of Pi with full column rank. Let p̄i = min(K, pi).

Now, the determinant of any p̄i× p̄i submatrix of GiP̂i is a multi-variate polynomial

of the random entries of Gi and is zero for only finitely many realizations. Therefore,

GiP̂i has rank p̄i. Note that when N ≤ K, p̄i = pi is satisfied trivially.

Therefore, there exists a set Ii ⊆ {1, . . . ,mi} such that |Ii| = p̄i and the

collection of column vectors Ci = {cij, j ∈ Ii} are linearly independent, where cij

denotes the jth column of GiPi. Then,

rank[G1P1,G2P2] ≥ rank[C1,C2] (5.83)

The matrix [C1,C2] is a K × p̄1 + p̄2 matrix. Now, if K ≤ p̄1 + p̄2, consider
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any K × K submatrix of [C1,C2]. The determinant of this submatrix is a multi-

variate polynomial function of the random entries of G1 and G2, and therefore, the

determinant can be zero for only finitely many realizations, corresponding to the

roots of the multi-variate polynomial function. Note that this is true if each row

and each column of Ḡi has at least one random entry. Also, the polynomial function

is not identically zero. Therefore, in this case,

rank[C1,C2] = K (5.84)

On the other hand, if K ≥ p̄1 + p̄2, we can consider a (p̄1 + p̄2) × (p̄1 + p̄2)

submatrix of [C1,C2], and using a similar argument, claim that

rank[C1,C2] = p̄1 + p̄2 (5.85)

Combining (5.83), (5.84) and (5.85), we have that

rank[G1P1,G2P2] ≥min (p̄1 + p̄2, K) (5.86)

= min (min(p1, K) + min(p2, K), K) (5.87)

= min (min(p1 + p2, K + p1, K + p2, 2K), K) (5.88)

= min (p1 + p2, K) (5.89)

Finally, it trivially holds that K ≥ rank[G1P1,G2P2]. This completes the proof of

the lemma.
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5.6.2 Proof of Lemma 8

Note that K ≤ N . Consider N −K additional outputs Ẑ at the eavesdropper as:

Ẑ(t) = Ĝ1(t)X1(t) + Ĝ2(t)X2(t) + N̂2(t) (5.90)

where each Ĝi is a (N −K)×N matrix whose entries are drawn in an i.i.d. fashion

from the same continuous distribution as the entries of Gi, and the entries of N̂2 are

i.i.d. zero-mean unit-variance Gaussian noise. Assume that the Ĝis are not available

at the transmitters either. Then, the enhanced output Z̄(t) = (Z(t), Ẑ(t)) is entropy

symmetric. Therefore, using Lemma 6, we have

h(Zn) ≥ K

N
h(Z̄n) (5.91)

Now, since the Gis and Ĝis are not available at the transmitters, using Lemma 7,

we have

h(Z̄n) ≥ h(Yn) + no(logP ) (5.92)

Combining (5.91) and (5.92), we get the desired result that

h(Zn) ≥ K

N
h(Yn) + no(logP ) (5.93)
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5.6.3 Proof of Lemma 9

Since d1 + d2 > 0, w.l.o.g. assume d1 > 0. We wish to prove that

lim
n→∞

1

n
rank

(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)
= lim

n→∞
1

n
rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
= K

(5.94)

For the sake of contradiction, suppose limn→∞
1
n
rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
< K. We

have

rank
(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)

≥ rank
(
[Ḡ1P̄1, Ḡ1Q̄1, Ḡ2Q̄2]

)
(5.95)

= rank
(
[Ḡ1[P̄1, Q̄1], Ḡ2Q̄2]

)
(5.96)

≥ min
(
rank

(
[P̄1, Q̄1]

)
+ rank

(
[Q̄2]

)
, Kn

)
(5.97)

= min
(
rank

(
[P̄1]

)
+ rank

(
[Q̄1]

)
+ rank

(
[Q̄2]

)
, Kn

)
(5.98)

= min
(
m1(n) + rank

(
[Ḡ1Q̄1]

)
+ rank

(
[Ḡ2Q̄2]

)
, Kn

)
(5.99)

≥ min
(
m1(n) + rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
, Kn

)
(5.100)

where (5.97) follows from Lemma 5, (5.98) follows from the decodability require-

ment, and (5.99) follows almost surely since Ḡi is full column rank almost surely as

long as K > N . Therefore,

lim
n→∞

1

n
rank

(
[Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)
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≥ min

(
d1 + lim

n→∞
1

n
rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
, K

)
(5.101)

> lim
n→∞

1

n
rank

(
[Ḡ1Q̄1, Ḡ2Q̄2]

)
(5.102)

which contradicts the security requirement in (5.22).

5.6.4 Proof of Lemma 10

Consider 2N −K additional outputs Ẑ at the eavesdropper:

Ẑ(t) = Ĝ1(t)X1(t) + Ĝ2(t)X2(t) + N̂2(t) (5.103)

where each Ĝi is a (2N−K)×N matrix whose entries are drawn in an i.i.d. fashion

from the same continuous distribution as the entries of Gi, and the entries of N̂2 are

i.i.d. zero-mean unit-variance Gaussian noise. Assume that the Ĝis are not available

at the transmitters either. Then, the enhanced output Z̄(t) = (Z(t), Ẑ(t)) is entropy

symmetric. Therefore, using Lemma 6, we have

h(Zn) ≥ K

2N
h(Z̄n) (5.104)

Now, given Z̄n, we can decode both inputs Xn
1 and Xn

2 to within noise variance, and

therefore also Yn and Zn. Therefore,

h(Z̄n) ≥ h(Yn,Zn) + no(logP ) (5.105)
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Combining (5.104) and (5.105), we get the desired result that

h(Zn) ≥ K

2N
h(Yn,Zn) + no(logP ) (5.106)
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Chapter 6: Two-User MISO Broadcast Channel with Alternating

CSIT

6.1 Introduction

In this chapter, we focus on the effect of delay and time variation of the availability of

CSI. We consider the s.d.o.f. region of the fading two-user MISO broadcast channel

with confidential messages, in which the transmitter with two antennas has two

confidential messages, one for each of the single antenna users (see Fig. 6.1). The

CSIT from each user can be of the form Ii, i = 1, 2 where I1, I2 ∈ {P,D,N}, and

the forms P, D and N correspond to perfect and instantaneous, completely delayed,

and no CSIT, respectively. This gives rise to nine possible CSIT states: three

homogeneous states PP, DD and NN, and six heterogeneous states PD, DP, PN, NP,

DN and ND.

The optimal s.d.o.f. region is well known in the literature for each of the three

homogeneous states; the optimal sum s.d.o.f. is 2 in state PP, 1 in state DD [15]

and 0 in state NN, due to statistical equivalence of both receivers in the absence of

any CSIT. Thus, in this chapter, we first focus on the heterogeneous CSIT settings,

namely states PD, PN and DN. We determine the optimal s.d.o.f. region for each
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of the three states. We introduce the local statistical equivalence property, which

states that if we consider the outputs of a receiver for such states in which it supplies

delayed or no CSIT, the entropy of the channel outputs conditioned on the past

outputs is the same as that of another artificial receiver whose channel is distributed

identically as the original receiver, and provide new converse proofs based on it. We

also provide a new achievable scheme for the DN state.

Next, we consider time variation of CSIT states. We assume that the CSIT

state I1I2 occurs for an arbitrary fraction λI1I2 of the total duration of communi-

cation, subject to the mild constraint λI1I2 = λI2I1 , when I1 6= I2. We determine

the optimal s.d.o.f. region of the two-user MISO broadcast channel with confidential

messages in this setting of alternating CSIT, which is first introduced in [23] without

any secrecy requirements.

With nine states, each occurring for an arbitrary fraction of the time, it is

not immediately clear how to optimally code across the states and the achievability

of the s.d.o.f. region is highly non-trivial. To this end, we first develop several key

constituent schemes, where each scheme uses a subset of the nine states to achieve

a particular s.d.o.f. value. Now given an arbitrary probability mass function (pmf)

on the nine CSIT states, we judiciously time share between the constituent schemes

to achieve the optimal s.d.o.f. region. We consider different sub-cases based on

the relative proportions of the various states and explicitly characterize how the

constituent schemes should be time shared to obtain the optimal s.d.o.f. region in

each sub-case.

Finally, we provide a matching converse for the full region. The idea behind
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1

2

Tx W1

W2 W1

W2

W1W2

H1(t)

H2(t)

Figure 6.1: The MISO broadcast channel with confidential messages.

the converse is to first enhance the channel by providing more CSIT to obtain a new

channel with fewer number of states but at least as large secrecy capacity as the

original channel. Outer bounds on the s.d.o.f. region for the enhanced channel are

then obtained by exploiting the local statistical equivalence property, yielding the

desired outer bounds for the original channel.

6.2 System Model

We consider a two-user MISO broadcast channel, shown in Fig. 6.1, where the

transmitter Tx, equipped with 2 antennas, wishes to send independent confidential

messages to two single antenna receivers 1 and 2. The input-output relations at

time t are given by,

Y (t) = H1(t)X(t) +N1(t) (6.1)

Z(t) = H2(t)X(t) +N2(t), (6.2)
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where Y (t) and Z(t) are the channel outputs of receivers 1 and 2, respectively.

The 2 × 1 channel input X(t) is power constrained as E[||X(t)||2] ≤ P , and N1(t)

and N2(t) are circularly symmetric complex white Gaussian noises with zero-mean

and unit-variance. The 1 × 2 channel vectors H1(t) and H2(t) of receivers 1 and

2, respectively, are independent and identically distributed (i.i.d.) with continuous

distributions, and are also i.i.d. over time. We denote H(t) = {H1(t),H2(t)} as the

collective channel vectors at time t and Hn = {H(1), . . . ,H(n)} as the sequence of

channel vectors up until and including time n.

In practice, the receivers estimate the channel coefficients and feed them back

to the transmitter. In general, the receiver can choose to send not only the current

measurements, but rather any function of all the channel measurements it has taken

upto that time. The CSIT at time t can thus be any function of the measured

channel coefficients upto time t. There are two key aspects to the CSIT: precision

and delay. Precision captures the fact that the measurements made at the receivers

and sent to the transmitter are imprecise (usually, quantized) and noisy. Delay is

introduced since making measurements and feeding them back to the transmitter

takes time. We will focus on the delay aspect of CSIT, and assume that the CSIT

when available, has infinite precision.

In order to model the delay in CSIT, we assume that at each time t, there are

3 possible CSIT states for each user:

• Perfect CSIT (P): This denotes the availability of precise and instantaneous

CSI of a user at the transmitter. In this state, the transmitter has precise
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channel knowledge before the start of the communication.

• Delayed CSIT (D): In this state, the transmitter does not have the CSI at

the beginning of the communication. In slot t, the receiver may send any

function of all the channel coefficients upto and including time t as CSI to the

transmitter. However, the CSIT becomes available only after a delay such that

the CSI is completely outdated, that is, independent of the current channel

realization.

• No CSIT (N): In this state, there is no CSI of the user available at the

transmitter.

Denote the CSIT of user 1 by I1 and the CSIT of user 2 by I2. Then,

I1, I2 ∈ {P,D,N} . (6.3)

Thus, for the two-user MISO broadcast channel, we have 9 CSIT states, namely PP,

DD, NN, PD, DP, PN, NP, DN, and ND. Let λI1I2 be the fraction of the time the

state I1I2 occurs. Then,

∑

I1,I2

λI1I2 = 1. (6.4)

We also assume symmetry: λI1I2 = λI2I1 for every I1I2. Specifically,

λPD = λDP (6.5)
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λDN = λND (6.6)

λPN = λNP . (6.7)

Further, we assume that perfect and global CSI is available at both receivers.

A secure rate pair (R1, R2) is achievable if there exists a sequence of codes

which satisfy the reliability constraints at the receivers, namely, Pr
[
Wi 6= Ŵi

]
≤ εn,

for i = 1, 2, and the confidentiality constraints, namely,

1

n
I(W1;Zn,Hn) ≤ εn,

1

n
I(W2;Y n,Hn) ≤ εn, (6.8)

where εn → 0 as n→∞. Informally, the constraints in (6.8) ensure that the infor-

mation leakage, per channel use, of the first receiver’s message at the second receiver

should be arbitrarily small, and vice versa. A s.d.o.f. pair (d1, d2) is achievable, if

there exists an achievable rate pair (R1, R2) such that

d1 = lim
P→∞

R1

logP
, d2 = lim

P→∞

R2

logP
. (6.9)

Let us define the following:

λP , λPP + λPD + λPN (6.10)

λD , λPD + λDD + λDN (6.11)

λN , λPN + λDN + λNN . (6.12)
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Using these definitions, it is easy to verify that

λP + λD + λN = 1. (6.13)

Here, we can interpret these three quantities as follows:

• λP : represents the total fraction of time the CSIT of a user is in the P state.

• λD: represents the total fraction of time the CSIT of a user is delayed, that

is, the state D.

• λN : represents the total fraction of time a user supplies no CSIT.

Given the probability mass function (pmf), λI1I2 , our goal is to characterize the

s.d.o.f. region of the two-user MISO broadcast channel with confidential messages.

6.3 Main Result and Discussion

Theorem 9 The s.d.o.f. region for the two-user MISO broadcast channel with con-

fidential messages with alternating CSIT, D(λI1I2), is the set of all non-negative

pairs (d1, d2) satisfying,

d1 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
(6.14)

d2 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
(6.15)

3d1 + d2 ≤ 2 + 2λP (6.16)

d1 + 3d2 ≤ 2 + 2λP (6.17)
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Figure 6.2: The sum s.d.o.f. as a function of λP and λD.

d1 + d2 ≤ 2(λP + λD). (6.18)

A proof for the achievability of this region will be provided in Section 6.5 using

constituent schemes presented in Section 6.4. A converse is provided in Section 6.6.

We next make a series of remarks highlighting the consequences and interesting

aspects of this theorem.

Remark 1. [Sum s.d.o.f.: max(d1 + d2)]

From the region stated in (6.14)-(6.18), it is clear that the sum s.d.o.f. is given by,

sum s.d.o.f. = min

(
2

(
2 + 2λP − λPP

3

)
, 2(1− λNN), 2(λP + λD), 1 + λP

)
.

(6.19)

The sum s.d.o.f. expression in (6.19) can be significantly simplified by noting that

the first two terms in the minimum are inactive due to the inequalities 1 + λP ≤

2
(

2+2λP−λPP
3

)
, and 2(λP +λD) = 2(1−λN) ≤ 2(1−λNN). These inequalities follow
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directly from (6.10)-(6.13). Using these inequalities, the sum s.d.o.f. expression

above is equivalent to

sum s.d.o.f. = min (2(λP + λD), 1 + λP ) (6.20)

= min (2(λP + λD), 2λP + λD + λN) (6.21)

= 2λP + λD + min(λD, λN). (6.22)

Fig. 6.2 shows the sum s.d.o.f. as a function of λP and λD.

Remark 2. [Same marginals property]

From (6.22), we notice that the marginal probabilities λP , λD and λN are sufficient

to determine the sum s.d.o.f. Thus, for any given pmf λI1I2, satisfying the symmetry

conditions (6.5)-(6.7), there exists an equivalent alternating CSIT problem having

only three states: PP, DD and NN occurring for λP , λD and λN fractions of the

time, respectively, that has the same sum s.d.o.f. This observation is similar to the

case when there is no secrecy [23]. However unlike in [23], the s.d.o.f. region does

not have the same property in general as we can see the explicit dependence of the

s.d.o.f. region in (6.14)-(6.18) on λPP and λNN .

Remark 3. [Channel knowledge equivalence]

We next highlight an interesting property which shows that from the sum s.d.o.f. per-

spective, no CSIT is equivalent to delayed CSIT when λD ≥ λN , and delayed CSIT

is equivalent to perfect CSIT when λD < λN .
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

Figure 6.3: Trade-off between delayed and perfect CSIT.

Equivalence of delayed and no CSIT when λD ≥ λN : From a sum s.d.o.f. per-

spective, we see that when λD ≥ λN , the sum s.d.o.f. depends only on λP . Hence,

as long as λD ≥ λN holds, the N states behave as D states in the sense that, if the

N states were enhanced to D states, the sum s.d.o.f. would not increase. Essentially,

the N states can be combined with various D states and we obtain the same sum

s.d.o.f. as if every N state were replaced by a D state. Consider an example, where

the states PD, DP and NN occur for 2
5
th, 2

5
th and 1

5
th fractions of the time, respec-

tively. Note that λD = 2
5
> λN = 1

5
in this case. The sum s.d.o.f., from (6.22),

is 2λP + λD + λN = 7
5
. Now, if we enhance the N states to D states, we get the

states PD, DP and DD occur for 2
5
th, 2

5
th and 1

5
th of the time, respectively. The

sum s.d.o.f. of this enhanced system is still 7
5
.

Equivalence of delayed and perfect CSIT when λD ≤ λN : From a sum s.d.o.f.

perspective, we see that when λD ≤ λN , the sum s.d.o.f. depends only on λN . Hence,

in this case, if λD ≤ λN , the delayed CSIT is as good as perfect CSIT, that is, every

D state can be enhanced to a P state without any increase in the sum s.d.o.f. For

example, consider a system where the states PD, DP and NN occur for 1
5
th, 1

5
th and
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3
5
th fractions of the time, respectively. Note that λD = 1

5
< λN = 3

5
in this case.

The sum s.d.o.f. for this system is 4
5
, from (6.22). By enhancing the D states to P

states, we get a system, where the states PP and NN occur for 2
5
th and 3

5
th fractions

of the time, respectively. The sum s.d.o.f. in for this enhanced system is still 4
5
.

Remark 4. [Minimum CSIT required for a sum s.d.o.f. value]

Fig. 6.3 shows the trade-off between λP and λD for a given value of sum s.d.o.f.

The highlighted corner point in each curve shows the most efficient point in terms

of CSIT requirement. Any other feasible point either involves redundant CSIT or

unnecessary instantaneous CSIT where delayed CSIT would have sufficed. For ex-

ample, following are the minimum CSIT requirements for various sum s.d.o.f. values:

sum s.d.o.f. = 2 : (λP , λD)min = (1, 0) (6.23)

sum s.d.o.f. =
3

2
: (λP , λD)min =

(
1

2
,
1

4

)
(6.24)

sum s.d.o.f. =
4

3
: (λP , λD)min =

(
1

3
,
1

3

)
(6.25)

sum s.d.o.f. = 1 : (λP , λD)min =

(
0,

1

2

)
. (6.26)

In general, for a given value of sum s.d.o.f. = s, the minimum CSIT requirements

are given by:

(λP , λD)min =





(
s− 1, 1− s

2

)
, if 1 ≤ s ≤ 2

(
0, s

2

)
, if 0 ≤ s ≤ 1.

(6.27)
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Remark 5. [Cost of security]

We recall that in the case with no security [23], the sum d.o.f. is given by,

sum d.o.f. = 2− 2λN
3
− max(λN , 2λD)

3
. (6.28)

Comparing with (6.22), we see that the loss in d.o.f. that must be incurred to

incorporate secrecy constraints is given by,

(sum d.o.f.)− (sum s.d.o.f.) , loss =





λN , if λN ≥ 2λD

2
3
(2λN − λD), if 2λD ≥ λN ≥ λD

1
3
(λN + λD), if λD ≥ λN .

(6.29)

If we define α = λD/(λD + λN), we can rewrite (6.29) as follows,

loss = (λD + λN)×





(1− α), if α ≤ 1
3

(
4
3
− 2α

)
, if 1

2
≥ α ≥ 1

3

1
3
, if α ≥ 1

2
.

(6.30)

We show this loss as a function of α in Fig. 6.4. Note that λD + λN is the fraction

of the time a user feeds back imperfect (delayed or none) CSIT. If this fraction

is fixed, increasing the fraction of the delayed CSIT decreases the penalty due to

the security constraints, but only to a certain extent. When λN ≥ λD, increasing

the fraction of delayed CSIT leads to a decrease in the penalty due to the security
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Figure 6.4: Cost of security.

constraints. However, once the fraction of the delayed CSIT (state D) matches that

of no CSIT (N), that is, λD ≥ λN , increasing the fraction of delayed CSIT further

does not reduce the penalty any more.

Remark 6. [S.d.o.f. characterization of individual CSIT states]

As an additional relevant result, we also characterize the respective s.d.o.f. regions

for the 6 individual CSIT states. To the best of our knowledge, the only CSIT states

for which the s.d.o.f. regions were previously known are: PP (with sum s.d.o.f.=

2), DD (with sum s.d.o.f.= 1), PN (with s.d.o.f.= 1), and NN (with s.d.o.f.= 0).

For the remaining two CSIT states, i.e., PD and DN, we establish the optimal

s.d.o.f. regions. In particular, for the PD CSIT state, we show in Appendix 6.8.4

that the s.d.o.f. region is given by d1 + d2 ≤ 1. For the DN state, we show in

Appendix 6.8.5 that the s.d.o.f. region is given by d1 + d2 ≤ 1/2. As the next

remark shows, these complete set of results for the individual CSIT states confirm

the synergistic benefits (or lack thereof) in various alternating CSIT scenarios.
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Remark 7. [Synergistic benefits]

It was shown in [23] that by coding across different states one can achieve higher

sum d.o.f. than by optimal encoding for each state separately and time sharing. A

similar result holds true in our case as well. We illustrate this with the help of a

few examples.

Example 1. Consider a special case where only states PD and DP occur, each

for half of the time. We show that the optimal sum s.d.o.f. is 3
2

in this case; see

(6.22) here. The best achievable scheme for the PD (or DP) state alone was known

to achieve a sum s.d.o.f. of 1. This was either by treating the PD state as a PN state

and zero forcing, or by treating PD as a DD state. However a converse proof showing

the optimality of 1 sum s.d.o.f. was not known. In Appendix 6.8.4, we present a

converse proof to show that the sum s.d.o.f. of 1 is indeed optimal for the PD state

alone. Thus, by encoding for each state separately and time sharing between the

PD and DP states, we can achieve only 1 sum s.d.o.f., whereas joint encoding across

the states achieves sum s.d.o.f. of 3
2
. Thus, we have synergistic benefit of 50% in

this case.

Example 2. Consider another special case with three states: PD, DP and

NN each occurring for one-third of the time. The optimal sum s.d.o.f. is 4
3
. If we

encode for each state separately and time share between them, we can achieve a

sum s.d.o.f. of 1
3
× 1 + 1

3
× 1 + 1

3
× 0 = 2

3
, since the NN state does not provide any

secrecy. If we encode across the PD and DP states optimally and then time share

with the NN state, we can achieve 2
3
× 3

2
+ 1

3
× 0 = 1 sum s.d.o.f. Thus, in this case
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too, we get synergistic benefit by coding across all the states together.

Example 3. Now, assume we have the following three states: PN, NP and DD

each occurring for one-third of the time. The optimal sum s.d.o.f. for this case is

4
3
. On the other hand, the optimal sum s.d.o.f. of the PN state alone is 1, [10], and

that of the DD state alone is also 1, [15]. Thus, by separately encoding for each

state and time sharing, we can achieve 1
3
× 1 + 1

3
× 1 + 1

3
× 1 = 1 sum s.d.o.f. Note

that the optimal sum s.d.o.f. for PN and NP states, each occurring for half of the

time, is also 1, using (6.22). Thus, by optimal encoding for PN and NP together

and time sharing with the DD state also yields sum s.d.o.f. of 1. Therefore, there is

synergistic benefit to be gained by coding across all the states together in this case

too.

Example 4. Consider the case where the two states, DD and NN occur for equal

fractions of time. The optimal sum s.d.o.f. of the DD state alone is 1 [15]. The NN

state, by itself does not provide any secrecy and its s.d.o.f. = 0. Thus, by encoding

for the individual states and time sharing, at most 1× 1
2

+ 0× 1
2

= 1
2

sum s.d.o.f. is

achievable. However, by jointly encoding across both the DD and NN states, the

optimal sum s.d.o.f. of 1 is achievable. Thus, we have synergistic benefit of 100% in

terms of sum s.d.o.f. in this case.

Example 5. Finally, consider the case where the two states, DN and ND oc-

cur for equal fractions of time. We show in Appendix 6.8.5 that the optimal sum

s.d.o.f. for DN state is 1
2
. Thus, by separately encoding across the individual states,

only 1
2

sum s.d.o.f. is achievable. However, by jointly encoding across both the DN

and DN states, the optimal sum s.d.o.f. of 1 is achievable. Thus, we have synergistic
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benefit of 100% in terms of sum s.d.o.f. in this case.

Remark 7. [Lack of synergistic benefits]

There are some situations where joint encoding across alternating states does not

yield any benefit in terms of the s.d.o.f. region. For example, consider a case with

only 2 states, PN and NP, each occurring for half of the time. The optimal sum

s.d.o.f. for the PN state alone is 1, which is achieved by zero forcing. The optimal

sum s.d.o.f. of both PN and NP states together is also 1; thus, encoding for each state

separately is optimal in this case. Indeed separable encoding for each individual state

suffices to achieve the full s.d.o.f. region as well. This result is perhaps surprising,

since in the case with no security, we do get synergistic benefits of joint encoding

across the PN and NP states. The optimal sum s.d.o.f. with joint encoding is 3
2
,

while that for each state alone is 1, [23].

6.4 Constituent Schemes

Before we present the achievability of the s.d.o.f. region, we first present the key con-

stituent schemes that will be instrumental in the proof. We combine these schemes

carefully and time share between them to achieve the s.d.o.f. region. A summary of

these constituent schemes is shown in Table 6.1. Before we discuss the individual

schemes we make the following remark that applies to all the schemes presented

here.
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Summary of Constituent Schemes (CS)

Sum s.d.o.f. CS Notation CSIT States Fractions of States (d1, d2)

2 S2 PP 1 (1, 1)

3/2
S
3/2
1 PD, DP

(
1
2 ,

1
2

) (
3
4 ,

3
4

)

S
3/2
2 PD, DP, PN,NP

(
1
4 ,

1
4 ,

1
4 ,

1
4

) (
3
4 ,

3
4

)

4/3
S
4/3
1 PD,DP,NN

(
1
3 ,

1
3 ,

1
3

) (
2
3 ,

2
3

)

S
4/3
2 PN,NP,DD

(
1
3 ,

1
3 ,

1
3

) (
2
3 ,

2
3

)

1
S1
1 DD 1

(
1
2 ,

1
2

)

S1
2 DD,NN

(
1
2 ,

1
2

) (
1
2 ,

1
2

)

S1
3 DN,ND

(
1
2 ,

1
2

) (
1
2 ,

1
2

)

2/3
S
2/3
1 DD 1

(
2
3 , 0
)

S
2/3
2 DD,NN

(
2
3 ,

1
3

) (
2
3 , 0
)

S
2/3
3 DN,ND,NN

(
1
3 ,

1
3 ,

1
3

) (
2
3 , 0
)

Table 6.1: Constituent schemes.

6.4.1 A Note on the Achievable Security Guarantee

Each scheme described in the following sections can be outlined as follows. We

neglect the impact of noise at high SNR. Then, to achieve a certain s.d.o.f. pair

(d1, d2), we send n1 symbols u = (u1, . . . , un1) and n2 symbols v = (v1, . . . , vn2)

intended for the first and second receivers, respectively, in nB slots, such that d1 =

n1/nB and d2 = n2/nB. Finally, we argue that the leakage of information symbols

at the unintended receiver is o(logP ). We however want a stronger guarantee of

security, namely,

1

n
I(W1;Zn,Hn) ≤ εn,

1

n
I(W2;Y n,Hn) ≤ εn. (6.31)
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To achieve this, we view the nB slots described in the scheme as a block and treat the

equivalent channel from u to (Y,H) and (Z,H) as a memoryless wiretap channel

(with (Y,H) being the legitimate receiver) by ignoring the CSI of the previous

block. We do the same for the channel from v to (Z,H) and (Y,H) (with (Z,H) as

the legitimate receiver). Note also that no information about H is used to create the

codebooks for u and v in any of the schemes. More formally, the following secrecy

rate pair is achievable for receivers 1 and 2, respectively, from [1]:

R1 =I(u; Y,H)− I(v; Z,H) = I(u; Y|H)− I(v; Z|H) (6.32)

R2 =I(v; Z,H)− I(u; Y,H) = I(v; Z|H)− I(u; Y|H), (6.33)

where we noted that u and v are all independent of H. Using the proposed scheme,

u (resp., v) can be reconstructed from (Y,H) (resp., (Z,H)) to within a noise

distortion. Thus,

I(u; Y|H) =n1 logP + o(logP ) (6.34)

I(v; Z|H) =n2 logP + o(logP ). (6.35)

Also, for each scheme,

I(v; Y|H) =o(logP ) (6.36)

I(u; Z|H) =o(logP ). (6.37)
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Thus, from (6.32) and (6.33), the achievable secure rates in each block are,

R1 =n1 logP + o(logP ) (6.38)

R2 =n2 logP + o(logP ). (6.39)

Since our block contains nB channel uses, the effective secure rates are

R1 =
n1

nB
logP + o(logP ) (6.40)

R2 =
n2

nB
logP + o(logP ). (6.41)

These rates clearly yield the required s.d.o.f. pair (d1, d2), while also conforming to

our stringent security requirement.

In the following subsections, we now present the achievability of each scheme

in detail.

Notation: A particular sum s.d.o.f. value can be achieved in various ways

through alternation between different possible sets of CSIT states. To this end, we

use the following notation: if there are r schemes achieving a particular s.d.o.f. value,

we denote these schemes as: Ssum s.d.o.f.
1 , Ssum s.d.o.f.

2 , . . . , Ssum s.d.o.f.
r . For example, in

Table 6.1, for achieving the sum s.d.o.f. value of 1, we present r = 3 distinct schemes

and these are denoted as S1
1 , S

1
2 and S1

3 .

Given a 1 × 2 channel vector H(t), we denote by H(t)⊥, a 2 × 1 beamform-

ing vector that is orthogonal to the 1 × 2 channel vector H(t); in other words,

H(t)H(t)⊥ = 0.
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6.4.2 Scheme Achieving Sum s.d.o.f. of 2

A sum s.d.o.f. of 2 is achievable only in the state PP, that is, when the transmitter has

perfect CSIT from both users. This is achievable using zero-forcing. The following

scheme achieves a sum s.d.o.f. of 2.

6.4.2.1 Scheme S2

The scheme S2 uses the state PP and achieves the rate pair (d1, d2) = (1, 1). The

scheme is as follows. We wish to send confidential symbols u and v to receivers 1

and 2, respectively, in one time slot, thus achieving a sum s.d.o.f. of 2. Since the

transmitter knows both channel coefficients H1 and H2, it sends,

X = uH⊥2 + vH⊥1 , (6.42)

where, Hi(t)
⊥ is a 2× 1 beamforming vector that is orthogonal to the 1× 2 channel

vector Hi(t) for i = 1, 2. This is to ensure that the symbols do not leak to unintended

receivers. For s.d.o.f. calculations, we disregard the additive noise and the outputs

at the receivers are:

Y =uH1H
⊥
2 (6.43)

Z =vH2H
⊥
1 , (6.44)
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which allows both receivers to decode their respective messages. Also, since u does

not appear at all in Z, the confidentiality of u is guaranteed. Similarly, the confi-

dentiality of v too is satisfied.

6.4.3 Schemes Achieving Sum s.d.o.f. of 3/2

The following schemes achieve 3
2

sum s.d.o.f.:

6.4.3.1 Scheme S
3/2
1

In this subsection, we present the scheme S
3/2
1 which uses the states (PD,DP) with

fractions (1
2
, 1

2
) to achieve rate pair (d1, d2) = (3

4
, 3

4
).

We wish to send 3 confidential symbols from the transmitter to each of the

receivers in 4 channel uses at high P (that is negligible noise). Let us denote by

(u1, u2, u3) and (v1, v2, v3) the confidential symbols intended for receivers 1 and 2,

respectively. Also, in 2 of the 4 channel uses, the channel is in state PD; in the

remaining 2 uses, the channel is in state DP. The scheme is as follows:

1) At time t = 1, S(1) = PD: As the transmitter knows H1(1), it sends:

X(1) = [u1 0]T + qH1(1)⊥, (6.45)

where H1(1)H1(1)⊥ = 0, and q denotes an artificial noise distributed as CN (0, P ).

Here H1(1)⊥ is a 2× 1 beamforming vector orthogonal to the 1× 2 channel vector

H1(1) of receiver 1 that ensures that the artificial noise q does not create interference
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at receiver 1. The receivers’ outputs are:

Y (1) = h11(1)u1 (6.46)

Z(1) = h21(1)u1 + qH2(1)H1(1)⊥
∆
= K. (6.47)

Thus, receiver 1 has observed u1 while receiver 2 gets a linear combination of u1 and

q, which we denote as K. Due to delayed CSIT from receiver 2, the transmitter can

reconstruct K in the next channel use and use it for transmission.

2) At time t = 2, S(2) = DP: The transmitter knows H2(2) and K. It sends

X(2) = [v1 +K v2 +K]T + u2H2(2)⊥. (6.48)

The received signals are:

Y (2) =h11(2)v1 + h12(2)v2 + (h11(2) + h12(2))K + u2H1(2)H2(2)⊥ (6.49)

=L1(v1, v2, K) + u2H1(2)H2(2)⊥ (6.50)

Z(2) =h21(2)v1 + h22(2)v2 + (h21(2) + h22(2))K (6.51)

∆
=L2(v1, v2, K), (6.52)

where we have defined L1(v1, v2, K) and L2(v1, v2, K) as linear combinations of v1, v2

and K at receivers 1 and 2, respectively.

3) At time t = 3, S(3) = DP: The transmitter knows H2(3) and L1(v1, v2, K)
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(via delayed CSIT from t = 2). Using these, it transmits:

X(3) = [L1(v1, v2, K) 0]T + u3H2(3)⊥, (6.53)

and the channel outputs are:

Y (3) = h11(3)L1(v1, v2, K) + u3H1(3)H2(3)⊥ (6.54)

Z(3) = h21(3)L1(v1, v2, K). (6.55)

At the end of this step, note that, receiver 2 can decode v1 and v2 by first eliminating

K using Z(1) and Z(3) to get a linear combination of v1 and v2, which it can then

use with Z(2) to solve for v1 and v2.

4) At time t = 4, S(4) = PD: The transmitter knows H1(4) and it sends

X(4) = [L1(v1, v2, K) 0]T + v3H1(4)⊥, (6.56)

and the channel outputs are:

Y (4) = h11(4)L1(v1, v2, K) (6.57)

Z(4) = h21(4)L1(v1, v2, K) + v3H2(4)H1(4)⊥. (6.58)

Thus, at the end of these four steps the outputs at the two receivers can be
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decode (u1, u2, u3)

CSIT

βL1(v1, v2,K) + v3

α1L1(v1, v2,K) + u2 α2L1(v1, v2,K) + u3 L1(v1, v2,K)

L2(v1, v2,K) L1(v1, v2,K)

L(u1, q)

Figure 6.5: Achieving 3
2

s.d.o.f. using scheme S
3/2
1 .

summarized (see Fig. 6.5) as:

Y=




u1

α1L1(v1, v2, K) + u2

α2L1(v1, v2, K) + u3

L1(v1, v2, K)




, Z =




K

L2(v1, v2, K)

L1(v1, v2, K)

βL1(v1, v2, K)+v3




.

Using Y, receiver 1 can decode all three symbols (u1, u2, u3) and using Z, receiver 2

can decode (v1, v2, v3). Next we prove that the information leakage is only o(logP ).

Security guarantees :

We consider the four slots as a single block and the equivalent channel from

u = (u1, u2, u3) to (Y,H) and (Z,H) as a memoryless channel by ignoring the CSI

of the previous block. We do the same for the channel from v = (v1, v2, v3) to

(Y,H) and (Z,H). Recall that all the random variables {ui, vi, i = 1, 2, 3} and q

are independent and distributed as CN (0, P ).

First, let us consider the confidentiality of the first user’s symbols u. The
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information leakage at user 2 is:

I(u; Z|H) =I(u1, u2, u3; Z|H) (6.59)

=I(u1; Z|H) (6.60)

≤I(u1;K|H) (6.61)

=I(u1;h21(1)u1 + qH2(1)H1(1)⊥|H) (6.62)

=h(h21(1)u1 + qH2(1)H1(1)⊥|H)− h(h21(1)u1 + qH2(1)H1(1)⊥|u1,H)

(6.63)

=h(h21(1)u1 + qH2(1)H1(1)⊥|H)− h(qH2(1)H1(1)⊥|H) (6.64)

= (logP + o(logP ))− (logP + o(logP )) (6.65)

=o(logP ), (6.66)

where (6.60) follows from the fact that Z does not have any term involving (u2, u3),

and (6.61) follows from the Markov chain u1 → K → Z.

For the second user’s symbols, the information leakage at the first receiver is:

I(v; Y|H) =I(v1, v2, v3; Y|H) (6.67)

=I(v1, v2; Y|H) (6.68)

≤I(v1, v2;L1(v1, v2, K)|H) (6.69)

=h(L1(v1, v2, K)|H)− h(L1(v1, v2, K)|v1, v2,H) (6.70)

≤ logP − h(K|v1, v2,H) + o(logP ) (6.71)

= logP − h(K|H) + o(logP ) (6.72)
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= logP − logP + o(logP ) (6.73)

=o(logP ), (6.74)

where (6.68) follows since v3 does not appear in Y and (6.69) follows from the

Markov chain (v1, v2)→ L1(v1, v2, K)→ Y.

6.4.3.2 Scheme S
3/2
2

In this sub-section, we present the scheme S
3/2
2 which uses the states (PD,DP,PN,NP)

with fractions (1
4
, 1

4
, 1

4
, 1

4
) to achieve (d1, d2) = (3

4
, 3

4
).

Let us consider the utilization of CSIT in the scheme S
3/2
1 stated above. In

the first slot, delayed CSIT is required from the second user, since that knowledge

allows the transmitter to reconstruct K and use it in the second slot. Similarly,

in the second time slot, delayed CSIT from the first user is required so that the

transmitter can reconstruct L1(v1, v2, K) to transmit in the third and fourth slots.

However, in the third and fourth slots, the transmitter does not require any CSIT of

the first and second users, respectively. Thus, the same scheme works with PN and

NP states in the last two slots. Since it is essentially the same scheme interpreted

in a different way, the security of the scheme follows from that of S
3/2
1 .
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2
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H1(t)

H2(t)

t = 1 t = 2 t = 3

u1

! K

State PD DPCSIT

α1L1(v1, v2,K) + u2 L1(v1, v2,K)

L2(v1, v2,K)

L(u1, q)

L1(v1, v2,K)

decode u1, u2

decode v1, v2

NN

Figure 6.6: Achieving sum s.d.o.f. of 4
3

using S
4/3
1 .

6.4.4 Schemes Achieving Sum s.d.o.f. of 4/3

6.4.4.1 Scheme S
4/3
1

In this sub-section, we present the scheme S
4/3
1 which uses the states (PD,DP,NN)

for fractions (1
3
, 1

3
, 1

3
) to achieve s.d.o.f. pair (d1, d2) = (2

3
, 2

3
).

We wish to send 2 symbols to each user in 3 time slots. Let (u1, u2) and (v1, v2)

be the symbols intended for the first and second users, respectively. Fig. 6.6 shows

the scheme. It is as follows:

1) At time t = 1, S(1) = PD: As the transmitter knows H1(1), it sends:

X(1) = [u1 0]T + qH1(1)⊥, (6.75)

where H1(1)H1(1)⊥ = 0, and q denotes an artificial noise distributed as CN (0, P ).

Here H1(1)⊥ is a 2 × 1 beamforming vector that ensures that the artificial noise q
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does not create interference at receiver 1. The receivers’ outputs are:

Y (1) = h11(1)u1 (6.76)

Z(1) = h21(1)u1 + qH2(1)H1(1)⊥
∆
= K. (6.77)

Thus, receiver 1 has observed u1 while receiver 2 gets a linear combination of u1 and

q, which we denote as K. Due to delayed CSIT from receiver 2, the transmitter can

reconstruct K in the next channel use and use it for transmission.

2) At time t = 2, S(2) = DP: The transmitter knows H2(2) and K. It sends

X(2) = [v1 +K v2 +K]T + u2H2(2)⊥. (6.78)

The received signals are:

Y (2) =h11(2)v1 + h12(2)v2 + (h11(2) + h12(2))K + u2H1(2)H2(2)⊥ (6.79)

=L1(v1, v2, K) + u2H1(2)H2(2)⊥ (6.80)

Z(2) =h21(2)v1 + h22(2)v2 + (h21(2) + h22(2))K

∆
=L2(v1, v2, K), (6.81)

where we have defined L1(v1, v2, K) and L2(v1, v2, K) as independent linear combi-

nations of v1, v2 and K at receivers 1 and 2, respectively.
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3) At time t = 3, S(3) = NN: The transmitter transmits:

X(3) = [L1(v1, v2, K) 0]T . (6.82)

The receivers get:

Y (3) =h11(3)L1(v1, v2, K) (6.83)

Z(3) =h21(3)L1(v1, v2, K). (6.84)

At the end of three slots, therefore, the received outputs can be summarized

as:

Y =




u1

α1L1(v1, v2, K) + u2

L1(v1, v2, K)



, Z =




K

L2(v1, v2, K)

L1(v1, v2, K)



.

Using Y, receiver 1 can decode (u1, u2), while receiver 2 can decode (v1, v2) using

Z. The information leakage is only o(logP ) as we show next.

Security guarantees :

The equivocation calculation follows similar to that of the scheme S
3/2
1 . For

the first user’s symbols u = (u1, u2), we have,

I(u; Z|H) =I(u1, u2; Z|H) (6.85)

=I(u1; Z|H) (6.86)
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≤I(u1;K|H) (6.87)

=o(logP ), (6.88)

where (6.86) follows from the fact that Z does not have any term involving u2, and

(6.87) follows from the Markov chain u1 → K → Z.

For the second user’s symbols, the information leakage at the first receiver is:

I(v; Y|H) ≤I(v1, v2;L1(v1, v2, K)|H) (6.89)

=h(L1(v1, v2, K)|H)− h(L1(v1, v2, K)|v1, v2,H) (6.90)

≤ logP − h(K|v1, v2,H) + o(logP ) (6.91)

= logP − h(K|H) + o(logP ) (6.92)

= logP − logP + o(logP ) (6.93)

=o(logP ), (6.94)

where (6.89) follows from the Markov chain (v1, v2)→ L1(v1, v2, K)→ Y.

6.4.4.2 Scheme S
4/3
2

We now present the scheme S
4/3
2 which uses the states PN,NP,DD with fractions

(1
3
, 1

3
, 1

3
) to achieve (d1, d2) = (2

3
, 2

3
).

In this case we will send 4 symbols to each user in 6 time slots. Let u =

(u1, u2, u3, u4) and v = (v1, v2, v3, v4) be the symbols intended for the first and

second users, respectively. Fig. 6.7 shows the scheme. It is as follows:
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H1(t)

H2(t)
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L2(u,K1) +G2(v,K2)
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G1(v,K2)

L3(u) +G1(v,K2) L2(u,K1)

L2(u,K1) +G3(v)

G1(v,K2)

G1(v,K2) +G4(v) L2(u,K1)

L2(u,K1) + L4(u)

decode u = (u1, u2, u3, u4)

decode v = (v1, v2, v3, v4)

t = 4 t = 5 t = 6

Figure 6.7: Achieving sum s.d.o.f. 4
3

using S
4/3
2 .

1) At time t = 1, S(1) = DD: In this slot, the transmitter sends artificial noise

symbols to create keys that can be used in later slots. The channel input is

X(1) = [q1 q2]T , (6.95)

where q1 and q2 are i.i.d. as CN (0, P ). The received signals are:

Y (1) =h11(1)q1 + h12(1)q2
∆
= K1 (6.96)

Z(1) =h21(1)q1 + h22(1)q2
∆
= K2. (6.97)

Due to delayed CSIT, the transmitter learns K1 and K2 and uses them in the next

time slots.

2) At time t = 2, S(2) = DD: In this slot, the transmitter sends:

X(2) = [u1 + u2 + v3 + v4 +K1 v1 + v2 + u3 + u4 +K2]T . (6.98)
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The received signals are:

Y (2) = h11(2)(u1 + u2 + v3 + v4 +K1) + h12(2)(v1 + v2 + u3 + u4 +K2) (6.99)

∆
= L1(u, K1) +G1(v, K2) (6.100)

Z(2) = h21(2)(u1 + u2 + v3 + v4 +K1) + h22(2)(v1 + v2 + u3 + u4 +K2) (6.101)

∆
= L2(u, K1) +G2(v, K2). (6.102)

Note that since K1 (or K2) is known at the first (or second) receiver, it can be

removed. The unintended symbols remain buried in the artificial noise, ensuring

security. Also, if G1 (or L2) could be sent to the second (or first) receiver, it would

provide a linear combination of the intended symbols that is linearly independent

of G2 (or L1). This is what we will do in the third and fourth time slots.

3) At time t = 3, S(3) = NP: In this state, the transmitter knows H2 perfectly.

It sends,

X(3) = [G1(v, K2) 0]T + L3(u)H2(3)⊥, (6.103)

where L3 is linearly independent of both L1 and L2. The received signals are:

Y (3) =h11(3)G1(v, K2) + L3(u)H1(3)H2(3)⊥ (6.104)

Z(3) =h21(3)G1(v, K2). (6.105)

4) At time t = 4, S(4) = PN: In this state, the transmitter knows H1(4)
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perfectly. It sends,

X(4) = [L2(u, K1) 0]T +G3(v)H1(4)⊥, (6.106)

where G3 is linearly independent of both G1 and G2. The received signals are:

Y (4) =h11(4)L2(u, K1) (6.107)

Z(4) =h21(4)L2(u, K1) +G3(v)H2(4)H1(4)⊥. (6.108)

Now note that if we could supply G1 and L2 to the first and second receivers,

respectively, both receivers will end up with 3 linearly independent combinations of

their intended symbols. Thus, in the next two slots, the transmitter will supply G1

and L2 to the first and second receivers, respectively, as well as send one more linearly

independent combination of the intended information symbols to each receiver.

5) At time t = 5, S(5) = PN: In this state, the transmitter knows H1(5)

perfectly. It sends,

X(5) = [G1(v, K2) 0]T +G4(v)H1(5)⊥. (6.109)

The receivers receive:

Y (5) = h11(5)G1(v, K2) (6.110)

Z(5) = h21(5)G1(v, K2) +G4(v)H2(5)H1(5)⊥. (6.111)
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6) At time t = 6, S(6) = NP: Now the transmitter knows H2(6) perfectly, and

it sends:

X(6) = [L2(u, K1) 0] + L4(u)H2(6)⊥. (6.112)

The received signals are:

Y (6) = h11(6)L2(u, K1) + L4(u)H1(6)H2(6)⊥ (6.113)

Z(6) = h21(6)L2(u, K1). (6.114)

Let us summarize the received signals at each receiver after these 6 time slots:

Y =




K1

L1(u, K1) +G1(v, K2)

α1G1(v, K2) + L3(u)

L2(u, K1)

G1(v, K2)

α2L2(u, K1) + L4(u)




, Z =




K2

L2(u, K1) +G2(v, K2)

G1(v, K2)

β1L2(u, K1) +G3(v)

β2G1(v, K2) +G4(v)

L2(u, K1)




.

The information symbols can now be decoded at the intended receivers from

these observations. Also the leakage of information is only o(logP ), as we prove

next.

Security guarantees :
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For the first user’s symbols u = (u1, u2, u3, u4), we have,

I(u; Z|H) ≤I(u;L2(u, K1)|H) (6.115)

=h(L2(u, K1)|H)− h(L2(u, K1)|u,H) (6.116)

≤ logP − h(K1|u,H) + o(logP ) (6.117)

= logP − h(K1|H) + o(logP ) (6.118)

= logP − logP + o(logP ) (6.119)

=o(logP ), (6.120)

where (6.115) follows from the Markov chain U → L2(u, K1)→ Z.

For the second user’s symbols, the information leakage at the first receiver is:

I(v; Y|H) ≤I(v;G1(v, K2)|H) (6.121)

=h(G1(v, K2)|H)− h(G1(v, K2)|v,H) (6.122)

≤ logP − h(K2|v,H) + o(logP ) (6.123)

= logP − h(K2|H) + o(logP ) (6.124)

= logP − logP + o(logP ) (6.125)

=o(logP ), (6.126)

where (6.89) follows from the Markov chain v→ G1(v, K2)→ Y.
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6.4.5 Schemes Achieving Sum s.d.o.f. of 1

6.4.5.1 Scheme S1
1

We first recap the scheme S1
1 which uses the state DD to achieve (d1, d2) = (1

2
, 1

2
).

This scheme was presented in [15]. The scheme was used to transmit 2 information

symbols to each receiver in 4 time slots. At t = 1, the transmitter sends artificial

noise symbols using both antennas. The received signals act as keys K1 and K2 for

the respective users 1 and 2. Since there is delayed CSIT, the transmitter can re-

construct these keys and use them in the next slots. At t = 2, the transmitter sends

the two information symbols (u1, u2) intended for the first receiver linearly com-

bined with the first user’s key. Thus, the first user can retrieve a linear combination

of just its intended symbols. However, the second user gets a linear combination

L(u1, u2, K1). Due to delayed CSIT however, the transmitter can reconstruct L.

In the third slot, the roles of the receivers are reversed and the transmitter sends

the second user’s symbols (v1, v2) linearly combined with the second user’s key K2.

This allows the second user to retrieve a linear combination of just its information

symbol, which however remain secure at the first user, which receives G(v1, v2, K2).

In the fourth slot, the transmitter sends a linear combination of L and G. Essen-

tially this provides the first user with L, from which it can eliminate K1 to get

another independent linear combination of (u1, u2). A similar situation takes place

at the second user. Finally, each user has two linearly independent combinations

of two symbols and thus can decode the information symbols intended for it. The
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information leakage is only o(logP ), as shown in [15].

6.4.5.2 Scheme S1
2

In this sub-section, we present the scheme S1
2 which uses the states (DD,NN) with

fractions (1
2
, 1

2
) to achieve (d1, d2) = (1

2
, 1

2
).

The scheme S1
1 requires delayed CSIT from at least one user for the first 3

time slots. We need to modify this scheme to ensure that delayed CSIT is required

only for 2 of the 4 time slots. Fig. 6.8 shows the new scheme. It is as follows:

1) At time t = 1, S(1) = DD: The strategy in this slot is the same as in the

scheme S1
1 . In this slot, the transmitter sends artificial noise symbols to create keys

that can be used in later slots. The channel input is

X(1) = [q1 q2]T , (6.127)

where q1 and q2 are i.i.d. as CN (0, P ). The received signals are:

Y (1) =h11(1)q1 + h12(1)q2
∆
= K1 (6.128)

Z(1) =h21(1)q1 + h22(1)q2
∆
= K2. (6.129)

Due to delayed CSIT, the transmitter learns K1 and K2 and uses them in the next

time slots.

2) At time t = 2, S(2) = DD: Instead of sending only the first user’s symbols as

in scheme S1
1 , the transmitter now sends linear combination of both users’ symbols.
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Figure 6.8: Achieving sum s.d.o.f. of 1 using S1
2 .

It sends:

X(2) = [u1 + v1 +K1 u2 + v2 +K2]T . (6.130)

The received signals are:

Y (2) =h11(u1 + v1 +K1) + h12(u2 + v2 +K2) (6.131)

∆
=L1(u1, u2, K1) +G1(v1, v2, K2) (6.132)

Z(2) =h21(u1 + v1 +K1) + h22(u2 + v2 +K2) (6.133)

∆
=L2(u1, u2, K1) +G2(v1, v2, K2). (6.134)

We notice that if L2 and G1 could be provided to both users, each user can get 2

linear combinations of the symbols intended for it and hence decode both symbols.

Hence, in the remaining two slots, we will transmit L2 and G1 to both users and

this will not require any CSIT from any user.

3) At time t = 3, S(3) = NN: The transmitter does not have any CSIT. It
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sends:

X(3) = [L2(u1, u2, K1) 0]T . (6.135)

The received signals are:

Y (3) =h11(3)L2(u1, u2, K1) (6.136)

Z(3) =h21(3)L2(u1, u2, K1). (6.137)

4) At time t = 4, S(4) = NN: The transmitter sends:

X(4) = [G1(v1, v2, K2) 0]T . (6.138)

The received signals are:

Y (4) =h11(4)G1(v1, v2, K2) (6.139)

Z(4) =h21(4)G1(v1, v2, K2). (6.140)

Thus, at the end of 4 slots the received signals may be summarized as:

Y =




K1

L1(u1, u2, K1) +G1(v1, v2, K2)

L2(u1, u2, K1)

G1(v1, v2, K2)




, Z =




K2

L2(u1, u2, K1) +G2(v1, v2, K2)

L2(u1, u2, K1)

G1(v1, v2, K2)



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Clearly, user 1 can decode (u1, u2) and user 2 can get (v1, v2). The information

leakage is at most o(logP ) as we show below.

Security guarantees :

For the first user’s symbols u = (u1, u2), we have,

I(u; Z|H) ≤I(u;L2(u, K1)|H) (6.141)

=h(L2(u, K1)|H)− h(L2(u, K1)|u,H) (6.142)

≤ logP − h(K1|u,H) + o(logP ) (6.143)

= logP − h(K1|H) + o(logP ) (6.144)

= logP − logP + o(logP ) (6.145)

=o(logP ), (6.146)

where (6.141) follows from the Markov chain U → L2(u, K1)→ Z.

For the second user’s symbols v = (v1, v2), the information leakage at the first

receiver is:

I(v; Y|H) ≤I(v;G1(v, K2)|H) (6.147)

=h(G1(v, K2)|H)− h(G1(v, K2)|v,H) (6.148)

≤ logP − h(K2|v,H) + o(logP ) (6.149)

= logP − h(K2|H) + o(logP ) (6.150)

= logP − logP + o(logP ) (6.151)

=o(logP ), (6.152)
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where (6.147) follows from the Markov chain v→ G1(v, K2)→ Y.

6.4.5.3 Scheme S1
3

We next present a novel scheme S1
3 which uses the states (DN,ND) with fractions

(1
2
, 1

2
) to achieve (d1, d2) = (1

2
, 1

2
). In particular, we present a scheme which achieves

the s.d.o.f. pair (d1, d2) =
(

2n
4n+1

, 2n
4n+1

)
as a function of the block length n. Taking

the limit n→∞ yields the s.d.o.f. pair
(

1
2
, 1

2

)
.

The scheme is shown in Fig. 6.9. Unlike all the other schemes in this chapter

where the optimal sum s.d.o.f. can be achieved within a finite number of time slots,

this scheme cannot achieve sum s.d.o.f. of 1 in a finite number of slots. Indeed,

there does not exist a scheme that can achieve sum s.d.o.f. of 1 in finitely many

slots. To see why, assume that there exists such a scheme with n slots. In this

scheme, states DN and ND occur for equal fractions of time; thus, λD = λN = 1
2
.

Now, note that the delayed CSIT in the last slot cannot be used; thus, the scheme

would work equally well if the last slot were NN instead of DN or ND. However,

changing the state in the last slot to NN would imply λD < 1
2
, which in turn implies

that d1 + d2 < 1 from (6.18). Thus, no scheme that uses only a finite number of

slots can achieve a sum s.d.o.f. of 1.

Here we provide an asymptotic scheme that achieves a sum s.d.o.f. of 4n
4n+1

in n

slots. As the number of slots n→∞, the sum s.d.o.f. approaches 1. We wish to send

2n symbols to each receiver in 4n+ 1 time slots. The scheme involves transmission

in 4 blocks where the first 3 blocks, say A, B and C each have n time slots, while
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K1

K2

K3

K4

. . .
. . .

K2n−1

K2n

Block A State: DNn

Block B

L1(K1, A1)

L2(K1, A2)

L3(K3, A3)

L4(K3, A4)

. . .

. . .

L2n−1(K2n−1, A2n−1)

L2n(K2n−1, A2n)

State: ND

Block C

State: DN

G1(K2, B1)

G2(K2, B2)

G3(K4, B3)

G4(K4, B4)

. . .

. . .

G2n−1(K2n, B2n−1)

G2n(K2n, B2n)

Block D

State: ND

n+ 1

L2 +G1

L2 +G1

L4 +G3

L4 +G3

. . .

. . .

L2n +G2n−1

L2n +G2n−1

Duration:

nDuration:

nDuration:

Duration:

1

2

1

2

1

2

1

2

CSIT acquired

H
(A)
1 (t)

H
(A)
2 (t)

H
(B)
2 (t)

H
(C)
1 (t)

Figure 6.9: Achieving sum s.d.o.f. of 4n/(4n+ 1) using scheme S1
3 .

the last block D has n + 1 slots; thus, a total of 4n + 1 time slots are required in

the scheme. The scheme is as follows:

1) In block A, S(t) = DN: In each time slot i in block A, the transmitter

generates two artificial noise symbols and sends them using its two antennas. The

receivers receive different linear combinations of the two artificial noise symbols

K2i−1 and K2i as shown in Fig. 6.9. Due to delayed CSIT from the first user, the

transmitter can reconstruct each of K2i−1, i = 1, . . ., by the end of block A. Thus,

they can act as shared keys between the transmitter and the first receiver. However,

since the second receiver does not feedback any CSIT (due to the fact that the

state in the block is DN), the transmitter cannot reconstruct the observations of the

second receiver at the end of block A.

2) In block B, S(t) = ND: At the beginning of this slot, the transmitter

has the keys K2i−1, i = 1, . . . , n shared with the first user. It uses these keys to

send information intended for the first user. It creates 2n linearly independent

226



combinations of the 2n symbols intended for the first receiver: a1, . . . , a2n. In slot

i, it transmits

XB(i) = [a2i−1 +K2i−1 a2i +K2i−1]T . (6.153)

The first and second receivers receive linearly independent combinations given by

L2i−1(A2i−1, K2i−1) and L2i(A2i, K2i−1) in slot i, where Ai denotes the ith linear

combination of the first user’s symbols, as shown in Fig. 6.9. Since the state is

ND, the second user provides delayed CSIT to the transmitter. In the ith slot, the

second user feeds back HA
2 (i), that is, the channel coefficients of the second user

in slot i within block A. Note that this is unlike any other achievable scheme we

have encountered so far; in all other schemes, the receiver feeds back the channel

coefficients of the current slot which appears as delayed CSIT at the beginning of the

next slot. Thus, at the end of slot B, the transmitter has all the channel coefficients

of the second user from block A; thus, it can reconstruct the outputs of the second

receiver in block A, K2i, i = 1, . . . , n, which now act as shared keys between the

transmitter and the second receiver.

3) In block C, S(t) = ND: At the beginning of this slot, the transmitter

has the keys K2i, i = 1, . . . , n shared with the second user. It uses these keys to

send information securely to the second user. It creates 2n linearly independent

combinations of the 2n symbols intended for the second receiver: b1, . . . , a2n. In slot
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i, it transmits

XC(i) = [b2i−1 +K2i−1 b2i +K2i−1]T . (6.154)

The first and second receivers receive linearly independent combinationsG2i−1(B2i−1, K2i)

and G2i(B2i, K2i) in slot i, where Bi denotes the ith linear combination of the sec-

ond user’s symbols, as shown in Fig. 6.9. As CSIT, in the ith slot, the second user

feeds back the channel coefficients HB
2 (i), which allows the transmitter to recon-

struct L2i(A2i, K2i−1). Note that now if L2i(A2i, K2i−1) and G2i−1(B2i−1, K2i) could

be exchanged, each of the receivers would receive 2n linear combinations of the 2n

symbols intended for it, thus, allowing both receivers to decode their own messages.

However, G2i−1(B2i−1, K2i) is not known to the transmitter yet, since the first user

has not fed back its channel in block C. This CSIT will be obtained in the next

block.

4) In block D, S(t) = ND: The transmitter wishes to send the symbols

L2i(A2i, K2i−1) + G2i−1(B2i−1, K2i), i = 1, . . . , n, in this block. To do so, the trans-

mitter does not transmit anything in the first slot in this block. It only acquires the

channel coefficients HC
1 (i) from the first user who is supplying delayed CSIT in this

block. In the ith slot, i = 1, . . . , n, the transmitter acquires the channel coefficients

HC
1 (i) and transmits:

XD(i) = [L2i−2(A2i−2, K2i−3) +G2i−3(B2i−3, K2i−2) 0]T , i = 2, . . . , n+ 1.

(6.155)
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The first user can now obtain L2i−1(A2i−1, K2i−1) and L2i(A2i, K2i−1) for every i =

1, . . . , n, while the second user obtains G2i−1(B2i−1, K2i) and G2i(B2i, K2i) for i =

1, . . . , n. Now by eliminating the respective keys, each user can decode the 2n

symbols intended for it from the 2n linearly independent combinations available to

it. Also the keys ensure the confidentiality, and the information leakage is only

o(logP ), as we show next.

Security guarantees :

Let u = (a1, . . . , a2n) and v = (b1, . . . , b2n) be the symbols intended for users

1 and 2, respectively. The leakage of u at user 2 is given by

I(u; Z|H) ≤I(u; {L2i(A2i, K2i−1)}ni=1 |H) (6.156)

=h({L2i(A2i, K2i−1)}ni=1 |H)− h({L2i(A2i, K2i−1)}ni=1 |u,H) (6.157)

≤n logP − h({K2i−1}ni=1 |H) + o(logP ) (6.158)

=n logP − n logP + o(logP ) (6.159)

=o(logP ), (6.160)

where (6.156) follows due to the Markov chain u → {L2i(A2i, K2i−1)}ni=1 → Z, and

(6.159) follows from the fact that {K2i−1}ni=1 are mutually independent and each is

distributed as N (0, P ).

Similarly, for the second user’s symbols, the leakage at the first user is given

by,

I(v; Y|H) ≤I(v; {G2i−1(B2i−1, K2i)}ni=1 |H) (6.161)
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=h({G2i−1(B2i−1, K2i)}ni=1 |H)− h({G2i−1(B2i−1, K2i)}ni=1 |v,H)

(6.162)

≤n logP − h({K2i}ni=1 |H) + o(logP ) (6.163)

=n logP − n logP + o(logP ) (6.164)

=o(logP ), (6.165)

where (6.161) follows due to the Markov chain v → {G2i−1(B2i−1, K2i)}ni=1 → Y,

and (6.164) follows from the fact that {K2i}ni=1 are mutually independent and each

is distributed as N (0, P ).

6.4.6 Schemes Achieving Sum s.d.o.f. of 2/3

6.4.6.1 Scheme S
2/3
1

The scheme S
2/3
1 uses the state DD to achieve (d1, d2) = (2

3
, 0). Such a scheme was

presented in [15]. The scheme can be summarized as follows. At time t = 1, the

transmitter sends two artificial noise symbols using its two antennas. Each user

receives a different linear combination of the noise symbols and they act as keys.

Let K1 and K2 be the keys at receivers 1 and 2, respectively. Due to delayed CSIT,

the transmitter can reconstruct K1. At time t = 2, the transmitter sends the two

symbols intended for the first receiver (u1, u2), linearly combined with K1. Receiver

1 can remove K1 from its received signal and get one linear combination of (u1, u2)

at the end of this slot. The second user receives a linear combination of u1, u2 and
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K1, say L(u1, u2, K1); however, not knowing K1, it cannot decode the information

symbols. Due to delayed CSIT, the transmitter learns L and transmits it in t = 3.

The second receiver gets no new information but the first receiver can get a second

linear combination of (u1, u2) by eliminating K1 from L. This allows receiver 1 to

decode (u1, u2), while the information leakage to receiver 2 is o(logP ).

6.4.6.2 Scheme S
2/3
2

The scheme S
2/3
2 uses the states (DD,NN) with fractions (2

3
, 1

3
) to achieve (d1, d2) =

(2
3
, 0). We note that in scheme S

2/3
1 , the delayed CSIT in slot t = 3 is not required.

Thus, the scheme can work with the states (DD,NN) with fractions (2
3
, 1

3
), and we

call this S
2/3
2 .

6.4.6.3 Scheme S
2/3
3

Finally, the scheme S
2/3
3 uses the states (DN,ND,NN) with fractions (1

3
, 1

3
, 1

3
) to

achieve (d1, d2) = (2
3
, 0). We notice that instead of having DD state in the first two

slots, it suffices to have DN in the first slot (since the transmitter does not need

K2) and ND in the second slot (since the transmitter only needs to reconstruct the

second user’s received signal L). Thus, it suffices to have the states (DN,ND,NN)

with fractions (1
3
, 1

3
, 1

3
) for the scheme to work, and we call this S

2/3
3 .
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6.5 Achievability

Now that we have all the required constituent schemes summarized in Table 6.1, we

proceed to show how these schemes can be combined to achieve the region stated in

Theorem 1. We restate the region of Theorem 1 here for convenience:

d1 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
(6.166)

d2 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
(6.167)

3d1 + d2 ≤ 2 + 2λP (6.168)

d1 + 3d2 ≤ 2 + 2λP (6.169)

d1 + d2 ≤ 2(λP + λD). (6.170)

We classify this region into two cases:

• Case A: in which d1 + d2 bound of (6.170) is inactive. This corresponds to

the condition

1 + λP ≤ 2λP + 2λD, (6.171)

which is equivalent to

λN ≤ λD. (6.172)

232



• Case B: in which d1 + d2 bound of (6.170) is active which corresponds to

λN > λD. (6.173)

In the next two sub-sections, we present the achievability for each of these cases

separately.

6.5.1 Achievability for Case A: λD ≥ λN

For Case A, the s.d.o.f. region reduces to:

d1 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
(6.174)

d2 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
(6.175)

3d1 + d2 ≤ 2 + 2λP (6.176)

d1 + 3d2 ≤ 2 + 2λP . (6.177)

Depending on which single user bound is active, we consider two cases:

1. 2+2λP−λPP
3

≤ 1 − λNN , which is equivalent to the condition λDD + 2λDN ≥

2λNN ,

2. 2+2λP−λPP
3

≥ 1 − λNN , which is equivalent to the condition λDD + 2λDN ≤

2λNN .

As shown in Fig. 6.10, due to symmetry, it suffices to achieve the points P1 and P2

in each case.
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P1

P2

P ′
1

(
2+2λP−λPP

3
, λPP

)

(
1+λP

2 , 1+λP

2

)

(
λPP ,

2+2λP−λPP

3

)

d1

d2

(a) λDD + 2λDN ≥ 2λNN .

P1

P2

P ′
1 (

1+λP

2 , 1+λP

2

)

d1

d2
(2λNN − λDD − 2λDN + λPP , 1− λNN )

(1− λNN , 2λNN − λDD − 2λDN + λPP )

(b) λDD + 2λDN ≤ 2λNN .

Figure 6.10: s.d.o.f. regions in case A.

6.5.1.1 Achievability of Point P1

We first show the achievability of the point P1 in both cases. To do so, let us consider

the two cases one by one:

1. λDD + 2λDN ≥ 2λNN : In this case, the single user bounds are:

d1 ≤
2 + 2λP − λPP

3
(6.178)

d2 ≤
2 + 2λP − λPP

3
. (6.179)

As seen in Fig. 6.10a, the point P1 is
(

2+2λP−λPP
3

, λPP
)
. To achieve this point,

using the state PP, we achieve (1, 1), with PD,DP,PN,NP, we achieve the

pair (1, 0) either through zero-forcing, or by transmitting artificial noise in a

direction orthogonal to the first user’s channel. For the states (DD,NN) ∼

(2
3
, 1

3
), and (DN,ND,NN) ∼ (1

3
, 1

3
, 1

3
), we achieve the pair (2

3
, 0) by using the

schemes S
2/3
2 and S

2/3
3 , respectively. Essentially, the NN state can be fully
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alternated with the DD state and the DN and ND states to achieve 2
3

s.d.o.f. for

user 1.

Time sharing yields the following s.d.o.f. pair:

d2 = λPP (6.180)

d1 = λPP + 2λPD + 2λPN +
2

3︸︷︷︸
S

2/3
2

(λDD + 2λDN + λNN) (6.181)

= 2λP − λPP +
2

3
(λDD + λNN) (6.182)

= 2λP − λPP +
2

3
(1− 2λP + λPP ) (6.183)

=
2 + 2λP − λPP

3
. (6.184)

2. λDD + 2λDN ≤ 2λNN : In this case the single user bounds are:

d1 ≤1− λNN (6.185)

d2 ≤1− λNN . (6.186)

Again, we wish to achieve the point P1 in Fig. 6.10b. The point P1 is given

by:

P1 : (d1, d2) = (1− λNN , λPP + (2λNN − 2λDN − λDD)). (6.187)

Here we consider two further subcases

• λNN ≤ λDD + λDN : In this case, to achieve the point P1, we first use
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up the full DN and ND states with a part of the NN state using scheme

S
2/3
3 . We alternate the remaining (λNN − λDN) duration of NN state

with the DD state using two schemes: S
2/3
2 and S1

2 . Note that in this

subcase, 0 ≤ 2(λDD + λDN − λNN) ≤ λDD. We use the state DD for

duration 2(λDD + λDN − λNN) and state NN for duration (λDD + λDN −

λNN) together using scheme S
2/3
2 to achieve the s.d.o.f. pair

(
2
3
, 0
)
. The

remaining (2λNN − 2λDN − λDD) duration of the state NN is alternated

with the remaining (2λNN −2λDN −λDD) duration of state DD using the

scheme S1
2 to achieve the s.d.o.f. pair

(
1
2
, 1

2

)
. The state PP allows us to

achieve the s.d.o.f. pair (1, 1) while the remaining states PD, DP, PN, and

NP each achieves (1, 0). Thus, by using time sharing, the s.d.o.f. pair is:

d1 =λPP + 1× 2λPD + 1× 2λPN +
2

3︸︷︷︸
S

2/3
3

×3λDN

+
2

3︸︷︷︸
S

2/3
2

×3(λDD + λDN − λNN) +
1

2︸︷︷︸
S1

2

×2(2λNN − 2λDN − λDD)

(6.188)

=1− λNN (6.189)

d2 =λPP +
1

2︸︷︷︸
S1

2

×2(2λNN − 2λDN − λDD)

=λPP + (2λNN − 2λDN − λDD), (6.190)

which is precisely the point P1.
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• λNN ≥ λDD +λDN : In this case, the state NN cannot be completely used

with the states DD, DN and ND. But we note that λD ≥ λN implies

that λD ≥ λNN . We first use up the DN and ND states by alternating

with the NN state using scheme S
2/3
3 . A portion λDD of the remaining

(λNN −λDN) duration of the NN state uses up the DD state in scheme S1
2

achieving the pair
(

1
2
, 1

2

)
. The remaining (λNN − λDN − λDD) portion of

the NN state is used with the PD and DP states through the scheme S
4/3
1

to achieve the pair
(

2
3
, 2

3

)
. For the remainder of the state PD, DP and

the states PN, NP, we can achieve the pair (1, 0), while (1, 1) is achieved

in the PP state. By time sharing, we get

d1 =λPP + 2λPN +
2

3︸︷︷︸
S

2/3
3

×3λDN +
2

3︸︷︷︸
S

4/3
1

×3(λNN − λDN − λDD)

+ 2(λPD − λNN + λDN + λDD) +
1

2︸︷︷︸
S1

2

×2λDD (6.191)

=1− λNN (6.192)

d2 =λPP +
2

3︸︷︷︸
S

4/3
1

×3(λNN − λDN − λDD) +
1

2︸︷︷︸
S1

2

×2λDD (6.193)

=λPP + 2λNN − 2λDN − λDD, (6.194)

which is again the point P1.
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6.5.1.2 Achieving the Sum s.d.o.f. Achieving Point P2

The point P2 corresponds to:

P2 : (d1, d2) =

(
1 + λP

2
,
1 + λP

2

)
. (6.195)

We rewrite the condition λD ≥ λN corresponding to case A as:

λPD + λDD ≥ λPN + λNN . (6.196)

From this condition it is not immediately clear how the constituent schemes should

be jointly utilized. Hence we break this condition into three mutually exclusive

cases:

1. Sub-case A1: λPD ≥ λPN and λDD ≥ λNN ,

2. Sub-case A2: λPD ≥ λPN and λDD ≤ λNN ,

3. Sub-case A3: λPD ≤ λPN and λDD ≥ λNN .

Now, we consider these three sub-cases one by one:

Sub-case A1: λPD ≥ λPN and λDD ≥ λNN . In this sub-case, the original condition

λD ≥ λN is automatically satisfied. For this sub-case, it is clear that the states PN

and NP can be fully alternated along with the PD and DP using scheme S
3/2
2 to

achieve 3
2

s.d.o.f. The remaining fraction of time for PD (and DP) is hence: λPD −

λPN . The state NN can be fully utilized along with DD to achieve 1 s.d.o.f. using
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the scheme S1
2 . The DN and ND states are alternated with each other to achieve 1

s.d.o.f. Thus, we achieve the following sum s.d.o.f.:

d1 + d2 = 2︸︷︷︸
S2

×λPP +
3

2︸︷︷︸
S

3/2
2

×(2λPD + 2λPN) + 1︸︷︷︸
S1

2

×(λDD + λNN) + 2λDN

= 2λPP + 3λPD + 3λPN + λDD + λNN + 2λDN (6.197)

= 1 + λP . (6.198)

Sub-case A2: λPD ≥ λPN , λDD ≤ λNN . As in sub-case A1, we can fully alternate

the PN and NP states with the PD and DP states using the scheme S
3/2
2 to achieve

the s.d.o.f. of 3
2
. Since λDD ≤ λNN , we instead fully alternate the state DD along

with NN using scheme S1
2 to achieve a sum s.d.o.f. of 1. The remaining fraction of

the NN state is λNN − λDD which can be alternated with the remaining fraction of

(PD,DP), which is λPD−λPN as long as λPD−λPN ≥ λNN −λDD. This achieves 4
3

sum s.d.o.f. Indeed, this is feasible as this is precisely the condition λD ≥ λN . The

DN and ND states are alternated with each other to achieve 1 s.d.o.f.

d1 + d2 = 2︸︷︷︸
S2

×λPP +
3

2︸︷︷︸
S

3/2
2

×(4λPN) + 1︸︷︷︸
S1

2

×(2λDD) + 2λDN

+
4

3︸︷︷︸
S

4/3
1

×(3(λNN − λDD)) +
3

2︸︷︷︸
S

3/2
1

×2(λPD − λPN − λNN + λDD) (6.199)

=2λPP + 6λPN + 2λDD + 4λNN − 4λDD + 3λPD + 3λDD − 3λPN

− 3λNN + 2λDN (6.200)
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=2λPP + 3λPD + 3λPN + λDD + λNN + 2λDN (6.201)

=1 + λP . (6.202)

Sub-case A3: λPD ≤ λPN , λDD ≥ λNN . Unlike the previous two sub-cases, here,

we cannot fully alternate the PN and NP states with the PD and DP states. Instead,

we fully use up the PD and DP states with a part of the PN and NP states using

scheme S
3/2
2 to achieve the sum s.d.o.f. of 3

2
. The remaining duration of PN (or the

NP) state is λPN − λPD. Now, we can also fully alternate the NN state with DD

since λDD ≥ λNN using the scheme S1
2 to achieve the sum s.d.o.f. of 1; and thus,

the remaining fraction of DD state is λDD − λNN . We now alternate the remaining

PN and NP states with the remaining DD state using the scheme S
4/3
2 to achieve

the sum s.d.o.f. of 4
3
. For this to be feasible, we require λDD − λNN ≥ λPN − λPD

which is again precisely the condition λD ≥ λN . The remaining DD state achieves

sum s.d.o.f. of 1 using scheme S1
1 . The DN and ND states are alternated with each

other to achieve 1 s.d.o.f.

d1 + d2 = 2︸︷︷︸
S2

×λPP +
3

2︸︷︷︸
S

3/2
2

×(4λPD) + 1︸︷︷︸
S1

2

×(2λNN)

+
4

3︸︷︷︸
S

4/3
2

×(3(λPN − λPD)) + 1︸︷︷︸
S1

1

×(λDD − λNN − λPN + λPD) + 2λDN

(6.203)

=2λPP + 6λPD + 2λNN + 4λPN − 4λPD + λPD + λDD − λPN
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− λNN + 2λDN (6.204)

=2λPP + 3λPD + 3λPN + λDD + λNN + 2λDN (6.205)

=1 + λP . (6.206)

Hence, for Case A, i.e., when λD ≥ λN , we have the complete characterization

of the s.d.o.f. region.

6.5.2 Achievability for Case B: λN > λD

In this case, the 3d1 + d2/d1 + 3d2 bounds are inactive at the symmetric sum rate

point. However, these 3d1 + d2/d1 + 3d2 bounds play a role at other points in

the region, in particular, when one of the users requires full secure rate, the 3d1 +

d2/d1 +3d2 bounds are relevant in some cases. Thus, these bounds are still partially

relevant. Based on whether the 3d1 + d2/d1 + 3d2 bounds are partially relevant or

completely irrelevant, we divide our achievability into two broad cases:

1. 3d1 + d2 bounds are partially relevant, at the point where one user requires

full secret rate,

2. 3d1 + d2 bounds are completely irrelevant to the region.

Now let us investigate each of these two cases individually.

6.5.2.1 When 3d1 + d2 Bounds are Partially Relevant

This case happens when the intersection of the lines defined by the 3d1 + d2 bound

and the single user bound is inside the region defined by the lines d1 = 0, d2 = 0,
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P

P ′

(
2+2λp−λPP

3 , λPP

)

(λP + λN , λP + 2λD − λN)

(λP + 2λD − λN , λP + λN)

S

S′

d1

d2
(
λPP ,

2+2λp−λPP

3

)

(a) λDD + 2λDN ≥ 2λNN .

Q

Q′

(2λNN − λDD − 2λDN + λPP , 1− λNN)

(1− λNN , 2λNN − λDD − 2λDN + λPP )

(λP + λN , λP + 2λD − λN)

(λP + 2λD − λN , λP + λN)

S

S′

d1

d2

(b) λDD + 2λDN ≤ 2λNN .

Figure 6.11: s.d.o.f. regions in case B when 3d1+d2 and d1+3d2 bounds are partially
active.

single user bounds and the d1 + d2 bound. We note that this depends on which of

the single user bounds is active, giving rise to two cases, as shown in Fig. 6.11:

• 1− λNN ≥ 2+2λP−λPP
3

, in which case, the 3d1 + d2 bounds are always relevant,

since λPP ≤ 2(λP +λD)− 2+2λP−λPP
3

. In this case, when one user requires full

rate, it suffices to achieve extremal point given by:

P : (d1, d2) =

(
2 + 2λP − λPP

3
, λPP

)
, (6.207)

• 1− λNN ≤ 2+2λP−λPP
3

, in which case, the 3d1 + d2 bounds are relevant as long

as λNN ≤ λD. We will need to show the achievability of one of the extremal

points when one of the users requires full rate, given by:

Q : (d1, d2) = (1− λNN , λPP + (2λNN − 2λDN − λDD)). (6.208)

However, we note that in both cases, the extremal points that achieve the sum rate

are defined by the intersection of the lines 3d1+d2 = 2+2λP and d1+d2 = 2(λP+λD).

These points are symmetric with respect to the line d1 = d2 and it suffices to show

242



the achievability of either one of them. As shown in the figures, it suffices to achieve

the point

S : (d1, d2) = (λP + λN , λP + 2λD − λN). (6.209)

Thus, to show the achievability of the full region, we need to show how the points

P , Q and S are achieved in their relevant cases. We will begin with point S since it

remains unaffected by which of the single user bounds is active.

The sum rate point S:

Now we are effectively operating under the constraint λNN ≤ λD ≤ λN , and

wish to achieve the point (λP + λN , λP + 2λD − λN). From this condition it is not

immediately clear how the constituent schemes should be jointly utilized. Hence

we focus on the second half of the inequality, which simplifies to λPD + λDD ≤

λPN + λNN , and break this condition into three mutually exclusive cases:

• Sub-case B1: λPD ≤ λPN and λDD ≤ λNN ,

• Sub-case B2: λPD ≥ λPN and λDD ≤ λNN ,

• Sub-case B3: λPD ≤ λPN and λDD ≥ λNN .

Now let us consider each case one by one:

Sub-case B1: λPD ≤ λPN and λDD ≤ λNN : In this case, the full DD state will be

used up with a part of the NN state using scheme S1
2 to achieve the rate pair

(
1
2
, 1

2

)
.

The duration of the remaining NN state is (λNN −λDD). Now if λNN −λDD ≤ λDN ,

this remaining NN state can be fully used up with the DN and ND states using
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scheme S
2/3
3 achieving the pair (2

3
, 0). The remaining DN and ND states achieve the

pair (1
2
, 1

2
) using the scheme S1

3 . The PD and DP states are fully alternated with the

PN and NP states using scheme S
3/2
2 to achieve the pair

(
3
4
, 3

4

)
. The remaining PN

and NP states achieve the pair (1, 0). The rate pair achieved then is

d1 =λPP +
3

4︸︷︷︸
S

3/2
2

×4λPD +
1

2︸︷︷︸
S1

2

×2λDD + 1× 2(λPN − λPD) +
2

3︸︷︷︸
S

2/3
3

×3(λNN − λDD)

+
1

2︸︷︷︸
S1

3

×2(λDN − λNN + λDD)

=λPP + λPD + λDN + λNN + 2λPN

=λP + λN (6.210)

d2 =λPP +
3

4︸︷︷︸
S

3/2
2

×4λPD +
1

2︸︷︷︸
S1

2

×2λDD +
1

2︸︷︷︸
S1

3

×2(λDN − λNN + λDD)

=λPP + 3λPD + 2λDD + λDN − λNN

=λP + 2λD − λN . (6.211)

If on the other hand, λNN − λDD ≥ λDN , the remaining state NN cannot be

fully alternated with the states DN and ND. However, λNN ≤ λDN+λDD+λPD from

our original condition. Therefore, the full DN and ND states are alternated with

a part of the NN state using scheme S
2/3
3 achieving the pair (2

3
, 0). The remaining

duration of the NN state is (λNN − λDD − λDN), which can be fully alternated with

the PD and DP states using the scheme S
4/3
1 achieving the pair (2

3
, 2

3
). The remaining

PD and DP states can be alternated with the PN and NP states using scheme S
3/2
2
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achieving the point (3
4
, 3

4
). The rest of the PN and NP states achieve the point (1, 0).

Thus, we have,

d1 =λPP +
1

2︸︷︷︸
S1

2

×2λDD +
2

3︸︷︷︸
S

2/3
3

×3λDN +
2

3︸︷︷︸
S

4/3
1

×3(λNN − λDN − λDD)

+
3

4︸︷︷︸
S

3/2
2

×4(λPD − (λNN − λDN − λDD))

+ 1× 2(λPN − λPD + (λNN − λDN − λDD))

=λP + λN (6.212)

d2 =λPP +
1

2︸︷︷︸
S1

2

×2λDD +
2

3︸︷︷︸
S

4/3
1

×3(λNN − λDN − λDD)

+
3

4︸︷︷︸
S

3/2
2

×4(λPD − (λNN − λDN − λDD))

=λP + 2λD − λN . (6.213)

Sub-case B2: λPD ≥ λPN and λDD ≤ λNN : In this case, since λNN ≥ λDD,

the entire DD state is alternated with a portion of the NN state using scheme S1
2 to

achieve the s.d.o.f. pair
(

1
2
, 1

2

)
. The remaining duration of the NN state is λNN−λDD.

Now if λNN − λDD ≤ λPD, the remaining NN state is used with a part of the PD

and DP states in scheme S
4/3
1 achieving the pair

(
2
3
, 2

3

)
. The remaining portion of

the PD and DP states can then be utilized with the PN and NP states using scheme

S
3/2
2 achieving the pair

(
3
4
, 3

4

)
. The remaining PN and NP states are utilized to just

achieve the rate pair (1, 0). The DN and ND states are used to achieve the pair
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(1
2
, 1

2
) using the scheme S1

3 . Thus, we have,

d1 =λPP +
1

2︸︷︷︸
S1

2

× (2λDD) +
2

3︸︷︷︸
S

4/3
1

× (3(λNN − λDD))

+
3

4︸︷︷︸
S

3/2
2

× (4 (λPD − (λNN − λDD))) +
1

2
× 2λDN

+ 1× (2λPN − 2 (λPD − (λNN − λDD))) (6.214)

=λP + λN (6.215)

d2 =λPP +
1

2︸︷︷︸
S1

2

× (2λDD) +
2

3︸︷︷︸
S

4/3
1

× (3(λNN − λDD))

+
3

4︸︷︷︸
S

3/2
2

× (4 (λPD − (λNN − λDD))) +
1

2
× 2λDN (6.216)

=λPP + 2λDD + 3λPD − λNN + λDN (6.217)

=λP + 2λD − λN . (6.218)

If on the other hand, λNN − λDD ≥ λPD, the full PD and DP states will be used up

with a part of the remaining NN state using scheme S
4/3
1 achieving the pair (2

3
, 2

3
).

The remaining duration of the NN state is λNN − λDD − λPD, which is less than

λDN from our original condition. Therefore, this remaining NN state can be fully

utilized with the DN and ND states using scheme S
2/3
3 to achieve the pair (2

3
, 0). The

remaining DN and ND states achieve the pair (1
2
, 1

2
), while the PN and NP states
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achieve the pair (1, 0). Thus, we have,

d1 =λPP +
1

2︸︷︷︸
S1

2

×2λDD +
2

3︸︷︷︸
S

4/3
1

×3λPD +
2

3︸︷︷︸
S

2/3
3

×3(λNN − λDD − λPD)

+
1

2︸︷︷︸
S1

3

×2(λDN + λDD + λPD − λNN) + 1× 2λPN (6.219)

=λPP + λPD + 2λPN + λDN + λNN (6.220)

=λP + λN (6.221)

d2 =λPP +
1

2︸︷︷︸
S1

2

×2λDD +
2

3︸︷︷︸
S

4/3
1

×3λPD +
1

2︸︷︷︸
S1

3

×2(λDN + λDD + λPD − λNN)

=λPP + 2λDD + 3λPD + λDN − λNN (6.222)

=λP + 2λD − λN . (6.223)

Sub-case B3: λPD ≤ λPN and λDD ≥ λNN : To achieve the sum rate point, we

should alternate the entire PD and DP states with part of the PN and NP states using

the scheme S
3/2
2 . Also the entire NN state should be alternated with the DD state

using the scheme S1
2 . The remaining DD state can then be fully utilized with a part of

the remaining PN and NP states using scheme S
4/3
2 , since, λDD−λNN ≤ λPN−λPD.

The remaining PN and NP states will be exploited to achieve the s.d.o.f. pair (1, 0).

The DN and ND states together achieve the pair (1
2
, 1

2
). Thus, we have,

d1 =λPP +
3

4︸︷︷︸
S

3/2
2

× (4λPD) +
1

2︸︷︷︸
S1

2

× (2λNN) +
2

3︸︷︷︸
S

4/3
2

× (3(λDD − λNN)) +
1

2
× 2λDN

247



+ 1× (2(λPN − λPD)− 2(λDD − λNN)) (6.224)

=λPP + λPD + 2λPN + λNN + λDN (6.225)

=λP + λN (6.226)

d2 =λPP +
3

4︸︷︷︸
S

3/2
2

× (4λPD) +
1

2︸︷︷︸
S1

2

× (2λNN) +
2

3︸︷︷︸
S

4/3
2

×
(

3(λDD − λNN) +
1

2
× 2λDN

)

(6.227)

=λPP + 3λPD + 2λDD − λNN + λDN (6.228)

=λP + 2λD − λN . (6.229)

The points P and Q:

• Point P : Recall that we need to achieve the point P :
(

2+2λP−λPP
3

, λPP
)

when 1 − λNN ≥ 2+2λP−λPP
3

, a condition that simplifies to λDD + 2λDN ≥

2λNN . To achieve this point, using the state PP, we achieve (1, 1), with

PD,DP,PN,NP, we achieve the pair (1, 0). For the states (DD,NN) ∼ (2
3
, 1

3
),

and (DN,ND,NN) ∼ (1
3
, 1

3
, 1

3
), we achieve the pair (2

3
, 0) by using the schemes

S
2/3
2 and S

2/3
3 , respectively. Essentially, the NN state is used up with the DD

state and the DN and ND states to achieve 2
3

s.d.o.f. for user 1.

Time sharing yields the following s.d.o.f. pair:

d2 = λPP (6.230)

d1 = λPP + 2λPD + 2λPN +
2

3︸︷︷︸
S

2/3
2

(λDD + 2λDN + λNN) (6.231)
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= 2λP − λPP +
2

3
(λDD + 2λDN + λNN) (6.232)

= 2λP − λPP +
2

3
(1− 2λP + λPP ) (6.233)

=
2 + 2λP − λPP

3
. (6.234)

• Point Q: We need to achieve the point Q : (1− λNN , λPP + (2λNN − 2λDN −

λDD)) when 1− λNN ≤ 2+2λP−λPP
3

, or equivalently, when λDD + 2λDN ≤ λNN

and under the added constraint λNN ≤ λD. Here, we consider two further

subcases:

– λNN ≤ λDD + λDN : In this case, to achieve the point Q, we first use up

the full DN and ND states with a part of the NN state using scheme S
2/3
3 .

We alternate the remaining (λNN − λDN) duration of NN state with the

DD state using two schemes: S
2/3
2 and S1

2 . Note that in this case, 0 ≤

2(λDD +λDN −λNN) ≤ λDD. We use the state DD for duration 2(λDD +

λDN−λNN) and state NN for duration (λDD+λDN−λNN) together using

scheme S
2/3
2 to achieve the s.d.o.f. pair

(
2
3
, 0
)
. The remaining (2λNN −

2λDN − λDD) duration of the state NN is alternated with the remaining

(2λNN−2λDN−λDD) duration of state DD using the scheme S1
2 to achieve

the s.d.o.f. pair
(

1
2
, 1

2

)
. The state PP allows us to achieve the s.d.o.f. pair

(1, 1) while the remaining states PD, DP, PN, and NP each achieves (1, 0).
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Thus, by using time sharing, the s.d.o.f. pair is:

d1 =λPP + 1× 2λPD + 1× 2λPN +
2

3︸︷︷︸
S

2/3
3

×3λDN

+
2

3︸︷︷︸
S

2/3
2

×3(λDD + λDN − λNN) (6.235)

+
1

2︸︷︷︸
S1

2

×2(2λNN − 2λDN − λDD) (6.236)

=1− λNN (6.237)

d2 =λPP +
1

2︸︷︷︸
S1

2

×2(2λNN − 2λDN − λDD)

=λPP + (2λNN − 2λDN − λDD), (6.238)

which is precisely the point Q.

– λNN ≥ λDD +λDN : In this case, the state NN cannot be completely used

with the states DD, DN and ND. But we note that λD ≥ λNN . We first

use up the DN and ND states by alternating with the NN state using

scheme S
2/3
3 . A portion λDD of the remaining (λNN − λDN) duration of

the NN state uses up the DD state in scheme S1
2 achieving the pair

(
1
2
, 1

2

)
.

The remaining (λNN − λDN − λDD) portion of the NN state is used with

the PD and DP states through the scheme S
4/3
1 to achieve the pair

(
2
3
, 2

3

)
.

For the remainder of the state PD, DP and the states PN, NP, we can

achieve the pair (1, 0), while (1, 1) is achieved in the PP state. By time
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sharing, we get

d1 =λPP + 2λPN +
2

3︸︷︷︸
S

2/3
3

×3λDN +
2

3︸︷︷︸
S

4/3
1

×3(λNN − λDN − λDD)

+ 2(λPD − λNN + λDN + λDD) +
1

2︸︷︷︸
S1

2

×2λDD (6.239)

=1− λNN (6.240)

d2 =λPP +
2

3︸︷︷︸
S

4/3
1

×3(λNN − λDN − λDD) +
1

2︸︷︷︸
S1

2

×2λDD (6.241)

=λPP + 2λNN − 2λDN − λDD, (6.242)

which is again the point Q.

Thus, we have achieved the point Q as well.

This completes the achievability of the full region when the 3d1 + d2 bounds are

relevant.

6.5.2.2 When 3d1 + d2 Bounds are Irrelevant

This case occurs when λNN ≥ λD. In this case, the single user bounds are

d1 ≤1− λNN (6.243)

d2 ≤1− λNN , (6.244)
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R

R′

(1− λNN , λPP + 2λPD + λDD)

d1

d2
(λPP + 2λPD + λDD, 1− λNN)

(a) λDN + λPN 6= 0.

d1

d2

(1− λNN , 1− λNN)

R

(b) λDN = λPN = 0.

Figure 6.12: s.d.o.f. regions in case B, when 3d1 + d2 and d1 + 3d2 bounds are
completely irrelevant.

and as shown in Fig. 6.12a the only point to achieve is given by:

R : (d1, d2) = (1− λNN , λPP + 2λPD + λDD). (6.245)

Note that λPP + 2λPD + λDD ≤ 1− λNN with equality if and only if λPN = λDN =

0. Thus, it suffices to achieve the point R which goes to the degenerate point

(1− λNN , 1− λNN) when λPN = λDN = 0, as shown in Fig. 6.12b.

To achieve this point, we alternate part of the NN state with the DD state

using scheme S1
2 to achieve the pair

(
1
2
, 1

2

)
, and with the PD and DP states using

the scheme S
4/3
1 to achieve the pair

(
2
3
, 2

3

)
and with the DN and ND states using the

scheme S
2/3
3 to achieve the pair (2

3
, 0). The remaining NN state is left unused. The

PN and NP states, if available, is used to achieve the s.d.o.f. pair (1, 0). Thus, we

have,

d1 =λPP +
1

2︸︷︷︸
S1

2

× (2λDD) +
2

3︸︷︷︸
S

4/3
1

× (3λPD) +
2

3︸︷︷︸
S

2/3
3

×3λDN + 1× 2λPN
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=1− λNN (6.246)

d2 =λPP +
1

2︸︷︷︸
S1

2

× (2λDD) +
2

3︸︷︷︸
S

4/3
1

× (3λPD) (6.247)

=λPP + λDD + 2λPD (6.248)

=1− λNN if λPN = λDN = 0. (6.249)

This completes the proof of the achievability.

6.6 Proof of the Converse

6.6.1 Local Statistical Equivalence Property and Associated Lemma

We introduce a property of the channel which we call local statistical equivalence.

Let us focus on the channel output of receiver 2 corresponding to the state PD and

DD at time t:

Zpd(t) = H2,pd(t)Xpd(t) +N2,pd(t) (6.250)

Zdd(t) = H2,dd(t)Xdd(t) +N2,dd(t). (6.251)

Now consider (H̃2,pd(t), H̃2,dd(t)), (Ñ2,pd(t), Ñ2,dd(t)), which are independent of and

identically distributed as (H2,pd(t),H2,dd(t)) and (N2,pd(t), N2,dd(t)), respectively.

Using these random variables, we define artificial channel outputs as:

Z̃pd(t) = H̃2,pd(t)Xpd(t) + Ñ2,pd(t) (6.252)
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Z̃dd(t) = H̃2,dd(t)Xdd(t) + Ñ2,dd(t). (6.253)

Let Ω = (Hn, H̃n). Now the local statistical equivalence property is the following:

h(Zpd(t), Zdd(t)|Zt−1
pd , Zt−1

dd ,Ω) = h(Z̃pd(t), Z̃dd(t)|Zt−1
pd , Zt−1

dd ,Ω). (6.254)

This property shows that if we consider the outputs of a receiver for such states in

which it supplies delayed CSIT, then the entropy of the channel outputs conditioned

on the past outputs is the same as that of another artificial receiver whose channel

is distributed identically as the original receiver. Note that in an alternating CSIT

setting, we focus on only the states in which the receiver provides delayed CSIT;

hence we call it local. The original and artificial receivers have statistically equivalent

channels in the sense that the conditional differential entropies of the outputs at the

real and the artificial receivers given the past outputs are equal. The proof of

this property is given in Appendix 6.8.1. We next present the following lemma

which together with the local statistical equivalence property is instrumental in the

converse proofs.

Lemma 11 For our channel model, with CSIT alternating among the states DD,

PD and DP we have:

h(Zn|Ω)
.

≥ h(Y n
pd, Y

n
dd|Zn,Ω) (6.255)

2h(Zn|Ω)
.

≥ h(Y n
pd, Y

n
dd|Ω) (6.256)
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h(Y n|Ω)
.

≥ h(Zn
dp, Z

n
dd|Y n,Ω) (6.257)

2h(Y n|Ω)
.

≥ h(Zn
dp, Z

n
dd|Ω), (6.258)

where a
.

≥ b denotes lim
P→∞

a
logP
≥ lim

P→∞
b

logP
.

This lemma is proved in Appendix 6.8.2.

In the following sections, we use the local statistical equivalence property

along with Lemma 11 to prove the bounds on individual d.o.f. d1 and d2, the sum

d.o.f. (d1 + d2) and the weighted d.o.f. 3d1 + d2 and d1 + 3d2.

6.6.2 The Single User Bounds

We recall the single user bounds in (6.14)-(6.15):

d1 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
(6.259)

d2 ≤ min

(
2 + 2λP − λPP

3
, 1− λNN

)
. (6.260)

6.6.2.1 Proof of di ≤ 2+2λP−λPP

3 , i = 1, 2

In this section, we prove the following single-user bounds:

d1 ≤
2 + 2λP − λPP

3
=

2 + 2λP + 2λPD + 2λPN
3

(6.261)

d2 ≤
2 + 2λP − λPP

3
=

2 + 2λP + 2λPD + 2λPN
3

. (6.262)

To do so, we enhance the transmitter in the following way:
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• First, if in any state, the transmitter has perfect CSIT from any of the users,

we provide perfect CSI for the other user too, that is, the states PP, PD, DP,

PN, NP are all enhanced to the state PP.

• Next, we enhance all the remaining states, (i.e., DD, DN, ND, NN) to DD.

The enhanced channel has two states: PP occurring for λpp = λPP + 2λPD + 2λPN

(using symmetry of the alternation), and DD occurring for the remaining fraction of

the time. Now, we have the following lemma for such a channel with only PP and

DD states.

Lemma 12 Consider the two-user MISO broadcast channel with confidential mes-

sages with only two states: PP and DD occurring for λpp and λdd fractions of time,

respectively, such that λpp + λdd = 1. Then,

d1 ≤
2 + λpp

3
(6.263)

d2 ≤
2 + λpp

3
. (6.264)

The proof of this lemma is provided in Appendix 6.8.3.1.

Now using λpp = λPP + 2λPD + 2λPN in Lemma 12, we get the bounds in

(6.261)-(6.262).
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6.6.2.2 Proof of di ≤ 1− λNN , i = 1, 2

In this section, we prove the following single user bounds:

d1 ≤ 1− λNN (6.265)

d2 ≤ 1− λNN . (6.266)

To prove these, we again enhance the transmitter, but in a different way. We provide

the transmitter with perfect CSIT in every state except the NN state, that is, every

state except the NN state is enhanced to the PP state. Thus, we end up with a

system with two states: PP occurring for 1 − λNN fraction of the time and NN

occurring for λNN fraction of the time. Note that since there is no delayed CSIT in

the enhanced system, there is no feedback. For such a system we have the following

lemma.

Lemma 13 For the two-user MISO broadcast channel with confidential messages

with only two states: PP and NN occurring for 1 − λnn and λnn fractions of time,

respectively, and no feedback,

d1 ≤ 1− λnn (6.267)

d2 ≤ 1− λnn. (6.268)

The proof of this lemma is provided in Appendix 6.8.3.2.

Using λnn = λNN in Lemma 13, we get the bounds in (6.265)-(6.266).
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Combining the bounds in (6.261)-(6.262) and (6.265)-(6.266), we have the

bounds in (6.14)-(6.15).

6.6.3 Proof of d1 + d2 Bound

Recall the sum s.d.o.f. bound from (6.18):

d1 + d2 ≤ 2(λP + λD). (6.269)

The original system model has nine possible states, namely, PP, DD, NN, DP, PD,

PN, NP, DN, and ND. We enhance the transmitter in the following way: whenever

in any state, the transmitter receives delayed CSI of a channel, we provide perfect

CSI of the channel to the transmitter; in other words, we convert each D state

to a P state. This clearly does not decrease the secrecy capacity (and thus, the

s.d.o.f. region). Also note that the enhanced system does not have any delayed

CSIT, and hence no feedback. Now the enhanced system has only four states: PP,

PN, NP, NN, occurring for λpp = λPP + λDD + λDP + λPD, λpn = λPN + λDN ,

λnp = λNP + λND and λnn = λNN fractions of time, respectively. For such a system

with four states we have the following lemma:

Lemma 14 Consider the two-user MISO broadcast channel with confidential mes-

sages with only four of the nine states: PP, PN, NP and NN occurring for λpp, λpn,

λnp and λnn fractions of the time, with λpp + λpn + λnp + λnn = 1. Also, assume
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there is no feedback. Then,

d1 + d2 ≤ 2λpp + λpn + λnp. (6.270)

Proof of this lemma is presented in Appendix 6.8.3.3.

Thus, using λpp = λPP +λDD+λDP +λPD, λpn = λPN+λDN , λnp = λNP +λND

and λnn = λNN in Lemma 14, we have,

d1 + d2 ≤ 2(λPP + λDP + λPD + λDD) + λPN + λDN + λNP + λND (6.271)

= 2(λP + λD), (6.272)

where (6.272) follows due to the assumed symmetry: λPD = λDP , and this completes

the proof of the bound on d1 + d2.

6.6.4 Proof of 3d1 + d2 and d1 + 3d2 Bounds

In this section, we prove the following bounds from (6.16)-(6.17):

3d1 + d2 ≤ 2 + 2λPP + 2λPD + 2λPN (6.273)

d1 + 3d2 ≤ 2 + 2λPP + 2λPD + 2λPN . (6.274)

To do so, we enhance the system in the following way: Whenever in any state, the

transmitter has no CSIT from a user, we provide the transmitter delayed CSIT of

that user’s channel; in other words, we enhance each N state to a D state. After this
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enhancement, we are left with only four states, namely PP, PD, DP and DD occurring

for λpp = λPP , λpd = λPD+λPN , λdp = λDP+λNP and λdd = λDD+λDN+λND+λNN

fractions of the time, respectively. We have the following lemma for such a system

with four states:

Lemma 15 Consider the two-user MISO broadcast channel with confidential mes-

sages with only four of the nine states: PP, PD, DP and DD occurring for λpp, λpd,

λdp and λdd fractions of the time, with λpd = λdp and λpp + λpd + λdp + λdd = 1.

Then,

3d1 + d2 ≤ 2 + 2λpp + 2λpd (6.275)

d1 + 3d2 ≤ 2 + 2λpp + 2λpd. (6.276)

We provide a proof for this lemma in Appendix 6.8.3.4.

Using λpp = λPP , λpd = λPD +λPN , λdp = λDP +λNP and λdd = λDD +λDN +

λND + λNN in Lemma 15, and symmetry of the alternating states, we have,

3d1 + d2 ≤ 2 + 2λPP + 2λPD + 2λPN (6.277)

= 2 + 2λP (6.278)

d1 + 3d2 ≤ 2 + 2λPP + 2λPD + 2λPN (6.279)

= 2 + 2λP , (6.280)

which completes the proofs for the bounds on 3d1 + d2 and d1 + 3d2.
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6.7 Conclusions

In this chapter, we studied the two-user MISO broadcast channel with confidential

messages and characterized its s.d.o.f. region with alternating CSIT. The converse

proofs for the s.d.o.f. region presented in the chapter are based on novel arguments

such as local statistical equivalence property and enhancing the system model in dif-

ferent ways, where each carefully chosen enhancement strictly improves the quality

of CSIT in a certain manner. For each such enhanced system, we invoke the local

statistical equivalence property and incorporate the confidentiality constraints and

obtain corresponding upper bounds on the individual (d1, d2), sum (d1 + d2) and

weighted (3d1 + d2, d1 + 3d2) s.d.o.f.

To establish the achievability of the s.d.o.f. region, several constituent schemes

are developed, where each scheme by itself only operates over a subset of 9 states.

The achievability of the optimal s.d.o.f. region is then established by time-sharing

between the core constituent schemes. The core constituent schemes not only serve

the purpose of establishing the s.d.o.f. region but also highlight the synergies across

multiple CSIT states which can be exploited to achieve higher s.d.o.f. in compari-

son to their individually optimal s.d.o.f. values. Besides highlighting the synergistic

benefits of alternating CSIT for secrecy, the optimal s.d.o.f. region also quantifies

the information theoretic minimal CSIT required from each user to attain a cer-

tain s.d.o.f. value. In addition, we also quantify the loss in d.o.f., as a function of

the overall CSIT quality, which must be incurred for incorporating confidentiality

constraints.
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6.8 Appendix

6.8.1 Proof of Local Statistical Equivalence

In this subsection, we prove the local statistical equivalence property:

h(Zpd(t), Zdd(t)|Zt−1
pd , Zt−1

dd ,Ω) = h(Z̃pd(t), Z̃dd(t)|Zt−1
pd , Zt−1

dd ,Ω). (6.281)

To this end, first denote by F , the common distribution of (H2,pd(t),H2,dd(t)), and

(H̃2,pd(t), H̃2,dd(t)). Let Ω =
{

H1(t),H2(t), H̃1(t), H̃2(t), t = 1, . . . , n
}

be the set of

channel vectors upto time n. Also, let Ωt = Ω\
{

H2,pd(t), H̃2,pd(t),H2,dd(t), H̃2,dd(t)
}

.

We have,

h(Zpd(t), Zdd(t)|Zt−1
pd , Zt−1

dd Ω)

=EF
[
h(Zpd(t), Zdd(t)|Zt−1

pd , Zt−1
dd ,Ωt, H̃2,pd(t), H̃2,dd(t),H2,pd(t) = h(t),

H2,dd(t) = g(t))] (6.282)

=EF
[
h(h(t)Xpd(t) +N2,pd(t),g(t)Xdd(t) +N2,dd(t)|Zt−1

pd , Zt−1
dd ,Ωt)

]
(6.283)

=EF
[
h(h(t)Xpd(t) + Ñ2,pd(t),g(t)Xdd(t) + Ñ2,dd(t)|Zt−1

pd , Zt−1
dd ,Ωt)

]
(6.284)

=EF
[
h(h(t)Xpd(t) + Ñ2,pd(t),g(t)Xdd(t) + Ñ2,dd(t)|Zt−1

pd , Zt−1
pd ,Ωt,

H̃2,pd(t) = h(t), H̃2,dd(t) = g(t))
]

(6.285)

=EF
[
h(Z̃pd(t), Z̃dd(t)|Zt−1

pd , Zt−1
dd ,Ωt,H2,pd(t),H2,dd(t), H̃2,pd(t) = h(t),

H̃2,dd(t) = g(t))
]

(6.286)

=h(Z̃pd(t), Z̃dd(t)|Zt−1
pd , Zt−1

dd ,Ω), (6.287)
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where (6.283) follows because (Xpd(t),Xdd(t)) does not depend on
(
H2,pd(t), H̃2,pd(t),

H2,dd(t), H̃2,dd(t)
)

, (6.284) follows since the additive noises (N2,pd(t), N2,dd(t)) and

(Ñ2,pd(t), Ñ2,dd(t)) are i.i.d. and independent of all other random variables, (6.285)-

(6.286) follow since (H2,pd(t),H2,dd(t)) and (H̃2,pd(t), H̃2,dd(t)) have the same distri-

bution F and the fact that (Xpd(t),Xdd(t)) does not depend on
(
H2,pd(t), H̃2,pd(t),

H2,pd(t), H̃2,dd(t)
)

.

6.8.2 Proof of Lemma 11

We consider the scenario in which there are only three CSIT states, namely DD,PD

and DP. For such a specific alternating CSIT model, we define the channel outputs

as:

Zn ,
(
Zn
dd, Z

n
pd, Z

n
dp

)

Y n ,
(
Y n
dd, Y

n
pd, Y

n
dp

)
.

Also let Ω denote the set of all channel vectors upto and including time n, that is,

in other words, Ω =
{

H1(t),H2(t), H̃1(t), H̃2(t), t = 1, . . . , n
}

. We wish to prove

that with CSIT alternating among the states DD, PD and DP we have:

h(Zn|Ω)
.

≥ h(Y n
pd, Y

n
dd|Zn,Ω) (6.288)

2h(Zn|Ω)
.

≥ h(Y n
pd, Y

n
dd|Ω) (6.289)

h(Y n|Ω)
.

≥ h(Zn
dp, Z

n
dd|Y n,Ω) (6.290)
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2h(Y n|Ω)
.

≥ h(Zn
dp, Z

n
dd|Ω). (6.291)

First we note that due to symmetry, it suffices to prove (6.288) and (6.289). We

proceed as follows:

h(Zn|Ω) =h(Zn
pd, Z

n
dd|Ω) + h(Zn

dp|Zn
pd, Z

n
ddΩ) (6.292)

=
n∑

t=1

h(Zpd(t), Zdd(t)|Zt−1
pd , Zt−1

dd ,Ω) + h(Zn
dp|Zn

pd, Z
n
dd,Ω). (6.293)

Using the local statistical equivalence property, we get,

h(Zn|Ω) =
n∑

t=1

h(Z̃pd(t), Z̃dd(t)|Zt−1
pd , Zt−1

dd ,Ω) + h(Zn
dp|Zn

pd, Z
n
dd,Ω). (6.294)

Adding (6.293) and (6.294), and lower bounding, we get,

2h(Zn|Ω) ≥
n∑

t=1

h(Zpd(t), Zdd(t), Z̃pd(t), Z̃dd(t)|Zt−1
pd , Zt−1

dd ,Ω) + 2h(Zn
dp|Zn

pd, Z
n
ddΩ)

≥
n∑

t=1

h(Zpd(t), Zdd(t), Z̃pd(t), Z̃dd(t)|Zt−1
pd , Zt−1

dd ,Ω) + h(Zn
dp|Zn

pd, Z
n
dd,Ω)

+ no(logP ) (6.295)

=
n∑

t=1

h(Zpd(t), Zdd(t), Z̃pd(t), Z̃dd(t), Ypd(t), Ydd(t)|Zt−1
pd , Zt−1

dd ,Ω)

−
n∑

t=1

h(Ypd(t), Ydd(t)|Zpd(t), Zdd(t), Z̃pd(t), Z̃dd(t), Zt−1
pd , Zt−1

dd Ω)

+ h(Zn
dp|Zn

pd, Z
n
dd,Ω) + no(logP ) (6.296)

≥
n∑

t=1

h(Zpd(t), Zdd(t), Ypd(t), Ydd(t)|Zt−1
pd , Zt−1

dd ,Ω) + h(Zn
dp|Zn

pd, Z
n
dd,Ω)
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+ no(logP ) (6.297)

≥
n∑

t=1

h(Zpd(t), Zdd(t), Ydd(t)Ypd(t)|Zt−1
pd , Zt−1

dd , Y
t−1
pd , Y t−1

dd Ω)

+ h(Zn
dp|Zn

pd, Y
n
pd, Y

n
dd, Z

n
dd,Ω) + no(logP ) (6.298)

=h(Zn
pd, Z

n
dd, Y

n
pd, Y

n
dd|Ω) + h(Zn

dp|Zn
pd, Y

n
pd, Z

n
dd, Y

n
ddΩ) + no(logP ) (6.299)

=h(Zn, Y n
pd, Y

n
dd|Ω) + no(logP ), (6.300)

where (6.295) follows by noting that

h(Zn
dp|Zn

pd, Z
n
dd,Ω) ≥ h(Zn

dp|Zn
pd, Z

n
dd,X

n,Ω) = no(logP ) (6.301)

and (6.296) follows since given (Zpd(t), Z̃pd(t), Zdd(t), Z̃dd(t)), one can reconstruct

(Xpd(t),Xdd(t)) and hence (Ypd(t), Ydd(t)) within noise distortion, implying that

h(Ypd(t), Ydd(t)|Zpd(t), Zdd(t)Z̃pd(t), Z̃dd(t), Zt−1
pd ,Ω) ≤ no(logP ). (6.302)

Now both (6.288) and (6.289) can be derived from (6.300). We simply expand

the right hand side of (6.300) in two ways:

2h(Zn|Ω) ≥h(Zn, Y n
pd, Y

n
dd|Ω) + no(logP ) (6.303)

=h(Zn|Ω) + h(Y n
pd, Y

n
dd|Zn,Ω) + no(logP ), (6.304)

which implies h(Zn|Ω)
.

≥ h(Y n
pd, Y

n
dd|Zn,Ω), which is exactly (6.288). Alternatively
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from (6.300), we also have

2h(Zn|Ω) ≥h(Y n
pd, Y

n
dd|Ω) + h(Zn|Y n

pd, Y
n
ddΩ) + no(logP ) (6.305)

≥h(Y n
pd, Y

n
dd|Ω) + no(logP ), (6.306)

which implies 2h(Zn|Ω)
.

≥ h(Y n
pd, Y

n
dd|Ω), thus proving the relation in (6.289). This

completes the proof of Lemma 11.

6.8.3 Proofs of Lemmas 12-15

6.8.3.1 Proof of Lemma 12

Recall that we wish to prove that for the two-user MISO broadcast channel with

only two states: PP and DD occurring for λpp and λdd fractions of time, respectively,

such that λpp + λdd = 1,

d1 ≤
2 + λpp

3
, d2 ≤

2 + λpp
3

. (6.307)

To do so, we proceed as follows:

nR1 ≤ I(W1;Y n
pp, Y

n
dd|Ω) + no(n) (6.308)

= I(W1;Y n
dd|Ω) + I(W1;Y n

pp|Y n
dd,Ω) + no(n) (6.309)

≤ nλpp logP + I(W1;Y n
dd|Ω) + no(n) (6.310)

≤ nλpp logP + I(W1;Y n
dd, Z

n
dd|Ω) + no(n) (6.311)

266



≤ nλpp logP + I(W1;Y n
dd|Zn

dd,Ω) + no(logP ) + no(n) (6.312)

≤ nλpp logP + h(Y n
dd|Zn

dd,Ω) + no(logP ) + no(n) (6.313)

≤ nλpp logP + h(Zn
dd|Ω) + no(logP ) + no(n), (6.314)

where (6.308) follows from decodability of W1 at receiver 1 and Fano’s inequality,

(6.313) follows from confidentiality constraint of message W1 at receiver 2, and

(6.314) follows from application of Lemma 11.

Starting from (6.310), we also have

nR1 ≤ nλpp logP + I(W1;Y n
dd|Ω) + no(n) (6.315)

≤ nλpp logP + I(W1;Y n
dd|Ω)− I(W1;Zn

dd|Ω) + no(logP ) + no(n) (6.316)

≤ nλpp logP + h(Y n
dd|Ω)− h(Y n

dd|W1,Ω)− h(Zn
dd|Ω) + h(Zn

dd|W1,Ω)

+ no(logP ) + no(n) (6.317)

≤ nλpp logP + h(Y n
dd|Ω)− 1

2
h(Zn

dd|W1,Ω)− h(Zn
dd|Ω) + h(Zn

dd|W1,Ω)

+ no(logP ) + no(n) (6.318)

≤ nλpp logP + h(Y n
dd|Ω) +

1

2
h(Zn

dd|W1,Ω)− h(Zn
dd|Ω) + no(logP ) + no(n)

(6.319)

≤ nλpp logP + h(Y n
dd|Ω) +

1

2
h(Zn

dd|Ω)− h(Zn
dd|Ω) + no(logP ) + no(n)

(6.320)

= nλpp logP + h(Y n
dd|Ω)− 1

2
h(Zn

dd|Ω) + no(logP ) + no(n) (6.321)

≤ nλpp logP + nλdd logP − 1

2
h(Zn

dd|Ω) + no(logP ) + no(n), (6.322)
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where (6.316) follows from confidentiality constraint of message W1 at receiver 2,

(6.318) follows from application of Lemma 11, and (6.320) follows from the fact that

conditioning reduces differential entropy.

Eliminating h(Zn
dd|Ω) from the bounds (6.322) and (6.314), we have,

3nR1 ≤(3nλpp + 2nλdd) logP + no(logP ) + no(n) (6.323)

=(2 + λpp)n logP + no(logP ). (6.324)

Now first dividing by n and letting n → ∞, then dividing by logP and letting

P →∞, we get,

d1 ≤
2 + λpp

3
. (6.325)

By symmetry, we get the same single user bound for user 2, completing the proof

of Lemma 12.

6.8.3.2 Proof of Lemma 13

We want to show that for the two-user MISO broadcast channel with only two states:

PP and NN occurring for 1− λnn and λnn fractions of time, respectively,

d1 ≤1− λnn (6.326)

d2 ≤1− λnn. (6.327)
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To prove this, we note that since there is no feedback, the secrecy capacity

depends only on the marginal distributions of channel outputs given the input dis-

tribution; [25]. Since the transmitter does not have channel knowledge of any of the

users in the state NN, our system with outputs

Y n =(Y n
pp, Y

n
nn) (6.328)

Zn =(Zn
pp, Z

n
nn) (6.329)

has the same secrecy capacity of a new system with outputs given by

Y n =(Y n
pp, Y

n
nn) (6.330)

Zn =(Zn
pp, Y

n
nn). (6.331)

Thus, from the secrecy requirement, we get,

I(W1;Y n
nn) = I(W1;Zn

nn) ≤ I(W1;Zn) ≤ no(logP ). (6.332)

Then we have,

nR1 ≤I(W1;Y n
pp, Y

n
nn) + no(n) (6.333)

=I(W1;Y n
nn) + I(W1;Y n

pp|Y n
nn) + no(n) (6.334)

≤I(W1;Y n
pp|Y n

nn) + no(logP ) + no(n) (6.335)

≤h(Y n
pp|Y n

nn) + no(logP ) + no(n) (6.336)
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≤h(Y n
pp) + no(logP ) + no(n) (6.337)

≤n(1− λnn) logP + no(logP ) + no(n), (6.338)

where, (6.335) follows from equation (6.332), (6.336) follows since h(Y n
pp|Y n

nn,W1) ≥

h(Y n
pp|Y n

nn,W1,X
n) ≥ o(logP ), and (6.337) follows since conditioning reduces differ-

ential entropy.

Dividing by n, and letting n→∞, we get,

R1 ≤ (1− λnn) logP + o(logP ). (6.339)

Dividing by logP and letting P →∞, we have,

d1 ≤ 1− λnn. (6.340)

By symmetry, we also have,

d2 ≤ 1− λnn. (6.341)

This completes the proof of Lemma 13.

6.8.3.3 Proof of Lemma 14

We wish to prove that for the two-user MISO broadcast channel with no feedback

and only four of the nine states: PP, PN, NP and NN occurring for λpp, λpn, λnp and
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λnn fractions of the time, with λpp + λpn + λnp + λnn = 1,

d1 + d2 ≤ 2λpp + λpn + λnp. (6.342)

To that end, for each of the two receivers, we introduce another statistically equiv-

alent receiver. At receiver 1, we introduce a virtual receiver 1̃, with channel output

denoted by Ỹ , while the channel output at the virtual receiver 2̃ at receiver 2 is

denoted by Z̃. Since the secrecy capacity without feedback depends only on the

marginals [25], without loss of generality, we can assume that the channels in the

state NN are the same for all receivers. The outputs at each of the receivers are

Y n =(Y n
pp, Y

n
pn, Y

n
np, Y

n
nn) (6.343)

Zn =(Zn
pp, Z

n
pn, Z

n
np, Y

n
nn) (6.344)

Ỹ n =(Y n
pp, Y

n
pn, Ỹ

n
np, Y

n
nn) (6.345)

Z̃n =(Zn
pp, Z̃

n
pn, Z

n
np, Y

n
nn), (6.346)

where

Ỹnp(t) =H̃1,np(t)Xnp(t) + Ñ1,np(t) (6.347)

Z̃pn(t) =H̃2,pn(t)Xpn(t) + Ñ2,pn(t), (6.348)

such that H̃1,np, H̃2,pn are i.i.d. with the same distribution as H1,np, H2,pn, respec-

tively, and Ñ1,np, Ñ2,pn are i.i.d. with same distribution as N1,np, N2,pn. We upper
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bound the first receiver’s rate as

nR1 ≤I(W1;Y n
pp, Y

n
pn, Y

n
np, Y

n
nn|Ω) + no(n) (6.349)

=I(W1, Y
n
pn, Y

n
np, Y

n
nn|Ω) + I(W1, Y

n
pp|Y n

pn, Y
n
np, Y

n
nn,Ω) (6.350)

≤nλpp logP + I(W1, Y
n
pn, Y

n
np, Y

n
nn|Ω) (6.351)

=nλpp logP + I(W1;Y n
pnY

n
nn|Ω) + I(W1;Y n

np|Y n
pnY

n
nn,Ω) + no(n) (6.352)

=nλpp logP + I(W1;Y n
pn, Y

n
nn|Ω) + h(Y n

np|Y n
pn, Y

n
nn,Ω)

− h(Y n
np|Y n

pn, Y
n
nn,W1,Ω) + no(n) (6.353)

≤n(λpp + λnp) logP + I(W1;Y n
pn, Y

n
nn|Ω)

− h(Y n
np|Y n

nn, Y
n
pn,W1,Ω) + no(n) + no(logP ) (6.354)

≤n(λpp + λnp) logP + I(W1;Y n
pn, Y

n
nn, Z

n
pn, Z̃

n
pn, Z

n
np,W2|Ω)

− h(Y n
np|Y n

pn, Y
n
nn,W1,Ω) + no(n) + no(logP ) (6.355)

=n(λpp + λnp) logP + I(W1;Y n
pn, Z̃

n
pn|Y n

nn, Z
n
pn, Z

n
np,W2,Ω)

− h(Y n
np|Y n

pn, Y
n
nn,W1,Ω) + no(n) + no(logP ) (6.356)

=n(λpp + λnp) logP + h(Y n
pn, Z̃

n
pn|Y n

nn, Z
n
pn, Z

n
np,W2,Ω)

− h(Y n
pn, Z̃

n
pn|Zn

pn, Y
n
nn, Z

n
np,W1,W2,Ω)− h(Y n

np|Y n
pn, Y

n
nn,W1,Ω)

+ no(n) + no(logP ) (6.357)

≤n(λpp + λnp) logP + h(Y n
pn, Z̃

n
pn|Zn

pn, Z
n
np, Y

n
nn,W2,Ω)

− h(Y n
np|Y n

pn, Y
n
nn,W1,Ω) + no(n) + no(logP ) (6.358)

=n(λpp + λnp) logP + h(Z̃n
pn|Zn

pn, Z
n
np, Y

n
nn,W2,Ω)

+ h(Y n
pn|Zn

pn, Z̃
n
pn, Z

n
np, Y

n
nn,W2,Ω)− h(Y n

np|Y n
pn, Y

n
nn,W1,Ω)
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+ no(n) + no(logP ) (6.359)

≤n(λpp + λnp) logP + h(Z̃n
pn|Zn

np, Y
n
nn,W2,Ω)− h(Y n

np|Y n
pn, Y

n
nn,W1,Ω)

+ no(n) + no(logP ) (6.360)

=n(λpp + λnp) logP + h(Zn
pn|Zn

np, Y
n
nn,W2,Ω)− h(Y n

np|Y n
pn, Y

n
nn,W1,Ω)

+ no(n) + no(logP ), (6.361)

where (6.356) follows since,

I(W1;Zn
pn, Z

n
np, Y

n
nn,W2|Ω) ≤I(W1;Zn

pp, Z
n
pn, Z

n
np, Y

n
nn,W2|Ω) (6.362)

=I(W1, Z
n
pp, Z

n
pn, Z

n
np, Y

n
nn|Ω)

+ I(W1;W2|Zn
pp, Z

n
pn, Z

n
np, Y

n
nn,Ω) (6.363)

=no(logP ) + I(W1;W2|Zn
pp, Z

n
pn, Z

n
np, Y

n
nn,Ω) (6.364)

≤no(logP ) +H(W2|Zn
pp, Z

n
pn, Z

n
np, Y

n
nn,Ω) (6.365)

≤no(logP ) + no(n), (6.366)

where, (6.364) and (6.366) follow from the secrecy and decodability requirements,

respectively. In addition, (6.358) follows since h(Y n
pn, Z̃

n
pn|Zn

pn, Z
n
np, Y

n
nn,W1,W2,Ω) ≥

o(logP ), (6.360) follows since given Zn
pn and Z̃n

pn, one can reconstruct Xn
pn and hence

Y n
pn to within noise distortion, and (6.361) follows due to the statistical equivalence

of receivers 2 and 2̃ in the state PN.
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Similarly, by symmetry, we have,

nR2 ≤n(λpp + λpn) logP + h(Y n
np|Y n

pn, Y
n
nn,W1,Ω)

− h(Zn
pn|Zn

np, Y
n
nn,W2,Ω) + no(n) + no(logP ). (6.367)

Adding (6.361) and (6.367), we have,

n(R1 +R2) ≤ n(2λpp + λpn + λnp) logP + 2no(n) + o(logP ). (6.368)

First dividing by n log(P ) and letting n→∞, and then letting P →∞, we obtain,

d1 + d2 ≤ 2λpp + λpn + λnp. (6.369)

This completes the proof of Lemma 14.

6.8.3.4 Proof of Lemma 15

We want to show that for the two-user MISO broadcast channel with only four of

the nine states: PP, PD, DP and DD occurring for λpp, λpd, λdp and λdd fractions of

the time, with λpd = λdp and λpp + λpd + λdp + λdd = 1,

3d1 + d2 ≤2 + 2λpp + 2λpd (6.370)

d1 + 3d2 ≤2 + 2λpp + 2λpd. (6.371)

To do so, for each of the two receivers, we introduce another statistically
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equivalent receiver. At receiver 1, we introduce a virtual receiver 1̃, with channel

output denoted by Ỹ , while the channel output at the virtual receiver 2̃ at receiver

2 is denoted by Z̃. Since the capacity depends on the marginals, without loss of

generality, we can assume that the channels in the state NN are the same for all

receivers. The outputs at each of the receivers can be written as

Y n =(Y n
pp, Y

n
pd, Y

n
dp, Y

n
nn) (6.372)

Zn =(Zn
pp, Z

n
pd, Z

n
dp, Y

n
nn) (6.373)

Ỹ n =(Y n
pp, Y

n
pd, Ỹ

n
dp, Y

n
nn) (6.374)

Z̃n =(Zn
pp, Z̃

n
pd, Z

n
dp, Y

n
nn), (6.375)

where

Ỹdp(t) =H̃1,dp(t)Xdp(t) + Ñ1,dp(t) (6.376)

Z̃pd(t) =H̃2,pd(t)Xpd(t) + Ñ2,pd(t), (6.377)

such that H̃1,dp, H̃2,pd are i.i.d. with the same distribution as H1,dp, H2,pd, respec-

tively, and Ñ1,dp, Ñ2,pd are i.i.d. with same distribution as N1,dp, N2,pd. We consider

a special case with only four states PP, PD, DP and DD. Aided by Lemma 11, we

proceed to prove Lemma 15, as follows:

nR1 ≤I(W1;Y n|Ω) + no(n) (6.378)

≤I(W1;Y n|Ω)− I(W1;Zn
dpZ

n
dd|Ω) + no(logP ) + no(n) (6.379)
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≤h(Y n|Ω)− 1

2
h(Zn

dp, Z
n
dd|W1,Ω)− h(Zn

dp, Z
n
dd|Ω) + h(Zn

dp, Z
n
dd|W1,Ω)

+ no(logP ) + no(n) (6.380)

=h(Y n|Ω) +
1

2
h(Zn

dp, Z
n
dd|W1,Ω)− h(Zn

dp, Z
n
dd|Ω) + no(logP ) + no(n) (6.381)

≤h(Y n|Ω) +
1

2
h(Zn

dp, Z
n
dd|Ω)− h(Zn

dp, Z
n
dd|Ω) + no(logP ) + no(n) (6.382)

=h(Y n|Ω)− 1

2
h(Zn

dp, Z
n
dd|Ω) + no(logP ) + no(n) (6.383)

≤n logP − 1

2
h(Zn

dp, Z
n
dd|Ω) + no(logP ) + no(n), (6.384)

where (6.379) follows from the security constraints, (6.380) follows from a condi-

tioned version of Lemma 11 (conditioned on W1), and (6.382) follows, since condi-

tioning reduces differential entropy.

We also have the following bounds for user 1:

nR1 ≤I(W1;Y n|W2,Ω) + no(n) (6.385)

≤I(W1;Y n, Zn|W2,Ω) + no(n) (6.386)

=I(W1;Y n|Zn,W2,Ω) + no(logP ) + no(n) (6.387)

≤h(Y n|Zn,W2,Ω) + no(logP ) + no(n) (6.388)

=h(Y n
pd, Y

n
dp, Y

n
dd|Zn,W2,Ω) + h(Y n

pp|Y n
pd, Y

n
dp, Y

n
dd, Z

n,W2,Ω) + no(logP ) + no(n)

(6.389)

≤nλpp logP + h(Y n
dp|Zn,W2,Ω) + h(Y n

pd, Y
n
dd|Zn,W2,Ω) + no(logP ) + no(n)

(6.390)

≤n(λpp + λdp) logP + h(Y n
pd, Y

n
dd|Zn,W2,Ω) + no(logP ) + no(n) (6.391)
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≤n(λpp + λdp) logP + h(Zn|W2,Ω) + no(logP ) + no(n), (6.392)

where (6.387) follows since,

I(W1;Zn|W2,Ω) ≤I(W1;Zn,W2|Ω) (6.393)

=I(W1;Zn|Ω) + I(W1;W2|Zn,Ω) (6.394)

≤no(logP ) +H(W2|Zn,Ω) (6.395)

≤no(logP ) + no(n), (6.396)

using the security and reliability constraints. In addition, (6.392) follows from the

conditional version of Lemma 11 (conditioned on W2).

For receiver 2, we have

nR2 ≤I(W2;Zn|Ω) + no(n) (6.397)

=h(Zn|Ω)− h(Zn|W2,Ω) + no(n) (6.398)

=h(Zn
pp|Zn

pd, Z
n
dp, Z

n
dd,Ω) + h(Zn

pd, Z
n
dp, Z

n
dd|Ω)− h(Zn|W2,Ω) + no(n) (6.399)

≤nλpp logP + h(Zn
pd|Ω) + h(Zn

dp, Z
n
dd|Ω)− h(Zn|W2,Ω) + no(n) (6.400)

≤n(λpp + λdp) logP + h(Zn
dp, Z

n
dd|Ω)− h(Zn|W2,Ω) + no(n). (6.401)

In summary, from (6.384), (6.392) and (6.401), we have,

nR1 ≤n logP − 1

2
h(Zn

dp, Z
n
dd|Ω) + no(logP ) + no(n), (6.402)
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nR1 ≤n(λpp + λdp) logP + h(Zn|W2,Ω) + no(logP ) + no(n), (6.403)

nR2 ≤n(λpp + λdp) logP + h(Zn
dp, Z

n
dd|Ω)− h(Zn|W2,Ω) + no(n). (6.404)

Eliminating h(Zn
dp, Z

n
dd|Ω) and h(Zn|W2,Ω) from these inequalities and taking the

limit n→∞, we arrive at

3R1 +R2 ≤ (2 + 2λpp + 2λdp) logP + o(logP ). (6.405)

Dividing by logP and taking the limit P →∞, we get the required result

3d1 + d2 ≤ 2 + 2λpp + 2λdp. (6.406)

6.8.4 Proof of the s.d.o.f. Region for PD State

In this subsection, we present the proof for the s.d.o.f. region of the fixed PD state

(perfect CSIT from user 1 and delayed CSIT from user 2). The s.d.o.f. region in

this case is given by all non-negative pairs (d1, d2) satisfying,

d1 + d2 ≤ 1. (6.407)

To prove this claim, we first provide a proof of the converse and then two achievable

schemes that are sufficient to achieve the full region.
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6.8.4.1 Converse

To this end, we create a virtual receiver with output Z̃n with a channel that is

statistically equivalent to user 2. The channel output Z̃ is given by

Z̃(t) = H̃2(t)X(t) + Ñ2(t), (6.408)

where H̃2 and Ñ2 are i.i.d. as H2 and N2, respectively. Then, the local statistical

equivalence property implies that

h(Z(t)|Zt−1,W2,Ω) = h(Z̃(t)|Zt−1,W2,Ω), (6.409)

where Ω is the set of all channel coefficients upto and including time n. Let us now

bound the rate of user 1:

nR1 ≤I(W1;Y n|W2,Ω) + no(n) (6.410)

≤I(W1;Y n, Zn|W2,Ω) + no(n) (6.411)

=I(W1;Y n|Zn,W2,Ω) + no(logP ) + no(n) (6.412)

≤I(W1;Y n, Z̃n|Zn,W2,Ω) + no(logP ) + no(n) (6.413)

=h(Y n, Z̃n|Zn,W2,Ω)− h(Y n, Z̃n|Zn,W1,W2,Ω) + no(logP ) + no(n)

(6.414)

≤h(Y n, Z̃n|Zn,W2,Ω) + no(logP ) + no(n) (6.415)

=h(Z̃n|Zn,W2,Ω) + h(Y n|Zn, Z̃n,W2,Ω) + no(logP ) + no(n) (6.416)
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≤h(Z̃n|Zn,W2,Ω) + no(logP ) + no(n) (6.417)

=
n∑

t=1

h(Z̃(t)|Z̃t−1, Zn,W2,Ω) + no(logP ) + no(n) (6.418)

≤
n∑

t=1

h(Z̃(t)|Zt−1,W2,Ω) + no(logP ) + no(n) (6.419)

=
n∑

t=1

h(Z(t)|Zt−1,W2,Ω) + no(logP ) + no(n) (6.420)

=h(Zn|W2,Ω) + no(logP ) + no(n), (6.421)

where (6.412) follows since I(W1;Zn|W2,Ω) ≤ no(logP ) from (6.393), (6.417) fol-

lows due to the fact that given Zn and Z̃n, it is possible to reconstruct Xn and

hence Y n to within noise distortion, and (6.420) follows from (6.409).

For the second user, we have,

nR2 ≤I(W2;Zn|Ω) + no(n) (6.422)

=h(Zn|Ω)− h(Zn|W2,Ω) + no(n) (6.423)

≤n logP − h(Zn|W2,Ω) + no(n). (6.424)

Adding (6.421) and (6.424), we have,

n(R1 +R2) ≤ n logP + no(logP ) + no(n). (6.425)

Dividing by n and letting n→∞,

R1 +R2 ≤ logP + o(logP ). (6.426)
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Now dividing by logP and letting P →∞,

d1 + d2 ≤ 1. (6.427)

This completes the proof of the converse for the case of PD state alone.

6.8.4.2 Achievable Schemes

Note that it is sufficient to achieve only two points: a) (d1, d2) = (1, 0) and b)

(d1, d2) = (0, 1). The achievability of these corner points follow in straightforward

manner from existing arguments as follows: sending message to user 1 by superim-

posing it with artificial noise in a direction orthogonal to user 1’s channel to achieve

the pair (1, 0); and sending the message to user 2 in a direction orthogonal to user

1’s channel to achieve the pair (0, 1). This completes the proof of the achievability

of the region in (6.407).

6.8.5 Proof of the s.d.o.f. Region for DN State

For the MISO broadcast channel with confidential messages with the fixed state

DN (delayed CSIT from the first user and no CSIT from the second user), the

s.d.o.f. region is given by the set of all non-negative pairs (d1, d2) satisfying,

d1 + d2 ≤
1

2
. (6.428)
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To prove this claim, we first provide a proof of the converse and then two achievable

schemes that are sufficient to achieve the full region.

6.8.5.1 Converse

We first create a virtual receiver with output Ỹ n with a statistically equivalent

channel as user 1. The channel output Ỹ (t) is given by

Ỹ (t) = H̃1(t)X(t) + Ñ1(t), (6.429)

where H̃1 and Ñ1 are i.i.d. as H1 and N1, respectively. Then, the local statistical

equivalence property implies that

h(Y (t)|Y t−1,W1,Ω) = h(Ỹ (t)|Y t−1,W1,Ω), (6.430)

where Ω is the set of all channel coefficients upto and including time n. Similar to

the proof of Lemma 11, Appendix 6.8.2, it can be readily shown that,

2h(Y n|W1,Ω) ≥ h(Zn|W1,Ω) + o(logP ). (6.431)

Then, for the first user, we have,

nR1 ≤I(W1;Y n|Ω)− I(W1;Zn|Ω) + no(n) + no(logP ) (6.432)

=h(Y n|Ω)− h(Y n|W1,Ω)− h(Zn|Ω) + h(Zn|W1,Ω) (6.433)
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≤h(Y n|Ω)− 1

2
h(Zn|W1,Ω)− h(Zn|Ω) + h(Zn|W1,Ω) (6.434)

=h(Y n|Ω) +
1

2
h(Zn|W1,Ω)− h(Zn|Ω) (6.435)

≤h(Y n|Ω) +
1

2
h(Zn|Ω)− h(Zn|Ω) (6.436)

=h(Y n|Ω)− 1

2
h(Zn|Ω), (6.437)

where (6.434) follows from (6.431). For the second user,

nR2 ≤I(W2;Zn|Ω)− I(W2;Y n|Ω) + no(n) + no(logP ) (6.438)

=h(Zn|Ω)− h(Y n|Ω) + (h(Y n|W2,Ω)− h(Zn|W2,Ω)) + no(n) + no(logP ).

(6.439)

Adding (6.437) and (6.439), we obtain,

n(R1 +R2) ≤1

2
h(Zn|Ω) + (h(Y n|W2,Ω)− h(Zn|W2,Ω)) + no(n) + no(logP )

(6.440)

≤n
2

logP + (h(Y n|W2,Ω)− h(Zn|W2,Ω)) + no(n) + no(logP ).

(6.441)

Thus, in order to obtain d1 + d2 ≤ 1/2, it suffices to show that

h(Y n|W2,Ω)− h(Zn|W2,Ω) ≤ no(logP ) (6.442)

where the transmitter has delayed CSIT from user 1 and no CSIT from user 2. To

this end, we invoke a recent result in [10, (39)-(66)], which showed that the maximum
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of h(Y n|W2,Ω)−h(Zn|W2,Ω) is less than no(logP ), under the assumption of perfect

CSIT from user 1 and no CSIT from user 2. Hence, the same upper bound on the

maximum value also holds under a weaker assumption of delayed CSIT from user

1. Thus, using the fact that

(h(Y n|W2,Ω)− h(Zn|W2,Ω)) ≤ no(logP ), (6.443)

and substituting in (6.441), we have,

n(R1 +R2) ≤ n

2
logP + no(n) + no(logP ). (6.444)

Dividing by n and letting n→∞, we get,

R1 +R2 ≤
1

2
logP + o(logP ). (6.445)

Dividing by logP and letting P →∞ yields

d1 + d2 ≤
1

2
. (6.446)

This completes the proof of the converse.

6.8.5.2 Achievable Schemes

To prove the achievability of the s.d.o.f. region in (6.428), it suffices to consider only

the two points: a) (d1, d2) =
(

1
2
, 0
)

and b) (d1, d2) =
(
0, 1

2

)
. Every other point in
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the region can be obtained by time-sharing. A scheme for achieving (d1, d2) =
(

1
2
, 0
)

was presented in [15]. We include it here for completeness.

Scheme Achieving (d1, d2) =
(

1
2
, 0
)
: We wish to send 1 symbol u securely to the

first user in 2 time slots. This can be done as follows:

1) At time t = 1: The transmitter does not have any channel knowledge. It

sends:

X(1) = [q1 q2]T , (6.447)

where q1 and q2 denote independent artificial noise symbols distributed as CN (0, P ).

Both receivers receive linear combinations of the two symbols q1 and q2. The re-

ceivers’ outputs are:

Y (1) = h11(1)q1 + h12(1)q2
∆
= L1(q1, q2) (6.448)

Z(1) = h21(1)q1 + h22(1)q2. (6.449)

Due to delayed CSIT from receiver 1, the transmitter can reconstruct L1(q1, q2) in

the next time slot and use it for transmission.

2) At time t = 2: The transmitter sends:

X(2) = [u L1(q1, q2)]T . (6.450)
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The received signals are:

Y (2) =h11(2)u+ h12(2)L1(q1, q2) (6.451)

Z(2) =h21(2)u+ h22(2)L1(q1, q2). (6.452)

Since the receivers have full channel knowledge, receiver 1 can recover u by elimi-

nating L1(q1, q2) from Y(1) and Y(2). On the other hand, the information leakage

to the second user is given by,

I(u;Z(1), Z(2)|Ω) =h(Z(1), Z(2)|Ω)− h(Z(1), Z(2)|u,Ω) (6.453)

≤2 logP − h(h21(1)q1 + h22(1)q2, h11(1)q1 + h12(1)q2|Ω) (6.454)

=2 logP − 2 logP + o(logP ) (6.455)

=o(logP ). (6.456)

Scheme Achieving (d1, d2) =
(
0, 1

2

)
: In this scheme, we wish to send 1 symbol u

securely to the second user in 2 time slots. This can be done as follows:

1) At time t = 1: The transmitter does not have any channel knowledge. It

sends:

X(1) = [u q1]T , (6.457)

where q denotes an independent artificial noise symbol distributed as CN (0, P ).

Both receivers receive linear combinations of the two symbols u and q. The receivers’
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outputs are:

Y (1) = h11(1)u+ h12(1)q
∆
= L(u, q) (6.458)

Z(1) = h21(1)u+ h22(1)q
∆
= G(u, q). (6.459)

Due to delayed CSIT from receiver 1, the transmitter can reconstruct L(u, q) in the

next times lot and use it for transmission.

2) At time t = 2: The transmitter sends:

X(2) = [L(u, q) 0]T . (6.460)

The received signals are:

Y (2) =h11(2)L(u, q) (6.461)

Z(2) =h21(2)L(u, q). (6.462)

Since the receivers have full channel knowledge, receiver 2 can recover u by elimi-

nating q from L(u, q) and G(u, q). On the other hand, the information leakage to

the first user is given by,

I(u;Y (1), Y (2)|Ω) =I(u;L(u, q)|Ω) (6.463)

=h(L(u, q)|Ω)− h(L(u, q)|u,Ω) (6.464)

≤ logP − logP + o(logP ) (6.465)
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=o(logP ). (6.466)

This completes the proof of achievability.
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Chapter 7: Conclusions

In this dissertation, we explored how imperfect CSI affects physical layer security in

wireless networks. We determined the optimal secrecy capacity or the secure degrees

of freedom (s.d.o.f.) region of various channel models under no or delayed channel

state information at the transmitters (CSIT).

In Chapter 2, we considered the fast Rayleigh fading wiretap channel with co-

herence time of one symbol duration. We proved that the optimal input distribution

that achieves the secrecy capacity is discrete with finite number of mass points. We

evaluated the exact secrecy capacity numerically for various values of input power

and channel parameters. We showed that the secrecy capacity does not scale with

power and the s.d.o.f. is zero.

In Chapter 3, we established the optimal sum s.d.o.f. for three SISO channel

models: the wiretap channel with M helpers, the K-user multiple access wiretap

channel, and the K-user interference channel with an external eavesdropper, in the

absence of eavesdropper’s CSIT. While there is no loss in the s.d.o.f. for the wiretap

channel with helpers in the absence of the eavesdropper’s CSIT, the s.d.o.f. decreases

in the cases of the multiple access wiretap channel and the interference channel with

an external eavesdropper. We further showed that in the absence of eavesdropper’s
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CSIT, the K-user multiple access wiretap channel is equivalent to a wiretap channel

with (K − 1) helpers from a sum s.d.o.f. perspective.

In Chapter 4, we determined the optimal sum s.d.o.f. of the two-user MIMO

multiple access wiretap channel with N antennas at each transmitter, N antennas at

the legitimate receiver and K antennas at the eavesdropper. We provided optimal

achievable schemes based on interference alignment techniques. We also provided

matching converses to establish the optimality of the achievable schemes. Our results

highlight the effect of the number of eavesdropper antennas on the sum s.d.o.f. of

the MIMO multiple access wiretap channel.

In Chapter 5, we considered the MIMO wiretap channel with one helper and

the MIMO multiple access wiretap channel, with no eavesdropper CSIT. In each

case, the eavesdropper has K antennas while the remaining terminals have N an-

tennas. We determined the optimal sum s.d.o.f. for each channel model for the

regime K ≤ N , and showed that in this regime, the multiple access wiretap chan-

nel reduces to the wiretap channel with a helper in the absence of eavesdropper

CSIT. For the regime N ≤ K ≤ 2N , we obtained the optimal linear s.d.o.f., and

showed that the multiple access wiretap channel and the wiretap channel with one

helper have the same optimal s.d.o.f. when restricted to linear encoding strategies.

In the absence of any such restrictions, we provided a loose upper bound for the

sum s.d.o.f. of the multiple access wiretap channel in the regime N ≤ K ≤ 2N .

Our results showed that unlike in the SISO case, there is loss of s.d.o.f. for even the

wiretap channel with one helper due to lack of eavesdropper CSIT, especially when

K ≥ N .
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In Chapter 6, we studied the two-user MISO broadcast channel with confiden-

tial messages and characterized its s.d.o.f. region with heterogeneous and alternating

CSIT. The converse proofs for the s.d.o.f. region presented in the chapter are based

on novel arguments such as local statistical equivalence property and enhancing the

system model in different ways, where each carefully chosen enhancement strictly

improves the quality of CSIT in a certain manner. To establish the achievability

of the s.d.o.f. region, several constituent schemes are developed, where each scheme

by itself only operates over a subset of nine states. The achievability of the opti-

mal s.d.o.f. region is then established by time-sharing between the core constituent

schemes. The core constituent schemes not only serve the purpose of establishing

the s.d.o.f. region but also highlight the synergies across multiple CSIT states which

can be exploited to achieve higher s.d.o.f. in comparison to their individually optimal

s.d.o.f. values.

The contents of Chapter 2 are published in [72], Chapter 3 in [73–75], Chapter

4 in [76–78], Chapter 5 in [79], and Chapter 6 in [80–83]. Additional results which

are not included in this dissertation are published in [84–88].
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