ADAPTIVE USE OF ITERATIVE METHODS IN INTERIOR POINT
METHODS FOR LINEAR PROGRAMMING

WEICHUNG WANG* AND DIANNE P. O'LEARY!

November 21, 1995

Abstract. In this work we devise efficient algorithms for finding the search directions for interior
point methods applied to linear programming problems. There are two innovations. The first is the
use of updating of preconditioners computed for previous barrier parameters. The second is an
adaptive automated procedure for determining whether to use a direct or iterative solver, whether
to reinitialize or update the preconditioner, and how many updates to apply. These decisions are
based on predictions of the cost of using the different solvers to determine the next search direction,
given costs in determining earlier directions. These ideas are tested by applying a modified version
of the OB1-R code of Lustig, Marsten, and Shanno to a variety of problems from the NETLIB and
other collections. If a direct method is appropriate for the problem, then our procedure chooses it,
but when an iterative procedure is helpful, substantial gains in efficiency can be obtained.

1. Introduction. Interior point algorithms are now widely used to solve linear
programming problems

T

minimize c¢c'x
(1) subject to Ax = b,
x>0,

where ¢,z are real n-vectors, b is a real m-vector, and A is a real m x n matrix
of rank m, with m < n. These methods typically solve a sequence of logarithmic
barrier subproblems with the barrier parameter decreasing to zero. Newton’s method
is applied to solve the first order optimality conditions corresponding to each of the
logarithmic barrier subproblems. The bulk of the work in such algorithms i1s the
determination of a search direction for each iteration.

Gonzaga [17] and Wright [32] surveyed interior point methods, and many com-
putational issues are addressed by Lustig, Marsten, and Shanno [24]. Therefore, in
this section we focus only on the linear systems arising in interior point methods. For
definiteness, we consider the primal-dual formulation of interior point methods, but
the linear algebra of primal formulations and dual formulations is similar.

The search direction is usually determined by solving either the reduced KKT
(Karush-Kuhn-Tucker) system,

) —X"1tz AT Az \ [rm+ Ze—puX~'te

A 0 Ay | Tp '
or the normal equations, formed by eliminating Az from this system. Defining r; =
b—Ax, r,=c— ATy — 2 and D? = Z7'X, we obtain

(3) (AD*ATYAy = AD*(ry + Ze — px~e) + 1,

Here z is the vector of dual slack variables, p 1s the barrier parameter, and X and
7 are diagonal matrices containing # and z (respectively) on their main diagonals.

* Applied Mathematics Program, University of Maryland, College Park, MD 20742 (we-
ichung@cs.umd.edu)

t Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742 (oleary@cs.umd.edu). This work was supported by the National
Science Foundation under Grant CCR 95-03126.

Once Ay is determined from the normal equations, Az may be easily computed from
(4) — (X' Az + ATAy =1+ Ze — pX e

Comparing the normal equations (3) and the KKT system (2), we observe that
the matrix for the normal equations is positive definite and symmetric, has smaller
size (m x m), and may be more dense. In contrast, the KKT matrix is symmetric
indefinite and usually more sparse.

One nice feature of these problems is that only D and the right hand side of the
system change from iteration to iteration. Thus, the sparsity structure of the problem
remains the same, in contrast to the linear systems arising in the simplex algorithm
which differ by exchanges of columns of A.

The roots of interior point algorithms date back to the algorithms of Fiacco and
McCormick [9], but ever since interior point algorithms first gained prominence in
1984 [18], researchers have given attention to speeding up the iteration time through
efficient solution of the linear system. Direct methods that rely on sparse matrix fac-
torizations have been the most popular approaches (e.g., [23], [31]), although iterative
methods for solving linear systems have also received a fair amount of attention.

Karmarkar and Ramakrishnan reported computational results of Karmarkar’s
dual projection algorithm using a preconditioned conjugate gradient solver [19]. An
incomplete Cholesky factorization of the matrix AD? AT was computed for one interior
point iteration and then used as a preconditioner over several subsequent iterations.
In their experiments, Cholesky factorization was performed on average every 2 to
3 iterations. Mehrotra used preconditioned conjugate gradients to solve the normal
equations in a dual affine scaling interior point algorithm [25]. He addressed issues
such as the stopping criterion and the stability of the implementation. At each in-
terior point iteration, an incomplete Cholesky factor was computed and used as the
preconditioner. Carpenter and Shanno used a diagonal preconditioner for a conjugate
gradient solver for the normal equations in an interior point method for quadratic
and linear programs [3]. They also considered recomputing the preconditioner every
other iteration. Portugal, Resende, Veiga, and Judice introduced a truncated primal-
infeasible dual-feasible interior point method, focusing on network flow problems [29].
The preconditioned conjugate gradient algorithm was used to solve the normal equa-
tions. They initially used the diagonal of the matrix AD?> AT as a preconditioner and
replaced it by spanning tree preconditioners in later iterations. Mehrotra and Wang
[26] used an incomplete Cholesky factor of AD? AT as a preconditioner for conjugate
gradients in a dual interior point method for network flow problems. Gill, Murray,
Saunders, Tomlin, and Wright established the equivalence between Karmarkar’s pro-
jected method and their projected Newton barrier method [13]. They used LSQR. [28],
preconditioned by an approximation to AD?AT | to find the search directions. Gold-
farb and Mehrotra developed a relaxed version of Karmarkar’s method that allows
inexact projection [15]. They applied CGLS [28] to determine the search direction.
Nash and Sofer investigated the choice of a preconditioner in the positive definite
system Z7(GZ where Z is rectangular and G is general symmetrici [27].

Chin and Vannelli [5] solved a reduced KKT system using the preconditioned
conjugate gradient algorithm and Bi-CGSTAB with incomplete factorization. In a
different paper [4] they used an incomplete factorization as a preconditioner for the
normal equations (3). Freund and Jarre [10] employed a symmetric variant of the
quasi-minimal residual (QMR) method to solve the KKT systems. They suggested
using indefinite SSOR preconditioners to accelerate the convergence.

2

The use of iterative methods has so far produced limited success. The obstacles
to the use of these methods are considerable.

e Over the course of the interior point iterations, the requirements on accuracy
change greatly; approximate solutions can be allowed early in the iterations
but can cause the algorithm to fail when the iterates are near the boundary.

e The matrix D changes quite rapidly and becomes highly ill-conditioned in
the final iterations.

For these reasons, it is difficult to find a preconditioning strategy that produces good
performance of iterative methods over the entire course of the interior point iteration.

In this paper we develop an adaptive algorithm that changes strategy over the
course of the interior point iteration. It determines dynamically whether the precon-
ditioner should be held constant, updated, or recomputed, and 1t switches to a direct
method when it predicts that an iterative method will be too expensive. In our ex-
periments, we use a preconditioned conjugate gradient iteration on the linear system
involving the matrix ADAT | but our ideas could be extended to iterations involving
the KKT formulation as well.

In the next section, we discuss the characteristics of direct and iterative meth-
ods and present several preconditioners. Section 3 focuses on our algorithm for the
adaptive choice of direct vs. iterative methods and the adaptive choice of a precon-
ditioner. Numerical results obtained from a modified version of the OB1-R code of
Lustig, Marsten, and Shanno [23] are presented in § 4. Final comments are made in

§5.

2. The linear system solvers. Either direct or iterative methods may be used
for determining the search directions, the most expensive part of an interior point
algorithm. In this section, we focus on the solution of the normal equations (3). This
discussion sets the goals to be accomplished in designing an efficient algorithm.

We will assume that the columns of A have been permuted using standard tech-
niques in order to improve sparsity in the Cholesky factor of AD2AT (e.g., [8], [22]).

2.1. Direct solvers: Cholesky factorization. Most existing linear program-
ming interior point methods solve the normal equations by direct methods. The
careful implementation OB1-R of Lustig, Marsten, and Shanno (LMS) [23] is rep-
resentative of these methods, and the iterative methods will be compared with this
implementation.

To solve equation (3), the LMS implementation computes a sparse Cholesky fac-
torization of the matrix K = AD?AT as LPL”, where L is a unit lower triangular
matrix and P is a diagonal matrix. Forward and backward substitution are then ap-
plied to compute the search direction Ayg. The LMS algorithm then checks whether
A Ay, is close enough to the artificial variables (b— Axy). If not, iterative refinement
using the factored matrix LPL” is employed repeatedly until the one-norm of the dif-
ference is sufficiently small. To deal with the dense columns in A, the LMS algorithm
adopts the method suggested by Choi, Monma, and Shanno [6].

There are three main disadvantages to direct methods such as that in OB1-R.
First, the methods will fail if the matrix K = AD?A7T is very ill-conditioned. If the
computed solution is not sufficiently accurate, then iterative refinement produces a
sequence of approximations

(5) Ayt = Ay + (LPLYY Y, — KAY),

where ry, is the right-hand side of equation (3). This iteration will only converge
if the spectral radius of the matrix (I — (LPLT)71K) is less than one. If K is ill-

3

conditioned, however, this condition may not be satisfied due to inaccuracy in the
computed factorization, and refinement may fail to converge. Such a situation can
occur when the primal and dual variables are near to the optimal solution, since
then the matrix D is quite ill-conditioned. The iteration can also be affected by
ill-conditioning in A.

Another potential problem of direct methods is fill-in. Although the dense columns
of A can be treated separately, the remaining Cholesky factor may still be rather dense.
This might be caused by difficulty in detecting “dense” columns or by the nature of
the problem. For example, network problems solved by linear programming may lead
to a Cholesky factor that is much more dense than AD?A” even though A has no
dense columns; see, for example, Table 6.

Lastly, the LMS algorithm forms and factors the matrix K = AD?ATeach time
1 1s changed. This procedure may be expensive in time, especially when the problem
size 18 large. If m < n, the resulting matrix K may be small and easy to factor, but
forming it can still be costly.

2.2. Iterative solvers: preconditioned conjugate gradients. A variety of
iterative methods can be used to solve the normal equations or the KKT system. For
definiteness, we focus on the preconditioned conjugate gradient method for solving
equation (3). In this method, a sequence of approximate solutions are computed that
converge to the true solution. The work during each iteration involves one product
of K with a vector, one solution of a linear system involving the preconditioner, and
several vector operations. More details about the method can be found in [16].

The conjugate gradient method preconditioned by the Cholesky factorization of K
has somewhat better stability than the direct solver since the method does not require
that the spectral radius of the iteration matrix be less than one. Thus, convergence
can be achieved even if the factorization is quite inaccurate.

The storage requirement for the preconditioned conjugate gradient method is
quite low, amounting to a few vectors of length m. Although a matrix-vector mul-
tiplication Kv = (AD?AT)v is required at each iteration, we may compute Kv as
(A(D?(ATv))) and thus need only to store the nonzeros of A and the diagonal of D
rather than the matrix AD?> A7 which can be quite dense. The preconditioner should
also be chosen to conserve storage.

Since accuracy requirements for the search direction in the beginning phase of
the interior point algorithm are quite low, only a few conjugate gradient iterations
are required. As the primal and dual variables approach the optimal solution, the
convergence tolerance must be tightened and more iterations are needed.

The crucial issue in the preconditioned conjugate gradient algorithm is to find a
preconditioner for each step of the interior point method. A good preconditioner may
dramatically accelerate the convergence rate and gain great computational savings.
We consider some strategies for choosing the preconditioners in the next subsection.

2.3. The preconditioners. Convergence of the conjugate gradient iteration will
be rapid if the preconditioned matrix has either a small condition number or great
clustering of eigenvalues [16, Chap. 10]. We discuss five strategies for preconditioning.
The first two are based on complete factorizations of the matrix K. The others factor
a sparse portion of K or update a previous preconditioner. Qur experiments are based
on the first and fifth, but our techniques apply to all of them.

Preconditioner 1 : Cholesky factorization. We can use the Cholesky fac-
torization of the matrix, computed as in the LMS algorithm, as the preconditioner.
Effectively, then, we replace their iterative refinement algorithm by the preconditioned

4

conjugate gradient iteration. In exact arithmetic, this preconditioned conjugate gra-
dient iteration will converge to the solution in one iteration. If K is ill-conditioned,
however, then the computed Cholesky factorization might be inaccurate and more
iterations will be required. Such ill-conditioning is inevitable in the end stages of the
interior point method.

An alternative to computing the Cholesky factorization on every interior point
iteration is to use the preconditioner computed for one fixed value of the barrier
parameter p for several values of u [3] [19]. This reduces the computational work in
forming the factorization.

Preconditioner 2 : QR decomposition. Rather than computing the Cholesky
factors of the matrix K = AD? A7 we may simply compute the n x m matrix DAT
and factor it as QR, where) is a n X m matrix with orthonormal columns and R is
a m x m upper triangular matrix. We then have a preconditioner RT R. Note that
this preconditioner is mathematically identical to the Cholesky preconditioner since
R= P%LT, but computationally we may be able to compute a much more accurate
factor because we avoid the loss of precision inherent in forming AD?AT. The time
for computing this preconditioner, however, is usually larger than that for computing
the Cholesky factors of K, and except on very ill-conditioned problems, this approach
cannot be recommended.

Preconditioner 3 : Cholesky factorization for sparse part only. If the
coefficient matrix A contains some dense columns, the LMS algorithm partitions A
as [As, Ap] where As and Ap contain the sparse and dense columns, respectively.
The system involving the matrix A is then solved by using the partial factor and the
Sherman-Morrison-Woodbury formula [16, Chap. 2].

Similarly, we let D% denote the diagonal matrix containing only the elements
corresponding to As. A preconditioner Mg can then be defined by LSPSLg, where
AsD%AL = LgPsLYL. Using this preconditioner, the conjugate gradient solver con-
verges in (k + 1) steps provided Ap contains & columns. To see this, we denote
Gs = ASDgAg and Gp = ADD%A%) and then obtain K = AD?AT = G¢ + Gp.

Since the preconditioner Mg = (g, the resulting preconditioned matrix is
(6) Gs'A=G5'(Gs+Gp) =1 +(G5'Gp)

and thus (GglA) is the identity plus a rank & matrix and has at most (k+1) distinct
eigenvalues. A standard theorem for the preconditioned conjugate gradient method
guarantees termination (in exact arithmetic) in at most (k 4 1) steps [16, Chap. 10].

Preconditioner 4 : Incomplete factorization. The preconditioner can be
calculated by using incomplete Cholesky factorization [8], [16], an approximation to
the exact Cholesky factorization determined by neglecting small elements in the tri-
angular matrix [30] or by discarding elements that do not fit a preassigned sparsity
pattern [5]. An incomplete QR factorization could also be determined.

Preconditioner 5 : Updated Cholesky factorization. Rather than discard-
ing one of these preconditioners or keeping it fixed when p changes, we can try to
update it by a small-rank change, since the normal equations matrix is a continuous
function of y. Let D be the current diagonal matrix and D be the one for which we
have a factorization AD?AT = LPLT. Define AD = D? — D? and let a; be the i-th
column of matrix A. Since

(7) AD?AT = AD*AT + AADAT = LPLT +3 Adyaiaf,

i=1

we may obtain an improved preconditioner LPLT by applying a rank-a update to
LPLT where o < n. This update may be computed as in [1] and [7]. If « is big
enough to include most of the large magnitude terms in the summation, then we have
factored a matrix that differs from AD?A” by a matrix of rank n — . This difference
matrix can be expressed as a matrix of small norm plus one of small rank, and we
can hope for rapid convergence of the conjugate gradient iteration.

Given these five families of preconditioners, we turn our attention to criteria for
deciding to keep or update the current preconditioner.

3. The algorithms. Based on the discussion in previous sections, we suggest
combining the use of direct and iterative methods within the interior point algorithm.
We present this algorithm in two parts. Algorithm 3.1 shows how the solvers fit within
the interior point iteration. Algorithm 3.2 gives a more detailed description of the
iterative solver and its preconditioner.

3.1. The interior point algorithm with adaptive solver. Our interior point
algorithm, Algorithm 3.1, chooses the initial variables, the step sizes, the barrier
parameter, and convergence criteria following standard strategies [23]. The linear
equation solver, however, has been modified to improve efficiency.

In the first iteration of the algorithm, the normal equations (3) are solved di-
rectly by factoring K = AD?>AT = LPLT. Starting from the second iteration, the
algorithm uses preconditioned conjugate gradients. The preconditioner for each it-
eration is determined by factoring the current matrix K or by updating the current
preconditioner. This “factor-update cycle” will be continued up to the “end-game,”
entered when the relative duality gap is small enough.

In the end-game, the iterates are close to the optimal solution and accuracy
requirements are high. The elements in matrix I vary significantly and make the
matrix K = AD?ATvery ill-conditioned. The Cholesky factorization of K may not
generate a good preconditioner, even if stable methods such as [12] are used. For all
of these reasons, a direct method is used to determine the final search directions.

We also switch to a direct method when OB1-R, computes a Cholesky factorization
with a zero on the diagonal. This contingency could be avoided by using a modified
Cholesky factor; see, for example, [14, Chap. 4].

3.2. The adaptive conjugate gradient solver. We now focus on the details of
the implementation of the preconditioned conjugate gradient solver in Algorithm 3.1.
We make decisions regarding refactorization or update of the preconditioner based
on the actual cost incurred in determining previous search directions, as measured in
seconds by a system timing program:

drct_cost = the cost of factoring and solving the system directly;
updt_cost = the cost of each rank-one update;
pcgicost = the cost of each conjugate gradient iteration.

ALGORITHM 3.1. Interior point algorithm with adaptive solver

Initialize k — 1; po > 0; x0,y0, 20 > 0; Endgame < False; UseDirect « False.

while (not convergent)
if [(k> 1) and (Endgame = False) and (UseDirect = False)] then
Solve using PCG. (See Algorithm 3.2 for details.)
Determine the preconditioner.
if (the diagonal of the preconditioner is singular) then
UseDirect « True

else
lterate the PCG method.
end if

end if

if [(k=1) or (Endgame = True) or (UseDirect = True)] then
Solve using direct solver.
Form the matrix ADZAT.
Factor AD?AT = LPLT.
Solve the normal equations using LPLT
applying iterative refinement if necessary.
Compute drct _cost as the elapsed time of the direct solver.

end if

Update the primal and dual variables.
Compute x11 — 25 + apAx; Ypgp1 — Yp + @qgAy; zpqp1 — 25 + agAz,

Check for end-game.
if (the relative duality gap is small) then (Endgame — True)

Choose figp41 < pig-
Set k — k + 1.

end while

(For simplicity, we neglect the fact that updates and downdates have slightly
different costs.) We initialize each of these estimates to zero, but after the first few
iterations of the interior point method, we have accurate estimates of each. In order
to reduce the effects of variability from the timer output, though, we suggest that
these estimates continue to be updated over many iterations.

ALGORITHM 3.2. The preconditioned conjugate gradient solver

Solve using PCG.

Determine the preconditioner.
updt_nmbr «— the number of rank-one updates to be performed.
pred_cost — predicted cost of updating the preconditioner
and iterating PCG
if [(prev_cost > .8 X drct_cost) or (drct_cost < pred_cost) | then
Form the matrix AD>AT.
Factor AD?ATto get the preconditioner.

else
Perform updt nmbr rank-one updates to get the new preconditioner.

end if

if (the diagonal of the preconditioner is singular) then
UseDirect « True
else

Iterate the PCG method.

peg-itn «— 0
while (not convergent)
Execute a PCG iteration.
peg-itn — (pecg-itn + 1)
if (pcg-itn > max_pcg_itn) then
if (this happens twice) then (UseDirect — True)
Factor (AD?AT) to reinitialize the preconditioner.
Restart the PCG iteration.
end if

end while

end if

3.2.1. Determining the preconditioner. First we determine whether to up-
date the current preconditioner or refactor the matrix AD?ATto obtain a new precon-
ditioner. This decision is based on the approximate cost of the preceding iteration,
including the cost of any updates that were made to the preconditioner. This cost is

prev_cost = (updt_cost x updt_nmbr)+ (pcgi_cost X pcginmbr) + (overhead),

where updt _nmbr is the number of updates that were performed and pcgi nmbr is the

number of pcg iterations. The overhead includes operations such as initializing the

solution to zeros, computing the norm of the right-hand side, deciding on the number
of rank-one updates, etc.

e If the cost of determining the previous search direction was high, we reini-

tialize the preconditioner by factoring the current matrix K = AD?*AT. We

take this action when the cost of previous iteration exceeds 80% of the cost

8

of direct solution:
prev_cost > .8 X drct_cost.

e If the cost of the previous iteration was not that high, then we base our
decision on a prediction of the cost of the current iteration, refactoring if the
predicted cost is greater than the cost of the direct method.

Our prediction method is simple and requires only a few arithmetic opera-
tions. We fit a straight line to the number of iterations required to determine
two preceding search directions. We choose the previous number; and the
latest other one that gives a line with positive slope, and use this line to pre-
dict the number of iterations, predi nmbr, required to determine the current
search direction. If the solver refactored on the previous iteration, or if we
cannot obtain a positive slope with data since the last refactorization, then
our predicted number of iterations is one more than the number taken last
time, predi nmbr = pcgi nmbr+1.

Given this predicted number of iterations, our predicted cost for computing
the search direction, neglecting overhead, is

pred_cost = (updt_cost x updt nmbr) + (pcgi_cost x predi nmbr).

If this cost is less than drct_cost, then the preconditioner i1s obtained by up-
dating the previous one. Otherwise it is obtained by factoring K = AD?A”.

3.2.2. The adaptive updating strategy. We adopt the strategy discussed in
§ 2.3 in Preconditioner 5: we update the Cholesky factors using the updt nbmr=
a “largest” outer product matrices as determined by |Ad;|. (We could have used
|Ad;;|||a;])* instead.)

We change the number of Cholesky updates adaptively over the course of the
algorithm in order to improve efficiency. The number is increased if the previous
search direction took many iterations, and decreased if it took a very small number.

Two parameters sml < lrg are initially set to 20 and 30 respectively. The pa-
rameter sml denotes a number of conjugate gradient iterations that takes time much
less than drct_cost, while 1rg denotes a number that requires a more substantial
fraction of drct_cost. After timing data is available, we set
drct._cost drct_cost

sml = 0.12 x

lrg = 0.15 x - ; - .
pcgi_cost pcgi_cost

To decide the number of rank-one updates, updt nmbr, to be performed, let
pcgi-slope be the slope of the line connecting last two pcgi nmbrs.

increased, if lrg < pcginmbr and pcgi_slope > 0,
The updt nmbr is ¢ decreased, if pcginmbr < sml and pcgi_slope < 0,
unchanged, otherwise.

Increases or decreases in updt_nmbr are proportional to the pcgi_slope:

. 3 B l
(to 1ncrease) updt _nmbr = updt _nmbr x max(l.?, %) ,

8.0

(to decrease) updt_nmbr = updt_nmbr x min(0.9, ——————).
|pcgi-slope|

3.2.3. Iterating the PCG method. After computing the preconditioner, we
solve the normal equations using the preconditioned conjugate gradient method. We
start from an initial guess of zero, and iterate until the computed residual norm is
less than a parameter e,., times the norm of the right-hand side. We choose the
parameter €,., adaptively:

1
2

[1075, if relgap > 1072
Fpeg = 1078 x (relgap)?, otherwise,

where relgap is the relative duality gap for the previous value of y. This is similar
to the stopping criterion in [26].

If the preconditioned conjugate gradient iteration number exceeds the maximum
number of iterations allowed, then the current preconditioner is abandoned and a new
preconditioner is determined by Cholesky factorization. If this happens twice, the
iterative method is not suitable and we switch to a direct method. Unfortunately, the
preconditioned conjugate gradient iteration might be stopped just before convergence,
thereby making the refactoring wasteful, but we consider such a safeguard bounding
the number of iterations to be important.

The maximum number of iterations is set to the number that produces a cost of
1.2 times the cost of a direct method:

. drct_cost
max pcg itn =12 X ————.
pcgi_cost

To sum up, our algorithm solves the normal equations directly to determine the

first search direction, uses a preconditioned conjugate gradient method starting from

the second search direction, and switches back to the direct method for the final search

directions. The preconditioned conjugate gradient solver solves the normal equations

by first choosing and computing a preconditioner. The algorithm automatically sets

all parameters expected to influence performance, based on actual time performance
of the components of the algorithm.

4. Numerical results. We modified the code OB1-R to adaptively choose the
linear system solver, and we performed numerical experiments comparing the results
of this modified version of OB1-R to the standard OB1-R, code, dated December 1989.

Both OB1-R and the adaptive algorithm are coded in FORTRAN and use double
precision arithmetic. OQur experiments were performed on a SUN SPARCstation 20
with 64 megabytes of main memory, running SunOS Release 4.1.3. The FORTRAN
optimization level was set to —03. We report CPU time in seconds, omitting the time
taken by the preprocessor HPREP since it is the same for both codes.

Before comparing the two codes, we illustrate the behavior of the adaptive algo-
rithm on a large problem, pds-10 (with artificial variables) whose problem charac-
teristics are given in Table 3. Figure 1 shows the number of iterations needed by the
preconditioned conjugate gradient method for the p values chosen by OB1-R. Conju-
gate gradients are used for py through pi118, and then the algorithm chooses to switch
to direct solution because it detects a zero on the diagonal of the preconditioner. The
horizontal line at 169 marks the maximum number of conjugate gradient iterations
allowed (i.e. max_pcg-itn). The two dashed lines at 21 and 16 indicate 1lrg and sml,
respectively. The Cholesky factorization is recomputed 25 times, marked by & in the
figure. This is a savings of 92 factorizations compared to the OB1-R algorithm. In
between refactorizations, the number of conjugate gradient iterations generally grows,
more quickly for later values of yu than for earlier ones.

10

180

169

160

140

120

100

80

Number of PCG iterations

60

40

400

350

300

250

Time (seconds)
N
o
(@)

143

114

100

50

Problem : pds—10 (with artificial variables)

T T T T
- -+ + +
B @: Reinit preconditioner + T
+: Update preconditioner :
B — : Max PCG itn allowed : i
4+ | ——:Irg/sml + + +
: + + :
+
L N o : + -
: + : +
: . + L+
- . + + -
+ 4 + + .
+
L & P : i i
+ + L i
R + i 3 Tt
L + + . +o4 + +4
+ . i iy gt
+H : ++ + : IR
2 + +t g + g i
+ o + ST
+ : + + o+ + o+
I o S Gl L i + 7,gj7+ ,,,,,,,,,,,
b tim = — - = e B T o
+ : s ®
. oo s o @
e @ L D b D b @ @ b DD O & dD 53@\@@ !
2 20 40 60 80 100 118
Outer iteration
Fic. 1. Number of PCG iterations for the adaptive algorithm
Problem : pds—10 (with artificial variables)
T T T T T
X ! Use direct solver ®
B ; . . ® b
@ : With reinitialized preconditioner @
+ : With updated preconditioner
o — — : Estimited direct solver cost o B
— : Large PCG solver cost ’
+
+
+ 4 Ty : *
@B —— - - -G O-O G O-@ -O0O - - 00 GE POND DI
- +<L + + . - § +-
§ ¥ - I i T i
4+ + 4+ co 4 -
B i T+ LIRE
+ CoF + o4 + : : T i
oL H + + Toyong R
L e Lo+ i o -
R w0 i + o+
+ : + + o+ + + + + +
+ + * + °F + * *
Il ‘fﬁ Il Il Il Il Il Il Il
1 11 20 31 40 60 80 100 119

Outer iteration

Fi1c. 2. Timing performance for the adaptive algorithm

11

Figure 2 displays the time taken by each of these linear system solves. The dashed
line 1s drct_cost, the estimated direct solver cost based on its performance for the
first value of p. The solid line marks 0.8 times drct_cost.

We highlight the following observations from the figures.

e The adaptive algorithm produces significant savings in the beginning stage,
especially from the 11th to the 31st value of p.

e The frequency of reinitializing the preconditioner grows as p is decreased.

e The preconditioners obtained from refactoring the matrix AD? AT are unsuit-
able in the later stage.

e The adaptive algorithm succeeds in keeping the cost at or better than the
direct cost on all iterations but three. On those, the predicted number of
iterations is too low.

We now report computational results on various types of linear programming
problems.

4.1. The NETLIB problems. We first consider the NETLIB collection of test
problems [11]. For small problems, forming and factoring the matrices is rather in-
expensive, so the adaptive algorithm chooses the direct method and its performance
is similar to OB1-R. Therefore, we select a few typical smaller problems but focus
on the large problems in the NETLIB collection, those containing more than than
25,000 nonzero entries in the coefficient matrix A. We present results for all of these
problems except £it2p, which has a large dense AD?A” matrix and cannot be solved
in a reasonable time on our workstation by either OB1-R or the adaptive algorithm.

Table 1 summarizes the problem characteristics. The numbers of rows, columns,
and nonzeros indicated in the table refer to the output from the OB1-R preprocessor
HPREP and may be different from the data in [11]. The tabulated number of nonzero
elements of AAT and L count only the lower sub-diagonal part of AAT and L. The
density of AAT and L is computed as the ratio of the number of nonzeros to the
number of elements in the lower sub-diagonal portions of the matrices.

Table 2 shows the computational results on the NETLIB problems, comparing the
number of p values needed by the interior point method, the relative duality gap in
the final answer, and the CPU time required by OB1-R and the adaptive algorithm.
The last column is the difference between the OB1-R and the adaptive times. A
positive difference means the adaptive algorithm is faster.

Table 2 shows that both algorithms attain a small relative duality gap except on
the problem greenbea, which is well-known to be difficult for interior point methods
[31]. The algorithms take the same number of y values and achieve similar duality
gaps except on the problem d6cube. On this problem the adaptive algorithm takes
one additional iteration, achieves a duality gap 3 orders of magnitude smaller, and is
faster. On this problem the adaptive algorithm terminated successfully, while OB1-R
stopped because the duality gap was increasing.

If the total time for solution is small (i.e., 5 minutes or less), then the performance
of the two algorithms is similar. On more costly problems such as d£1001, maros-r7,
and pilot87, the adaptive method is faster.

Note that in df1001 we keep the artificial variables, the slack variables of the
equality constraints, to prevent rank deficiency. Without them, both algorithms ter-
minate unsuccessfully in a few iterations because of the extreme ill-conditioning of
the computed matrix AD?>AT

4.2. The “Kennington” problems. There is a set of larger test problems in
the NETLIB site, the “Kennington” problems used by Carolan, Hill, Kennington,

12

Smaller NETLIB problems

Problem LP size and nonzeros Nonzeros Density
Name Rows Columns Nonzeros AAT L AAT L
maros 845 1443 9614 11409 24839 .03 .07
scfxm3 990 1371 T 8749 13520 .02 .03
seba 515 1028 4352 51400 53748 39 41
ship12l 1042 5427 16170 10673 11137 02 .02
vtp.base 198 203 909 1575 2121 08 .11
Larger NETLIB problems
Problem LP size and nonzeros Nonzeros Density
Name Rows Columns Nonzeros AAT L AAT L
80bau3db 2237 9799 21002 9972 40895 .00 .02
d2q06¢ 2171 5167 32417 26991 165676 .01 .07
d6cube 404 6184 37704 13054 54445 16 .67
degen3 1503 1818 24646 50178 119403 04 11
dflool 6071 12230 35632 38098 1634257 .00 .09
fit2d 25 10500 129018 296 299 99 1.00
greenbea 2389 5405 30877 33791 81914 .01 .03
greenbeb 2389 5405 30882 33766 80503 .01 .03
maros-17 3136 9408 144848 330472 1195107 07 24
pilot 1441 3652 43167 59540 193137 .06 19
pilot87 2030 4883 73152 115951 421194 .06 .20
stocford 16675 15695 64875 103360 206731 .00 .00
truss 1000 8806 27836 12561 52509 .03 A1
woodlp 244 2594 70215 18046 18082 .61 .61
woodw 1098 8405 37474 20421 47657 .03 .08
TaBLE 1

Statistics for the larger test problems from NETLIB.

13

Smaller NETLIB problems

IPM ite. Rel. dual gap Time

Problem OBI1-R Adp OBI1-R Adp OB1-R Adp Diff

maros 45 45 11e-08 .11e-08 11.17 11.27 -0.10

scfxm3 39 39 21e-08 .21e-08 425 480 -0.55

seba 30 20 .15e-08 .15e-09 43.056 40.60 2.45

ship12] 26 26 .53e-08 .53e-08 4.15 533 -1.18

vtp.base 26 26 .33e-08 .33e-08 0.45 0.53 -0.08

Larger NETLIB problems
IPM ite. Rel. dual gap Time
Problem OB1-R Adp OBI1-R Adp OBI1-R Adp Diff
80bau3b 78 78 A44e-08 .44e-08 46.15 48.32 -2.17
d2q06¢ 55 55 .2be-08 .25e-08 257.13 253.25 3.88
d6cube 77 78 .67e-06 .18e-09 113.90 100.52 13.38
degen3 30 30 16e-09 .16e-09 66.22 65.57 0.65
dflool 98 98 27e-06 .27e-06 19844.37 16644.35 3200.02
fit2d 54 54 21e-08 .21e-08 46.80 47.85 -1.05
greenbea 52 52 -.62e-04 -.62e-04 52.03 54.30 -2.27
greenbeb 74 74 .80e-09 .82e-09 69.15 72.12 -2.97
maros-r7 29 29 3le-09 .71e-09 1952.93 1414.20 538.73
pilot 77 77 .71e-08 .70e-08 485.08 441.42 43.66
pilot87 82 82 94e-08 .81e-08 1948.82 1584.77 364.05
stocfor3 87 87 .70e-09 .70e-09 142.22 157.28 -15.06
truss 30 30 .80e-09 .80e-09 19.55 22.22 -2.67
woodlp 18 18 .35e-08 .27e-08 12.95 13.77 -0.82
woodw 37 37 27e-08 .27e-08 25.30 27.65 -2.3b
TABLE 2

Computational results for the larger test problems from NETLIB.

14

Niemi, and Wichmann [2]. We report results on problems with between 25,000 and
370,000 nonzero elements in the coefficient matrix A. These results suggest that the
adaptive algorithm would work well on the bigger problems that we omitted from
testing.

Table 3 gives the statistics of these problems, and Table 4 gives the results. If we
allow OB1-R to eliminate artificial variables, then the performance of the adaptive
algorithm is very similar to OB1-R; in all of these problems except 0sa-07 and osa-14,
the adaptive algorithm discovers zeros in the diagonal matrix of the Cholesky factor
for the second p value and therefore switches to the direct solver.

If we keep all artificial variables in order to guarantee full row rank, then the cost
of OB1-R generally increases, but the adaptive algorithm performs quite well on the
costly problems. The cost of the adaptive algorithm keeping artificial variables is less
than that of OB1-R on these problems, even when OBI1-R, discards these variables
and works on a smaller problem.

4.3. Network problems. Minimum cost flow network problems may be solved
using linear programming algorithms (although it is generally more efficient to use a
network algorithm like [20]). We test our algorithm on this class of problems because
the matrix AAT and its resulting Cholesky factor tend to be much more dense than
the original coefficient matrix A, even if there is no dense column in A. Forming and
factoring the matrix AD?>AT is thus quite expensive.

We generated minimum cost flow network problems using NETGEN, developed
by Klingman, Napier, and Stutz [21]. Table 5 gives the parameters we used, except for
the number of nodes and arcs. Table 6 summarizes the characteristics of the resulting
linear programming problems. To prevent rank deficiency, we let the adaptive algo-
rithm keep the artificial variables, but we let OB1-R discard the artificial variables to
improve performance. The computational results are reported in Table 7.

The size of AD?> AT for the first four problems is either 999 or 1000, and the
adaptive algorithm achieves significant improvement over OB1-R as the density of L
increases. If we compare problems with similar density in L but different sizes (for
example, problems net0104 and net0416) we find that the adaptive algorithm does
increasingly well as the problem size increases.

5. Conclusion. We have presented an adaptive automated procedure for deter-
mining whether to use a direct or iterative solver, whether to reinitialize or update
the preconditioner, and how many updates to apply, and demonstrated that it can
enhance performance of interior point algorithms on large sparse problems.

Our preconditioning strategy is based on recomputing or updating the previous
preconditioner.

Our numerical tests were performed using the OB1-R code, but it is relatively
easy to implement this idea in other codes by adding three pieces:

1. a mechanism to determine whether a direct or iterative solver should be used;

2. a routine that performs updating and downdating of an existing matrix fac-
torization (Cholesky, QR, etc.); and

3. an iterative solver, such as a preconditioned conjugate gradient method.

Further improvements could be made in the algorithm. Deeper understanding
of effective termination criteria for the iterative method may further enhance the
efficiency of the algorithm. A block implementation of the matrix updating and
downdating would reduce overhead. Finally, parameters such as max_pcg_itn, lrg,
sml, and updt_nmbr might be tuned to particular problem classes.

15

Kennington problems

Problem LP size and nonzeros Nonzeros Density

Name Rows Columns Nonzeros AAT L AAT L
cre-b 7240 72447 256095 194579 940374 01 .04
cre-d 6476 69980 242646 181670 853300 01 .04
ken-11 14694 21349 49058 33880 118869 .00 .00
ken-13 28632 42659 97246 66586 315642 .00 .00
osa-07 1118 23949 143694 52466 54783 .08 .09
osa-14 2337 52460 314760 113843 116160 04 .04
pds-06 9881 28655 62524 39061 582158 .00 .01
pds-10 16558 48763 106436 66550 1674872 .00 .01

TABLE 3

Statistics for the Kennington problems.

Kennington problems without artificial variables

IPM ite. Rel. dual gap Time
Problem OBI1-R Adp OBI1-R Adp OBI1-R Adp Diff
cre-b 91 91 -.16e-07 -.16e-07 5020.10 4872.30 147.80
cre-d 92 92 -.69e-08 -.69e-08 3872.00 3761.92 110.08
ken-11 33 33 16e-09 .16e-08 53.28 51.93 1.35
ken-13 51 51 43e-08 .43e-08 244.95 240.90 4.05
osa-07 53 53 11e-05 .18e-05 80.68 88.83 -8.1b
osa-14 55 55 -.81e-06 -.81e-06 191.52 218.75 -27.23
pds-06 102 102 48e-09 .48e-09 2817.62 2781.30 36.32
pds-10 128 128 19e-08 .19e-08 19650.00 18718.57 931.43

Kennington problems keeping artificial variables

IPM ite. Rel. dual gap Time
Problem OBI1-R Adp OBI1-R Adp OBI1-R Adp Diff
cre-b 102 102 -.99e-09 -.10e-08 5365.32 447275 892.60
cre-d 103 103 -.60e-08 -.60e-08 4415.48 3698.33 717.45
ken-11 44 44 21e-08 .21e-08 73.70 94.42 -20.72
ken-13 48 47 -.60e-09 .67e-08 238.77 274.68 -35.91
osa-07 53 53 11e-05 .18e-05 78.43 88.32 -9.89
osa-14 55 55 -.81e-06 -.81e-06 187.63 220.68 -33.05
pds-06 117 116 .50e-08 .64e-08 3216.82 2554.35 662.47
pds-10 131 131 .69e-08 .64e-08 19978.53 13546.32 6432.21
TABLE 4

Results for the Kennington problems.

16

Random no. seed 13502460 Transshipment source 0
Number of sources 4 Transshipment sink 0
Number of sinks 4 % of arcs with max cost 5
Min cost of arcs 1 % of capacitated arcs 60
Max cost of arcs 400 Min upper bnd for cap. arcs 1
Total supply 800000 Max upper bnd for cap. arcs 10000
TABLE 5
NETGEN parameters used for generating network problems.
Minimal cost flow network problems
LP size & nonzeros Nongzeros Density
Problem Row/Node Col/Arc Nzros AAT L AAT L
NET0102 999 2000 3999 1997 40014 .00 .08
NET0104 1000 4000 8000 3991 115628 01 .23
NETO0108 1000 8000 16000 7964 206560 02 41
NETO0116 1000 16000 32000 15873 279678 .03 .56
NET0408 4000 8000 16000 7996 552366 .00 .07
NET0416 4000 16000 32000 15989 1762394 00 .22
TABLE 6
Statistics for the network problems.
Minimal cost flow network problems
IPM ite. Rel. dual gap Time
Problem OBI1-R Adp OBI1-R Adp OBI1-R Adp Diff
NET0102 43 40 .68e-10 .30e-09 34.02 32.58 1.44
NET0104 41 41 .30e-09 .63e-08 171.23 135.52 35.71
NET0108 43 43 .76e-08 .75e-08 461.05 335.58 12547
NETO0116 58 59 44e-09 .T7e-09 1005.77 718.75 287.02
NET0408 43 42 42e-09 .17e-09 2099.43 1371.17 728.26
NET0416 53 53 .31e-09 .50e-09 16674.13 9265.85 7408.28

TABLE 7
Computational results for the network problems.

17

10]

(11]
(12]

(13]

(14]
15]
(16]
(17]
18]
(19]
(20]

(21]

(22]

(23]

(24]

REFERENCES

Richard Bartels and Linda Kaufman. Cholesky factor updating techniques for rank 2 matrix
modifications. SIAM Journal on Matriz Analysis and Applications, 10(4):557-592, October
1989.

W. Carolan, J. Hill, J. Kennington, S. Niemi, and S. Wichmann. An empirical evaluation of the
KORBX algorithms for military airlift applications. Operations Research, 38(2):240-248,
1990.

Tamra J. Carpenter and David F. Shanno. An interior point method for quadratic programs
based on conjugate projected gradients. Computational Optimization and Applications,
2:5-28, 1993.

P. Chin and A. Vannelli. Computational methods for an LP model of the placement problem.
Technical Report UWE&CE-94-02, Department of Electrical and Computer Engineering,
University of Waterloo, November 1994.

P. Chin and A. Vannelli. Iterative methods for the augmented equations in large-scale linear
programming. Technical Report UWE&CE-94-01, Department of Electrical and Computer
Engineering, University of Waterloo, October 1994.

In Chan Choi, Clyde L. Monma, and David F. Shanno. Further development of a primal-dual
interior point method. ORSA Journal on Computing, 2(4):304-311, 1990.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK User’s Guide. STAM,
Philadelphia, 1979.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Clarendon
Press, Oxford, 1986.

A. V. Fiacco and G. P. McCormick. Nonlinear Programming : Sequential Unconstrained
Minimization Techniques. John Wiley & Sons, New York, 1968. Reprint : Volume 4 of
SIAM Classics in Applied Mathematics, STAM Publications, Philadelphia, PA 19104-2688,
USA, 1990.

Roland W. Freund and Florian Jarre. A QMR-based interior-point algorithm for solving lin-
ear programs. Technical report, AT&T Bell Laboratories and Institut fiir Angewandte
Mathematik und Statistik, 1995.

D. M. Gay. Electronic mail distribution of linear programming test problems. Mathematical
Programming Soc. COAL Newsletter, 1985.

Philip E. Gill and Walter Murray. Newton-type methods for unconstrained and linearly con-
strained optimization. Mathematical Programmaing, 7:311-350, 1974.

Philip E. Gill, Walter Murray, Michael A. Saunders, J. A. Tomlin, and Margaret H. Wright.
On projected Newton barrier methods for linear programming and an equivalence to Kar-
markar’s projective method. Mathematical Programming, 36:183-209, 1986.

Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization. Academic
Press, 1981.

D. Goldfarb and S. Mehrotra. A relaxed version of Karmarkar’s method. Mathematical Pro-
gramming, 40(3):289-315, 1988.

Gene H. Golub and Charles F. Van Loan. Matriz Computations. Johns Hopkins University
Press, Baltimore, second edition, 1989.

Clovis C. Gonzaga. Path-following methods for linear programming. SIAM Review, 34(2):167—
224, June 1992.

N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4:373-395, 1984.

N. K. Karmarkar and K. G. Ramakrishnan. Computational results of an interior point algorithm
for large scale linear programming. Mathematical Programming, 52:555—-586, 1991.

J. L. Kennington and R. V. Helgason. Algorithms for network programming. John Wiley and
Sons, New York, NY, 1980.

D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large scale capaci-
tated assignment, transportation, and minimum cost flow network problems. Management
Science, 20(5):814-821, January 1974.

J. Liu. Modification of the minimum-degree algorithm by multiple elimination. ACM Trans-
actions on Mathematical Software, 11:141-153, 1985.

Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Computational experience with a primal-
dual interior point method for linear programming. Linear Algebra and Its Application,
152:191-222, 1991.

Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Interior point methods for linear
programming: Computational state of the art. ORSA Journal on Computing, 6(1):1-14,
Winter 1994.

18

[25] Sanjay Mehrotra. Implementation of affine scaling methods: Approximate solutions of systems
of linear equations using preconditioned conjugate gradient methods. ORSA Jouwrnal on
Computing, 4(2):103-118, 1992.

[26] Sanjay Mehrotra and Jen-Shan Wang. Conjugate gradient based implementation of interior
point methods for network flow problems. Technical Report 95-70.1, Department of In-
dustrial Engineering and Management Sciences, Northwestern University, Evanston, IL
60208-3119, U.S.A., October 1995.

[27] Stephen G. Nash and Ariela Sofer. Preconditioning of reduced matrices. Technical Report Re-
port 93-01, Department of Operations Research and Engineering, George Mason University,
Fairfax, VA 22030, February 1993.

[28] C. C. Paige and M. A. Saunders. LSQR : An algorithm for sparse linear equations and sparse
least squares. ACM Transactions on Mathematical Software, 8:43—-71, 1982.

[29] L. F. Portugal, M. G. C. Resende, G. Veiga, and J. J. Judice. A truncated primal-infeasible
dual-feasible network interior point method. November 1994.

[30] Youcef Saad. SPARSKIT : A Basic Tool Kit for Sparse Matriz Computations, 1994. Version
2 is located in an anonymous ftp area in ftp.cs.umn.edu within directory /dept/sparse.

[31] Robert J. Vanderbei. LOQO : An interior point code for quadratic programming. Program in
Statistics and Operations Research, Princeton University. rvdb@princeton.edu, 1995.

[32] M. H. Wright. Interior methods for constrained optimization. In A. Iserles, editor, Acta
Numerica 1992, pages 341-407. Cambridge University Press, New York, USA, 1992.

19

