
ABSTRACT

Title of dissertation: INVESTIGATING ENERGETIC POROUS SILICON
AS A SOLID PROPELLANT MICRO-THRUSTER

Wayne Churaman

Dissertation directed by: Professor Sarah Bergbreiter
Department of Mechanical Engineering

Energetic porous silicon has emerged as a novel on-chip energetic material

capable of generating energy that can be harnessed for positioning of millime-

ter and micron-scale mobile platforms such as microrobots and nano-satellites.

Formed by an electrochemical etching process, porous silicon is inert and only

becomes reactive when nano-scale pores are infused with a liquid oxidizer such

as sodium perchlorate. In this work, energetic porous silicon was investigated as

an actuator for micro-propulsion by quantifying thrust and impulse produced

during the exothermic reaction. Performance was measured as a function of

porous silicon morphology, where morphology was characterized according to

the porosity of the material. The baseline devices used in the study were indi-

vidual two millimeter diameter porous silicon devices etched to a lateral target

depth of 25 µm. The pores were etched in a p-type, boron doped silicon wafer,

and porosity was varied by changing the concentration of hydrofluoric acid (HF)

and ethanol (EtOH) in the etchant solution, varying the porous silicon etch depth,

and wafer resistivity. Thrust results were collected while varying the porosity



from 30 % to 75 %. The highest thrust and impulse values measured with a cal-

ibrated Kistler 9215 force sensor were 680 mN and 266 µN · s, respectively from

a 2 mm diameter porous silicon device etched in a 3:1 etch solution to an etch

depth of 30 µm (72 % porosity). As a result of changing porosity, a 7x change in

thrust performance and a 16x change in impulse performance was demonstrated.

Impulse values were also validated using a pendulum experiment in which the

microthruster was unconstrained.

Further studies evaluated the potential of porous silicon for multi-propulsion

events. Limitations and trade-offs associated with propulsion event density were

presented by studying the effects of scaling area on thrust performance, and char-

acterizing simultaneous thrust when arrays of porous silicon micro-thruster de-

vices were ignited simultaneously. In addition, the effects of sympathetic igni-

tion were evaluated to better understand how closely propulsion events could be

physically spaced on a 1 cm2 chip. Finally, to further increase thrust, a process

was demonstrated to fabricate a 3D printed nozzle and integrate it with porous

silicon. The effects of confinement were evaluated by performing a parametric

study, varying nozzle throat diameter, and divergent angle. It was shown that

integration of a nozzle (throat diameter of 0.75 mm and a divergent angle of θ

measuring 10◦) resulted in approximately 4X increase in thrust, and 4X increase

in impulse. This study highlighted enhancements to thrust and impulse based

on an in-depth understanding of the material characteristics of porous silicon as

a solid propellant, and identified trade-offs associated with achieving multiple

propulsion events on a 1 cm2 chip given the ability to do simultaneous ignition



and porous silicon device scaling.
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Chapter 1

Introduction

1.1 Motivation

Achieving effective and efficient locomotion through propulsion provides a use-

ful capability for many systems by enabling position and trajectory correction,

and providing a mechanism for traversing rough terrain and overcoming obsta-

cles. Systems such as nano-satellites and microrobots can propel themselves by

generating thrust, which can generally be achieved by converting stored chemical

energy to mechanical energy (as with an energetic material), or through energy

produced by a motor-spring system [13, 14]. Both mechanisms for generating

thrust rely on the rapid release of stored energy.

At smaller scales (< 1 cm), integration of these thrusters can be complex

given size, weight, and power constraints. Novel thrusters are required to meet

these constraints while still producing useful thrust, ideally with the ability to

generate multiple thrust events. For example, the 30 cm, 2 kg robot described in

[15] can search for victims under the rubble of a collapsed building by propelling

itself over rocks and boulders. The concept of a pneumatic cylinder is not easily

scaled to sizes below 1 cm though. Therefore, the goal of this work is to study

how propulsion can be achieved at smaller size scales while better understanding

the trade-offs between thrust generated and propulsion event density.
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This study builds on previous work that was demonstrated in the author’s

Master’s Thesis entitled, ”Novel Integrated System Architecture for an Autonomous

Jumping Micro-Robot,” [16] where the author demonstrated jumping locomotion

of a fully autonomous hexapod microrobot that was equipped with on-board

power, sensing, and actuation. Propulsion of the hexapod, designed on a 4 x 7

mm2 polymer chassis, was achieved using energetic porous silicon as a micro-

thruster, which produced 246 µJ of kinetic energy and propelled the microrobot

to a vertical jump height of 8 cm using only the energy stored in a small surface

mount 10 µF capacitor to ignite the porous silicon. The porous silicon was in-

fused with an oxidizer (sodium perchlorate) to produce an exothermic reaction

that converted stored chemical to kinetic energy.

While this was a unique accomplishment because of the novel integration

of the porous silicon propellant into the bulk silicon and the level of autonomy

that was achieved [17], little was understood about scaling thrust and impulse as

a function of the material properties of the porous silicon. Previous work did not

address multiple propulsion events and the trade-offs between area of propel-

lant, density of propulsion events on a single chip, or the effects of confinement.

In this dissertation, the author carefully studied the effects of the porous silicon

morphology on thrust and impulse, and the effects of scaling area of energetic

porous silicon on thrust and the trade-offs associated with achieving multiple

propulsion events. The author demonstrated fabrication of three dimensional

printed nozzles and performed a parametric study to understand the effects of

confinement on thrust performance.
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1.2 Generating Thrust

Generating thrust is useful for a number of applications where an object must

be propelled or launched from rest. In this work the author focused on how

thrust could be harnessed for systems like microrobots and nano-satellites to un-

derstand how thrust can be scaled and the trade-offs associated with propulsion

event density [18, 19, 20]. Small jumping robots need to overcome force velocity

limitations of motors when generating thrust, and generally rely on motor-spring

systems for thrust generation. For example, the jumping Grillo robot, measuring

50 mm long, requires approximately 5 W of instantaneous power to be delivered

to the rear legs for a jump. This power is generated from elastic energy in two

separate springs stored by a motor driving 0.3 W [21].

Alternatively, nano-satellites rely on the conversion of chemical to mechani-

cal energy, or potential to kinetic energy to produce thrust. The amount of stored

chemical energy that a CubeSat can carry at launch is limited to 100 W-Hours,

which is eqivalent to 360 kJ [22]. These systems may require valves for mix-

ing fuel and propellant to increase mission life and safety. The amount of thrust

needed by microrobots and nano-satellites is determined by the overall size of

the platform and the number of propulsion events needed during operation. A

closer look is taken to better understand how these two systems generate thrust.
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1.2.1 Microrobots Generating Thrust

The inspiration for microrobots that can propel themselves over obstacles comes

from some of natures best athletes, particularly the flea. The flea can jump to

heights more than 100 times its body length because of a mechanism that acts as

a catapult, which stores elastic energy and quickly releases that energy by torque

reversal triggering [2]. Figure 1.1 shows a scanning electron micrograph (SEM)

of a flea with outstretched hind legs and a drawing of the right hind leg and part

of the thorax, showing the joint and skeletal reinforcements.

Figure 1.1: SEM image of a flea with outstretched hind legs. (B) Drawing of the right
hind leg and part of the thorax [1].

The flea’s ability to jump inspired the miniature robot shown in Figure 1.2,

which is approximately the size of a coin with a 26.5 mm diameter [2]. The robot

uses three shape memory alloy (SMA) springs to function as artificial muscles.

The SMA can also act as the resilin pad, which is the elastomer through which

elastic energy is stored. SMA springs provide high power-mass density, and op-

erate in such a way that the direction of the actuation force can be changed [2].
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The flea inspired robot, whose body is made by layering sheets of copper lami-

nated Kapton (polyimide) and glass fiber, can jump 64 cm when 0.6 A of current

is applied to the SMA wires.

Figure 1.2: Bio-inspired robot uses SMA springs to catapult itself 64 cm into the air [2].

The Mini-Whegs is considered a small robot measuring 10.4 cm in length

with the ability to run and jump using a single propulsion motor drive train and

steering components, which interface with an on-board radio control unit [3].

Because the platform is not at the millimeter scale, it is manually assembled and

uses commercial off-the-shelf (COTS) components for actuation. Assembly of

the system is achieved using an upper and lower shell made of Delrinr that is

held together by a set of nylon screws. The components are positioned vertically

beneath the shell and held in place by short internal walls. Jumping is achieved

through the use of a spring and carefully designed linkages shown in Figure 1.3

to ensure greater stiffness and minimize internal friction. With a controllable

jumping mechanism, it can leap as high as 18 cm.
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Figure 1.3: Side view illustration of the Mini-Whegs 9J showing both the retracted (top)
and released (bottom) spring positions [3].

The 5cm, 7g jumping robot designed in [4] is capable of jumping over ob-

stacles 27 times its own size. Shown in Figure 1.4, the jumping robot consists of

a gear box, which includes a motor, gearwheels, and cam. To release the energy

needed during the acceleration phase of the jump, the robot uses a small pager

motor to actuate the cam and rotate the leg lever arm. This process slowly charges

and stores energy in two torsional springs connected to the main legs, which can

be released on demand. To recharge the mechanism for one jump cycle in 3.5 s,

352 mW of power is consumed at 3.7 V. While this robot requires relatively low

power, implementing a similar mechanical design at reduced size scale poses a

challenge to both assembly and integration.
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Figure 1.4: Jumping robot uses a gearbox, including motor, gear wheels, cam, and pager
motor to jump [4].

Similar to the jumping robot in [4], the locust-inspired jumping robot shown

in Figure 1.5 is approximately the size of an adult dessert locust that can range in

length from 50 to 60 mm. The robot, weighing 23 g, can achieve jump heights of

up to 3.35 m, while covering a distance of 1.37 m by cocking a torsional spring.

This is done by ”wrapping a tendon-like wire around the shaft of a miniature

motor” [14]. The leg structures are designed out of carbon rods, and the motor

is driven by a Li-Po battery. The maximum available torque is 0.08 Nm, when

operating at 4.8 V.
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Figure 1.5: Locust inspired jumping robot uses a motor and torsional spring to jump.
[14]

At smaller and smaller size scales, jumping becomes a more challenging

feat to achieve. The 68 mg at-scale jumping robotic insect in [5], measuring 2

cm in body length, mimics the locomotion found in water striders. It has been

shown that water striders ”rotate the curved tips of their legs inward at a rela-

tively low descending velocity with a force just below that required to break the

water surface (144 mN/meter)” [5]. In order to mimic the water strider, the jump

must generate large momentum and take-off velocity to move from the surface

of the water. The robot shown in Figure 1.6 uses flexure hinge-based composites.

Actuation of the hinges is achieved using a sheet nickel titanium (NiTi) shape

memory alloy actuator. The actuator is 100 µm wide, 80 µm thick, and 1 mg in

weight. Results show that the robot can attain an initial velocity of 1.6 m/s with

a jump height of 142 mm while producing a maximum reaction force of 9.27 mN
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[5].

Figure 1.6: (A) Distortion of the water surface created by the legs. (B) As the robot is
actuated, the legs do not penetrate the surface of the water [5].

Locomotion at the micro-scale has been demonstrated in [6], where the robot con-

sists of two rigid masses that are connected by elastomer springs shown in Figure

1.7 and Figure 1.8. The robot leg is located in the center of the device, while the

U-shape structure is the body. Compression of the structure results in the spring

undergoing a strain, which represents potential energy. Upon release of the struc-

ture, the spring is unloaded and kinetic energy propels the robot upward. The

overall size of the robot is 4 mm x 4 mm. When actuated, the robot can reach

heights of 32 cm, which is 80 times its own height.
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Figure 1.7: Schematic showing the three phases of jumping (1) equilibrium position (2)
applied external force (3) immediately after take-off [6].

Figure 1.8: SEM of jumping mechanism using elastomer springs [6].

Similar to robots, the electrostatic inchworm motor described in [7] is an

example of thrust demonstrated at small scales. The motor can store 4.9 nJ of en-

ergy into a micro-rubber band. The micro-rubber band, or elastomer, represents

the energy storage system, while the electrostatic inchworm motor is the actuator

used to quickly release the energy upon activation. The electrostatic inchworm

motor is comprised of multiple sets of gap closing arrays (GCAs); two drive ar-
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rays that move the shuttle mass forward, and two clutch arrays that connect the

drive actuator to the shuttle [7]. Figure 1.9 shows a robot prototype with legs be-

ing held in place by electrostatic clamps and an elastomer connected to the robot

body frame. For this application the actuator requires a long throw of 5 mm and

a force of 10 mN. When the elastomer is released, the leg propels a 0402-sized

capacitor with a mass of approximately 0.6 mg some 1.5 cm along a glass slide.

For this particular demonstration, there was 1.2 µJ of stored and clamped energy,

which corresponds to a vertical jump of 1.2 cm.

Figure 1.9: Micro-robot with legs held in place by electrostatic clamps and an elastomer
used to store energy for motion [7].

Biological systems will continue to inspire tremendous breakthroughs in

the design and implementation of small scale robots. Table 1.1 summarizes the

size, weight, type of locomotion, and actuation mechanism for several centimeter

scale robots. In several instances, the robots are referred to as micro-robots when

in actuality they are centimeter in scale.
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Table 1.1: Summary of Centimeter Scale Robotics

Robot Size Locomotion Actuation Weight
Mini-Whegs [3] 10.4cm length Run, Jump Motor,Spring 191.4g

Leg-in-Rotor [15] 300mm x 300mm Roll, Jump Pneumatic >2kg
Scout [23] 40mm dia., 115mm length Roll, Jump Servo, Spring 200g

Hopping Robot [4] 10’s of cm Jump Motor, Spring 450kg
Sandia [24] 0.1m x 0.1m x 0.2m Jump Chemical 2.5kg
TAUB [14] 50-60 mm length Jump Motor, Spring 23g

Micro-robot [25] 77 mm cube Jump Solenoid >200g

All of these robots require motors or other external forces to store energy in a

spring or elastomer material, which is then released for a jump. However, motors

require on-board power for operation, which means that the robot must be large

enough to accommodate the battery, or be tethered to an off-board power sup-

ply. Achieving multiple jumps, while possible with some of the robots discussed,

requires power to reset the motor, and replenish energy that was expended or

released from the spring/elastomer.

1.2.2 Nano-satellites Generating Thrust

Thrust can also be generated by converting stored chemical energy into mechan-

ical or kinetic energy. Devices that rely of this method of energy conversion

are typically referred to an micro-thrusters and this approach is commonly used

by nano-satellites to maneuver in space. A number of chemical and electrical

micro-thrusters, such as solid propellant, vaporizing liquid, colloidal, and cold

gas micro-thrusters have been previously demonstrated in [26, 27, 28, 29, 30]. Ta-

ble 1.2 compares several previously reported or deduced performance metrics for
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different types of thrusters.

Table 1.2: Summary of performance metrics for micro-thrusters

Type Peak Thrust (mN) Impulse (µN · s) Specific Impulse (s)
Colloid [29] 0.0012-0.00485 - -
Colloid [31] 0.004 - 200
Colloid [32] 0.0003 - 300

Monopropellant 150 - -
Solid Propellant [33] 0.1-1 170-1130 -
Solid Propellant [8] 50-340 21.1-115 3-15

Solid Propellant [34] 0.1 100 -
Solid Propellant [18] 10-15 - 15
Solid Propellant [35] 35 - 42
Solid Propellant [9] - 140000 -

Solid Propellant (this work) 674 271 333
Vaporizing Liquid [28] 0.15-0.46 - -
Vaporizing Liquid [36] 0.005-0.120 - -
Vaporizing Liquid [37] 0.034-0.068 670-1400 3.4-6.9

Cold Gas [38] 1 100 -
Cold Gas [39] 55 550 65
Cold Gas [39] 46 - 43

Hybrid Cold-Gas [30] 0.1-0.10 - 45
Pulsed Plasma [39] 0.006 - 300
Pulsed Plasma [40] - 57 1500
Pulsed Plasma [41] 1.4 750 1150

Table 1.2 does not represent the entirety of micro-thruster devices that exist in this

field, but rather it is a best effort attempt to summarize some of the performance

metrics that are available in literature. Each type of thruster has unique design

constraints and capabilities.

Chemical thrusters offer the advantage of large peak thrust but are energy

limited given the fixed amount of chemical reactants. Integration of the pro-

pellant with the thruster can also be a unique challenge as size scales approach

smaller and smaller dimensions. The solid propellant thruster demonstrated by
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Zhang et al [8] uses a gunpowder-based solid propellant, with 90 % gunpowder, 6

% ammonium perchlorate, 3 % aluminum, and 1 % Fe2O3 to produce peak thrust

of 340 mN at sea level, while achieving an impulse of 115 µN · s. As highlighted

in [8], the micro-thruster shown in Figure 1.10, has the advantage of not requiring

an elaborate system of pumps, valves, and fuel lines, which aide in the miniatur-

ization of the overall system. Because it uses a solid propellant, the chances of

propellant leakage is minimized. The propellant must be manually loaded into

the chamber and the lid attached to confine the propellant. Ignition is achieved

using a titanium (Ti)/gold (Au) metal resistive heating element with an ignition

delay of 12.94 seconds and 2.07 J of input energy.

Figure 1.10: Schematic of a micro-thruster showing the chip with the embedded propel-
lant and a separate chip with the igniter (B) SEM of a propellant chip [8].

The solid propellant thruster in [9] produces a relatively large impulse of 0.14 N · s

using nanocrystalline porous silicon as a propellant, but also relies on a strong ex-

plosion that destroys the silicon chip and limits its use. The porous silicon is fab-
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ricated using an electrochemical anodic etch with hydrofluoric acid and ethanol

electrolyte. An external power supply is used to drive the formation of porous

silicon. After etching, the porous silicon is oxidized by immersing the device in

an excessive amount of sodium perchlorate for a variety of times ranging from a

few minutes up to several hours. Once activated, ignition is achieved using a 100

nm thick aluminum film, which is deposited onto the unpolished side of a wafer.

Two copper wires are attached to the aluminum film using a conductive paint.

The thruster is designed by attaching the porous silicon sample to plastic plates

using silver paste and then attaching the nozzle tube onto the plate with blue

tack. Figure 1.11 shows both a schematic and actual picture of the system. The

inner diameter of the tube is 3 cm, with a wall thickness of 2 mm, and a length

of 2.5 cm. The diameters of the nozzles range from 0.4 to 3 cm, with an overall

system mass ranging from 32.5 to 30.2 g respectively.
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Figure 1.11: Thruster designed using explosive porous silicon [9].

The micro-thruster in [42] is a planar 2-D liquid mono-propellant micro-

thruster fabricated using co-fired ceramic tapes with ignition achieved by elec-

trolysis. The volume of the combustion chamber measures 820 nL. Triggered

through the decomposition of hydroxlyammonium nitrate, thrust output of 150

mN at 45 V has been measured. The bi-propellant micro rocket in [43] is mi-

cromachined from silicon and measures 20 x15 x 3 mm in size. The engine can

produce approximately 15 N of thrust with a specific impulse of 300 seconds.

Electrical thrusters offer high specific impulses without the complexity of

propellant integration at smaller scales, but require energy to be delivered from

a separate source (versus the propellant itself). The colloid thruster in [31] can

produce a specific impulse in the hundreds of seconds, which is desirable for

nano-spacecraft applications. Colloid-based micro-thrusters generally require
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large voltages to provide electrostatic acceleration of charged liquid droplets for

propulsion. The pulsed plasma microthruster in [40] generates the largest spe-

cific impulse of the devices reviewed, reaching values of 1500 s. These devices

require the formation of a plasma by generating an electrical arc passing through

a fuel.

Several of the micro-thrusters discussed above rely on stored chemical en-

ergy, either as a liquid or solid propellant, which is converted to mechanical en-

ergy through mixing with an oxidizer. The ability to generate thrust is deter-

mined by how effectively fuel and oxidizer can be mixed to produce an exother-

mic reaction, which generates gas and possible pressure wave. Integrating these

chemically energetic systems on a nano-satellite can increase the complexity of

the overall system design. Like the motor-spring mechanism used to generate

thrust on microrobots, the chemical energy associated with micro-thrusters is de-

pleted after each thrust event, and multiple sources of stored chemical energy

must be available to increase thrust event density. In this work, the author stud-

ied energetic porous silicon as a solid propellant micro-thruster and the effects of

scaling thrust and the limitations of thrust event density.

1.2.3 Summary of Thrust Generation

In an attempt to compare the performance of several jumping robots to that of

chemical and electrical micro-thrusters discussed above, Table 1.3 shows calcu-

lated impulse generated by several robots. The impulse (J) calculated is a function
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of the robot mass and the change in velocity generated during a jump as shown

in Equation 1.1. The change in velocity is calculated in Equation 1.2 where ac-

celeration is due to gravity. Given the jump height or distance (d), time can be

solved in Equation 1.3. The achievable impulse varies with the mass of the robot.

The impulse generated by the larger robots in [3, 23] is comparable to that gener-

ated by the solid propellant micro-thruster discussed in [9], which is on the order

of 100’s of mN · s. The microrobot with the elastomer actuator represents the

smallest design with an impulse of 20 µN · s, which is comparable to the impulse

generated by the solid propellant in [8] and the plasma thruster in [40]. While

similar performance metrics can be achieved whether designing a micro-thruster

for jumping to mimic biology or to maneuver a satellite, the goal remains to de-

velop micro-thrusters to enable the miniaturization of these platforms. They have

their own set of unique challenges in terms of integration and power consump-

tion. Design trade-offs must be made to increase functionality and in many cases

achieve autonomy.

~J = m · ∆~V (1.1)

∆~V = ~g · t (1.2)

d =
1
2

gt2 (1.3)
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Table 1.3: Summary of Jump Performance of Small-Scale Robots

Jump
Robot Actuator Weight (kg) Height (m) Impulse

Mini-Whegs [3] Metal helical spring 0.191 0.18 358 mN · s
Scout[23] Metal bending spring 0.2 0.3 485 mN · s

Miniature Jumper [44] Torsional spring 0.007 1.35 36 mN · s
Glumper [24] Torsional spring 0.7 1.17 3.35 mN · s

Jollbo [24] Bending spring 0.465 0.184 51 mN · s
Jumping robot [6] Elastomer 8e-6 0.32 20 µN · s

1.3 Porous Silicon

Silicon has and continues to be the most widely used substrate for the fabrica-

tion of integrated circuits and micro-electro-mechanical systems (MEMS). When

converted into a porous film through an electrochemical etching process, the ma-

terial has tremendous optical and thermal properties that have been used in the

development of devices such as chemical sensors and optical waveguides [45, 46].

Porous silicon is a sponge-like structure that has a large specific surface area (901

m2/g) [47]. Some of the earliest work on porous silicon was produced more than

50 years ago through research conducted at Bell Labs where scientists performed

electrolytic etching of n-type silicon, which was aided by illumination of the sub-

strate to provide holes that drove etching [48].

Porous silicon as an energetic material was not discovered until 1992, when

it was reported that potassium nitrate or nitric acid could react with porous

silicon to produce an explosive-like reaction. The phenomenon occurred as re-
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searchers were investigating the chemiluminsecence of anodized silicon when a

concentrated drop of nitric acid came into contact with freshly etched porous sil-

icon [49]. Later in 2001, similar reactions were observed when porous silicon was

placed in liquid oxygen. Finally in 2002 researchers reported that after scratch-

ing a porous silicon chip that was impregnated with gadolinium nitrate, the chip

blew up [50]. These discoveries led to increased efforts to understand and exploit

the energetic behavior of porous silicon. The reaction is made possible because

of the high surface area silicon that serves as a fuel which is then infused with

oxygen through the application of an oxidizer that penetrates into the pores. The

porous silicon plus oxidizer system can be initiated with either heat, friction, or

focused light [51].

Propellants and pyrotechnics, like energetic porous silicon, are typically

composed of fuel and oxidizer, and energy density can be maximized by adjust-

ing the fuel to oxidizer ratio. Reaction rates are lower than explosives, because

they are dominated by kinetic diffusion [52]. Diffusion of oxidizer in the pores

is influenced by pore shape and interconnectivity [53], and reaction rates are de-

pendent on diffusive transport into the pores. Embedding oxidizer into the nano-

pores to increase oxidizer pore filling remains a challenge due to inadequate in-

filtration into the porous network. Due to the randomness of the porous silicon,

very few methods can be used to analyze and characterize diffusion. Some of

these methods include gas sorption, cryo-porometries, and imaging with micro-

computed tomography. But even with these techniques, useful statistical data is

difficult to acquire from pores below 100 nm in size [53].
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Because of the challenges associated with modeling and characterizing ki-

netic diffusion due to the size of the pores, this study does not address reaction

transport despite its importance to understanding thrust from porous silicon. A

thorough understanding of these kinetic effects requires a model of the pore net-

works that takes into account heat and mass transfer, as well as surface adsorp-

tion kinetics, and this continues to be a challenge in the field [54].

Average combustion rates up to 3050 m/s in porous silicon with a specific

surface area of 840 m2/g and porosity ranging from 65 % to 67 % were demon-

strated in [10]. The combustion rate was measured using microfabricated diag-

nostic bridgewires in conjunction with high speed video captured at up to 930,000

frames per second; the microfabricated bridgewires were patterned on the porous

silicon such that the reaction propagation front would physically break the bridgewires

showing electrical discontinuity on an oscilloscope. The etch depth varied from

65 µm to 95 µm, and pore size varied from 2.4 to 2.9 nm. The combustion rates

appear to depend on surface area and pore size, which affects kinetic diffusion

during the exothermic event.

Much lower reaction rates of 94 m/s (with a standard deviation of 7 m/s)

were demonstrated in [55], with porous silicon etched with 10 % HF concentra-

tion, porosity of 72.2 %, and pore size of 6.4 nm (1.7 nm standard deviation).

This reaction rate was measured using fiber-optic velocity probes and highspeed

video. The reaction rates are an order of magnitude larger than those measured

in [10] even for porous silicon having similar porosity. The significant difference

in reaction rates measured might be due to the high surface area achieved in [10].
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The larger pore sizes in [55] should indicate smaller surface area, which is a rel-

ative measure of much much fuel is near the oxidizer. Therefore lower reaction

rates should result from decreased surface area.

Fabrication of porous silicon is compatible with micro-fabrication techniques

and can be incorporated with MEMS to provide an energy source on-chip. The

energy output can be tuned by changing the morphology for enhanced perfor-

mance in terms of achievable thrust and impulse. As a result, energetic porous

silicon is a viable material for achieving propulsion, which has been successfully

demonstrated in work published by the author in the Journal of Microelectrome-

chanical Systems [56] showing the propulsion of a 318 mg hexapod robot to a

vertical height of 8 cm. This was demonstrated without looking at the effects

of varying the morphology of the porous silicon. It has been shown that the

exothermic reaction generated by oxidized porous silicon is highly dependent on

the morphology of the sponge-like material, which includes parameters such as

surface area and porosity. It was shown in [57] that the specific surface area of

porous silicon can vary between 191 and 901 m2g-1, and porosity can range be-

tween 49 and 80 %. The rate at which the porous silicon burns upon ignition

spans some three orders of magnitude from 5.2 to 1950 ms-1 according to [57].

Energy densities up to 22.5 kJg-1 have been demonstrated for porous silicon with

75 % porosity [57]. In addition to the material being highly tunable, it can be

integrated alongside a MEMS device using conventional micro-machining tech-

niques as demonstrated in [58] where the porous silicon was integrated with a

MEMS acceleration switch.
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1.4 Research Goals

In this work, energetic porous silicon was explored as a micro-thruster for propul-

sion by first characterizing the effect of porous silicon morphology on the force

and impulse generated. The morphological properties studied include porous sil-

icon porosity, which was varied by changing the lateral porous silicon etch depth,

the concentration of the electrolyte etch solution, and the resistivity of the silicon

wafer. The author performed force measurements to quantify thrust and impulse

based on these properties.

The author also studied the effects of scaling the area of energetic porous

silicon and critical device spacing to prevent sympathetic ignition of adjacent

porous silicon devices to understand both thrust performance, along with lim-

itations and trade-offs of propulsion event density and available thrust events on

a 1 cm2 chip. The effects of area scaling and simultaneous ignition on thrust were

also studied to understand how thrust performance could be enhanced by ignit-

ing multiple thrust events on a single chip.

The effects of confining the energetic porous silicon reaction with a nozzle

was studied and the author presented two different approaches to confine the gas

produced by the exothermic reaction for the purpose of showing enhancement to

thrust performance. The first approach involved confining the gas using a sili-

con capping chip that was designed with an chamber and orifice. The two chips

were bonded using a low temperature solder dipping process, which presented a

number of integration challenges associated with chip bonding and attachment.
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As a result, the author demonstrated an alternative fabrication approach

in which the nozzle was three dimensional printed using a a Formlabs Form 2

printer. The author performed a parametric study to analyze thrust performance

as a function of varying the physical properties of the chamber and nozzle. The

author varied the throat diameter, and the divergent angle theta. A comparison

of thrust and impulse performance was done to quantify the effects of integrating

the nozzle.
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Chapter 2

Repeatability of Fabrication and Characterization Methods

2.1 Introduction

To evaluate energetic porous silicon as a micro-thruster, it was important to en-

sure the repeatability of the etch process by maintaining control over the poros-

ity and pore structure across the porous silicon devices that were fabricated and

tested in this study. Additionally the repeatability and accuracy of the measure-

ment system used to capture the force data was studied prior to collecting sta-

tistically significant data about porous silicon performance as a micro-thruster.

Special attention was given to the method and configuration used to mount the

porous silicon chip to the force sensor.

2.2 Fabrication

Porous silicon was fabricated using a galvanic etch process discussed in [10] and

illustrated in Figure 2.1, which does not require a customized etch cell or an exter-

nal power supply. Figure 2.2 shows the cross-sectional fabrication process flow

for an individual porous silicon device. Prior to etching, a p-type, boron doped

wafer was coated on both sides with a low pressure, chemical vapor deposited

(LPCVD) nitride. Wafers with the nitride coating were purchased from Rogue
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Valley Microdevices, Inc. The nitride served as a hydrofluoric acid (HF) resistant

etch mask. The nitride was first removed from the backside of the wafer using a

Unaxis VLR 700 etch tool, and then a 170 nm thick platinum (Pt) layer was de-

posited onto the backside of the wafer. The resistivity of the wafer was measured

prior to the Pt deposition using a 4 Dimensions Model 280 4-point Probe/Sheet

Resistivity Measurement System. The Pt was important to the galvanic etch pro-

cess, because etching relies on ionic charges (reduction at the Pt cathode, and

oxidation at the Si anode) to drive formation of the porous silicon.

Figure 2.1: Illustration of the galvanic porous silicon etch process [10]
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Figure 2.2: Cross-sectional process flow illustrating the fabrication of porous silicon and
oxidizer activation.

On the side of the wafer where nitride remained, an array of 2 mm diame-

ter, circular devices was lithographically patterned using a Karl Suss MA6/MB6,

and the nitride was etched using a reactive ion etch (Unaxis VLR 700) to open

windows of exposed silicon. After patterning the array of devices, an electronic

initiator was lithographically patterned, and a metal stack consisting of 100 Å Cr,

1000 Å Pt, and 3800 Å Au was evaporated (Evatec BAK 641 E-beam Evaporator)

and patterned by lift-off. The metal stack was chosen to ensure low electrical

resistance, and therefore low ignition voltage.
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The electronic initiator or bridgewire, shown in Figure 2.3, was 9 mm in

length by 200 µm in width, with a tapered section in the middle that measured

100 µm in length by 25 µm in width. Ignition via Joule heating required approx-

imately 20 µJ of energy. The initiator was connected to 2 mm by 2 mm square

bond pads (not shown), allowing wire leads to be soldered, and porous silicon to

be ignited once activated with sodium perchlorate.

Figure 2.3: (A) Illustration of an array of 2 mm diameter porous silicon devices with
bridgewires. (B) A scanning electron micrograph (SEM) of the cross section of a porous
silicon device showing the metal bridgewire initiator and porous silicon undercutting the
bridgewire as a result of the etch.

Before etching the porous silicon, the wafer was coated with a layer of photoresist

and diced into smaller pieces, called coupons, using a Disco DAD 3240 dicing

saw. Each coupon consisted of 4 individual 2 mm diameter devices. Prior to the

etch, a wafer pre-clean was performed with acetone, methanol, and deionized

water to remove photoresist. Individual coupons were etched by submerging

the coupon in an etch bath consisting of a mixture of HF, ethanol (EtOH), and

hydrogen peroxide (H2O2). The HF and EtOH volumetric ratio was 3:1, and the

amount of H2O2 was 2.4 % of the total HF and ethanol volume. The etch ratio

was later varied to look at the effects of changing the etch ratio on the structure
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of porous silicon. After etching, the porous silicon was rinsed with methanol to

remove any residual HF. Wire leads were soldered to the 2 mm square bond pads

to enable ignition via Joule heating. Figure 2.4 shows a coupon consisting of 4

individual 2 mm diameter devices.

Figure 2.4: (Left) Single diced coupon consisting of four individual 2 mm diameter
porous silicon devices (dark circular regions). (Right) A scanning electron micrograph
(SEM) of an individual device showing a close-up of the center of the bridgewire.

All porous silicon devices were made energetic by infusing the pores with

3.2 moles/L of sodium perchlorate dissolved in methanol. The dispensed vol-

ume was controlled using a micro-pipette, and oxidizer was allowed to dry for

30 minutes before devices were ignited. Based on energy-dispersive x-ray spec-

troscopy (EDX), it is believed that the oxidizer penetrates to the bottom of the

porous silicon layer [57]. However, a significant amount typically remains on

the surface, which does not likely participate in the reaction, but which does

complicate a straightforward determination of oxidizer mass. Based on findings

reported in [57], the amount of residual sodium perchlorate left in the pores af-

ter methanol evaporation corresponds to careful gravimetric measurements of
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sodium perchlorate in the pores, suggesting that a straightforward calculation in-

volving pore volume and oxidizer concentration in methanol may be used to pre-

dict fuel-oxidizer equivalence ratios in the resulting composite. Based on porosi-

ties reported in this work, the fuel-oxidizer equivalence ratios ranged from 5 to

35, with the lowest ratio corresponding to the highest initial porous silicon poros-

ity.

2.3 Etch Repeatability

Initial attempts to evaluate the thrust performance of porous silicon devices fab-

ricated by the galvanic etch resulted in variability in the measured force output as

a function of time. Devices were etched using silicon wafers within the range of

5 to 8 Ω · cm. Etch depths were calibrated based on the wafer resistivity and etch

time. Test coupons were first etched, and the porous silicon was then dissolved

in a solution of sodium hydroxide (2.5 g) and water (50 mL) to verify etch depth

with a stylus profilometer.

While etch depth was nominally constant, the author attempted to further

investigate the source of variability in thrust performance by first analyzing the

structure of the porous silicon produced by the etch process. To do this, the au-

thor performed a series of volumetric analysis measurements on the porous sili-

con based on Brunauer-Emmett-Teller method [59] using a Micromeritics TriStar

II Surface Area and Porosity tool. The tool measures physical adsorption of gas

molecules inside particles. To ensure the accuracy of the analysis technique, there
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must be approximately 2-3 mg of porous silicon available to analyze in the sam-

ple tube. However, each coupon had a much lower mass of porous silicon. To in-

crease mass, three larger silicon coupons consisting of 25 individual 2 mm porous

silicon devices etched to a nominal depth of 30 µm were used instead. Each 2 mm

diameter porous silicon device was approximately 100 µg in mass. The coupons

were etched separately in a hydrofluoric acid resistant beaker, and were posi-

tioned at various locations inside the beaker during the etch process. The etch

solution was reused to etch all three coupons, and the etchant was stirred at 900

RPM. All coupons tested were diced from the same larger 4 inch silicon wafer

to ensure constant resistivity. A 3:1 hydrofluoric acid to ethanol etch was per-

formed for four minutes on each of the coupons. Upon completion of the etch,

each coupon was cleaved into smaller pieces and placed inside sample tubes to

undergo a 1 hour de-gas process to dry out residual moisture in the pores. The

sample tubes were then loaded into the TriStar II and analysis performed on the

pores. Table 2.1 shows the results of the volumetric analysis, which indicate that

while the etch depth was relatively constant, there was variability in the surface

area, pore volume, and porosity.

Table 2.1: Volumetric analysis measurements performed on three separate silicon
coupons, each consisting of 25 individual 2 mm porous silicon devices. Each coupon
was placed at a different location in the etch beaker during the etch.

Conc. (HF:EtOH) Depth (µm) Surf. Area (m2/g) Volume (cm3) Porosity (%)
3:1 23-30 721.7 0.6768 61.2
3:1 21-23 848.2 0.8079 65.3
3:1 21-24 591.9 0.6384 59.8
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Another set of three separate etches were performed, using silicon of identi-

cal resistivity. The etchant again consisted of 150 mL HF, 50 mL EtOH, and 4.8 mL

H2O2. New etch solution was mixed up before each etch, and the etch time was

held constant at 4 minutes. The silicon coupons were held in place using a clamp,

and a plastic holder that was notched out to accommodate the clamp. The fixture

and clamp, shown in Figure 2.5, were designed to keep the coupon submerged in

the same relative location from one etch to the next. The third etch was slightly

mis-positioned in the etch beaker. Table 2.2 shows a summary of the porous sili-

con structural properties when the position of the coupon was controlled inside

the etch bath and the etch bath was replaced before each etch. It was believed

that the hydrogen peroxide was depleted during the etch therefore needing to be

replaced.

Figure 2.5: Three separate etches performed in HF resistant beakers, where the silicon
coupon was suspended at approximately the same location in the beaker using a blue
clip, held in place with a notched plastic fixture
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Table 2.2: Volumetric analysis measurements performed on three separate silicon
coupons, each consisting of 25 individual 2 mm porous silicon devices. Each coupon
was placed at the same relative location in the beaker.

Conc. Depth (µm) Surf. Area (m2/g) Volume (cm3) Porosity (%)
3:1 31-34 968.6 1.2 74.0
3:1 31-34 971.1 1.2 73.0
3:1 31-34 947.4 1.2 73.0

The author concluded that in order to maintain consistent pore characteristics

between etches, the location of the silicon coupon in the etch bath needed to be

held constant and new etchant was needed for each etch. After conducting more

than 12 experiments, each taking approximately 45 minutes, including etching,

mounting to the force sensor, and oxidizing, the author noticed that some of the

porous silicon devices were not completely burning during the reaction as shown

in Figure 2.6. Three separate coupons were etched identically using a 3:1 mixture

of hydrofluoric acid to ethanol, and 4.8 mL of hydrogen peroxide. The location

of the coupons was controlled and the etch time was held constant at 4 minutes.

Again the partial burning was observed. It was unclear whether this was associ-

ated with oxidizer filling, or local variations in the porous silicon structure that

were preventing oxidizer from effectively penetrating the pores. Force measure-

ments were performed and reported in Table 2.3
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Figure 2.6: Region of un-reacted porous silicon. White crystalline structures scattered
across the chip are residual oxidizer crystals.

Table 2.3: Summary of force and impulse measurements taken from three partially
burned porous silicon devices.

Force Ouput (mN) Reaction Duration (µs) Impulse (µN · s)
400 780 300
120 400 48
180 650 117

The source of the partial burn was thought to be attributed to variations in

the electrical properties of the Pt electrode sputter deposited on the backside of

the silicon. It was shown in [10] that annealing the Pt after deposition produced a

platinum silicide that enhances electrical connectivity to the substrate resulting in

more stable porous silicon layers when produced by the galvanic etch. Therefore

the author performed force measurements on a set of five porous silicon devices

where the Pt electrode was not annealed, and then tested a set of four porous

silicon devices that had an annealed Pt electrode. All devices were derived from

a p-type, boron doped silicon wafer with a resistivity of 6 - 9 Ω · cm. The non-

annealed devices were etched in a 3:1 solution of HF to EtOH with 1.2 % H2O2

by volume. The concentration of H2O2 was reduced to slow down the etch and
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stabilize the porous silicon. The etch depth varied from 28 - 33 µm across four

devices on a silicon coupon. The measured porosity was 71 %. Figure 2.7 shows

force output as a function of time varied from approximately 100 mN to 700 mN

over five different tests.

Figure 2.7: Force vs time generated for five un-annealed porous silicon devices.

The four annealed devices were etched for 2 min and 22 seconds to achieve

a target depth of 30 µm. The actual measured depth was 26.5 to 27.8 µm. The Pt

electrode was annealed for 2 minutes at 350◦C in nitrogen. The decision to an-

neal at 350◦C for 2 minutes was based on the process discussed in [10]. Figure 2.8

shows the force output as a function of time for porous silicon devices fabricated

with annealed Pt electrodes. The peak force varied from 488 mN to 619 mN. The

porosity of porous silicon was 76.5 %. The increased repeatability in the force

output was further verification that all porous silicon devices fabricated for this

study needed to have an anneal step performed on the Pt electrode prior to etch-
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ing. Because the anneal was performed at 350◦C, the anneal was done before any

lithography to avoid inadvertently hard baking photoresist to the silicon wafer.

Figure 2.8: Force vs time generated for four annealed porous silicon devices.

2.4 Force Measurement Repeatability

To evaluate dynamic thrust generated by the energetic porous silicon, the author

used an experimental set-up shown in Figure 2.9. The setup consisted of a Kistler

9215A force sensor, which is a high sensitivity piezoelectric sensor manufactured

with an external thread and a sealed ceramic-insulated connect plug [60]. The

sensor range is 1 mN to 200 N with a natural frequency of 50 kHz. The sensor

was threaded into a block of aluminum to hold it in place and to minimize vibra-

tions. The top of the sensor had a threaded hole where a mounting cap, known

as an M2 tap, was threaded. Figure 2.10 shows the Kislter 9215A sensor and the

smaller M2 tap that threads into the top of the sensor. Deflections imparted onto
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the M2 tap were measured by a Kistler Type 5010 Dual Mode Amplifier that con-

verted the charge signal generated by the Kistler 9215A into a voltage signal that

was measured on an oscilloscope.

The voltage output was converted to force based on the charge amplifier

measurement scale setting of 0.1 N/V. The sensor was calibrated by placing three

different known calibration masses (1.5 g, 6.5 g, and 40 g) onto the sensor, which

produced forces measuring 15 mN, 64 mN, and 397 mN respectively. These were

representative of the target values measured in this study. The measured force

was within 1 % of the reference force for each case. Although these were static

measurements, they provided confirmation that the sensor and charge amplifier

were calibrated within manufacturer specifications. Output waveforms were fil-

tered using a second-order Savitzky-Golay filter with a frame size of 301. The

total sample size of each force vs. time plot was approximately 5000 with a sam-

ple rate of 2.5 Mega samples per second.
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Figure 2.9: Experimental set-up used to evaluate force generated by energetic porous
silicon. The Kistler 5010 converts charge signal from the piezo in the Kistler 9215A force
sensor into voltage waveform.

Figure 2.10: Image of the Kistler 9215A sensor and the M2 tap used to interface with the
sensor. The porous silicon device was mounted on the M2 tap.

Individual 2 mm diameter porous silicon devices were cleaved from a coupon

and attached to a M2 tap shown in Figure 2.11 using a piece of wax because of

the destructive nature of the test. The piece of wax, approximately 1 mm3, was

melted with a soldering iron tip before the porous silicon chip was attached. To

ensure that the thrust axis was aligned with the sensing axis, the author visibly
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confirmed that the porous silicon device was level and mounted perpendicular

to the sensor. For each test, the porous silicon devices were fabricated and in-

fused with oxidizer using the same procedure and the samples were mounted as

similarly as possible on the sensor head. The oxidizer was added and allowed to

dry in a dry room, with relative humidity below 1 % because of the hydroscopic

nature of sodium perchlorate. Force sensor measurements were carried out in the

same dry room.

Figure 2.11: Experimental set-up (top: schematic, bottom: photo of actual test setup) used
to measure force produced by porous silicon device. Devices are not drawn to scale.

Initial attempts were made to modify the M2 tap that came with the Kistler

9215A sensor because the author was concerned about not having sufficient sur-

face area on the M2 tap to properly attach the porous silicon chip such that it was

level with the sensor. The first modification involved epoxying the tap to a larger
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aluminum block shown in the Figure 2.12, and then screwing the tap into the

Kistler 9215A sensor. A set of four porous silicon devices were etched to evalu-

ate the mounting setup. Porous silicon was etched for 4 minutes in a 3:1 mixture

of HF to EtOH, and 0.96 mL of hydrogen peroxide. Two drops of 3 µL of 3.2 M

sodium perchlorate were dispensed onto each porous silicon device, and allowed

to dry for 30 minutes. The resulting etch depth was 27 to 28 µm measured across

four devices. Figure 2.13 shows the force measured using the modified M2 tap

with the large mounting block. There was significant bouncing of the sensor as

the voltage signal appeared to fall below zero before trying to recover. The aver-

age peak force was 461.3 mN with a standard deviation of 243.3 mN. This may

have been the result of having an additional mass attached to the M2 tap. The

mass of the modified M2 tap was 3.0 g, as opposed to the mass of the M2 cap by

itself, which was 0.3 g.

Figure 2.12: Aluminum block was attached to the M2 tap to provide more surface area
for mounting the porous silicon device.
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Figure 2.13: Force output generated when porous silicon devices were attached using the
modified M2 tap with aluminum block

The author repeated the experiments using the M2 tap provided by Kistler

to mount the porous silicon devices. The author flattened the tip of the M2 tap

using a Dremel tool to create a relatively flat surface to attach the porous silicon

chip. Careful attention was given to make sure that the porous silicon device

was perpendicular with respect to the sensor. Porous silicon was etched using

the same recipe, with comparable etch depths ranging from 22 to 23 µm. Again,

6 µL of 3.2 M sodium perchlorate was applied and allowed to dry for 30 minutes.

Figure 2.14 shows the force generated when porous silicon devices were mounted

onto this M2 tap. The average peak force was 82.5 mN with a standard deviation

of 2.1 mN. Therefore all subsequent experiments were performed with the M2

tap with the slightly flattened tip.
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Figure 2.14: Force output generated when porous silicon devices were attached using the
original M2 tap

2.5 Oxidizer Loading

A Cole-Parmer EX Plus micro-pipette was used to manually dispense sodium

perchlorate oxidizer onto the porous silicon. Early experiments were done by ap-

plying approximately 6 µL of oxidizer, resulting in residual oxidizer covering the

surface of the porous silicon and some of the surrounding silicon nitride mask.

It was unclear whether the excess oxidizer participated in the reaction as ejected

hot porous silicon particles burned in air. To address this concern, the porous

silicon devices were made energetic by oxidizing one device with 1 µL of 3.2 M

dissolved in methanol, and another device with 6 µL of the same oxidizer. The

Cole Parmer EX Plus micro-pipette was used to apply the oxidizer and the oxi-

dizer was allowed to dry for 30 minutes. Still images of high speed video shown
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in Figure 2.15, captured with a Photron FastCAM SA5, show qualitative simi-

larities between two porous silicon devices that were etched to a nominal 40 µm

depth. The 6 µL of oxidizer was applied as two separate drops of 3 µL of NaClO4.

It was determined that these devices were structurally sound, and did not have

subsurface cracks prior to application of the oxidizer.

Figure 2.15: (top) High speed video frame capture showing flame generated by a single
2 mm diameter porous silicon device oxidized with 1 µL of sodium perchlorate (bottom)
Similar device oxidized with 6 µL of sodium perchlorate.

The force versus time curves were measured for both devices, both generating an

approximate peak force of 800 mN. In both experiments, the porous silicon chip

cracked upon ignition, and produced an observably louder audible signature in

comparison to devices etched below 20 µm. The double peak formation observed
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on the sensor output had been previously seen when the output of the porous

silicon was approximately 1 N or greater, and was the result of exciting multiple

resonant frequencies in the piezoelectric sensor [61]. These results indicated that

the reaction output appeared to be independent of the oxidizer loading. The 1 µL

of oxidizer used in the above experiments was localized to the porous silicon,

whereas the 6 µL covered both the porous silicon region and the silicon chip.

This led the author to believe that the source of non-uniformity even across a

single coupon was due to the electrical properties of the platinum electrode used

to drive the galvanic etch process as previously discussed.

Figure 2.16: Force versus time curves comparing oxidizer loading.

Table 2.4: Summary of peak force, and impulse based on different oxidizer loading
amounts.

Oxidizer Amount Peak Force (mN) Impulse (µN · s)
1 µL 799.6 952.6
6 µL 782.7 1100.0
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2.6 Conclusion

Prior to studying energetic porous silicon as a solid propellant micro-thruster, the

author attempted to address potential issues that could affect repeatability. Al-

though every possible attempt was made to control the position of the wafer in

the etch bath, and nitrogen annealing was performed on all devices fabricated for

this study, there was still evidence of lack of repeatability in the force and impulse

measurements reported. Some of these issues were believed to be associated with

the quality of the Pt backside electrode. Early studies that were published in [62]

demonstrated very good repeatabilty in the measured force output across simi-

larly fabricated porous silicon devices. The Pt electrodes used for these wafers

were deposited at the U.S. Army Research Lab using a Varian etch tool. After the

tool was decomissioned, the Pt deposition was outsourced to an external ven-

dor. It was unclear whether this contributed to the reduced quality of the etched

porous silicon.

Although attempts were made to measure the wafer resistivity after the Pt

deposition, limitations to the 4 point probe measurement tool prevented the au-

thor from determining variation in electrical contact across the entire wafer. Fur-

ther investigation can be performed, including Ohmic contact measurements of

the Pt after deposition. While careful study of these variabilities should be inves-

tigated in future work, the results gathered in this work still allowed the author

to observe and measure clear trends in the performance of thrust and impulse as

a result of varying a number of porous silicon material characteristics.
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Chapter 3

Effect of Morphology on Propulsion Performance

3.1 Introduction

In this chapter, the author performed an in-depth characterization of the effects of

porous silicon morphology on the material’s performance as a propellant, and the

material in this chapter was previously published in Journal of Micromechanics

and Microengineering [62]. Thrust and impulse are important metrics for propul-

sion, but previous studies on reaction propagation [57, 63] have not characterized

energetic porous silicon in terms of its ability to generate thrust and impulse. This

study focuses on small active areas (3 mm2) with slower burn rates in compar-

ison to previous work that resulted in fractured chips [9]. This work builds on

research published by the author in [61] that showed initial performance char-

acterization for a single porous silicon micro-thruster fabricated with fixed etch

parameters. In contrast to [61], the current study examines the effects of changing

porous silicon etch parameters on porosity and thrust performance.

3.2 Experimental Methods

To investigate thrust and impulse, the author first varied porosity by changing

the HF to EtOH ratio of the etch solution from 3:1, 12:1, and 20:1, while hold-
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ing the depth of each layer to a target of 30 µm. In addition to looking at the

effect of electrolyte concentration, the electrolyte ratio was held constant at 3:1

and the depth of the porous silicon layer was varied from approximately 10 µm

to 40 µm. Finally, wafer resistivity was varied while holding both the electrolyte

concentration constant at 3:1 and the target etch depth at 30 µm. The author used

wafers that measured 0.016 Ω-cm, 3.6 Ω-cm, and 3 kΩ-cm to fabricate porous

silicon. The wafer resistivity was determined by the wafer vendor, Rogue Valley

Microdevices, and was verified in the cleanroom using a four-point probe mea-

surement system. To ensure that repeatable porous silicon was produced from

one etch to another it was critical to control the placement of the coupon in the

etch bath, as well as use a fresh mixture of etch solution for each etch. The author

was able to reduce the variability in porosity by less than 2 % by following this

procedure, ensuring that the morphology of the porous silicon remained consis-

tent from etch to etch.

3.2.1 Gravimetric Determination of Porous Silicon Porosity

Gravimetric analysis to measure porosity was done on individual coupons con-

sisting of four porous silicon devices using a Mettler Toledo XP26 scale with a

readability precision of 1 µg. A coupon was used to measure porosity gravimet-

rically because there was sufficient etched material to more easily differentiate

changes in mass. The actual precision of the scale was determined to be 10 µg,

which was the standard deviation of 50 measurements on the same coupon with
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an average measured mass of 318.49 mg. The total porous silicon mass for an

etch depth of 30 µm was greater than 240 µg, so mass differences determined us-

ing these methods were assumed to be reasonably accurate. Each porosity value

in this study was measured on three coupons etched under the same conditions,

except for the variation in etch depth, for which only a single coupon was mea-

sured at each condition.

Figure 3.1: Figure showing the individual steps taken to evaluate porosity gravimetri-
cally, including accounting for change in mass due to nitride and porous silicon etching.

Figure 3.1 shows the steps used to measure porosity. First, the mass of the

coupon (m1) in Figure 3.1 (A) was measured before porous silicon etching was

performed and before the edges of the coupon were coated with silicone. Be-
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cause the surface area ratio of exposed Si to backside Pt affects the etch rate, the

edges of the silicon chip were coated with silicone (Duraseal 1533) to restrict etch-

ing to the intended regions of exposed silicon. The two-part silicone was mixed

in a weighing dish, and then manually painted onto the edges of the coupon, and

allowed to cure for 2 hours. Residual silicone was removed from the backside to

ensure that the Pt contact was fully exposed during the etch. After etching, the

silicone was peeled from the edges of the coupon, and the mass of the coupon was

measured (m2) in Figure 3.1 (B). This mass represented the mass of the coupon

immediately following the etch. Finally, porous silicon was removed from the

silicon substrate using aqueous sodium hydroxide (Figure 3.1 (C)), by dissolving

2.5 g of sodium hydroxide flakes in 50 mL of deionized water. Upon removal of

the porous silicon, the final mass of the silicon coupon was measured (m3).

To determine porosity accurately, it was important to also account for changes

in the mass of the nitride etch mask on top of the coupon, as well as other changes

to the sample mass that may occur such as microscopic regions of porous sili-

con etching through small pinholes in the backside Pt layer (m4). To measure

these additional mass changes, four identical blank coupons each with nitride

on the frontside, Pt on the backside, and silicone on the edges were placed in a

3:1 HF:EtOH etch bath for times ranging from 1 to 8 minutes. Although no sig-

nificant amount of porous silicon was created or etched during this process, a

resulting linear mass loss rate of 432 µg/min was determined, and this value was

used to interpolate an appropriate value for m4 for each subsequent experimental

case involving the 3:1 etch condition. For the 12:1 and 20:1 etch conditions, a sin-
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gle blank coupon was etched at each concentration for the same etch times used

for the non-blank porous silicon samples, resulting in m4 values of 1.02 mg and

1.09 mg for the 12:1 and 20:1 conditions, respectively. These single data points

corresponded to mass loss rates of 428 and 504 µg/min, for the 12:1 and 20:1 con-

ditions.

Equation 3.1 was used to calculate porosity (P) based on the masses that

were measured. The numerator represents the mass of the bulk silicon removed

as a result of the porous silicon etch, while the denominator represents the re-

maining mass after bulk silicon and remaining porous silicon was removed, al-

lowing the author to determine the actual mass of porous silicon formed during

the etch.

P =
m1 − (m2 + m4)

m1 − (m3 + m4)
(3.1)

3.2.2 Varying Concentration and Etch Depth of Porous Silicon Etch

The porosity of porous silicon was varied by first changing the ratio of hydroflu-

oric acid to ethanol used in the etch solution. The ratios used were a 3:1, 12:1, and

20:1 mixture of HF to ethanol. While varying the concentration of the etchant,

etch time was controlled to ensure that the depth of the porous silicon was close

to a target depth of 30 µm. Layer thickness was verified by destructively etching

away the porous silicon and measuring the step height with a stylus profilome-

ter (Tencor P15) on two samples, with the average depth reported later in this
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chapter. A total of four devices were tested for thrust at each of the three concen-

trations.

In addition to looking at the effect of varying etch ratio, the porous silicon

layer target thickness was varied from 10 µm to 40 µm in target increments of

10 µm. The ratio of hydrofluoric acid to ethanol was held constant at 3:1, while

the depth was varied by varying etch time. Actual etch depths were reported in

the results as averages of two samples. For the force measurements, a total of

four devices were tested for each etch depth, while a single coupon was tested at

each condition for porosity.

3.2.3 Varying Resistivity of Silicon Wafer

The porosity was also varied by changing the resistivity of wafers used to etch

porous silicon. Wafers of three different resistivity values (0.016 Ω-cm, 3.6 Ω-cm,

and 3 kΩ-cm) were used to fabricate the porous silicon. For these experiments,

the etch depth was again controlled to a target thickness of 30 µm. Actual etch

depths were again measured and reported as the average of two samples. A 3:1

concentration of hydrofluoric acid to ethanol was used for each of these experi-

ments. A total of four force measurements and three separate porosity measure-

ments were taken for each resistivity.
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3.2.4 Calculating Impulse and Specific Impulse

Impulse was calculated by integrating filtered thrust over time using trapezoidal

integration in MATLAB. The specific impulse, calculated in Equation 3.2, is a

function of gravity (g) acting on the system, the total impulse (Im), and the mass

of the propellant (mp), which includes both the mass of the porous silicon fuel

and the sodium perchlorate oxidizer.

Isp =
Im

mp · g
(3.2)

The approximate mass of the porous silicon can be calculated based on the vol-

ume of a porous silicon device, density of silicon, and fraction of silicon remain-

ing. As discussed previously, the amount of oxidizer in the pores was equivalent

to filling the pores with the oxidizer/solvent solution and then removing the sol-

vent. Therefore, the mass of oxidizer was calculated based on total pore volume,

solvent concentration, and molar mass of sodium perchlorate. As an example,

a 2 mm diameter, 30 µm deep porous silicon device with 72.9 % porosity had a

porous silicon mass of 60 µg and a calculated oxidizer mass of 23 µg, for a total

propellant mass of 83 µg.

3.2.5 Measuring Impulse with Pendulum

A pendulum experiment was also used to measure impulse generated by the

porous silicon micro-thruster and validate force sensor measurements. The ex-

periment was performed for a device etched using a 3:1 electrolyte concentration
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with a 3.6 Ω-cm wafer. The device measured nominally 30 µm in depth. The mass

of the chip, which was composed of a single porous silicon device, was 0.112 g.

A rigid wire (30 AWG Kynar Insulated Wire-Wrap Wire) measuring 0.114 m in

length was used for the pendulum arm as well as for igniting the device. A pro-

tractor was mounted behind the swinging pendulum arm at the pivot point. The

displacement of the pendulum arm was observed visually using a Photron Fast-

CAM SA5 high speed camera at 2000 frames per second. All tests were carried

out in a dry box filled with nitrogen with a relative humidity of < 1 %.

Impulse was calculated from the pendulum’s oscillatory behavior described

in Equation 3.3 for small angular displacement θ, where ωo is the natural fre-

quency, θ̇ is the angular velocity, and ζ is the damping ratio. In a system where

damping is present, the damping frequency ω1 can be represented as a function

of the natural frequency ωo shown in Equation 3.4.

θ̈ + 2ζωo θ̇ + ω2
o θ = 0 (3.3)

ω1 = ωo
√

1− ζ (3.4)

The damping ratio was determined using high speed video to measure the

pendulum’s angular displacement as a function of time, and fitting the measured

maximum displacement of each oscillation to an exponential curve to determine

oscillation decay. The solution to Equation 3.3 with an initial angular position of
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zero is:

θ(t) = Ae−ζωotsin(
√

1− ζ2ωot) (3.5)

The second initial condition was that at time t=0, the angular velocity was

equal to an initial angular velocity experienced by the pendulum system. Assum-

ing that thrust was delivered instantaneously at the start of pendulum motion,

and recognizing that the integration of Newtons Second Law in terms of torque

and angular acceleration yielded the integration of a force applied at a distance,

L, from the pendulum pivot point, the initial angular velocity is:

θ̇(0) =
LIm

I
(3.6)

where Im is the impulse delivered by the thruster and I is the moment of inertia

of the system. Because the mass of the wire is non-negligible in comparison to

the mass of the porous silicon, the system cannot be evaluated as a point-mass

model. Instead, inertia is calculated as a point mass (the micro-thruster chip) at

the end of a rod of length L with non-zero mass (the wire). This equation was

used to solve for the coefficient A in Equation 3.5. The angular displacement is

expressed in terms of the impulse as shown below.

θ(t) =
LIm

ω1 I
e−ζωotsin(

√
1− ζ2ωot) (3.7)

To solve for the impulse, the time at which the oscillating devices velocity

was equal to zero, or the point in time at which the device reached maximum
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displacement, was measured. Both time at maximum displacement and the mea-

sured maximum angular displacement were substituted into Equation 3.7, and

the impulse was calculated by re-arranging the equation.

In addition to using this single maximum angle measurement to measure

impulse, the author used high speed video to track the displacement of the porous

silicon micro-thruster over several periods and applied these measurements di-

rectly to the general solution in Equation 3.3. The angular displacement versus

time was plotted and the period and frequency of the oscillations were calculated

directly. A least squares fit was performed on the data to determine the coefficient

A and ζ in Equation 3.5. Given the coefficients A and ζ, the author was able to

solve for impulse based on Equations 3.6 and 3.7.

3.3 Results

3.3.1 Concentration of Etch Solution

Table 3.1 shows the measured gravimetric porosity and resulting equivalence ra-

tio for each of the three concentrations. The porosity measurements showed that

for 12:1 and 20:1 etch concentrations, the mean porosities were 31.7 % and 30.0

% respectively, whereas the mean porosity for the 3:1 concentration was a much

higher 72.9 %. Filtered force measurements are shown in Figure 3.2 for four de-

vices and Table 3.1 lists the mean and standard deviation of peak force, impulse,

and specific impulse for each concentration. The 3:1 electrolyte concentration

generated the largest mean peak thrust of 662 mN along with the largest mean
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impulse of 261 µN · s. This large impulse resulted in a specific impulse of 320 s. Of

these results, the best performing device had a peak thrust of 674 mN, an impulse

of 271 µN · s , and a specific impulse of 333 s. The devices etched at 12:1 and 20:1

produced similar but lower peak thrusts and impulses. These similarities may be

related to the similar porosity of the porous silicon as seen in Table 3.1. Specific

impulse was an order of magnitude lower for these concentrations. The signifi-

cantly higher values at the 3:1 concentration may be due to higher porosity which

allowed more oxidizer into the pores and resulted in an equivalence ratio closer

to unity. All of the reactions were complete within 1 ms.

Table 3.1: Results for varied electrolyte concentrations. The error is the standard devi-
ation over 4 trials (3 trials for porosity). The equivalence ratio is based on the average
porosity.

Equiv. Peak
Conc. Depth (µm) R (Ω-cm) P (%) Ratio Thrust (mN) Imp (µN · s) Isp

3:1 29.2 3.6 72.9±5.7 5.57 662±11.7 261±18.2 320±22.4
12:1 28.3 3.6 31.7±10.5 32.3 48±2.4 15±1.4 20±1.9
20:1 29.0 3.6 30.0±6.4 35.0 57±7.6 16±2.2 21±2.9
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Figure 3.2: Thrust profiles based on the varied electrolyte concentrations.

3.3.2 Porosity versus Etch Depth

The porosity of porous silicon devices was varied by changing the etch depth

of the porous silicon as discussed above. For each etch depth investigated, four

devices were used to measure thrust. Only one porosity measurement was taken

for each etch depth. The wafer resistivity (3.6 Ω-cm) and electrolyte concentration

(3:1) used to fabricate these porous silicon devices were held constant. Figure 3.3

shows a plot of etch depth as a function of etch time. The etch depth up to a target

depth of 40 µm increases linearly with time.
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Figure 3.3: Etch depth as a function of etch time.

Table 3.2 lists porosity measurements for the different etch depths. In gen-

eral, porosity increased as etch depth increased. Changes in porosity as a function

of etch depth can be explained by the structure model of porous silicon presented

in [64]; the crystalline diameter is reduced over time so more irregularities in the

sponge-like matrix arise, increasing the void space in the porous silicon layer.

Table 3.2: Results for varied etch depth. The error is the standard deviation over 4 trials
(3 trials for porosity). The equivalence ratio is based on the average porosity.

Equiv. Peak
Conc. Depth (µm) R (Ω-cm) P (%) Ratio Thrust (mN) Imp (µN · s) Isp

3:1 12.5 3.6 40 23 29±1.3 8±0.5 24±1.6
3:1 22.5 3.6 64 8.4 50±4.8 14±1.2 20±2.0
3:1 29.2 3.6 72.9 5.7 662±11.7 261±18.2 320±22.4
3:1 40.3 3.6 71 6.1 157±86.7 60±39.5 56±28.9

Thrust was also measured for each etch depth. Figure 3.4 shows a plot of

the force versus time for target depths of 10 µm, 20 µm, and 30 µm deep porous

silicon devices generated by the Kistler 9215 force sensor and Table 3.2 lists the
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peak thrust, impulse, and specific impulse for all etch depths. The 30 µm devices

are the same devices seen in the previous section and generate the same 662 mN

mean peak thrust, 261 µN · s mean impulse, and 320 s mean specific impulse. The

10 µm and 20 µm deep samples resulted in significantly lower thrust and impulse,

although both increased porosity and equivalence ratios closer to unity may be

expected to result in more thrust. Therefore the significant increase at 30 µm may

also be due to a critical depth or material mass which partially confines the initial

reaction, increasing its internal pressure before allowing the majority of gas to

escape at higher velocity.

Figure 3.4: Thrust profiles shown as a function of increasing etch depth. Etch depth
varied from 10 µm to 30 µm by increments of 10 µm.

Evaluation of the 40 µm deep porous silicon devices resulted in significant vari-

ability in force output as shown in Figure 3.5. It was observed that at 40 µm, the

porous silicon began to exhibit physical cracks even before a reaction was initi-
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ated, which introduced mechanical instability in the layer. These mechanical in-

stabilities have the potential to affect reaction kinetics, and were likely the cause

for the variation in thrust performance. Figure 3.6 shows a 30 µm deep porous

silicon device with no signs of visible cracking, versus a 40 µm deep device with

surface cracks.

To evaluate the observed variation in the output, seven samples were tested

at 40 µm etch depth. Despite a porosity and equivalence ratio similar to the 30 µm

deep samples, mean peak thrust and impulse numbers were lower at 157 mN and

60 µN · s, and the devices exhibited very high standard deviations of 86.7 mN and

39.7 µN · s respectively. These lower propulsion metrics were likely due to the in-

troduction of physical cracks at this depth.

Figure 3.5: Thrust profiles for six porous silicon devices etched 40 µm deep.
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Figure 3.6: (A) 30 µm deep porous silicon sample without surface cracks (B) 40 µm deep
porous silicon sample showing surface cracks.

3.3.3 Porosity versus Wafer Resistivity

The porosity measurements are summarized in Table 3.3 with 3 measurements

used to calculate standard deviation at each resistivity. Porous silicon devices

fabricated using 0.016 Ω-cm wafers had an average porosity of 45.9 %. Devices

fabricated using 3.6 Ω-cm resistivity had an average porosity of 72.9 %, while av-

erage porosity for devices etched from high resistivity (3 kΩ-cm) was 37.1 %.

Figure 3.7 shows the thrust performance of porous silicon devices etched
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using the three different resistivity wafers and Table 3.3 summarizes the propul-

sion performance metrics. Devices etched from the 3 kΩ-cm wafer performed

similarly to the 0.016 Ω-cm wafer, with both generating mean impulses of ap-

proximately 20 µN · s and peak thrusts of 80 mN and 68 mN respectively. Both

the low resistivity wafer (0.016 Ω-cm) and high resistivity wafer (3 kΩ-cm) were

similar in porosity, which likely contributed to similar thrust performance.

Table 3.3: Results as a function of wafer resistivity. The error is the standard
deviation over 4 trials (3 trials for porosity).

Equiv. Peak
Conc. Depth (µm) R (Ω-cm) P (%) Ratio Thrust (mN) Imp (µN · s) Isp

3:1 29.1 0.016 45.9±1.7 17.7 68±5.2 19±1.4 23±1.7
3:1 29.2 3.6 72.9±5.7 5.57 662±11.7 261±18.2 320±22.4
3:1 30.7 3000 37.1±1.4 25.4 80±32.1 23±10.3 26±10.9

Figure 3.7: Thrust profiles based on the change in silicon wafer resistivity.
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3.3.4 Pendulum Validation of Impulse Measurements

The pendulum experiment was performed to validate the thrust and impulse

measurements collected using the Kistler 9215 force sensor. Porous silicon de-

vices used in this experiment were etched using a 3:1 electrolyte ratio, where the

etch depth was held at a target depth of 30 µm. A total of three experiments were

carried out using the pendulum and porous silicon devices of comparable poros-

ity, with observed maximum angular displacements of 9◦, 9◦, and 13◦. An initial

attempt to validate the pendulum experiment using only the maximum angular

displacement resulted in lower than expected values for impulse. Therefore to

validate the results collected by the pendulum, a least squares fit was performed

on the displacement versus time data.

The author captured high-speed video of several pendulum oscillations at

2000 frames per second, one example of which is represented by the observed dis-

placement data points in Figure 3.8, resulting in a calculated impulse of 132 µN · s

(13◦), which was on the same order as the measured result of 261 ± 18.2 µN · s

obtained using the force sensor. Using the same fit model terms applied to the

other observed angular displacement of 9◦ resulted in a calculated impulse of

100 µN · s. Although these values were about half of the values measured by the

force sensor, they do help to validate the approximate order of magnitude of re-

sults obtained with the force sensor. The lower impulse numbers obtained with

the pendulum experiments were likely due to non-linearities not fully captured

by the pendulum model, including rotational motion along the axis of the pen-
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dulum arm, non-linear friction at the pivot, and a non-rigid pendulum arm.

Figure 3.9 shows still images of the thrust event. The first image shows the

initial state of the micro-thruster. The second image shows the moment after igni-

tion, while the third image shows the maximum displacement of the pendulum

arm. Based on the maximum displacement at 9◦; the small angle approximation

is valid. What appears to be small fragments of silicon being ejected from the

surface of the porous silicon device are actually residual salt crystals from the

sodium perchlorate being ejected from the device, further illustrating that resid-

ual oxidizer on the surface does not typically participate in the reaction.

Figure 3.8: Angular displacement of the pendulum captured on high-speed video.
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Figure 3.9: Side by side images showing 9◦ of displacement upon actuation.

3.4 Discussion

3.4.1 Use of Porosity instead of Surface Area and Pore Size in Porous

Silicon

While the combustion performance of energetic porous silicon is directly affected

by the pore size and surface area of the porous silicon, porosity is a much sim-

pler quantity to measure for small area devices. Previous work showed that it

is difficult to obtain reliable pore size and pore volume using volumetric analy-

sis based on the Brunauser, Emmett, and Teller (BET) method for porous silicon

mass below 3 mg [65]. A coupon of 4 porous silicon devices etched out of a single

silicon chip for this study resulted in 250 µg of porous silicon material, so a min-

imum of 12 coupons would be required for one BET measurement. In addition,

the coupon would need to be cleaved or diced to fit in the tool’s sample tube,

likely resulting in additional errors from material loss during cleaving. The size
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of the sample tube is constrained by the tool dimensions.

Porosity was measured along with surface area and pore size using the

BET method for much larger samples (81 mm2) in previous work [57]. A sam-

ple etched with similar parameters to the best performing devices in the current

study (3:1 etch solution ratio, 1-10 Ω-cm, and 36 µm) had a measured porosity of

72.9 % with a surface area of 895 m2/g and a pore size of 3.32 nm. The results from

[57] demonstrated no clear trends between porosity and surface area or pore size,

and that different combinations of the three may be easily fabricated. Therefore,

a more extensive investigation of how thrust varies along the multidimensional

axes of porosity, surface area, and pores size may be the subject of future study.

However, it is interesting to note that devices with a porosity of approximately

70 % resulted in both the best propulsion performance in the current study, and

the highest flame speeds in previous work [66, 57].

3.4.2 Thrust and Impulse based on Porosity

As shown in the results above, etchant concentration, porous silicon etch depth,

and wafer resistivity all affected the porosity of the porous silicon devices. It

is possible to compile a more general observed effect of porosity on thrust by

combining the data collected. The results shown in Figure 3.4 exclude porosity

variations due to etch depth as the volume of porous silicon was not held con-

stant in these experiments. The data shown in Figure 3.10 are average values

based on discrete data points from Tables 3.1 and 3.3, with connecting lines for
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clarity. Thrust and impulse were highly correlated. This result is not surprising

as the time over which thrust occurred was relatively constant, spanning only 0.6

- 1 ms in Figure 3.2, Figure 3.4 and Figure 3.7 . For porosities below 45 %, the

measured thrust and impulse were relatively constant, while the significant in-

crease in thrust and impulse at a porosity of approximately 73 % was most likely

due to the more favorable fuel:oxidizer equivalence ratio. In order to reach an

equivalence ratio of 1.0, a porosity of approximately 93 % is predicted.

Figure 3.10: Comparison of impulse and peak thrust.

However, higher porosities may not necessarily result in higher thrust out-

put. Although more data is required to better understand how thrust and im-

pulse change with porosities above 73 %, it is interesting to note previous results

in which the highest flame speeds occur near porosities of 70 %, but then drop

as porosity increases further [57]. The reason for this drop in flame speed is pri-

marily due to increased surface cracking, which is thought to allow additional
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oxidizer to fill the larger voids between cracks, and act as an additional thermal

load to slow the heating of unreacted porous silicon. In the present study, cracks

in the samples featured in Figure 3.6 were also correlated to lower performance,

although for different reasons. In this case, the cracks likely indicated additional

mechanical instability of the film, which means it would have been more likely

to be ejected under lower pressures, possibly before it even had a chance to fully

burn. Therefore, it is plausible that increased porosity may only lead to increased

cracks, and may act to reduce instead of increase thrust performance. In any

case, more data at porosities above 73 % could lead to a better understanding of

a possible optimal porosity for thrust.

3.5 Conclusion

In this chapter, propulsion performance metrics (peak thrust, impulse, and spe-

cific impulse) were measured for 3 mm2 regions of unconfined energetic porous

silicon that did not result in fracturing of the device chip. Propulsion perfor-

mance metrics were shown to be dependent on the porosity of the porous silicon

which was varied by changing the concentration of hydrofluoric acid to ethanol

in the etch solution, the etch depth of porous silicon, and finally by changing the

resistivity of the silicon wafer used for fabrication. Changing the hydrofluoric

acid in the mixture of hydrofluoric acid to ethanol from 20:1 down to 3:1 resulted

in a 16x increase in mean impulse (from 16 µN · s for the 20:1 to 261 µN · s for a

3:1 etch ratio). It was also shown that the highest propulsion performance was
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measured for 30 µm deep samples. Although deeper 40 µm samples performed

relatively well, the thrust output was not repeatable because of cracks that de-

veloped as a result of etching the porous silicon deeper. This produced both

instability and variability in the porous silicon structure. The author also showed

that when comparing wafer resistivity, porous silicon devices etched with 3.6 Ω-

cm wafers outperformed both the lower and higher resistivity wafers by a 11x

increase in impulse (from 23 µN · s for the 3000 Ω-cm to 261 µN · s for the 3.6 Ω-

cm wafer). Based on the impulse data gathered, the 30 µm deep porous silicon

devices etched using a 3:1 ratio of hydrofluoric acid to ethanol with a 3.6 Ω-cm

wafer performed better for propulsion.
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Chapter 4

Scaling Effects for Multiple Thrust Events

4.1 Introduction

Scaling micro-thrusters down in size to enable multiple propulsion events on

smaller sub-centimeter platforms presents unique challenges to integration and

thrust performance due to limitations in propellant size and spacing. While

multiple propulsion events may be desirable, replenishing energy expended to

achieve a single thrust event becomes difficult. Trade-offs between magnitude

of thrust needed for propulsion and propulsion event density are based on the

size and operational requirements of the platform. A 1-kg class nano-satellite for

example, requires 10 to 1000 µN of thrust, while a 10-kg micro-satellite requires

thrust ranging from 0.1 to 10 mN for on-orbit maneuvering [38]. These systems

are capable of reaching velocities ranging from 10 m/s to 1000 m/s. Some of these

requirements can be met with solid-propellant micro-thrusters like that discussed

in [67], which produces thrust ranging from µN to N using aluminum bismuth

trioxide and aluminum iodine pentoxide nanoenergetic composites. When size

is not a limiting factor, systems like the liquid micro-pulsed plasma thruster in

[68] can generate thrust using a liquid propellant, stored in a 50 µL tank, which is

injected between high voltage electrodes. The necessary size, weight, and power

is available to accommodate a micro-pump and control electronics.
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Limitations to propulsion event density hold true for robots. At larger

size scales it becomes less difficult to replenish stored chemical energy or me-

chanically reset a motor-spring system. For example, the robot in [69] uses a

combustion-powered actuator to propel its own mass of 1.25 kg, along with an

additional payload of 3.75 kg, to a height of 7.5 m. Jumping is demonstrated us-

ing on-board propane as the fuel, and nitrous oxide as the oxidizer. A mixture of

propane and nitrous oxide is injected into a chamber and ignited by a glow plug

and a filament, which is used as a catalyst to accelerate the reaction. The combus-

tion event drives a piston downward, resulting in an opposite upward motion

that propels the robot. The mechanism for propulsion, whether through the con-

version of chemical or mechanical energy, is limited by the ability to replenish

the energy. While finite operational lifespan in inevitable, the goal is to better un-

derstand the trade-offs between how much thrust can be produced from a single

event, and how many of these events can be distributed on-board for maximum

functionality.

4.2 Scaling Microthrusters

Attempts have been made to deliver multiple propulsion events at smaller size

scales. The microthruster in [38] consists of an array of 15 solid propellant thrusters

designed by stacking three wafers, including an initiator wafer with polysilicon

heaters, a tank wafer, and a silicon diaphragm wafer. Ignition of a 100 Ω re-

sistor with 100 V causes the resistor on the initiator wafer to vaporize, produc-
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ing a pressure wave that ignites 1 mg of lead styphnate primary explosive. Ar-

rays of resistors allow for selective ignition of one or more thrusters at a time.

A single thruster can generate an impulse of 1.8 mN · s. The solid propellant

micro-thruster array in [11] has 100 individually addressable 1.5 mm by 1.5 mm

thrusters in a total area of 576 mm2, and each micro-thruster can generate thrust

ranging from 0.3 to 2.3 mN. The solid propellant micro-thruster in [70] consists

of 36 chambers, with chamber diameter of 1.5 mm and length of 3.6 mm. Using a

formulation of ammonium perchlorate and glycidyl azide polymer, each thruster

can produce 0.18-0.29 mN of thrust. At these size scales the ability to replenish

fuel and oxidizer becomes difficult and these thrusters serve a one-time use func-

tion, increasing the need to array multiple devices for greater propulsion event

density.

Propulsion of microrobots has been demonstrated at the centimeter scale

and below by converting stored energy, such as elastomeric or spring energy, into

kinetic energy. Achieving a vertical jump height of 1.2 cm, the 10 mg autonomous

microrobot in [7] uses micro-rubber bands that are actuated with an electrostatic

inchworm motor. The elastomer must be physically stretched to store 4.9 nJ of en-

ergy into the rubber band. The miniature robot in [71] uses a shape memory alloy

(SMA) spring actuator to propel itself to a vertical jump height 30 times its body

size. With a body size of 2 cm, and a weight of 1.1 g, the robot is size-limited and

unable to carry an on-board 3.7 V (10 mAh) battery needed to heat the actuators.

Power must be supplied off-board to heat the actuators, which also require time

to cool down before initiating further jumps. The magneto-elastic soft milli-robot
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in [72], measuring 3.7 mm in length and 1.5 mm in width, is made of a silicone

elastomer embedded with magnetic neodymium-iron-boron microparticles. The

milli-robot can roll, walk, and jump over standing obstacles, but requires external

magnetic actuation using custom-made electromagnets, whose size in not negli-

gible. These propulsion systems are impressive in terms of design, capability,

and ingenuity, but each platform has limitations to achieving multiple propul-

sion events, which are dictated by size.

In this work, the author first studied the dependency of thrust and impulse

generated by porous silicon as a function of the porous silicon area for a single

thrust event. Four different areas of porous silicon were investigated: 1.6 mm2,

3.2 mm2, 4.8 mm2, and 6.4 mm2. The etch depth for each device was nominally

25 µm (deeper etched devices shattered upon ignition). The author also stud-

ied the effects of simultaneous ignition and scaling the area of energetic porous

silicon. Thrust and impulse generated by a single 4.8 mm2 energetic porous sili-

con device was measured, and compared with three individual 1.6 mm2 devices

that were electrically connected in parallel, with the area of the three smaller de-

vices equivalent to the single larger device. Finally, the author studied the critical

spacing between adjacent devices in an attempt to mitigate potential sympathetic

ignition between adjacent devices and to determine the trade-offs between thrust

and impulse and the density of micro-thrusters that could be integrated on a 1

cm2 chip. This was important to enable the fabrication of multiple micro-thruster

devices on a single chip.
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4.3 Fabrication

While details of the porous silicon fabrication process were discussed in Chapter

2, variations to the geometry of the bridgewire design were necessary when scal-

ing the area of the porous silicon fabricated for the scaling study. The bridgewire

initiator was lithographically patterned, and a metal stack consisting of 100 Å Cr,

1000 Å Pt, and 3800 Å of Au was evaporated (Evatec BAK 641 Ebeam Evapora-

tor) and patterned by lift-off. The metal stack was chosen to ensure low electrical

resistance (approximately 3 Ω), and therefore low ignition voltage. The electronic

igniter in Figure 4.1 was designed with a tapered bow-tie structure at the center

of the initiator. The length of the initiator at the center of the bow-tie varied from

75 µm to 150 µm, and the width varied from 18.75 µm to 37.5 µm respectively de-

pending on the size of the porous silicon, which ranged from 1.6 mm2 to 6.4 mm2.

Larger, 2 mm by 2 mm square bond pads were added to the initiator design to

enable electrical contact to the initiator via probe tips or wires that could be sol-

dered to the pads. Even with the variability in the design of the initiator, porous

silicon devices were consistently ignited at 6V and a current limit set at 120 mA.

The wafer was then coated with photoresist and diced into smaller pieces, called

coupons. Figure 4.1 shows a silicon coupon consisting of three individual 2 mm

diameter devices, as well as a zoomed in view of the bridgewire. Before etching,

coupons were coated with photoresist, and diced out of the wafer with a Disco

DAD 3240 dicing saw. A pre-clean of the wafer with acetone, methanol, and

deionized wafer was performed to remove photoresist on the individual coupon,
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prior to etching.

Figure 4.1: (Left) Silicon coupon consisting of three porous silicon devices with initiators
connected in parallel (Right) Close-up of the initiator used to electrically ignite the porous
silicon

The galvanic etch was performed by submerging the coupon in an etch bath con-

sisting of a mixture of 3:1 hydrofluoric acid to ethanol, with 0.48 % hydrogen

peroxide by volume. The etch time was chosen to maintain a nominal etch depth

of 25 µm across the coupons with devices of varied areas. For sympathetic igni-

tion studies the etch time was reduced to maintain nominal etch depth of 7 µm.

Etch depth was measured by dissolving porous silicon in a mixture of water and

sodium hydroxide, and measuring the step height using a stylus profilometer.

In general the etch rate depended on wafer resistivity and the ratio of exposed

silicon to backside platinum. Therefore the etch time was varied to account for

these variables to the galvanic etch process. Upon completion of the etch, the de-

vices were stored in a nitrogen dry box prior to performing force measurements

to minimize surface oxidization of the pores. Once the devices were ready to ac-

tivate, a 1 µL drop of 3.2 M of sodium perchlorate was dispensed onto the porous

silicon and allowed to dry for 30 minutes. Tests were performed in a dry room
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with the relative humidity regulated to below 1 %.

4.4 Experimental Methods

4.4.1 Area Scaling Study

The dependency of thrust and impulse on the area of the porous silicon available

to react was studied by varying the area of energetic porous silicon and holding

the etch depth constant. Devices were lithographically patterned and etched with

areas of 1.6 mm2, 3.2 mm2, 4.8 mm2, and 6.4 mm2. Force measurements were

performed on a total of 16 devices. Four devices were tested for each area being

studied. While the area was varied based on the diameter of the porous silicon

device, efforts were taken to ensure that the etch depth across each sample set was

held at a nominal depth of 25 µm. Etching deeper resulted in potential cracking

of the porous silicon, which manifests in variability in the thrust measurements

as shown in [62]. The resistivity of the silicon wafers varied from 5-8 Ω-cm.

4.4.2 Simultaneous Ignition Study

In addition to measuring thrust and impulse of individually scaled energetic

porous silicon devices, the author compared propulsion performance of a single

(4.8 mm2) device with that of three (1.6 mm2) connected in parallel and triggered

simultaneously as shown in 4.2. Both sets of devices were etched using a 5.2 Ω-

cm wafer for four minutes. The nominal etch depth for both sets of devices was

25 µm. After etching, 1 µL of 3.2M of sodium perchlorate was applied to each
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device and allowed to dry for 30 minutes. The authors performed two force mea-

surements for each of set of devices.

Figure 4.2: (Left) Illustration of a single 4.8 mm2 porous silicon device. Illustration
of three individual 1.6 mm2 devices with individual bridgewires connected in parallel.
(Right) Circuit schematic illustrating the resistor elements (bridgewire) for each porous
silicon device.

4.4.3 Sympathetic Ignition Study

A study was done to determine the critical spacing between energetic porous sil-

icon devices that was necessary to prevent sympathetic ignition. Two different

areas of porous silicon devices were tested: 1.6 mm2 and 3.2 mm2. These were

chosen because they enabled the placement of more individual devices on a sin-

gle 1 cm2 silicon chip. For each area, an array of six porous silicon devices, similar

to that shown in Figure 4.3, was lithographically patterned and etched into a sin-

gle coupon. For the coupon consisting of adjacent 1.6 mm2 devices, the spacing

was increased from 125 µm up to 1500 µm as specified in Table 4.1. A total of four

coupons were etched and tested for this specific area study. The coupons were
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etched using a 3:1 mixture of hydrofluoric acid and ethanol, along with 0.96 mL

of hydrogen peroxide in a galvanic electrochemical etch process. Although elec-

trical bridgewire initiators were located on each porous silicon device, only one

bridgewire was wirebonded to enable electrical ignition of a single porous sili-

con device. One micro-liter of sodium perchlorate oxidizer (3.2M) was applied

to each device using a micro-pipette and allowed to dry for 30 minutes in a dry

room prior to ignition.

Figure 4.3: Illustration of device spacing for sympathetic ignition study.

Table 4.1: Summary of nominal separation distance (in microns) between adjacent de-
vices

Gap PS Area = 1.6 mm2 PS Area = 3.2 mm2

A 125 µm 125 µm
B 250 µm 250 µm
C 500 µm 500 µm
D 1000 µm 1000 µm
E 1500 µm 2000 µm
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A total of three experiments were performed on the array of 3.2 mm2 de-

vices. One coupon, consisting of six individually spaced porous silicon devices,

was etched for 3 minutes, a second coupon was etched for 1 minute, and a third

for 30 seconds. The nominal gap spacing was increased from 125 µm to 2000 µm.

These coupons were etched using a 3:1 mixture of hydrofluoric acid and ethanol.

3.2M of sodium perchlorate was applied to each porous silicon device and ig-

nition was attempted in a similar fashion to the 1.6 mm2 area devices. Sympa-

thetic ignition was determined by electrically triggering a single bridgewire on

each coupon and performing high speed video using a Photron FasCAM to cap-

ture the resulting ignition event at 100,000 frames per second. The porous silicon

coupon was attached to a dual in-line package using double-sided Kapton tape

to enable wirebonding between the porous silicon bridgewire and the electronics

package.

4.5 Results

4.5.1 Area Scaling Study

A total of 16 experiments were performed to study the effects of scaling the area

of porous silicon on the thrust and impulse produced. Four experiments were

performed for each of the four areas evaluated in this study. Figure 4.4 shows

the average force generated by each set of devices represented by the solid lines.

The shaded boundaries represent average thrust plus and minus the standard

deviation for each of the porous silicon areas studied. Table 4.2 summarizes the
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average impulse as a function of area, and Table 4.3 summarizes the average force

as a function of area.

Figure 4.4: Plot of force versus time as a function of the porous silicon device area.
Dashed lines represent average thrust, while solid lines represent upper and lower
bounds of standard deviation.

Table 4.2: Summary of average impulse, and minimum and maximum impulse as a func-
tion of porous silicon area

Area Avg (µN · s) Min (µN · s) Max (µN · s) Stdev (µN · s)
1.6 mm2 13.5 8.0 19.2 3.2
3.2 mm2 31.9 20.3 43.5 9.3
4.8 mm2 44.9 40.2 49.5 1.5
6.4 mm2 84.0 45.5 126.7 38.6

Table 4.3: Summary of average force, and minimum and maximum force as a function of
porous silicon area

Area Avg (mN) Min (mN) Max (mN) Stdev (mN)
1.6 mm2 44.1 32.7 57.3 9.6
3.2 mm2 105.6 78.6 135.7 28.7
4.8 mm2 150.2 140.1 160.5 5.0
6.4 mm2 259.7 194.0 346.0 104.9
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Area scaling experiments were performed for shallower porous silicon etches.

Thrust profiles shown in Figure 4.5 were measured for the a single 1.6 mm2 de-

vice with a nominal etch depth of 7 µm and for a single 3.2 mm2 device with

a nominal etched depth of 7 µm to further study the trade-offs between device

density and achievable thrust and impulse. A single 3.2 mm2 device produced

an average peak thrust of 30 mN, and an average impulse of 8.5 µN · s based on

two measurements taken with the force sensor. A single 1.6 mm2 device pro-

duced an average peak thrust of 13.1 mN, and an average impulse of 3.7 µN · s

based on two measurements taken.

Figure 4.5: Plot of force versus time as a function of the porous silicon device area for
7 µm deep porous silicon etch.
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4.5.2 Simultaneous Ignition Study

Force and impulse were measured for a single 4.8 mm2 device with a nominal

etch depth of 20 µm. The measurement was repeated twice, and produced an

average peak force of 113.7 mN and an average impulse of 28.7 µN · s. Similarly,

an array of three 1.6 mm2 devices, electrically connected in parallel, were ignited

simultaneously. The test was repeated twice and each time the three devices pro-

duced a waveform consisting of two consecutive peaks, as shown in Figure 4.6.

The average peak forces measured were 36.3 mN and 64.9 mN, with an average

impulse of 30.6 µN · s. Table 4.4 summarizes numerical values for the average

peak force and the average impulse generated for the different devices.

To explain the consistent double peak result from the simultaneous ignition

of three devices, several hypotheses are explored. The peaks are separated by

approximately 500 µs and can result from consistent delayed ignition between

devices or might be an artifact from the measurement setup, specifically the force

sensor. In previous tests of simultaneous ignition of multiple devices captured

with high speed video, it was too challenging to separate out any delayed igni-

tion from the video itself due to saturation in the images captured at 100,000 fps

during ignition. Therefore, high speed video was not used as a diagnostic tool

during these tests.

The first hypothesis is that the parallel ignition results in delays in ignition

due to less power delivered to each device. The three (1.6 mm2) devices evaluated

in the simultaneous ignition study were connected in parallel, each having an in-
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tegrated initiator. Ignition was controlled using a Keithley 2400 Sourcemeter, at 6

V, with a current limit set to 1 A. Each initiator had a resistance of approximately 3

Ω. As a result of the wiring configuration shown in Figure 4.2, each device in the

ignition sequence sees approximately 1/3 the current initially imparted through

the first initiator. Therefore, in the 3-device case, approximately 1/3 W is being

applied to each device versus 3 W for the single device. While this is a signifi-

cant reduction in power applied to each bridgewire, it is not expected to create

any ignition delays between devices due to this lower current. Future tests could

measure variability between ignition and reaction with high speed video synced

to the sourcemeter to confirm this.

The second hypothesis is that the double peaks result from how the chip

was mounted. For single device measurements, care was taken to mount the sen-

sor directly beneath the porous silicon. However, this was not possible with three

active devices. While the sensor bandwidth is nominally reported as > 50 kHz

in frequency, it is possible that another resonance is being excited due to the ap-

plied moments from the off-center devices. Unfortunately, the datasheet does not

provide more information about additional sensor resonant frequencies. Future

tests could combine the nozzles developed in Chapter 6 with this experiment to

better combine the three device reactions into a single reaction.
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Figure 4.6: Force versus time for single (4.8 mm2) device versus three (1.6 mm2) devices.
Experiment repeated twice

Table 4.4: Summary of peak force and impulse for a single 4.8 mm2 device in comparison
to three 1.6 mm2 devices connected in parallel and ignited simultaneously. Results from
the first of two experiments shown.

Sample Peak Force (mN) Impulse (µN · s)
4.8 mm2 (one) 113.7 28.7

1.6 mm2 (three) 36.3, 64.9 30.6

Figure 4.7 shows high speed video frames captured of the reaction event

for a single porous silicon device with an area of 4.8 mm2 (top image), and three

porous silicon devices, each having an area of 1.6 mm2, ignited simultaneously.

The three devices were electrically connected in parallel in an attempt to simulta-

neously trigger all three devices. For the simultaneous ignition study, high speed

video for each event was captured at 50 kfps rather than 100 kfps to enable a
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higher resolution image. The nominal etch depth was 20 µm because at 25 µm

the coupon consisting of three 1.6 mm2 devices fractured upon ignition.

Based on a qualitative observation, both devices generated a similarly large

plume of hot particulates, which consumed the field of view on a 256 by 256

pixel resolution window. After approximately 10 frames, the flame front moved

away from the surface of the energetic porous silicon. Appropriate steps should

be taken when arraying these solid-propellant devices to ensure that undesirable

sympathetic ignition does not occur. If sympathetic ignition was indeed the result

of hot particulates landing on adjacent devices, a nozzle could be incorporated to

direct the flow of hot particulates away from adjacent devices. Further study

could be done to determine if sympathetic ignition was the result of flame jumps.

Figure 4.7: High speed frame capture of a single (4.8 mm2) device reacting in comparison
to three (1.6 mm2) devices reacting simultaneously
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4.5.3 Sympathetic Ignition Study

The array of 1.6 mm2 porous silicon devices was etched for 1 minute produc-

ing porous silicon with a nominal etch depth of 10 µm (average etch depth of

11.15 µm and standard deviation of 0.49 µm). All porous silicon devices ignited

even at the largest device spacing of 1500 µm. The etch time was reduced to 30

seconds, which produced porous silicon with a nominal etch depth of 7 µm (aver-

age etch depth of 7.34 µm and standard deviation of 0.63 µm). At this etch depth,

the reaction propagated across five of the six devices, but failed to ignite the last

device that was spaced 1500 µm from its closest neighbor. Figure 4.8 shows a

series of still images from the high speed video capture. The picture in the top

left corner shows that the three closest devices appear to ignite almost simulta-

neously. After the visible plum of ejected gas appears to clear, there is an ignition

of the fourth and fifth devices. These ignition events appear to happen indepen-

dent of each other. The critical spacing measured in these experiments might

be an upper bound, especially if potential effects of shock or heat transport can

be mitigated are causing sympathetic ignition. Ideally if only igniting one pixel,

then it might be possible to space adjacent devices closer.
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Figure 4.8: High speed video capture of series of 1.6 mm2 devices etched for 30 seconds.

The experiment was repeated twice with representative etch depths, and in

both cases, four of the six devices reacted as shown in Figure 4.9. The critical

gap spacing to prevent sympathetic ignition was 1000 µm for a 1.6 mm2 diameter

porous silicon micro-thruster with a depth of 7 µm.

Figure 4.9: High speed video capture of series of 1.6 mm2 devices etched for 30 seconds.

For the devices having an area of 3.2 mm2, the first experiment was per-

formed on a coupon that was etched for 3 minutes. The nominal etch depth

was 30 µm (with an average etch depth of 29.8 µm) and a standard deviation of

2.8 µm). For the 3 minute etch, all five of the adjacent devices reacted sponta-

neously to the single ignition event. The etch time was reduced to 1 minute, re-

sulting in a nominal etch depth of 10 µm (average depth of 8.9 µm and a standard
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deviation of 0.8 µm). Again, as shown in Figure 4.10, all of the devices reacted.

The visible result showed an initial fireball in the first frame, which appeared to

be the combined output of three adjacent devices. In the second and subsequent

frames, the plume engulfed the entire capture window and saturated the camera

optics at 100,000 fps.

Figure 4.10: Still frames showing the sympathetic ignition of 3.2 mm2 porous silicon
devices etched for 3 minutes

The etch time was reduced from 1 min to 30 sec, and the nominal etch depth was

7 µm (with an average etch depth of 6 µm and a standard deviation of 0.5 µm). As

a result, five of the six devices reacted, and the device spaced farthest, 2000 µm,

from its adjacent neighbor did not react sympathetically. A summary of the sep-

aration distance based on the area of energetic porous silicon is summarized in

Table 4.5

Table 4.5: Summary of average force, and minimum and maximum force as a function of
porous silicon area

Area Etch Depth (µm) Separation (µm)
1.6 mm2 7 1000
3.2 mm2 7 2000
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To better understand the causes of sympathetic ignition, approximate prop-

agation rates were calculated from the high speed video available. The high-

speed video (100,000 fps) images shown in Figure 4.8 from the 1.6 mm2, 7 µm

deep porous silicon devices showed three devices igniting in the first frame, and

the fourth device igniting two frames, or 20 µs later. Based on the separation

distance of 500 µm between the third and fourth devices, an approximate prop-

agation rate of 25 m/s was calculated. Based on the high-speed video (100,000

fps) captured for the sympathetic ignition of 7 µm deep, 1.6 mm2 devices, shown

in Figure 4.9, the first three devices again ignited simultaneously during a single

frame. The fourth device ignited one frame later, indicating a 10 µs delay. Given

the separation distance of 500 µm, propagation rate of 50 m/s was calculated.

The 3.2 mm2 devices in Figure 4.10 showed the first three devices igniting during

a single frame, and the remaining three devices igniting one frame later. The sep-

aration distance between the third and fourth devices was 500 µm, resulting in a

minimum propagation rate of approximately 50 m/s.

Several hypotheses are explored as the cause of this sympathetic ignition

given these relatively low propagation rates of approximately 25-50 m/s. The

first hypothesis is that shock waves from the initial ignitions caused the sympa-

thetic ignitions. Based on the relatively low propagation rates measured, it is

unlikely that sympathetic ignition is the result of a shock wave traveling through

the silicon. It has been reported in [73] that based on measurements made using

transducers, the speed of sound in porous silicon with a porosity of 50 % is close

to 4500 m/s. The speed of sound in pure silicon in 8450 m/s [73].
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A second hypothesis is that the ignition of adjacent devices might be the

result of thermal conduction associated with hot particulates ejected from one

device then landing on the nearest device. From projectile physics, the time for

the projectile to travel and land will be defined by t = 2*vi*sin(theta)/g, where vi

is the initial velocity of the particle, theta is the takeoff angle, and g is gravity. To

get a time on the order of 10’s of microseconds, the takeoff velocity needs to be

very low (on the order of 1 cm/s with an extra small theta = 1◦). This results in a

very small distance traveled (d = t*vi*cos(theta)) on the order of 100s of nm. As a

result, this hypothesis seems very unlikely. In future work it would be worth ac-

quiring the proper optics for the high speed camera to analyze the reaction front

without saturating the optics.

A third hypothesis is thermal conduction through the silicon. Once again,

many simplifying assumptions are made to test this hypothesis. While reaction

temperature was not measured for porous silicon, a reasonable estimate is on the

order of 3000 K [49]. Previous unpublished work by the author has shown that

porous silicon will react when heated to approximately 450 K. Using the heat

flow equation, the approximate time required to reach this 450 K temperature 0.5

mm away through silicon can be calculated. In this case, the author roughly es-

timates that the area is 1 mm x 0.01 mm based on the dimensions of each pixel.

The change in heat is approximated as 10 µJ based on previous work showing the

electrical energy required to ignite the porous silicon as 20 µJ. Thermal conduc-

tivity of silicon at around 1000 K is 30 W/m-K. Therefore, a very approximate

time can be calculated as dt = DQ*x/K/A/DT. This time is on the order of 6 µs.
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Despite the very approximate nature of this back of the envelope calculation,

this result makes this a very strong hypothesis for sympathetic ignition. Future

studies could create isolation trenches in the silicon between pixels to test this

hypothesis further.

4.6 Discussion

The results in Figures 4.4 and 4.5 showed a clear trend when increasing the avail-

able reactive porous silicon area with an increase in measured thrust and im-

pulse. The thrust and impulse scaled proportionally with the area of energetic

porous silicon as shown in Figure 4.11. It was also shown in Figure 4.6 that

when comparing the ignition of a single device (A = 4.8 mm2) to that of three

devices (A = 1.6 mm2 each) connected in parallel and ignited simultaneously,

the single device produced a force profile with a single, but larger peak thrust.

The array of 1.6 mm2 devices produced multiple thrust peaks that were smaller

in amplitude. However, the measured impulse for the single thruster was ap-

proximately equivalent to that produced by the three smaller thrusters ignited

simultaneously. The ability to tune the thruster performance to optimize peak

thrust or impulse offers advantages depending on how the thrusters are used

for displacement and/or position correction. Certain applications, such as alter-

ing directionality of a nano-satellite in flight, may require smaller applied forces

but larger impulse to generate necessary changes in linear momentum and ve-

locity. The application of lower forces and larger impulse may be relevant in
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environments where the effects of drag are minimal. This may prove beneficial

for maneuvering micro-robots, where because of their small size scale and lower

speeds, the effects of drag are smaller and they can more easily jump or traverse

through air. For larger objects that are more susceptible to the effects of drag,

or operating in turbulent environments, the platform may require a single thrust

event that produces a larger peak force in order to achieve displacement.

Figure 4.11: Summary of force and impulse as a function of porous silicon area plotted
with error bars.

The data also showed that for a given porous silicon layer thickness, there

was a minimum separation required between adjacent devices to prevent sympa-

thetic ignition. While this minimum separation depended on the amount of mate-

rial available to react, other potential dependencies may exist with regards to how

the reaction propagates, whether through thermal conduction or a shock wave in
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the silicon substrate. Generally the author observed that increasing the nominal

etch depth to 30 µm resulted in mechanical fracturing of the silicon chip, which

made it difficult to integrate multiple devices for multiple propulsion events. For

the purpose of this work, the author tailored the etch depth to avoid physically

fracturing the chip, as well as identified an etch depth of 7 µm based on the exist-

ing porous silicon geometry to show the avoidance of sympathetic ignition.

Table 4.6 summarizes the trade-offs between porous silicon micro-thruster

density assuming integration of individual micro-thruster devices on a 1 cm2 sil-

icon die. Taking into account the minimum separation for the two different ar-

eas studied, the thruster chip composed of 4 individual 3.2 mm2 provides more

than twice as much thrust for a single device, but is limited to a total of four

thrust events. The smaller (1.6 mm2) devices allow for an array of 16 thrusters

per square centimeter, where a single 1.6 mm2 device generates approximately

half the thrust and impulse of a single device 3.2 mm2 device. If all devices were

intentionally ignited simultaneously, the smaller 1.6 mm2 would generate a com-

bined thrust that is almost twice as large in comparison to the 3.2 mm2, and sim-

ilar total impulse. Based on the performance tradeoffs, the decision to choose

one area over another depends on the application as well as the amount of space

available to integrate the thrusters.

An array of 3.2 mm2 devices may be advantageous for a platform requiring

larger thrust and impulse bits, while operating under constant force such as grav-

ity, and turbulent flow resulting in the effects of drag. For smaller platforms to
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Table 4.6: Summary of propulsion event density, along with thrust and impulse measure-
ments based on the number of micro-thrusters per cm2.

Area per device (mm2) 1.6 3.2
No. Devices/cm2 16 4

Single thrust (mN) 13.1 30.0
Single impulse (µN · s) 3.7 8.5

Simultaneous thrust (mN) 209.6 120
Simultaneous impulse (µN · s) 59.2 34.0

redirect position or orientation under low drag conditions, the smaller impulse

bits produced by the smaller (1.6 mm2) porous silicon micro-thrusters may be

sufficient, but have the advantage that two of the 1.6 mm2 device can combine to

produce approximately the same single thrust and impulse as a single 3.2 mm2,

while leaving 14 out of the 16 available to react at a later time. From the stand-

point of thrust event density, the array of sixteen 1.6 mm2 devices gives an 8:1

event density ratio, when two 1.6 mm2 devices are combined to produce compa-

rable thrust to that of a single 3.2 mm2 device. This has the potential for larger

achievable jump heights on a smaller platform due to the increased number of

micro-thrusters available to react. This can also translate into great maneuver-

ability to change directions when traversing rough terrain because of the ability

to electrically program a greater number of thruster ignition sequences to have

greater combined effects. While this is beyond the scope of this work, having

the option to ignite single or multiple propellant devices simultaneously or se-

quentially can provide larger achievable jump heights, especially when micro-

thrusters can be ignited mid-flight.
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4.7 Summary

In this work, the author demonstrated the effects of scaling the area of energetic

porous silicon on the thrust and impulse generated. Scaling the area of the ener-

getic porous silicon, while holding the etch to a nominal depth of 25 µm, resulted

in a 6X increase in average peak force, from 44.1 mN to 259.7 mN, and average

impulse, from 13.5 µN · s to 84 µN · s. In addition to scaling the area, the authors

also scaled the amount of porous silicon by fabricating an array of porous sili-

con devices, whose combined area was equivalent to that of a single larger de-

vice. The measured force and impulse for the array of devices was determined

by electrically connecting the devices in parallel to enable simultaneous ignition.

For a single device of area (A = 4.8 mm2) the resulting peak force and impulse

was 124.1 mN and 29 µN · s respectively, whereas the three smaller (A = 1.6 mm2)

devices, when triggered simultaneously, produced a peak force of 91.9 mN and

impulse of 28.2 Ns. The ability to incorporate multiple micro-thrusters on a single

chip enables multiple actuators, though finite, that can be combined with other

modes of actuation to provide greater operational use. The author also studied

the interaction between adjacent devices by looking at sympathetic ignition. Fu-

ture work can build upon this to look more carefully at the reaction mechanism

as the reaction front propagates.
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Chapter 5

Confining Thrust

5.1 Introduction

In this chapter, the author builds upon the studies on the effects of pore morphol-

ogy and device scaling on thrust and impulse to study the effects of confining

the energetic porous silicon with a nozzle. Confining the gas produced by an

exothermic reaction can improve propulsion performance by increasing exit pres-

sure and velocity through a well designed nozzle. It may also allow for greater

control over the direction of thrust.

In micro-thruster design, confinement has been demonstrated using a num-

ber of unique approaches to integrate the nozzle with the propellant (fuel and

oxidizer mixture). The method of integration depends on the size, complexity,

and operational use of the micro-thruster. The solid propellant thruster in [9]

uses energetic porous silicon similar to that studied in this work, and produces

a relatively large impulse of 0.14 N·s, when integrated with a plastic plate and a

tube nozzle. The reaction produces an explosion, which destroys the porous sili-

con chip limiting the ability to have an array of multiple thrust events on a single

chip. The inner diameter of the tube is 3 cm, with a wall thickness of 2 mm, and

a length of 2.5 cm. The diameters of the nozzles range from 0.4 to 3 cm, with an

overall system mass ranging from 32.5 to 30.2 g respectively.
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The solid propellant in [11] is designed with an array of 100 individually

addressable micro-thrusters, each measuring 1.5 mm by 1.5 mm. Thrust rang-

ing from 0.3-2.3 mN per device is produced through the combustion of glycidyle

azide polymer (GAP). The micro-thruster chambers are designed using both sil-

icon and Foturan, which is a glass that can be patterned with photolithography.

The nozzles are designed in a separate process using silicon wafers and deep re-

active ion etching to define the divergent angle. Depending on whether silicon or

glass is used for the chamber, attachment of the chamber to interface with the pro-

pellant is done using an anodic bond or epoxy. While demonstrating the ability to

confine an exothermic reaction for thrust generation, the micro-thruster requires

multiple processing and assembly steps, along with some manual integration.

Figure 5.1: Illustration of micro-thruster fabricated with three wafers: chamber, igniter,
and nozzle. Micro-thruster capable of producing up to 2.3 mN of force per device [11].

The smaller solid propellant micro-thruster demonstrated by Zhang et al [8]

uses a gunpowder-based solid propellant, with 90 % gunpowder, 6 % ammonium
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perchlorate, 3% aluminum, and 1% Fe2O3 to produce peak thrust of 340 mN at

sea level, while achieving an impulse of 115 µN · s. Propellant is manually loaded

in a micromachined cavity and a lid attached, which allows room for the reaction

gases to undergo combustion and expand through a nozzle. The reaction is con-

fined by attaching a secondary chip made of glass and an embedded heater for

ignition. As highlighted in [8], the micro-thruster shown in Figure 5.2, has the ad-

vantage of not requiring complex micro-fluidic systems, which aide in the minia-

turization of the overall system. Because it uses a solid propellant, the chances

of propellant leakage is minimized. The solid propellant micro-thruster in [12]

can be expanded up to an array of 8x8 propulsion elements using a three-layer

stack consisting of the igniter, chamber, and nozzle layer. Shown in Figure 5.3 the

chamber and igniter are fabricated with microcrystalline-glass-ceramic (MGC),

and the propellant BTATZ (C4H4N14) is packed into the chamber. The nozzle

layer is made out of silicon, and an ignition resistor triggers the propellant. The

force generated by a single thruster is approximately 0.12 mN.

Figure 5.2: Schematic of a micro-thruster showing the chip with a cavity for embedding
propellant and a separate chip with the igniter. (B) SEM of the propellant chip [8].
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Figure 5.3: Assembled micro-thruster array consisting of (a) igniter layer, (b) chamber
filled with BTATZ, and (c) the nozzle layer. Layers bonded together with silicone [12].

The goal in this work was to quantify confinement effects of solid propel-

lant porous silicon micro-thrusters through the integration of both silicon micro-

fabricated nozzles and 3D nozzles that were fabricated using additive manufac-

turing techniques. Ignition of the porous silicon was demonstrated with a mono-

lithically integrated initiator, which unlike previous work shown in [9] and [8],

minimizes the need for additional assembly when integrating the micro-thruster

chamber and nozzle on chip.

A parametric study was done to characterize the effects of changing criti-

cal dimensions of the nozzle design on the measured thrust and impulse when

integrated and ignited with the energetic porous silicon. For the 3D printed noz-

zles, the author varied the throat diameter of the nozzle and the divergent angle.

The author showed improvements in thrust and impulse performance as a result

of confinement. Details of nozzle fabrication and implementation are presented

along with a quantitative analysis of the measured results.
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5.2 Silicon Nozzle

5.2.1 Fabrication Methods

An initial design of the silicon nozzle was demonstrated in work published by the

author in Proceedings of Transducers Eurosensors XXVII [61], which showed the

integration of a micro-fabricated silicon confinement chip with a porous silicon

device chip. The purpose of the confinement chip was to expand and accelerate

the flow of gas produced by the porous silicon fuel and oxidizer reaction through

a chamber and orifice, which was designed neglecting the nozzle divergent angle.

The porous silicon device chip was fabricated to enable the confinement

chip to be mechanically bonded to the porous silicon chip. Similar to the pro-

cess discussed in Chapter 2, a silicon nitride layer was first etched to expose the

underlying silicon substrate, and an initiator was deposited to enable electrical

triggering of the exothermic reaction. An additional processing step was intro-

duced to electrically isolate the initiator from a metal bond ring that was needed

to attach the cap chip. This was achieved by depositing a layer of Protek A2

(Brewer Science), a spin-on thermoplastic material, and patterning it on top of

the initiator, serving as an electrical insulator. The Protek also served as a damn

structure to prevent the oxidizer from flowing onto the bond ring. A bond ring,

consisting of a 100 Å chromium, 1000 Å platinum, and 3800 Å gold was then

lithographically patterned on top of the Protek A2 using metal evaporation and

lift-off (Figure 5.4 (e)). Figure 5.4 shows a process flow illustrating the fabrication

of the porous silicon device chip and the cap chip.
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Figure 5.4: Process flow illustrating fabrication of porous silicon device chip (a through
e), cap chip (f through h), and the bonding of the two chips (i).

The confinement chip was fabricated using a double side polished (DSP) silicon

wafer. The first mask patterned a 100 Å chromium, 1000 Å platinum, and 3800

Å gold bond ring, allowing the confinement chip to be attached to the porous

silicon chip. This bond ring was patterned by lift-off (Figure 5.4 (f)). A chamber

was lithographically patterned and etched to a depth of approximately 300 µm

using a deep reactive ion etch (DRIE) process (Figure 5.4 (g)). This was done

to create some volume for the gas to expand. Then a backside alignment was

done to pattern an orifice. The orifice, having straight sidewalls, was etched to

approximately 200 µm through the wafer using DRIE as shown in Figure 5.4 (h)).

Finally the two chips were assembled by applying a low melting temperature
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solder (Indalloy 117 from Indium Corporation) on the metalized bond rings [16].

Ideally both the porous silicon chip and the cap chip would be dipped into molten

solder, through an ethylene gylcol interface, allowing the solder to coat the gold

bond rings that were lithographically patterned.

To avoid contamination of the porous silicon, only the cap chip was dipped

in the solder. Oxidizer was then applied to the porous silicon chip, paying careful

attention not to get excess oxidizer on the bond ring. Then the chips were heated

to 70 ◦C to allow the solder to soften and flow. The bond ring on the cap chip was

aligned with the porous silicon chip. After cooling, the two chips adhered to each

other. Each porous silicon device and cap chip was individually bonded prior to

testing. Figure 5.5 shows a fully assembled porous silicon device and cap chip.

This fabrication process had a number of integration challenges because of insuf-

ficient solder coating the bond rings, and problems associated with the manual

alignment process.

Figure 5.5: Fully assembled porous silicon device chip and cap chip.

Integration of the confinement chip and the porous silicon device chip presented
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a number of unique challenges including the inability to completely coat the bond

rings on both silicon chips. Figure 5.6 shows partial coverage of the solder on

the square bond ring that encompassed a reacted 2 mm diameter porous silicon

device. This resulted in weakened attachment points between the porous silicon

device chip and the confinement chip, causing the confinement chip to become

detached and launch itself into the air upon ignition.

Manually aligning the two silicon chips was also a challenge because of the

tight alignment tolerance between the two bond rings and the need to ensure that

the solder did not solidify before proper alignment was made. Additional process

improvements could be made to include alignment pillars or fiducial marks to

ensure more accurate alignment as well as increasing the width of the bond ring

to aide in better wetting and adhesion of the solder.

Additionally, it was unclear whether the author was effectively removing

residual ethylene glycol from the pores after the low temperature solder dipping

process. This was a potential source of process variability that might have al-

tered device performance. A different fabrication approach to building the micro-

thruster, which was based on a 3D printing technique, will be discussed in the

sections to follow.
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Figure 5.6: Partial coverage of bond pad with solder after dipping process.

5.2.2 Results

Thrust performance was measured with and without the attachment of the con-

finement chip. Porous silicon was etched in a 20:1 mixture of hydrofluoric acid

to ethanol to a nominal etch depth of 15 µm to avoid shattering the chip. The

original etch depth of 40 µm was reduced because upon ignition, the deeper

etched porous silicon excited multiple resonance peaks in the sensor resulting

in constructively interfering sine waves at 5.5 kHz and 13.5 kHz. Because more

thrust was measured with this particular device etched at 20:1 hydrofluoric acid

to ethanol, confinement was evaluated on the 20:1 etched sample rather than one

etched using a 3:1 etch solution. Results showed that confining the porous sili-

con reaction produced an increase in measured force for similarly etched samples

[61]. The force output and specific impulse were measured based on a compari-

son of an unconfined reaction with a confined reaction. The peak force generated

by the unconfined porous silicon was approximately 400 mN, while the peak
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force generated by the confined sample was over 800 mN. The confined force

curve corresponded to an impulse of 148 µN · s, while the unconfined curve cor-

responded to 35 µN · s. The specific impulses were 126 s and 29 s, respectively.

There was a 4.3x increase in impulse and approximately 2x increase in peak force

as a result of confining the reaction.

Figure 5.7: Comparison of confined versus unconfined thrust.

While the author demonstrated increased thrust performance with the sil-

icon micro-fabricated nozzle, challenges associated with integration, both sol-

der dipping and silicon chip alignment, prevented the author from reproducing

the experiments. Alignment marks could have been incorporated into the litho-

graphic mask design to guide the attachment of the cap chip onto the porous

silicon chip. While attempts were made to incorporate a polymer (Protek) ring

around the porous silicon to confine the oxidizer to the porous silicon to avoid

contaminating the solder bond rings, these polymer rings delaminated during
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the etch. Widening the bond rings may have enabled better wetting and cover-

age of the solder during the dipping process. To overcome these challenges, the

author decided to 3D print nozzles using an additive manufacturing approach,

which allowed for greater control over critical parameters of the nozzle design.

The larger 3D printed nozzles also proved easier to integrate using epoxy attach-

ment.

5.3 3-Dimensional Printed Nozzles

5.3.1 Fabrication and Parametric Design

While the previous approach showed improvement in thrust performance, in or-

der to address challenges associated with fabricating the nozzle out of a silicon

wafer, an alternative fabrication method was demonstrated in this research that

involved 3D printing the nozzle, including both the chamber and convergent di-

vergent nozzle. Nozzles were designed in SolidWorks with intended variations

to several key parameters that were believed to effect thrust performance. The

author developed a design of experiments, which involved varying critical pa-

rameters of the nozzle design. These parameters are illustrated in the drawing in

Figure 5.8. Nozzle H was not tested because the results generated by Nozzles E-G

indicated no improvement in thrust performance as a result of confinement. Noz-

zle I was not possible to fabricate because of limitations placed on nozzle length

and the convergent divergent angle. The throat diameter of the micro-thruster Dt

was varied (Dt = 0.75 mm, 1.0 mm, 1.25 mm). The nozzle length (L2) was varied
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to satisfy the relationship L2/Dt equivalent to 3. Finally the angle of divergence

θ was varied (θ = 10◦, 20◦, 30◦).

Figure 5.8: Summary of parameters varied in the design of the micro-thruster chamber
and nozzle.

Nozzles were printed with Formlabs Form 2 Stereolithogaphy (SLA) 3D

printer using an additive manufacturing process that selectively cures a resin

with a Class 1, 405 nm (250 mW) violet laser. Designs were drawn in SolidWorks

2018 and drawings were imported into Formlabs PreForm software, which al-

lowed for specific nozzle designs to be arrayed, and printed during a single run.

The quantity of nozzles and the print resolution were the limiting factors

considered when setting up a print. Figure 5.9 shows an array of nozzles, each

nominally having the same physical dimensions. Each device was printed with

a series of support structures to enable both the printing of finer resolution fea-

tures, as well as to avoid building directly onto the build plate. Because the resin

cures directly onto the build plate, without support structures it was very difficult
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to remove printed parts. Printing three sets of these arrays took approximately

2.5 hours because the highest resolution (0.025 mm) was used when printing the

parts. The author used a clear resin when printing nozzles. Figure 5.10 shows a

single micro-thruster printed with a clear resin on the Form 2. After printing, the

parts were removed from the build plate and placed in a UV curer and allowed

to cure of 45 minutes at 65◦C

Figure 5.9: An array of printed micro-thruster chambers and nozzles with support struc-
tures.

Figure 5.10: Images of a micro-thruster printed with Form 2 taken with Keyence Micro-
scope

5.3.2 Design Verification

Because of the relatively small feature sizes of the nozzle, and the challenges as-

sociated with achieving small feature sizes with a resin based printer, the parts
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were visually analyzed to determine whether dimensions for throat diameter and

divergent angle were equivalent to their designed dimensions. Analysis was per-

formed on 3 of the 7 design configurations, specifically Nozzles A, B, and C from

Figure 5.8..

Micro-computerized tomography (Micro-CT) scans of printed nozzles were

performed using a Xradia 510 Versa. The scans were performed with a 4X objec-

tive and an exposure time of 1 second, and a pixel size of approximately 4 µm.

The scan voltage and power were 80 kV and 7 W respectively. Figure 5.11 shows

actual scans of the printed nozzles. It took approximately 15 hours to complete

scans on three nozzles. Table 5.1 summaries the parameters for the nozzle, which

include throat diameter (Dt), divergent angle (θ), and nozzle length L2, and com-

pares the dimensions as-designed with the actual dimensions after fabrication.

The average throat diameter was 0.82 mm with a standard deviation of 0.09 mm,

while the values for the divergent angles were within approximately 1 ◦ or less of

the designed values. The average nozzle length was 2.33 mm with a standard de-

viation of 0.11 mm. These results provided added confidence that the 3D printed

nozzles were representative of the designed nozzles.
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Figure 5.11: Images from micro-computerized tomography scan performed on 3D
printed micro-thruster.

Table 5.1: Table provides a comparison of intended nozzle design parameters with actual
dimensions measured after fabrication using Micro-CT scans.

Designed Measured Designed Measured Designed Measured
Dt (mm) Dt (mm) θ θ L2 (mm) L2 (mm)

Nozzle A 0.75 0.72 10 ◦ 11.3 ◦ 2.25 2.36
Nozzle B 0.75 0.84 20 ◦ 20.4 ◦ 2.25 2.42
Nozzle C 0.75 0.89 30 ◦ 30.4 ◦ 2.25 2.20

5.3.3 Assembly and Testing

Each nozzle was evaluated with similarly etched porous silicon material. Silicon

coupons were etched using 3:1 HF to EtOH, with 0.96 mL of H2O2. The resis-

tivity of the coupon was held between 5 Ω-cm to 7 Ω-cm. Etch time was chosen

to etch porous silicon layers with a nominal etch depth of 20 µm. A test coupon
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was etched and the porous silicon removed to verify that the etch time was prop-

erly calibrated for the intended etch depth. Prior to assembling and testing the

micro-thruster, one out of the four devices on a coupon was oxidized and tested

with the force sensor to obtain a baseline for the force generated without a nozzle

present. Generally, one coupon was used to evaluate the performance of a single

micro-thruster design. When additional coupons were needed to evaluate other

designs or to gather additional data points, a calibration test was always per-

formed without a nozzle present to ensure consistency across the measurements

taken.

After performing the baseline calibration etch, wire leads were soldered to

the remaining porous silicon devices. A ring of silicone was painted around the 2

mm diameter porous silicon device, and allowed to cure as shown in Figure 5.12.

The purpose of the ring was to first contain the oxidizer, and to help with align-

ing the the micro-thruster over the porous silicon device. Although the porous

silicon diameter was 2 mm, the chamber diameter was designed to be 2.5 mm

in diameter, allowing for 0.5 mm of alignment tolerance. Silicone was also ap-

plied around the edges of the bottom (chamber side) of the micro-thruster, and

the micro-thruster was attached to the porous silicon device after the oxidizer

was applied and allowed to cure. Figure 5.13 shows a chamber and nozzle at-

tached to the porous silicon device. And extra ring of silicone was manually

applied around the edge of the nozzle to ensure that the chamber was properly

sealed. Alignment was verified by visual inspection of the center section of the

bridgewire initiator through the orifice.
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Figure 5.12: To make it easier to align the nozzle to the porous silicon chip, a ring of
silicone was painted around the outer edge of the porous silicon device. Silicone was
also painted on the bottom of the nozzle.

Figure 5.13: 3D printed nozzle attached to oxidized porous silicon device and mounted
to force sensor.

5.3.4 Results

5.3.4.1 Micro-CT Post-Ignition

Nozzles A, B, and C were re-scanned in the Micro-CT tool after the nozzles were

integrated with the energetic porous silicon and ignited. The purpose was to
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verify that the heat generated from the combustion event was not deforming fea-

tures of the chamber. Figure 5.14 shows images of the nozzles after ignition of the

porous silicon. There was evidence of residual porous silicon particulates on the

inner walls of the chamber, but no obstructions at the throat of the nozzle. Table

5.2 summarizes the critical parameters of the nozzle design before and after the

nozzle was subjected to the exothermic reaction. The average measured throat

diameter was 0.83 mm with a standard deviation of 0.07 mm, while the mea-

sured values for the divergent angles were within approximately two degrees of

the designed values after the burn. The average nozzle length was 2.35 mm with

a standard deviation of 0.10 mm. The most noticeable difference after the burn

was slight variation in the divergent angle (θ), but the maximum delta of 2.6 ◦

before and after the burn was not believed to be sufficient to warrant changing

the fabrication approach. Performing these scans before and after the combustion

event provided verification that the 3D printing process was a viable approach to

fabricating nozzles. The clear resin used to print the nozzles withstood the tem-

peratures and burn duration produced by the porous silicon.
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Figure 5.14: Images from micro-computerized tomography scan performed on 3D
printed micro-thruster after nozzle were subjected to porous silicon burn.

Table 5.2: Table provides a comparison of intended nozzle design parameters with ac-
tual dimensions measured after subjecting the nozzle to the exothermic porous silicon
reaction.

Before After Before After Before After
Dt (mm) Dt (mm) θ θ L2 (mm) L2 (mm)

Nozzle A 0.72 0.75 11.3 ◦ 8.7 ◦ 2.36 2.37
Nozzle B 0.84 0.87 20.4 ◦ 17.8 ◦ 2.42 2.43
Nozzle C 0.89 0.87 30.4 ◦ 28.9 ◦ 2.20 2.24

5.3.4.2 Video Analysis

High speed video was captured with a Photron FastCAM SA5 to qualitatively

compare the directionality of the plume of gas generated when the reaction was

unconfined and when it was directed using the integrated nozzle. Figure 5.15
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shows a comparison of two reactions both captured at 2000 frames per second.

Without the nozzle, the flame appeared to propagate more radially outward and

produced a large fireball that lacked directionality and was somewhat random in

terms of flame dispersion. It was unclear whether residual oxidizer on the sur-

face of the porous silicon was potentially re-igniting in air. The reaction with the

integrated nozzle appeared to be much more focused in terms of directionality

and the fireball was confined to the chamber.

Additionally, this analysis allowed the author to verify that the nozzle was

securely attached to the silicon chip. Because a silicone epoxy (Loctite E-20 HP)

was used to attach the nozzle to the porous silicon chip, the author needed to

verify that the epoxy was properly cured and the seal between the porous silicon

chip and the nozzle remained in-tact during the exothermic reaction. Figure 5.16

shows three consecutive frames captured at 1024 by 1024 dots per square inch

resolution and 2000 frames per second. Because the nozzle was made of a semi-

transparent resin, the chamber appears to glow as the plume of hot gas expands

before being ejected through the nozzle. The video confirmed that the reaction

byproducts were confined before being ejected through the nozzle. Any possible

breach in the silicone would have caused the nozzle to detach itself from the

porous silicon, and become a flyer.
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Figure 5.15: (left) Porous silicon reaction without a nozzle (right) and one with a nozzle.

Figure 5.16: 3D printed nozzle attached to oxidized porous silicon device and mounted
to force sensor.

5.3.4.3 Force Measurements

Figure 5.17 shows force versus time curves for seven different micro-thruster noz-

zle configurations that were evaluated. The most significant increase in thrust

and impulse was measured from nozzles that had a throat diameter (Td) of 0.75

mm. Varying θ did not produce noticeable changes in the thrust profiles. Based

on the design parameters outlined in [74], the divergent angle θ of the diverging

part of the nozzle should be between 15◦ and 20◦. Therefore the similarities in

the measured results for varied θ at a fixed (Td) of 0.75 mm verified the lack of
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appreciable difference in performance.

Figure 5.17: Force versus time curves for different micro-thruster nozzle configurations
evaluated.

Figure 5.18 shows the average force versus time curves based on the individual

measurements in 5.17 as well as the mean value plus and minus the standard

deviation illustrated by the solid lines. Based on the average force measured, the

best performing nozzle was observed from the nozzle with a chamber height of

1 mm, a throat diameter (Td) of 0.75 mm, and θ measuring 10◦. In comparison to

the larger throat diameters evaluated, it appeared that having a smaller throat di-

ameter provided the necessary confinement to accelerate the gaseous byproducts

of the reaction. Improvements in thrust depend on the mass flow rate that can be

achieved, which depends on the throat area.
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Figure 5.18: Force versus time curves for different micro-thruster nozzle configurations
evaluated showing average force plus and minus the standard deviation.

Table 5.3 summarizes the results shown in Figure 5.18 highlighting the measured

values for average peak thrust based on the different design configurations. A

summary of average impulse based on micro-thruster nozzle configuration is

shown in Table 5.4.

118



Table 5.3: Summary of thrust performance for the different nozzle configurations.

Nozzle Peak Force Avg. Force (mN) Std Dev.
A 364.8 292.6 83.9
B 313.6 180.8 40.1
C 279.3 219.3 68.6
D 225.7 199.4 29.6
E 95.3 59.8 29.4
F 60.6 51.5 8
G 90.6 79.4 8.5

no nozzle 92.9 82.1 9.3

Table 5.4: Summary of impulse performance for the different nozzle configurations.

Nozzle (µN · s) Peak Impulse Avg. Impulse (µN · s) Std Dev.
A 111.3 92.6 23.5
B 69.0 53.5 13.0
C 76.0 62.2 21.9
D 77.0 65.3 13.1
E 30.2 18.7 10.0
F 17.7 15.2 3.3
G 24.7 21.9 3.9

no nozzle 24.4 22.0 2.4

5.4 Summary

The author successfully demonstrated fabrication of a 3D printed nozzle and per-

formed a parametric study to investigate the effect of changing design parame-

ters of the nozzle, including the nozzle throat diameter and the divergent angle.

Improvements to thrust were demonstrated through integration of a nozzle, in

particular with Nozzle A (Dt = 0.75 mm, θ = 10◦). The average peak force pro-

duced by the energetic porous silicon devices without a nozzle was 82.1 mN with

a standard deviation of 9.3 mN. The average impulse produced by devices with-

out a nozzle was 22.0 µN · s with a standard deviation of 2.4 µN · s. Incorporating

Nozzle A with the porous silicon chip resulted in approximately 4x increase in
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the average peak thrust, and over a 4x increase in the average impulse. Although

there were variations in the reproducibility of measured force and impulse, the

author was able to see trends indicating enhanced thrust performance as a result

of integrating a nozzle with the porous silicon. Additional work could be done to

implement a thrust stand measurement system to more precisely measure thrust

as a function of angular displacement.

Fabrication of the nozzle using 3D printing dramatically reduced the time

needed to prototype the nozzles from approximately 1 week to 3 hours. The sil-

icon nozzle required two separate lithography steps to pattern the chamber and

orifice, a third lithography step to pattern the bond ring, and a metal deposi-

tion and deep reactive ion etch before completion. Changing nozzle parameters

using the 3D printing process eliminated the need for mask re-design, because

parameters could be easily modified in SolidWorks and exported to the Form 2

for re-print. Based on the minimum feature size for the nozzle throat diameter

(0.75 mm) needed for the parametric study, the Form 2 appeared to be capable of

meeting the design tolerance.
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Chapter 6

Conclusions

This work provides key insights that have advanced the understanding of en-

ergetic porous silicon as a solid propellant micro-thruster based on an extensive

experimental study of the material’s thrust performance. Thrust performance

was measured as a function of porous silicon morphology, where morphology

was characterized according to the porosity of the material. Porosity was var-

ied by altering parameters of the etch process, including electrolyte concentrate,

wafer resistivity, and etch time, which correlates to the depth of porous silicon.

Thrust was measured quantitatively using a 9215 Kistler piezoelectric force sen-

sor. The accuracy of the sensor was verified using weights of known mass to

provide a static measurement, and was also verified by measuring the angular

displacement of a pendulum set in motion by an energetic porous silicon device.

The dependency of thrust and impulse generated by porous silicon as a

function of the porous silicon area for a single thrust event was experimentally

studied and presented in this work. The author provided key insights on the ef-

fects of simultaneous ignition and scaling the area of energetic porous silicon. The

study also identified critical spacing between adjacent devices to mitigate poten-

tial sympathetic ignition and determined the trade-offs between thrust and im-

pulse and the density of micro-thrusters that could be integrated on a 1 cm2 chip.
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Overall, the experimental data provided an understanding of scaling propulsion

and trade-offs and limitations associated with propulsion event density.

Finally, the author demonstrated fabrication of 3D printed nozzles, using

additive manufacturing techniques, and presented key findings on the effects of

confining the byproducts of the exothermic reaction of porous silicon. Seven dif-

ferent nozzle configurations were printed as part of a parametric study. Critical

design components, such a nozzle throat diameter and the divergent angle were

varied to understand the effects of confinement. The primary contributions of

this work are summarized as follows:

• Characterized thrust as a function of porosity, and how different porous

silicon etch parameters affect porosity.

• Characterized the effects of scaling the size of porous silicon to deliver mul-

tiple propulsion events on a single 1 cm2 chip.

• Characterized the effects of sympathetic and simultaneous ignition with

arrays of porous silicon devices to determine trade-offs associated with

achieving multiple propulsion events on a single 1 cm2 chip.

• Integrated 3D printed nozzles at millimeter size scales and characterized

the effects of confining the energetic porous silicon reaction.
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6.1 Future Work

To further understand energetic porous silicon as a propellant enhancing thrust

performance, future world would include the following:

• Develop a pore model, including boundary methods, to model the interac-

tion of the pores at the molecular level along with mass and energy diffu-

sion to understand transport and reaction rates through the porous silicon

network when activated with a liquid oxidizer. This is generally a challenge

within the field of nano-energetics to understand the complex decomposi-

tion stages associated with the reaction [54]

• Perform an in-depth study of the porous silicon reaction propagation to de-

termine the mechanism of ignition and to understand the mechanism asso-

ciated with the sympathetic ignition of adjacent porous silicon devices. This

involves designing and implementing a Schlieren imaging setup to study

shock wave interactions at the surface of the porous silicon.

• Study sub-surface porous silicon shock wave interactions through silicon

using a series of piezo-pins to track propagation through the backside of

the silicon chip. This would aide in better understanding the mechanisms

associated with sympathetic ignition.

• Perform high speed thermal imaging to determine if sympathetic ignition

of porous silicon is due to thermal conduction of hot particulates ejected

from the reaction.
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• Implement a thrust stand measurement system to more accurately measure

thrust, especially thrust levels close to 1 N, which generally excited multiple

resonant frequencies in the current piezo-force sensor. This would allow the

author to look at the maximum limits of thrust generation.

• Develop an analytical model for the energetic porous silicon and nozzle

configurations to verify experimentally collected data and to further opti-

mize the design.

• Build upon the current parametric study to evaluate nozzles with throat

diameters less than 0.75 mm and greater than 1.25 mm and nozzle divergent

angles less than 10 degrees and greater than 30 degrees to include a wider

data set.

• Demonstrate tethered multi-propulsion/jumping using energetic porous sil-

icon micro-thrusters and nozzles attached to a milli-gram size microrobot.

Specifically show multi-jump capability to traverse a flight of stairs.

• Develop a work space model for a milli-gram size microrobot to under-

stand the limits of jump height and trajectory based on single and multiple

propulsion events.
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Chapter B

MATLAB

B.1 Experimental and Computational Background
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