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Agricultural residue burning, practiced in croplands throughout the world, adversely 

impacts public health and regional air quality. Monitoring and quantifying agricultural 

residue burning with remote sensing alone is difficult due to lack of field data, hazy 

conditions obstructing satellite remote sensing imagery, small field sizes, and active field 

management. This dissertation highlights the uncertainties, discrepancies, and 

underestimation of agricultural residue burning emissions in a small-holder agriculturalist 

region, while also developing methods for improved bottom-up quantification of residue 

burning and associated emissions impacts, by employing a field and remote sensing-

based approach. The underestimation in biomass burning emissions from rice residue, the 

fibrous plant material left in the field after harvest and subjected to burning, represents 

the starting point for this research, which is conducted in a small-holder agricultural 

landscape of Vietnam. This dissertation quantifies improved bottom-up air pollution 

emissions estimates through refinements to each component of the fine-particulate matter 

emissions equation, including the use of synthetic aperture radar timeseries to explore 

rice land area variation between different datasets and for date of burn estimates, 



development of a new field method to estimate both rice straw and stubble biomass, and 

also improvements to emissions quantification through the use of burning practice 

specific emission factors and combustion factors. Moreover, the relative contribution of 

residue burning emissions to combustion sources was quantified, demonstrating 

emissions are higher than previously estimated, increasing the importance for mitigation. 

The dissertation further explored air pollution impacts from rice residue burning in 

Hanoi, Vietnam through trajectory modelling and synoptic meteorology patterns, as well 

as timeseries of satellite air pollution and reanalysis datasets. The results highlight the 

inherent difficulty to capture air pollution impacts in the region, especially attributed to 

cloud cover obstructing optical satellite observations of episodic biomass burning. 

Overall, this dissertation found that a prominent satellite-based emissions dataset vastly 

underestimates emissions from rice residue burning. Recommendations for future work 

highlight the importance for these datasets to account for crop and burning practice 

specific emission factors for improved emissions estimates, which are useful to more 

accurately highlight the importance of reducing emissions from residue burning to 

alleviate air quality issues. 
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Chapter 1: Introduction 

1.1 Background and motivation of the study 

Agricultural residue burning in croplands throughout the world adversely impacts public 

health, Greenhouse Gas Emissions (GHGs) and emits aerosols affecting regional air 

quality (Streets et al 2003; Korontzi et al 2006). The effects from biomass burning 

episodes in agricultural lands can persist for weeks to months with impacts on 

atmospheric chemistry, weather, biogeochemical cycles, ecology, as well as the potential 

for long-distance transport into remote regions (Yan et al. 2006; Badarinath et al. 2009; 

Vadrevu et al. 2012; Cristofanelli et al. 2014; Ponette-Gonzalez et al. 2016; Sanderfoot 

2017). The underestimation and uncertainty in biomass burning emissions from rice 

residue burning represent the starting point for this research. Rice residue, defined as the 

inedible and fibrous plant material left in the field after harvest, is commonly burned in 

order to clear fields for the next growing season (Hong Van et al. 2014; Duong and 

Yoshiro 2015). Global studies estimate that biomass burning accounts for about 41% of 

total black carbon emissions as compared with residential, industrial, energy, and 

transportation sectors (Streets et al. 2004). However, in Southeast Asia the relative 

contribution has been reported lower, around 35% (Streets et al. 2004). Further, 

agricultural waste burning emissions in Southeast Asia were reported to be as low as 

about 9% of total biomass burning emissions including savanna, boreal forest, temperate 

forest, tropical forest, peat, and agriculture; whereas in other regions such as Europe, the 

agricultural emissions account for around 59% (van der Werf et al. 2017). However, 

these and previous studies could be basing the estimates on non-region specific data or 

generalized methods. Thus, agricultural emissions contribution may be higher than 
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previously thought when estimates are based on the region-specific data and novel 

methods integrating both satellite and ground-based methods, as undertaken in this 

dissertation. 

To quantify emissions, studies often rely upon grain-to-straw ratios for crops obtained 

from the literature and based upon crop production statistical databases. However, these 

ratios may not be regionally-representative, or could underestimate the amount of residue 

as they may not include the standing, uncut stubble component. Moreover, global and 

regional agricultural biomass burning studies also rely on generalized crop emission 

factors (i.e. not crop specific), and broad land cover categories which may not be 

representative of the observed biomass estimates and resulting emissions. For example, in 

regions where there is one dominant crop such as rice in Vietnam (Vietnam Office of 

Statistics 2016), the emissions estimated by global or regional studies could be 

significantly different than studies using crop-specific factors. In addition, the specific 

burning practice (figure 1.1) may impact the resulting emissions, a factor not typically 

accounted in regional or global biomass burning studies (van der Werf et al. 2010; 

Heinsch et al. 2016; Holder et al 2017; van der Werf et al. 2017). Because studies rely 

upon remote sensing alone to quantify the burning, this effect is further amplified by the 

difficulty to detect agricultural fires with remote sensing datasets. This is especially 

attributed to the ephemeral nature and small size of these fires compounded by cloud 

cover hampering active fire detections (Justice et al 2002; Schroeder et al. 2008; Giglio et 

al. 2013). Remote sensing is often employed to estimate some of the important factors for 

biomass burning emissions such as crop area, crop type, and fire location. However, 

different methods such as using SAR, optical imagery, multitemporal imagery vs single 
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data imagery, different spatial resolutions, and disparate classification methods all lead to 

differing results as shown in chapter 2. Thus, it’s important to develop effective land 

cover mapping methods not only for operational monitoring of crops and production, but 

also for spatially-explicit applications such as biomass burning, emissions, and air quality 

impacts. Due to the use of generalized emission factors as well as small, low temperature, 

and often cloud-obscured satellite fire observations in small-holder agricultural fields, 

alternative approaches are needed to quantify the rice residue burning emissions and 

compare with satellite burned area based, bottom-up approaches to evaluate the current 

status of existing fire emission databases, and to quantify the relative contribution of rice 

residue burning to all emission sources of PM2.5 by integrating with a top-down (national 

scale data disaggregated at subnational scale) emission inventory. PM2.5 is dangerous to 

human health and is linked to millions of premature deaths annually (Pope et al. 2002; 

Dennis et al. 2005; Apte et al. 2015) with agricultural fires emitting a relatively high 

amount. Because of this, estimating PM2.5 emissions from rice residue burning is 

important not only for human health, but also for air quality and the environment.  

Figure 1.1 The different rice residue burning practices found in Vietnam 

Non-pile burning Pile burning 
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1.2 Purpose of the study  

This dissertation explores how rice residue burning emissions vary based on the different 

inputs of the PM2.5 emissions equation including rice planted area (objective 1), rice fuel-

loading factors relating to the amount of residue in the field (objective 2), emission 

factors relating to the amount of pollutant released per unit of residue burned (objectives 

2 and 3), and combustion factors relating to the completeness of the burning (equation 

1.1). The dissertation objective is to: 1) develop improved bottom-up emissions estimates 

using novel techniques including improved field methods for residue estimation, 2) 

employ crop-specific and novel burning practice-specific emission factors, 3) and 

integrate remote sensing datasets for rice area mapping and to obtain important ancillary 

information related to residue burning in a cloud-prone region. The resulting emission 

estimates are compared with existing global and regional fire emissions databases, 

including the Global Fire Emissions Database (GFED), to determine if and by how much 

these global databases differ from the bottom-up estimates quantified in this dissertation. 

Moreover, while previously unknown, the relative contribution of rice residue burning in 

Vietnam to all PM2.5 combustion emissions is also quantified by comparing with the 

Regional Emissions Inventory in Southeast Asia (REAS) all-combustion sources 

inventory.  

The findings from this research are intended to shed light on the current status of crop 

residue burning emissions using paddy rice as an example, while also demonstrating the 

Equation 1.1 Generalized emission equation 



5 
 

importance of accurate remote sensing based methods useful in cloud-prone regions. In 

this dissertation, rice in Vietnam is studied within the Red River Delta where the 

emissions contribute to an already degraded atmospheric environment. Integrating field 

work, time-series remote sensing, modelling, and literature review, the three specific 

chapters and objectives are addressed in the proceeding sections. 

 

1.3 Research questions and design 

1.3.1 Design of the study 

This dissertation is built around three main research objectives and follows an integrated 

approach using remote sensing, field methods and data, and comprehensive analysis of 

existing data (figure 1.2). The three main research chapters are closely intertwined. The 

first objective uses a time-series of SAR data to estimate rice paddy area and phenology 

useful as a basis for subsequent emissions estimation. The second objective involves 

Figure 1.2: Overview of dissertation objectives 
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development of a novel method to estimate rice residues in the field and quantify 

emissions from burning based on a commonly-applied approach used in global studies. 

The third objective further improves upon the emissions quantification by developing 

burning practice specific emission factors and estimates, while also analyzing the air 

pollution and air quality in Hanoi resulting from rice residue burning, and documenting 

the current difficulties and limitations in monitoring air quality in the Hanoi region. 

 

1.3.2 Research objectives 

Objective 1: Map paddy rice area extent and variation based on different SAR 

polarizations and spatial resolutions, and characterize the paddy rice landscape and 

phenology. 

Objective 1 emphasizes the need for effective paddy rice mapping datasets and 

methods important not only as the basis for rice residue burning emissions in this 

dissertation, but also for operational monitoring of paddy rice. Objective 1 maps single 

and double crop paddy rice using six different input SAR datasets with different 

polarizations and different spatial resolutions. It also explores SAR-based rice phenology 

monitoring. 

 

Objective 2: Quantify post-harvest rice residue production through a field study and 

calculate resulting particulate matter emissions from burning using an approach 

employed in global studies. 

 Objective 2 involves developing a novel field technique to estimate not only the 

amount of rice straw, but also the amount of standing, uncut stubble. These field 

estimates were compared with residue estimates calculated using a popular crop 
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production statistics-based approach and discrepancies are identified. Emissions from 

burning were then quantified based on the field data and using general agricultural 

emission factors similar to those used in global biomass burning studies. The field data 

are also compared with the SAR signal to explore the potential for residue mapping just 

prior to rice harvest season, which would be useful for forecasting applications. 

 

Objective 3: Estimate burning practice specific emissions from rice residue burning, and 

explore resulting air pollution and air quality effects in Hanoi, Vietnam. 

Objective 3 contains the majority of the research findings from this study as it 

combines results and input from objective 1 and objective 2. The first part of this 

objective analyzes the existing emission factors in the literature and the residue estimates 

from objective 2 to quantify burning practice specific emission factors and emissions for 

rice residue burning. The emission estimates are compared with total combustion sources 

from the Regional Emission inventory in Asia (REAS). The rice residue burning 

emission estimates are also compared with satellite-derived estimates from the Global 

Fire Emissions Database (GFED) in order to evaluate satellite-based emission estimates 

in a small-holder agricultural region such as Vietnam. Emission factors from the 

literature are synthesized to generate burning-practice specific factors for the two 

prominent burning styles, pile burning and non-pile burning. Resulting emissions for 

Vietnam are compared and demonstrate potential to significantly alleviate residue 

burning emissions.  
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1.4 Significance of study area 

Rice is a staple crop for economic and cultural livelihood throughout much of Southeast 

Asia including Vietnam. Paddy rice production in Vietnam has consistently grown with 

32.5million metric tons in 2000 to 45.2million metric tons in 2015 (Vietnam Office of 

Statistics). Concurrently, the area under cultivation has slightly increased with 7.67 

million ha in 2000 and 7.83 million ha in 2015, suggesting notable agricultural 

intensification. Intensification is critical in areas of the Red River Delta around Hanoi, 

where population pressure and a robust economy are driving peri-urban expansion into 

some agricultural areas and thus reducing the area under cultivation (Pham et al. 2015).  

The Hanoi Capital Region (HCR) was recently established by the Government of 

Vietnam in 2008. The area includes a population of over 12 million people and growing 

as of 2015 (Vietnam Office of Statistics, 2016). The region is home to Hanoi City, the 

capital of Vietnam, which outside of the immediate downtown area, exhibits a mosaic 

landscape dominated by small-holder paddy rice, farms, and plantations all intermixed 

amongst a growing peri-urban area (Pham et al 2015). Thus, in Hanoi many residential 

and commercial areas are impacted not only by urban-related emissions, but also by 

smoke from rice residue burning. Hanoi is at the core of the HCR and it is surrounded by 

Vinh Phuc Province to the North, Bac Ninh and Hung Yen to the East, and Ha Nam to 

the South (figure 1.3). The HCR also includes the following provinces: Hai Duong, Hoa 

Binh, Bac Giang, Phuc Tho, and Thai Nguyen. Of the different provinces, Bac Ninh 

(44.2%) has the highest proportion of rice area, followed by Hung Yen (43.7%), Ha Nam 

(39.3%), Hai Duong (38.4%), Hanoi (32.8%), and Vinh Phuc (22.5%). The remaining 
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provinces have less rice, under 20% and are more than 50km from Hanoi City, and are 

thus excluded from the study 

area.  

The HCR is located 

within the heart of the Red 

River Delta, Vietnam’s 

oldest and most dense rice 

producing hub with about 

15% of the country’s total 

production (Vietnam Office 

of Statistics, 2016). 

Accordingly, rice is the most 

prevalent crop, often double-

rotated and irrigated with two main seasons: a winter crop planted around February 

usually after the Tet holiday, and a Spring/Summer crop planted in late-June or July. The 

average field size is about 800m2 (σ=625m2) with individual fields typically ranging from 

150m2 – more than 3000m2 (Lasko et al. 2017) with other studies suggesting slightly 

larger fields averaging 2800m2 in more rural areas away from Hanoi (Patanothai 1996). 

However, the paddy rice fields are typically planted in large groups ranging from about 

3.5 to 8 fields, referred to as collectives. This grouping facilitates agricultural activities 

such as irrigation, access to roads, and more. After the harvest, a large volume of rice 

straw is left in narrow rows or piles on the field, along with uncut standing stubble. In 

order to prepare the field for the next harvest, farmers routinely burn the residues. While 

Figure 1.3: Primary study area with proportion of rice land 
area obtained from Vietnam Office of Statistics 
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most of the straw is burned, it also has other uses such as: reincorporation into the soil, 

mushroom cultivation, composting, cattle feed, and bioenergy (Trach 1998; Nguyen 

2012; Hong Van et al. 2014; Duong and Yoshiro 2015; Oritate et al. 2015).  

In comparison to rural areas, suburban and peri-urban areas such as within Hanoi, 

typically burn a higher proportion of the rice straw as these areas have fewer cattle 

relying on it for food (Duong and Yoshiro 2015). Thus, with the higher proportion of rice 

residue burned, there is an amplified emissions impact. Accurate paddy rice mapping is 

crucial in the small-holder agricultural lands where about 50% of the rice residues are 

subjected to burning in order to clear the field for the next harvest, however some is 

returned back to the soil, used as cattle feed, or for mushroom straw (Nguyen 2012; Tran 

et al. 2014; Hong Van et al. 2014; Duong and Yoshiro 2015).  

The temperature and precipitation of the region are monsoon-influenced. 

Accordingly, the summertime from May-August is characterized by high temperatures 

and increasingly heavy rainfall. Whereas the autumn (Sep – Oct) and winter (Nov – Jan) 

experience slightly cooler temperatures and less rainfall with high humidity throughout 

the year. The region is also home to a vibrant economy including aquaculture, fisheries, 

mangrove forestry, construction, and other industrial and commercial services. The 

economy is driven by demand from its growing population with density averaging over 

1,200 people per square km (Devienne 2006).  

 

1.5 Organization of the study 

This dissertation is composed of six distinct chapters. Chapter 1: introduction, provides 

research background and relevance, study objectives, purpose, and details about the study 

area. Chapters 2-5 contain the three research objectives and are presented with the same 
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material as published or submitted in the journal. Chapter 2 corresponds to objective 1 

and is published in IEEE Journal of Selected Topics in Applied Earth Observation and 

Remote Sensing. Chapter 3 corresponds to objective 2 and is published in Environmental 

Research Letters. Chapter 4 corresponds to the first part of objective 3 and is under 

review in Environmental Pollution. Chapter 5 corresponds to the second part of objective 

3 and is under review in PLoS One. Each of the chapters are interrelated, but 

independent, as each one has a specific and relevant literature review, figures, tables, and 

a list of references.  

Chapter 2: Mapping of double and single crop paddy rice with Sentinel-1A at 

varying spatial scales and polarizations in Hanoi, Vietnam, addresses objective 1 and 

provides not only rice area maps useful for emissions estimation, but also highlights 

regional variation. 

Chapter 3: Satellites may underestimate rice residue and associated burning 

emissions in Vietnam addresses objective 2, and develops a novel field method to 

estimate rice residue as well as estimate contribution of rice residue emissions from 

burning, and relates field estimates to the SAR data. 

Chapter 4:  Improved rice residue burning emissions estimates, Accounting for 

practice-specific emission factors in air pollution assessments addresses objective 3, and 

quantifies further improved rice residue burning emissions based on burning practice 

specific factors, and demonstrates a method to indirectly estimate residue burning in 

cloud-covered regions using remote sensing. 

Chapter 5: Spatiotemporal trends of air pollution over Hanoi, Vietnam using 

Merra-2 reanalysis, satellite-based UVAI and ancillary atmospheric data also addresses 
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objective 3, and explores the trends in black carbon levels within Hanoi, Vietnam and 

across the surrounding region using multiple datasets while factoring in synoptic 

meteorology and atmospheric transport systems. It also demonstrates the difficulty of 

monitoring air pollution in this region. 

Chapter 6: Summary of Research, connects the different chapters together and 

provides a synopsis of all research findings, concluding remarks, as well as future 

directions for the research. 
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Chapter 2: Mapping and characterizing paddy rice with Sentinel-1A at 
varying spatial scales and polarizations in Hanoi, Vietnam1 
 

2.1 Abstract 

Paddy rice is the prevalent land cover in the mosaicked landscape of the Hanoi Capital 

Region, Vietnam. In this study, we map double and single crop rice in Hanoi using a 

random forest algorithm and a time-series of Sentinel-1 SAR imagery at 10 and 20m 

resolution using VV-only, VH-only, and both polarizations. We compare spatial and areal 

variation and quantify input band importance, estimate crop growth stages, estimate rice 

field/collective metrics using Fragstats with image segmentation, and highlight the 

importance of the results for land use and land cover. Results suggest double crop rice 

ranged from 208,000 to 220,000 ha with 20m resolution imagery accounting for the most 

area in all polarizations. Based on accuracy assessment, we found 10m data for VV/VH 

to have highest overall accuracy (93.5%, ±1.33%), while VV at 10m and 20m had lowest 

overall accuracies (90.9% ±1.57; 91.0% ±2.75). Mean decrease in accuracy suggests for 

all but VV at 10 m, data from harvest and flooding stages are most critical for 

classification. Results show 20 m data for both VV and VH overestimates rice land cover, 

however 20m data may be indicative of rice land use. Analysis of growing season shows 

average estimated length of 93–104 days for each season. Commune-level results suggest 

up to 20% coefficient of variation between VV10m and VH10m with significant spatial 

                                                           
1 The presented material was previously published in Lasko K, Vadrevu K P, Tran V T, and Justice C 2018. 
Mapping double and single crop paddy rice with Sentinel-1A at varying spatial scales and polarizations in 
Hanoi, Vietnam. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing 11(2), 
498-512. In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE 
does not endorse any of University of Maryland's products or services. Internal or personal use of this 
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or 
promotional purposes or for creating new collective works for resale or redistribution, please go 
to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to 
obtain a License from RightsLink. © 2018 IEEE. 
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variation in rice area. Landscape metrics show rice fields are typically planted in groups 

of 3–4 fields with over 796,000 collectives and 2.69 million fields estimated in the study 

area. 

 

2.2 Introduction 

Rice (Oryza sativa) is the staple crop for economic and cultural livelihood throughout 

much of Southeast Asia, including Vietnam. Production of paddy rice in Vietnam has 

been expanding consistently over time with 32.5 million metric tons produced in year 

2000 to 45.2 million metric tons in the year 2015 (General Statistics Office of Vietnam, 

2016). All the while, area under cultivation has only slightly increased with 7.67 million 

ha in 2000 and 7.83 million ha in 2015, suggesting notable agricultural intensification. 

Intensification is critical especially in areas of the Red River Delta such as the Hanoi 

Capital Region, where population pressure and a robust economy are driving peri-urban 

expansion into agricultural areas (Pham et al. 2015). Thus, reducing the amount of area 

under cultivation in some areas. 

Accordingly, it is of increasing importance to develop efficient methods for 

mapping paddy rice in Vietnam. The two dominant rice-producing hubs in Vietnam are 

within the Red River Delta and the Mekong River Delta, together accounting for the 

majority of national rice production. Optical imagery such as from MODIS or Landsat 

are frequently cloud contaminated during key agricultural stages (i.e., planting and 

harvest); thus, hampering mapping efforts (Whitcraft et al. 2015). C-band Sentinel-1 

imagery is capable of penetrating through cloud cover making it the obvious choice for 

timely mapping of paddy rice. 
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Efforts to map paddy rice using SAR originated in the 1990s with selected images 

from ERS-1 C-band imagery with approximately 12.5–30 m spatial resolution and a 

repeat pass of 35 days Paudyal et al. 1993; Aschbacher et al. 1995; Takeuchi et al. 1996; 

Chakraborty et al. 1997; Le Toan et al. 1997; Liew et al. 1998), and also using C-band 

RADARSAT at spatial resolution of 10–100 m and a repeat pass of 24 days (Yun et al. 

1997; Ribbes 1997; Panigrahy et al. 1999). These pioneering studies were often stymied 

by lack of quality ground-truth imagery, single polarization, or were limited to small 

spatial scale studies due to high data volumes. Subsequent studies began focusing on 

utilizing multitemporal SAR over larger land areas for improved rice mapping and testing 

various algorithms with ERS-1, ERS-2, and RADARSAT (Shao et al. 2001; Suga et al. 

2000; Inoue et al. 2002; Lee and Lee 2003; Chen and McNairn 2006). Improvements in 

sensors and availability of ground-truth data led to further more extensive rice mapping 

studies using L-band SAR such as ALOS/PALSAR or JERS-1 (Salas et al. 2007; Zhang 

et al. 2009), EN- VISAT ASAR (Lam-Dao et al. 2007; Bouvet et al. 2009; Jia et al. 2012; 

Nguyen et al. 2015), TerraSAR-X and COSMO-SkyMed (Pei et al. 2011; Gebhardt et al. 

2012; Inoue et al. 2014; Nelson et al. 2014). Recent studies include RADARSAT-2 data, 

object-oriented crop mapping (Jiao et al. 2014; Hoang et al. 2016), combined optical and 

SAR data (Asilo et al. 2014; Karila et al. 2014; Torbick et al. 2017), and Sentinel-1 C-

band SAR (Nguyen et al. 2016; Mansaray et al. 2017; Son et al. 2017). More details are 

available in a recent review (Steele-Dunne et al. 2017). 

While a variety of strong classification methods exist, a number of recent studies 

have employed random forests for SAR applications, including wetlands mapping 

(Whitcomb et al. 2009; White et al. 2015; Wang et al. 2017), general agriculture/land 
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cover (Shiraishi et al. 2014), and in paddy rice mapping with promising results (Torbick 

et al. 2017b; Waske and Braun 2009; Sonobe et al. 2014). Recent remote sensing studies 

have also included use of texture-based classification such as Gray Level Co-occurrence 

Matrix (GLCM) with promising results (Jia et al. 2012; Uhlmann et al. 2014; Zhang et al. 

2017). In addition to mapping paddy rice areal extent, other studies have employed SAR 

for agricultural phenology estimation with multitemporal imagery (Lopez-Sanchez et al. 

2012; Jiao et al. 2014), including studies with rice paddy fields and polarization variation, 

(Koppe et al. 2013; Erten et al. 2014; Erten et al. 2015; Lopez-Sanchez et al. 2014; 

Kucuk et al. 2016; de Bernardis et al. 2015; Xie et al. 2015; Yuzugullu et al. 2015). 

While some of these studies applied time-series filters to derive accurate phenology 

metrics, these are not always requisite due to the unique dynamic range of paddy rice 

signal from SAR (Torbick et al. 2017). The SAR signal seen in a time-series can 

accurately capture different stages of crop growth useful for monitoring biophysical 

variables as well as length of season, planting, and harvest dates. While local farmers and 

stakeholders have knowledge of the crop phenology, SAR-based information is useful for 

broader national or regional operational monitoring of crops (i.e., crop conditions, status, 

or health) which is a major goal of international initiatives such as Asia-Rice Crop 

Estimation and monitoring (Asia-RiCE) project or the Global Agricultural Monitoring 

(GEOGLAM) initiative (Oyoshi et al. 2016; Whitcraft et al. 2015). The SAR 

observations can survey the entire region, whereas optical data can often be obstructed by 

cloud. Thus, SAR data   can be useful for crop mapping and monitoring at regular 

intervals. 
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2.3 Study area and datasets 

2.3.1 Study area 

The mosaic landscape of the Hanoi Capital Region includes a variety of land cover types 

dominated by rice agriculture, as well as other small-holder croplands, urban areas, small 

plantations, and aquaculture. The typical rice field size in the area is about 790m2 with 

fields routinely planted in large collectives as necessary to facilitate irrigation. The field 

size is suitable for moderate-to-fine resolution mapping (Lasko et al. 2017). The Hanoi 

Capital Region is situated within the Red River Delta, Vietnam’s oldest rice producing 

region, accounting for about 15% of the country’s total rice production (General Statistics 

Office of Vietnam, 2016). Of all the different crops, rice is most prevalent and it is the 

dominant crop type in the region. It has two distinct seasons: Winter-Spring, and Spring- 

Summer. Rice has three distinct stages: sowing/transplanting, growth, and harvest/post-

harvest, all of which can be identified using satellite data (Le Toan et al. 1997). In the 

study area, rice is sown or transplanted after the Tet holiday in February or early March. 

Subsequently, a significant green-up is observed as the rice matures in its vegetative 

stage, especially after heading in April (Xiao et al. 2005; Kontgis et al. 2015). During late 

May to June the rice is harvested, and rapidly prepared for the next season starting in late 

June or July. After the harvest in each season (June and October) the rice residues 

including straw and stubble, are regularly burned accounting for as much as 13% of 

PM2.5 emissions for Vietnam; thus, burning may constitute a significant air quality issue 

(Duong and Yoshiro 2015; Lasko et al. 2017). 

The rice fields are supported by a vast network of irrigation and drainage canals 

and small access roads seen throughout the region. While most fields practice double 

cropping, some fields cultivate a single crop of rice. After the harvest, single rice fields 
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remain flooded to support the growing aquaculture industry Dey and Ahmed 2005; 

Ottinger et al. 2017). The study area has seen rapid expansion of aquaculture with 16,500 

ha in year 2000, and 46,000 ha in year 2014, with the vast majority of growth occurring 

in Hanoi province (General Statistics Office of Vietnam, 2016). 

 

2.3.2 Satellite data 

The Sentinel-1 satellite from the European Space Agency provides C-band SAR imagery 

(5.4 GHz) near globally with a 12-day revisit time or 6-day revisit time depending on 

availability of Sentinel-1B imagery. The Sentinel-1 imagery is provided as dual-polarized 

Table 2.1 SAR average local incidence angle variation (degrees) for 
VVVH10m over the study area.  
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Interferometric Wide swath (IW) data with vertical transmit, vertical receive (VV), and 

vertical transmit, horizontal receive (VH) polarizations. Each polarization is at a nominal 

spatial resolution of 5m x 20m prior to preprocessing using an open-access operational 

baseline observation strategy. A full time-series stack of 22 Sentinel-1A images was 

acquired during the 2016 growing season (February– October) (table 2.1). No Sentinel-

1B imagery was available over the study area. Level-1 ground-range detected, 

descending mode, IW imagery acquired from the Alaska Satellite Facility (a direct mirror 

of ESA’s Sci-hub) were processed using the free and open source Sentinel-1 toolbox. The 

ground-range detected images were processed following guidelines including applying 

restituted orbit files, multi-look azimuthal compressions to 20m, terrain correction using 

SRTM 30m version 4 DEM, radiometric calibration adjustments to correct for viewing 

geometry effects, and refined lee speckle filter to reduce constructive and destructive 

interference, all resulting in sigma-nought backscatter data logarithmically scaled in 

decibel (Zuhlke et al. 2015). Given the relatively small study region with generally flat 

terrain, incident angle artifacts and layover/shadow effects were relatively minimal. We 

display incident angle and SAR backscatter ranges across the study area in Table I. We 
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also highlight average SAR signal and the temporal dynamic across the different land 

cover types found in the study area (figure 2.1). 

 

2.3.3 Training and validation data 

We conducted fieldwork throughout the study area during May/June and 

September/October of 2016 as part of a related project on rice residue burning. The data 

included surveys on crop calendar, crop rotation, field conditions, and biomass data. Over 

900 geolocated photos were taken of paddy fields and non-rice areas such as aquaculture, 

wetlands, and other land cover types found within the region. These field photos were 

used for training or validation along with fine-resolution imagery from Google Earth and 

the original Sentinel-1 imagery. No training data were included in the validation. We 

show a multitemporal composite of the SAR data with the training polygons overlaid 

(figure 2.2).  

(d
B)

 

Figure 2.1 timeseries SAR signal over different land cover types  
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 2.3 Methodology 

We classified the six different datasets (Table 2.2) using the random forest algorithm to 

obtain rice areal estimates and as a basis to compare the datasets. These resulting datasets 

were the basis for comparison of the different polarizations and spatial resolutions for 

mapping small-holder paddy rice. Accordingly, we selected nominal 10m resolution as it 

is the native resolution of Sentinel-1 and 20m resolution data for comparison. We 

addressed the following questions in our study: 1) Which dataset yields the highest 

overall and class specific accuracies and mapped areas, and are there notable differences 

between them? 2) What is the typical rice phenology including start/end of season and 

length of growing season? 3) How do the resulting mapped rice area estimates vary at the 

Figure 2.2 multitemporal SAR composite with training polygons overlaid 
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province and commune level? 4) Based on landscape analysis, what are the spatial 

characteristics of paddy fields and approximately how many are in the study area? 

 

2.3.1 Double and single crop rice mapping 

We employed an ensemble, machine-learning random forest algorithm for mapping 

single and double crop paddy rice, as well as for evaluating the relative importance of 

specific input data for mapping (Breiman 2001). The machine-learning random forest 

algorithm implemented in Scikit-learn python package uses bootstrap aggregated 

sampling to build individual decision trees for classification. Each decision tree was built 

with a bootstrap sample from the training data, with the unsampled data used for out-of-

bag sampling. Within the structure of a tree, a random sample of the square root of the 

number of predictors was chosen for each split as best candidates derived from the entire 

predictor set. Random forest is robust against outliers and over- fitting, nonparametric, 

has high classification accuracy, and can yield a measure of variable importance. 

We implemented the random forest algorithm using all 22 (VV or VH) or 44 input 

bands (VV & VH) (Table 2.2) for each of the six datasets separately. We populated the 

Table 2.2 SAR dataset descriptions 
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random forest with 1000 trees, where out-of-bag errors reach asymptotic values (Breiman 

2001). The same classification technique was applied to each dataset. Out of bag samples, 

which are randomly withheld from classification training were used as an indicator of 

feature importance. From the 1000 trees populated in our random forest, the mean 

decrease in classification accuracy for the input bands was reported. This was useful as a 

measure of feature importance in mapping paddy rice and each input band can be linked 

to a general crop growth stage (i.e., sowing, vegetative growth, and harvest). Training 

polygons were digitized over the single rice, double rice, and non-rice areas within each 

province using field photos, Sentinel-1 data, survey information, and fine-resolution 

Google Earth imagery. 

2.3.2 Accuracy Assessment 

We performed an accuracy assessment on the resulting rice maps. Random points across 

the study area were generated using a stratified random sampling scheme (Congalton and 

Green 2008). Based on the proportion of each resulting mapped class, a stratified random 

sample of 402 total polygons for double crop rice (125), single crop rice (41), and non-

rice (236) classes were generated for the 10m data. For the 20m data, the same polygons 

were used for comparison consistency; however, there are fewer total pixels due to 

reduced spatial resolution. We specified a 600m minimum distance between polygons to 

prevent field overlap. 

Following good practices in accuracy assessment, we adjusted the classification 

accuracies as well as the mapped rice area estimates based on the weighting from the 

proportion of land area for each class (Olofsson et al. 2014; Appendix I). This weighting 

results in unbiased areal estimates. Based on the same, we derived uncertainty estimates 

for the accuracy-adjusted areas using a 95% confidence interval for each of our resulting 
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mapped classes. The accuracy-adjusted area provides a more robust assessment of the 

area mapped for each class. We also computed the confidence intervals for adjusted class 

and overall accuracies to be used for comparison among the different maps. 

 

2.3.3 Spatial Analysis 

We compared the paddy rice maps through a number of metrics including average 

absolute deviation (AAD) (equation 2.1) and coefficient of variation (CV) (equation 2.2) 

to explore absolute and relative variation in mapped area for each of the six different 

datasets as follows: 

 

𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑|𝑥𝑥− 𝑥̅𝑥|
𝑁𝑁

  

𝐶𝐶𝐶𝐶 =  �
𝜎𝜎
𝑥̅𝑥
�100 

Where x is the rice area in hectares for one of the six rice maps, 𝑥̅𝑥 is the mean rice 

area of all 6 datasets, and N is the number of datasets for (1). While for (2) σ is the 

standard deviation of all rice area for all six datasets, and 𝑥̅𝑥 is the mean rice area for all 

datasets. The final value is a percentage. 

Equation 2.1 

Equation 2.2 



27 
 

We compared the AAD and CV at the commune-level (third-level administrative 

subdivision) and study-area level to assess overall and spatial variability. In addition, we 

computed pixel-level thematic change for each dataset. We also employed Fragstats 

(Version 4.2) for landscape-scale analysis on the most accurate resulting dataset 

including number of patches (collections of connected/adjacent paddy rice pixels) and 

patch metrics useful for evaluating the size of large connected aggregations/collections of 

paddy rice fields. Further, we employed mean-shift image segmentation on the double-

rice pixels of the time-series imagery stack to estimate rice collective size (groups of 

fields with similar crop phenology) and number of fields in the study area by including 

typical paddy field size of 790m2 (Lasko et al. 2017). We show the general flowchart in 

figure 2.3. Mean-shift image segmentation is a non-parametric iterative algorithm fitting 

a neighborhood window around each pixel, calculating the data mean in the window, and 

shifting the neighborhood window to the mean (Fukunaga and Hostetler 1975; 

Figure 2.3. Landscape analysis flowchart 
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Comaniciu and Meer 2002). The algorithm is useful for clustering pixels with similar 

signal and has been used in a variety of land cover remote sensing applications 

(Senthilnath et al. 2012; Su and Zhang 2017).  

2.3.4 Rice phenology 

While some of the prior studies utilized spatiotemporal filtering to derive crop phenology 

metrics, we derived the metrics based on the unique rice dynamic range combined with 

general phenology timeframes. Sentinel-1 VH-polarized backscatter imagery were used 

to estimate sowing /transplanting and harvest dates for both seasons of rice. Based on the 

unique phenology of paddy rice measured by SAR and selecting a general timeframe 

based on a-priori knowledge, we found local planting date coincides with the local 

minimum value (indicative of flooding, constrained to February or March), and harvest 

date when the local maximum backscatter value is reached (indicative of peak maturity of 

rice just prior to harvest, constrained to May or June) as noted in previous studies (Le 

Toan et al. 1997; Choudhury and Chakraborty 2006; Koppe et al. 2013; Torbick et al. 

2017). The estimated range is based on the overpass dates of the Sentinel-1 satellite. The 

approximate length of growing season is derived by differencing the median date within 

the planting range and the harvest date range. 

 

2.4 Results 

2.4.1 Mapped area variation 

The six paddy rice maps generated from the random forest classifier and their spatial 

patterns are shown in figure 2.4. The pixel classification count for double rice is also 

shown in figure 2.4 zoomed to a hotspot of variation area in Bac Ninh, highlights that 

along edges and smaller fields some of the rice maps are not in agreement. Overall, 66% 
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of the pixels were in agreement (where pixel count = 6). On another note, when the 

absolute mapped rice areas are compared we notice more variation. For example, the total 

mapped double-rice area for each is: 208,276 ha (VV-10m), 212,465 ha (VH-10m), 

214,565 ha (VV&VH-10m), 214,903 ha (VV-20m), 218,788 ha (VH-20m) and 220,356 

ha (VV&VH-20m). This general pattern suggests 10m imagery systematically reports 

lower mapped area than 20m imagery, and VV reports less mapped area than VH with 

VV&VH combination accounting for the most area. This is attributed to VV signal 

attenuated by the vertical structure of rice. The same pattern is not clear for single rice. 

Whereas 10m datasets exhibited less area than 20m datasets, and reported areas varied 

between polarizations. In comparison to the official government rice areal statistics for 

2016 of 232,700 ha paddy rice, our estimates reported about 12,000 – 24,000 ha less 

(General Statistics Office of Vietnam, 2016). In comparison to same statistics for the 

entire Red River Delta (546,950 ha), our study area has about 40% of the total rice area. 

The mapped areas for single rice can be seen in table 2.3. 

 

2.4.2 Accuracy assessment and areal adjustment 

We evaluated the accuracy of each dataset and present the confusion matrices with the 

total number of pixels for each class, as well as user, producer and overall accuracies 

adjusted using the unbiased areal estimates. We also provide 95% confidence intervals 

for each statistic for purposes of comparison. The dataset overall accuracies in 

descending order are VV&VH-10m (93.5%), VH-10m (93.1%), VV&VH-20m (92.5%), 

VH-20m (91.4%), followed by VV-20m (91.0%), and VV-10m (90.9%). We note the 

confidence interval ranges between VV&VH-20m and VV&VH-10m, and the same for 

the others, suggests they may not be significantly different overall. However, when 
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Figure 2.4. Classified paddy rice maps. Each SAR dataset’s resulting rice map is shown, and a pixel classification count of double-rice agreement 
between the six datasets is shown on the far right side of the figure. 
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Table 2.3. Confusion matrices. 10m datasets are on the left, and 20m datasets are on the right. It contains associated pixels per class, mapped area per 
class, and adjusted accuracies with confidence intervals based on the calculated unbiased areal estimates. 
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comparing class specific user and producer accuracies for double crop rice and single 

crop rice the differences are clear. The biggest difference is for single crop rice where the 

10m datasets have higher user and producer accuracies (except VV). For double crop 

rice, the user and producer accuracies are higher in the 10m than the 20m datasets. 

Across all datasets, user accuracies for single and double crop rice are higher than 

producer accuracies suggesting a net-positive of rice omission errors. Further details on 

the confusion matrices are shown in table 2.3. 

We adjusted the total mapped areas based on the accuracy assessment and 

resulting unbiased areal estimates for each dataset and compared the trends as shown in 

figure 2.5. Overall, we found that accuracy-adjusted areas for single and double rice were 

higher than the mapped areas. This is due to the rice omission errors found during the 

accuracy assessment. The accuracy-adjusted areas yield an improved areal estimate 

useful for studies requiring rice land area as a non-spatial input. The 95% confidence 

Figure 2.5. Mapped areas and accuracy-adjusted areas. 
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intervals for each class are also shown with figure 2.5 highlighting uncertainty in the 

mapped areas. 

 

2.4.3 Pixel-level rice variation 

Analysis of pixel-level thematic variation between each dataset was conducted. For the 

10m datasets we found the biggest difference between VV and VH where 48,372 ha of 

classified land area were different (6.29% difference) which is much higher than total rice 

area variation (214,565 ha VH10m vs 208,276ha VV10m). The main differences were 

attributed to double-rice pixels converted to non-rice pixels, non-rice converted to double 

rice, followed by non-rice into single rice. The smallest difference was between VH and 

VV&VH with 12,343 ha (1.60% difference). In descending order, the majority was 

attributed to non-rice to double rice, double rice to non-rice, and non-rice to single rice. 

The 20m datasets change was very similar with VV and VH (46,613 ha with 6.01% 

difference), VV and VV&VH (39,848 ha with 5.18% difference), and VH and VV&VH 

(10,288 ha with 1.34% difference). In all cases 20m datasets had about 0.2% less 

difference than the 10m datasets, with each following a similar pattern of variation. 

 

2.4.4 Province-level rice variation 

We evaluated the province-level variation in mapped rice area between the different 

datasets through coefficient of variation and z-scores for double and single rice (figure 

2.6). The CV results suggest relatively low and uniform variation in double rice across 

the provinces with highest variation in Bac Ninh (2.82%) and Hanoi (2.30%) followed by 

Ha Nam (2.02%), Vinh Phuc (1.92%), and Hung Yen (1.77%). For single rice the 

variation was wide ranging depending on the province, with Vinh Phuc exhibiting the 
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highest (11.57%) variation followed by Bac Ninh (8.90%), Hanoi (8.37%), Ha Nam 

(5.71%), and Hung Yen (4.17%). We attribute the highest variation in Vinh Phuc to 

small-holder agriculture and mosaicked landscape making classification difficult. The z-

score results for double-rice suggested more insight into province-level variation. For 

VV20m Ha Nam and Hung Yen had the highest positive z-scores whereas all other 

provinces had negative Z-scores, and that VV had the most variation in z-score across the 

provinces. This suggests the VV may be more sensitive to different environmental 

parameters such as water and moist soil underlying much of these areas. We note similar 

Z-scores for VVVH20m with the least variation across provinces in single and double 

crop rice. The same also goes for VH20m with all z-scores for each dataset as positive. 

Generally, the 20m datasets tend to have more similar z-scores than the 10m datasets. 

 

2.4.5 Commune-level rice variation 

For the entire study area, the total mapped double rice area for each dataset is relatively 

similar ranging from: 208,276ha (VV10m) to 220,536ha (VVVH20m). However, results 

Figure 2.6. Province-level rice variation. Double and single rice province-level 
z-scores indicating deviation from the mean 



35 
 

at the commune level (third-level administrative subdivision) suggest more variation. We 

note that while VV10m had the overall lowest double-rice mapped area, the trend is not 

spatially universal as VV10m had 27 communes with more rice than VH10m. For 

example, VH10m in Loung Tai had 249ha less rice than VV10m with a percent 

difference of 4.60%. However, the biggest percent difference between the two was in Ba 

Vi where VV10m had 20% less rice than VH10m.  

To better evaluate spatial variation at the commune level, we measured the AAD 

and CV. Across all communes for each dataset we found rice area did not vary uniformly 

across space, based on the AAD and CV results (figure 2.7). We found an average CV of 

4.75% for each commune. The spatial pattern suggested that much of the variation 

proportionately occurred in the northern half of the study area (Vinh Phuc, northern 

Hanoi, and northern Bac Ninh provinces), whereas communes in Hung Yen and Ha Nam 

had variation between the datasets almost always less than 2.5%. We also note that the 

communes surrounding Hanoi City had relatively higher CV, but low AAD due to small 

amount of rice in these areas. We attribute the spatial clustering of variation to land cover 

and land use differences, and the difficulty of mapping in a small-holder mosaicked 

landscape. Accordingly, the northern areas dominated by more wetlands, hills, and 

especially smaller rice fields intermixed with small-holder non-rice crops are likely to 

have greater class confusion. 
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2.4.6 Rice phenology 

We estimated the length of growing season, start of season, and end of season for rice 

based on the SAR time-series and the unique dynamic range in SAR signal found for rice 

paddies (figure 2.8). The results were aggregated to commune level for comparison. 

Across all communes we found an average length of the first rice season to be 93 days, 

while the second season was approximately 104 days. We attribute the relatively lower 

range in season 1 due to most fields remaining flooded for several months from the 

previous season harvest and missing SAR data for ~June 28th. In reality, the first season 

length is likely slightly underestimated. In addition, these are approximations dependent 

on the Sentinel-1 overpass dates (+-11 days). The estimated average sowing date for the 

2nd season is Day of Year (DoY) 175 (23rd of June) and DoY 55 (24th of February) for 

the first season. For the harvest we found an average DoY of 148 (27th of May) for 

Figure 2.7. Commune-level rice variation. AAD and CV for double rice area per commune 
with province boundaries overlaid. Most AAD in communes with high rice mapped areas, 
while CV shows communes in the north tended to have higher percentage variation 
attributed to mapping difficulties in mosaicked landscapes. 



37 
 

season 1. Whereas for season 2 we found estimated average harvest of DoY 279 (5th of 

October). These estimates are generally in line with our local knowledge and field 

experience. A more precise estimate of length of season, harvest, and sowing could be 

obtained by including both Sentinel-1A and Sentinel-1B, cutting the overpass time in 

half.  

 

2.4.7 Rice landscape metrics 

Fragstats analysis using the most accurate VVVH10m map produced a total of 31,934 

large continuous tracts/patches of double-rice pixels with an average area of 6.72ha 

(σ=59.4ha) and large standard deviation. Mean-shift image segmentation combined with 

Figure 2.8. Commune-level rice phenology. Sowing and harvest day of year ranges based on 
Sentinel-1 signal. Minimum variation in summer sowing is due to missing data for 06/28. 
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fragstats analysis on the time-series stack masked for double-rice pixels, suggests 

796,720 rice collectives (small patches of rice with similar SAR signal) with an average 

area of 2668m2 (σ=7250m2). The average field size is reported to be 790m2 (σ =625m2) 

(Lasko et al. 2017), thus an average of 3.4 individual rice fields make up a typical rice 

collective which follow a similar rice phenology pattern including harvest and flooding 

dates, due to similarity in image segmentation. Based on the aforementioned average 

field size and total double-rice area from the VVVH10m scenario we estimate 2.69 

million double-rice paddy fields within the HCR. 

 

2.4.8 Input band importance 

The feature importance of each input band for the paddy rice classification was assessed 

in the random forest classifier through mean decrease in accuracy (figure 2.9). We found 

that the top 3 most important bands for VH(10m and 20m), and VV(20m) were generally 

the same with bands 11, 12, and 13 (figure 2.9). These three bands were from June and 

early July (table 2.1) suggesting that imagery from spring harvest and summer planting 

season are most important as removing one of these bands results in a mean decrease in 

accuracy of 3-6% depending on the dataset. In addition, these bands are important for 

discriminating between single and double crop rice. Other bands obtained during 

planting, growth, and harvest, however, are also important as removing any one of them 

still reduces overall accuracy significantly. For VV (10m only) we found bands 7, 6, and 

8 to be most important. These bands are from the main vegetative growth stage for winter 

rice (April). A relatively similar trend was observed in VVVH datasets. The average local 

incidence angle and standard deviation over rice areas suggests minimal variation in 

incidence angle (µ = 38.63degrees, σ = 3.34degrees). Thus, it is not critical to account for 
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the incidence angle variation effects on backscatter in the study area (table 2.1) due to 

minimal variation. In addition, the time-series signal of double rice versus single rice 

shows it is possible to differentiate between the two with only the first season of data. 

Double rice areas have relatively higher backscatter throughout the first rice season 

(figure 2.1).  

 

2.5 Discussion 

Early rice mapping studies in Asia employing SAR have had varying degrees of success 

and accuracy. Some of the earliest studies using RADARSAT or ERS-1 found good 

Figure 2.9.Mean decrease in accuracy. MDA (%) suggests bands from all rice growth stages 
are important, but bands from second season planting and first season harvest generally most 
important. Note for VVVH, bands 1-22 are VV and bands 23-44 are VH. 

 



40 
 

agreement between their rice maps and existing validation data, with the latter study 

reporting overall accuracy of 87% for a small study area and coarse resolution imagery 

(Aschbacher et al. 1995; Le Toan et al. 1997; Ribbes 1999). More recent studies 

employing C-band RADARSAT imagery have reported rice class accuracies as high as 

98% and 90% using TerraSAR-X imagery (Choudhury and Chakraborty 2006; Asilo et 

al. 2014). Studies have also highlighted advantage of multi-date versus single-date 

imagery for rice mapping (Jiao et al. 2014). However, in Vietnam the case is different. In 

the Mekong River Delta using multi-temporal SAR including ENVISAT and Sentinel-1, 

studies have found overall accuracy for land cover or rice maps ranging from 80% - 92% 

(Lam-Dao et al. 2007; Bouvet et al. 2009; Nguyen et al. 2015; Karila et al. 2014; Chen et 

al. 2016; Nguyen et al. 2016; Son et al. 2017). In the Red River Delta, using 

multitemporal SAR such as RADARSAT-2 and ENVISAT, studies have found overall 

accuracy for rice maps ranging from 71-95% (Hoang et al. 2014; Nguyen et al. 2015; 

Hoang et al. 2016; Torbick et al. 2017); and overall accuracy of 89% in Vietnam with 

TerraSAR-X (Nelson et al. 2014).  

Our accuracy assessment found overall strong user’s accuracies for most datasets 

and classes with double rice ranging from 92.1% - 96.9% and single rice (95.2% - 100%). 

Whereas, producer’s accuracies were generally lower (77.8% - 83.5% double rice, and 

35.0% - 59.0% single rice) with overall accuracies between 90.9% - 93.5%.  

Our study findings are important in that the different spatial resolution or 

polarization combinations have significant impacts on mapped rice area. While these 

differences may not be high at the study area scale, the difference between the datasets is 

high at the commune and pixel level with CV averaging about 10% at the commune 



41 
 

scale. The most variation was found in communes in the northern half of the study area in 

Northern Hanoi, Vinh Phuc, and Bac Ninh where small-holder farms in mosaicked 

landscapes are dominant, making mapping difficult (Nguyen et al. 2015; Pham et al. 

2015). These spatial differences are important for different rice mapping applications 

where spatial location is critical, such as rice straw burning emissions and air quality 

assessments. We highlight the importance of selecting the most accurate map which in 

this case is VVVH10m. We also demonstrate though comparison at different spatial 

scales that 10m data has more variation in rice area compared to 20m data. We find that 

20m data may prove effective for land use mapping due to inclusion of a variety of 

classes such as irrigation canals, and adjacent dirt farm roads, whereas 10m may be best 

for specific thematic (rice in our case) mapping (figure 2.10). Our study also found that 

VH polarization were more accurate than VV polarizations for rice mapping. This has 

Figure 2.10. Rice land cover / land use example. Close-up of each of the six datasets in Hanoi 
Province highlighting potentially better mapping of land use (20m) vs land cover (10m) 
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been attributed to VV more influenced by standing water in fields and the signal 

attenuated by vertical structure of rice (Bouvet et al. 2009; Son et al. 2017). Whereas VH 

is less affected and more representative of the actual rice growth and plant canopy 

structure (Nguyen et al. 2016). We also found our map had slightly more rice area than 

the official government data, and other rice mapping studies have found good agreement 

between maps and government data in Vietnam (Kontgis et al. 2015; Nguyen et al. 2015).  

Using a simple method to replicate metrics on rice phenology, we demonstrate the 

utility of our phenology estimates for regional and global rice monitoring systems such as 

Asia-RiCE or GEOGLAM. Additional applications could improve upon existing SAR 

and MODIS disaster management strategies with improved phenology metrics (Boschetti 

et al. 2015). This is also demonstrated through random forest feature importance metrics 

that reducing some input data (i.e. near harvest) can yield slightly less accurate maps as 

they may not capture the wide backscatter range useful to distinguish paddy rice from 

other land cover classes. However, these maps are still useful for operational monitoring 

applications.  

Combining our most accurate rice map with image segmentation, Fragstats 

landscape analysis and field data, we estimated the total number of paddy rice fields in 

the study area (2.69million). In addition, we found the average size of continuous rice 

area patches, as well as the estimate of the average size of a rice collective (2668m2, or 

3.4 rice fields). As mentioned, the rice collectives are continuous rice areas undergoing 

similar rice phenology (i.e. managed in-sync).  

While other classification methods could have been used we chose random forest 

as it is robust, widely applied, generally has similar results in agricultural applications 
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(Sonobe et al. 2014), is less of a black box, and computes faster than other algorithms 

such as support vector machines or artificial neural networks (Belgiu and Dragut 2016). 

Ensemble-mean classifiers such as random forest also outperform standard approaches 

such as single decision tree or maximum-likelihood classifier (Waske and Braun 2009). 

Random forest classifier is also used for reducing feature inputs to reduce data 

dimensionality, processing time, and redundancy (Loosvelt et al. 2012; Rodriguez-

Galliano et al. 2012), whereas for this study we maintained all inputs as we already 

needed the full time-series of SAR for growing season estimates.  

Our study was limited due to several factors. The availability of Sentinel-1A, but 

not 1B, limits data input to approximately 12-day time intervals. At this temporal 

frequency, it can be difficult to fully capture distinct crop periods of initial inundation or 

harvest due to very active field management. Increased availability of Sentinel-1B, 

however, will enhance phenology monitoring. The rice phenology estimates are limited 

by the same satellite overpass dates. In general our length of season estimates for season 

1 seemed slightly lower than our local knowledge of about 100-115 days due to missing 

SAR data on June 28th (as some areas harvest around this time). However, it still 

highlights the utility of SAR for monitoring the length of season without the need to 

employ a complex algorithm or filtering.  

We attribute relatively low single-rice producer’s accuracy to the limited 

availability of training and validation data. This land cover class occupies less than 1% of 

the landscape and we could only obtain 41 polygons for validation. As such, when we 

adjusted the producer’s accuracy to get unbiased areal estimates, the accuracy decreased 

significantly. For example, VH10m un-adjusted producer’s accuracy for single rice is 
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97.0% with only 5 pixels out of 166 confused with other classes. However, after 

calculating the accuracy using unbiased areal estimates, the accuracy decreases to 59%. 

Whereas for double rice, the changes are less dramatic (i.e. just a few percentage points) 

due to appropriate sample size.  

With further analysis, the results could be useful for land cover versus land use 

mapping. In addition, based on the SAR signal, it is possible to map single rice and 

double rice areas with only the first season of data. Results could be useful for 

aquaculture applications and land use planning. It may also be beneficial to integrate 

moderate resolution Sentinel-1 SAR imagery with high resolution UAV-obtained 

imagery for relating to monitoring and improving crop growth parameter estimation (Uto 

et al. 2013). 

 

2.6 Conclusion 
Using a random forest classifier, we compared single and double crop paddy rice 

mapping using 6 different datasets based on varied polarizations (VV, VH, and both) as 

well as different spatial resolutions (10m and 20m). Local incidence angles for the 

complete SAR time-series dataset suggest that imagery can be obtained for the whole 

year with negligible variation reducing the need to account for angular influence on 

backscatter. The time-series Sentinel-1 SAR imagery was able to estimate start of season, 

end of season, and length of season for each rice crop at the commune level with 

promising results. Rice mapping estimates for the 6 datasets suggested the most accurate 

dataset to be VVVH10m (93.5% OA), whereas 20m datasets generally had lower overall, 

user’s and producer’s accuracies compared to the 10m datasets. Thematic change 

between the datasets suggested the least spatial variation in classes to be between VH and 
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VVVH (10m and 20m). The most common difference was between double crop rice and 

non-rice areas. 20m datasets overestimated rice land area more compared with 10m 

datasets, as pixels were too large to capture small roads and ditches within paddy fields. 

The 20m datasets, however, could be well-representative of not only rice land cover, but 

especially rice land use. Province-level variation in mapped rice areas suggested the most 

occurring with VV20m, and also more variation in single rice than double rice based on 

the coefficient of variation. Moderately-high spatial variation was found at the commune-

level with the maximum variation in rice area as 20% with VV10m and VH10m. This 

spatial variation could be critical for spatially-explicit land cover mapping applications. 

Average absolute deviation and coefficient of variation results suggest communes in the 

northern portion of the study area and those immediately surrounding Hanoi City have 

the most proportional variation. This is important as these areas are subject to peri-urban 

expansion and important for air quality studies as areas closest to the city could have the 

highest impact on urban air quality.  

Overall our study compared six different datasets (VV10m, VV20m, VH10m, 

VH20m, VVVH10m, and VVVH20m) for mapping paddy rice, evaluated importance of 

input bands from different dates for classification, estimated rice phenology and 

calculated rice landscape metrics. The results from our study provide useful insights for 

crop mapping/monitoring efforts using SAR datasets in general and particularly within 

the Red River Delta of Vietnam. 
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Chapter 3: Satellite data may underestimate rice residue and associated 
burning emissions in Vietnam2 
 

3.1 Abstract 

In this study, we estimate rice residue, associated burning emissions, and compare results 

with existing emissions inventories employing a bottom-up approach. We first estimated 

field-level post-harvest rice residues, including separate fuel-loading factors for rice 

straw and rice stubble. Results suggested fuel-loading factors of 0.27 kg/m2 (±0.033), 

0.61 kg/m2 (±0.076), and 0.88 kg/m2 (±0.083) for rice straw, stubble, and total post-

harvest biomass, respectively. Using these factors, we quantified potential emissions 

from rice residue burning and compared our estimates with other studies. Our results 

suggest total rice residue burning emissions as 2.24Gg PM2.5, 36.54Gg CO and 567.79Gg 

CO2 for Hanoi Province, which are significantly higher than earlier studies. We attribute 

our higher emission estimates to improved fuel-loading factors; moreover, we infer that 

some earlier studies relying on residue-to-product ratios could be underestimating rice 

residue emissions by more than a factor of 2.3 for Hanoi, Vietnam. Using the rice planted 

area data from the Vietnam government, and combining our fuel-loading factors, we also 

estimated rice residue PM2.5 emissions for the entire Vietnam and compared these 

estimates with an existing all-sources emissions inventory, and the Global Fire Emissions 

Database (GFED). Results suggest 75.98Gg of PM2.5 released from rice residue burning 

accounting for 12.8% of total emissions for Vietnam. GFED database suggests 42.56Gg 

PM2.5 from biomass burning with 5.62Gg attributed to agricultural waste burning 

                                                           
2 The presented material has been previously published in Lasko K, Vadrevu K P, Tran VT, Ellicott E, 
Nguyen T T N, Bui H Q, and Justice C 2017. Satellites may underestimate rice residue and associated 
burning emissions in Vietnam. Environmental Research Letters 12(8), 085006.  
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indicating satellite-based methods may be significantly underestimating emissions. Our 

results not only provide improved residue and emission estimates, but also highlight the 

need for emissions mitigation from rice residue burning. 

 

3.2 Introduction 

Crop residue burning is an important source of greenhouse gases and aerosols (Streets et 

al 2003; Crutzen and Andreae 1990). The burning of crop residues contributes to at least 

34% of global biomass burning emissions (Streets et al 2004). While these and other 

studies provide useful general estimates, analyses need to be region-specific to enable 

emissions mitigation. Of the different crop residues, rice residues are prevalently burned 

in South/Southeast Asian countries in addition to forest biomass burning (Streets et al 

2003; Biswas et al 2015).  

Rice (Oryza sativa) is the staple crop for livelihood in Southeast Asia and more 

specifically, Vietnam. During 2015, Vietnam produced 45.2 million metric tons of rice 

with most production in the Mekong River Delta (57%) and the Red River Delta (15%) 

(Vietnam Govt. Stats 2015). The Red River Delta is home to Hanoi, the capital of 

Vietnam which outside of the immediate downtown area, exhibits a mosaic landscape 

dominated by paddy rice, small-holder farms, and plantations, all intermixed amongst a 

growing peri-urban area (Pham et al 2015). Thus, in Hanoi, many residential and 

commercial areas are not only impacted by urban emissions, but also by smoke from rice 

residue burning. Studies have attributed crop residue burning to local and regional 

impacts including long-range transport with effects persisting for weeks or months 

impacting air quality, atmospheric chemistry, weather, and biogeochemical cycles 

(Badarinath et al 2007; 2009; Vadrevu et al 2012; 2014; 2015; Cristofanelli et al 2014; 
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Reddington et al 2014; Ponette-Gonzalez et al 2016; Yan et al 2006; Le et al., 2014). For 

Hanoi in particular, nocturnal radiation inversions occur during the October rice harvest 

and burning, greatly enhancing the negative air quality impact of fine-particulate matter 

emissions (Hien et al 2002).  

Around Hanoi, the typical paddy rice field size ranges from 150-2,280m2 

(Patanothai 1996) with an average of 790m2 (σ = 625m2) (this study). Hanoi is located 

within the heart of the Red River Delta which is Vietnam’s 2nd largest rice producing hub 

with over 35% of the land dedicated to rice (Vietnam govt. stats 2015). Rice is routinely 

irrigated and double-cropped in Hanoi Province with winter rice harvested during June 

and spring rice harvested during late-September–October. After harvest, a large volume 

of rice straw is left in rows or piles on the field as well as stubble (figure 3.1). In order to 

prepare the field for the next harvest, farmers routinely burn the residues. Typical burning 

of a rice straw pile and post-burned field in Hanoi are shown (figure 3.2). Mostly, the 

straw is burned or reincorporated into the soil while some is used for cattle feed, cook 

stoves, composting, and mushroom cultivation (Trach 1998; Hong Van et al 2014; Duong 

and Yoshiro 2015; Nguyen 2012; Oritate et al 2015). In comparison to the rural areas, 

suburban areas such as Hanoi typically burn a higher proportion of rice straw as these 

areas have less cattle relying on it for food (Duong and Yoshiro 2015). Thus, with a 

higher proportion of residue burned in Hanoi, there is amplified impact from emissions. 

Further, post-harvest rice straw is assumed to have moisture content of about 15% or less, 

however this varies depending on conditions, and residue structure/density can also have 

an impact on resulting emissions (Korenaga et al 2001; Arai et al 2015). In order to 
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estimate emissions impact, accurate bottom-up quantification of residue production and 

burning is needed.  

 

Earlier studies on estimating emissions from crop residue burning have used 

agricultural production data, a crop specific residue-to-product ratio, an estimate of the 

proportion of residue subject to burning, emission factors, and a combustion factor 

(Streets et al 2003; Yevich and Logan 2003; Yan et al 2006; Cao et al 2008; Gadde et al 

2009; Kanabkaew and Oanh 2011; Vadrevu and Lasko 2015; Zhang et al 2015). While 

these studies yield insight on emissions estimation, they can be improved by 

incorporating field-based locally/regionally estimated fuel-loads or emissions factors 

Figure 3.1. a) Typical machine-harvested field in Hanoi province with dry straw laid in 
neat rows; b) typical rice straw pile prior to burning. 

Figure 3.2. a) Rice straw pile burning; b) Post-burned rice field with most straw burned 
efficiently, however much stubble is left unburned. 
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established from field measurements (Oanh et al 2011; Kanokkanjana et al 2011; Rajput 

et al 2014; Hong Van et al 2014; Arai et al 2015). We note that comprehensive province-

level field-estimates of rice straw and rice stubble have yet to be generated for Northern 

Vietnam.  

 Field studies estimating rice straw, stubble, and total post-harvest biomass 

production are labor intensive and costly. Accordingly, remote sensing with its synoptic 

and consistent coverage can be used for estimating these factors. In Southeast Asia and 

Vietnam, forecasting of rice yield or biomass has been done using X-band Synthetic 

Aperture Radar (SAR) (Bouvet et al 2014), C-band SAR (Ribbes and Le Toan 1999; 

Chakraborty et al 2005; Lam-Dao et al 2009; Inoue et al 2014;), and L-band SAR 

(Torbick et al 2011). Further details on these and related mapping applications are 

available in recent reviews (Mosleh et al 2015; Dong and Xiao 2016). Developing a 

relationship between field-estimated rice biomass and SAR signal is useful for upscaling 

field studies to broader regions and time periods. Thus, it contributes to systematic and 

operational monitoring of rice residue production useful for not only estimating 

emissions from burning, but also emissions mitigation such as bioenergy generation.  

In this study, we develop and assess a simple method for efficient and accurate 

field estimation of rice residue fuel-loading factors for straw, stubble, and total post-

harvest biomass. We use these as inputs to calculate resulting potential residue burning 

emissions for Hanoi, Vietnam and compare results using fuel-loading factors from other 

studies. Using our fuel-loading factors and those from other studies we upscale our 

results to the entire Vietnam and compare with an existing emissions inventory to assess 

rice residue burning contribution to total emissions from all sources. We also compare 
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our emission estimates with the satellite-derived estimates from the Global Fire 

Emissions Database (GFED). We then explore the potential forecasting of rice residue 

using field and SAR data.  

We specifically address the following questions: 1) How much rice straw, stubble, and 

total post-harvest biomass is left in the field, and how does this compare to other regional 

studies? 2) What are the resulting rice residue burning emissions for major pollutants 

(PM2.5, CO, and CO2) in Hanoi Province? 3) What are the resulting rice residue burning 

emissions for the entire Vietnam and how do they compare to the existing emissions 

inventories from different sources? 4) How well does SAR data enable forecasting of 

post-harvest biomass? We addressed these questions using a field and remote sensing 

based approach representative of typical double-cropped rice region in Hanoi Province, 

Vietnam. 

 

3.3. Datasets and methods 

3.3.1 SAR data 

Sentinel-1 carries a 12m long C-Band SAR yielding a unique ability to penetrate most 

cloud coverage. Sentinel-1 is a constellation of 2 satellites including Sentinel-1A with 

data since October 2014 and Sentinel-1B launched in spring of 2016. The constellation 

has a repeat-pass of approximately 6 days for most of the world. From the Alaska 

Satellite Facility, we obtained a single ground-range detected, interferometric wide-swath 

(IW), dual-polarized image from Sentinel-1A just prior to harvest for Hanoi Province on 

September 21, 2016. We processed the imagery following detailed guidelines from 

European Space Agency using the freely-available S1 toolbox (Zuhlke et al 2015) 

including thermal noise reduction, multi-looking azimuthal compressions to 20m spatial 
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resolution to reduce noise, terrain correction using the SRTM 30m DEM, speckle filter, 

and radiometric adjustments to correct for viewing geometry effects (Liang 2005; Torbick 

et al 2011).  We first generated a rice map from a full time-series of Sentinel-1A time-

series imagery for 2016 using a support vector machine classification method (figure 3.3) 

and validated it using field data and fine-resolution imagery from Google Earth and field 

photos; the resulting map had an overall accuracy of 94.3% and approximately 220,000 

ha of rice land area (Lasko et al 2018). The resulting rice map built upon results from 

related studies (Torbick et al 2017; Nguyen D et al 2015) and was used to delineate rice 

from non-rice for field sampling (figure 3.3). 

 

The field data for generating the fuel-loading factors were collected from Hanoi 

Province and include georeferenced photos of rice and non-rice areas used in our rice 

area mapping classification training or accuracy assessment (Lasko et al 2017). For 

relating our field-level fuel-loading data to SAR, we used the Sentinel-1 VH-polarized 

Figure 3.3. a) multitemporal SAR composite; b) our classified rice map used to delineate 
rice areas for field sampling 
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image obtained approximately 1-2 weeks prior to harvest (Sept. 18, 2016). The field data 

collection is described in the subsequent section. 

 

3.3.2 Rice residue and emissions estimation 

We developed a field-based approach to estimate total post-harvest rice residues 

including straw and stubble left in the field for burning. Using a two-stage cluster 

sampling and the validated rice map generated from Sentinel-1A time-series imagery 

(figure 3.3) we divided the study area into 5km equal-area grid cells and randomly 

selected 13 rice-containing cells where 4 randomly selected machine-harvested fields 

were sampled in each cell for a total of 52 field samples (C.I. = 9.6%, C.L. = 95%) 

(Sutherland 2006) (figure 3.3). Within each harvested field, we measured the total straw 

and stubble weight in four randomly selected 0.5m  x 0.5m quadrats using a Salter-

Brecknell digital scale, bag with known weight, and an Extech MO290 moisture device 

for relative moisture content. Stubble was cut at the base before weighing, and the weight 

of the bag was subtracted from the measurements. We also collected ancillary data 

including field length, width, and number of straw rows. We estimated the amount of 

straw per square meter for a given field based on the following (equation 3.1): 

𝑄𝑄𝑟𝑟𝑟𝑟 =   
(𝑅𝑅𝑅𝑅𝑤𝑤 x (1− 𝑅𝑅𝑅𝑅𝑚𝑚)) x 𝑆𝑆𝑆𝑆 x 𝑅𝑅𝑙𝑙

𝐴𝐴  

Where 𝑸𝑸𝒓𝒓𝒓𝒓 is the quantity of dry rice straw in kg/m2 for a given field, 𝑹𝑹𝑹𝑹𝒘𝒘 is the 

wet rice straw weight per linear meter of a straw row averaged from the quadrat 

measurements, 𝑹𝑹𝑹𝑹𝒎𝒎 is the average field-measured relative moisture content, 𝑺𝑺𝑺𝑺 is the 
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number of straw rows in the field, 𝑹𝑹𝒍𝒍 is the length of the straw rows in meters, and 𝑨𝑨 is 

the field area in m2. 

We estimated the amount of rice stubble for a given field based on a similar 

(equation 3.2): 

 

 

Where 𝑸𝑸𝒔𝒔𝒔𝒔 is the quantity of dry rice stubble in kg for a given field, 𝑺𝑺𝑺𝑺𝒘𝒘 is the 

average weight of rice stubble per m2 from the quadrat measurements, 𝑺𝑺𝑺𝑺𝒎𝒎 is the 

average measured rice stubble relative moisture content, 𝑨𝑨 is the area of the field 

measured in m2. The resulting 𝑸𝑸𝒔𝒔𝒔𝒔 yields a maximum rice stubble fuel-loading factor in 

kg/m2. We also measured the number of plants in each quadrat for a measure of rice 

planting density. 

Thus, we have three separate fuel-loading factors: straw, stubble, and total post-

harvest biomass factors. Using these fuel-loading factors we estimated rice residue 

burning emissions based on three scenarios 1) All rice straw is burned; 2) all rice straw 

and stubble are burned; 3) most-likely amount burned based on the previously-mentioned 

surveys from the literature. We compared these estimates to the typical approach used in 

most studies which relies on a residue-to-product ratio from government data on crop 

production. In addition, we also compared maximum potential burning estimates derived 

using fuel-loading factors from two smaller-scale field studies in villages in Thailand, and 

factors from another small-scale study in Can Tho, Vietnam located in the Mekong Delta.  

We calculated the maximum potential emissions from rice residue burning based 

on the following (equation 3.3): 

 𝑄𝑄𝑠𝑠𝑠𝑠 =  𝑆𝑆𝑆𝑆𝑤𝑤 x (1 − 𝑆𝑆𝑆𝑆𝑚𝑚) x 𝐴𝐴 
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𝐸𝐸𝑎𝑎 = 𝐴𝐴 x 𝐹𝐹𝐹𝐹 x 𝐸𝐸𝐸𝐸𝑎𝑎 x 𝑃𝑃𝑃𝑃 x 𝐶𝐶𝐶𝐶 

Where 𝑬𝑬𝒂𝒂 is the maximum potential rice residue burning emissions for a given 

pollutant in gigagrams, 𝑨𝑨 is the paddy rice planted area in hectares based on the Vietnam 

government statistics, 𝑭𝑭𝑭𝑭 is the fuel-loading factor or that estimated from crop 

production data in kg/ha, 𝑬𝑬𝑬𝑬𝒂𝒂 is the emissions factor for a given pollutant species in 

g/kg, 𝑷𝑷𝑷𝑷 is the proportion of residue subjected to burning (from 0-100%, i.e. residue left 

in the field to be burned), and 𝑪𝑪𝑪𝑪 is the combustion factor indicating the burn 

completeness (from 0-100%) for the residues subjected to burning. For all scenarios 

estimating emissions in Hanoi Province, we selected a combustion factor of 0.8 (Aalde 

2006) as the best available factor representative of croplands in general, the rice area in 

Hanoi Province based on Vietnam government statistics of 200.8 ha (Vietnam 

Government 2015), the emission factors for each species: CO 102g/kg (±33g/kg), CO2 

1585g/kg (±100g/kg), and PM2.5 6.26 g/kg (±2.36g/kg) (Akagi 2011), the proportion 

burned as 100% for the maximum emissions scenario, and 50% straw and 10% stubble 

for the most-likely scenario based on the literature and our field experience (Tran et al 

2014; Nguyen 2012; Duong and Yoshiro 2015). To estimate the fuel-loading factor for the 

production-statistics based scenario, we used a regionally-estimated residue-to-product 

ratio for rice straw of 0.75 (Menke et al 2007) combined with the production data from 

the government statistics (Vietnam Government 2015) resulting in a fuel-loading factor 

of 3803kg/ha. For the other smaller-scale studies, we used their fuel-loading factors of 

3600kg/ha (Kanokkanjana et al 2011), 5800kg/ha (Oanh et al 2011), and 3470kg/ha 

(Hong Van et al 2014). The latter factor was derived by averaging the reported seasonal 

fuel-loading factors of 3500kg/ha (Spring-Summer), 4300kg/ha (Winter-Spring), and 
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2600kg/ha (Summer-Autumn). For each scenario, all factors were held constant except 

for the fuel-loading factor and proportion burned.  

As our study measurements are representative of a typical double-cropped paddy 

rice landscape and results from (Hong Van et al 2014) cover triple cropping in Mekong 

Delta Vietnam, we up-scaled the results from both studies to estimate contribution of 

PM2.5 emissions from rice residue burning for the entire Vietnam. Rice planted area for 

year 2008 was obtained from Vietnam Statistics Office (Vietnam 2015). We applied the 

triple cropping factors to the Mekong Delta rice area, and our study fuel-loading factors 

to the rest of the rice area in Vietnam. We compared the resulting rice burning emissions 

estimates with an existing emissions inventory (Regional Emission inventory in ASia 

(REAS)) for the latest available year, 2008 (Kurokawa et al 2013). We calculated 

Vietnam’s total emissions (equation 3.3) for different scenarios including the maximum 

potential emissions (all residue burned), and the most-likely scenarios of straw and 

stubble burning based on the literature and our field experience suggesting 50% of straw 

burned and 10% of stubble burned (Nguyen 2012; Hong Van et al 2014; Tran et al 2014; 

Duong and Yoshiro 2015; Oritate et al 2015).  

While comparison of rice residue burning emissions with REAS yields insight 

into the relative contribution to total PM2.5 emissions, this does not address how our field-

derived estimates compare with available satellite-derived estimates. The latest available 

GFED version 4.1s at 0.25 x 0.25 degree was used to derive total biomass burning 

emissions for Vietnam, GFED also includes the portion contributed from agricultural 

waste burning (van der Werf et al 2010) based on MODIS burned area (Giglio et al 

2013), and supplemented by small fire burned area (Randerson et al 2012). We calculated 
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the emissions for the same year as REAS using the monthly datasets, and the same 

emission factors as our field study to maintain consistency. Accordingly, the emissions 

were derived using the amount of dry matter burned (DM) from GFED and multiplied 

with the aforementioned emission factors and summed for entire Vietnam.  

We also evaluated the accuracy of our field-based straw measurements in eight 

additional randomly selected fields within Hanoi Province. First, following the same 

procedure as the initial field data collection we calculated the expected dry straw weight. 

To calculate the observed dry straw weight, we collected all rice straw within the field 

and weighed it. After factoring in the weight of the measuring bags and the average 

moisture content we arrived at an observed dry straw weight. We then compared this to 

our expected dry rice straw weight (kg/m2) estimated from our field calculation (equation 

3.1). Using these observed and expected rice straw values we calculate an area-weighted 

root mean square error (RMSE). We also generated a residual plot to check for systematic 

errors. As the stubble measurement is more straightforward, we assumed the same 

accuracy as the straw measurement. 

 In addition to fuel-loading factor error, we also calculated the resulting emissions 

error rates through the simplified error propagation equations using reported error rates 

for emission factors, and fuel-loading factors (Harvard 2013).  

 

3.4 Results 

3.4.1 Fuel-loading factors 

Results on field-level distribution of values for rice straw, stubble, total post-harvest 

biomass, straw moisture content, stubble moisture content, and field area are shown in 

figure 3.4. The average fuel-loading factors as measured were: rice straw 0.27 kg/m2, rice 
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stubble 0.61 kg/m2, and total post-harvest residue 0.88 kg/m2; table 3.1 lists more details 

including standard deviation and moisture content. The range of standard deviations 

suggests some spatial variability for the fuel-loading factors and higher ranges for the 

moisture content attributed to recent rain events. We also found an average field size of 

790 m2 (σ =625m2), and average number of rice plants 35.1 per m2 (σ =5.2). Based on the 

Vietnam government’s rice planted area data for 2015 and our fuel-loading factor, we 

estimated total straw production for Hanoi Province at 433.7Gg of dry rice straw. We 

also estimated total dry rice stubble as 979.9Gg, and total post-harvest rice biomass as 

1413.6Gg of residue.  

Figure 3.4. Boxplots highlighting the distribution of field values for field area, straw, 
stubble, and total post-harvest residue, as well as moisture content. 

Table 3.1 Field-based residue estimates. Uncertainty for rice straw (±0.033), Rice Stubble 
(±0.076), Total Residue (±0.083) kg/m2, Moisture content (±3%). 
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We observed strong correlations between different field parameters (figure 3.5) 

i.e., field area and estimated rice stubble (r2=0.84), field area and estimated rice straw 

(r2=0.88), field area and total post-harvest biomass (r2=0.89) and number of straw rows 

and field width (r2=0.92). We also conducted an accuracy assessment of the field-

estimated fuel-loading factors. Based on our field measurements of rice straw, we found 

an RMSE of 0.041 kg/m2 between the observed and expected values (equation 3.1). After 

also factoring in error propagation from the moisture content device (3% lab-estimated) 

and scale (0.4%) we arrived at our final fuel-loading factor estimates; dry rice straw is 

estimated to be 0.27kg/m2 (±0.033), dry rice stubble at 0.61kg/m2 (±0.076), and total 

post-harvest biomass at 0.88kg/m2 (±0.083).  Further, for our fuel-loading factors we 

observed a moderate relationship between the observed and expected rice straw values (r2 

Figure 3.5. Plots of rice residue parameters measured in the field. 
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= 0.63, p <0.05) (figure 3.6) suggesting slight overestimation in our expected rice straw 

values attributed to field variability including occasional degraded/cut stalk included in 

measurements.  

As compared with the rice straw amount derived from the crop production 

statistics, our rice straw factor is slightly lower (3803kg/ha vs. 2700kg/ha). However, 

when incorporating stubble, we account for a total biomass estimate which is not 

calculated in the production statistics method. We note other studies outside Vietnam 

found higher fuel-loading factors including 3600kg/ha and 5800kg/ha in two separate 

studies in Thailand (Kanokkanjana et al 2011; Oanh et al 2011), while the other study in 

the Mekong Delta, Vietnam had a lower average of 3470kg/ha (Hong Van et al 2014). 

This wide variation suggests region specific fuel-loading factors are an important base for 

emissions estimates. 

 

Figure 3.6.Relationship between the observed and predicted rice straw values from the 
accuracy assessment highlighting moderately strong relationship. 
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3.4.2 Emissions estimates 

In Hanoi Province, we used our resulting fuel-loading estimates for quantifying rice 

residue emissions. We used the cropped area data, combustion factor, and emission 

factors for CO, CO2, and PM2.5 as described above. We present the emissions for each 

scenario including: maximum emissions from typical production-statistics, maximum 

emissions using fuel-load factors from field-based study in Can Tho, Vietnam (Hong Van 

et al 2014), and maximum potential and most-likely emissions using our fuel-load factors 

of rice straw, and total post-harvest biomass. We also estimated maximum potential 

emissions using fuel-load factors from two village-level studies in Thailand 

(Kanokkanjana et al 2011; Oanh et al 2011) using their respective rice straw fuel-loading 

factors of 3600kg/ha and 5800 kg/ha. Our results suggest maximum emissions ranges for 

CO (44.24-144.19Gg), CO2 (687-2240Gg), and PM2.5 (2.72-8.85Gg) in table 3.2. Based 

on averaging the residue burning survey data and from our field experience, the most 

likely proportion burned is 50% straw and 10% stubble. We find the most-likely 

combined straw and stubble emissions for Hanoi as CO (36.54Gg), CO2 (567.79Gg), and 

Table 3.2. Potential emissions for Hanoi Province, Vietnam. Compares different estimates 
using typical methods employed in the literature, and also shows another Vietnam study. FL 
(kg/ha), emissions (gigagrams) 
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PM2.5 (2.24Gg). The individual scenario results are presented in table 3.2 including the 

error rates for each value in parentheses.  

We highlight notable variation between the different scenarios. While all rice 

stubble is not necessarily burned in the study area, in other regions such as India both the 

straw and stubble are routinely burned (Gadde 2009; Gupta et al., 2014; Vadrevu et al., 

2015). However, many studies estimating emissions from rice residue burning rely on 

residue-to-product ratios. Without accounting for rice stubble that is actually burnt on 

field, these and other studies may be underestimating emissions by a factor of about 2.3 

(table 3.2).  

We also estimated total rice residue burning emissions for the entire Vietnam 

during 2008 and compared with the existing emission inventory (Kurokawa et al 2013). 

Based on the most-likely emissions scenario (10% stubble, 50% straw burned), 75.98Gg 

of PM2.5 are emitted from rice residue burning in Vietnam with stubble accounting for 

18.36Gg and straw 57.62Gg. The total rice residue burning accounts for 12.8% of 

Vietnam’s total PM2.5 emissions and is the 2nd highest PM2.5 combustion source after 

fuelwood burning. However, if all rice residue is burned, rice emissions could result in up 

to 36.49% of total PM2.5 emissions. We also add our emissions estimates to the original 

total from the emissions inventory of 519.81Gg (Kurokawa et al 2013) and arrive at new 

maximum of 818.50Gg and most-likely total PM2.5 emissions of 595.79Gg for the entire 

Vietnam. Table 3.3 contains the factors used for estimation, and the individual scenario 

results including error estimates for residue burning emissions.  
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Table 3.3. Potential emissions from rice residue burning for Vietnam. Comparison with the REAS emission inventory, and contribution of rice 
residue to total PM2.5 emissions are also shown. Error estimates for emissions are in parentheses. MRD = Mekong River Delta. 
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GFED-derived PM2.5 total biomass burning emissions suggested 42.56Gg 

(±16.0Gg) with 5.62Gg (±2.1Gg) attributed to agricultural waste burning for the entire 

Vietnam. Accordingly, when agricultural waste burning emissions are compared with our 

field-derived residue burning emission estimates this suggests GFED underestimation by 

a factor of 13.5. Even if all biomass burning emissions (42.56Gg) were attributed to 

residue burning, this would still be less than our field-derived estimates by a factor of 1.8. 

We also highlight the region-level amount of biomass burning, amount of crop residue 

burning, and associated emissions in table 3.4 suggesting the highest fraction of crop 

waste burning to occur in the Mekong River Delta and Red River Delta where rice is the 

predominant land cover. The spatial variation of biomass burning and emission estimates 

is highlighted in figure 3.7.  

Table 3.4 GFED-derived regional biomass burned and resulting PM2.5 emissions 
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Figure 3.7 GFED spatial variation with region boundaries for 
total biomass burning and crop waste burning. 
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3.4.3 SAR data and biomass relationship 

To evaluate the relationship of SAR backscatter with rice straw and total post-harvest 

biomass, we selected a single Sentinel-1A image just prior to harvest for the Hanoi 

Province. We found a moderately-weak relationship between the SAR backscatter and 

field-measured rice straw (r2 = 0.323, p<0.01), while a moderate relationship was 

observed with the total rice biomass (r2 = 0.560, p<0.01) (figure 3.8). We observed a 

negative, linear relationship suggesting fields with lower backscatter values prior to 

harvest have more post-harvest biomass. The relationship is promising; however, it needs 

more refinement in order to be useful for estimating rice biomass and rice straw 

production prior to harvest. Other studies have found good results using SAR to estimate 

different rice field properties, biomass, or yield (Lam-Dao et al 2009; McNairn et al 

2004; Ribbes and Le Toan 1999; Wiseman et al 2014; Paloscia et al 1999; Bouvet et al 

2014; Erten et al 2016; Inoue et al 2014; Satalino et al 2015).  

 

3.5 Discussion 

In this study, we focused on measuring residue amounts from machine-harvested fields. 

With the increasing urbanization, infrastructure, wealth, and interconnectedness, we 

Figure 3.8 Spatial relationship of Sentinel-1 VH backscatter in dB with a) rice straw 
biomass; and b) total post-harvest rice biomass 
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anticipate most fields to switch from hand-harvesting to machine-harvesting (Nguyen et 

al 2016). Hand-harvested fields are typically cut slightly higher from the ground, thus 

they have more stubble and less straw to potentially burn. Thus, as machine-harvested 

fields become increasingly prevalent, residue burning emissions will be exacerbated, as it 

is more difficult to collect straw after machine harvest (Nguyen et al 2016). Some studies 

ignore the stubble that is left on the ground, thus underestimating total residue and 

resulting emissions. However, as undertaken in this study we quantify fuel-loading 

factors for straw and stubble which provides an improved assessment of rice residue 

burning emissions, as other studies often ignore the stubble factor. Our estimates 

incorporating fuel-loading factors for rice straw, rice stubble, and total rice biomass were 

useful in refining emissions in the Hanoi Province and entire Vietnam. The results can be 

extended to similar small-holder rice production lands. We note that farmers may burn 

rice straw either in a pile or in an open-manner including the stubble and straw. Thus, in 

addition to variable fuel-loads from different harvest methods, the orientation of the rice 

straw and piling might play a role in the combustion, moisture content, emissions factor, 

and resulting emissions impact; some of which have been explored, but further 

quantification is needed (Arai et al 2014; Heinsch et al 2016). Understanding the 

variation in residue management practices and how they impact emissions, may provide 

useful additional information on emissions mitigation. 

Although the total estimated rice burning emissions may be relatively small as 

compared to other combustion and non-combustion sources (Kurokawa et al 2013), rice 

residue burning in Hanoi is practiced two times per year, amplifying and temporally-

concentrating the impact from burning. Accordingly, the air quality in Hanoi is frequently 
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degraded as seen by local haze, and a high air quality index (Nguyen et al 2015). Thus, 

emissions mitigation from rice residue burning is one critical aspect for improving air 

quality and human health.  

Uncertainty with regard to different aspects of fuel-loading and emissions are 

important to characterize. Further, due to limited availability of data we highlight some 

future needs which could improve upon the rice stubble and straw burning emissions 

estimates. Accordingly, improvements could be made by: using separate combustion 

factors and emission factors for straw and stubble, deriving improved emissions factors 

specific to rice in both the Red River Delta and Mekong River Delta, improved mapped 

rice areal estimates, region/crop specific combustion factors for straw and stubble, and 

machine versus hand-harvested fuel-loading factor comparisons. We note the government 

estimates of rice land area for Hanoi are different: government statistics (201,000 ha) 

versus mapped area (220,000 ha). Accordingly, these variations could have significant 

impact on resulting emissions estimates, especially once aggregating results to the 

national scale and accounting for both seasons.   

Notably low GFED emission estimates could be attributed to a variety of factors 

such as prevalent cloud cover impacting satellite observations (Wilson and Walter 2016), 

small size of agricultural fires in Vietnam, ephemeral agricultural fires, active field 

management, or burning after MODIS overpass time. All of these factors may lead to 

satellite-based underestimation of fires and resulting emissions regardless of the fire 

detection algorithm strength in GFED or any other emission database. We further note 

that the GFED agricultural waste burning data includes emissions from all agricultural 

sources, yet the emissions are still notably lower than rice residue burning alone. 
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However, these results are presented with the caveat that the field-based emission 

estimates could be improved through refinements mentioned in the limitations section. 

 

3.6 Conclusion 

The first part of our study characterized total post-harvest rice residues for the small-

holder rice-dominated province of Hanoi, Vietnam. From the field, we developed 

separate straw, stubble, and total biomass fuel-loading factors representative of a typical 

double-cropped rice region of Vietnam. Our results on rice residues suggested relatively 

higher total post-harvest residue factor than the earlier studies. We used Sentinel-1 C-

band SAR data for field sampling of residues and to infer the relationship between post-

harvest biomass and SAR. We found a moderately weak relationship between the SAR 

backscatter and field-measured rice straw, while a moderate relationship was observed 

with the total rice biomass. These results are promising, however, more advanced 

modelling might be necessary for forecasting the post-harvest biomass using SAR data. 

Using field data from multiple studies, we then estimate residue burning emissions. We 

found that rice residue burning accounts for ~13% of total PM2.5 emissions in Vietnam, 

and is the 2nd largest PM2.5 source after fuelwood burning. We compared GFED-

derived biomass burning emissions and crop waste burning emissions with our field-

derived residue burning emissions. We found a likely notable underestimation by GFED 

for Vietnam by a factor of over 13. These results suggest a need for improved satellite-

derived estimates. Further, emissions mitigation in this sector may be more critical than 

previously known and is increasingly important for health and air quality concerns in 

Hanoi, Vietnam. 
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Chapter 4: Improved rice residue burning emissions estimates: Accounting 
for practice-specific emission factors in air pollution assessments of 
Vietnam3 
 
4.1 Abstract 

In Southeast Asia and Vietnam, rice residues are routinely burned after the harvest to 

prepare fields for the next season. Specific to Vietnam, the two prevalent burning 

practices include: a). piling the residues after hand harvesting; b). burning the residues 

without piling, after machine harvesting. In this study, we synthesized field and 

laboratory studies from the literature on rice residue burning emission factors for PM2.5. 

We found significant differences in the resulting burning-practice specific emission 

factors, with 16.9g kg-2(±6.9) for pile burning and 8.8g kg-2(±3.5) for non-pile burning. 

We calculated burning-practice specific emissions based on rice area data, region-specific 

fuel-loading factors, combined emission factors, and estimates of burning from the 

literature. Our results for year 2015 estimate 180Gg of PM2.5 would result from the pile 

burning method and 130Gg would result from non-pile burning method, with the most-

likely current emission scenario of 150Gg PM2.5 emissions for Vietnam. For comparison 

purposes, we calculated emissions using generalized agricultural emission factors 

employed in global biomass burning studies. These results estimate 80Gg PM2.5, which is 

only 44% of the pile burning-based estimates, suggesting underestimation in previous 

studies. We compare our emissions to an existing all-combustion sources inventory, 

results show emissions account for 14-18% of Vietnam’s total combustion PM2.5 

depending on burning practice. Within the highly-urbanized and cloud-covered Hanoi 

                                                           
3 The presented material has been previously published in: Lasko K, and Vadrevu K P 2018. Improved rice 
residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution 
assessments of Vietnam. Environmental Pollution 236, 795-806.  
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Capital region (HCR), we use rice area from Sentinel-1A to derive spatially-explicit 

emissions and indirectly estimate residue burning dates. Results from HYSPLIT back-

trajectory analysis stratified by season show autumn has most emission trajectories 

originating in the North, while spring has most originating in the South, suggesting the 

latter may have bigger impact on air quality.  From these results, we highlight locations 

where emission mitigation efforts could be focused and suggest measures for pollutant 

mitigation. Our study demonstrates the need to account for emissions variation due to 

different burning practices (figure 4.1). 

 

Figure 4.1 Flowchart for chapter 4. 
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4.2 Introduction 

Rice (Oryza sativa) is one of the prevalent staple crops for the majority of the people in 

Southeast Asia and Vietnam. Paddy rice production in Vietnam has consistently 

increased over the past decade, from 32.5 million tons in 2000 to 45.2 million tons in 

2015 (Vietnam GSO, 2017). Concurrently, the area under cultivation has negligibly 

increased with 7.67 million ha in 2000 to 7.83 million ha in 2015 which indicates 

agricultural intensification.  

Rice residue (rice straw) is defined as the inedible fibrous plant material left in the 

field after the harvest. It is routinely burned throughout many rice growing regions such 

as Philippines, China, India, and Thailand in addition to Vietnam (Badarinath et al. 2006; 

2009; Sahai et al. 2007; Zhang et al. 2008; Gadde et al. 2009; Vadrevu et el 2011; Kharol 

et al. 2012; Kanokkanjana and Garivait 2013; Hong van 2014; Huang et al. 2016). While 

other uses for the residue exist such as for animal feed, mushroom cultivation, or 

bioenergy production, the residue is routinely burned in order to clear the fields for the 

next crop season. Burning results in emissions of trace gases and aerosols (Streets et al. 

2003; Wiedinmyer et al. 2011; Zhang et al. 2017). Unlike most urban or industrial 

sources, rice burning emissions are focused in a short time period, which has implications 

for emission inventories, and impacts on local air quality and public health. Studies have 

suggested significant impact of biomass burning emissions on air quality including rice-

wheat residue burning in Punjab, India (Badarinath et al. 2009; Vadrevu et al. 2011; 

Vadrevu and Lasko 2015); peat and palm plantations in Indonesia (Gaveau et al. 2014; 

Hayasaka et al. 2014; Vadrevu et al. 2014; Marlier et al. 2015), vegetation fires in 

southeast Asia (Vadrevu and Justice, 2011; Reddington et al. 2014; Shi et al. 2014; 

Crippa et al. 2016), agricultural waste burning in China impacting regional and local haze 
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(Cheng et al. 2014; Zhang and Cao 2015; Liang et al. 2017; Yin et al. 2017). Studies have 

also shown variation and uncertainty in emissions inventories for biomass burning in 

agricultural lands (Kurokawa et al. 2013; Saikawa et al. 2017; Shi et al. 2017; Yadav et 

al. 2017; Lasko and Vadrevu 2018). In addition to local and regional transport, 

agricultural biomass burning events have been found to transport air pollution such as 

black carbon through long-range transport, for example with impacts on the Himalayas 

and across other remote locations (Eckhardt et al. 2007; Ramanathan 2008; Jung and Kim 

2011; Vadrevu et al. 2012; Lin et al. 2013; Cayetano et al. 2014; Ikeda and Tanimoto 

2015; Yadav et al. 2017). The local and regional effects of biomass burning episodes can 

persist for weeks to months, impacting atmospheric chemistry, weather, biogeochemical 

cycles, and animal health (Yan et al. 2006; Badarinath et al. 2009; Cristofanelli et al. 

2014; Ponette-Gonzalez et al. 2016; Sanderfoot and Holloway 2017). 

High concentrations of fine-particulate matter (PM2.5) have been found in urban 

areas across Southeast Asia including Vietnam, Singapore, Thailand, India, and Indonesia 

with PM2.5 concentrations averaging 44-168ug/m3, routinely exceeding World Health 

Organization air quality standards (Oanh et al. 2006). Moreover, PM2.5 can have a high 

proportion of very fine particles less than 1µm in diameter with elements such as Pb and 

Cr, detrimental to human health (Khan et al. 2015; You et al. 2017). These high 

concentrations in Southeast Asia can be attributed to a variety of sources such as 

industry, transportation, and biomass burning. Moreover, the detrimental health effects of 

PM2.5 are even linked to health conditions such as Tuberculosis, as well as premature 

death (Pope et al. 2007; You et al. 2016).  
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Use of satellite data for quantifying biomass burning emissions has been 

demonstrated by earlier studies (van der Werf et al. 2006; Langmann et al. 2009; Mieville 

et al. 2010; Kaiser et al. 2012; Randerson et al. 2012; Desservettaz et al. 2017; van der 

Werf et al. 2017). However, monitoring small-holder agricultural fires and resulting 

emissions is difficult mainly due to the ephemeral nature of agricultural fires, combined 

with timing of satellite overpass, small flaming fire size, and cloud cover obstructing 

observations (Justice et al. 2002). For example, in Vietnam, using the MODIS Collection 

6 active fires averaged for 2003-2015 and MODIS cloud fraction (Giglio et al. 2016; 

Platnick et al. 2003), we highlight that relatively low numbers of agricultural fires are 

detected in regions with known agricultural fires, especially during cloudy months and 

peak burning times (figure 4.2). While in some other biomass burning regions, 

significantly more agricultural fires are detected such as in India, China, Myanmar, and 

Figure 4.2 MODIS Collection 6 active fire counts for the Red River Delta and Mekong 
River Delta averaged with 2003-2015 data. Cloud fraction is over 20% higher during 
main dry season harvest in RRD (June) than with main harvest in MRD (Feb./March). 



89 
 

Thailand (Korontzi et al. 2006; Bonnet and Garivait 2011; Giglio et al. 2013; Vadrevu 

and Lasko 2015; Chen et al. 2017). Thus, because of the difficulty to detect agricultural 

fires in Vietnam, other approaches may be necessary to indirectly estimate approximate 

date and location of burning.  

In Vietnam, rice is either harvested by machine such as a combine harvester, or by 

manual cutting (hand-harvest) using sickles or knives to cut the rice crop below the 

panicle. An example of a hand-harvested field and machine-harvested field with 

associated pile burning and non-piled burning in Vietnam are shown in figure 4.3. For 

hand-harvested fields, the rice straw is placed into a pile immediately after it is harvested 

and threshed, retaining moisture. Whereas in machine-harvested fields the rice is cut and 

threshed in one collective action, resulting in the rice straw in neat and thin rows within 

the field leaving the residue more exposed to dry out faster. These harvest practices are 

important because the resulting residue is burned differently (large, wet piles versus drier 

and less dense spreading fires). These different burning practices (pile burning versus 

non-piled burning) result in different combustion behavior such as smoldering or flaming 

with varied combustion efficiency resulting in different emissions (Korenaga et al. 2001; 

Christian et al. 2003; Hays et al. 2005; Chen et al. 2010; Akagi et al. 2011; Hayashi et al. 

2014; Oanh et al. 2015; Arai et al. 2015; Zhang et al. 2015). Additionally, field studies 
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have been found to have higher EFs than lab studies, attributed to more realistic field 

conditions such as residue moisture content (Holder et al. 2017).  

Considering the above emissions variations specific to different rice residue burning 

practices and difficulty in estimating emissions using optical remote sensing data in 

Vietnam, we specifically addressed the following questions: 1) How do the different 

emission factors compare between pile burning and non-pile burning? 2). How much do 

PM2.5 emissions vary for different scenarios based on the different rice straw burning 

practices; and how do they compare with estimates provided by global studies? 3) How 

much residue burning emissions are emitted based on synthetic aperture radar (SAR) 

satellite-based estimates of rice area under cultivation? 4) Considering the limitations of 

satellite fire detections in this area, are there any indirect approaches useful to estimate 

Figure 4.3. Harvested rice fields representative of the two most common burning 
practice in Southeast Asia and Vietnam. Pictures taken by author in Hanoi Province 
during June and October 2016. 
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rice residue burning dates? 5) What is the general trajectory of polluted air parcels into 

Hanoi city during the rice residue burning events, and are there any patterns? We 

addressed the above questions specific to the Hanoi Capital Region and Vietnam by 

integrating ground-based measurements, SAR data and combining emission factors for 

different rice residue burning scenarios. 

 

4.3 Study area 

We conducted this study for two focus regions: 1) the entirety of Vietnam to arrive at 

national-scale rice residue burning emissions; and 2) the rice-dominated provinces of the 

Hanoi Capital Region (HCR), to highlight spatial location and transport of emissions into 

this urban area. The HCR includes a large portion of the Red River Delta, Vietnam’s 

oldest and 2nd largest rice producing hub after the Mekong River Delta and includes the 

provinces adjacent to Hanoi. In this study, we included all of the rice-dominated 

provinces of the HCR with rice area occupying more than 20% of land area according to 

the Vietnam General Statistics Office: Bac Ninh (44% rice), Hung Yen (43%), Ha Nam 

(39%), Hanoi (33%), and Vinh Phuc (23%). In the Red River Delta, rice is planted with 2 

main seasons: the first in February after the Tet holiday and harvested and burned around 

June, while the second is planted around July and harvested and burned around October. 

The typical field size in the region is wide ranging, but averages about 800m2 (Lasko et 

al. 2017). While rice in the Red River Delta and most of Vietnam is grown in two 

seasons, in the Mekong River Delta, many farmers practice three rotations of rice 

resulting in a large amount of rice residues (Kontgis et al. 2015). Much of the rice 

residues including straw and stubble are subjected to burning to clear the land for the next 

planting (Pham 2011; Hong Van et al. 2014). Specifically, after the harvest, the rice 
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residues are either pile burned or non-pile burned (figure 4.3). In addition to rice, the 

densely populated region is home to over 10 million inhabitants with a vibrant economy 

including aquaculture, fisheries, mangrove forestry, manufacturing, and construction 

industries (Devienne 2006). 

In this region, local climate conditions of nocturnal radiation inversions during the 

October burning time, can contribute to an amplified emission effect (Hien et al. 2002). 

Hanoi, the city with the highest PM2.5 concentration in Vietnam, has exceedingly high 

concentrations of PM2.5 ranging daily from 26-143ug/m3 with sources especially 

attributed to secondary pollutant formation, diesel traffic, cookstoves, and industry (Hai 

and Oanh 2013). Hanoi’s monthly PM2.5 concentrations consistently exceed 35ug/m3 

with the highest during Dec-Mar attributed to drier weather conditions, as well as local 

traffic and industrial pollution (Oanh et al. 2006; Nguyen et al. 2015). 

 

4.4 Methods 

4.4.1 Emission factors 

To date, studies have not comprehensively addressed the variation in PM2.5 emissions 

from different residue burning practices, a factor which may result in significantly higher 

emissions than previously thought. Thus, we compiled results from laboratory and field 

burning emissions estimates of rice straw to address this issue; as these studies have 

directly or indirectly emulated either pile burning (associated with hand-harvested fields) 

or non-pile burning (associated with machine-harvested fields). Previous studies typically 

burn the residues in controlled lab conditions with about 0.1kg to 1kg of rice, whereas 

field studies are more natural and burn based on actual amount found in the field using in 

situ devices. With non-pile burning, the residues are mostly dry and burn under flaming 
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conditions with complete combustion. With pile burning, the residues are usually burned 

with wetter residue biomass, often resulting in smoldering conditions and incomplete 

combustion. All selected studies are shown in table 4.1 including a detailed list of 

emission factors for comparison.  

We averaged the emission factors from all selected PM2.5 studies in table 4.1 to 

generate the pile burning and non-pile burning emission factors (table 4.2). For pile 

burning, we selected studies with moisture contents exceeding 20% or if the study 

mentioned that residues were burned in piles. Whereas for the non-pile burning, we 

included studies with lower moisture contents (~15% or less) or if pile burning was 

indicated in the study description. The exact moisture content in the field varies, but 

averages about 13% in machine-harvested fields with non-pile burning, and about 25% in 

hand-harvested fields with pile burning as measured from rice residues in Hanoi province 

prior to burning (Lasko et al. 2017). We note some seasonal variation is also likely. To 

generate burning-practice specific combustion factors, we averaged combustion factors 

from three different studies for non-pile burning (Aalde 2006; Sanchis et al. 2014; 

Romasanta et al. 2017), and 1 study from pile burning (Sanchis et al. 2014). We included 

fewer studies for combustion factors than emission factors due to lack of availability, or 

results not interpreted to be representative of the burning practice. 
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Table 4.1. List of fine-particulate matter measurements from rice residue burning studies, and their associated burning practice type 
deduced from interpretation of their study design or as listed in the study. The amount burned per trial indicated residue amount 
burned in an individual test. We also provide the emission factors and reported error or uncertainty. 
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Table 4.2. Emission Factors (EFs) and Combustion Factors (CFs) used in this study. Factors were obtained from 
the literature in table 1 and placed into non-pile or pile burning categories based on the moisture content or 
study design. The EFs and CFs were averaged to obtain burning practice-specific factors. 
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4.4.2 Rice area for Hanoi Capital Region  

For the spatially-gridded PM2.5 emissions in the Hanoi Capital Region (HCR), we derived 

rice areas from Sentinel-1A C-band SAR imagery for the year 2016 (Lasko et al. 2018). 

We used a time series of 22 Sentinel-1A IW GRD data obtained from the Alaska Satellite 

Facility, a direct mirror of ESA’s scihub. The Sentinel-1A SAR satellite has a local repeat 

overpass of approximately 12 days and increasing to 6 days with growing availability of 

Sentinel-1B imagery. We classified the time series stack of imagery using a random 

forest classifier with bootstrap aggregated sampling with 1000 trees populated in the 

forest. Random forest is robust against outliers and over-fitting, nonparametric, has high 

classification accuracy, and can yield a measure of variable importance (Breiman 2001).  

In order to highlight spatial variation in emissions resulting from using different SAR 

datasets for crop area, we processed the SAR imagery into 6 different datasets based on 

varied SAR polarizations and spatial resolution. They are: Vertical-Vertical (VV) 

polarized bands at 10m spatial resolution (VV10m), Vertical-Horizontal (VH) polarized 

bands at 10m spatial resolution (VH10m), and both polarizations at 10m resolution 

(VVVH10m), as well as the same polarization combinations for 20m imagery (VV20m, 

VH20m, and VVVH20m). In addition, a robust accuracy assessment following good 

practices was carried out with overall accuracy exceeding 90% for each dataset (Olofsson 

et al. 2014) with further details in Lasko et al. 2018. 

 

4.4.3 Rice area for the entirety of Vietnam 

We obtained rice area from the Government of Vietnam for the year 2015 (Vietnam GSO 

2017). The dataset is based on a set of surveys conducted by local officials at the 
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commune-level and has been found to have good overall agreement, and relatively 

similar results to other rice mapping studies in Vietnam (Kontgis et al. 2015; Nguyen et 

al. 2015). The data shows a total of 7.8 million ha of rice for Vietnam with 4.3 million ha 

in the Mekong River Delta and 1.1 million ha in the Red River Delta. 

 

4.4.4 Emissions estimation and scenarios 

We calculated the PM2.5 rice residue burning emissions for both the HCR and entirety of 

Vietnam based on the following equation 4.1. 

𝐸𝐸𝑃𝑃𝑃𝑃2.5 = 𝐴𝐴 x 𝐹𝐹𝐹𝐹 x 𝐸𝐸𝐸𝐸 x 𝑃𝑃𝑃𝑃 x 𝐶𝐶𝐶𝐶 

Where E is the total PM2.5 burning emissions for either pile burning or non-pile 

burning calculated from: A, the area under cultivation for rice in hectares, FL is the post-

harvest rice residue amount in kg/ha, EF is the fine-particulate matter emission factor in g 

kg-2averaged from the different studies (table 4.1), PB is the proportion of rice residue 

subjected to burning (i.e. not used for cattle feed, cook stoves, etc.), and CR is the 

combustion factor indicating the completeness of the combustion (i.e. 0 is failed to burn, 

and 1 is a complete burn). Combustion factors can be influenced by moisture content, 

density, and other factors mentioned in the introduction section. For example, a higher 

combustion factor is seen with non-pile burning found in machine-harvested fields due 

especially to lower moisture content. We obtained rice area from SAR maps for the HCR 

and government statistics for the entirety of Vietnam (Vietnam GSO 2017). Following 

the method in Lasko et al. 2017, we used rice FL of 2700kg/ha (straw), and 6100kg/ha 

(stubble) and FL of 3470 kg/ha (straw) and 3860kg/ha (stubble) from Hong Van et al. 
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2014. As the latter FL is representative of triple-cropped fields, it is used for the 

calculation in the Mekong River Delta. Whereas, the former FL is representative of the 

common double-cropped rice fields found in the rest of Vietnam. PB is assumed as 50% 

for straw and 10% for stubble gathered from previous field studies in Vietnam (Trach 

1998; Nguyen 2012; Hong Van et al. 2014; Duong and Yoshiro 2015; Oritate et al. 

2015). 

We calculate the emissions for four hypothetical scenarios where: 1) 100% pile 

burning associated with hand-harvested fields; 2) 100% non-pile burning associated with 

machine-harvested fields; 3) Approximated current amount based on government data 

(Vietnam GSO 2017); and 4) Using generalized agriculture emission factors employed in 

global and regional biomass burning studies. We also calculate emissions uncertainty 

based on the provided error rates from each study and the approximated error propagation 

equation for multiplication of quantities where fractional uncertainties add in quadrature 

(Harvard 2013) as shown in equation (4.2): 

𝛿𝛿𝛿𝛿𝑃𝑃𝑃𝑃2.5 =  |𝐸𝐸𝑃𝑃𝑃𝑃2.5| ∗  ��
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Where 𝛿𝛿𝛿𝛿𝑃𝑃𝑃𝑃2.5 is the uncertainty for the PM2.5 emissions equation (1) and the 

uncertainty (𝛿𝛿) for each variable in equation 1. Proportion burned and crop area data 

from Vietnam government statistics do not have reported error. Thus, we conservatively 

assumed twenty percent error in these data.  

We also compare our resulting emissions estimates with the Regional Emission 

inventory in ASia 2.1 (REAS), an all-combustion sources emissions inventory, available 
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for PM2.5 for the latest year of 2008 (Kurokawa et al. 2013). The REAS is based on 

reported industrial activity data and existing survey data as well as other sources. This 

comparison will yield improved insight into the contribution of rice residue burning to all 

PM2.5 emissions. 

 

4.4.5 Date of burning and pollutant transport 

Due to consistent cloud cover and ephemeral agricultural fires in Vietnam, with only an 

average of about eighty fires detected during the residue burning season within the Red 

River Delta, other methods are needed to estimate burning (figure 4.2). We employ an 

indirect approach to estimate date of burning using time series of Sentinel-1A imagery as 

described in the previous section (figure 4.4). We used a total of 22 VH-polarized images 

starting on 3rd February 2016 and ending on 24th October 2016 with images for every 12 

days excluding approximately June 28th due to no data. The phenology of rice fields has 

been highlighted in a number of recent studies, where minimum VH-polarized 

backscatter is observed during sowing because of inundation, and the maximum occurs at 

or near harvest attributed to removal of water prior to harvest and biomass removal, as 

well as double-bounce between rice plants and underlying surface and dielectric 

conditions of the canopy (Inoue et al. 2002; Choudhury and Chakraborty 2006; Bouvet et 

al. 2009; Lopez-Sanchez et al. 2014; Inoue et al. 2014; de Bernardis et al. 2015; 

Yuzugullu et al. 2015; Mansaray et al. 2017). We note that incident angle is constant 

throughout study area and is not a factor on backscatter variation.  
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Within 4km grid cells, we calculate the approximate harvest date based on the 

date of maximum backscatter within a window of each season based on local growing 

conditions (i.e. Feb – June for season 1, and Jun – Oct. for season 2). Based on our field 

experience, we found that rice residues were typically burned within 3 days of harvest 

(Lasko et al. 2017). Thus, we estimate the burn date by adding three days to the date of 

maximum backscatter. We then use these dates as the basis for air pollutant transport 

within the heavily populated study area, where air quality impacts would be strong due to 

the dense urban population (Hopke et al. 2008).  

Back trajectories have been implemented by a number of studies attributing air 

quality to different biomass burning events in south/southeast Asia and abroad (Reiner et 

Figure 4.4. Sentinel-1 VH backscatter averaged for each province. For each season, 
the date where backscatter values reach a maximum, coincides with the rice 
harvest; then the burning is assumed to occur within 3 days of harvested based on 
field experience. Note data was unavailable for June 28th. 
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al. 2001; Eck et al. 2003; Kim et al. 2006; Badarinath et al. 2009; Sharma et al. 2010; Li 

et al. 2010; Sonkaew and Macatangay 2015; Zhao et al. 2015). For the back-trajectory 

analysis we use the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model (Draxler and Hess, 1998; Stein et al. 2015; Rolph et al. 2017) with 

hourly archived meteorological data from the US National Center for Environmental 

Prediction (NCEP) Global Data Assimilation System (GDAS). Back-trajectories were 

calculated during each estimated burn date and 1 day before and after, to account for 

variation in estimated burn date. The model parameters included: starting a new ground-

level (5m), 6 hour back-trajectory every 3 hours with start times selected during the day 

from 9AM to 6PM within the typical range of burn times and distances (Tipayarom and 

Oanh 2007; Chen et al. 2017). We ran the HYSPLIT model for a total of 18 different 

dates.  

 

4.5 Results 

4.5.1 Rice area estimates 

The rice area maps generated from each of the six datasets had mapped rice areas (in 

thousand ha) of 214.5 (VVVH10m), 220.3 (VVVH20m), 212.4 (VH10m), 218.8 

(VH20m), 208.2 (VV10m), 214.9 (VV20m). Whereas the Vietnam Government data 

indicated 198.9 ha, showing similar results, with about 7.3% less than our most accurate 

VVVH10m data. Additional variation due to polarization and spatial resolution is 

described in Lasko et al. 2018. The rice map together with the field-based fuel-loading 

factors were used to estimate total rice residue using the factors shown in table 4.2. The 

resulting rice residue map was the basis for emissions estimation in the Hanoi Capital 

Region of Vietnam. The total PM2.5 emissions for the HCR from rice residue burning are 
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shown in table 4.3 and figure 4.5 including the contribution to total estimated rice residue 

burning emissions for Vietnam with associated uncertainties in parentheses. 

 

 

 

 

 

 

 

 

 

Figure 4.5. a) PM2.5 emissions for Vietnam comparing values that would result from 
Non-Pile Burning (Non-PB), Pile Burning (PB), and most-likely current status (CS) 
which assumes 50% PB and 50% non-PB based on a report from Vietnam Office of 
Statistics. B) CS PM2.5 emissions per 4km gridcell based on the SAR rice map for 
Hanoi. 
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Table 4.3. Vietnam’s total emissions. PM2.5 emissions shown in metric tons for the Hanoi Capital Region (HCR) and Vietnam based on 
the different rice residue burning scenarios. Residue amounts are in terragrams. Note the emissions estimates are shown only to 2 
significant digits. Error rates are shown in parentheses for the emissions estimates. The last column shows the total percentage of rice 
residue burning emissions. 
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4.5.2 Burning practice specific emission factors 

The PM2.5 EF’s for rice straw burning range from as low as 4.2 g kg-2 to 20.67 g kg-2, 

whereas the generalized agricultural emission factors used in various global and regional 

biomass burning studies are 3.9 g kg-2 and 6.26 g kg-2. The pile burning EFs have an 

average EF of 16.8g kg-2(±6.9), as compared to 8.8g kg-2(±3.5) from non-pile burning 

often found in machine-harvested fields, suggesting pile burning emits almost double the 

PM2.5 than non-pile burning fire emissions. An even starker contrast is seen between the 

general agriculture emission factors (i.e. 6.26g kg-2 in Akagi et al. 2011 and 3.9g kg-2 in 

Andreae and Merlet 2001). These results demonstrate a shortcoming and potential 

underestimation in global studies. While challenging, larger-scale biomass burning 

studies should employ crop and burning practice specific emission factors in order to best 

capture biomass burning emissions variation and to avoid significant potential 

underestimation in the emissions. For example, using the general agriculture emission 

factor in Akagi et al. 2011 for this study instead of the pile burning emission factor, 

would yield a 77% difference in the resulting emissions.  

The combustion factors ranged from 66.7% to 98.7% with generally lower factors 

for pile burning. The average for non-pile burning is 89% (±8%), and 67% (±7%) for pile 

burning. We note that combustion factor measurements are difficult to measure in the 

laboratory, and thus, may not be completely representative of field conditions with 

inherent uncertainty. The combustion factor used in general agricultural studies and 

global studies is 80%, i.e., eighty-percent burned as reported in the IPCC report on 

greenhouse gas emissions (Aalde et al. 2006). 



105 
 

 

4.5.3 PM2.5 emission Scenarios 

The PM2.5 emissions estimates for non-pile burning and pile burning scenarios are shown 

for each region of Vietnam (figure 4.5). The majority of emissions are from the Mekong 

River Delta (72Gg PM2.5 and 100Gg PM2.5) for non-pile burning and pile burning 

respectively. The lowest emissions are found in the Central Highlands which is 

characterized by slash and burn agriculture and coffee plantations (Le et al. 2014). In 

total, for Vietnam 180Gg of PM2.5 would be emitted if rice residues were burned 

following the pile burning method with fields harvested by hand, whereas 130Gg would 

be emitted if rice residues were non-pile burned, a scenario assuming all fields are 

mechanized and harvested using combine harvesters or similar equipment. The most-

likely current emission scenario (50% pile burn, 50% non-pile burning) estimates 150Gg 

PM2.5 emissions for the entirety of Vietnam. Overall, there is a 32% difference between 

pile burning and non-pile burning emission scenarios suggesting that the burning practice 

plays a very important role in total emissions. The specific emission scenarios with 

associated uncertainty are shown in table 4.3.  

We also compared our emission estimates to an existing all combustion-sources 

inventory (Kurokawa et al. 2013). The results show rice residue burning contributes to 

14%, 18%, and 16% of all combustion sources in Vietnam respectively for non-pile 

burning, pile burning, and most-likely current situation. This suggests that rice residue 

burning is one of the major emissions contributors in Vietnam, and is the second largest 

contributor after fuelwood burning. 
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Many large-scale biomass burning studies rely on generalized agriculture 

emission factors due to currently limited availability of crop, region, or burning-practice 

specific data (Andreae et al. 2001; Akagi et al. 2011). To estimate emissions for the 

entirety of Vietnam, we used the 2015 rice area from Vietnam office of statistics and the 

general agriculture emission factor from Akagi et al. 2011 with general agriculture 

combustion factor from IPCC (Aalde et al. 2006). The resulting rice residue burning 

PM2.5 emissions for Vietnam using these factors would be: 80Gg which is only 44% of 

pile burning and 62% of non-pile burning. This large difference demonstrates burning 

practice specific and crop-specific factors are important to improve existing global and 

regional emission inventories.  
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4.5.4 Emissions transport  

Based on the time-series SAR imagery for 2016, seasonal date of maximum backscatter 

per grid cell, and 3 day estimate between harvest and burn, we mapped the estimated 

burn date for each season (figure 4.6). The estimated burn dates were May 24th, June 5th, 

and June 17th for season one. For season two, the dates of burn were October 3rd, October 

15th, and October 27th. These dates are constrained by the 12-day overpass for Sentinel-1 

and burn date uncertainty. We subsequently ran the HYSPLIT back-trajectories over 

Hanoi City, Vietnam on these dates of burning as well as 1 day before and after to 

account for some variation.  

Results from the HYSPLIT back-trajectory maps are shown in figure 4.7 and 

were conducted for the spring and autumn rice burning seasons. Trajectories generally 

originate from all directions outside of Hanoi City, suggesting potential rice residue 

Figure 4.6. Estimated dates of burning based on the Sentinel-1 SAR maximum 
backscatter value for each 4km grid cell for Spring and Autumn residue 
burning seasons. 
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burning impacts. Results stratified by season show that for autumn most trajectories 

originate from the North while for spring most originate from the South, likely due to 

synoptic weather patterns. A breakdown for the top 3 wind directions in the spring are: 

31% South, 17% southeast, and 17% east; whereas for autumn: 26% North, 24% 

southeast, and 15% east. The biggest difference was 26% of trajectories originated north 

of Hanoi in Autumn, but only 6% during Spring as illustrated in the map. Thus, 

depending on the season, the emissions from different regions and directions will be more 

impactful in Hanoi City, highlighting the importance of accurate spatial maps of 

emissions. Overall, the air quality in Hanoi City could be linked with rice residue burning 

events, but the level of impact will be dependent on seasonal variability and timing and 

locations of burning. This suggests a need for further research on atmospheric chemical 

and concentration modelling in Hanoi. 

 

 

 

 



109 
 

 

 

 

 

Figure 4.7 (a,b). HYSPLIT back-trajectories stratified by the two burning seasons of 
Spring (a) and Autumn (b). Trajectory patterns suggested relatively more polluted air 
parcels moving into Hanoi City originate from the North during Autumn, while more 
originate the South during Spring. 

(a) 
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Figure 4.7 (a,b). HYSPLIT back-trajectories stratified by the two burning seasons of 
Spring (a) and Autumn (b). Trajectory patterns suggested relatively more polluted air 
parcels moving into Hanoi City originate from the North during Autumn, while more 
originate the South during Spring. 

(b) 
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4.6 Perspectives and conclusions 

Our study illustrates that when burning practice specific emission factors are employed, a 

large difference is seen between emission estimates. Moreover, our results provide 

improved estimates of emissions, and also highlight that previous large-scale studies 

using general emission factors could be significantly underestimating emissions. Our 

latest estimates for the entirety of Vietnam for year 2015 show that the PM2.5 emissions 

likely fall somewhere between 130Gg (100% non-pile burning) and 180Gg (100% pile 

burned). Our rice residue burning estimates on PM2.5 thus will add significantly to the 

overall PM2.5 emissions such as in the REAS emission inventory (Kurokawa et al. 2013). 

Our findings also show that rice residue burning contributes to 14% (non-pile burning), 

18% (pile burning), and 16% (current situation) of total combustion PM2.5 emissions in 

Vietnam in comparison with the REAS.  These findings are important for improving 

upon existing emissions inventories and source apportionment.  

These results have an important implication in terms of policy measures and for 

estimating future emissions. Both our field visit and the literature showed an increasing 

use of mechanized farming (Oanh et al. 2011; Lasko et al. 2017; Vietnam GSO 2017). As 

harvesting practices transition from manual to machine-harvesting with non-pile burning, 

and assuming a constant rate of burning, the emissions could naturally decrease to the 

non-pile burning level. In addition, it’s possible to further mitigate emissions by 

improving crop residue management practices such as incorporating residues into the 

field and avoiding GHG emissions from residue burning. Whereas, the pile burning 

emissions estimates for Vietnam would be representative of historical emissions amounts 

prior to mechanization of agriculture.  
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The HYSPLIT trajectory model demonstrates common spatial patterns of rice 

residue burning emissions transport. With this knowledge, focusing emissions mitigation 

efforts in areas impacted by rice residue burning could be most beneficial. Some efforts 

to alleviate emissions impact have included: rice straw mushroom cultivation, 

enforcement of rice residue burning laws, and education on alternative uses such as for 

fertilizer, cattle feed, etc.  

Our study is limited by several factors. Hanoi experiences higher rainfall during 

June burning time than during the October burning time. This rainfall could impact the 

moisture content of the rice residues and resulting emissions. However, with current data 

limitations we are unable to quantify this effect in a meaningful way. In addition, we 

found in our field experience that farmers may wait to burn the residues after rain events 

have cleared and dried up. We also note from our field experience that there may be 

different amounts subjected to burning based on the harvest and burning practice, 

however, we are unable to quantify this difference; additional fieldwork is already 

planned to address this. Another limitation in our study is the combustion factor. Only a 

few of the compiled studies had combustion factor measurements representative of the 

different burning practices, and there is a lot of uncertainty in this factor. Future work 

should explore this factor in more detail to reduce uncertainty. Additionally, the rice area 

estimates for Vietnam have inherent error, however, there are not any available error 

rates. Although, recent studies have demonstrated relatively high accuracy with the 

government rice area estimates in Vietnam (Kontgis et al. 2015; Nguyen et al. 2015; Man 

et al. 2018). Additionally, we note there is moderate variability and therefore reliability 

between the different residue burning studies for each burning practice. For example, pile 
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burning EFs ranged from 9.6g kg-2to 20.7g kg-2, whereas non-pile burning ranged from 

6.3g kg-2to 12.1g kg-2of PM2.5. Future work could improve upon the study reliability and 

reduce uncertainty. Moreover, future work could improve upon this study by simulating 

resulting PM2.5 concentration in Hanoi due to rice residue burning. 

Overall our study compiled and combined emissions factors from previous rice 

residue burning experiments representative of the two common practices of rice straw 

burning, found especially in Southeast Asia and Vietnam: 1) wet and smoldering 

conditions found in pile burning associated with hand-harvested fields; and 2) drier and 

flaming conditions found in non-pile burning associated with machine-harvested fields. 

We then used these burning practice-specific factors to estimate emissions for Vietnam, 

and compared emissions based on the general agriculture emission factor relied upon in 

global or regional studies. Our results showed a 32% difference in emissions between the 

two different burning practices (pile burning, versus non-pile burning), suggesting 

burning practice is a major factor for studies to account for in the PM2.5 emissions 

equation. We also inferred that when using the global emission factors, PM2.5 emissions 

are underestimated by 44% - 77% compared to when using management specific 

emission factors. In addition, we found seasonal differences in rice residue emissions 

transport into Hanoi; thus, we believe the emissions impact could be reduced with 

focused mitigation efforts. Further, we infer that mechanization of agriculture could lead 

to reduced PM2.5 emissions from rice residue burning. We also stress on the need to 

follow crop residue best management practices and alternatives to burning. Overall, our 

study’s novelty demonstrates the importance of burning practices on resulting emissions 
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estimates, and that burning practice is generally not considered in many existing biomass 

burning studies. 
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Chapter 5: Current status of air pollution over Hanoi, Vietnam using 
reanalysis data, satellite-based data, and synoptic-scale patterns4 
 

5.1 Abstract 
Air pollution is one of the major environmental concerns in Vietnam. In this study, we 

assess the current status of air pollution over Hanoi, Vietnam using multiple different 

satellite datasets and weather information, and assess the potential to capture rice residue 

burning emissions with satellite data in a cloud-covered region. We used a timeseries of 

Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to 

characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 

3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 

2012-2016 and explored pollution trends over time. We then used MODIS active fires, and 

synoptic wind patterns to attribute variability in Hanoi pollution to different sources. 

Because Hanoi is within the Red River Delta where rice residue burning is prominent, we 

explored trends to see if the residue burning signal is evident in the UVAI or BC data. 

Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the 

BC data based on daily rainfall amounts. Results indicated forest biomass burning from 

Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of 

March and April. Whereas, during local rice residue burning months of June and October, 

no increase in UVAI is observed, with slight BC increase in October only. During the peak 

BC months of December and January, wind patterns indicated pollutant transport from 

southern China megacity areas. Results also suggested severe pollution episodes during 

December 2013 and January 2014. We observed significantly higher BC concentrations 

                                                           
4 The presented material is under review: Lasko K, Vadrevu K P, and Nguyen T T N 2018 (in review). 
Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets. PLoS 
One.  
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during nighttime than daytime with peaks generally between 2130 and 0030 local time. 

Our results highlight the need for better air pollution monitoring systems to capture 

episodic pollution events and their surface-level impacts, such as rice residue burning in 

cloud-prone regions in general and Hanoi, Vietnam in particular.  

 

5.2 Introduction 

Biomass burning, industries, transportation, economic growth, and power production in 

Southeast Asia have been increasing in recent times, resulting in air pollution and air 

quality degradation issues throughout Southeast Asia (Streets et al. 2003; Ohara et al. 2007; 

Kurokawa et al. 2013). Black carbon (BC) is a key short-lived climate pollutant species 

paramount for air pollution abatement, climate mitigation, and air quality as it can influence 

regional radiative forcing, precipitation, and monsoon patterns (Ramanathan et al. 2005; 

Burney and Ramanathan 2014). Moreover, emissions from agricultural rice residue 

burning, forest biomass burning as well as industrial sources, have all been linked to long 

and medium range transport of air pollution in different regions of the world. For example, 

agricultural residue burning in the Indo-Ganges region impacting Himalayas through 

positive radiative forcing (Ramanathan and Carimichael, 2008; Vadrevu et al., 2014), arctic 

ice loss attributed to surface albedo change from agricultural fires in Russia (Warneke et 

al., 2009), air quality degradation in Japan attributed to fires in Russia (Tanimoto et al., 

2000), cold season transport of industrial pollutants from China to Korea (Kwon et al., 

2002),  degraded air quality in Singapore and Malaysia due to peat and palm plantation 

fires in Indonesia (Hayasaka et al. 2014), as well as biomass burning pollution impacts in 

Thailand due to local and regional fires from Myanmar, Laos, and Cambodia (Vadrevu et 
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al. 2014; Marlier et al. 2015; Oh et al. 2015; Biswas et al., 2015; Sonkaew and Macatangay 

2015; Chuang et al. 2016). 

With the above examples demonstrating complex interplay and interaction of air 

pollution emissions throughout the world, BC is known to not only absorb visible light, 

thereby warming the atmosphere, but also contributes to human health problems such as 

asthma even with short-term exposure (Beverland et al. 2012). BC surface concentration 

levels are especially influenced by winds, precipitation, planetary boundary layer, as well 

as atmospheric mixing heights due to sensitivity to wet and dry deposition (Thompson et 

al. 2001; Dawson et al. 2007; Tai et al. 2010; Jhun et al. 2015). Studies have also 

demonstrated that the effects from air pollution events can persist on a scale of days to 

months with impacts on atmospheric chemistry, weather, biogeochemical cycles, and 

linkage to disease and premature death (Pope and Dockery 2006; Yan et al. 2006; 

Cristofanelli et al. 2014; Ponette-Gonzalez et al. 2016; You et al. 2016; Sanderfoot and 

Holloway 2017). However, monitoring pollutant impacts can be limited by uncertainty and 

discrepancies between air pollution datasets (Saikawa et al. 2017; Shi and Matsunaga 

2017). 

Of the different countries in Asia, Vietnam emits approximately 83Gg of BC 

annually, and it as the fifth highest emitter after some of the most populous countries 

including China, India, Indonesia, and Pakistan (Kurokawa et al. 2013). Much of the BC 

emissions from Vietnam are concentrated in the capital region of Hanoi, home to over 10 

million people (Vietnam office of statistics 2016) with areas of forest biomass burning 

impacting air pollution in the Northwest, and rice straw burning within the Red River Delta 

surrounding Hanoi (Le et al. 2014). It’s uncertain how much of the air pollution in Hanoi 
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is due to different sources from the surrounding region. This study explores how and if 

pollution contribution from other sources impact Hanoi’s pollution levels, such as local 

rice residue burning within the Red River Delta during June and October (Lasko et al. 

2017), as well as urban pollution from megacities in Southern China, and absorbing 

aerosols from forest fires in Laos and Vietnam (Le et al. 2014). 

In addition to BC, the Ultra-Violet Aerosol Index (UVAI) can monitor biomass 

burning events due to their release of absorbing aerosols associated with positive UVAI 

values (Kaufman et al. 2002; Vadrevu et al. 2015). However, use of this UVAI optical 

satellite data alone, can be difficult to accurately quantify pollution levels in cloud-covered 

regions such as Hanoi, Vietnam, as the satellite data can be obscured by cloud cover, 

although less so than other datasets due to use of UV-spectrum. It may also be difficult to 

quantify short, but intense biomass burning events such as from rice straw burning in June 

or October as emission may be focused across several weeks with daily variability and 

potentially low smoke plume heights. However, reanalysis data which assimilates datasets 

from a variety of platforms, provides mostly consistent spatiotemporal coverage through 

time, but with its own limitations.  

In this study, we use a time series of reanalysis BC concentration data, as well as 

satellite-derived UVAI, MODIS active fires, and synoptic meteorology patterns to explore 

trends in air pollution across Hanoi, Vietnam, and the surrounding region to investigate 

potential sources of air pollution, as well as to determine if rice residue biomass burning 

events, which emit a large amount of absorbing aerosols, are captured in the timeseries 

UVAI or BC data. We also assessed robust 3-hourly datasets of BC using rainfall-adjusted 

BC analysis based on the meteorology data. In this study, we addressed the following 
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questions: 1) How does BC concentration in Hanoi vary across different time scales (i.e., 

hourly, daily and monthly)? 2) What are the major BC influencing factors? 3) How do the 

BC trends vary after adjusting for atmospheric conditions? 4) How well can rice residue 

burning emissions from the surrounding areas be linked with air pollution levels in Hanoi? 

(June and October). 

 

5.2.2 Study area 

Hanoi, the cultural center and capital city of Vietnam, is located within the most populous 

urban area of the country, the Hanoi Capital Region, a substantial portion of the Red River 

Delta. The landscape includes a wide array of land cover types with the majority allocated 

to rice, impervious surfaces, and other croplands (Lasko et al. 2018; Man et al. 2018). 

Hanoi is unique in that it is not only very populous with over 10 million people (Vietnam 

Office of Statistics 2016), but it exhibits a mosaic landscape covered with small-holder 

paddy rice, other farms, and plantations all intermixed amongst a growing peri-urban area 

resulting from ongoing conversion of agricultural lands (Pham et al. 2015). The city has a 

humid, subtropical monsoonal climate influenced by the northeast monsoon during winter 

and the southeast monsoon during summer. Hanoi has the highest precipitation during 

summer (July-Aug) and lowest during winter (Dec-Jan). During many of the drier months, 

this most polluted city in Vietnam experiences routinely degraded air quality especially 

from fine particulate matter attributed to a variety of sources such as heavy vehicular traffic 

in Hanoi, rice residue burning during June and October, as well as regional transport from 

external sources (Hien et al. 2002; Hien et al. 2004; Oanh et al. 2006; Hai and Oanh 2013; 

Nguyen et al. 2015).  
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5.3 Data and Methods 

5.3.1 Merra-2 Reanalysis data 

The Modern-Era Retrospective analysis for Research and Applications, Version 2 

(MERRA-2) data is an improved, advanced data assimilation system combining 

hyperspectral radiance and microwave data, GPS-Radio occultation data, ozone profile 

observations, and several other datasets (Gelaro et al. 2017). It is the first long-term global 

reanalysis dataset to include satellite-based aerosols and their interactions, with the aerosol 

data largely based on QFED, GFED, and RETROv2 (Duncan et al. 2003; Randerson et al 

2006; Randles et al. 2016; Darmenov and da Silva 2015). The dataset is available at 

approximately 50km spatial resolution similar to MERRA with a temporal resolution of 1-

hour available from 1980-present. The data is freely available from NASA Goddard Earth 

Sciences (GES) Data and Information Services Center (DISC) in netCDF format. In this 

study, we obtained the 3-hourly data for 5 years from 2012-2016, and also processed it into 

corresponding day (9am – 12am), night (12am-9am), daily, monthly, and 3-hourly datasets 

useful for later comparison. Specifically, we obtained the Black Carbon Surface Mass 

Concentration (BCSMASS) subset and we processed it into ug/m3. In addition, wind vector 

data (u and v) were used to derive wind speed and direction using the following equations: 

𝑤𝑤𝑤𝑤 =  �𝑢𝑢2 +  𝑣𝑣2 

Where ws is wind speed in m/s and u and v are the wind vector components in the 

x and y direction respectively. 

𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑣𝑣,𝑢𝑢) 

Where wd is the cardinal wind direction in degrees.  
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5.3.2 Rainfall data 

We obtained 5 years (2012-2016) of daily precipitation from Climate Hazards Group 

InfraRed Precipitation with Station (CHIRPS), version 2.0 data which combines coarse 

resolution satellite imagery with in-situ rain station data resulting in gridded rainfall data 

at approximately 0.05 degree spatial resolution (Funk et al. 2015). We obtained netCDF 

rainfall data in mm/day and upscaled it to align and match the spatial resolution of 

MERRA-2 data. The CHIRPS data is freely available from 1981-present. 

 

5.3.3 Active Fires data 

For characterizing fire activity, we used the MODIS collection 6 daily active fire hotspot 

data (MCD14ML) for 2012-2016 (also freely available for years 2000-present). The data 

comprises of fire locations derived from a contextual algorithm based on the thermal 

response of fire in the middle-infrared spectrum (Giglio et al. 2003; Giglio et al. 2016). 

Fire hotspots are detected based on the MODIS instrument onboard the Aqua and Terra 

satellites with sun-synchronous, polar orbit passing over at approximately 1030am/pm and 

130AM/pm local time. The MODIS Advanced Processing System processes the data using 

the enhanced contextual fire detection algorithm Giglio et al. 2003). 

 

5.3.4 Ultraviolet Aerosol Index (UVAI) data 

The daily UVAI data was obtained for 2012-2016 (freely available for years 2004-present). 

Positive UVAI values indicate the presence of absorbing aerosols such dust, and also black 

carbon often associated with biomass burning activities. Whereas, negative values indicate 

non-absorbing aerosols. The OMEAERUV dataset based on the Ozone Monitoring 

Instrument (OMI) imagery in 354nm – 388nm spectral range produces surface-level UVAI 
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measurements based on the columnar data and are provided at a spatial resolution of 

approximately 0.25 degrees (Torres et al. 2007; Torres et al. 2013). Unlike MODIS with a 

two-satellite constellation, OMI onboard the Aura satellite, operates with a single daily 

overpass instead of twice daily. Because UVAI values range from negative to positive with 

low values indicative of cloud cover, we removed all values less than 0.1, in order to better 

represent pollution values.   

 

5.3.5 Cloud cover data 

Cloud cover data was freely obtained from NASA’s Clouds and the Earth’s Radiant Energy 

System (CERES) website. The SSF1deg dataset which contains MODIS cloud area 

fraction data was obtained for 5 years at a daily temporal resolution and 1 degree spatial 

resolution (Torres et al. 2007; Torres et al. 2013). This dataset was used to provide ancillary 

information for the analysis and general cloud cover trends over Hanoi and the rest of the 

Continental Southeast Asia region. 

 

5.4 Methods 

Hanoi, Vietnam has experienced routinely degraded air quality over the past several 

decades due to urban expansion and development, as well as emissions from rice residue 

biomass burning typically during June and October (Lasko et al. 2017). While emissions 

from rice residue burning have been quantified, it’s unknown how much impact is 

measured through the satellite air pollution datasets. We integrated meteorological factors 

such as wind speed, direction, and precipitation combined with MODIS active fire data to 

explore BC trends and levels. We also assessed the potential of UVAI for monitoring 

absorbing aerosols from biomass burning, such as rice residue burning in Hanoi, which is 
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a heavily cloud-covered region. Moreover, we compare average monthly MODIS cloud 

fractions over the region, as well as the average monthly number of clear sky observations 

of OMI UVAI per month. 

We employed a timeseries of 3-hourly Merra-2 Reanalysis BC concentration data 

to explore pollution trends over both Hanoi City as well as the surrounding continental 

Southeast Asia. We explore the BC concentration and distribution of values throughout the 

time period using boxplots and timeseries plots, as well as exploring patterns of extreme 

values through time using the 90th and 95th percentiles of daily averaged data. We explore 

the same using 3-hourly data to further explore trends in diurnal variation of BC, and 

compare day and night values by averaging from 9am – 9PM (Day) and 9PM – 9AM 

(Night). We further investigate trends in BC concentrations during the rice residue burning 

months of June and October to determine if BC levels are elevated during these significant 

biomass burning events which emit a large amount of fine-particulate matter (Lasko et al. 

2017). We also investigate pollutant transport and contribution to variability in BC levels 

from the surrounding region based on synoptic wind direction patterns and biomass 

burning based on MODIS active fire products averaged on a monthly scale throughout the 

surrounding continental Southeast Asia region. 

To better understand the type of pollutants observed during different months, we 

compare UVAI values with BC values to infer if the source of pollution can be attributed 

to biomass burning or not as positive UVAI values can be representative of absorbing 

aerosols related to biomass burning (Vadrevu et al. 2015). 

Lastly, we adjust the BC data based on meteorological parameters such as rain, and 

compare the original BC with the other ancillary datasets. Rainfall impacts BC levels 
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significantly due to increased wet deposition. Previous work has adjusted, or detrended, 

different aerosol species based on meteorological variables and often found non-linear 

relationship between the pollutant and precipitation (Blanchard et al. 2010; Henneman et 

al. 2015; Shumway and Stoffer 2015). Rainfall-adjusted values have the most utility for 

monitoring changes in long-term pollutant trends as well as other long-term studies such 

as relating to climate, aerosols, and evapotranspiration Shiogama et al. 2013; Li et al. 

2014). A best-fit regression is conducted on the BC and rainfall data resulting in a non-

linear power-function fit as,  

𝑦𝑦 = 𝑎𝑎 ∗ 𝑥𝑥𝑏𝑏 

Where ‘y’ is the daily BC concentration, ‘a’ is a constant and ‘x’ is daily rainfall. 

The equation can be linearized by taking the base 10 log of both sides of equation to obtain:  

 

𝑙𝑙𝑙𝑙𝑙𝑙10(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑎𝑎) + 𝑏𝑏 ∗  𝑙𝑙𝑙𝑙𝑙𝑙10(𝑥𝑥) 

Then for each day of BC data we minimize the effects of rainfall by first calculating 

the residual: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦𝑖𝑖 −  ŷ 

 

Where ŷ is the predicted BC and 𝑦𝑦𝑖𝑖 is the observed BC for that day. We then 

subtracted the residual from our original BC data to get rainfall-adjusted BC concentration 

useful to compare variation between the biomass burning months and non-biomass burning 

months and general longer-term trends. 
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5.5 Results 

5.5.1 Cloud conditions over Hanoi  

Country-level analysis of cloud cover fraction in continental southeast Asia revealed 

Vietnam as having the highest monthly average cloud cover (72.4%) followed by 

Cambodia (69.7%), Laos (67.7%), Thailand (67.6%), and Myanmar (59.9%). Moreover, 

of these different countries, Vietnam also has the lowest monthly active fire detections with 

647 hinting at potential under detections due to cloud cover. Monitoring of active fires 

from rice residue burning in the Red River Delta is especially difficult. For example, the 

month of highest cloud cover is during the rainy season of July or August for most of 

Thailand, Myanmar, Cambodia, and Southern Vietnam. In contrast, Hanoi and the Red 

River Delta experience highest cloud coverage during the June residue burning time, 

whereas there are fewer clouds during November and December. In comparing the two rice 

growing regions of Vietnam, the Red River Delta averages only 25 active fires during the 

June rice burning time, whereas the Mekong River Delta averages 556 fires during the peak 

residue burning month of March. This discrepancy can be largely attributed to the higher 

cloud cover over the Red River Delta during burning months, compounded by relatively 

smaller field and fire sizes with average field size of about 5000m2 in the Mekong River 

Delta compared to about 800m2 in Hanoi and the Red River Delta (Le et al. 2014; Nguyen 

et al. 2016; Lasko et al. 2017; Son et al. 2017). 

 Consistently high cloud coverage over the Red River Delta and Hanoi, has 

important implications for monitoring air pollution and air quality in these regions. For 

example, current satellite-based datasets provide daily observations of global air pollution, 

but cannot provide meaningful local observation if obstructed by cloud.  
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5.5.2 UVAI and number of clear observations 

The UVAI is a satellite-derived pollution index sensitive to absorbing aerosols related to 

biomass burning. The average monthly total number of cloud-free observations for the 

UVAI (where UVAI > 0.1) are shown across Northern Vietnam in figure 5.1. Over Hanoi, 

the highest number of observations occur during May and December which are generally 

drier months, still averaging only 5 or 6 clear observations. Whereas, very few observations 

are recorded especially during rainy months of June-August. The remaining months only 

experience between 1 and 5 clear observations on average (figure 5.2). This lack of clear 

observations makes it very difficult to monitor the effects of air pollution with remote 

sensing. Moreover, because air pollution episodes often occur over rapid time-scales 

lasting for a few days (Vadrevu et al. 2014; Marlier et al. 2016), severe pollution events 

could be missed entirely, such as rice residue biomass burning events which occur in June 

and October.  
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Figure 5.1 Cloud cover variation by month averaged for 2003-2014 per 1 degree grid cell; 
with month of average minimum and maximum cloud fraction shown on the right. 
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Figure 5.2 Average monthly number of non-cloudy observations of UVAI over Northern 
Vietnam. 
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To demonstrate an impact at least partially attributed to clouds or missing data, we 

show the daily average UVAI values averaged for the Red River Delta in figure 5.3. A 

peak during March and April is observed where UVAI averages about 3.8 for both months. 

These are the peak months for air pollution over the region, and it can largely be attributed 

not only to local sources of pollution, but especially to transport of absorbing aerosols from 

forest fires in the Northwest of Vietnam and Laos. The latter will be demonstrated in a 

subsequent section. Aside from the peak during March and April, average monthly values 

for UVAI only range from 1.2 in December to 1.9 in August showing minimal monthly 

variation. At a daily-scale, very high values are occasionally observed during the other 

months such as October when rice residue burning is present (figure 5.3). However, even 

though a lot of absorbing aerosol pollutants are emitted, monthly average observations do 

not demonstrate an increase in UVAI during residue burning months of June or October –

suggesting the emissions impacts may be almost entirely missed by satellite data (Lasko et 

al. 2017), as shown in figure 5.4 with rainfall and BC.  
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Figure 5.3. Average daily OMI UVAI variation shown over the Red River Delta and Mekong 
River Delta. 
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5.5.3 MERRA-2 BC patterns and de-trending 

Because of the cloud cover issues over Hanoi, we use the MERRA-2 reanalysis BC 

concentration data which uses a combination of satellite and ground-based datasets with a 

relatively more complete set of observations. The MERRA-2 BC data at 3-hourly intervals 

showed more dynamic trends in pollution than those observed through UVAI alone. The 

3-hourly data analysis for each month revealed December (4.08ug/m3), January 

(3.87ug/m3), and October (3.44ug/m3) with the highest median and average monthly 

values. However, it should be noted that April often experiences the most outlier values 

suggesting a large amount of pollution episodes (figure 5.5). We also compared the 

distribution of pollution across day and night (figure 5.5). The results illustrate higher 

nighttime BC concentrations than daytime values. In addition, the most diurnal variation 

occurs during rainy season months of June – September. Minimal diurnal variation has 

been observed during March and April with a difference of about 0.3ug/m3 between 

Figure 5.4. Monthly average black carbon concentration (ug/m3), UVAI, and rainfall (mm) 
over Hanoi, Vietnam. 
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daytime and nighttime median values for March. Low diurnal variation may be indicative 

of large-scale persistent biomass burning fires such as from Laos or NW Vietnam where 

pollutants could be transported through day and night, as compared with urban pollutants 

such as from traffic, which are more cyclic, exhibiting diurnal variation. Moreover, diurnal 

variation from rainfall would also have an effect due to wet deposition, however, the 

rainfall observations are only available once per day.  

Analysis of trends using 3-hourly monthly datasets showed the lowest BC values 

over Hanoi around 3:30am or 6:30am attributed to less vehicular traffic and industrial 

pollutants (figure 5.5). BC concentration during the evening and nighttime are at least 

200% higher than morning concentrations during June, July, August, and September. 

During the rice residue burning month of June, BC values are not elevated and are relatively 

similar to neighboring months of May and July. Whereas, during the other rice residue 

burning month of October, BC concentrations are slightly elevated and about 0.5ug/m3 

higher at each 3-hour period than September –attributed to relatively lower rainfall. BC 

concentrations are about 19% higher in rice residue burning month of October than in 

November. Over the 5-year time period on a daily level, the BC concentrations indicated 

very slight decrease with y = -0.003x+2.7142 partially attributed to higher rainfall events 

in 2015 and 2016 (figure 5.6). 
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Figure 5.5 Distribution of 3-hourly BC surface concentrations: a) per month; and b) stratified by day vs night. 
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Figure 5.5c: Distribution of 3-hourly BC surface concentrations for each 3-hour time period to highlight 
diurnal variation. 
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Figure 5.6: Monthly distribution of 3-hourly BC surface concentration for the previous 5 years showing a high pollution episode 
during December 2013. 
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Timeseries distribution of the 3-hourly data for every month shows a cyclical 

pattern of BC levels aligned with the monsoon and associated rainfall. Abnormally high 

BC concentrations were observed during December 2013 and January 2014 with median 

values of 5.3ug/m3 and 3.7ug/m3 respectively (figure 5.6). This severe pollution episode 

may be linked with pollution in South and East China with the pollutants transport from 

industrial and vehicular sources from mega-urban areas of Chongqing as shown in figure 

5.7 (Jiang et al. 2015; Wang et al. 2015). Since, UVAI had a peak only in March and April, 

we infer that biomass burning impacts over Hanoi are most significant during this time. 

However, we also know that absorbing aerosols from rice residue burning are emitted in 

June and October, but no increase in UVAI is observed during these months, suggesting 

the satellite-based datasets may miss this phenomena over Hanoi. More research with PM2.5 

data may provide insights. In addition, because UVAI is not high during the peak BC 

months of January and December, we infer that these months may especially be impacted 

by non-absorbing aerosols from non-biomass burning including transport from other 

regions (i.e. southern China) and reduced rainfall effects, however the results are 

inconclusive due to limited UVAI observations in any given month. 

While monthly averages and distribution of 3-hourly data provides some insight, 

they do not highlight temporal characteristics of extreme pollutant events. To better 

understand extreme pollution events in each month, we explored the exceedance of BC 

levels above 90th and 95th percentile (figure 5.8). As expected, results showed most extreme 

values during December, January, and October followed by April, February, and March. 

In comparison to the rice residue burning months, June has less than 25 incidences 
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exceeding the 90th percentile, whereas October has about 170 suggesting that October may 

have more residue burning impacts than June. 

 



147 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. BC concentrations averaged per month with wind direction in blue arrows with sizing based on relative wind speed. 
Patterns for July-Sept follow similar trend as June. January also omitted for space and shares similar trend to December. 
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Figure 5.8: Average monthly BC with number of 3-hourly exceedances of a) 90th percentile and b) 95th percentile BC 
concentration. Black line represents monthly average BC concentration over Hanoi.  
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The UVAI values peak during March and April, but are relatively stable in the 

remaining months. We infer that March and April have the highest air quality impacts due 

to absorbing aerosols from biomass burning such as those transported from Laos and 

Northwest Vietnam as described in the subsequent section. Whereas, during the remaining 

months, low UVAI is observed. This includes peak MERRA-2 BC levels in December and 

January, however, with relatively low UVAI, we attribute the peak to non-absorbing 

aerosols from urban sources such as those transported from North of Hanoi and cities in 

southern China. Elevated UVAI levels are not observed during known rice residue burning 

months of June and October. 

 

5.5.4 Wind and active fires 

Transport of polluted air into Hanoi becomes apparent from monthly averaged wind 

direction and speed patterns shown in figure 5.7 along with monthly average BC surface 

concentrations. General synoptic meteorology patterns indicate northerly winds flowing 

from South China into Northern Vietnam and Hanoi during October – March, whereas 

during Apr-Aug more south or southeasterly winds from Laos, Southern Vietnam, and the 

South China Sea. BC levels in the Southeast Asia region show a peak during March across 

Thailand and Myanmar attributed to agricultural and small-holder burning (figure 5.9) 

(Vadrevu et al. 2015). During March and April, high BC values over Laos and Northwest 

province of Vietnam are attributed especially to forest fires and slash and burn agriculture 

(Le et al. 2014). Relatively high BC levels throughout all months are consistently observed 

from Southern China largely originating from the mega-urban Chengdu and Chongqing 
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cities with biomass burning also as a non-negligible emission source during these months 

(Wang et al. 2015).  

 

Trends in the latest MODIS collection 6 active fire algorithm show peak burning in March 

and April as well as high levels of burning during Jan-Feb across much of Laos, Myanmar, 

Figure 5.9. MODIS active fire trends in the surrounding continental Southeast Asia 
region averaged per month at same spatial scale as MERRA-2.  
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Vietnam, Cambodia, and Northern Thailand due to forest and agricultural biomass burning 

(figure 5.9). Relatively low active fires are detected across the region during June – 

November, a large portion of which is attributed to the rainy season (table 5.1).  

 

BC concentrations during October reach as much as 45% higher than the following month 

of November with the largest difference in 2015. On average, BC levels are 19% higher in 

October than November. These two months are relatively comparable due to synoptic wind 

patterns, rainfall, and active fires, as well as being adjacent in time.  

5.5.5 Rain 

Monthly rainfall patterns show a peak during July and August averaging 401 and 425mm 

respectively. Whereas October – March are relatively dry ranging from 84mm in October 

to 14mm in January (figure 5.4). Over a five year period we observed a slight increasing 

trend in rainfall. For comparison purposes and to explore rice residue burning impact, we 

Table 5.1 Average monthly MODIS active fire counts within 1000km of Hanoi 
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compare October (84mm rain) and November (39mm rain) due to similar rainfall, wind, 

active fires, and proximity. We note June (218mm rain) is more difficult to analyze air 

pollution concentration due to much different rainfall than adjacent months, therefore the 

pattern may be observed in de-trending. Moreover, the higher rainfall in June may 

contribute to relatively lower impact from rice residue burning than during October as seen 

in the BC data. 

We adjusted the timeseries BC data based on the rainfall data over Hanoi to yield 

weather-adjusted BC values.  Results show a negative non-linear power function trend 

where BC decreases as rainfall increases with about 17% of variation in BC attributed to 

rainfall (figure 5.10). Results show the weather-adjusted values are much less variable 

through time and that BC values are much lower in many months such as June, July, and 

August due to rainfall events. However, the de-trending reduced overall monthly variation 

in the BC dataset with lowest concentration during August at 2.3ug/m3 and highest in 

January with 2.76ug/m3. The highest standard deviation of the daily BC data is during 

February, January, and October respectively ranging from 0.45 to 0.40ug/m3 (figure 5.11).  

Figure 5.10 Relationship between daily rainfall and 
average black carbon over Hanoi, Vietnam for 2012-
2016. 
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Figure 5.11 Timeseries of black carbon concentration, rainfall, and weather-adjusted black carbon from 2012-2016 over Hanoi 
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5.6 Discussion 

Previous studies have demonstrated that even limited duration exposure to polluted air such 

as PM2.5 or one of its major constituents of BC, may lead to serious health concerns and 

even premature death in at-risk populations such as the elderly (Pope et al. 2009). One such 

example in Beijing estimated 5,100 people died prematurely due to air pollution exposure 

during 2001-2012 (Zheng et al. 2015). Therefore, it is of significant importance to address 

and properly quantify some of the air quality issues over Hanoi, such as from rice residue 

biomass burning events in June and October. However, it is also important to quantify air 

pollution for much of the Asian region due to long-range transport from different emission 

sources. While the Hanoi area experiences monsoon-influenced conditions with heavy 

rains in summer, studies have found that severe and strong fires can result after heavy rain 

events such as during drier months of fall and winter (Gaveau et al. 2014). These examples 

highlight the need to mitigate air pollution emissions throughout the Asian region. 

This study’s results align well with the earlier studies conducted in Southeast Asia 

on air pollution and air quality trends. For example, one recent study showed Laos, 

Thailand, Cambodia, and Myanmar emit large amounts of BC emissions from non-

agricultural fires (Song et al. 2010). Moreover, previous work has also found biomass 

burning emissions peak during March and April across continental Southeast Asia 

attributed to forest and agricultural burning (Huang et al. 2013). A recent study in Thailand 

demonstrated peak biomass burning in the dry season of April not only due to fires in 

Northern Thailand, but also due to emissions from surrounding Myanmar, Laos, and India 

(Sonkaew and Macatangay 2015). Previous studies have also demonstrated difficulty to 

model and monitor serious air pollution events in the Southeast Asian region (Macatangay 
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et al. 2017), including those from rice residue biomass burning (Lasko et al. 2017). We 

found the BC values observed over the Hanoi area as relatively higher through time than 

other Southeast Asian countries such as Laos, Thailand, and Cambodia. An even greater 

difference is observed in comparison to European countries where values are much lower 

averaging between 1.5 and 2.5ug/m3 (Randles et al. 2017). Continued monitoring and 

collaborative efforts are critical to address the ongoing air pollution concerns in the region 

(Reid et al. 2013).  In the study region, capturing pollution trends coinciding with rice 

residue burning during June and October/early-November is difficult and confounded by 

smoke injection heights, highly variable rainfall and wet deposition, as well as a current 

lack of good quality surface concentration datasets.  

Previous in situ studies in Hanoi have found the most polluted months to be during 

the December-February dry season, corroborating some of the findings of this study with 

peaks during January, December, and October (Hai and Oanh 2013). Another study found 

that nocturnal radiation inversions during October – December and subsidence temperature 

inversions from January to March help to amplify air pollution and air quality concerns in 

Hanoi; as well as high pressure systems over Central China during winter leading to 

southerly air flow, additionally corroborating some of the study findings (Hien et al. 2002). 

Moreover, work has also demonstrated polluted air parcel movement from southern and 

Eastern China during months of September – March, and pollutant transport from the 

Indochina peninsula during rainier months of June – August (Hien et al. 2004). Another 

study demonstrated Hanoi ozone levels and NO2 levels as routinely exceeding WHO 

standards attributed to high levels of motorcycles and traffic (Sakamoto et al. 2017). 

However, a clear pattern from both UVAI and BC data relating to the large amount of rice 
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residue burning practiced during June and October was not clear. Rice residue burning fires 

are typically small, low temperature fires difficult to monitor by satellite, especially due to 

varied burning practices (Lasko et al. 2018). Moreover, the UVAI data is a columnar 

measurement which does not capture surface concentration, while the BC data is similarly 

limited and often affected by interpolation issues. The MERRA-2 data has some utility for 

monitoring air pollutant trends over time, but with caveats for rice residue and biomass 

burning emissions in general. 

Our study demonstrated that MERRA-2 BC concentration is useful for capturing 

variation in air pollution concentration especially attributed to urban sources including 

transport from southern China especially during the dry season months of December and 

January. We found that Hanoi suffers elevated UVAI during March and April attributed 

to forest biomass burning transport from NW Vietnam and Laos, but no increase in the 

MERRA-2 BC is observed during this time. While we know from previous studies that 

rice residues are subjected to burning in June and October, emitting a large amount of 

PM2.5, both of these datasets did not detect elevated air pollution levels. It’s possible that 

this can be attributed to coarse spatial resolution datasets, lack of ground observations, as 

well as cloud cover obstructing satellite measurements. We found an average range of 2-5 

clear UVAI observations in any given month making episodic biomass burning difficult 

to detect. 

Although the MERRA-2 data has potential, it is limited by coarse resolution 

which may impede ability to monitor rice residue burning, confounded by emissions 

released steadily over the course of 4-6 weeks, diluting the signal. The MERRA-2 data 

currently, is limited in effectiveness for rice residue burning emissions monitoring. The 
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BC concentration dataset may not be sensitive to these biomass burning events as they 

generally emit more organic carbon than black carbon. Some additional limitations of this 

study include that BC values may be relatively low in absolute terms, but they are 

representative of a 0.5degree cell average which spreads across not only the Hanoi urban 

area, but also much of the rice areas and countryside resulting in slightly low BC values. 

Moreover, there is a need for ground station datasets for improved air pollution 

monitoring, which would also be useful for comparison with MERRA-2. 

Future work should also be done to simulate air pollutant concentrations resulting 

from rice residue burning to better understand the land-atmospheric interactions. Another 

future improvement can be through including PM2.5 concentration data (not just PM2.5 dust 

concentration as currently available) in MERRA-2 as it is more sensitive to rice residue 

burning due to its absorbing nature (Akagi et al. 2011; Zhang et al. 2015). For example, 

PM2.5 concentration increases have been linked to rice residue burning events in China (Yin 

et al. 2017). 

 

5.7 Conclusion 

Our study explored the current status of air pollution and pollution monitoring over Hanoi, 

Vietnam and the surrounding region, and specifically, to determine if the satellite data can 

capture the air pollution impact from rice residue biomass burning events documented to 

occur in the Red River Delta where Hanoi is located. Our results showed the Red River 

Delta and Hanoi experience the highest cloud coverage of the continental Southeast Asian 

region, and it was found to hinder optical satellite observations of air pollution, such as 

from OMI UVAI averaging only a few clear observations per month. Therefore, it is 
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difficult to monitor air pollution in the study area and we did not find significant air 

pollution impacts over Hanoi attributable to the known rice residue burning events. Further 

improved methodologies or higher resolution satellite constellations, and ground-based 

datasets are needed for improved air pollution assessments. We also used MERRA-2 

reanalysis data which found the highest BC levels during December, January, and October 

during the dry season with some pollution attributed to long range transport from the North 

during this time. We also found biomass burning emissions impact based on UVAI levels 

with transport from Laos and NW Vietnam during March and April based on synoptic wind 

patterns. Results from both UVAI and BC did not indicate elevated pollution levels from 

rice residue burning during June, however, slightly elevated levels in October were often 

observed. Findings suggest that improved datasets and observations are necessary for 

monitoring rice residue burning emissions. 
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Chapter 6: Summary findings and conclusion 
 

6.1 Summary 

Air pollution has been recently attributed as a major contributor to premature deaths with 

a global estimate of seven million people dying annually from pollution exposure, or one-

in-eight deaths (WHO 2014). While pollution from a variety of urban sources has been 

quantified such as vehicle traffic, power plants, and industrial production, emissions from 

biomass burning are less known and highly variable. Biomass burning emissions are 

variable due to a wide variety of factors such as land cover type and change (i.e. forest, 

crop, and savannah), combustion efficiency, amount subjected to burning, and type of 

burning, among other factors explored in this dissertation. Agricultural biomass burning, 

specifically from rice, was chosen as a research topic, as it’s difficult to monitor and 

quantify resulting emissions with remote sensing alone. Ephemeral, small, and actively 

managed rice residue burning fires are difficult to detect using satellite data. Moreover, 

cloud cover in some agricultural regions, such as the Red River Delta and Hanoi, only 

exacerbate the difficulty. The Hanoi Capital Region of Vietnam, located within the Red 

River Delta, was selected as a primary study area, not only because the majority of land 

cover is occupied by small-holder paddy rice, but also because it is intermixed amongst 

peri-urban expansion and the very populous capital city of Hanoi. Thus, addressing air 

quality and resulting public health effects from pollution are very important for this study 

area.  

 The three research objectives comprising the dissertation were designed based on 

extensive field work and through identifying the gaps and limitations found in the 

agricultural biomass burning emissions literature. Thus, this dissertation employed a 



167 
 

combination of remote sensing, timeseries data, field data, modelling, and literature 

analysis. Through the three research objectives, this dissertation not only quantified the 

first bottom-up, burning-practice specific rice residue emissions estimate for Vietnam, 

but also highlighted the higher than expected contribution to all PM2.5 combustion 

sources, and a significant underestimation from the current global studies. Because of 

persistent cloud cover and difficulties in detecting agricultural fires in the study area, an 

indirect approach using timeseries SAR imagery and rice phenology was developed to 

estimate approximate date and location of burning useful for quantifying air pollution and 

air quality effects in Hanoi (Chapters 4 and 5). Overall, the study highlights variation in 

residue burning emissions resulting from different burning practices (i.e. pile or non-pile 

burning in Chapter 4), and variation in rice area based on different datasets, important for 

resulting emissions estimation (Chapter 2), and improved methods to estimate rice 

residue (Chapter 3), as well as crop specific versus generalized emission factors (Chapter 

4), including the current trends in air pollution and air quality in Hanoi (Chapter 5). The 

bottom-up estimates in this dissertation are an improvement upon the existing literature 

because global studies to date have relied upon generalized emission factors, land cover 

types, and often crop production-based or net primary productivity-based residue 

estimates. Overall, this research addresses how crop residue burning emissions are 

underestimated in small-holder croplands. 

 

6.2 Key findings and implications from Chapter 2 

Chapter 2 of this dissertation, entitled “Mapping double and single crop paddy rice with 

Sentinel-1A at varying spatial scales and polarizations in Hanoi, Vietnam” addressed 
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Objective 1: Map paddy rice area variation based on different SAR polarizations and 

spatial resolution, and characterize the paddy rice landscape and phenology.  

It employed a timeseries of Sentinel-1 C-band synthetic aperture radar imagery to 

map single and double rotated rice lands in the Hanoi Capital Region. The study used six 

different, commonly used datasets of Sentinel-1 including VV, VH, and both 

polarizations, each of which was processed into 10m and 20m spatial resolutions. By 

comparing these six different datasets, classified with a robust random forest 

classification algorithm, differences and variation in mapped rice land areas were 

highlighted. The accuracies for each dataset differed by as much as 2.5% for overall 

accuracy, 6% for double rice producer’s accuracy, and 5% for double rice user’s 

accuracy. With regard to land area, the double-rice land area for each of the six datasets 

ranged from 208 thousand ha to 220 thousand ha, showing a 5.6% difference. This 

overall difference in rice area is important not only for operational rice monitoring 

applications, but also critical for addressing biomass burning pollution. These differences 

in rice area resulting from classification of the six commonly-used datasets, combined 

with variation from the other inputs such as different burning practices, varying amount 

subjected to burning, and wide-ranging combustion completeness, together can account 

for considerable uncertainty. Moreover, double-rice pixel agreement between the six 

different datasets showed that only 66% of pixels were in agreement, illustrating that 

44% of pixels had some uncertainty with regard to land cover type. Thus, while the 

absolute variation in the study area was low, this spatial variation is important for 

spatially-explicit applications such as air pollution and air quality modeling. Location of 
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the biomass burning is important as it can determine the transport, atmospheric effects, 

and impact of air pollution on air quality.  

Another major result from this chapter was the landscape metrics obtained for 

double-crop paddy rice fields. Using the most accurate VVVH10m double-rice map, 

combined with mean-shift image segmentation as well as Fragstats software and the 

average field size from chapter 3, details about rice collectives were uncovered. Rice 

collectives are groups of fields grown adjacent to each other so as to facilitate irrigation, 

planting, and harvest activities. Spatial information on the rice collectives in Vietnam has 

never before been addressed, and the results have suggested about 3-4 fields on an 

average make-up a rice collective, operationally defined as a patch undergoing similar 

phenology from the timeseries SAR data. The resulting collective information provides 

detail useful for economic, agricultural management, and air quality impact studies. 

This chapter also measured the importance of the different SAR bands and 

associated dates of acquisition for the resulting image classification and rice maps. The 

results showed that imagery from the harvest stages and 2nd season planting stage were 

most important for classification, especially for the most accurate VVVH10m dataset. 

However, excluding the harvest stage and late vegetative growth stages may reduce the 

overall accuracy from about 93% to about 85%. While this exclusion would significantly 

impact accuracy, it still provides an acceptably accurate map useful for operational 

mapping of paddy rice prior to final harvest. This could be useful to forecast or estimate 

not only rice production, critically important for the economy, but also for biomass and 

rice residue production estimates. Moreover, resulting estimates of emissions could also 

be forecasted based on these estimates. 
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6.3 Findings and implications from Chapter 3 

Chapter 3 of this dissertation, entitled “Satellite data may underestimate rice residue and 

associated burning emissions in Vietnam”, addressed Objective 2: Quantify post-harvest 

rice residue production through a field study and calculate particulate matter emissions 

from burning using an approach employed in global studies. 

 This chapter developed a novel field method to quickly and accurately estimate 

rice residues, relate the field estimates to SAR data, and subsequently estimate particulate 

matter emissions from residue burning for Hanoi Province and the entirety of Vietnam, 

using the same emission factors employed by global biomass burning studies.  The field 

measurements were robust compared with previous studies as they involved quadrat-

based measurements and incorporated moisture content measurements which most 

studies simply infer or assume. The accuracy assessment also highlighted that this 

method was effective with 91% overall accuracy.  The rice residue was estimated for the 

entirety of Vietnam by using this chapter’s field-based estimate, as its representative of 

double-cropped rice fields found throughout Central and Northern Vietnam, and using a 

rice residue estimate from another study conducted in the other remaining rotation type of 

triple cropping found in the Mekong River Delta (Hong van et al. 2014). SAR data 

obtained approximately 2 weeks prior to harvest also showed a moderate in strength 

linear relationship between the field data and SAR data suggesting the potential to predict 

or model rice residue for Hanoi.  

This research was also unique and contributed to the literature, in that it 

developed not only rice straw residue factors, but also a separate factor for rice stubble, 

the standing uncut portion of residue, which is rarely accounted for in other research. 

Moreover, one of the most common techniques for estimating post-harvest rice residues 
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is based on grain-to-straw ratios obtained from the literature, which are multiplied by rice 

production data obtained from government agricultural databases. This technique, while 

easy to use, was compared with the field-based method developed in Chapter 3. The 

comparison showed that this method underestimated rice residue by more than 100% 

because it likely does not account for the stubble component of the residue. Thus, other 

studies across the region could also be underestimating not only rice residue, with 

implications for applications such as bioenergy, but also underestimating resulting 

emissions from burning. 

The field-based rice residue estimates were used as a basis for estimating the 

emissions from burning, instead of the typical crop production statistics approach. For 

comparison purposes, this chapter employed a general agricultural waste burning 

emission factor (Andreae and Merlet 2001; Akagi et al. 2011) commonly applied to 

global and regional biomass burning studies (Streets et al. 2003; Lamarque et al. 2010; 

van der Werf et al. 2010; Wiedinmyer et al. 2010; Kaiser et al. 2012; van der Werf et al. 

2017). One of the most widely-used global biomass burning and emissions datasets is 

GFED (van der Werf et al. 2017). In this chapter, rice residue burning emissions 

estimates for the entirety of Vietnam were derived based on the field-based, bottom-up 

approach and compared with the satellite-derived biomass burning estimates from GFED 

version 4.2s. The findings were notable and suggested that a significant amount of 

burning may be missed by GFED by a factor of over 13 for rice residue burning. 

Moreover, this study placed rice residue burning emissions in the context of all-

combustion sources of PM2.5 for Vietnam, adding more value to the emission estimates. 

The results showed that emissions from rice residue burning alone, accounted for about 
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13% of PM2.5 emissions for the country as compared with the REAS dataset (Kurokawa 

et al. 2013). These findings are important in that they demonstrate emissions from rice 

residue are a small but significant part of the emissions inventory. However, while the 

emissions are small, the air quality effects from rice residue burning could potentially be 

more significant than other industrial or combustion sources. For example, while the 

emissions from these sources are generally spread throughout an entire year, rice residue 

burning emissions are focused into two or three brief periods coinciding with the harvest.  

 

6.4. Findings and implications from Chapter 4 

Chapter 4 of this dissertation, entitled “Integrated analysis of rice residue burning 

emissions in Vietnam based on satellite observations, field burning practices and 

combined emissions factors”, addressed Objective 3: Estimate burning practice specific 

emissions from rice residue burning, and explore resulting air pollution and air quality 

effects in Hanoi, Vietnam. 

 While Chapter 3 provided enhanced, field-based residue and emissions estimates, 

Chapter 4 further improved existing emissions estimates by incorporating not only crop 

and region-specific emission factors, but also included development of separate emission 

factors for the two prominent burning practices found in Vietnam. An in-depth literature 

review was carried out and region-specific field and lab-based emissions studies across 

Asia were collected. Based on details provided in each study’s design, they were placed 

into a ‘pile burning’ or ‘non-pile burning’ group, the two main types of residue burning 

found in Vietnam. Average values obtained for each of the factors showed about a 32% 

difference in emission factors based on the two burning practices. The reason for this 

difference is due to varied combustion efficiency, and combustion completeness found in 
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these two burning practices - largely attributed to different moisture content, with the fuel 

in pile burning generally being wetter than that of non-pile burning. In addition to the 

emission factors, improved combustion factors were also developed with the same 

approach. Subsequent emission estimates for Vietnam showed an even larger amount of 

emissions than estimated in Chapter 3 (approximately 150Gg PM2.5 versus 76Gg PM2.5). 

The results found that depending on the burning practice, PM2.5 emissions were 

underestimated by 44-77% when using the general agricultural emission factors instead 

of burning practice specific factors for rice. Moreover, these further refined emission 

estimates suggested that PM2.5 emissions now account for somewhere between 15% and 

21% of total PM2.5 combustion emissions based on the REAS inventory (Kurokawa et al. 

2013). This is much more than the previously estimated 13%, which is vastly more than 

the roughly 2% estimated by agricultural waste burning from GFED as reported in 

Chapter 3. Thus, emissions from rice residue burning could in fact be a major factor in 

PM2.5 emissions and resulting air quality degradation for Vietnam based on this new 

assessment.  

In the consistently cloud covered region of Hanoi, Vietnam, satellite-based 

monitoring of actively burning fires and burned areas is extremely difficult. SAR offers 

an alternative approach to indirectly estimate the date of rice residue burning based on the 

SAR phenology presented in Chapter 2 especially when combined with data collected in 

the field. The estimated burning dates, as well as a buffer of dates to account for 

uncertainty, were used in this study as input for an air parcel trajectory model to explore 

polluted air parcel movement into the highly populous urban area of Hanoi City. The 

results showed seasonally variable movement of polluted air parcels, as well as distinct 
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spatial patterns of movement. These results could be useful to focus efforts to alleviate 

emissions in certain geographic regions, where governments could provide incentives for 

alternatives to burning such as mushroom straw cultivation, or use for animal feed. 

Overall, this chapter demonstrated the manner by which rice residues are 

harvested and burned, impacting residue moisture content and structure, and thereby 

altering combustion completeness, efficiency, and the resulting emissions. Moreover, it 

highlights the need for biomass burning emissions datasets, such as GFED, to consider 

land cover and crop-specific emission and fuel-loading factors, as well as burning 

practice-specific factors for improved estimates. 

 

6.5 Findings and implications from chapter 5 

Chapter 5 of this dissertation, entitled “Spatiotemporal trends of air pollution over Hanoi, 

Vietnam using MERRA-2 reanalysis, satellite-based UVAI, and ancillary atmospheric 

data”, addressed in more detail the 2nd part of Objective 3: Estimate burning practice 

specific emissions from rice residue burning, and explore resulting air pollution and air 

quality effects in Hanoi, Vietnam. 

Chapter 5 explored trends in air pollution within Hanoi, as well as different 

seasonal contributing factors to the pollution levels. In addition, current limitations and 

difficulties with monitoring air pollution and air quality in this unique densely populated, 

small-holder agriculturalist, and cloud-covered region were also highlighted. This chapter 

demonstrated that the Hanoi area has consistently high cloud cover with an average cloud 

fraction exceeding 55% or more in any given month. Moreover, due to atmospheric 

effects and cloud cover during the rice residue burning months of June and October, on 

average only 3 and 5 clear daily OMI UVAI observations are available over Hanoi. This 
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limitation makes satellite-based monitoring of air pollution and air quality relatively 

difficult, as the particulate matter released from burning may only last in the region for a 

few days due to short atmospheric residence times. 

Because of the difficulty to monitor air pollution and air quality with satellite data 

alone, reanalysis data, with its unbroken temporal record, was used to further assess air 

pollution and air quality trends based on synoptic meteorology patterns in the Hanoi 

region. The results demonstrated that the peak air pollution months were December, 

January, and October. The findings based on synoptic meteorology patterns suggested 

that during winter months pollution from power plants North of Hanoi, including those in 

mega-urban areas of China contribute to elevated pollution levels during dry months of 

December and January. In addition, biomass burning from forest fires in Laos and 

Northwest Vietnam were found to contribute to elevated pollution levels, especially 

during the months of March and April.  

Air pollution during the rice residue burning months of June and October proved 

more complicated, due to relatively coarse resolution reanalysis data confounded by 

highly variable seasonal rainfall and temperature patterns which affect air pollution 

levels. As a result, the air pollution signal from rice residue burning is not clear. This 

study overall demonstrated that even after de-trending the pollution data for weather 

patterns, it’s still difficult to tease out the air quality effect from rice residue burning. 

While air pollution generally trended high in October, the same was not evident during 

June. However, the results do suggest that Hanoi has very degraded air quality, much 

higher than many adjacent areas, throughout much of the year aside from the rainiest of 
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months of July and August. Overall, the results demonstrated the need for future 

improvements to datasets and monitoring capabilities. 

 

6.6 Recommendations for future work 

Future work should focus on improving the satellite record of biomass burning emissions. 

By addressing shortcomings found within the different inputs of the PM2.5 emissions 

equation as undertaken in this dissertation, not only can this lead to improved estimates, 

but also alleviate inherent uncertainty. One such factor which has promise to be improved 

in the future, is burning practice type (i.e. pile vs non-pile burning). Satellite-based 

estimates of burning practice type could be inferred from mapping harvest type. 

Generally, machine-harvested fields are associated with non-pile burning as the residues 

are drier and left in rows. Whereas, pile burning is found throughout hand-harvested 

fields as the residue is left in a pile after threshing. Each practice yields a distinct spatial 

and spectral pattern in the field which could be possible to map with fine temporal and 

spatial resolution optical satellite or SAR data, but could be limited due to cloud coverage 

or lack of clear signal. However, with success, this could provide even more refined 

emissions estimates than relying upon survey data of burning practice type. In addition, 

fuel-loading factors should be obtained for hand-harvested fields and compared with 

those of machine harvest conducted in this research, to quantify the variation, as this 

would be important for resulting emissions variation. It would result in further 

improvement to existing emission assessments as this dissertation did not address 

variation from the different harvest practices. Similarly, the amount of residue burned in 

the field could also be monitored by satellite, reducing the need to rely upon fieldwork 

and often uncertain survey data. With a constellation of moderate-to-high spatial 
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resolution satellites with multiple daily observations of a given area, agricultural residue 

burning could likely be measured and better quantified. Additionally, successful 

prototyping of combined optical and SAR-based burned area could prove useful in cloud 

cover regions such as Hanoi. However, these algorithms would also need to be based 

upon high temporal and high spatial resolution so as to be effective to overcome the 

problem of small, ephemeral fire size as well as active field management found within 

agricultural lands. However, research has not yet demonstrated potential for effective 

SAR-based burned area mapping, which may require more advanced SAR systems with 

multiple frequencies and polarizations. Additionally, global and regional emissions 

databases such as GFED could improve existing estimates by integrating crop-specific 

land cover with corresponding crop-specific emissions factors –an improvement on 

existing crop/non-crop distinction. This would then pave the way for integrating with 

regional, burning practice, and crop-specific emission factors.  

Improvements to air quality and air pollution data would also prove useful to 

determine effects from rice residue burning emissions. Currently, the optical satellite data 

suffers from cloud cover obstruction. The reanalysis data, such as from MERRA-2 is 

limited by uncertainty in data quality as well as reliance upon disparate datasets, 

assimilation, and interpolation confounded by a relatively coarse spatial resolution of 

about 0.5 degrees. The use of ground-based observation stations, which could monitor air 

pollution even under cloudy conditions, would prove most useful for air quality 

applications. Moreover, disparate observation stations should be linked together (such as 

is currently done with AERONET, Holben et al. 1998) and included in the reanalysis 

datasets for further improvements and could lead to incorporation of PM2.5 into the 
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reanalysis data –instead of relying upon black carbon concentrations. My collaborators at 

Vietnam National University in Hanoi were recently funded to implement several PM2.5 

monitoring stations across the Hanoi area throughout urban and agricultural areas to link 

residue burning to air quality. Data from these stations could be used to better understand 

the linkage, transport, and relationship between air pollution concentrations in 

agricultural areas outside of the city as well as the densely populated urban center. 

Moreover, as Vietnam National University is local to Hanoi and much of their funding is 

from the national government, they have improved standing to guide government policy 

action and disseminate dissertation results. One example finding which may be of 

interest, is that altered burning practices (i.e. non-pile burning) can result in reduced 

particulate matter emissions due to more complete combustion. It may also be key to 

consider incentivizing burning alternatives (such as mushroom straw farming), instead of 

just an outright ban which already exists. 

At a regional and global scale, ground-based research, such as that conducted as 

part of this dissertation, should continue to inform and improve upon existing remote 

sensing-based biomass burning and emissions models or databases. Improved 

assessments are critical because, as this research demonstrated, emissions could be 

grossly underestimated for certain sectors and require more attention than previously 

thought. Moreover, these emissions have been found to contribute to not only degraded 

local and regional air quality through long-range transport of particulate matter 

emissions, but also to greenhouse gas emissions impacts, such as CO, important for 

climate. 
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This research demonstrated the importance of incorporating field data with remote 

sensing data and empirical methods. Without the field data, details regarding different 

burning practices, and amount of residue burned would be difficult to accurately quantify. 

However, without the remote sensing data there would be no system to consistently 

estimate emissions and quantify differences resulting from different burning practices. 

This study demonstrated that field data can be used to inform improvements to existing 

remote sensing datasets such as GFED, and demonstrated previous methodologies 

underestimated rice straw and rice stubble amounts in the field. This research highlighted 

the importance of incorporating regional and local level data into agricultural waste 

burning emissions datasets, important not only for agricultural waste burning, but also 

critical to apply to other biomass burning types more broadly. In the future, more robust 

remote sensing methods to monitor agricultural waste burning, rice residue production, 

emissions from burning, and air quality impacts can be used based on insights resulting 

from this research.  
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Appendix  

Unbiased areal estimates in accuracy assessment 

First, the accuracy assessment error matrix which contains associated pixel counts for 

each class, and the area proportions of each land cover class, is used as a basis to yield 

improved accuracy metrics. A Robust accuracy assessment requires effective sampling 

stratification based on areal representation of each land cover class, as was done in 

chapter 2 with double-cropped paddy rice, single-cropped paddy rice, and non-rice areas. 

Because of the accuracy assessment stratification, the number of sample units for each 

stratum is not necessarily proportionate to the area of that stratum (Olofsson et al. 2014). 

This makes it necessary to approximate each class’ area proportion (p ̂ij) (equation A.1). 

p̂ij =  𝑤𝑤𝑖𝑖
𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖

 

 Where 𝑛𝑛𝑖𝑖𝑖𝑖 is the sample count for reference class i, divided by the total number of 

pixels in that stratum (𝑛𝑛𝑖𝑖). A sample error matrix similar to chapter two classification 

procedure is shown in table A.1. The updated matrix with estimated area proportions is 

shown in table A.2. The updated error matrix after applying equation a.1 is shown in 

table A.2. 

REFERENCE
Class Double rice Single rice Non-rice Total Pixels(Map) wi

Double rice 410 0 13 423 20234726 0.2630
Single rice 0 161 3 164 411310 0.0053
Non-rice 78 5 918 1001 56280930 0.7316
Total 488 166 934 1588 76926966 1.0000

Table A.1. Error matrix for a theoretical example based on chapter 2 showing pixel/sample 
counts from accuracy assessment. 



182 
 

The pixel area for each class is calculated simply by multiplying the reference 

totals by the number of pixels on the map. The pixel counts are converted into hectares 

based on the size of the pixel, which in this case is about 100m2. The table now displays 

the unbiased area estimates for each class on the bottom, as well as the original area 

estimates shown on the top right. 

Subsequently, standard errors of these unbiased areal estimates are calculated in 

order to provide more meaning to the data. These are calculated following the below 

equation A.2. 

𝑆𝑆 �p� °𝑗𝑗� =  ��
𝑊𝑊𝑖𝑖p̂𝑖𝑖𝑖𝑖 −p̂𝑖𝑖𝑖𝑖

2

𝑛𝑛𝑖𝑖 ° − 1𝑖𝑖
 

Where 𝑆𝑆 �p� °𝑗𝑗� is the standard error for the area proportion for one class. This equation 

must be used for each of the three classes. The result is pixel count based, we then 

convert it into area in hectares. Lastly, we apply a 95% confidence interval by 

multiplying the area in ha by 1.96. The result now shows the class area (unbiased area), 

standard error (S(area)), and a 95% confidence interval of the standard error (95%CI ha) 

as shown in table A.3. 

Table A.2. Updated error matrix with estimated area proportions for each class. 
REFERENCE

Class Double rice Single rice Non-rice Total Pixels(Map) wi Area (ha)
Double rice 0.25495409 0 0.00808391 0.263038 20234726 0.2630 202,347     
Single rice 0 0.005249189 9.7811E-05 0.005347 411310 0.0053 4,113          
Non-rice 0.057008961 0.003654421 0.670951618 0.731615 56280930 0.7316 562,809     
Total 0.311963051 0.00890361 0.67913334 1 76926966 1.0000 769,270     
Unbiased Area(pixels) 23,998,371.01  684,927.67     52,243,667    
Unbiased Area(ha) 239,984              6,849                522,437          
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 Lastly, class omission and commission errors are calculated along with overall 

accuracy using the improved unbiased areal estimates as a basis, instead of typical pixel 

counts as employed in some studies. The equations for overall accuracy (A), user’s 

accuracy (U), and producer’s accuracy (P) are shown in equations A.3, A.4, and A.5. 

𝐴𝐴 =  � 𝑝𝑝𝑖𝑖𝑖𝑖
𝑞𝑞

𝑗𝑗=1
 

𝑈𝑈𝑖𝑖 =  
𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖°

  

𝑃𝑃𝑗𝑗 =  
𝑝𝑝𝑗𝑗𝑗𝑗
𝑝𝑝°𝑗𝑗

 

The overall accuracy is simply the sum of the diagonals in the error matrix, which 

in this case would be (0.2549 + 0.005 + 0.67095 = 93.1%). The U and P follow the same 

accuracy assessment standard procedure omission and commission errors. Confidence 

intervals for each of the accuracy metrics are then derived based on the sample variance 

for each class with a 95% confidence interval assuming normal distribution. The final 

Table A.3. Updated error matrix with standard errors and associated 95% confidence 
intervals 

REFERENCE
Class Double rice Single rice Non-rice Total Pixels(Map) wi Area (ha)
Double rice 0.25495409 0 0.00808391 0.263038 20234726 0.2630 202,347     
Single rice 0 0.005249189 9.7811E-05 0.005347 411310 0.0053 4,113          
Non-rice 0.057008961 0.003654421 0.670951618 0.731615 56280930 0.7316 562,809     
Total 0.311963051 0.00890361 0.67913334 1 76926966 1.0000 769,270     
Unbiased Area(pixels) 23,998,371.01  684,927.67     52,243,667    
Unbiased Area(ha) 239,984              6,849                522,437          
S(area) 0.00658350 0.00163200 0.00552555
S(Area) ha 5,064                  1,255                4,251              
95%CI ha 9,926                  2,461                8,331              
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theoretical example error matrix is shown in table A.4. Consult Olofsson et al. 2014 for 

more details. 

 

The unbiased areal estimates and resulting accuracy metrics are an improvement 

upon relying only on pixel counts for each class. This assessment accounts for the 

sampling scheme and class proportions on the map. If the unbiased accuracy metrics were 

not calculated in this theoretical example, OA would be 94.8%, double rice PA would be 

84.0%, and single rice PA would be 97.0%.  

 

 

 

 

 

 

REFERENCE
Class Double rice Single rice Non-rice Total Pixels(Map) wi Area (ha) UA UA CI
Double rice 0.25495409 0 0.00808391 0.263038 20234726 0.2630 202,347     96.9% 0.08%
Single rice 0 0.005249189 9.7811E-05 0.005347 411310 0.0053 4,113          98.2% 0.16%
Non-rice 0.057008961 0.003654421 0.670951618 0.731615 56280930 0.7316 562,809     91.7% 0.05%
Total 0.311963051 0.00890361 0.67913334 1 76926966 1.0000 769,270     
Unbiased Area(pixels) 23,998,371.01  684,927.67     52,243,667    
Unbiased Area(ha) 239,984              6,849                522,437          
S(area) 0.00658350 0.00163200 0.00552555 OA 0.931155
S(Area) ha 5,064                  1,255                4,251              
95%CI ha 9,926                  2,461                8,331              
PA 81.7% 59.0% 98.8%
PA 95% CI 0.16% 0.58% 0.02% OA CI 1.38%

Table A.4. Updated error matrix with user’s accuracy (UA), producer’s accuracy (PA), 
and overall accuracy (OA) with associated 95% confidence intervals (CI). 
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