
ADAPTIVE USE OF ITERATIVE METHODS IN INTERIOR POINTMETHODS FOR LINEAR PROGRAMMINGWEICHUNG WANG� AND DIANNE P. O'LEARYyNovember 21, 1995Abstract. In this work we devise e�cient algorithms for �nding the search directions for interiorpoint methods applied to linear programming problems. There are two innovations. The �rst is theuse of updating of preconditioners computed for previous barrier parameters. The second is anadaptive automated procedure for determining whether to use a direct or iterative solver, whetherto reinitialize or update the preconditioner, and how many updates to apply. These decisions arebased on predictions of the cost of using the di�erent solvers to determine the next search direction,given costs in determining earlier directions. These ideas are tested by applying a modi�ed versionof the OB1-R code of Lustig, Marsten, and Shanno to a variety of problems from the NETLIB andother collections. If a direct method is appropriate for the problem, then our procedure chooses it,but when an iterative procedure is helpful, substantial gains in e�ciency can be obtained.1. Introduction. Interior point algorithms are now widely used to solve linearprogramming problems minimize cTxsubject to Ax = b;x � 0;(1)where c; x are real n-vectors, b is a real m-vector, and A is a real m � n matrixof rank m, with m � n. These methods typically solve a sequence of logarithmicbarrier subproblems with the barrier parameter decreasing to zero. Newton's methodis applied to solve the �rst order optimality conditions corresponding to each of thelogarithmic barrier subproblems. The bulk of the work in such algorithms is thedetermination of a search direction for each iteration.Gonzaga [17] and Wright [32] surveyed interior point methods, and many com-putational issues are addressed by Lustig, Marsten, and Shanno [24]. Therefore, inthis section we focus only on the linear systems arising in interior point methods. Forde�niteness, we consider the primal-dual formulation of interior point methods, butthe linear algebra of primal formulations and dual formulations is similar.The search direction is usually determined by solving either the reduced KKT(Karush-Kuhn-Tucker) system,� �X�1Z ATA 0 �� �x�y � = � rb + Ze � �X�1erp � ;(2)or the normal equations, formed by eliminating �x from this system. De�ning rb =b� Ax, rp = c� ATy � z, and D2 = Z�1X, we obtain(AD2AT)�y = AD2(rb + Ze � �x�1e) + rp:(3)Here z is the vector of dual slack variables, � is the barrier parameter, and X andZ are diagonal matrices containing x and z (respectively) on their main diagonals.� Applied Mathematics Program, University of Maryland, College Park, MD 20742 (we-ichung@cs.umd.edu)y Department of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742 (oleary@cs.umd.edu). This work was supported by the NationalScience Foundation under Grant CCR 95-03126. 1

Once �y is determined from the normal equations, �x may be easily computed from� (X�1Z)�x+AT�y = rb + Ze � �X�1e:(4) Comparing the normal equations (3) and the KKT system (2), we observe thatthe matrix for the normal equations is positive de�nite and symmetric, has smallersize (m � m), and may be more dense. In contrast, the KKT matrix is symmetricinde�nite and usually more sparse.One nice feature of these problems is that only D and the right hand side of thesystem change from iteration to iteration. Thus, the sparsity structure of the problemremains the same, in contrast to the linear systems arising in the simplex algorithmwhich di�er by exchanges of columns of A.The roots of interior point algorithms date back to the algorithms of Fiacco andMcCormick [9], but ever since interior point algorithms �rst gained prominence in1984 [18], researchers have given attention to speeding up the iteration time throughe�cient solution of the linear system. Direct methods that rely on sparse matrix fac-torizations have been the most popular approaches (e.g., [23], [31]), although iterativemethods for solving linear systems have also received a fair amount of attention.Karmarkar and Ramakrishnan reported computational results of Karmarkar'sdual projection algorithm using a preconditioned conjugate gradient solver [19]. Anincomplete Cholesky factorization of the matrixAD2AT was computed for one interiorpoint iteration and then used as a preconditioner over several subsequent iterations.In their experiments, Cholesky factorization was performed on average every 2 to3 iterations. Mehrotra used preconditioned conjugate gradients to solve the normalequations in a dual a�ne scaling interior point algorithm [25]. He addressed issuessuch as the stopping criterion and the stability of the implementation. At each in-terior point iteration, an incomplete Cholesky factor was computed and used as thepreconditioner. Carpenter and Shanno used a diagonal preconditioner for a conjugategradient solver for the normal equations in an interior point method for quadraticand linear programs [3]. They also considered recomputing the preconditioner everyother iteration. Portugal, Resende, Veiga, and J�udice introduced a truncated primal-infeasible dual-feasible interior point method, focusing on network
ow problems [29].The preconditioned conjugate gradient algorithm was used to solve the normal equa-tions. They initially used the diagonal of the matrix AD2AT as a preconditioner andreplaced it by spanning tree preconditioners in later iterations. Mehrotra and Wang[26] used an incomplete Cholesky factor of AD2AT as a preconditioner for conjugategradients in a dual interior point method for network
ow problems. Gill, Murray,Saunders, Tomlin, and Wright established the equivalence between Karmarkar's pro-jected method and their projected Newton barrier method [13]. They used LSQR [28],preconditioned by an approximation to AD2AT , to �nd the search directions. Gold-farb and Mehrotra developed a relaxed version of Karmarkar's method that allowsinexact projection [15]. They applied CGLS [28] to determine the search direction.Nash and Sofer investigated the choice of a preconditioner in the positive de�nitesystem ZTGZ where Z is rectangular and G is general symmetrici [27].Chin and Vannelli [5] solved a reduced KKT system using the preconditionedconjugate gradient algorithm and Bi-CGSTAB with incomplete factorization. In adi�erent paper [4] they used an incomplete factorization as a preconditioner for thenormal equations (3). Freund and Jarre [10] employed a symmetric variant of thequasi-minimal residual (QMR) method to solve the KKT systems. They suggestedusing inde�nite SSOR preconditioners to accelerate the convergence.2

The use of iterative methods has so far produced limited success. The obstaclesto the use of these methods are considerable.� Over the course of the interior point iterations, the requirements on accuracychange greatly; approximate solutions can be allowed early in the iterationsbut can cause the algorithm to fail when the iterates are near the boundary.� The matrix D changes quite rapidly and becomes highly ill-conditioned inthe �nal iterations.For these reasons, it is di�cult to �nd a preconditioning strategy that produces goodperformance of iterative methods over the entire course of the interior point iteration.In this paper we develop an adaptive algorithm that changes strategy over thecourse of the interior point iteration. It determines dynamically whether the precon-ditioner should be held constant, updated, or recomputed, and it switches to a directmethod when it predicts that an iterative method will be too expensive. In our ex-periments, we use a preconditioned conjugate gradient iteration on the linear systeminvolving the matrix ADAT , but our ideas could be extended to iterations involvingthe KKT formulation as well.In the next section, we discuss the characteristics of direct and iterative meth-ods and present several preconditioners. Section 3 focuses on our algorithm for theadaptive choice of direct vs. iterative methods and the adaptive choice of a precon-ditioner. Numerical results obtained from a modi�ed version of the OB1-R code ofLustig, Marsten, and Shanno [23] are presented in x 4. Final comments are made inx 5. 2. The linear system solvers. Either direct or iterative methods may be usedfor determining the search directions, the most expensive part of an interior pointalgorithm. In this section, we focus on the solution of the normal equations (3). Thisdiscussion sets the goals to be accomplished in designing an e�cient algorithm.We will assume that the columns of A have been permuted using standard tech-niques in order to improve sparsity in the Cholesky factor of AD2AT (e.g., [8], [22]).2.1. Direct solvers: Cholesky factorization. Most existing linear program-ming interior point methods solve the normal equations by direct methods. Thecareful implementation OB1-R of Lustig, Marsten, and Shanno (LMS) [23] is rep-resentative of these methods, and the iterative methods will be compared with thisimplementation.To solve equation (3), the LMS implementation computes a sparse Cholesky fac-torization of the matrix K = AD2AT as LPLT , where L is a unit lower triangularmatrix and P is a diagonal matrix. Forward and backward substitution are then ap-plied to compute the search direction �yk. The LMS algorithm then checks whetherA�xk is close enough to the arti�cial variables (b�Axk). If not, iterative re�nementusing the factored matrix LPLT is employed repeatedly until the one-norm of the dif-ference is su�ciently small. To deal with the dense columns in A, the LMS algorithmadopts the method suggested by Choi, Monma, and Shanno [6].There are three main disadvantages to direct methods such as that in OB1-R.First, the methods will fail if the matrix K = AD2AT is very ill-conditioned. If thecomputed solution is not su�ciently accurate, then iterative re�nement produces asequence of approximations�yj+1 = �yj + (LPLT)�1(rn �K�yj);(5)where rn is the right-hand side of equation (3). This iteration will only convergeif the spectral radius of the matrix (I � (LPLT)�1K) is less than one. If K is ill-3

conditioned, however, this condition may not be satis�ed due to inaccuracy in thecomputed factorization, and re�nement may fail to converge. Such a situation canoccur when the primal and dual variables are near to the optimal solution, sincethen the matrix D is quite ill-conditioned. The iteration can also be a�ected byill-conditioning in A.Another potential problem of direct methods is �ll-in. Although the dense columnsofA can be treated separately, the remainingCholesky factor may still be rather dense.This might be caused by di�culty in detecting \dense" columns or by the nature ofthe problem. For example, network problems solved by linear programming may leadto a Cholesky factor that is much more dense than AD2AT even though A has nodense columns; see, for example, Table 6.Lastly, the LMS algorithm forms and factors the matrix K = AD2AT each time� is changed. This procedure may be expensive in time, especially when the problemsize is large. If m � n, the resulting matrix K may be small and easy to factor, butforming it can still be costly.2.2. Iterative solvers: preconditioned conjugate gradients. A variety ofiterative methods can be used to solve the normal equations or the KKT system. Forde�niteness, we focus on the preconditioned conjugate gradient method for solvingequation (3). In this method, a sequence of approximate solutions are computed thatconverge to the true solution. The work during each iteration involves one productof K with a vector, one solution of a linear system involving the preconditioner, andseveral vector operations. More details about the method can be found in [16].The conjugate gradient method preconditioned by the Cholesky factorization ofKhas somewhat better stability than the direct solver since the method does not requirethat the spectral radius of the iteration matrix be less than one. Thus, convergencecan be achieved even if the factorization is quite inaccurate.The storage requirement for the preconditioned conjugate gradient method isquite low, amounting to a few vectors of length m. Although a matrix-vector mul-tiplication Kv = (AD2AT)v is required at each iteration, we may compute Kv as(A(D2(ATv))) and thus need only to store the nonzeros of A and the diagonal of Drather than the matrix AD2AT , which can be quite dense. The preconditioner shouldalso be chosen to conserve storage.Since accuracy requirements for the search direction in the beginning phase ofthe interior point algorithm are quite low, only a few conjugate gradient iterationsare required. As the primal and dual variables approach the optimal solution, theconvergence tolerance must be tightened and more iterations are needed.The crucial issue in the preconditioned conjugate gradient algorithm is to �nd apreconditioner for each step of the interior point method. A good preconditioner maydramatically accelerate the convergence rate and gain great computational savings.We consider some strategies for choosing the preconditioners in the next subsection.2.3. The preconditioners. Convergence of the conjugate gradient iteration willbe rapid if the preconditioned matrix has either a small condition number or greatclustering of eigenvalues [16, Chap. 10]. We discuss �ve strategies for preconditioning.The �rst two are based on complete factorizations of the matrixK. The others factora sparse portion ofK or update a previous preconditioner. Our experiments are basedon the �rst and �fth, but our techniques apply to all of them.Preconditioner 1 : Cholesky factorization. We can use the Cholesky fac-torization of the matrix, computed as in the LMS algorithm, as the preconditioner.E�ectively, then, we replace their iterative re�nement algorithmby the preconditioned4

conjugate gradient iteration. In exact arithmetic, this preconditioned conjugate gra-dient iteration will converge to the solution in one iteration. If K is ill-conditioned,however, then the computed Cholesky factorization might be inaccurate and moreiterations will be required. Such ill-conditioning is inevitable in the end stages of theinterior point method.An alternative to computing the Cholesky factorization on every interior pointiteration is to use the preconditioner computed for one �xed value of the barrierparameter � for several values of � [3] [19]. This reduces the computational work informing the factorization.Preconditioner 2 : QR decomposition. Rather than computing the Choleskyfactors of the matrix K = AD2AT , we may simply compute the n�m matrix DATand factor it as QR, where Q is a n�m matrix with orthonormal columns and R isa m �m upper triangular matrix. We then have a preconditioner RTR. Note thatthis preconditioner is mathematically identical to the Cholesky preconditioner sinceR = P 12LT , but computationally we may be able to compute a much more accuratefactor because we avoid the loss of precision inherent in forming AD2AT . The timefor computing this preconditioner, however, is usually larger than that for computingthe Cholesky factors of K, and except on very ill-conditioned problems, this approachcannot be recommended.Preconditioner 3 : Cholesky factorization for sparse part only. If thecoe�cient matrix A contains some dense columns, the LMS algorithm partitions Aas [AS ; AD] where AS and AD contain the sparse and dense columns, respectively.The system involving the matrix A is then solved by using the partial factor and theSherman-Morrison-Woodbury formula [16, Chap. 2].Similarly, we let D2S denote the diagonal matrix containing only the elementscorresponding to AS . A preconditioner MS can then be de�ned by LSPSLTS ; whereASD2SATS = LSPSLTS . Using this preconditioner, the conjugate gradient solver con-verges in (k + 1) steps provided AD contains k columns. To see this, we denoteGS = ASD2SATS and GD = ADD2DATD and then obtain K = AD2AT = GS + GD.Since the preconditioner MS = GS , the resulting preconditioned matrix isG�1S A = G�1S (GS + GD) = I + (G�1S GD)(6)and thus (G�1S A) is the identity plus a rank k matrix and has at most (k+1) distincteigenvalues. A standard theorem for the preconditioned conjugate gradient methodguarantees termination (in exact arithmetic) in at most (k + 1) steps [16, Chap. 10].Preconditioner 4 : Incomplete factorization. The preconditioner can becalculated by using incomplete Cholesky factorization [8], [16], an approximation tothe exact Cholesky factorization determined by neglecting small elements in the tri-angular matrix [30] or by discarding elements that do not �t a preassigned sparsitypattern [5]. An incomplete QR factorization could also be determined.Preconditioner 5 : Updated Cholesky factorization. Rather than discard-ing one of these preconditioners or keeping it �xed when � changes, we can try toupdate it by a small-rank change, since the normal equations matrix is a continuousfunction of �. Let D̂ be the current diagonal matrix and D be the one for which wehave a factorization AD2AT = LPLT . De�ne �D = D̂2 �D2 and let ai be the i-thcolumn of matrix A. SinceAD̂2AT = AD2AT +A�DAT = LPLT + nXi=1�diiaiaTi ;(7) 5

we may obtain an improved preconditioner L̂P̂ L̂T by applying a rank-� update toLPLT , where � � n. This update may be computed as in [1] and [7]. If � is bigenough to include most of the large magnitude terms in the summation, then we havefactored a matrix that di�ers from AD̂2AT by a matrix of rank n��. This di�erencematrix can be expressed as a matrix of small norm plus one of small rank, and wecan hope for rapid convergence of the conjugate gradient iteration.Given these �ve families of preconditioners, we turn our attention to criteria fordeciding to keep or update the current preconditioner.3. The algorithms. Based on the discussion in previous sections, we suggestcombining the use of direct and iterative methods within the interior point algorithm.We present this algorithm in two parts. Algorithm 3.1 shows how the solvers �t withinthe interior point iteration. Algorithm 3.2 gives a more detailed description of theiterative solver and its preconditioner.3.1. The interior point algorithmwith adaptive solver. Our interior pointalgorithm, Algorithm 3.1, chooses the initial variables, the step sizes, the barrierparameter, and convergence criteria following standard strategies [23]. The linearequation solver, however, has been modi�ed to improve e�ciency.In the �rst iteration of the algorithm, the normal equations (3) are solved di-rectly by factoring K = AD2AT = LPLT . Starting from the second iteration, thealgorithm uses preconditioned conjugate gradients. The preconditioner for each it-eration is determined by factoring the current matrix K or by updating the currentpreconditioner. This \factor-update cycle" will be continued up to the \end-game,"entered when the relative duality gap is small enough.In the end-game, the iterates are close to the optimal solution and accuracyrequirements are high. The elements in matrix D vary signi�cantly and make thematrix K = AD2ATvery ill-conditioned. The Cholesky factorization of K may notgenerate a good preconditioner, even if stable methods such as [12] are used. For allof these reasons, a direct method is used to determine the �nal search directions.We also switch to a direct method when OB1-R computes a Cholesky factorizationwith a zero on the diagonal. This contingency could be avoided by using a modi�edCholesky factor; see, for example, [14, Chap. 4].3.2. The adaptive conjugate gradient solver. We now focus on the details ofthe implementation of the preconditioned conjugate gradient solver in Algorithm 3.1.We make decisions regarding refactorization or update of the preconditioner basedon the actual cost incurred in determining previous search directions, as measured inseconds by a system timing program:drct cost = the cost of factoring and solving the system directly;updt cost = the cost of each rank-one update;pcgi cost = the cost of each conjugate gradient iteration.6

Algorithm 3.1. Interior point algorithm with adaptive solverInitialize k 1; �0 > 0; x0; y0; z0 > 0; Endgame False; UseDirect False.while (not convergent)if [(k > 1) and (Endgame = False) and (UseDirect = False)] thenSolve using PCG. (See Algorithm 3.2 for details.)Determine the preconditioner.if (the diagonal of the preconditioner is singular) thenUseDirect TrueelseIterate the PCG method.end ifend ifif [(k = 1) or (Endgame = True) or (UseDirect = True)] thenSolve using direct solver.Form the matrix AD2AT .Factor AD2AT = LPLT .Solve the normal equations using LPLT ,applying iterative re�nement if necessary.Compute drct cost as the elapsed time of the direct solver.end if Update the primal and dual variables.Compute xk+1 xk + �p�x; yk+1 yk + �d�y; zk+1 zk + �d�z.Check for end-game.if (the relative duality gap is small) then (Endgame True)Choose �k+1 < �k.Set k k + 1.end while(For simplicity, we neglect the fact that updates and downdates have slightlydi�erent costs.) We initialize each of these estimates to zero, but after the �rst fewiterations of the interior point method, we have accurate estimates of each. In orderto reduce the e�ects of variability from the timer output, though, we suggest thatthese estimates continue to be updated over many iterations.7

Algorithm 3.2. The preconditioned conjugate gradient solverSolve using PCG.Determine the preconditioner.updt nmbr the number of rank-one updates to be performed.pred cost predicted cost of updating the preconditionerand iterating PCGif [(prev cost > .8 � drct cost) or (drct cost < pred cost)] thenForm the matrix AD2AT .Factor AD2AT to get the preconditioner.else Perform updt nmbr rank-one updates to get the new preconditioner.end ifif (the diagonal of the preconditioner is singular) thenUseDirect Trueelse Iterate the PCG method.pcg itn 0while (not convergent)Execute a PCG iteration.pcg itn (pcg itn + 1)if (pcg itn > max pcg itn) thenif (this happens twice) then (UseDirect True)Factor (AD2AT) to reinitialize the preconditioner.Restart the PCG iteration.end ifend whileend if3.2.1. Determining the preconditioner. First we determine whether to up-date the current preconditioner or refactor the matrixAD2AT to obtain a new precon-ditioner. This decision is based on the approximate cost of the preceding iteration,including the cost of any updates that were made to the preconditioner. This cost isprev cost = (updt cost� updt nmbr) + (pcgi cost� pcgi nmbr) + (overhead);where updt nmbr is the number of updates that were performed and pcgi nmbr is thenumber of pcg iterations. The overhead includes operations such as initializing thesolution to zeros, computing the norm of the right-hand side, deciding on the numberof rank-one updates, etc.� If the cost of determining the previous search direction was high, we reini-tialize the preconditioner by factoring the current matrix K = AD2AT . Wetake this action when the cost of previous iteration exceeds 80% of the cost8

of direct solution: prev cost > :8� drct cost:� If the cost of the previous iteration was not that high, then we base ourdecision on a prediction of the cost of the current iteration, refactoring if thepredicted cost is greater than the cost of the direct method.Our prediction method is simple and requires only a few arithmetic opera-tions. We �t a straight line to the number of iterations required to determinetwo preceding search directions. We choose the previous number, and thelatest other one that gives a line with positive slope, and use this line to pre-dict the number of iterations, predi nmbr, required to determine the currentsearch direction. If the solver refactored on the previous iteration, or if wecannot obtain a positive slope with data since the last refactorization, thenour predicted number of iterations is one more than the number taken lasttime, predi nmbr = pcgi nmbr+1.Given this predicted number of iterations, our predicted cost for computingthe search direction, neglecting overhead, ispred cost = (updt cost� updt nmbr) + (pcgi cost� predi nmbr):If this cost is less than drct cost, then the preconditioner is obtained by up-dating the previous one. Otherwise it is obtained by factoring K = AD2AT .3.2.2. The adaptive updating strategy. We adopt the strategy discussed inx 2.3 in Preconditioner 5: we update the Cholesky factors using the updt nbmr=� \largest" outer product matrices as determined by j�diij. (We could have usedj�diijkaik2 instead.)We change the number of Cholesky updates adaptively over the course of thealgorithm in order to improve e�ciency. The number is increased if the previoussearch direction took many iterations, and decreased if it took a very small number.Two parameters sml < lrg are initially set to 20 and 30 respectively. The pa-rameter sml denotes a number of conjugate gradient iterations that takes time muchless than drct cost, while lrg denotes a number that requires a more substantialfraction of drct cost. After timing data is available, we setlrg = 0:15� drct costpcgi cost ; sml = 0:12� drct costpcgi cost :To decide the number of rank-one updates, updt nmbr, to be performed, letpcgi slope be the slope of the line connecting last two pcgi nmbrs.The updt nmbr is8<: increased, if lrg � pcgi nmbr and pcgi slope > 0,decreased, if pcgi nmbr � sml and pcgi slope < 0,unchanged, otherwise:Increases or decreases in updt nmbr are proportional to the pcgi slope:(to increase) updt nmbr = updt nmbr�max(1:2; pcgi slope8:0) ;(to decrease) updt nmbr = updt nmbr�min(0:9; 8:0jpcgi slopej) :9

3.2.3. Iterating the PCG method. After computing the preconditioner, wesolve the normal equations using the preconditioned conjugate gradient method. Westart from an initial guess of zero, and iterate until the computed residual norm isless than a parameter "pcg times the norm of the right-hand side. We choose theparameter "pcg adaptively:"pcg = � 10�8; if relgap > 10�2;10�8 � (relgap)12 ; otherwise,where relgap is the relative duality gap for the previous value of �. This is similarto the stopping criterion in [26].If the preconditioned conjugate gradient iteration number exceeds the maximumnumber of iterations allowed, then the current preconditioner is abandoned and a newpreconditioner is determined by Cholesky factorization. If this happens twice, theiterative method is not suitable and we switch to a direct method. Unfortunately, thepreconditioned conjugate gradient iteration might be stopped just before convergence,thereby making the refactoring wasteful, but we consider such a safeguard boundingthe number of iterations to be important.The maximum number of iterations is set to the number that produces a cost of1:2 times the cost of a direct method:max pcg itn = 1:2� drct costpcgi cost :To sum up, our algorithm solves the normal equations directly to determine the�rst search direction, uses a preconditioned conjugate gradient method starting fromthe second search direction, and switches back to the direct method for the �nal searchdirections. The preconditioned conjugate gradient solver solves the normal equationsby �rst choosing and computing a preconditioner. The algorithm automatically setsall parameters expected to in
uence performance, based on actual time performanceof the components of the algorithm.4. Numerical results. We modi�ed the code OB1-R to adaptively choose thelinear system solver, and we performed numerical experiments comparing the resultsof this modi�ed version of OB1-R to the standard OB1-R code, dated December 1989.Both OB1-R and the adaptive algorithm are coded in FORTRAN and use doubleprecision arithmetic. Our experiments were performed on a SUN SPARCstation 20with 64 megabytes of main memory, running SunOS Release 4.1.3. The FORTRANoptimization level was set to -O3. We report CPU time in seconds, omitting the timetaken by the preprocessor HPREP since it is the same for both codes.Before comparing the two codes, we illustrate the behavior of the adaptive algo-rithm on a large problem, pds-10 (with arti�cial variables) whose problem charac-teristics are given in Table 3. Figure 1 shows the number of iterations needed by thepreconditioned conjugate gradient method for the � values chosen by OB1-R. Conju-gate gradients are used for �2 through �118, and then the algorithm chooses to switchto direct solution because it detects a zero on the diagonal of the preconditioner. Thehorizontal line at 169 marks the maximum number of conjugate gradient iterationsallowed (i.e. max pcg itn). The two dashed lines at 21 and 16 indicate lrg and sml,respectively. The Cholesky factorization is recomputed 25 times, marked by � in the�gure. This is a savings of 92 factorizations compared to the OB1-R algorithm. Inbetween refactorizations, the number of conjugate gradient iterations generally grows,more quickly for later values of � than for earlier ones.10

2 20 40 60 80 100 118
0

16
21

40

60

80

100

120

140

160

169

180

: Reinit preconditioner
: Update preconditioner
: Max PCG itn allowed
: lrg / sml

Problem : pds−10 (with artificial variables)

Outer iteration

N
um

be
r o

f P
C

G
 it

er
at

io
ns

Fig. 1. Number of PCG iterations for the adaptive algorithm
1 11 20 31 40 60 80 100 119

0

50

100
114

143

200

250

300

350

400

: Use direct solver

: With reinitialized preconditioner

: With updated preconditioner

: Estimited direct solver cost

: Large PCG solver cost

Problem : pds−10 (with artificial variables)

Outer iteration

Ti
m

e
(s

ec
on

ds
)

Fig. 2. Timing performance for the adaptive algorithm11

Figure 2 displays the time taken by each of these linear system solves. The dashedline is drct cost, the estimated direct solver cost based on its performance for the�rst value of �. The solid line marks 0:8 times drct cost.We highlight the following observations from the �gures.� The adaptive algorithm produces signi�cant savings in the beginning stage,especially from the 11th to the 31st value of �.� The frequency of reinitializing the preconditioner grows as � is decreased.� The preconditioners obtained from refactoring the matrixAD2AT are unsuit-able in the later stage.� The adaptive algorithm succeeds in keeping the cost at or better than thedirect cost on all iterations but three. On those, the predicted number ofiterations is too low.We now report computational results on various types of linear programmingproblems.4.1. The NETLIB problems. We �rst consider the NETLIB collection of testproblems [11]. For small problems, forming and factoring the matrices is rather in-expensive, so the adaptive algorithm chooses the direct method and its performanceis similar to OB1-R. Therefore, we select a few typical smaller problems but focuson the large problems in the NETLIB collection, those containing more than than25; 000 nonzero entries in the coe�cient matrix A. We present results for all of theseproblems except fit2p, which has a large dense AD2AT matrix and cannot be solvedin a reasonable time on our workstation by either OB1-R or the adaptive algorithm.Table 1 summarizes the problem characteristics. The numbers of rows, columns,and nonzeros indicated in the table refer to the output from the OB1-R preprocessorHPREP and may be di�erent from the data in [11]. The tabulated number of nonzeroelements of AAT and L count only the lower sub-diagonal part of AAT and L. Thedensity of AAT and L is computed as the ratio of the number of nonzeros to thenumber of elements in the lower sub-diagonal portions of the matrices.Table 2 shows the computational results on the NETLIB problems, comparing thenumber of � values needed by the interior point method, the relative duality gap inthe �nal answer, and the CPU time required by OB1-R and the adaptive algorithm.The last column is the di�erence between the OB1-R and the adaptive times. Apositive di�erence means the adaptive algorithm is faster.Table 2 shows that both algorithms attain a small relative duality gap except onthe problem greenbea, which is well-known to be di�cult for interior point methods[31]. The algorithms take the same number of � values and achieve similar dualitygaps except on the problem d6cube. On this problem the adaptive algorithm takesone additional iteration, achieves a duality gap 3 orders of magnitude smaller, and isfaster. On this problem the adaptive algorithm terminated successfully, while OB1-Rstopped because the duality gap was increasing.If the total time for solution is small (i.e., 5 minutes or less), then the performanceof the two algorithms is similar. On more costly problems such as dfl001, maros-r7,and pilot87, the adaptive method is faster.Note that in dfl001 we keep the arti�cial variables, the slack variables of theequality constraints, to prevent rank de�ciency. Without them, both algorithms ter-minate unsuccessfully in a few iterations because of the extreme ill-conditioning ofthe computed matrix AD2AT4.2. The \Kennington" problems. There is a set of larger test problems inthe NETLIB site, the \Kennington" problems used by Carolan, Hill, Kennington,12

Smaller NETLIB problemsProblem LP size and nonzeros Nonzeros DensityName Rows Columns Nonzeros AAT L AAT Lmaros 845 1443 9614 11409 24839 .03 .07scfxm3 990 1371 7777 8749 13520 .02 .03seba 515 1028 4352 51400 53748 .39 .41ship12l 1042 5427 16170 10673 11137 .02 .02vtp.base 198 203 909 1575 2121 .08 .11Larger NETLIB problemsProblem LP size and nonzeros Nonzeros DensityName Rows Columns Nonzeros AAT L AAT L80bau3b 2237 9799 21002 9972 40895 .00 .02d2q06c 2171 5167 32417 26991 165676 .01 .07d6cube 404 6184 37704 13054 54445 .16 .67degen3 1503 1818 24646 50178 119403 .04 .11d
001 6071 12230 35632 38098 1634257 .00 .09�t2d 25 10500 129018 296 299 .99 1.00greenbea 2389 5405 30877 33791 81914 .01 .03greenbeb 2389 5405 30882 33766 80503 .01 .03maros-r7 3136 9408 144848 330472 1195107 .07 .24pilot 1441 3652 43167 59540 193137 .06 .19pilot87 2030 4883 73152 115951 421194 .06 .20stocfor3 16675 15695 64875 103360 206731 .00 .00truss 1000 8806 27836 12561 52509 .03 .11wood1p 244 2594 70215 18046 18082 .61 .61woodw 1098 8405 37474 20421 47657 .03 .08Table 1Statistics for the larger test problems from NETLIB.13

Smaller NETLIB problemsIPM ite. Rel. dual gap TimeProblem OB1-R Adp OB1-R Adp OB1-R Adp Di�maros 45 45 .11e-08 .11e-08 11.17 11.27 -0.10scfxm3 39 39 .21e-08 .21e-08 4.25 4.80 -0.55seba 30 20 .15e-08 .15e-09 43.05 40.60 2.45ship12l 26 26 .53e-08 .53e-08 4.15 5.33 -1.18vtp.base 26 26 .33e-08 .33e-08 0.45 0.53 -0.08Larger NETLIB problemsIPM ite. Rel. dual gap TimeProblem OB1-R Adp OB1-R Adp OB1-R Adp Di�80bau3b 78 78 .44e-08 .44e-08 46.15 48.32 -2.17d2q06c 55 55 .25e-08 .25e-08 257.13 253.25 3.88d6cube 77 78 .67e-06 .18e-09 113.90 100.52 13.38degen3 30 30 .16e-09 .16e-09 66.22 65.57 0.65d
001 98 98 .27e-06 .27e-06 19844.37 16644.35 3200.02�t2d 54 54 .21e-08 .21e-08 46.80 47.85 -1.05greenbea 52 52 -.62e-04 -.62e-04 52.03 54.30 -2.27greenbeb 74 74 .80e-09 .82e-09 69.15 72.12 -2.97maros-r7 29 29 .31e-09 .71e-09 1952.93 1414.20 538.73pilot 77 77 .71e-08 .70e-08 485.08 441.42 43.66pilot87 82 82 .94e-08 .81e-08 1948.82 1584.77 364.05stocfor3 87 87 .70e-09 .70e-09 142.22 157.28 -15.06truss 30 30 .80e-09 .80e-09 19.55 22.22 -2.67wood1p 18 18 .35e-08 .27e-08 12.95 13.77 -0.82woodw 37 37 .27e-08 .27e-08 25.30 27.65 -2.35Table 2Computational results for the larger test problems from NETLIB.14

Niemi, and Wichmann [2]. We report results on problems with between 25; 000 and370; 000 nonzero elements in the coe�cient matrix A. These results suggest that theadaptive algorithm would work well on the bigger problems that we omitted fromtesting.Table 3 gives the statistics of these problems, and Table 4 gives the results. If weallow OB1-R to eliminate arti�cial variables, then the performance of the adaptivealgorithm is very similar to OB1-R; in all of these problems except osa-07 and osa-14,the adaptive algorithm discovers zeros in the diagonal matrix of the Cholesky factorfor the second � value and therefore switches to the direct solver.If we keep all arti�cial variables in order to guarantee full row rank, then the costof OB1-R generally increases, but the adaptive algorithm performs quite well on thecostly problems. The cost of the adaptive algorithm keeping arti�cial variables is lessthan that of OB1-R on these problems, even when OB1-R discards these variablesand works on a smaller problem.4.3. Network problems. Minimum cost
ow network problems may be solvedusing linear programming algorithms (although it is generally more e�cient to use anetwork algorithm like [20]). We test our algorithm on this class of problems becausethe matrix AAT and its resulting Cholesky factor tend to be much more dense thanthe original coe�cient matrix A, even if there is no dense column in A. Forming andfactoring the matrix AD2AT is thus quite expensive.We generated minimum cost
ow network problems using NETGEN, developedby Klingman, Napier, and Stutz [21]. Table 5 gives the parameters we used, except forthe number of nodes and arcs. Table 6 summarizes the characteristics of the resultinglinear programming problems. To prevent rank de�ciency, we let the adaptive algo-rithm keep the arti�cial variables, but we let OB1-R discard the arti�cial variables toimprove performance. The computational results are reported in Table 7.The size of AD2AT for the �rst four problems is either 999 or 1000, and theadaptive algorithm achieves signi�cant improvement over OB1-R as the density of Lincreases. If we compare problems with similar density in L but di�erent sizes (forexample, problems net0104 and net0416) we �nd that the adaptive algorithm doesincreasingly well as the problem size increases.5. Conclusion. We have presented an adaptive automated procedure for deter-mining whether to use a direct or iterative solver, whether to reinitialize or updatethe preconditioner, and how many updates to apply, and demonstrated that it canenhance performance of interior point algorithms on large sparse problems.Our preconditioning strategy is based on recomputing or updating the previouspreconditioner.Our numerical tests were performed using the OB1-R code, but it is relativelyeasy to implement this idea in other codes by adding three pieces:1. a mechanism to determine whether a direct or iterative solver should be used;2. a routine that performs updating and downdating of an existing matrix fac-torization (Cholesky, QR, etc.); and3. an iterative solver, such as a preconditioned conjugate gradient method.Further improvements could be made in the algorithm. Deeper understandingof e�ective termination criteria for the iterative method may further enhance thee�ciency of the algorithm. A block implementation of the matrix updating anddowndating would reduce overhead. Finally, parameters such as max pcg itn, lrg,sml, and updt nmbr might be tuned to particular problem classes.15

Kennington problemsProblem LP size and nonzeros Nonzeros DensityName Rows Columns Nonzeros AAT L AAT Lcre-b 7240 72447 256095 194579 940374 .01 .04cre-d 6476 69980 242646 181670 853300 .01 .04ken-11 14694 21349 49058 33880 118869 .00 .00ken-13 28632 42659 97246 66586 315642 .00 .00osa-07 1118 23949 143694 52466 54783 .08 .09osa-14 2337 52460 314760 113843 116160 .04 .04pds-06 9881 28655 62524 39061 582158 .00 .01pds-10 16558 48763 106436 66550 1674872 .00 .01Table 3Statistics for the Kennington problems.Kennington problems without arti�cial variablesIPM ite. Rel. dual gap TimeProblem OB1-R Adp OB1-R Adp OB1-R Adp Di�cre-b 91 91 -.16e-07 -.16e-07 5020.10 4872.30 147.80cre-d 92 92 -.69e-08 -.69e-08 3872.00 3761.92 110.08ken-11 33 33 .16e-09 .16e-08 53.28 51.93 1.35ken-13 51 51 .43e-08 .43e-08 244.95 240.90 4.05osa-07 53 53 .11e-05 .18e-05 80.68 88.83 -8.15osa-14 55 55 -.81e-06 -.81e-06 191.52 218.75 -27.23pds-06 102 102 .48e-09 .48e-09 2817.62 2781.30 36.32pds-10 128 128 .19e-08 .19e-08 19650.00 18718.57 931.43Kennington problems keeping arti�cial variablesIPM ite. Rel. dual gap TimeProblem OB1-R Adp OB1-R Adp OB1-R Adp Di�cre-b 102 102 -.99e-09 -.10e-08 5365.32 4472.75 892.60cre-d 103 103 -.60e-08 -.60e-08 4415.48 3698.33 717.45ken-11 44 44 .21e-08 .21e-08 73.70 94.42 -20.72ken-13 48 47 -.60e-09 .67e-08 238.77 274.68 -35.91osa-07 53 53 .11e-05 .18e-05 78.43 88.32 -9.89osa-14 55 55 -.81e-06 -.81e-06 187.63 220.68 -33.05pds-06 117 116 .50e-08 .64e-08 3216.82 2554.35 662.47pds-10 131 131 .69e-08 .64e-08 19978.53 13546.32 6432.21Table 4Results for the Kennington problems.16

Random no. seed 13502460 Transshipment source 0Number of sources 4 Transshipment sink 0Number of sinks 4 % of arcs with max cost 5Min cost of arcs 1 % of capacitated arcs 60Max cost of arcs 400 Min upper bnd for cap. arcs 1Total supply 800000 Max upper bnd for cap. arcs 10000Table 5NETGEN parameters used for generating network problems.Minimal cost
ow network problemsLP size & nonzeros Nonzeros DensityProblem Row/Node Col/Arc Nzros AAT L AAT LNET0102 999 2000 3999 1997 40014 .00 .08NET0104 1000 4000 8000 3991 115628 .01 .23NET0108 1000 8000 16000 7964 206560 .02 .41NET0116 1000 16000 32000 15873 279678 .03 .56NET0408 4000 8000 16000 7996 552366 .00 .07NET0416 4000 16000 32000 15989 1762394 .00 .22Table 6Statistics for the network problems.Minimal cost
ow network problemsIPM ite. Rel. dual gap TimeProblem OB1-R Adp OB1-R Adp OB1-R Adp Di�NET0102 43 40 .68e-10 .30e-09 34.02 32.58 1.44NET0104 41 41 .30e-09 .63e-08 171.23 135.52 35.71NET0108 43 43 .76e-08 .75e-08 461.05 335.58 125.47NET0116 58 59 .44e-09 .77e-09 1005.77 718.75 287.02NET0408 43 42 .42e-09 .17e-09 2099.43 1371.17 728.26NET0416 53 53 .31e-09 .50e-09 16674.13 9265.85 7408.28Table 7Computational results for the network problems.17

REFERENCES[1] Richard Bartels and Linda Kaufman. Cholesky factor updating techniques for rank 2 matrixmodi�cations.SIAM Journal on Matrix Analysis and Applications, 10(4):557{592,October1989.[2] W. Carolan, J. Hill, J. Kennington, S. Niemi, and S. Wichmann. An empirical evaluation of theKORBX algorithms for military airlift applications. Operations Research, 38(2):240{248,1990.[3] Tamra J. Carpenter and David F. Shanno. An interior point method for quadratic programsbased on conjugate projected gradients. Computational Optimization and Applications,2:5{28, 1993.[4] P. Chin and A. Vannelli. Computational methods for an LP model of the placement problem.Technical Report UWE&CE-94-02, Department of Electrical and Computer Engineering,University of Waterloo, November 1994.[5] P. Chin and A. Vannelli. Iterative methods for the augmented equations in large-scale linearprogramming. Technical Report UWE&CE-94-01, Department of Electrical and ComputerEngineering, University of Waterloo, October 1994.[6] In Chan Choi, Clyde L. Monma, and David F. Shanno. Further development of a primal-dualinterior point method. ORSA Journal on Computing, 2(4):304{311, 1990.[7] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK User's Guide. SIAM,Philadelphia, 1979.[8] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. ClarendonPress, Oxford, 1986.[9] A. V. Fiacco and G. P. McCormick. Nonlinear Programming : Sequential UnconstrainedMinimization Techniques. John Wiley & Sons, New York, 1968. Reprint : Volume 4 ofSIAM Classics in Applied Mathematics, SIAM Publications, Philadelphia, PA 19104{2688,USA, 1990.[10] Roland W. Freund and Florian Jarre. A QMR-based interior-point algorithm for solving lin-ear programs. Technical report, AT&T Bell Laboratories and Institut f�ur AngewandteMathematik und Statistik, 1995.[11] D. M. Gay. Electronic mail distribution of linear programming test problems. MathematicalProgramming Soc. COAL Newsletter, 1985.[12] Philip E. Gill and Walter Murray. Newton-type methods for unconstrained and linearly con-strained optimization. Mathematical Programming, 7:311{350, 1974.[13] Philip E. Gill, Walter Murray, Michael A. Saunders, J. A. Tomlin, and Margaret H. Wright.On projected Newton barrier methods for linear programming and an equivalence to Kar-markar's projective method. Mathematical Programming, 36:183{209, 1986.[14] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization. AcademicPress, 1981.[15] D. Goldfarb and S. Mehrotra. A relaxed version of Karmarkar's method. Mathematical Pro-gramming, 40(3):289{315, 1988.[16] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins UniversityPress, Baltimore, second edition, 1989.[17] Clovis C. Gonzaga. Path-following methods for linear programming. SIAM Review, 34(2):167{224, June 1992.[18] N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,4:373{395, 1984.[19] N. K. Karmarkar and K. G. Ramakrishnan. Computational results of an interior point algorithmfor large scale linear programming. Mathematical Programming, 52:555{586, 1991.[20] J. L. Kennington and R. V. Helgason. Algorithms for network programming. John Wiley andSons, New York, NY, 1980.[21] D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large scale capaci-tated assignment, transportation, and minimum cost
ow network problems. ManagementScience, 20(5):814{821, January 1974.[22] J. Liu. Modi�cation of the minimum-degree algorithm by multiple elimination. ACM Trans-actions on Mathematical Software, 11:141{153, 1985.[23] Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Computational experiencewith a primal-dual interior point method for linear programming. Linear Algebra and Its Application,152:191{222, 1991.[24] Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Interior point methods for linearprogramming: Computational state of the art. ORSA Journal on Computing, 6(1):1{14,Winter 1994. 18

[25] Sanjay Mehrotra. Implementation of a�ne scaling methods: Approximate solutions of systemsof linear equations using preconditioned conjugate gradient methods. ORSA Journal onComputing, 4(2):103{118, 1992.[26] Sanjay Mehrotra and Jen-Shan Wang. Conjugate gradient based implementation of interiorpoint methods for network
ow problems. Technical Report 95-70.1, Department of In-dustrial Engineering and Management Sciences, Northwestern University, Evanston, IL60208-3119, U.S.A., October 1995.[27] Stephen G. Nash and Ariela Sofer. Preconditioning of reduced matrices. Technical Report Re-port 93-01, Departmentof OperationsResearch and Engineering,GeorgeMason University,Fairfax, VA 22030, February 1993.[28] C. C. Paige and M. A. Saunders. LSQR : An algorithm for sparse linear equations and sparseleast squares. ACM Transactions on Mathematical Software, 8:43{71, 1982.[29] L. F. Portugal, M. G. C. Resende, G. Veiga, and J. J. J�udice. A truncated primal-infeasibledual-feasible network interior point method. November 1994.[30] Youcef Saad. SPARSKIT : A Basic Tool Kit for Sparse Matrix Computations, 1994. Version2 is located in an anonymous ftp area in ftp.cs.umn.edu within directory /dept/sparse.[31] Robert J. Vanderbei. LOQO : An interior point code for quadratic programming. Program inStatistics and Operations Research, Princeton University. rvdb@princeton.edu, 1995.[32] M. H. Wright. Interior methods for constrained optimization. In A. Iserles, editor, ActaNumerica 1992, pages 341{407. Cambridge University Press, New York, USA, 1992.

19

