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ABSTRACT

Title of Dissertation: Deterministic Codes for Arbitrarily Varying Multiple-Access

Channels
John Alan Gubner, Doctor of Philosophy, 1988

Dissertation directed by: Prakash Narayan
Associate Professor

Electrical Engineering Department

The arbitrarily varying multiple-access channel (AVMAC) is a mode] of a
multiple-access channel with unknown parameters. In 1981, Jahn characterized
the capacity region of the AVMAC, assuming that the region had a nonempty in-
terior; however, he did not address the problem of deciding whether or not the
capacity region had a nonempty interior. Using the method of types and an ap-
proach completely different from Jahn’s, we have partially solved this problem.
We begin by introducing the simple but crucial notion of symmetrizability for the
two-user AVMAC. We show that if an AVMAC is symmetrizable, then its capacity
region has an empty interior. For the two-user AVMAC, this means that at least
one (and perhaps both) users cannot reliably transmit information across the chan-
nel. More importantly, we show that if the channel is suitably nonsymmetrizable,
then the capacity region has a nonempty interior, and both users can reliably trans-
mit information across the channel. In light of these results, it is indeed fortunate
that to test a channel for symmetrizability, one simply solves a system of linear
equations whose coefficients are the channel transition probabilities.

Our proofs rely heavily on a rather complicated decoding rule. This leads us to

seek conditions under which simpler multiple-message decoding techniques might



suffice. In particular, we give conditions under which the universal mazimum
mutual information decoding rule will be effective.

We then consider the situation in which a constraint is imposed on the sequence
of “states” in which the channel can reside. We extend our approach to show that
in the presence of a state constraint, the capacity region can increase dramatically.
A striking example of this effect occurs with the adder channel. This channel is
symmetrizable, and without a state constraint, neither user can reliably transmit
information across the channel. However, if a suitable state constraint is imposed,

each user can reliably transmit more than 0.4 bits of information per channel use.
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CHAPTER 1
INTRODUCTION

1.1 Multiple-Access Communication Systems

A multiple-access communication system is one in which several information sources
transmit messages simultaneously over a common channel to a single receiver. We
shall restrict our attention to systems with two sources, as our discussion can easily
be extended to systems with an arbitrary number of sources.

Consider a situation in which two information sources, referred to as user 1 and
user 2, wish to communicate simultaneously with a common receiver by using a
discrete multiple-access channel. Schematically, a discrete multiple-access channel
is a device which takes two n-tuples x = (z1,...,2,) € X" and y = (y1,...,¥n) €
V" as inputs, and generates an output n-tuple, z = (24,...,2,) € Z", where X,
Y, and Z are finite sets, each containing at least two elements, and n is a positive

integer (see Figure 1.1).

Channel P——> 2

Figure 1.1: A Multiple-Access Channel.

Suppose that user 1 generates messages from the set {1,..., N}, and that user 2
generates messages from the set {1,..., M}, where N and M are positive integers.

To transmit a message ¢t € {1,..., N}, user 1 sends an n-tuple x; € A over the
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channel. Similarly, to transmit a message j € {1,..., M}, user 2 sends an n-tuple
y; € V" over the channel. At the output of the channel, the receiver observes the
n-tuple z and constructs an estimate (,7) of the actual messages sent, (7, 5). To

make these ideas precise, we make the following definition.

Definition 1.1 Let N, M, and n be positive integers. If f, g, and ¢ are mappings
with

f:{L...,N} - &" and g¢:{1,...,M} )",

and

p: 2" = {1,...,N} x{1,..., M},

then the triple (f,g,¢) is called a code. The mapping f is called an encoder for
user 1; the mapping g is called an encoder for user 2, and the mapping ¢ is called

a decoder. The rate pair of this code is the pair of nonnegative real numbers

’
n n

(log,N log, Al)' (1.1)
Setting x; 2 fl@),2=1;...,N, and y; 2 9(7),7=1,...,M, we call x3,...,xn
codewords for user 1, and we call yq,...,ypm codewords for user 2. There is no

requirement that the codewords be distinct. Clearly, knowing f and g is equivalent

to knowing the codewords x; and y; (see Figure 1.2).

Remark. In the literature, (f,g,¢) is called a deterministic code in order to

distinguish it from more general random codes. Random codes are discussed in (4,

p. 209].

To model the operation of the channel, we characterize its behavior in terms

of a transition probability P,(z|x,y). That is, P.(z|x,y) denotes the conditional

2
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Figure 1.2: A Multiple-Access Communication System.

probability that the channel output is z given that the channel inputs are x and
y.

Based upon the preceding discussion, we now give a precise mathematical model
of a discrete multiple-access communication system. Let (2, F,P) be a probability
space equipped with random variables (RV’s) A, B, and Z as follows. The RV
A represents a random message generated by user 1, and the RV B represents
a random message generated by user 2. We assume that A and B are statisti-
cally independent with A uniformly distributed on {1,..., N} and B uniformly
distributed on {1,...,M}. The RV Z is Z"-valued and represents the channel

output. We assume that (2, F,P) is constructed so that
P(A = i, B = j, Z= Z) = =" Pn(ZIX,',yJ'). (12)

Observe that the probability P depends explicitly on the codewords x,,...,xn
and yi,...,Yn; in other words, P depends on the encoders f and g. Now, the

probability of a decoding error is simply

=1

'
P(‘P(Z) # (za])a A=1, B= .7)

I
‘MZ

-
I
—
A
il
—

P(#(Z) # (A, B))

I
M=
Mz

S P(Z=z A=i,B=j)

1 z:(2)#(i.5)

-
Il

A
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1
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N M 1 1
=>> 3 Pn(Z|X;',yj)"1_v"M—

i=1j=1 z:0(2)#(,5)

1 N M
= szpn({z € Z": p(z) # (4,7)}1%i, ¥5)-

i=1 j=1
The subject of information theory is concerned with finding values of N, M,
and n for which a code (f,g,¢) with a small probability of a decoding error can
be found. Loosely speaking, given a sequence of channel transition probabilities
{P.},, we would like to characterize the largest set C C IR} (called the capacity

region) for which the following statement can be proved:

Given any 0 < A < 1, for all sufficiently large n, whenever N and M are

positive integers such that

1
(ogzN logzM) ccC,

’
n n

one can find a code (f, g,¢) with

1 N M
77 o 2 Pal{z € 27 ¢(z) # ()} i y;) <A (1.3)

1=1j=1

For general sequences of channel transition probabilities, {P,}, little is known.
However, for the discrete memoryless multiple-access channel defined below in

Definition 1.2, the capacity region has been completely characterized [1,11,16].

Remark. Recall that equation (1.2) implies that A and B are independent and
uniformly distributed. One way to avoid making this assumption is to replace (1.3)
by

max Pu({z € 2" s o(z) # (1,7)}xiy;) < A (1.4)

4



Clearly, if we had a code satisfying (1.4), then

N M
Pe(Z) # (A,B)) = 3.3 P(A =J)B({z € 2" : ¢(2) # (1,7)} 1% ;)

i=1 j=1
< A

regardless of the actual joint distribution of A and B. If we replace (1.3) by (1.4),
then the resulting capacity region will be smaller in general. In the literature,
the quantity on the left in (1.3) is called the average probability of error, and the
quantity on the left of (1.4) is called the mazimum probability of error. To analyze
the maximum probability of error is a very difficult problem [4, p. 271], and we
shall not attempt it. We shall restrict ourselves to the more tractable analysis of
the average probability of error. Hereafter, it will always be understood that the

phrase “probability of error” refers to the average probability of error.

Definition 1.2 Let w(:|-,-) be a transition probability from X x Y into Z. If
Po(zlx,y) = I wzelzk, ui),
k=1
then w is said to be a discrete memoryless multiple-access channel (DMMAC). We

use the notation

w*(z|x,y) £ I wlzlzx, v,
so that (1.3) becomes

1

NM Sy ur({z € 2 o@) # (i)}xeys) < A (1.5)

i=1j=1
The interpretation of the DMMAC is that n-tuples are transmitted component by
component. Further, the transition mechanism, characterized by w, is stationary,

and its operation on (z, ¥x) is not influenced by any other components.

)



Example. Consider a device which in each time unit accepts three {0, 1}-valued

inputs, z, y, and s, and generates the output
2 = z+4y+s. (1.6)

We claim such a device can be modeled as a DMMAC. Let S = (5y,...,5,)
be an n-tuple of independent, identically distributed (i.i.d.), §-valued random
variables, where § = {0,1}. We call S the channel noise sequence. We assume
that P(Sx = 1) =p=1—P(S, =0) foreach k = 1,...,n, where 0 < p < 1 is
known to each user and to the receiver. Let X and Y denote the random output of
the encoders f and g. We assume that the pair (X,Y) is statistically independent

of S. If

Z = X+Y+S,

then for z € Z", where Z = {0,1,2,3}, and for x € X" and y € J",

PZ=zX=xY=y) = PB=z-x-y|X=x,Y=y)
= P(S=z-x-Yy),
since S and (X, Y) are independent,

= HP(5k=2k—wk—yk),
k=1

since the RV’s {S,}7_, are i.i.d.

By writing w(z|z,y) = P(S1 = z—z —y), it follows that we have a DMMAC model

of the device described by (1.6).



1.2 The Arbitrarily Varying Channel

From an analytical point of view, the DMMAC provides a very attractive chan-
nel mode]l. However, even the simple example above makes several questionable

assumptions. Namely,
e we assumed that the {Si} were i.i.d;

e even if the {Sx}}7_, arei.i.d., is it reasonable to assume that we know or can

measure their common distribution?

o we assumed that S was statistically independent of the pair (X,Y). If S
represents interference due to other users in a communication network, this

independence assumption may not be justified.

It was because we modeled the channel noise as a stochastic process that we found
it convenient to make the preceding assumptions. What happens if the channel
noise can be characterized only in terms of deterministic, unobservable sequences
s? More generally, suppose that the channel transition mechanism operating on
(zr,yx) depends on an unobservable state s; belonging to a known finite set S. To
model this new behavior, let W(z|z,y, s) be a transition probability from X' x Y x S
into Z. That is, W(z|z,y, s) is the conditional probability that the channel output

is z given that the channel inputs are z and y, and that the channel state is s. Set
Wh(z|x,y,s) = IT W(zklzr, g, si),
k=1

and consider the family of probability measures, {Ps,s € §"} on (9, F) determined
by (cf. (1.2))

. . 1 1
Pold =i, B=j, Z=2) = 537 W(abxys.s)



The probability of a decoding error now depends on the unknown state sequence s,

and takes the form

N M
Pu(o(2) # (A,B)) = 52 D W({2 € 2" 9(2) # (i) ki 5,5).

Definition 1.3 A transition probability W from X x Y x § into Z, is called an
arbitrarily varying multiple-access channel (AVMAC). For brevity, we usually refer

to W as an “AVC.”

Wohile a precise definition of the capacity region of an AVC is given in Definitions 3.1
and 3.3, for the present we shall say that the capacity region of an AVC W, denoted

C(1V), is the largest subset of IR% such that the following statement can be proved:

Given any 0 < XA < 1, for all sufficiently large n, whenever N and M are

positive integers such that

r
(log2 A ’logQ Al) e Cw),
n n

one can find a code (f, g, ) with

1 N M o ]
]\r]\[ ZZ”/n({Zezn SQ(Z) 74 (Z,])}Ix,‘,)’j,S) S /\, VSES . (17)
i=1 j=1

What makes the study of the AVC so challenging is that we are now seeking a
code (f, g,¢) whose probability of error is bounded above by A uniformly for every
s € 8§". In other words, the code (f, g,) must have a low probability of error no
matter what state sequence s is imposed on the system.

Many interpretations of the state sequence s are possible. Usually, s models
channel noise or interfering transmissions from other sources. For example, s might

represent unintentional interference from other users in a communication network.
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Or, s might represent intentional interference from a jammer. In general, we

use s to model interference or noise which is difficult or impractical to characterize

statistically.
Returning to the example at the end of the preceding section, if we assume

that the channel noise sequence is deterministic, but unobservable, we find that

PZ=zX=x,Y=y) = PX+Y+s=zX=x,Y=y)

= Pz=x+y+s|X=x,Y=y). (1.8)

The quantity in (1.8) is clearly 0 or 1 according to whether or not the equality
z = X+ y + s holds component-wise. Thus,
n
PZ=2X=x,Y=y) = []é&(z — 2t — v — ),
k=1

where 6(t) =1 if ¢t = 0 and 6(¢) = 0 otherwise. Writing
W,(zlz,y,8) & §(z—z—y—s), ' (1.9)

we clearly have an AVMAC model. We call W, the adder channel.

1.3 Summary of Results

In 1981, Jahn [14] characterized the capacity region C{WW) of the arbitrarily varying
multiple-access channel, assuming that C(W) had a nonempty interior. Jahn did
not address the question of how one could decide whether or not C(W) had a
nonempty interior. In this dissertation we present simple conditions on the channel
transition probability 1 which determine whether or not the capacity region C(W)

has a nonempty interior. The techniques used to establish these conditions are also
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used to study the case in which the channel state sequences are constrained to lie
in a certain subset of §™. Our work on the multiple-access AVC was motivated by
the recent results of Csiszar and Narayan [8] for the single-user AVC. A preliminary
study of the multiple-access AVC quickly reveals the far more complex nature of
this channel, and clearly indicates that a more intricate approach is required. By
combining extensions of the techniques and results of [8] with new ones of our own,
we have uncovered some rather intriguing behavior of the AVMAC. We discuss our

results below.

Since much of our analysis will rely on combinatorial arguments which employ
the method of types, Chapter 2 provides a brief introduction to this topic. As an
example of the method of types, we give a simple proof of the forward part of
Shannon’s source coding theorem (Theorem 2.9). Chapter 2 also introduces much

of our notation.

In Chapter 3, we introduce the crucial notion of symmetrizability. We show that
if W is symmetrizable (in the sense of Definitions 3.6, 3.7, or 3.8), then C(W) has
an empty interior. Of considefably more interest is our major result that certain
nonsymmetrizability conditions are sufficient to imply that C(W) contains various
open rectangles, and thereby possesses a nonempty interior (cf. Theorems 3.15,
3.17, and 3.19). In the proof of Theorem 3.15, we use a rather complicated decoding
rule, and so in Section 3.4 we discuss conditions under which a simpler decoding
rule might suffice. In particular, Theorem 3.21 gives conditions under which the
so-called mazimum mutual information decoding rule can be used in the proof
of Theorem 3.15. The importance of the maximum mutual information (MMI)

decoding rule lies in its untversality. By this we mean that the receiver does not

10



need to know the channel transition probability W in order to implement the MMI
decoding rule. -
Recall that in (1.7) we required that the probability of a decoding error be
small for every s € §™. In practice, this is an overly restrictive requirement. It is
often the case that the channel state cannot jump from any state s to any other
state s’; i.e., there is some constraint on the permissible state sequences. Such a
constraint can be modeled by requiring that (1.7) hold only for those s belonging
to an appropriate subset of S™. To define such a subset, we proceed as follows. For
s € §, we let {(s) denote the “energy” required to put the channel into state s. We
assume that the mechanism selecting the channel states can generate only state

sequences s = (81,...,8,) € 8™ which satisfy
! ane(s )y < L
- k) = )
=
where L is a positive number called a state constraint. We set
A 1 &
S*(L) = {s€S": ;Zé(sk) < L}.
B k=1

If we now require that the error probability in (1.7) be less than or equal to A
only when s € 8"(L), rather than for every s € S™, we obtain the capacity re-
gion under state constraint L, denoted C(W, L). In Chapter 4 we first obtain an
“outer bound” on C(W, L) by proving a “weak converse under state constraint L”
(cf. Lemma 4.16). Since the techniques used by Jahn [14] do not appear to be
useful in proving “inner bounds” on C(W, L), we indicate how our proof of Theo-
rem 3.15 can be extended to show that C(WV, L) contains certain open rectangles,
even if 1V is symmetrizable. Recall that if W is symmetrizable, then the capacity

region without a state constraint, C'(W), has an empty interior. By taking the
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closed convex hull of these rectangles, we generate an “inner bound” on C(W, L).
To conclude Chapter 4, we prove that for the adder channel, W,, defined in equa-

tion (1.9), our inner and outer bounds coincide, yielding an exact description of

C(Wa, 3).

In Chapter 5 we present our conclusions and suggestions for further research.

Clearly, x ~ x' <= Px = Px. We denote the equivalence classes induced by ~

by

>

Tx {x'€ X" :x ~x'}

= {xX'€e X": Px= Py} (2.1)
In view of (2.1), each equivalence class is uniquely determined by the common

probability distribution, or type, of each element in the class. We also point out

that given any x and X/,



CHAPTER 2
AN INTRODUCTION TO THE THEORY OF TYPES

Much of our analysis will rely on combinatorial arguments which employ the
method of types. This chapter is devoted to an introduction to the method of
types as developed by Csiszar, Kérner, and Marton [6] and Csiszar and Korner [4].
Our presentation follows that of [4], and additionally includes as an illustration of
the method of types, a simple proof ¢f the forward part oi Shannon’s source coding
theorem.

Let X be a finite set containing at least two elements. Consider the n-fold
cartesian product, X", where n is a positive integer. If x € A", for each a € X,

let N(a|x) denote the number of occurrences of a in the sequence x. That is, if

x = (21,...,Zn),
N(alx) & 3 6a(z),
k=1
where
1, fr=a
b.(z) £
0, if z # a.

Note that

T N(alx) = é(z 5a(xk)) - k}_i:ll - n.

agX k=1 “e€X

We can define an equivalence relation on A", denoted by ~, by declaring
X ~x' <= Vae€ X, N(a]x) = N(a|x').

Let D(A’) denote the set of all probability distributions on A’. For every x € X",

we define the type of x to be the probability distribution Px € D(X') given by

7
Py(a) 2 b (alx), a€ X.

n

13



Clearly, x ~ x' <= Px = Pyx. We denote the equivalence classes induced by ~

by

>

Tx {x'e X" :x~x'}

]

{XIEXn:Px=le}. (2.1)

In view of (2.1), each equivalence class is uniquely determined by the common
probability distribution, or type, of each element in the class. We also point out

that given any x and x/,
7;‘07;(1#¢ = 7;:7;(1.
It then follows that the collection of equivalence classes forms a partition of X'™.

Lemma 2.1 (Type Counting). The number of distinct equivalence classes is

bounded above by (n + 1)V*!, where |X| denotes the cardinality of X.

Proof. Fix x € A™. For each a € X, the value of N(a|x) must be one of the
integers, 0,1,...,n. Thus, for each a € X, there are at most n + 1 possible values

for N'(a|x). Since there are |X| different elements a € X, the result follows. [

Remark. The bound in the Type Counting Lemma is by no means the best. In

fact, the exact number of distinct equivalence classes is [4, Problem 1, p. 39]

(s)

Obviously, (n 4+ 1)1*l is a polynomial in n. Since we shall always upper bound
(n 4+ 1)1 by an exponential function of n, the exact number of equivalence classes

is not important for our results.
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Let D,(X) denote the subset of D(X) consisting of probability distributions P
which can be expressed as P(a) = A,(a)/n,a € X, where )\,(a) is a nonnegative
integer. Obviously, there is a one-to-one correspondence between the elements of
D,.(X) and the distinct equivalence classes induced by ~. By the Type Counting
Lemma, D,(X) is a finite set, and so we can write X™ as a finite disjoint union,

Xt =\ 7, (2.2)
PeDn(X)

where for P € D,(X), Tp 2 {x € X": Py = P}.

Throughout this dissertation, log and exp are understood as being to the base 2.

We use In to denote the natural logarithm. Hence,

exp(z) = 2° = &2 and logz = (loge)lnz = llig
n

Definition 2.2 For any P € D(X), the entropy of P, H(P), is given by

) 2 3 Pla)log 5.

where the sum is understood to be only over those a € A" such that P(a) > 0. We

remind the reader that 0 < H(P) < log|X| < oo.

Definition 2.3 For all P, @ € D(X), the Kullback-Leibler informational diver-
gence, D(P}|@), is defined as follows. If for all @ € X, P(a) > 0 implies Q(«) > 0
(i.e., P < @), then

D(PIQ) & ¥ P(a)log QE ;

where the sum is understood to be only over those a € X such that P(a) > 0.
Otherwise, D(P||Q) =

15



For P € D(X) and x = (z1,...,%.), we set

P(x) & kfjp(xk).

We can then state the following result.

Lemma 2.4 Fiz any Q € D(X). Then for all x = (z4,...,

write, with the convention that exp(—oo) =0,

Q"(x) = exp[-n(D(Fx|lQ)+ H(Fx))]

< eXP(_nH(Px))'
Proof. We begin by writing

Q"(x) = i{@(xk) = T1Qa)Vem,

T,) € X", we can

where the second product is understood to be only over those a which occur in

x = (z1,...,%n), 1.€., those a for which Px(a) > 0. Now, if there is any a with

@(a) = 0 but Px(a) > 0, then (2.3) simply asserts that 0 = 0. So, assume that

Px(a) > 0 implies Q(a) > 0. We continue with

N(a|x) 1 1
og
n Q(a)

Px(a)

—%logQ"(X) = D,

a

_ ;Px(a)(logQ—(a')‘ +log Kl(a_))

1l

D(Fx|Q) + H(Px)-

O

Let Q be any distribution on A’. We now make the following crucial observation.

Since x' € Ty if and only if Px = Py, we see that Q™ is constant on each equivalence

class, 7Tx. In fact, for all x’ € Ty,

Q"(x') = Q*(x) = exp[—n(D(F[lQ) + H(Fx))].

16



An important consequense of this observation is the following. Taking @ = Px so

that D(FPx||@) = D(Px||Px) = 0, we get

1 > PUT) = ), PR(X)

x'eTx
= Z exp(—nH(FPx))

x'eTx

= |Tx| - exp(—nH(Fx)).

It follows that |7x| < exp(nH(Px)). In fact, it can be shown [4, Lemma 2.3, p. 30]
that

exp(nH(Px))(n+1)"¥ < || < exp(nH(Fx)). (2.5)

Further, using (2.3) and (2.5) it is easy to show that

Q"(7x) < exp(—nD(Fx[Q))- (2.6)
Definition 2.5 The variational distance between any two distributions P, @ €
D(X), is given by

d(P,Q) £ 3 IP(z) - Q),

zeX

where | - | denotes the usual absolute value.
It is easily seen that d is a metric on D(X). In fact, D(X) is compact under d.

Lemma 2.6 (Continuity of Entropy). The entropy, H, regarded as a mapping
from the metric space (D(X),d) into the metric space (R, |- |), is uniformly con-
tinuous.

Proof. See [4, Lemma 2.7, p. 33].

Lemma 2.7 (Pinsker’s Inequality). For all P, Q € D(X),

d(P,Q) < (2n2)D(P|Q).
Proof. See [4, Problem 17, p. 58].
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Observe that Lemmas 2.6 and 2.7 readily yield the following simple result.

Corollary 2.8 Given § > 0, there exists an n > 0 such that for all P, Q € D(X),

whenever D(P||Q) <1, we have
|[H(P) - H(Q)| < é/2.

We now present, as an illustration of the method of types, a simple proof of the

forward part of Shannon’s source coding theorem.

Theorem 2.9 Fiz Q € D(X). For every § > 0, there exists an € > 0 such that
for all sufficiently large n, there exists a set A, C X™ such that

el < mg)+s

and
Q"(A:) < exp(—ne/2).
Proof. Fix § > 0. By Corollary 2.8, we can choose > 0 so small that for all
P e DX),
D(PIQ) < n = |H(P)-H(Q)| < §/2. (2.7)

Fix 0 < ¢ < min{7, §}. Choose n so large that (n + 1)l < exp(ne/2). Set
An & {x€X": D(F[Q) < 1}
First we shall bound |A,|. Observe that
Ao = U Tp.

PeDa(X): D(PlIQ)<n

Now, apply the union bound, the Type Counting Lemma, (2.5) and (2.7) to get

IA

(n+ 1) expln(H(Q) +6/2))]

< exp[n(H(Q)+8/2+¢/2)]

| Anl

< exp[n(H(Q)+6)], since € < 6,

18



or,
log |4,|
n

We now bound Q™(AS). Observe that

< H(Q)+6.

A = U Tp.
PeDn(X): D(P}|Q)>n

Apply the union bound, the Type Counting Lemma, and (2.6) to get

Q™ (4;) < (n+1)*exp(—nn)

IA

exp(ne/2) exp(—ny)

exp[—n(n — £/2)]

IN

exp(—ne/2), since > €.

O
We now generalize the notion of types to the product set X x J, where Y is

another finite set with at least two elements. If
x:(xly-")xn)exn7 and y:(yla--'7yn) E'yn’

for « € X and b € Y, we set

n

A’(a’b]x»y A Z‘Sa 341. 6b yk

k=1

i.e., N(a,b|x,y) is the number of occurrences of (a,b) in the sequence
((z1,91)s -+ (Tn, ¥n))-
We then define the joint type of (x,y) as
Px y(a,b) 2 ;I;N(a,b[x,y), a€EX,be.
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This definition is consistent with that of the type of the sequence x € &A™ or

y € Y", since

Z Py y(a,b) = Px(a) and Z Py y(a,b) = Py(b).
bey a€X

Now, if! Pxy € Dn(X X)), we write Txy instead of 7p,,, and we say that
(x,y) € Txy if and only if Pxy = Pxy. Observe that for each x € A", we can

partition Y™ into equivalence classes as follows. If Pxy € D,(X x )) and x € A™,
Tyix(x) & {y € V" : Pey = Pxy}.
Note that if Px # Px, then Ty|x(x) = @.

Definition 2.10 We denote by D,(Y|x) the set of all Pxyy € D,(X x }) such

that Py = Px.

Obviously, by the Type Counting Lemma, |D,(Y|x)| < |Dn(X x V)| £ (n4+1)I¥IL,

Hence, for each fixed x € X", we can write Y" as a finite disjoint union,

= U T

PXYEDn(ylx)

Definition 2.11 If Pxy € D(X x ), Pyx is the transition probability defined

by the equation,
Px(a)Py[};(bla) = ny(a,b), ac X, be ).

Clearly, for those a with P(a) > 0, Py x(-|a) is uniquely defined. For those a with

P(a) = 0, we take P(-|a) to be any arbitrary element of D(Y).

1At this point the subscript XY serves as a place holder indicating that Pxy is a distribution

on A’ x Y with marginals Px and Py. Later we will think of Pxy as the joint distribution of a

pair of RV’s, X and Y.
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Definition 2.12 If V is a transition probability from X into ), and P € D(X),

then we define the distribution P x V € D(X x Y) by
(P xV)(a,b) & P(a)V(bla), a€X,be,
and we define the marginal distribution PV € D()) by

(PV)(b) & 3 (P x V)(a,b).

a

Definition 2.13 For Pxy € D(X x )), the conditional entropy of Y given X is

given by
1

H(Y|X) & S Px(a)Pyx(b)log ————,
(Y1X) aZb x (@) Py)x (b) 8 Forx (1)
where the sum is understood to be only over those a,b for which Px(a)Pyx(D) =

P_);y(a, b) > 0.

Notation. It is apparent that the conditional entropy is a function which maps
D(X x V) into [0,00). To emphasize this point, when discussing two different
distributions on X x Y, say P and @, we will sometimes find it convenient to use

the notation Hyx(P) and Hyx(Q) to indicate which distribution is being used to

compute the conditional entropy.

Lemma 2.14 Let V be an arbitrary transition probability from X into Y. Fiz any

x € A", Then for every Pxy € Dp(Y|x) we have, for all y € Ty x(x),

Viylx) = exp[-n(D(Pxy||Px xV)+ H(Y|X))] (2.8)
< exp(—nH(Y|X)), (2.9)

and
Tyx(X)] < exp(rH(YIX)). (2.10)
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Proof. The proof is analogous to that of Lemma 2.4, and is therefore omitted.
Using (2.8) and (2.10), it is easy to verify the analog of (2.6):
VH (Tyix(x) [x) < exp(—D(Pxyl|Px x V)). (2.11)
Lemma 2.15 (Projection). For every Pxy and Qxy in D(X x V),
d(Px,Qx) < d(Pxy,Qxv),

and

D(Px||@x) < D(Pxyl|@xv).

Proof. We omit the straightforward calculations.

We conclude this section with two simple lemmas which together yield the
important result that given P € D(X), for all sufficiently large n, P can be

approximated by a type P € Dn(X) with P(z) > 0for all z € X.

Lemma 2.16 Fiz any P € D(X). For every € > 0, there ezists a P € D(X)
satisfying

~

P(z)>0, VzedX and > |P(x) —P(a)| < e

Proof. Without loss of generality, assume 0 < € < 1. Let ¢ denote the number
of x € X such that P(z) = 0. If ¢ = 0, take P =P Otherwise, assume ¢ > 1.
Choose any zo with P(zo) > 0 (there is one). For 2 # xo with P(a) > 0, set

P(z) & P(2). For x # zo with P(z) =0, set



Clearly this is a positive quantity. Since ¢ > 1 and € < 1, it is obvious that

f_ . P(mo) <

1.
2¢ <

1
2
Finally, set

€
2
= P(zo)(1 —€/2).

15(:80) 2 P(zo) — ¢+ —P(z0)

Since 0 < € < 1, P(zo) satisfies 0 < 2P(z0) < P(z0) < P(z) < 1. After verifying

that 5, P(m) = 1, the last step is to observe that

> 1P(z) = P(e)] = ZP(zo) + ZP(zo0)

= €-P(z) < e.

O

Lemma 2.17 Suppose P € D(X) satisfies P(z) > 0 for all x € X. Then for

every € > 0, there exists an ng such that for each and every n > ng, there ezist

positive integers A, (z),z € X, satisfying

S A(z) = n and >

Proof. Fix € > 0. Without loss of generality, assume ﬂ%"—l < P(z) for all z € X.

Consider the following equivalent statements.

An(z) €
[P - =2 < o
£ )\n(z) £
“ax S Tn - PE) S g
n(P(m)—z‘;‘) < Aifz) < n(P(‘L)+2—,%,—I) (2.12)
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Now, since

n(P(x)—{-ﬁ)—n(P(m)—ﬁ) = % > 1

when n > |X|/e, for all sufficiently large n, there exists at least one positive integer
An(z) satisfying (2.12).

Next, fix any zo € X, and set

An(z) & [n(P(m)— ﬁ)] > 0, z # zg,

where [t] denotes the smallest integer greater than or equal to ¢. Since

M(z) < n(P(m) € >+1,

T 2X]
; Mn(z) < n(l - P(go)) — 5’,%0%1 — 1)+ (|X| - 1)
= n(l - P(zo)) + (1X] - 1)(1 - %,y

Since 1 — P(zq) < 1, it is clear that if n > 2|X|/e,

> A(z) < n.

r#zg

Thus, we may take An(z0) = n — Lz, An(z). Finally, observe that

An(2) An(z) .

n

<2y

T#z0

2

T

P(z) -

P(z) -

Since for & # zg, Ap(z) satisfies (2.12), we have




is dense in D(X’) under the metric d. In fact, since the cardinality of each D, (&)
is finite (by the Type Counting Lemma), the resulting union is a countable set [17,

Prop. 7, p. 21], and thus (D(X), d) is a separable metric space.
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CHAPTER 3

THE ARBITRARILY VARYING
MULTIPLE-ACCESS CHANNEL

3.1 Introduction

Let W be a (two-user) AVMAC as described in Definition 1.3. We need the

following rather complicated definition.

Definition 3.1 A pair of nonnegative real numbers, (R;, Rz), is said to be achiev-

able for the AVC W if:

For every 0 < A < 1, and every AR > 0, there exists a positive integer ng
such that for all n > ng, there exist positive integers N and M such that

log N log M

>R, - AR  and > R, - AR,

and such that there exists a code (f, g, ¢) (cf. Definition 1.1) with

1 XXM n . 'vn
N ZZI/V ({ZEZ” :‘79(2)#(27])}17@',}’1'75) < A Vs € ™. (3.1)
=1 j=1

Remark 3.2 Let [t] denote the greatest integer less than or equal to . Observe
that for any R > 0, %log lexp(nR)] < R and in fact converges to R. Hence, in

proving that a pair (R, Rz) is achievable, we shall find it convenient to take
N = |exp(nRy)] and M = l|exp(nR;)].
Definition 3.3 The capacity region of the AVC W, denoted C(W), is defined by

C(W) & {(Ry,R,): (Ry,R,) is achievable}.
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A few comments are in order here. Iirst, it is clear from the definition that C(W)
is a closed set. Second, by the usual time-sharing principle [4, Lemma 2.2, p. 272],
C(W) is also convex. Consequently, if £ is any subset of C(W), then the closed
convex hull of F is also a subset of C(W).

Before proceeding further, we shall need the following notation. For all Q@ xyz €

DX x Y x Z), let

I(XA2Z),

>

Ixaz(Qxyz)

Iyaz(Qxvz) & I(Y AZ),

IA’AZ’D’(QXYZ) = I(X A Z[Y),
Iyazix(Qxvz) & I(Y A Z|X),
Ivyaz(Qxyz) & I(XY A 2),

where the expressions on the right are the usual mutual information quantities

computed with the distribution indicated on the left, e.g.,

. s s Qxz(z,z) -
I(}x /\Z) = ;Q;\Z( 3 )108 QX(x)QZ(z)’
. N A . . Qxzy (z, z|y)
I&xn2ly) = E:z Qxrz(@y,2)log Quxpy (zly)Qziv (2ly)’
IXYAZ) & S Oxrale,y, 2)log Qxvz(z,y,2)

e Qxy(z,y)Qz(2)

Suppose p € D(X'), ¢ € D(Y), and r € D(S). We can define a probability measure

on X x YV x &8 x Z by setting

(px gx 7 x W)(2,9,8,2) £ p(@)g(y)r(s)W(zle,y,s).
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We will need to refer to the following conditional probabilities associated with this

measure. Let pW, ¢W, and rW be given by

(pW)(zly,s) £ D p(@)W(zlz,y,9),

(@W)(zlz,s) 2 Y ay)W(zlz,y,s),
(rW)(zle,y) & D r(s)W(zlz,y,s).

We also need to define
(px g x rW)(z,9,2) 2 p(z)q(y)(rW)(zlz,y),
and set

Iynz(py g, W) £ . lg(f )I;L’/\Z(p x g x rW),

Baz(p,g, W) £ lg{s) Iyaz(p x ¢ x TW),
enziy(pq, W) £ A lgfs Ixnziy(p x ¢ x rW), (3.2)

Bazix(pa, W) £ relg(fs) Iyazix(p x ¢ x TW),

li>

Liynz(p 0, W) R Ixyaz(p x g x vW).

TE

Remark. We point out here that if p,p € D(X) and ¢,¢ € D(}), then

S lpxgxrxW)(z,y,8,2)— (B x§xrxW)(z,y,s,z)|

I‘yYSVZ

is actually independent of both r and W. This expression is easily seen to be equal

to

E Ip(z)a(y) — p(=)a(y) + B(z)a(y) — Al)d(y)].

< d(P, p) + d(g,4)- (3.3)

ZIP - p(=)4(y)|

It is then easy to see that if both members of (3.3) are sufficiently small, then all of

the quantities, I (p,q, W), are close to the corresponding quantities, I*(p,q,W).
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Definition 3.4 Let

R(p, ¢, W) & {(Ri,Re): 0SBy < Ipzp(pig, W),
0 < Ry < I35 z12(p, 9, W),

0 S Rl + R2 < I}:’y/\z(l’, q, W)},

and denote by R*(W) the closed convex hull of

U R*(p,q, W).
peD(X), 4€D(Y)

Theorem 3.5 (Jahn (1981) [14]). For every AVC W, we always have
C(W) c R (W), (the weak converse), (3.4)
and, if C(W) has a nonempty interior, then

R (W) Cc C(W), (the forward part). (3.5)

Remark. The weak converse,! inclusion (3.4), asserts that all achievable rate
pairs must belong to R*(W). The forward part, inclusion (3.5), asserts that every
rate pair in R*(W) is in fact achievable, provided C(W) has a nonempty interior.
Obviously, one would like to know exactly when C(W) has a nonempty interior.
Below we will give sufficient conditions under which C(W) will have a nonempty
interior. In fact, using techniques unrelated to Jahn’s, we shall show that under
certain conditions, C(11) contains certain open rectangles, proving that C(W) has
a nonempty interior. We will also give sufficient conditions under which C(W) will
have one of the following forms, each with an empty interior,

c(w) = {(0,0)},

L An excellent explanation of the relationship between the weak and the strong converses is

given by van der Meulen [19].



c(W) = [OaCl(VV)] x {0}, or c(w) = {0} x [0, Ca(W)],

where
Ci(W) < sup Iy nziy(p, ¢, W)
pE€D(X),9€D(Y)
and
Co(W) < sup I;’AZ]X(p)q,W)’

peD(X),q€D(Y)

3.2 Symmetrizability

The various notions of symmetrizability presented below will play a crucial role in
determining whether or not C(W) has an empty interior. The definitions below

generalize the notion of single-user symmetrizability introduced in [8].

Definition 3.6 The AVC W is said to be symmetrizable-X') if there exists a

transition probability U from X x Y into § such that

}: W(zlz,y, ) U(sle’,y") = D_W(zla',y',s)U(s|z,y), Vz, z', y, y', z. (3.6)

If no such U exists, we say that W is nonsymmetrizable-X' ).

Definition 3.7 The AVC W is said to be symmetrizable-X if there exists a tran-

sition probability U from A" into S such that

ZW z|z,y, 8)U(s]z") ZW (z]2',y, s)U(sl|z), Vz, z', y, . (3.7)

If no such U exists, we say that W is nonsymmetrizable-X
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Definition 3.8 The AVC W is said to be symmetrizable-} if there exists a tran-

sition probability U from ) into § such that
EI/V(zlx Y, ZW z|lz,y', s)U(sly), Vz, y, v, 2. (3.8)
If no such U exists, we say that W is nonsymmetrizable-) .

Example. Let X = Y = § = {0,1}, and let £ = {0,1,2,3}. Consider the
adder channel, W,, given by (1.9). It is easy to show that if U satisfies (3.6),
then U = 0. Since U = 0 is not a transition probability, the adder channel is
nonsymmetrizable-X). Similarly, it is a simple matter to show that if U satisfies
(3.7), then U(slz) = 6(s), and so the adder channel is symmetrizable-X'. Of

course, an identical argument shows that the adder channel is symmetrizable-).

Theorem 3.9 If the AVC W is symmetrizable-X Y, then

c(w) = {(0,0)}.

Proof. First observe that since (0,0) is always achievable, C(W) always contains
the origin. It remains to show that no <.>’ther rate pair is achievable. Let n be
a positive integer. Let N and M be positive integers with NM > 2. Suppose
Xi,...,Xn, each in X'™, are codewords for user 1, and suppose yi,..., ¥y, each in
V", are codewords for user 2. Let ¢ be any decoder. We will show below, by using
the same procedure as in [8], that there exists some s € S™ with

N M

N M ZZW"({Z € Z": p(z) # (i,5)}xiy5,8) 2 1/4. (3.9)

In other words, if N or M is greater than 1, the code can not have an arbitrarily

small probability of error for every s € 8™.
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Suppose NM > 2. Since W is symmetrizable-X')), let U be a symmetrizing
transition probability satisfying (3.6). Foreach1 < i< Nand 1< j < M, let
Si; = (Sij1s- -+, Sijn) be an S™-valued RV whose components are independent and

distributed according to
P(Sijk = s) = Ulslzik,ysk), 1< k<n,

where z; x denotes the k’th component of x;, and y;+ denotes the k’th component

of y;. Observe that for all z € Z", and all 7,7/, 7, and j/,

E[W"(z|xi,y;7,8i;)] = H W (zk|zir g, Yi0 ., Sijke) ]

= HZW(deuk,yu, YU(s|Zik, yiik)

=TI W(zklzik, yik, $)U(slwink, yj i)

k=1 s

= E[W"™(z|xi,y;,801) ], (3-10)
where the third equality follows by symmetrizability-X'). Next, let
e((#,3"), (i,4)) & E[W"({z: 99(;) # (7,5} xir yir, 8ij) -
By (3.10),

e((ilaj,)a(i,j)) = Z E[I/Vn(zle'vyj"sij)]

z:o(2)#(i",5')

= ST E[W™z|xi,yj,Sis)]
z:0(2)#(i",3')

= E[ Z W"(zlx,-,yj, S,‘ljl)]. (3.11)
z:0(2)#(i",5')

Now, if (¢,5) # (¢',5') and ¢(z) = (i,]), then o(z) # (¥',5'). With this fact in
mind, we can use (3.11) to write, if (z,7) # (¢, 5'),
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e((4,7),(",5)) + e((@,4"),(,5))
= E Z W"(zlx,-,yj,S,-:j:)+ Z W"(Z]X,‘,y_j,si'j')}

2:0(2)#(i,5) Z:p(2)#(i,5')
2 Bl X WGy, Se)+ 3 W"(lehw’sz":")}
2:0(2)£(i,5) Z:p(2)=(i.5)
- (3.12)
Now, set
N M
Nt 2= 2 Wz 0(2) # (1,9} xi, v, 5). (3.13)
i=1 j=1
Then

[ (S")] = sze( ’.7) (i’]))

Next, observe that

1] N M
R———g%E[e(ng,)] = N.M)'-’ZZe((z] @, 5")

> i Ml ),
(M) -1
= 3(NM)

> 1/4, since NM > 2.

From this it follows that for some v,5', E[e(Su;)] > 1/4, which in turn implies

the existence of at least one s € S™ for which (3.9) holds. O
Lemma 3.10 If the AVC W is symmetrizable-X, then

C(W) = {0} x [0,Cy(W)),
where Co(1V) < s;g) I5nz12(p, ¢, W).
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Proof. The proof is similar to tﬁat of the previous Theorem. Let n be any positive
integer. Let N énd M be positive integers. Suppose Xi,...,Xn, each in A",
are codewords for user 1, and suppose yi,...,¥Yum, each in V", are codewords for
user 2. Let o(z) = (p1(z), p2(2)) be any decoder such that ¢1: 2" — {1,...,N}
and @g: 2" — {1,...,M}. If N > 2, we will show below, by using a procedure
similar to that in [8], that there exists some s € S™ with

1

N M
S W({s € 27 () £ ()l yas) 2 14 (314

1=1 =1

In other words, if N > 1, the code can not have an arbitrarily small probability
of error for every s € 8" Since the alternative N = 1 implies lﬁiﬁ = 0, all
achievable rate pairs must have the form (0, Rz). Clearly, Co(W) is the largest
value of R, such that the pair (0, R;) is achievable. By Jahn’s weak converse (3.4),
Co(W) < sup,, o Iyazix(p g, W)

Suppose N > 2. Since W is symmetrizable-X, let U be a symmetrizing tran-

sition probability satisfying (3.7). For each 1 <7 < N, let
S:i = (Sigy.--rSin)

be an S™-valued RV whose components are independent and distributed according

to

P(Six=s) = U(slzir), 1<k<n.

Observe that for all z € 2, and all ¢,7, and j,

n

E[ VV"(Z|X,‘1, Yi S.')] = H E[ I/V(zkh:;v’k,yj,k, S,"k)]

k=1

=TI X W(aklwik, yin, s)U(s|zi)

k=1 s
= H Z”/(zk|xi,k) Yiks S)U(Slxi',k)
k=1 s
= E[‘/‘/n(ZIXi,yj,S{')}, (315)
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with the third equality following from symmetrizability-X’. Next, let

. 1 ¥ n :
e(,i) £ 2 3 E[W"({z: @i(2) # i'}xir,¥;,80) )
=1
By (3.15),
Y 1 ¥
e(v,t) = MZ > E[W"(zlxu,y;,8)]
I=1 zZipy(Z)#4
1 M
= HZ Z E[IV"(z|x,-,yj,S,-:)]
J=1 z:py(2)#

E[ > W"(zlx;,yj,S,-:)]. (3.16)

Z:py (Z)#7

I
Sin
M

[N
l
A

Now, if ¢ # ¢* and ¢1(z) = 7, then ¢;(z) # ¢'. With this fact in mind, we can use

(3.16) to write, if ¢ # ¢/,

e(i,i') + e(i,1)

1 M
= A_{ZE[ > W(zlxiyiSe)+ D W"(zlx;,y_,—,S,v)]

3=1  “zipi(z)#E Z:p1(Z)#i!
1 M
> MZE[ > Wzlxi,yiSe)+ D W"(ZlXi,){j,Si')]
j=1 z:p1(2)#i Z:03(2Z)=i
- 1 (3.17)

Now, recalling the definition of e(s) in (3.13), we observe that

6(5) 2 6,1 : A’MZZM/" {Z QO] ) i}lxiayj,s)'

=1 j3=1
Then

1 N
E[C,‘t’(s;l)] = J—V'Z:B(Z,Z,)

Next, observe that
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N
7 2 Elex(S)] = 723 elind)
1 N(N-1)
Nz
N-1

2N
1/4, since N > 2.

by (3.17),

v

From this it follows that for some ', E[ex(Si)] = 1/4, which in turn implies the
existence of some s € 8™ with e(s) > ex(s) > 1/4 so that (3.14) holds. O
By interchanging the roles of X and ), we have the obvious analog of the

preceding lemma.
Lemma 3.11 If the AVC W is symmetrizable-), then
c(w) = [0,C:(W)] x {0},
ahere C1(1V) S 5up Iinzy{p, 0, W):
Corollary 3.12 If the AVC W is symmetrizable-X and symmetrizable-)), then
c(W) ={(0,0)}.

Clearly, the three kinds of symmetrizability defined above gi\;e simple condi-
tions under which C(W) will have an empty interior. While we conjecture that
if W is nonsymmetrizable-X')), nonsymmetrizable-X, and nonsymmetrizable-),
then every pair (R, R2) € R*(W) is achievable, we have been unable to prove

this. In order to state what we can prove, we need the following two definitions.

Definition 3.13 For any q € D(}), we say ¢W is symmetrizable-X if there exists

a transition probability U from X into & such that

> (gW)(zlz,s)U(sl2") = > (qW)(z|2', s)U(s]z), Vz, 2!, 2. (3.18)

s L]
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If no such U exists, we say that ¢W is nonsymmetrizable-X .

Remark. If W is symmetrizable-X'Y and U satisfies (3.6), and if ¢ is any element
of D(Y), then multiplying both sides by ¢(y)q(y’) and summing over all y, y’ shows
that ¢W is symmetrizable-X. Similarly, if W is symmetrizable-A” and U satisfies
(3.7), multiplying both sides by ¢(y) and summing over all y shows that ¢W is

symmetrizable-X for every ¢ € D()).

Definition 3.14 For any p € D(X), we say pW is symmetrizable-) if there exists

a transition probability U from Y into S such that

2_(pW)(zly, s)U(sly) = 3 (pW)(zly',)U(sly), Wy, o/, 2. (3.19)

s s

If no such U exists, we say that pW is nonsymmetrizable-) .

3.3 Achievable Rates

In this section we prove that there are nonempty, open rectangles of achievable

rate pairs for the AVC W, provided certain nonsymmetrizability conditions are

satisfied.

Theorem 3.15 Suppose W is nonsymmetrizable-). Fiz any p € D(X) and ¢ €

D(Y). Further, suppose ¢W is nonsymmetrizable-X. If

0 < Rl < I}Az(Paq,W) (320)

and
0 < Ry < Ihza(p 0, W), (3.21)

then (Ry, Ry) is achievable in the sense of Definition 3.1.
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Remark 3.16 Suppose p € D(X) and q € D()) are strictly positive. If gW is
nonsymmetrizable-X, and if W is nonsymmetrizable-), then Iy, z(p,q, W) and
IHpz1x(Py ¢, W) are both strictly positive. To see this, suppose Iy,z(p,q, W) =
0. Then there is some r € D(S) with Iyaz(p x ¢ x rW) = 0. This implies
>s(¢W)(z|x, s)r(s) is not a function of z. But then taking U(s|z) = r(s) will
symmetrize ¢gW. Similarly, if I3, 7)+(p,q, W) = 0, there is some r € D(S) with
Iyazix(p x ¢ x W) = 0. This implies }°, W(z|z,y, s)r(s) is not a function of y.
Taking U(s|y) = r(s) shows that W is symmetrizable-). An analogous observation

for single-user AVC’s was made in [8].

Upon proving Theorem 3.15 we must also have the following analog obtained by

interchanging the roles of X and Y.

Theorem 3.17 Suppose W is nonsymmetrizable-X. Fiz any p € D(X) and q €

D(Y). Further, suppose pW is nonsymmetrizable-). If

0 < Rl < I;Azw(P,QaW) and 0 < RZ < I;JAZ(p’an),

then (Ry, R2) is achievable in the sense of Definition 3.1.

Before proceeding with the proof of Theorem 3.15, we need to introduce two
auxiliary functions and an associated lemma. Observe that W is symmetrizable-)

if and only if for some transition probability U from ) into § we have
FYw) = o,

where

FY(U) £ max |> W(zle,y,s)U(sly’) = D W(zlz,y',s)U(sly)|- (3.22)
5,y 2 S

s
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Now, let

Ey(W) & inf FY(U). (3.23)
Since F)‘;V is a continuous function on the compact set of transition probabilities
from Y into &, the infimum in (3.23) is always achieved. It follows that W is
symmetrizable-) if and only if {y(W) = 0. Similarly, if ¢ € D(}), and if U is any

transition probability from X into S, we let

Z(qW (zlz, s)U(s|z") Z(qVV )(zlz', s)U(s|z)|,  (3.24)

FY(q,U) & max

and we set

Ex(g,W) £ inf FY(¢,U). (3.25)
The following lemma says that £x(¢, W) is a uniformly continuous function of
q € D).
Lemma 3.18 For any ¢, § € D(Y),
€2(0, W) = €x(4, W)| < d(g,9)-
Proof. Fix any transition probability U from X into §S. We appeal to the inequality
e = bl] € fa— b with

a = 3 (qW)(zlz,s)U(sl) = 3 (aW)(zla’, s)U (s]z),

s

and

s

b= SW)ele, U (sle’) = W) (ela', U (sla).
Now, 3
a=b = Yll) - i) L Wl y, 9)U(sl)
v + ny[«i(y) :q(y)] 2 W(el'sy,)U(sle)
= 2l - W) (S W1, U (sk) = TW 1,0 (slo)).
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So, |la] — |b]| < la = b] < d(q,§)F¥Y (U) < d(q, §). Hence, we can write
la| < |b| + d(g,4)  and  |b] < a| + d(g,9).
It now follows that
FY(q,U) < FY(,U) +d(g,d) and  FY(4,U) < Fy (¢,U) +d(g,9),
and that
Ex(g, W) < €x(§, W) +d(g,d) and  £x(§,W) < Ex(g, W) +d(g, ).
O

Theorem 3.19 If W is nonsymmetrizable-Y and there exists a ¢ € D()Y) such
that qVV is nonsymmetrizable-X, or if W is nonsymmetrizable-X and there exists

ap € D(X) such that pW is nonsymmetrizable-), then C(W) = R*(W).

Proof. By Jahn’s weak converse, inclusion (3.4), C(W) C R*(W). Now, suppose
that W is nonsymmetrizable-) and that for some ¢, ¢W is nonsymmetrizable-X'.
By combining the pr’eceding lemma with Lemma 2.16, we may assume that ¢ is
strictly positive. Choose any positive p € D(X). By Remark 3.16, I3,z(p,q, V)
and I3, z4(p, g, W) are both positive. By Theorem 3.15, C(W) has a nonempty

interior, and by Jahn’s forward result, inclusion (3.5), R*(W) C C(W). O

Proof of Theorem 3.15. Let us first state explicitly what we shall prove.

Provided that the hypotheses of the theorem hold, we shall prove that there
exists an € > 0 such that for all sufficiently large n, if we take N =
lexp(nRy)| and M = |exp(nR;)], then there exist codewords xy,...,xn
for user 1, each in A'™, and there exist codewords yy,...,ypm for user 2, each

in Y, and there exists a decoder @ with

40



N M
NIM 2.0 Wh({z € 2" ¢(z) # (4,5)}Ixi,¥58) < exp(—ne/8), Vse S

1=1 j=1
(3.26)

Now, suppose that R; satisfies (3.20) and R, satisfies (3.21). Then we can
choose § > 0 so small that (cf. (3.23) and (3.25))

0 < 26 < min{{x(q, W), (W)}, (3.27)
0 < R < I}AZ(paan)_Zéa

0 < Ry < I zx(py g, W) — 26.

Next, observe that we can always find § € D(X) and § € D(Y) such that for all
z € X, p(z) >0, and for all y € Y, §(y) > 0, and such that d(p,p) and d(g, §) are

both sufficiently small so that

€X(Q7‘/V) S fx((j,W)+5/2,
I.;’I\Z(p$q3W) < I},\Z(ﬁ,é,v]/)-i-(S/Q,

I;U\Zl;t'(p’ q, VV) S I;),\z|x(13, (}, "V) + 5/2

Let B 2 %min{niin ﬁ(z),myin §(y)} > 0. Choose n with

§ pis?  pos? }

T 9
2’161n2’ 161n2 (3.28)

0<n<min{

and so small that if P() and P® are any two distributions on X x Z oron X xYx Z

with D(PM)||P®) < 5, then

[Ixaz(PM) — Ixaz(PPY)| < 6/2 (3.29)

and

ynzix(PM) = Iyazix(P®)]| < /2. (3.30)
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Now, for fixed s € &, let

N
efs) 2 NMZEW“({zez" #(2) # (i, 1)} i, Y5, 9)

=1 j=1

Clearly, applying the union bound followed by (3.40) and (3.44) yields,

1
e(s) < ZZW"(FCUG° %, ¥5,8)
1—1,1 1
1 N M
< Zzwn F°|x,,y,, )
:—1_1—1
1 n(
ZZW 'J‘Ixi’yj)s)
:—IJ 1
1 N ns 70 1
< Nlez;W (Ji (s)° U J; (s)°[xi,¥5,8)
=1,=
1 N M o
N]W ZIXQW" (K3(s)F U K(s)°|%i, ¥4, 8).
1=1 j=

Next, observe that
Ki(s) € J(s) = J2(s)° C KJ(s),
and apply the union bound again to obtain

e(s) < NMZZW"(A”(S “|%i,¥5,8)

i=1j=1
1 N M
Z Z W™ J!(s)°|%,¥;,8) (3.45)
t-l 1=1
S S W
W(I;(s) x4, y5, ).
N]\I et J

We now turn to the task of bounding e(s) uniformly for s € S*. Each of the

three preceding sums will be treated separately. To begin, let

N
eo(s) & —I—ZZW"I (8)°|%i,¥j,8)- (3.46)
N =1 j=1

Set
A(s) & {i:I(xiNs)> €},
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In the remainder of this proof we drop the underscore from R, and R,; hence,
from here until the end of the proof, references to Ry, R», (3.32), and (3.33) are
actually references to Ry, R,, (3.35), and (3.36). Also note that this convention

means that instead of (3.34), we can write
N = exp(nR,) and M = exp(nRz).

Regard n as fixed so large that we have found P € D,(X) and Q € Dy,())
satisfying (3.32) and (3.33). Now, assuming n is large enough,? we select codewords
for user 1, X1, ...,Xn, each of type P € D,(X'), and we select codewords for user 2,
V1i,--.,Yar, each of type @ € D,(Y), such that the codeword properties we use
below in the proof will hold. The fact that we can do this is the subject of
Theorem 3.22. Since the properties that we need seem quite strange at first, we
will not introduce them until they appear naturally in the course of the proof. The
reader is referred to Theorem 3.22 for a complete description of these properties.

We now define the decoding rule. To do this, we shall use the following subsets

of Z". Fors € S*, and i =1,...,N, let

Jos) & {z€ Z": D(Px;s2llP x Ps x QW) < n}. (3.37)

1

Next, let

JO L U ).

SII esn

If z € JO(s), then we say that (x;,s,2) is jointly typical. Thus, if z € J?, there
must be some s” € S™ with-(x;,s”,z) jointly typical. What we would like to do
is use a decoder which decides message ¢ was sent whenever z € J? and z ¢ JJ

for all 7/ # i. In other words, if there is a unique ¢ such that z € J?, then we

2Ilow large depends only on € and on the cardinalities of the sets X', Y, and S.
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would decide message 7 was sent. Unfortunately, this approach, sometimes called
typicality decoding, will not suffice for a general AVC. We need a stronger decoding
rule. To help us decide between i and i when z belongs to both J? and J?, we

will use the set

Jis) & {z€ 2" :Vi' #i,2€ J = I(xiz Axols) < 9}, (3.38)

where I(x,;z A x;i|s) denotes I(XZ A X'|S) computed using Pxx:sz = Px,x, sz
Let

F & U [Js)nJE)] (3.39)

s'esSn

We note that this definition implies that for any fixed s € S™,
Fio= () [J( U Jis)] € [J(s)° U Jis) ). (3.40)
s'esSn
We claim that Fj,..., Fy are pairwise disjoint. This is a consequence of the as-
sumption that ¢W is nonsymmetrizable-X’; see Section 3.5. Let ¢; be any mapping

defined on Z™ such that for each z,

z€F, = ¢i(2) =1, (3.41)
. . . . N .
le., Iy C 2™ is the decoding set for message ¢. Note that in general, U F; is a
i=1

proper subset of Z"; however, it will turn out that any ¢, satisfying (3.41) will
suffice. To summarize, the mapping ¢; will assign message ¢ to the output z if
for some s/, (x;,s’,z) is jointly typical and, whenever i’ # ¢ is such that (xy,s",2)
is jointly typical for some s”, then I(x;z A xp|s’) < 5. It remains to define the
decoding rule for the messages of user 2. To this end, for each ¢ = 1,..., N and
cach j =1,..., M, let
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K%(s) 2 {2€Z2": D(Pxy,szllP X Qx Ps x W) <n}, (3.42)
K% &2 U K%,
sllesn .
I(,;j(s) e {z€e Z":Vj' #j,2 € K?j, = I(xiy;z ANy;jls) < n}.
Now let
Gi & U KN KL (3.43)
g'eSn

Clearly, for any fixed s € S*,
Gz C [KS(s) UKL ()], (3.44)

We claim that for each ¢, Gi1,. .., Gipm are pairwise disjoint. This is a consequence
of the assumption that W is nonsymmetrizable-)); we establish this claim in Sec-
tion 3.5. Let 2 be any mapping defined on Z”™ such that for all 7, 7,
z € F;NG; = ¢a(z) =3.
Let
A
©(z) = (p1(2), palv
In other words, we first try to decode message ¢ fi- .1 user 1, and only then do we
try to decode message j from user 2. (The idea of first decoding message i and
then decoding message j also appears in the context of source coding; see Slepian
and Wolf [18].) It is now easy to see that
o(z) # (1,7) => @u(z) #1 or az) # 7,
or, in terms of the decoding sets,
o(2) # (i,j) = z€ FEU[FFUGS] = FEUGS.
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Now, for fixed s € §™, let

e(s) = ZZW"({ZEZ"‘ e(2) # (4,5)}xi, ¥4, 8)-

1—1 =

Clearly, applying the union bound followed by (3.40) and (3.44) yields,
l

e(s) < zzwn FCUGC %i,¥3,8)
!—IJ 1
1 N M
< nORCly. v
< _NM 'X:JX;W (F‘, lxnyJas)
N M
N ZZW"(ijlxi,}’j,S)
i=1 j3=1
1 LM 0
< s 2 2 WU U TN I, i)
i=1j5=1
—_— wm I( Ul{i'(scxi,yfas .
NA[ i=1 j3=1 ’ ) l ’ )

Next, observe that
K(s) C J2(s) = J(s)° C K (s)5,
and apply the union bound again to obtain

6(S < NMZEWn(I leyJ’)

11_71

AIM ZZLV" Jl(s lxiay:n ) (345)

i=1j5=1

N]W Z Z I/Vn(l(l )EIxi, Yi>S)-

1=1y=1

We now turn to the task of bounding e(s) uniformly for s € §*. Each of the

three preceding sums will be treated separately. To begin, let

A 1 N M
eo(s) NiT > Z WKL (s)|xi,y5,8). (3.46)
=1 j=1

i

Set
A(s) & {i:I(x;As)> e},
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and

B(s,x;) & {j:I(y;Axis)> e},

Then
eofs) < -1—|A( )]+l Z % (K
0 - N S Ni . - (S Ixn}',n )
Continuing,
wl) € FMAGI+F T (1 B, = 3 WrES(s) I,y s))
0 = N N T y P r i »Yi
N N iae) M M 45 1
< LA+ L max|BGs, %)
= N s Mm:’n 8, X;
1 n 0 ¢ . .
N M ( 2. WrIKs) lxuyj,S))- (3.47)

igA(s) “i¢B(s,x:)
Fix i ¢ A(s) and j ¢ B(s,x;) and observe that if Pxysz € D.(Z|xi,yj,s), then

I(X AS)<eand I(Y AXS) <e. Now, write

-0
K;(s)® = U Tzixys(Xi, ¥, 8)-
Pxysz€Pn(Z1Xi,Y,8): D(Pxysz||PXQXPs xIV)>n

Then using (2.11), the union bound, and the Type Counting Lemma (see Notes

following (3.48) below),
W (K(s) %0, y5,8) < Y exp(—nD(PxyszlPxys x W))
= S expl—-n(D(Pxyszl|P x Q x Ps x W)
_I(X AS)=I(Y AXS))]
< Y exp[—n(n —~ 2€)]
< (4 )FIISIZl ey _n(n — 2¢)]
< exp[—n(n — 3¢)]

< exp(—2neg), since 7 > 5e. (3.48)
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Notes. (i) The summations are understood to be over all
Pxysz € Dn(Z!x;,yj,s) such that D(nysz”P X Q x Pg X W) > 7.

(1¢) We assume n is so large that (n + 1)*IPlISIZl < exp(ne). We caution the

reader that we will make similar assumptions as needed below without comment.

Now, it is a property of our codewords (Theorem 3.22, inequalities (3.81) and

(3.82)) that for all s € &%, and all x € A",

1 1

N]A(s)] < exp(—ne/2) and H]B(s,x)l < exp(—ne/2).
Putting these inequalities along with (3.48) into (3.47) yields

eo(s) < 3exp(—ne/d). (3.49)

We now bound the third sum in (3.45). The second sum is treated similarly.

Let
A 1 N M
e(s) & LSS W () v s). (3.50)
NAJ =1 j=1 J

For each 7, j, and s, write

Ki(s) = U 1KY n{z: I(xiyjz Ayjls) > n}).
1#3

We claim that

A’?j’ C {Z : I(y,-' A ZIX,‘) > Ry + 17}

This is easily seen as follows. Suppose that z € I\’Pj,. Then there is some s” € &

such that z € K(s"). This means that

D(Px”yj,'sll,z”P X Q X PSII X "‘/) S 77.
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Applying the Projection Lemma 2.15,
D(Px.-'yj,’z”P X Q X Ps”ul) _<_ 7]. (3.51)
By (3.51) and the definition of 7 in regard to (3.30), we can write

I(y]’ /\ le,') - IyAZ|/]_’(Px‘-,yJ,’z) > Iy,\ZIX(P X Q X PSNW) - 6/2

Using (3.33), followed by the fact that we chose n < §/2,

I(yjl A ZlX,’) > (R2 + 6) — 6/2
> Rz + n.
Having established our claim, we then see that
Ki(s)* € U{z:I(yj Azlx) > Ry + 1 and I(xiy;z Ayjls) >}, (3.52)
J'#i
The next step is to write

{7#iyn U ' xi,y555) € Txyyrs}

PXYY’S

U ' #5: (a¥5,v505) € Tavws),

Pxyys

{7 #3}

I

where the union is over all joint types Pxyyrs € Dp(X x Y x Y x §). So, we can
write
Kisyc U 4z : I(yjAz]xi) > R+ and I(x;y;zAy;i|s) > 7)})
Pxyyrs " 3'#3:(%i,¥;5.¥j18)€Txyyrs :
We use this inclusion as follows. By setting
0:;(s) 2 U {z: I(yjAzlxi) > Ra+n and I(x;y;zAy;s) > 5}, (3.53)
j’#j:(x! rvathS)ETXYY’S

49



Then note that since
v C Tzxyyrs(Xi,¥5,¥i8) C Tzixys(xi,y;,8),
we have, by Lemma 2.14, inequality (2.9)
z € v => W"(z|xi,y;,8) < exp[-nH(Z|XYS)].
We can now write

Wn('”xiayj)s) = an(ZlX,’,yJ‘,S)

2€y

|7l exp{—nH(Z|XYS)]

IA

IA

exp[nH(Z|XYY'S)] - exp[—nH(Z|XYS)]

= exp[—-nI(Y' A Z|XYS)], (3.61)

where the distribution Pxyyrsz satisfies both (3.59) and (3.60). We must still

lower bound I(Y’'A Z|XY S) independently of Z. There are four cases to consider:
1. Ry 2 IY'AXYS)
2. IY'AXYS) 2 R, 2 I(Y'ANXS)
3. IY'AXS) 2 R, 2 I(Y'AS)
4. IY'AS) > Rs.
In the first three cases, we will use the inequality

I(Y'A ZIXYS) = I(Y'AYSZ|X)—I(Y'AYS|X)

= I(Y'AYSZ|X)—I(Y AXYS)+ I(Y'A X)

Y

I(Y'AYSZ|X) - I(Y' AXYS)

v

I(Y' A Z|X) = I(Y' A XYS). (3.62)
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where

G & {z:1(yy Azlx:) > Ry + 7 and I(xiy;z A yjls) > ).

We would like to apply the union bound to W"(0;;(s)|x:,y;,s). Before doing so,
we bound the quantity W"((;|x;,y;,s) uniformly for j/ such that (x;,y;,y;,s) €

Txyy's. To do this, write

Cj' = CJlﬂZn

G N U Tzixvy's(Xi,¥;, ¥, 5)
Pxyyrsz€Dn(Z[Xi.¥;.¥;1,8)

= U [{ N T xyvyrs(Xi,¥5,¥5,8) - (3.58)

Pyxyy15z€DPn(Z]Xi,y ;0¥ ;1.8)

Now, consider a set of the form
7 = G N Tzxyyis(Xi, Y5, Yirs)

for some joint type Pxyy:sz € Dn(Z|Xi,¥;,¥;,5). The first step is to bound
W"(v|xi,yj,s) independently of the particular type Pxyy'sz € Dn(Z|xi,¥;,¥j,5)-
In other words, we need a bound that depends only on Pyyy:s = Px,.,y],yj,,s. Now,

if z € 5, then Py, y, Ysz = Pyyy'sz and
IY'AZ|X) > Ry +1, (3.59)
and
I{XYZAY'|S) > 1. ‘ (3.60)
In other words, either v = ¢ or (3.59) and (3.60) both hold. Now, observe that by
Lemma 2.14, inequality (2.10), V
vl < | Tzixyyis(%i, Y5, ¥50.8)| < exp[nH(Z|XYY'S)].
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Then note that since
¥ C Tzixyyis(%i,¥5,¥ins) C Tzixys(Xi,¥;,s),
we have, by Lemma 2.14, inequality (2.9)
z €y = W"(z|xi,y;,s) < exp[-nH(Z|XYS)].
We can now write

Wn(7|xiaijs) = ZW"(ZIX,‘,}’J’,S)

Z€y

< hlexp[-nH(Z|XY S)]
< exp[nH(Z|XYY'S)]: exp|—nH(Z|XYS)]

= exp[—nI(Y'AZ|XYS)], (3.61)

where the distribution Pxyy:sz satisfies both (3.59) and (3.60). We must still

lower bound (Y’ A Z|XY S) independently of Z. There are four cases to consider:
1. R, 2 I(Y'AXYS)
2. IYYAXYS) > R, 2 IYAXS)
3. IQY'AXS) 2 R, 2 I(Y'AS)
4. IY'AS) 2 R,
In the first three cases, we will use the inequality

IOV A ZIXYS) = I(Y'AYSZ|X) - I(Y' AYS|X)

= IY'AYSZ|X)-I(Y'AXYS)+ I(Y' A X)

v

I(Y'AYSZ|X) - I(Y' A XYS)

v

IY'AZ|X) - I(Y'AXYS). (3.62)
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By (3.59),
IY'AZIXYS) 2 Ro+n—IY' AXYS).

Substituting this into (3.61) yields
W(rlxi,¥5,5) < expl—n(y + B, — I(Y' AXYS))],

independently of Pxyy'sz € Dn(Z|xi,¥;,¥s,8). Applying the Type Counting

Lemma to (3.58), we get
W"™((ilxi,yi,s) < expl-n(n—e+ Ry —I(Y' AXYS))).
By another property of our codewords (Theorem 3.22, inequality (3.85)),
Wi (xi,¥5,¥5,8) € Txyyist < exp[n(JRe —I(Y'AXYS)|T +¢€)]. (3.63)
Thus

I/‘/",-L(eij(s)}xiaYj)s) = Wn( U Cj’ |Xi,yj,s)

F#5(XLY; Y 08) €Ty yrs

is bounded above by
exp[-n(n~2e+ Ry — I(Y'ANXYS)— |Ry — I(Y' A XY S)|F)].
In case 1 we get
W™(0;;(s)|x:i,¥5,8) < exp[—n(n —2¢)].
In case 2 we use the fact that the inequality in (3.57) fails. This leads to
IYAXY'S) < Rp—I(YAXS) +e.
Rewriting this as

IYAXY'S)+I(Y'AXS) < Ry+e,

53



or equivalently as
IY'AXYS)+I(YAXS) < Ry +e¢,
we obtain I(Y' A XY S) € R; + €. Thus in case 2,
W™ (0is(s) i, 5,8) < exp—n(n — 3¢)].
In case 3 we use the fact that both inequalities, (3.56) and (3.57), fail. So,
I(Y AXY'S) < e,

and
IXAY'S)+ I(Y'AS) < Ry+e.
Write
IV'AXYS) = IYAXY'S)+ I(XAY'S)+I(Y'AS)
—[HX)+ HY)+ H(S)- H(XYS)]
< R;+ 2.
So, in case 3,
W™(0;(s)Ixi, y5,8) < exp[—n(n — 4e)].
Since the bounds for the first two cases imply the third, in the first three cases, we

may use the preceding inequality. Now, in case 4 use (3.60) to write
IY'AZ|IXYS) = I(XYZAY'|S)-I(XY AY'|S)
> np—-I{(XY AY'|S).
We claim that I(XY AY’|S) < 2¢. Since the inequalities in (3.56) and (3.57) fail,
I(XAY'S) < ¢ and IYAXY'S) € e
Writing
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IXY AY'|S) = I(YAXY'S)+I(XAY'S)
—[H(X)+ H(Y)+ H(S) - HXYS)]

< 2,

we have I(Y' A Z|XY S) > n — 2¢. Combining this with (3.61), and applying the
Type Counting Lemma to (3.58) yields
W™ (¢i|xi,y5,8) < exp[—n(n — 3e)].

Since in case 4, the upper bound in (3.63) reduces to exp(ne), we have

W™ (0:(s)|xi,y5r8) = W™ U (i I%i, Y5, 8)

FP#3(XiY5Y508)€Txyyrs

< exp[—n(n —4e)].
We then have, in all four cases, when (3.56) and (3.57) both fail,
W™(8i;(s)|xi,¥5,8) < exp[—n(n —4¢)]
< exp(—ne), since 1 > 5¢,
< exp(—ne/f2).

To summarize, regardless of (3.56) and (3.57), we always have the quantity in

(3.55) bounded above by exp(—ne/2). By (3.54) we have

eifs) < D exp(—ne/2)

Pxyyts

(n+ 1)"YHyl2|$I exp(—ne/2)

IA

IA

exp(ne/4) exp(—ne/2)

exp(—ne/f4). (3.64)

i
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Finally, by using a similar procedure, whose main difference is that instead of

(3.62) we use the fact that
IX'ANZ|XYS) = I(X'ANXYSZ)-I(X'AXYS)
> I(X'AZ)-I(X'AXYS),
and also the fact that
I(X'ANZIXYS) = I(XYZAX'|S)-I(XY AX'|S)
> I(XZAX'|S)—-I(XY AX'|S),

we can bound the middle term in (3.45) by exp(—ne/4). Combining this with

(3.49) and (3.64), we have, for every s € §*,
e(s) < 8exp(—ne/4).

Since for all sufficiently large n, 8 < exp(ne/8), we see that (3.26) holds. O
Remark. Before arriving at the decoding rule described in the preceding proof,

we tried the following. Let

Ki(s) & {z€Z2":Vi'#i,2€ kS, = I(xiy;z Axuls) <7},
’ A n N ‘ N N s
Ki(s) & {z€2":Vi'#i,V) #j,2€ K} = I(xiy;z Axuyjls) < n},
and set

a -, "
E; = U [K?j(s') N I\,-lj(s') N I(fj(s') N ]\?j(s')].
Slesn
Then with only a little extra care, one can show that the {E;;} are pairwise
disjoint, provided that W is nonsymmetrizable-X'), nonsymmetrizable-X’, and
nonsymmetrizable-). One would then like to use any decoder ¢ with the property
that
z € By = ¢(z) = (4,7).
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Our problem with this approach is that we have been unable to find a useful bound

on (compare (3.63))

H(&53") : (%, %, ¥5,¥30,8) € Txxryyis}].

3.4 Alternative Decoding Rules

In the proof of Theorem 3.15, the decoder ¢ was described in terms of the sets
{F:} and {Gi;} defined by (3.39) and (3.43). For a given z € Z", determining
which F; and Gi; that z belongs to would be a complicated and demanding task.

Consider the following mazimum mutual information decoder (MMI decoder). Let

Fi 2 {ze€ 2" I(x; Az) > I(xs A2), Vi’ # 4} (3.65)
and
Gy & {z€Z": I(y; Azlx:) > I(y; Azlxs), Vi # 7). (3.66)

Obviously, the {F;}Y, are disjoint, as are the {é,‘j}‘jj\il for each . If ¢(z) =

(&1(2),32(z)) has the property that

z€F;, = ¢1(z) =1 (3.67)
and
z€ FiNGy; = ¢y(z) =5, (3.68)

then we say ¢ is an MMI decoder. Clearly, the decoder ¢ is much simpler than
the decoder ¢ used in the proof of Theorem 3.15. More importantly, & is universal
i the sense that the definition of the sets {£}} and {G,,} does not depend in any

way on 117. Below we will present a theorem that gives sufficient conditions under
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which ¢ can be used instead of ¢ in the proof of Theorem 3.15. We first need the

following general lemma.

Lemma 3.20 Let {F}} and {C:‘.-,-} be arbitrary subsets of Z™, not necessarily given
by (3.65) and (3.66). Suppose that the {E;}Y, are disjoint and that the {G,J}
are disjoint for each 1. Let ¢ satisfy (3.67) and (3.68). Let J(s) and K3(s) be
given by (3.37) and (3.42) respectively. If
FenJgP(s) € |J{z: I(xuAz) > Ri+n and I(xizAxa[s) > n}, Vs € S™, (3.69)
i1

and if

G° NK%(s) c U{z: I(yj Az|x:) > Ry+n and I(xiy;zAyjls) > n}, Vs €S,

i'#;
(3.70)
then we can use ¢ instead of ¢ in the proof of Theorem 3.15.
Proof. Observe that
¢(z) # (i,5) = z€ FFUGS;.
Hence
' N M
, ZEW" {zez™: “( ) # (1,5)}xi,¥5,8)
J\]\I oo
1 N n Cc n
— N]\{ Z W (F Ixi')y.?) Nﬂl ZZW 'jleyJ)s)'

1=1j=1 =1 j=1

We consider only the second term. The first is treated similarly. Write
e ¢ c -0
Ge = [G4NKX(s)IU[GE N KL (s)]
C KX(s)U[GE N KY(s))
By (3.70),

Ge. C K%(s)°U (U {z: I(yy Az|xi) > Ra + 7 and I(xiy;z2 Ayjls) > n}.

ij
3'#3

58



A review of the proof of Theorem 3.15 giving special attention to equations (3.46)

and (3.49) as well as (3.50), (3.52), and (3.64) shows that

1 M a
N 2 2 WH(GIxiyi,8) < 4exp(—ne/4).
£ 2

=1

O
We now give sufficient conditions under which an MMI decoder can be used in

the proof of Theorem 3.15.
Theorem 3.21 Ifp € D(X) and g € D()) are such that
Inaz(px gxrx W) > Ispz(px gxr x W), Vr € D(S), (3.71)
and
Iyazix(px gxrx W) > Isazix(px g xr x W), Vr € D(S), (3.72)
then for
0’ < Ry < Iy,z(p,q, W) and 0 < Ry < Iyrzix(p,q, W),

there exists an € > 0 such that for all sufficiently large n, if N & lexp(nR,;)| and
ME lexp(nR,)], then there exist codewords for user 1, x;,...,xn, each in X",
and there ezist codewords for user 2, y1,...,¥nm, each in Y*, and there exists an
MMI decoder ¢ with

1

N M
WZZW"({Z € 2" : ¢(z) # (3,7)}xi,¥j,8) < exp(—ne)

=1 j=1

holding uniformly for every s € S™.

Interpretation. Observe that no explicit assumptions concerning nonsymmetriz-
ability have been made. Recall that the proof of Theorem 3.15 used the nonsym-

metrizability assumptions only to show that the {F;} and the {G;} were disjoint.
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For the MMI decoder, the {I:",}N and the {é;j}jM=1 are obviously disjoint. We

i=1
also point out that while no knowledge of W is required to define ¢, the conditions
(3.71) and (3.72) obviously depend on W. The point is this. Suppose that one
knows only that W belongs to a certain class of channels. If one can show that for
some p and g, every channel in this class satisfies (3.71) and (3.72), then one can

confidently implement ¢ without a complete knowledge of W.

Proof. Assume § > 0 has been chosen small enough that
Ivpz(px gX T X W) ~Ispz(pxgxrx W) > 26, Vr € D(S),
and
Iypzix(p X g x v x W) = Ispazix(p X ¢ x r x W) > 26, Vr € D(S).

Then as in the proof of Theorem 3.15, we can assume that p and ¢ and P and @

have been chosen so that
Inaz(PxQ xr x W) =Ispz(PxQxrxW) > § Vr € D(S), (3.73)
and
Ippzixr(Px @ x 1 X W) = Isazix(P x @ x 7 x W) > §, Vr € D(S). (3.74)

Let x4,...,%n be the codewords for user 1, all of type P, and let yy,...,ym be the
codewords for user 2, all of type @ and having the properties listed in Theorem 3.22.
With F; and G;; given by (3.65) and (3.66) respectively, we have z € Fen Jo(s) if
and only if
z€ | J{z:I(xeAz) 2 I(xiAz)and D(Px;szl|P x Ps x QW) < n}.
i'i
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By the Projection Lemma 2.15, D( Py, sz]|P X Ps x QW) < 7 implies D(Px; z|| P x
QPsW) < 7, and so by (3.29), (3.32), and the fact that n < §/2,ifz € FenJo(s),

then there is some ¢’ # ¢ with

I(X,"/\Z) > ](X;AZ) > Ix/\z(PXQXPSW)—ts/z
> Iyaz(P,Q,W)—6/2
> Ry+n1.

We claim that I(x;z A xi|s) > 7 as well. Observe that

I(xiz Axpls) > I(z AXils)

= I(xesAz)—I(sAz)

> I(xeAz)—I(sA\z)
> I(x;Az)—I(sAz)
> [Ixaz(P x Fs X QW) — Isnz(P x Ps X QW)]—¢6/2,

since z € J?(s) (see Note below),

> §/2 > 15, by (3.73).

Note. We assume 7 was chosen so small that not only do we have (3.29) and

(3.32), but also if PM and P® are any two distributions on & x § x Z or on

X x Y xS x Z with D(PW||P®) < n, then

Uxnz(PM) = Isnz(PD)] = [Txaz(P®?) = ISAz(P(z))]I < §/2

and

‘[IyAer(P(l)) — Isnze(PD)] = yazjn(PP) — 15AZ|A'(P(2))]t < §/2.
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Thus £ N J2(s) C .gi{z : I(xi A2) > Ry + 1 and I(x;z A xy|s) > n}. The proof
of (3.70) follows sirr;ilarly if one observes that
I(xiyjz Ayjls) 2 I(xzAyjls)
= I(xiz Ayjs) — I(xiz As)
= [I(xiAyjs)+ I(zAyjs|x)] = [I(x;i As) + I(z As|x;)]
= [(yss Azlx) = I(s Azixa)] + [1(x: A yys) — I A s)]

2 I(yj Azlx) — I(s A z|x;).

3.5 Decoding Sets and Codeword Properties

In this section we prove our claim that for each i, the decoding sets {Gi; Y,
defined in equation (3.43) are pairwise disjoint. Based on this proof, it can easily
be shown that the sets {F}} defined in equation (3.39) are also pairwise disjoint.
The last part of this section is devoted to giving a complete list of the codeword
properties which we assumed in the proof of Theorem 3.15.

We first establish that for each i, the {Gi;}M, are pairwise disjoint. Suppose
that for some pair j # j', 2 € G;;NG;j. Since z € Gjj, there must be some s € S*
with

z € K{}(s) N K}(s).

Similarly, since z € G,;s, there must be some s’ € S™ with

z € KJ(s") N KL.(s).
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Now, since z € K{}(s'), z € KJ,. Since we also have 2 € K.(s), we conclude that
I(xiy;z Ayyls) < 7. (3.75)
Arguing similarly, since z € K{(s), z € K. Since we also have
z€ KL(s) = {z€2Z":Vj#j,z¢ K% = I(x;yjz Ay;ls') < 7},

we conclude that
I(xiy,-:z A yj|s') S n. (376)

We also obviously have

.D(Px‘-,y.’,s,z“P X Q X Ps X W) S 77 ‘a.nd D(Pxi,y’.,,sl’z”P X Q X Ps' X W) S 77.
(3.77)

Let Pxyyrssiz = Px‘-,ypyj,,s,sl,z- Note that Py = Py = Q and Px = P. Thus,
D(PyyszlPx Qx Psx W) < 9 and I(XYZAY'S) < n  (3.78)
and
D(Pxyisz|Px Qx Po x W) < n and I(XY'ZAY|S) < 5. (3.79)

We can rewrite the two inequalities in (3.79) as

Pxyisiz(z,y'ss, 2)
Pxyyrs: ! 1 L <
Z XYY sz(m,y,y,s,z) og P(x)Q(y’)Ps:(S)W(ZIx,y’,s) =7

z.y.y,8,2

and

Pxyyisiz(2,9,4's8,2) Psi(s)
P’ YIS ! 9 1 ’ ’ : :
Z XYY's Z(l',y,y »S Z) 8 PX)”S’Z(:E’ yla37z)Pys'(y’s) B

z,y,y 8,2

Adding these two inequalities yields

, Pxyyrsiz(2z,y,9', s, 2)
Pyyyisiz(z,y,y,8,2) 1o p - < 2n.
2 Povsz(e,u v’ s D8 prrans oW Gl v P ) S 27

o o
xvyly 75""
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We recognize the preceding expression as an informational divergence. If we let

Vi(zle,y,y) £ 2 Wizle,y's s)Psy (sly),
then applying the Projection Lemma 2.15 yields
D(Pxyyiz||Px @ x Q x V') < 27.
By Pinsker’s Inequality (Lemma 2.7),
d(Pryyiz, Px Q x Q@ x V') < 1/(2In2)(27) = 2/pln2.
Next, starting with (3.78) and proceeding as above, we arrive at
d(Pxyyiz, Px Q@ xQ xV) < 2¢/nln2,

where
V(zle,y,y) & S W(zlz,y,s)Psy(sly’).

Since d is a metric, we can use the triangle inequality to get

2 Pl WV (zlz,y,5") = V'(zlz,v,4)] < 4y/nIn2.

Y,z

Recalling that P(z) > >0 and Q(y) > 8 > 0,

4/nTn?2 5

max |V(zlz,y,4) - V'(zlz,3,9)] € —F7— <4,
z .y, B

since we chose 7 < $%62/(161n 2). Now, observe that the preceding maximum does
not change if we interchange y and y' and then interchange V and V'. Hence, we
also have

max V'(z)z,¥',y) — V(z]|2,¥,y)] < 6.

¥y
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It is then easy to show that

max
ERTRTRY

V(o) + V(ela, o', )) = 3V el + Vo)l | < 6

If we set U(sly) & 3[Psiy (sly) + Psy+(sly)], this becomes

max
L RTRT

ZW(zlx,y,s)U(st')—ZW(z[z,y',s)U(st)l < 6 (3.80)

s

In other words (cf. (3.22)) F}Y(U) < 6, and so we must have (cf. (3.23))
(W) < 4,

contradicting (3.27).

Having established that for each ¢, Giy, ..., Giym are pairwise disjoint, it can be
similarly established that Fy,..., Fy are pairwise disjoint; simply contradict (3.31)
instead of (3.27).

We conclude this section with a theorem which establishes that for all suffi-
ciently large n, we can always find a set of codewords for each user such that the

properties used in the proof the Theorem 3.15 will hold.

Theorem 3.22 (Codeword Properties). Given € > 0, there exists an ny depending
only on ¢, |X|, |V|, and |S|, such that for every n > ng, if P € D,(X) and

Q € D.(}), and if N and M are positive integers with

log N and € < R2=logM,

n n

E<R1=

then there exist codewords, Xi,...,Xn, each of type P, and there exist codewords,

Y1,....Yas, each of type Q such that (3.81) - (3.90) all hold simultaneously:
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%l{z‘ I(xiAs)>e€}| < exp(—ne/2), Vse S, (3.81)
%l{j :I(y; Axs) >e}| < exp(—ne/2), VxeAx", seS", (3.82)
%Hi : I(y; As) >e}| < exp(—nef2), VseS", (3.83)
%I{i I(xiNys)>e}| < exp(—ne/2), Vye I, seS".  (3.84)

For every type Pxxiyyis € Dp(X x X XY x Y x S),

Hs": (%, ¥5,¥5,8) € Txyyis}] < exp[n(|R: —I(Y'AXYS)|t +¢)], VseS",
(3.85)

and

{#": (xi,%ir,¥5,8) € Txxys}| < exp[n(|By ~ I(X'AXYS)|* +¢€)], VseS™
(3.86)
fI(XAY'S) > |R,— I(Y'AS)|T +¢,

1
NI{Z : 35" with (x;,y;,8) € Txyis}| < exp(—ne/2), Vse 8% (3.87)
f (Y AXY'S) > |R: — I(Y' AXS)|T + ¢,

| n
MHJ 35’ # 7 with (xi,¥5,¥5,5) € Txyys}| < exp(—ne/2), Vs € S™
(3.88)
if I(Y AX'S) > |Ry — I(X'AS)|t +¢,

-ﬁl/-j-|{j : 3" with (xi,y5,8) € Txiys}| < exp(—ne/2), VseS™ (3'89)
fIXAX'YS) > |Ry — I(X'AYS)|* +e,
%l{z : Eh' # i with (x;,Xi',Yj,S) € TXX’YS}I _<_ exp(—ne/?), Vs € S". (390)
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Proof. Observe that if Py, = P and Py, = @ for all 7 and j respectively, then
in order that all of the bounds (3.85) - (3.90) be nonvacuous, it is necessary that
Py = Py = P and Py = Py = . Most of the properties follow easily from their
single-user counterparts proved in the appendix of [8]. The exceptions are (3.87)
and (3.89); for these, a proof is required. It will suffice to prove (3.87).

Let {X4,...,Xn} and {Y1,...,Yn} be two independent families of i.i.d. RV’s
such that each member of the family {X,...,Xx} is uniformly distributed on 7p,
and each member of the family {Y;,..., Y} is uniformly distributed on 7.

Let ¢t £ exp(—ne/2), and and define the events
1o S .
A(s, Txy:s) 2 {—A—,Hz : 37" with (X, Y,r,8) € Txyis} < t},

and

A & NA(s, Txys),
where the intersection is over all s € §™ and all types Pxyrs such that
IXAY'S)>|R,—IY'AS)|T +e.
The assertion in (3.87) will be proved if P(A) > 0, or equivalently, P(A°) < 1.
Now, we will show below that, uniformly for every s € S™ and every set Txyrs,
P(A(s, Txy's)?) < 2exp[—3exp(ne/4)). (3.91)
It will then follow that
P(A°) < [SM(n + 1)L, 2 exp[—Lexp(ne/4))]
= 2exp[nlog|S|+ |X||V||S]|log(n + 1) — J exp(ne/4)].
Clearly, if n is sufficiently large (obviously, how large depends only on ¢, |X|, |V,

and |S]),
P(A°) < 1.
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In order to prove (3.91), we will prove and employ the following: wuniformly for

every s € S™ and every set Ty,
P(G(s,Tyis)°) < exp[—3exp(ne/4)], (3.92)

where
G Trs) 2 {177 (Yp9) € Trs)l < 1},

and t' £ exp[n(|R; — I(Y' A S)|t +¢€/4)]. To prove (3.92), let

1, if YJ‘: c TY'IS(S)

A
gy =
0, otherwise.

Observe that
) M
Hi": (Yj,8) € Tyis} = D gjr.
j'=1

So, using Markov’s inequality, followed by the independence of the RV’s {9},

P(G(s, Tyrs)) = (zgj > 1)

§'=1

= ploxn(35 1) > eit)

=1

exp(~t')- E[exp(% gj’) ]

i'=1

IN

M
= eXp(—t’) . H E[exp(.g]')]

=1

Now, since exp’s are to the base 2, and since

27 < 14z, when z € [0,1],

we can write

E[exp(g;)] < E[14g;]
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< eE[Q_,"]
= exp(E[gj]loge).

To upper bound E[g; ], we appeal to (2.5) and (2.10), and then assume that n is

so large that (n + 1) < exp(ne/4)/(2log €). This yields

E[gy] = P(Yj € Tyys(s))
= TT%ITY'ns(S)I

exp(nH(Y'|S))/lexp(nH(Y"))(n + 1))

IA

IN

exp|—n(I(Y'AS) —€/4)]/2loge.
With this upper bound,

P(G(S, Tyfs)c)

1A

exp| —t' + ME[g:]}loge]

IA

exp[ —(t' — L exp[n((B2 = I(Y' A 5)) + ¢/4)])]

< expl-Yexp(ne/4)].
Having established (3.92), we proceed to verify (3.91). Write

P(A(s, Txys)S) = P(A(s, Txy's) N G(s, Tyss)) + P(A(s, Txy's)° N G(s, Tys)°)

< P(A(s, Txy's) N G(s, Tyss)) + exp[ —3 exp(ne/4)]. (3.93)

Keeping in mind that
X; € T,\'pns(er,S) < 'X,‘ € Txn'rs(ij,s) and Yj: € 7;H|S(S),

let

1, ifX; € U Txps(Yj,8)
j':YJIET—Yals(S)

1>

fi

0, otherwise.
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Let g denote the indicator function of the event G(s,Ty's). Then
1 N
P(A(S,Txyrs)c n G(S,’];fls)) = P({—A—[- Zf. > t} N G(S,Ty/s))

=1

N
< exp[—Nt]-E[g-exp (Z f;) . (3.94)
=1
To upper bound the preceding expectation, we need the following o-fields. Let
fO é U(Yla-"aYM),

and forz=1,..., N, let

F B o(Ye ., Yo, X, Xo).

Write
N N-1
Elg-exp(£)) = ElElexp(f) | Fralgexp( X £)) (3.99)
i=1 =1
First, observe that by independence,
1
E[fn | Fnal-g = g- T U Txyis(Yjr,8)|.
| Pl j'=Yj'€TY'|s(S)

If ¢ = 0 in the preceding equation, the left-hand side is 0, and any nonnegative

number will be an upper bound. If ¢ = 1, we have
' Y5 € Tyys(s)} < 1.
If n is sufficiently large,

Elfv | Fn-1]-g < g-t'-exp[-n(J(XAY'S)—¢€/4)]/2loge

= g-exp[n(|[Ra—I(Y'AS)|T —I(XAY'S) +¢/2)]/2loge.
So, if X AY'S) > |R: — I(Y' A S)|t +¢,

E[fv | Fn-1] 9 < g-exp(—ne/2)/2loge.
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Invoking the inequality 2* <1 + z, we then get
Elexp(fv) | Fn-1]-g < (L+E[fN|Fna]) g
< (14 exp(—ne/2)/2loge) - g
< g-exp|jexp(—ne/2)].
Applying the preceding analysis inductively to (3.95),
N .
Elg-exp(30£:)] < £g]- exp[ 1N exp(—ne/2)].
i=1
Since E[g] =P(g =1) <1,
N
Elg- exp(Z f;) ] < exp[3Nexp(—ne/2)].
i=1
Combining this with (3.94),
P(A(s, Txy's)° N G(s,Tyss)) < exp[—N(t— Jexp(—ne/2))]

= exp[—N(exp(—ne/2))]

exp| —3 exp[n(Ry — €/2)]]
< exp[—jexp(ne/2)], (3.96)
where the last step follows because R; > €. Combining (3.93) with (3.96) yields

(3.91). 0

Remark. We point out that the procedure that established (3.92) also shows that

with positive probability we can find Y;,..., Y s, each of type @, such that for all
Pxyyrs,

[{j': (x,y,Yj,8) € Txyyis} < exp[n(|R;—I(Y'A XYS)t+¢e)], V¥x,y,s.
Thus we have also proved (3.85). Since (3.88) and (3.90) are more intricate, we

refer the reader to the appendix in [§].
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CHAPTER 4
STATE CONSTRAINTS FOR THE AVMAC

In this chapter we assume that the state-selection mechanism can generate only
those state sequences which satisfy a certain time-average constraint. We will
show how this assumption can increase the capacity region. A striking example of
this phenomenon occurs with the adder channel. This channel is symmetrizable-
X, symmetrizable-), and nonsymmetrizable-X'). By Corollary 3.12, its capacity
region consists only of the origin. However, when a state constraint is imposed,

the capacity region has the form shown in Figure 4.1.

I

.
o

Figure 4.1: The Adder Channel Capacity Region Under a State Constraint.

This chapter is organized as follows. We first prove a new “weak converse”
theorem to give an outer bound on the capacity region under a state constraint.
We then apply this result to the additive AVC, and then to the group adder AVC.
To derive inner bounds on the capacity region under a state constraint, we use
Lemma 4.16. To prove this result, we modify the proof of Theorem 3.15 to handle
state constraints, even for symmetrizable channels. To conclude the chapter, we
use our inner and outer bounds to find the capacity region of the adder channel

under a state constraint.
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4.1 State Constraints

Fix any function £: S — [0, 00) such that rrélg £(s) = 0. Set {max 2 max £(s). Next,
s s€

for any s = (81,...,8,) € S, let
a 1 &
L.(s) = ;Zf(sk).

Example. If S = {0,1} and £(s) = s, then £,(s) is the normalized Hamming

weight of s, i.e., the fraction of 1’s in s.
Definition 4.1 For any state constraint, L > 0, let
SML) & {s€8™:Lu(s) < L}.
Of course, if L > €max, then S*(L) = S™.
Consider the following modification of Definition 3.1.

Definition 4.2 A pair of nonnegative real numbers, (R;, Rz), is said to be achiev-

able under state constraint L for the AVC W if:

For every 0 < A < 1, and every AR > 0, there exists a positive integer ng

such that for all n > ng, there exist positive integers N and M such that

log N

log M
n

> Ry - AR and > R, — AR,

and such that there exists a code (f,g,¢) (cf. Definition 1.1) with

N M
NM L LWz € 27 p(a) G i)} yis) < A VseSMI).

i=1 3=

Definition 4.3 The capacity region under state constraint L, denoted C(W, L), is

defined by
C(11, L) 2 {(R1,R2) : (R1, Ry) is achievable under state constraint L}.
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Clearly, if a pair (Ry, R;) is achievable in the sense of Definition 3.1, it is achievable

in the sense Definition 4.2. Thus, we always have
Cc(W) c C(W,L).

Even though it is a slight abuse of notation, for r € D(S), we set £(r) & 3 £(s)r(s).

If we let

DH(S) £ {reD(S):4(r) < L},
then we can write the following analog of (3.2):
Tinz(pgs W) & inf  Tyaz(p x g x 1W),

reDL(S)
I§A2(p’ q, W)

I,{J/AZDJ(P, q, W)

I

inf I
re%;“f( s yaz(p x ¢ x rW),

>

e, Tenzin(p x g x TW),

2

inf Iyazie(p x ¢ x rW),

15 z12(Py g, W) el

I,%y/\z(l% ¢, W) £ reg)lll‘t;S) Ivyaz(p x ¢ x tW).

Note that if L > fmax, then DE(S) = D(S), and the preceding definitions reduce

to (3.2). Further, in analogy with Definition 3.4, we set

REpg, W) & {(RuRe): 0< Ry <Ihgp(pa, W),
0 S R‘Z < I§AZ|A’(]’7 9, VV)7

0< Ry + Ry < 1%y, 5(p, ¢, W)},
and we take R*(W) to be the closed convex hull of

U  Rip.q, W)
PED(X).4€D(Y)
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4.2 A Weak Converse

We now proceed to establish a weak converse, C(W, L) ¢ R (W). It is easy to see
that if Ly < Ly, then R%2(p,q,W) C R™(p,q,W), and so R:2(W) C R (W).

This observation leads us to the following lemma.

Lemma 4.4 For 0 < L < £p,,,

N RESW) = RYW). (4.1)
0<6<L
Proof. First, we clearly have ) RE=5(W) > RE(W). It remains to prove the
0<6<L

reverse inclusion. Lemmas 4.5 and 4.6 below will establish that for every € > 0,

there exists a § > 0 such that for all p and ¢,

RL~6<pa Q7W) - {(RlvRQ) : 0< Rl < Iff,\z,y(p,q, W) + £,
0 < R2 < Iﬁ/\ZlA’(p,Qa W) + ¢,

0< B+ Ry < Iiynz(p, g, W) +e}. (4.2)

Let RE(p, g, W) denote the set on the right-hand side of (4.2). Let RE(W) denote

the closed convex hull of

U  RHp,¢,W).

pGD(/‘V),qGD(y)
Clearly, for every & > 0, there exists a 0 < § < L with RE-6(W) ¢ RE(W). 1t

follows that

N RFNW) ¢ ) REW).

0<6<L >0
Now, it is easy to see that every point in RE(W) is within distance ¢ of RE(W).

Since R¥(W) is closed set, ﬂQ RE(W) c RE(W), and so
>

N REYW) ¢ O\ REW) ¢ RE(W).

0<b<L e>0



Lemma 4.5 For every n > 0, there exists a 6, 0 < § < L, such that for all

r € DX(S), there exists an + € DL=5(S) with d(r,7) < 7.

Proof. Recall our assumption that msinZ(s) = 0. Hence, there is some sp € S with
£(s0) = 0. Let n > 0 be given. Choose 0 < § < L such that

L-6
2(1—-=2—°¢ .
(1 L)<77

For s # sg, set #(s) = r(s) - (L — 8)/L. Since
-8

T #(s) = (1 - r(so)) 222 <1,

3#80

we can set 7(sp) = 1 — 3,4, 7(s). Observe that since £(so) = 0,

> U(s)i(s) = L—;—-é > s)r(s) < L-6.

S

Finally, note that

d(r, ) S2 3 Ir(s) = #(s)| = 21 = Z=2) ¥ w(s) < 1.

s#so

Lemma 4.6 For every € > 0, there exists a § > 0 such that for all p € D(X) and

all ¢ € D(Y),
Ié/—\gzxy(l)a q, I/V) < Ii/\ZD?(p» q, VV) + £,
I§;§|X(P, q, W) < IﬁAZIA’(pa q, I/V) + g,
I.«'IlJ’;/s\Z(p7 q, W) < I,[{’yAz(Pa q, ‘/V) +e€.
Proof. Tt suffices to prove the first inequality. Let € > 0 be given. Choose > 0
such that d(r, ) < n implies
Txaziy(p x ¢ X FW) — Iyazpp(p x ¢ x rW)| < €.
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Let 6 > 0 be as in the previous lemma. Let r € DX(S) be such that

Ixnzip(p x g X W) = IZpz15(p, 0, W).
By the previous lemma, there exists an # € DL~%(S) with d(r,+) < 5, and so
Ixnziy(p x ¢ x W) < Ixnzpp(pxgxrW)+e

= I/I{'AZIy(p’ q, l/V) + €,

from which the desired result follows immediately. O

Having established (4.1), we can now prove the following result.

Theorem 4.7 (Weak Converse Under State Constraint L).
C(W,L) c RYE(W).
Proof. It suffices to prove that for every 0 < § < L,

C(W,L) c R¥S(W).

Fix 0 < § < L. Let 0 < X < 1 and AR > 0 be arbitrary. Sui)pose that
(Ry, R;) € C(W,L). Then by Definition 4.2, for all n > ng, there exist positive

integers N and M such that

logN R —AR and 8M

n n

> R, - AR, (43)

and such that there exist codewords X;,...,xn for user 1; codewords y;,...,ym

for user 2; and a decoder ¢(z) = (¢1(2), p2(z)) with

112
| >~

N M
7 S (e € 27 pla) # (ko) S 5 Yo e S0

(4.4)
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Now, let ry,...,7, be any elements of D¥~(S), and set

r(s) & ﬁ rk(Sk), s = (81,...,8,) € S™.

k=1

Let A be a {1,...,N}-valued RV, and B a {1,..., M}-valued RV. Let
X=Xt Xa)y Y=Y, Ya), S=(Sy,...,5), and Z = (Zy, ..., Z»)

be &A™, Y™, 8™, and Z™-valued RV’s, respectively, whose joint distribution is given
by

PZ=2X=x,Y=y,S=5B=jA=1)

= Wr(zlx,y, $)r(s)8x(x)8y, (¥) 2 - &

(4.5)

Clearly, since P(S = s) = [Ii=; 7(sk), the {Si} are independent. Now, observe

that by Markov’s inequality, the independence of the {Si}, and the fact that

E[1€(Se) — E[£(S0) 1P ] < £

max)

we have

P(La(S) > L) = P(i-gj[z(sk) _ E[Z(Sk)]] >L— }125; E[e(sk)])
< P(l é[é(sk) - E[f(sk)]] > 5)
< Ej‘g; < A/2, assuming n > £2,./[63(A/2)].  (4.6)

Note that if L > fmax, P(€n(S) > L) = 0. Next, observe that (4.5) also implies

. . 1 n
P(A = Z,B = ],Z = z) = W Z W (zlx,-,yj,s)r(s).
8ES"

By (4.4) and (4.6), for all n > max{no, £2,,,/[6%(A/2)},
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P(e(Z) # (4,B)) = 3 P(p(Z) # (i,5),A=1i,B = j)

= 3 o) (g W o) £ i)
~ Hes)]

< max e(s) + P((S) > 1)

< A2+M2 = A (4.7)

The remainder of the proof is almost identical to Jahn’s proof [14] of the weak

converse (without state constraint L, of course). Clearly, (4.7) implies
Per(Z) £ A4) < A and P(po(Z) £B) < A
Now, using Fano’s inequality [4, p. 53], if 7 £ P(x(Z) # (A, B)),
H(ABIo(Z)) < 7 log(NM — 1) + h(r),

where h(t) & —[tlogt + (1 — t)log(1l — )], ¢ € (0,1), and A(0) = h(1) £ 0. Since
h(-) <1 and 7 < A, and since H(AB|Z) < H(AB|»(Z)) [4, Problem 1(b), p. 56],

H(AB|Z) < Alog(NM) + 1.
Similarly,
H(A|Z) < MogN +1 and  H(B|Z) < AlogM +1.
From (4.5), H(A) = log N, H(B) =log M, and H(AB) =log NM. Hence,

(1-NlogNM < H(AB)— H(AB|Z)+1 = I(ABAZ)+1,
(1= NlogN < H(A) - H(A|Z)+1 = I(ANZ)+1, (4.8)
(1-NlogM < H(B)—H(B|Z)+1 = I(BAZ)+1.
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From (4.5) we also see that
P(Z = z|(X,Y) = (x,¥), (A, B) = (1,5)) = Y_ r(s)W"(z|x,y,s)
8ESH

does not depend on (¢,7). Hence, by the Data Processing Inequality [13, p. 26,

inequality (2.3.190)],

I(ABAZ) < I(XY AZ).

Similarly, (4.5) implies

1 M
PZ=2X =x,4=3) = ¥ r(s)(3; 5 W"(zbx,v59))

sesn 1=1

does not depend on :. Therefore, by the Data Processing Inequality,

I(AANZ) < I(XAZ)

IA

I(XAYZ)
= I(XAY)+I(XAZ|Y)

= I(XAZ[Y),

where the last step follows because (4.5) implies X and Y are independent. An

analogous argument will establish that
I(BAZ) £ I(Y AZIX).
Recalling (4.8), we have

(1-XN)logNM < I(XYAZ)+1,
(1-XN)logN < I(XAZY)+]1,
(1-XNlogM < I(YAZX)+1.
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Now, we use (4.5) to see that

PZ=zX=x,Y=y) = ) r(sW"(zlx,y,s)
SESH

= > f[rk(sk)W(zklxk,yk,Sk)

8144430 k=1

= E(rkW)(Zklxk,yk)-

It follows that
H(ZIXY) = Y H(Zi|XiY3),

k=1
and hence,
I(XYAZ) = H(Z)- H(ZIXY)
< Y H(Z) - HEZIXY)
k=1

= ZI(Xky;c A Zk)

k=1

= > Ixyaz(pr X g x W),

k=1

where pi(z) £ P(X) =z), i(y) & P(Yi = y), and the last step follows because

(4.5) implies Xy and Y} are independent. Similarly, we can write

IXAZ|Y) = H(Z[Y)- HZ|XY)
< Lz";ff(zkw) - H(ZIXY)
< Y H(Z¥) - HEZXY)
= kilf(xk A ZelY)
= iﬁmzw(pk X gk X T W),

a~
1l
-

and, of course,
n

I(Y A ZlX) S ZIy,\le(pk X qr X T’kW).

k=1
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We conclude that

logN  logM 1 1 & 1
n + " < 1_)‘(;;___:1],1'%2(1%XQerkW)-i';),
log N 1 1& 1
—— = i—_—x(; Z___: Txaziy(pe X g X W) + n)’
log M 1 i 1
gn < T ( E Iyazix(pr X g X TeW) + n)

Since the k’th term in each of the preceeding sums depends on r only through ry,

if we take the infimum over all r such that each r; € DF~4(S), we get

2 (0 )
2 < liA(—ZIz;z-lym,qk’ )
lognM =< (nkz:l iz (P 0 W) + %)
This combined with (4.3) shows that (R;, Rs) € RE-5(W), -

4.3 The Additive AVC .

Having established a weak converse in Theorem 4.7, we now compute RE(W) for
the two-user additive AVC. We also consider the special case of the two-user group
adder AVC. We begin with a few preliminaries. Let G denote a finite commutative
group under +, and let S denote an arbitrary finite set. Suppose X, Y, and N are

G-valued RV’s on some probability space, (2, F,P;), where s € § is unknown. Set
Z =X+Y+N. (4.9)

Here X and Y represent channel input symbols, while N represents the channel

noise. We assume that for every s € S, N and (X,Y) are independent under P,.
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Suppose that the marginal distribution of N can be written as
Ps(N =n) =V(nls)
for some transition probability V from & into G. Then
Ps(Z ='z|X =z,Y=y) = P(N=z—-z—-y|X=2z,Y=y)
= P(N=z-z-y)
= V(z—2z—yls).
In light of the preceding paragraph,let ¥ =Y = 2Z =G.
Definition 4.8 We say W is an additive AVC if
W{(zlz,y,s) = V(z—2z —yl|s) (4.10)
for some transition probability V from § into G. We also write (rW)(z|z,y) =
(rV)(z — & — y), where (rV)(t) £ T, (s)V (t]s).
We shall need the following lemma before proceeding further.
Lemma 4.9 Let W be an additive AVC given by (4.10). Then
Hzpy(p x g x tW) = H(rV),
independently of p and q.

Proof. Recall that if X,Y, and Z are discrete RV’s with joint distribution Pxyz,
then
H(Z|XY) =) Pxy(z,y)H(Z|X =2,Y =y),
Y
where for fixed z,y, H(Z|X = z,Y = y) denotes the entropy of Pz xy(:|z,y).

Since (rW)(zlz,y) = (rV)(z — z — y), and since G is a group,

=2 (rV)(z =z —y)log(rV)(z — = — y)
z€G

does not depend on z,¥, and is simply H(rV). O
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We next consider the following definition.

Definition 4.10 For p,q € D(G), the convolution of p and q is given by
(P*q)t) £ 3 p(t—b)q(b)
beg
Observe that convolution is both commutative and associative. Next, if p(7) =
1/|G| for all 7 € G, then (p * q)(t) = 1/|G| for all t € G. In other words, the
convolution of the uniform distribution with any distribution is again the uniform

distribution. Now, use the fact that

(pgrW)(z) & Zp (y)r(s)W(zlz,y,s)
= rarrV))

in order to write Hz(p X ¢ X rW) = H(p * ¢ *x V). It then follows that
Ivyaz(px gxrW) = H(pxqxrV)—H(rV).

We recall here that the maximum value of H is log|G|, and is achieved by the
uniform distribution. Let u denote the uniform distribution on G; u(t) 21/6),t e

G. By the minimax theorem [15, Theorem 1.5.1, p. 14] or [12, Theorem 2, p. 44],

sup  I¥ynz(p,q,7W)
pED(X),qeD(Y)

= max max min H(pxg*xrV)— H(rV)
PED(X) g€D(Y) reDL(S)

= ,,2%5%?%) rengix(ls) [(qrergﬁ()) H(p*qx rV)) H(rV)]

log |G| — H(rV
og10]~ max. H(V).

By writing
Ivazy(px g x W) = H(p*rV)— H(rV)
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and

Iypzix(px ¢ x tW) = H(g*rV)— H(rV),

we see that

sup I¥nzy(p, ¢ W) = sup I3, 21x(p, ¢, W) =log |G| = max H(rV)  (4.11)
P.q P reDL(S)

as well. Since each of the three suprema is achieved by p = ¢ = u, it follows that

for an additive AVC, RY(W) has the shape of a 45° triangle:
RYW) = {(Ri,R;):0< Ry + R, <log|G| — max H(rV)}. (4.12)

A special case of the additive AVC is the group adder channel. In this model,

S = G, and V has the special form

V(tls) = Valt—s)

for some Vo € D(G). The motivation for this model is similar to that of the additive

AVC. We consider a fixed probability space (€2, F,P), and instead of (4.9), we set
Z = X4+4Y+N+s, -

where s is unknown, and P(N = n) = Vo(n). It then follows that if (X,Y) and N

are independent under P,
PZ=zX=2,Y=y) = PWN=z—z—-y—-s|X =2,Y =y)
= PN=z—z—y—2s)

= VW(iz—z—y—s).
Now, for the group adder channel,

rV)(2) = (r*VW)(@).
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We see immediately that if r or V4 is uniform, r * Vo = u, and H(r * V) = log |G].
Thus, if u € DX(S), or if Vp = u, then (4.12) reduces to RY(W) = {(0,0)}. Note
that u € DF(S) if and only if

éﬁé%g“) < I (4.13)

We can further specialize the group adder AVC to a noiseless group adder channel
by setting P(N = 0) = 1. In other words, V,(t) = 6(t), where 6(t) =1 if t = 0,

and 6(t) = 0 otherwise. In this case, r* Vo =r*§ = r, and

L = :0< < - .
RY(W) = {(Ri,R:) : 0 < Ry + Ry < log |G| &%ﬁW}

Thus, for the noiseless group adder AVC, RY(W) = {(0,0)} if and only if (4.13)
holds.

4.4 Forward Theorems

In this section, we prove forward theorems which provide inner bounds on the

capacity region under state constraint L.

4.4.1 Nonsymmetrizable Channels

The following theorem is an obvious analog of Theorem 3.15 when the permis-
sible state sequences are constrained to lie in S*(L). We prove the existence of
nonempty, open rectangles of achievable rate pairs, provided that certain nonsym-

metrizability conditions are satisfied.

86



Theorem 4.11 Suppose W is nonsymmetrizable-Y. Fiz any p € D(X) and q €

D(Y). Further, suppose qW is nonsymmetrizable-X. If
0 < R < If»,\z(p,q,W) and 0 < Ry < I§Az|x(P, e, W), (4.14)
then (R, R2) is achievable under state constraint L (cf. Definition 4.2).

Remark. It trivially follows from Remark 3.16 that if p € D(X) and ¢ € D())
are strictly positive, then the mutual information quantities in (4.14) are strictly

positive under the preceding nonsymmetrizability assumptions.

Proof. The proof of this result is easily obtained by repeating the proof of Theo-
rem 3.15, providing that every occurrence of D(S) is changed to DX(S), and every

occurrence of S™ is changed to S™(L). O

Analogous modifications can be made to Lemma 3.20 and to Theorem 3.21.

4.4.2 Symmetrizable Channels

Recall that by Theorem 3.9, Lemma 3.10, and Lemma 3.11, if W is symmetrizable-
X'Y, symmetrizable-Y, or symmetrizable-X', then C(W) has an empty interior. We
now show that if one imposes a state constraint L on such a channel, it is possible
that C(W, L) will have a nonempty interior.

We begin with the following example. Let X = Y = § = {0,1}, and let
Z ={0,1,2,3}. Let W, denote the adder channel given by (1.9). This channel has
a very interesting property. When viewed as a single-user AVC with channel input
symbols (z,y) € X x Y, the capacity of W, is 1 (under the average probability

of error criterion without constraints). This is easy to see; simply observe that
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(z,y) = (0,0) implies 2z = 0 or z = 1 and (z,y) = (1,1) implies z = 2 or
z = 3. Obviously, error-free transmission results if the transmitter sends only the
symbols (0,0) and (1,1). Now, when a two-user channel is viewed as a single-user
channel, the following result is proved in [8]: The multiple-access AVC treated as
a single-user AVC has a positive capacity if and only if it is nonsymmetrizable-
XY. Hence, the channel W, in (1.9) is nonsymmetrizable-X). (This fact is
also easy to verify from the definition of symmetrizability-X' ). Suppose there is a
transition probability U satisfying (3.6). Then a simple calculation shows that U =
0. But U = 0 is not a transition probability.) Next, it is a simple matter to show
that W, is symmetrizable-X and that the only transition probability satisfying
(3.7) is U(s|z) = 6z(s). Similarly, W, is symmetrizable-) and the only transition
probability satisfying (3.8) is U(s|y) = 6,(s). Further, for all p € D(X) and all
g € DY), U(s|z) = b:(s) and U(sly) = 6é,(s) are the only solutions of (3.18)
and (3.19) respectively. This last fact would not have been true if we had taken
z=z+y+s (mod 2) and Z = {0,1}. In that case, if ¢(y) = 1/2,y =0, 1, every
U satisfies (3.18). If ¢(y) # 1/2, the only solutions of (3.18) are the solutions of

(3.7).

Definition 4.12 Let Uy(W) denote the set of all transition probabilities from Y

into § such that (3.8) holds.

Definition 4.13 If U is a transition probability from ) into S, and if ¢ € D(}),

we set (q¢U)(s) £ =, Ulsly)q(y). We let

() £ £(qU).

inf
Uelty(W)
If Uy(W) = @, we take £} () = oo.
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Definition 4.14 For ¢ € D(Y), let Ux (g, W) denote the set of all transition prob-

abilities from X into & which satisfy (3.18).

Observe that for the adder channel, Ux(q, W,) = Ux(W,), and does not depend

on g.

Definition 4.15 If U is a transition probability from X into S, and if p € D(X),

we set (pU)(s) £ 3, U(s|z)p(z). We let

& (p,q) &

inf  £(pU).
vt w) (pU)

If Up(q, W) = ¢, we take £¥ (p, q) = oo.

For the adder channel, £%¢(p, ¢) = £%°(p), and does not depend on q.

The following lemma is the major result of this section. Its importance lies in

the fact that no nonsymmetrizability assumptions are made.

Lemma 4.16 Assume that Ux(q, W) does not depend on ¢q. Fiz any p € D(X)
and g € D(Y). If
L < ¥ (p,q) and L< E‘)E/(q), (4.15)

and if

0 < Ry < Ixaz(p,sW) and 0 < Ry < Iuzi(prg, W),  (4.16)
then (Ry, R2) is achievable under state constraint L (cf. Definition 4.2).
Proof. Choose a > 0 so small that

L < &¥(p,g)—2a and L < £(g) —2a.
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Let (cf. equation (3.23))

(g, W) & FY(q,U)

inf
(p.U): 4(pU) < () -

and (cf. equation (3.25))

o) & inf F¥ ).
&W) (@U): (V)<Y (g)-o ¥ )

We claim €%(q, W) and €$(W) are strictly positive. We treat only £3(q, W). First
note that since Ux(gq, W) does not depend on ¢, neither does £¥ (p, gq). It is then
easy to see that é%(q, W) is a continuous function of ¢q. Suppose £$(q, W) = 0.
Since €% (q, W) is the infimum of a continuous function over the compact set of

pairs (p, U) satisfying £(pU) < €% (p, q) — «, there is some (p*, U*) satisfying
(pU) < LY (Fg)—a and  FY(q,U")=0.

Hence U* € Ugy(q,W), and so we must have £(p*U*) > £¥ (p*,q), which is a
contradiction. Thus, £%(g, W) > 0.

Choose 6 > 0 so small that

0 < 26 < min{€3(q, W), E5(0V)}, (4.17)
0 < R < I%, .(p,q,W)—26,

0 < Ry < I§AZ|X(P,‘1,W)"25-

Choose p € D(X) and § € D()), both strictly positive with d(p,p) and d(q, §)

both so small that

& (p,q) < £¥(p,4)+af2,
&g < &G +al2,
(g, W) < €3(4,W)+6/2,
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I5z(p, W) < I3az(5,4, W) +6/2,
Baax(pa, W) < Inzx(6,8, W)+ 6/2.
(Since we have assumed that Ux(g, W) does not depend on g, it is easy to see that
€% (p, q) is a continuous function of p, and does not depend on ¢.) The remainder

of the proof is almost identical to the proof of Theorem 3.15 except as detailed
below.

The first step is to replace S by S™*(L) and D(S) by DL(S). In particular,
(3.43) becomes

G; & U [KX)NKL(S)]
s'eSn(L)

To show that for each 7, Giy, ..., Ginm are pairwise disjoint, we proceed as in Sec-

tion 3.5, where Pxxrvy'ss' = Pxxa.y,y,.ss- Write
L) = -3l
T k=1
= 23:3(8)1’5(8)
= E[{(S)]
= E[E[¢(S) Y]}
= ;f(S)Psnf'(Sly)Q(y)
= Z(,QPSIYI).
Similarly, £,(s') = £(QPsy). Since s and s’ belong to S*(L),
UQPsy) < L < &§(Q)—a and £QPsyy) < L < Q) - a.
By multiplying 1/2 times the sum of these two inequalities and setting U(s|y) £
1 Psqy(sly) + Psiy+(sly)], we must have
UQU) < &(Q)— e
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This combined with the fact that F}/(U) < & as in (3.80) implies ¢(W) < 6,
contradicting (4.17). |
In all other respects, the proof of this lemma is nearly identical to the proof of

Theorem 3.15. O
Definition 4.17 Let

RE(p, ¢, W) & {(B1,R2):0< Ry < Ifazy(p, g, W), 0 < Ry < Ijpz(p,q, W)},
and

R0, W) £ {(B1, Ba) : 0 < B < Iipz(p,0, W), 0 < Ba < I3 510(p 0, W)}

Observe that if Uy(q, W) = Uy (W), then £¥ (p,q) = £% (p). Hence, we have the

following theorem.

Theorem 4.18 If for every ¢ € D(Y), Ux(q, W) = Ux(W), and if for every
p € D(X), Uy(p, W) = Up(W), then C(W, L) contains the closed convez hull of

U [R%(p, 0, W) URS(p, g, W)].
peD(X): LY (p), 9€D(Y): LY (o)

To conclude our discussion of state constraints, we return to the adder channel
given by (1.9). We take {(s) = s so that £,(s) is the average number of 1’s in the

sequence s. We claim that
C(Wad) = {(R1,R2):0< Ry <3,0< R <3,0< Ry 4+ Ry <2—2log3}).

To establish our claim, we proceed as follows. Let p*(0) = p*(1) = 1 and ¢*(0) =

¢*(1) = 1. Below we will prove that for all p € D(X) and all ¢ € D(Y),

Ri(p,q,Wa) C R¥(p",q", W) (4.18)
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From (4.18) it then follows that

U RE(p,q,W,) = Ri(p*,q*,W,). (4.19)
PED(X),q€D(Y)

Since R2 (p*,¢*, W,) is obviously convex, upon taking the closure of both sides in

(4.19), we have

RI(W,) = {(Bi,R): 0 R < I3 zp(p" 0% Wa),
1
0 S R2 S I)zz/\zw(P*, q*a Wa)’

0 < Ry + Ry < Iypz(p,q", Wa)}. (4.20)

Now, let »*(0) = r*(1) = . Since {(s) = s, it is clear that r* € D2(S). Using

notation introduced below in (4.24)-(4.26), it is an easy calculation to show that

1

2 * * JaN : * *

I}L’AZW(ZD g5 We) = inf  Tyazp(p® x ¢* x rW,)
reD¥(5)

= IXAZ]))(P* X q"‘ X r‘Wa)
1
'2_7
inf  Iyazix(p® x ¢* x rW,)
reD2(S)
= Iyazix(p” X ¢" x r"W,)
1

2’

i

i *
I)27/\Z|X(p »q Wa)

and
1 - . )
]/%y,\z(l’*, q*, W a) 2 inf Ixy/\z(p X q X 'I“I/Va)

reDi(S)
= Ixy,\z(p‘ X q" X 1“‘/Va) .

= 2- %logB ~ 0.81.
Hence, (4.20) simplifies to

Ri(1W,) = {(R1,R):0S Ri<3,0S R <}, 0S Ri+ Ry <2 3log3).



1

By Theorem 4.7, the weak converse under state constraint L, C(W,, 1) C R2(W,).
To prove that ’R%(Wa) - C(Wa,%), we proceed as follows. First, it is easy to

compute

log3 = 0.31. (4.21)

[ Y
| ce

1 1
IX’AZ(p »q ¢Wa) = I)?)/\Z(p »q »Wa) =
The key point is to observe that since

3 3 3 1
2—4—10g3 = ('2'—4—10g3)+§,

we can write

1 1
I}yAz(P*, W) = I3az(0", ¢, W.) + I)%;AZ]X(p" g, Wa) (4.22)
and
1 1 1 "
If%y/\Z(p*,q.)Wa) = I)z?/\z(p-, q*aWa) + I,%AZIy(p*’q )Wa)- (4-23)

From (4.22) and (4.23), it now follows that R¥(W,), that is, the set on the right
in equation (4.20), is equal to the closed convex hull of the union of the open

rectangles (cf. Definition 4.17)

1
’R’,QI' (p*a q*a Wa)

1 1
= {(B1,R2) 1 0 < Ry < I3, 5(p", 4" Wa), 0 < Ry < I35 5(p", 0%, W)}
and

1
R3(p™,¢", Wa)

1 1
= {(1,R2) : 0 < Ry < I3az(P", 0", Wa), 0 < Ry < 1§, 515(p", ¢, Wa)}.

By Theorem 4.18, it follows that 'R,%(Wa) C C(W,, %) This proves our claim,

provided that we can establish (4.18).

94



In order to establish (4.18), we first agree that if p is a probability distribu-
tion on {0,1}, then we also write p as shorthand for the value p(1). With this

convention, a little tedious calculation shows that

Iyaziy(p X g X TW,)

=H(1-p)(1-7),(1—p)r+p(l=r),pr) —h(r),  (4.29)
Iypzix(p x ¢ x TW,)

=H((1 - q)(1 =r),(1 = q)r+q(1 —r),qr) — h(r), (4.25)
Txynz(p x g x TW,)

= H((1-p)(1-¢)1 1),

(1-p)A=gr+(1-pg(l —r)+p(l-g)(1~7),

(1 =plgr +p(1 — ¢)r +pg(l —r),pgr) — h(r),  (4.26)
where H(ty,... tm) & —5:1 tylogty, and h(r) £ H(r,1 — r). We also point out
that (4.24)-(4.26) can be u_sed to simplify

Ixnz(p X ¢ x rWo) = Ixyaz(p x ¢ X rW,) = Iyazix(p X ¢ x TW,)
and

Iyaz(p x ¢ x 1Wo) = Ixyaz(p x ¢ x tWo) — Iyaziy(p X ¢ x rW,)

for use in verifying (4.21). Now, (4.18) will be established if we can show that

2 3 * *
sup  I3azpp(P @, Wa) = Ipazpp(p™,q" Wa), (4.27)
(p.9)€[0,1]x[0,1]
7 i ® *
sup I;,Azlx(p, q, I"/a) = I;/\z’«\:'(p »q )Wa), (428)

(p,9)€l0,1]x[0,1]
and

1 1 ..
sup  Liyaz(Pr 0, We) = Tyypz(p7, 07, Wo). (4.29)
(p,9)€[0,1]x[0,1]
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To establish (4.27)—(4.29), we first note that

sup I%"(p,q, W,) = sup inf I _(pxgqxrW,).
(P:Q)E[O)I]X[c’vl] (P|Q)€[011]x[0v1] 'I‘E'D}(S)

Hence, (4.27)—(4.29) will be established if we can show that ((p*, ¢*),r*) is a saddle
point in each case. Recall that if F' is a real-valued function of two variables, say

u and v, then (u*,v*) is a saddle point for F if for all « and v,
F(u,v*) £ F(u",v") < F(u*,v). (4.30)
If (4.30) holds, it is trivial to show that
sup inf Fu,v) = F(u",v%).

To establish (4.30), one shows that v* is a global minimum of F(u*,v) regarded as
a function of v, and that u* is a global maximum of F(u,v*) regarded as a function
of u. Now, it is not too difficult to establish (4.27) and (4.28) since (4.24) implies
Ixnziy(p % ¢ x 7W,) does not depend on ¢, and (4.25) implies Iyazjx(p x ¢ X rW,)
does not depend on p. To establish (4.29) is extemely tedious, and we only sketch

the derivation:

Let
F(p,g,r) & Ivyaz(p x g x rWo).
Using (4.26), it is straightforward to show that F(p*,¢*,r*) < F(p*,q¢*,r) for all
€ [0,1]. To show that F(p,q,7*) < F(p*,q¢*,7*) for all (p,q) € [0,1] x [0,1], we
proceed as follows. Let
f(p:a) £ F(p,g,7).

Then for (p,q) € (0,1) x (0,1),

af Pq
(oge)qnl_pq (1—4q)

op (r.q)

(4.31)




and

of pq 1—-(1—-p)(1—4q)
— = —(loge [pln +{(1~-p)ln ]
99 l(r.9) P —pg PO (1-p)1~g)
Clearly, -g—;{ = g—qi =0 at (p,q) = (3,3). Also, it is not hard to show that the second

derivative matrix of f is negative definite at (3, ), and hence this point is a local
maximum for f. To show that (3,3) is a global maximum for f on (0,1) x (0,1),

we proceed as follows. Letting

a = In L and b:lnl—(l—p)(l-q),
1-pg (1-p)(1-9)
we see that if
of of
i — and —_— = 4.32
Op {r9) 99 l(p,0) ( )

then

ga+(1—¢)b =0 and r¢+(1-pb = 0.

Rewriting this as
gla—b) = -b  and pla—b) = —b,

we see that if a # b, we must have p = g. We remark that we cannot have a = b if
0 < p,¢q < 1. Thus, the only solutions of (4.32) must be of the form (p,p). Now,

according to (4.31), %I(m) = 0 if and only if
m(p) £ pllap’ —In(l - p*)] + (1~ p)[In(1 ~ (1~ p)*) ~ In(1 - p)’] = 0.

Clearly, m(}) = 0. To show that p = 1 is the only possible solution, it is sufficient
to show that m is a strictly increasing function on (0,1). This can be accomplished
by showing that m’ > 0 on (0,1). In fact, we show that m' has a unique minimum

at p = 1, and that m'(3) > 0. To show that m' has a unique minimum at p = 3,
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we show that the only solution of m”(p) = 0 is p = 1, and that m”(3) > 0.
Showing that m”(p) = 0 has the unique solution p = 1 is the tedious part of
the task. Having done all of the above, it follows that f has a unigue maximum

on (0,1) x (0,1). With only a little more work, it is easy to verify that (%,%)

maximizes f on [0,1] x [0, 1]. O
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CHAPTER 5
CONCLUSIONS

In 1981, Jahn [14] characterized the capacity region C(W) of the arbitrarily varying
multiple-access channel, assuming that C(W) had a nonempty interior. Jahn did
not address the question of how one could decide a priori whether or not C(W)
had a nonempty interior. In Chapter 3 we showed that if W is symmetrizable in the
sense of Definitions 3.6, 3.7, or 3.8, then C(W) has an empty interior. We then gave
sufficient nonsymmetrizability conditions under which C(W) contains various open
rectangles, and thereby possesses a nonempty interior (cf. Theorems 3.15 and 3.17).
However, we still have the following open problem. If W is nonsymmetrizable-X’,
nonsymmetrizable-)), and nonsymmetrizable-X')), does it follow that C(W) has a
nonempty interior? We conjecture that this is the case. One approach to proving
this might be to show that if W is nonsymmetrizable-X, -), and -X’), then there
exists a p € D(X') such that pW is nonsymmetrizable-), or there exists a ¢ € D())
such that ¢V is nonsymmetrizable-X'.

In proving Theorem 3.19, we appealed to Jahn’s forward result, inclusion (3.5),
to show that if W is nonsymmetrizable-} and ¢W is nonsymmetrizable-X, then
R*(W) C C(W). To see why we took this approach, suppose that W is nonsym-
metrizable-X and nonsymmetrizable-)Y, and suppose that for some p € D(X) and
¢ € D(Y), pW is nonsymmetrizable-)y and ¢W is nonsymmetrizable-X. Then

Theorem 3.15 and Theorem 3.17 do not in general combine even to show that

C (W) contains the region

{(R1,R2) : 0 < Ry € I3zpy(p, 0, W), 0 < Ry < Igia(p,q, W),
0 < Ry + Ry < Iyyaz(p, g, W)}

(5.1)
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This can be seen by considering the inequalities

yyaz(p,a, W) = reigfs) Iyyaz(p x ¢ x W)

= inf [IXAz(quXTW)+Iy,\z|x(pX qXT"V)]

reD(S)
S .
> relg(fs) Txnz(px ¢ xrW) + 'elg(fs) Iynzix(p x g x rW)
= Iyaz(P, 6, W)+ Iaz12(P, ¢, W) (5.2)
and
I}yAz(Pa q, W) 2 I;MZ(p) q, W) + I;.’AZD)(p’ q, W) (53)

If either inequality is strict, then the closed convex hull of the union of the open

rectangles
{(RlaRY) :0< Ry < I.}AZD?(paQ»W)a 0<R;< I;JAZ(p) q, ‘/V)}

and

{(RI’RZ) 0< < I}Az(P, q,W)’ 0<R:;< I;MZIX(pv q’I/V)}

will be a proper subset of the region in (5.1). It follows that in general, our
approach cannot give a direct proof that R*(W) C C(W). As a possible topic of
future research, we suggest that a more complicated decoding rule might ove¥come
this difficulty (cf. the Remark at the end of Section 3.3). Of course, in the special
case that for every p € D(X) and every ¢ € D(Y), one can show that each of the five
different infima in (5.3) and (5.2) is achieved by the same 7 € D(S) (# depending on
p and ¢), Theorems 3.15 and 3.17 can be combined with a tim.e-sharing argument
to give a proof that R*(W) C C(W) without appealing to Jahn’s result.

A very important part of our proof of Theorem 3.15 was the decoding rule de-

fined in terms of the decoding sets F; and G;; (cf. (3.39) and (3.43)). As we pointed
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out, this decoding rule is significantly more powerful than the so-called typicality
decoding rule. However, as seen from the definition of the sets F; and G;j, our
decoding rule is quite complicated. Consequently, we discussed the effectiveness
of alternative decoding rules in Section 3.4. Our main result there, Theorem 3.21,
gave conditions under which the universal maximum mutual information decoding
rule could be used in the proof of Theorem 3.15. One direction of further research
would be to analyze the effectiveness of other universal decoding rules such as the
minimum (Hamming) distance decoding rule (for binary inputs and outputs), the
independence decoding rule (for the additive AVC), and the maximum likelihood
decoding rule.

In Chapter 4 we applied state constraints to the AVMAC. Our main results
were an outer bound on C(W, L) in the form of a weak converse (Theorem 4.7),
and an inner bound on C(W, L) given by Theorem 4.18. The key to proving
Theorem 4.18 was the assumption that Uy (g, W) did not depend on g. For the
adder channel, this assumption is satisfied, and in fact we showed that our inner
and outer bounds coincide to determine C(W,, 3). Note that for the adder channel,
the analogs of (5.2) and (5.3) hold with equality (cf. (4.22) and (4.23)). The case
in which Ux (g, W) varies with ¢ remains unsolved.

In studying the additive AVC and the group adder AVC, we computed RE(W).
Can one show that RE(W) C C(W, L)? Observe that since RE(W) is a triangular
region, it is equal to the convex hull of its two legs. Unfortunately, these legs
have no interior points. This makes a straightforward application of Lemma 4.16
impossible. However, we do not know if it is possible to approximate the legs of

RE(W) with open rectangles of the form R%(p, ¢, W) and RY(p, ¢, W).
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