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Surface plasmon resonances in nanoparticles have numerous promising scien-

tific and technological applications in such areas as nanophotonics, near-field mi-

croscopy, nano-lithography, biosensor, metamaterial and optical data storage. Con-

sequently, the understanding of plasmon resonances in nanoparticles has both fun-

damental and practical significance. In this dissertation, a new numerical technique

to fully characterize the plasmon resonances in three-dimensional nanoparticles is

presented.

In this technique, the problem of determining the plasmon resonant frequen-

cies is framed as an integral equation based eigenvalue problem, and the plasmon

resonant frequencies can be directly found through the solution of this eigenvalue

problem. For this reason, it is computationally more efficient than other “trial-

and-error” numerical techniques such as the finite-difference time-domain (FDTD)

method. This boundary integral equation method leads to fully populated dis-

cretized matrix equations that are computationally expensive to solve, especially

when a large number of particles are involved in the nanostructures. Since the



fully populated matrices are generated by integrals with 1/r-type kernel, this com-

putational problem is appreciably alleviated by using the fast multipole method

(FMM). The boundary integral approach is also extended to the calculation of the

extinction cross sections of nanoparticles, which reveal important information such

as the strength and the full width at half maximum (FWHM) of these resonances.

The numerical implementation of this technique is discussed in detail and numerous

computational results are presented and compared with available theoretical and

experimental data.

Furthermore, metallic nanoshells for biosensing applications as well as nanoparticle-

structured plasmonic waveguides of light are numerically investigated. The integral

equation based numerical technique presented throughout this dissertation can be

instrumental for the design of plasmon resonant nanoparticles and to tailor their

optical properties for various applications.
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Chapter 1

Introduction

1.1 General overview

Due to their reduction of size and dimensionality, nanoparticles exhibit opti-

cal properties that differ in fundamental and valuable ways from the properties of

individual atoms, molecules and bulk matter [1]. For example, the bright colors in

stained glass windows or colloidal solutions are caused by small noble metallic par-

ticles [2]. This optical effect is due to the strong interaction between incident light

and conduction electrons confined to the small volume of the metallic nanoparticle.

Under the influence of an oscillating electric field, the negatively charged conduction

electrons perform a collective motion with respect to the positive-ion background,

creating an effective charge at the surface that results in a restoring force. The

electron oscillations are therefore called surface plasmon resonances. The resonance

modes are localized near the surface of the nanoparticle and exponentially decay

along the depth from the surface. Surface plasmon resonances in metallic nanopar-

ticles lead to strong light scattering and absorption and remarkable enhancement of

local electromagnetic fields [3].

The optical properties of small metallic particles have fascinated many re-

searchers in the past. For instance, Faraday first recognized that the red color in

stained glasses is due to small-sized Au particles in 1857, and this peculiar phenom-
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Figure 1.1: Darkfield image of plasmon resonant silver nanoparticles.

enon was theoretically explained by the groundbreaking work of Mie in 1908 [4].

Nevertheless, the research on surface plasmon resonances has increased in volume

considerably in the past decade. This recent revival of interest is caused by the

advances and new capabilities in fabrication methods to produce metallic nanos-

tructures of well-defined sizes and shapes [5, 6, 7], and subsequently the possibilities

to utilize plasmon resonant nanoparticles in scientific and technological applications

ranging from optics and sensors to biology and medicine.

A key feature of plasmonic nanostructures is that light can be confined and

manipulated on a scale below the diffraction limit governed by conventional optics

[8]. This opens opportunities for new optical devices and technology. For example,

plasmon-resonant metal nanoparticles can be used to construct miniature optical

waveguides. The plasmon waveguides consist of arrays (chains) of metallic nanopar-

ticles (see Figure 1.2) with their plasmon resonance frequencies in the region of
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Figure 1.2: Schematic of plasmonic waveguide of light.

optical waveguiding. At specific frequencies, incident optical radiation can excite

plasmon resonances in the first nanoparticle, which then through near-field coupling

can induce plasmon resonances in all nanoparticles that form the chain [9]. Atwa-

ter et al have demonstrated that optical signals can propagate over a micrometer

along the waveguide [10, 11, 12]. Surface plasmon resonances can also be exploited

in the field of optical lithography for the fabrication of nanoscale features beyond

the diffraction limit [13, 14, 15]. By using a photoresist that is sensitive at the

surface plasmon resonant frequency, the exposure of a thin layer of photoresist di-

rectly below a contact mask can create an aerial image on nanometer length scales.

This surface plasmon resonant nanolithography technique is not diffraction limited,

and can produce subwavelength features using broad beam illumination with visible

light.

Another salient feature associated with plasmon resonances is the strong local

field enhancement. For instance, plasmon-resonant metallic nanoparticles have been

used in surface enhanced Raman spectroscopy [16, 17, 18]. Moreover, active pho-

tonic devices have been proposed which utilize plasmon resonances. Mayergoyz and

3



Fredkin [19, 20] suggested that the optical controllability of semiconductor nanopar-

ticles can be utilized for the development of nanoscale light switches and all-optical

nanotransistors. On the other hand, Tominnaga and co-workers [21] showed that by

focusing two laser beams (405 and 635 nm) in one small spot on a high-speed rotat-

ing optical disk, a large signal enhancement is observed (Figure 1.3). It was found

that a plasmon interaction generated between a silver light-scattering nanoparticle

and small marks recorded in the optical disk with a super-resolution near-field struc-

ture produced the large signal amplification in the spot (< 1 µm). A modulated

signal of the blue laser was enhanced by 60 times by controlling the red laser power

from 1.5 to 3.5 mW. It has been shown that the system has the potential to realize

all-thin-films photonic transistors by using local plasmon amplification.

Figure 1.3: Local plasmon photonic transistor proposed in [21].

Surface plasmon resonances are very sensitive to the local dielectric environ-
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ment. In other words, a small change of the refractive index of surrounding medium

will result in appreciable shift of plasmon resonant frequencies as well as the extinc-

tion coefficients. A variety of nanoscale biosensors have been demonstrated based on

this principle [22, 23, 24]. For example, Storhoff and Mirkin linked a single-stranded

DNA to a gold nanoparticle of 15 nm in diameter. When this DNA hybridizes with

its complementary DNA in the test sample, the duplex formation leads to aggre-

gation of nanoparticles, shifting the plasmon resonance from burgundy-red color

(single nanoparticle) to blue black (aggregation of nanoparticles) [25, 26]. In a

similar manner, Halas and co-workers used gold nanoshells to demonstrate a rapid

immunoassay, capable of detecting analyte within a complex biological media such

as blood [27, 28].

Another area which attracts considerable interest lately is the design and engi-

neering of metamaterials. Metamaterials are artificial composite materials that have

negative permeability and permittivity simultaneously, also known as left-handed

or double negative materials [29]. Due to their unique electromagnetic properties,

metamaterials are promising for many optical and microwave applications, such as

perfect lenses, transmission lines, and antennas. It is well known that many metals

(e.g. silver and gold) have negative ε at visible wavelengths. Relying on the plas-

mon resonances of individual metallic nanoparticles and arranging the geometry of

composite inclusions to resemble magnetic nanoloops, negative µ and left-handed

metamaterials with a negative index of refraction in the optical frequency range can

be realized [30, 31].

In addition to the aforementioned applications, the surface plasmon resonance

5



also has potential in next generation optical storage [32, 33, 34], scanning near-field

optical microscopy [35, 36] and energy solar cells [37, 38]. Since the understand-

ing of the optical properties of metallic nanoparticles holds both fundamental and

practical significance, it is important to have the capability to model and predict

the plasmon resonance behavior of nanoparticles with complex shape. The goal of

this dissertation is to present a new and efficient method for the analysis of plasmon

resonances in nanoparticles.

1.2 Current state of the research

In the classical picture, the optical property of nanoparticles is treated as a

scattering problem, which can be described by Maxwell’s equations. In this frame-

work, the complete description of the material properties is included in the dispersion

relation, which gives the complex permittivity ε(ω) as a function of the frequency

or wavelength. At specific negative permittivity values, plasmon resonances will be

excited in these small particles. These specific permittivity values strongly depend

on the particle shape, size and surrounding medium, since the boundary conditions

imposed by Maxwell’s equations determine whether such a particle resonance can

build up. One may wonder whether the classical description of the material based

solely on Maxwell’s equations and bulk dispersion relations is appropriate for the

small particles. In fact, it has been experimentally demonstrated that this macro-

scopic approach is adequate for particle dimensions as small as a few nanometers

[3, 39]. Furthermore, this question has been discussed in a recent paper by Levi

6



et al [40]. According to their quantum mechanical computations, it can be con-

cluded that there is no appreciable discrepancy between quantum model and classic

electrodynamics for particle size above 8 nanometers.

The optical properties of small spherical metallic particles accounting for the

surface plasmon resonance were first explained theoretically by the groundbreaking

work of Mie in 1908 [4]. Mie solved Maxwell’s equations for an electromagnetic light

wave interacting with a small sphere that has the same macroscopic, frequency-

dependent material dielectric constant as the bulk metal. Mie’s electrodynamics

computation gave a series of multipole oscillations for the extinction and scattering

cross sections of the particles as a function of the particle radius. For small but

finite-sized particles, Mie theory gives the resonance values of dielectric permittivity

of the spherical particle as [39]:

ε+ = −
(
2 +

12

5
ω2µ0ε0a

2
)

ε0, (1.1)

where ω is the angular frequency of the optical radiation, a is the radius of the

sphere, and µ0 and ε0 have their usual meaning. Mie’s results are still widely used

today since it is the only available analytical solution and most of the nanoparticles

produced by the colloidal or wet chemistry method are more or less spherical.

As soon as one considers particles other than spheres or even spheres within

an asymmetric dielectric environment, it is usually not possible to obtain analytical

solutions to Maxwell’s equations. Due to this fact, there has been a great deal of

effort put into developing numerical methods. Indeed, the literature on numerical

methods for classical electrodynamics problem is enormous. However, there are some

7



important challenges and simplifications associated with metallic nanoparticles that

limit the applicability of methods used to study problems with much longer wave-

length and length scales. In recent years, there are several numerical techniques that

have been used to describe optical properties of non-spherical metallic nanoparticles.

They can be briefly summarized as follows.

(1) Discrete dipole approximation (DDA) method. Schatz and co-workers

[41, 42] have applied the DDA method to non-spherical nanoparticles which can be

traced to Purcell [43] and Draine [44]. In DDA, a particle with arbitrary shape is

treated as a three-dimensional assembly of dipoles on a cubic grid. Each dipole cell

is assigned a complex polarizability αi which can be computed from the complex

dispersion relation and the number of dipoles in a unit volume. This polarizability

causes an oscillating dipole moment or a polarization Pi at each cell, depending on

the total electric field at the respective position and given by

Pi = αi · Ei. (1.2)

The total field Ei is the sum of the incident field Einc,i (usually a plane wave) and

a contribution from all other dipoles Edip,i:

Ei = Einc,i + Edip,i = E0e
ik·ri +

∑

i6=j

Aij ·Pj. (1.3)

The matrix Aij includes the interaction of all dipoles depending on the distance

of the dipoles; thus, a full dense matrix results. This equation can be solved by

iteration. Once the polarizations Pi are found, the extinction and absorption cross

sections can be computed by using standard formulas. The DDA technique has

been applied to different shape of nanoparticles and was able to reproduce the
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spectral shape of the plasmon resonances. It has two weaknesses, however. The

total volume of material that can be described is limited by available computer

resources to dimensions of a few hundred nanometers and the electric fields close to

particle surface are inaccurate [41].

(2) Finite-difference time-domain (FDTD) methods. The popular FDTD tech-

nique has also been used for the modeling of plasmon resonances [45, 46, 47]. In this

technique, the Maxwell’s equations in differential form are solved directly. The space

and time are both discretized and a difference approximation is applied to evaluate

the space and time derivatives of the field. The equations are solved in a leap-frog

manner; that is, the electric field is solved at a given instant in time, then the mag-

netic field is solved at the next instant in time, and the process is repeated over and

over again. Although the FDTD technique is rather versatile and easy to implement,

it has several drawbacks as far as as the analysis of plasmon resonance modes in

nanoparticles is concerned. First, it is a “probing” technique when a nanoparticle

is “numerically probed” many times by incident radiation of different frequencies

and polarizations. In other words, FDTD is a “trial-and-error” approach to the

analysis of plasmon resonance modes in nanoparticles, and this is detrimental to the

effectiveness of FDTD for plasmon mode computations. Second, FDTD requires dis-

cretization of three-dimensional space, since only a finite region of three-dimensional

space can be discretized and used in computations, FDTD requires the introduction

of artificial external boundaries and special absorbing boundary conditions on these

boundaries to minimize distortions and errors caused by the introduction of artificial

boundaries. Finally, plasmon resonances occur in dispersive dielectric media with

9



non-instantaneous in time (convolution-type) constitutive relations between electric

displacement and electric field. These non-instantaneous constitutive relations lead

to finite difference schemes with the electric field coupling at all previous time-steps.

This past history coupling of electric field diminishes the effectiveness of FDTD for

plasmon resonance computations.

(3) T-matrix method [48, 49, 50]. In T-matrix method, the incident and

scattered electric fields are expended in series of suitable vector spherical wave func-

tions, and the relation between the columns of the respective expansion coefficients

is established by means of a transition matrix (or T-matrix). The elements of the

T-matrix are independent of the incident and scattered electric fields and only de-

pend on the shape, size, refractive index of the particle as well as its orientation

with respect to the reference frame. These elements are obtained by numerical

integration. While the T-matrix method is very accurate and powerful, it suffers

from two major disadvantages. First, for a particle with arbitrary shape, the el-

ements of T-matrix have to be computed through a surface integral. As this is

computationally expensive, most implementations of this method are restricted to

axisymmetric scatterers. In this case, the surface integrals can be reduced to line

integrals. Second, the numerical stability of this method is compromised for highly

aspherical particles, for which the convergent size of the T-matrix should be large,

and T-matrix computations may converge very slowly or even diverge.

(4) Multiple multipole (MMP) method [51, 52, 53]. In MMP method, the fields

in the individual domains of the structure under investigation are described by series

expansion of known analytical solutions of Maxwell equations (multipole functions,

10



plane waves, waveguide modes, etc.). Each solution has a free parameter that can

be determined from the boundary conditions to be satisfied in a suitably selected

set of points on the interfaces between the domains. Usually more conditions than

free parameters are used, and the resulting over-determined system of equations is

solved in the least-squares sense. With this procedure a smooth error distribution is

obtained on the boundaries, and one can evaluate the errors in the individual bound-

ary points to estimate the quality of the solution. Note that Maxwell equations are

exactly fulfilled inside the domains but are only approximated on the boundaries.

In this case, the computational effort varies with the number of matching points,

expansion functions, and basis functions used in the expansions. The computational

advantage of the MMP is that only the boundaries need to be discretized and not

the domains themselves.

It can be seen that by using the above mentioned methods, plasmon resonances

in metallic nanoparticles are found numerically by using a “trial-and-error” method,

i.e., by probing metallic nanoparticles of complex shapes with radiation of various

frequencies and polarizations. A mode-based approach and the direct calculations

of plasmon resonance modes are clearly preferable. In this dissertation, an integral

equation based numerical technique is presented to fully characterize the plasmon

resonances in nanoparticles [9, 20, 58, 59, 60, 61, 62, 63]. The basic idea of the tech-

nique is to frame the plasmon resonance as an integral equation based eigenvalue

problem, which was proposed by Mayergoyz and Fredkin [19] and can be traced

back to publications of Mayergoyz [54, 55]. The integral equation technique has

been also used for the analysis of plasmon resonances in a limited form by Ouyang
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and Isaakson [56, 57]. By using this technique, the plasmon resonance modes and

resonant frequencies of three dimensional nanoparticles can be computed directly

at the quasi-electrostatic limit by solving an eigenvalue problem for specific homo-

geneous surface integral equations. The calculation of high order corrections which

counts for the finite wavelength nature of radiation has been developed through

perturbation technique. The integral equation technique has been also extended

to the computation of extinction cross-sections of nanoparticles, where the problem

is reduced to the solution of an inhomogeneous integral equation. Furthermore,

in this dissertation work, the fast multipole method (FMM) [64, 65] is applied for

the large scale eigenvalue problem to reduce the computational cost from O(N2) to

O(NlogN) which is a great advance when N is large. For these reasons, the integral

equation based numerical technique is very efficient and can be instrumental for the

design of plasmon resonant nanoparticles and to tailor their optical properties for

various applications.

1.3 Outline

This dissertation is organized as follows. Chapter 2 presents the basic idea

of the electrostatic (plasmon) resonance (ESR) model. It is shown that the plas-

mon resonant frequency of a nanoparticle can be directly computed through the

solution of an integral equation based eigenvalue problem. The technique for the

discretization of the integral equation is discussed and numerous numerical results

are presented and compared with theoretical results as well as available experimental
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data for various three-dimensional nanoparticles. In the last part of this chapter, the

ESR model is extended for the analysis of plasmon resonances in metallic nanoshells,

which is very promising for biological sensing applications.

The numerical aspect of computations of the eigenvalue problem is consid-

ered in Chapter 3. The fast multiple method (FMM) is introduced for the large

scale eigenvalue problem. The applicability of FMM and its implementation in

the iterative algorithm are presented in detail. Numerical results which illustrate

the efficiency of FMM and a comparison with traditional methods for the numerical

analysis of plasmon resonances are presented. In addition, a semi-analytical method

based on multipole expansions is developed for the analysis of plasmon resonances

in spherical nanoparticles.

In Chapter 4, the computation of extinction cross sections (ECS) of nanopar-

ticles is demonstrated. In this chapter, the plasmon resonance in nanoparticles is

treated as a scattering problem. It is shown that the scattered electromagnetic

fields can be obtained via the solution of an inhomogeneous integral equation and

then the ECS is computed by invoking the optical theorem. Simulation results are

presented and compared with theoretical results and available experimental data

for three-dimensional nanoparticles. In the last section of Chapter 4, the plasmonic

waveguide of light is discussed and numerically investigated.

Finally, conclusions and further work are presented in Chapter 5.
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Chapter 2

Plasmon Resonances As an Eigenvalue Problem

In this chapter, the theory and numerical analysis of (electrostatic) plasmon reso-

nance modes in three-dimensional nanoparticles is presented. It is shown that the

problem of determining plasmon resonance modes in nanoparticles can be treated as

an integral-equation-based classical eigenvalue problem, and the plasmon resonant

frequencies can be directly found through the solution of this eigenvalue problem

(sections 2.1). It is also demonstrated that radiation corrections due to finite sizes

of nanoparticles can be computed through perturbation technique. The comparison

between this method and the Mie theory for spherical nanoparticle is demonstrated

in section 2.2. The numerical technique to solve the integral equation as well as

the numerical analysis of plasmon resonances in three-dimensional nanoparticles are

presented in section 2.3. Finally, the integral equation technique is extended to the

generalized eigenvalue problem for the analysis of nanoshell structures in section

2.4.
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2.1 Theory of (electrostatic) plasmon resonances

2.1.1 General considerations of (electrostatic) plasmon resonances

It is known that plasmon resonances in nanoparticles occur at specific frequen-

cies for which the particle permittivity is negative and the free-space wavelength of

the radiation is large in comparison with particle dimensions. The latter condition

suggests that these resonances are electrostatic in nature. Indeed, since particle

dimensions are small compared to the free-space wavelength of the radiation (when

resonances occur), time-harmonic electromagnetic fields within the nanoparticles

and around them vary almost with the same phase. As a result, at any instant

of time these fields look like electrostatic fields. Therefore, in the study of plas-

mon resonances in nanoparticles, we shall follow the traditional approach where all

losses are first neglected and resonance frequencies are found for lossless systems as

frequencies for which source-free electromagnetic fields may exist. This approach

leads to the consideration of resonances in the electrostatic limit where all radiation

losses are first neglected. When the dielectric permittivity of nanoparticles is nega-

tive, the uniqueness theorem of electrostatics is broken. For this reason, source-free

electrostatic fields may appear for certain negative values of dielectric permittivi-

ties, which is the manifestation of resonances. The frequencies corresponding to the

above negative values of permittivity are the resonance frequencies.

It is clear from the previous discussion that electrostatic resonances may occur

only in particles whose media exhibit dispersion and the real part of the permittivity

assumes negative value for some range of frequencies. For metals, this frequency
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Figure 2.1: Measured relative permittivity [68] of silver as a function of wave-

length(frequency).
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Figure 2.2: Measured relative permittivity [68] of gold as a function of wave-

length(frequency).
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range is below the plasma frequencies ωp, but at sufficiently high frequencies for

collisions to be unimportant. The dispersion relation of many metals (but not all)

can be well described by the Drude model:

ε (ω) = ε0

[
1− ω2

p

ω(ω + iγ)

]
, (2.1)

ω2
p =

nee
2

ε0me

. (2.2)

where γ is the damping factor or electron relaxation rate. The most commonly used

data from literature for ε(ω) are the tables in Paliks Handbook of Optical Constants

[69] and the tables by Johnson and Christy [68]. As an example, the dispersion

relations for silver and gold [68] are shown in Figures 2.1 and 2.2, respectively.

2.1.2 Perturbation formulations

( )ωεε +
+ =

0εε =−+V

−V

S

n
�

σ

Figure 2.3: The dielectric nanoparticle bounded by surface S.

Consider a nanoparticle of arbitrary shape with uniform dielectric permittivity

ε+(ω) (Fig. 2.3). We are interested in negative values of ε+(ω) for which a source-

free electromagnetic field may exist. To find such permittivities, we shall start with
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Maxwell equations in term of the vectors (where e−iωt is assumed for E, H, e, h):

e = ε
1
2
0 E, h = µ

1
2
0 H (2.3)

and spatial coordinates scaled by the general diameter d of the nanoparticle. This

leads to the following boundary value problem:

∇× e+ = −iβh+, ∇× h+ = i
ε+

ε0

βe+, (2.4)

∇ · e+ = 0, ∇ · h+ = 0, (2.5)

∇× e− = −iβh−, ∇× h− = iβe−, (2.6)

∇ · e− = 0, ∇ · h− = 0, (2.7)

n×
(
e+ − e−

)
= 0, n×

(
h+ − h−

)
= 0, (2.8)

n ·
(

ε+

ε0

e+ − e−
)

= 0, n ·
(
h+ − h−

)
= 0, (2.9)

where superscripts “+” and “-” are used for physical quantities inside (V +) and

outside (V −) the nanoparticle, respectively, n is the outward unit normal to S, and

β = ω
√

µ0ε0d. (2.10)

Since the free-space wavelength λ is large in comparison with the dimension of

nanoparticle, β can be treated as a small parameter and source-free solutions of

the boundary value problem (2.4)–(2.9) and dielectric permittivities ε+(ω) at which

they occur can be expanded in terms of β:

e± = e±0 + βe±1 + β2e±2 + . . . , (2.11)

h± = h±0 + βh±1 + β2h±2 + . . . , (2.12)
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ε+ = ε
(0)
+ + βε

(1)
+ + β2ε

(2)
+ + . . . . (2.13)

By substituting formulas (2.11)–(2.13) into equations (2.4)–(2.7) as well as boundary

conditions (2.8)–(2.9) and equating terms of equal powers of β, we can obtain the

boundary value problems for e±k and h±k (k = 0, 1, 2, . . .).

2.1.3 Zero order solution

For zero-order terms, these boundary value problems are written in terms of

E±
0 = ε

− 1
2

0 e±0 and H±
0 = µ

− 1
2

0 h±0 as follows:

∇× E±
0 = 0, ∇ · E±

0 = 0, (2.14)

n×
(
E+

0 − E−
0

)
= 0, n ·


ε

(0)
+

ε0

E+
0 − E−

0


 = 0, (2.15)

and

∇×H±
0 = 0, ∇ ·H±

0 = 0, (2.16)

n×
(
H+

0 −H−
0

)
= 0, n ·

(
H+

0 −H−
0

)
= 0. (2.17)

From equations (2.16) and (2.17), it is clear that:

H±
0 = 0. (2.18)

To solve E0 from (2.14)-(2.15), an electric potential ϕ can be introduced for

this source-free electric field and the potential can be represented as the electric

potential of single layer of electric charges σ distributed over the boundary S of the

particle (Fig. 2.3):

ϕ (Q) =
1

4πε0

∮

S

σ (M)

rMQ

dSM , (2.19)
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where Q and M are the observation point and integration point on boundary S,

respectively. In other words, a single layer of electric charges on S may create the

same electric field in the free space as the source-free electric field that may exist

in the presence of the dielectric nanoparticle with negative permittivity. It is clear

that the electric field of surface charges σ is curl and divergence free in V + and

V − and satisfies the first boundary condition in (2.15). Next, we recall that the

normal components of electric field induced by surface electric charges are given by

the formulas[70, 71]:

n (Q) · E±
0 (Q) = ∓σ (Q)

2ε0

+
1

4πε0

∮

S
σ (M)

rMQ · nQ

r3
MQ

dSM . (2.20)

By substituting formulas (2.20) into the second boundary condition (2.15), after

simple transformations we arrive at the following homogeneous boundary integral

equation:

σ (Q) =
λ

2π

∮

S
σ (M)

rMQ · nQ

r3
MQ

dSM , (2.21)

where the eigenvalue λ (not wavelength) is defined by:

λ =
ε
(0)
+ (ω)− ε0

ε
(0)
+ (ω) + ε0

. (2.22)

Thus, source-free electric fields may exist only for such values of permittivity ε
(0)
+ that

the integral equation (2.21) has nonzero solutions. In other words, in order to find

the resonance values of ε
(0)
+ (and the corresponding resonance frequencies) as well as

resonance modes, the eigenvalues and eigenfunctions of the integral equation (2.21)

must be computed. Integral equation (2.21) and its spectrum for the calculations

of electrostatic and scattering problem with negative ε were extensively studied in
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publications of Mayergoyz [54, 55] and later introduced for the analysis of plasmon

resonances by Ouyang and Isaacson [56, 57]. Then it was greatly expanded in

publications [19, 9, 20, 58, 59, 60, 61, 62, 63]

For particles of complex shapes the resonance frequencies and resonance modes

can be found through numerical solution of integral equation (2.21). If the boundary

S of the particle is not smooth, then σ (M) may have singularities at the corners and

the edges of S that may negatively affect the accuracy of numerical computations.

In this situation, the dual formulation can be employed, where dipole (double layer

of electric charges) density τ (M) is distributed over S in such a way that it creates

the same electric displacement field (D0) in free space as the source-free electric

displacement field that may exist in the presence of the dielectric particle with neg-

ative permittivity. By using the known properties of double-layer potential[70, 71],

it can be shown that the two displacement fields mentioned above will be identical

if the dipole density τ (M) satisfies the following homogeneous boundary integral

equation:

τ (Q) =
λ

2π

∮

S
τ (M)

rQM · nM

r3
QM

dSM , (2.23)

where λ is given by formula (2.22). It is apparent that the boundary integral equa-

tion (2.23) is adjoint to the integral equation (2.21). For this reason, it has the

same spectrum as one can expect on the physical grounds. The dipole density τ(M)

is proportional to the discontinuity of double-layer potential across S and, conse-

quently, it is finite even for non-smooth boundaries S. This is the advantage of

integral equation (2.23) for numerical computations with non-smooth boundaries
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Figure 2.4: Nanoparticles on substrate. The “dash particle” is the mirror image of

the actual particle on the substrate (see formula (2.25)).

S. In applications, nanoparticles are usually placed on dielectric substrates (see

Fig. 2.4). In this case, the integral equation (2.21) can be modified as follows:

σ (Q) =
λ

2π

∮

S
σ (M)n (Q) · ∇Q [G (Q,M)] dSM , (2.24)

where λ is given by formula (2.22), while G (M, Q) is the Green function defined by

the formula:

G (Q, M) =
1

rMQ

− ε− ε0

ε + ε0

1

rM ′Q
(2.25)

Here, ε is the permittivity of the substrate and M ′ is the image of M with respect

to the substrate plane S̃.

The presented discussion can be easily extended to the analysis of electrostatic

(plasmon) resonances of several particles located in proximity to one another. In

this case S in integral equations (2.21) and (2.23) must be construed as the union

of boundaries of all dielectric particles, while σ (M) (and τ (M)) are defined on this

union. It has to be noted, however, as the number of nanoparticles increases, the

computational cost for solving the integral equations (2.21) and (2.23) becomes very

expensive and this bottleneck problem will be addressed in Chapter 3.
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The kernels in integral equations (2.21) and (2.23) have weak (integrable in

the usual sense) singularities. For this reason, the integral operators in the above

integral equations are compact. This implies that the plasmon spectrum is discrete

despite the infinite region of field distribution. It has been proved [70, 71] that the

spectrum of integral equation (2.21) has the following properties: for any shapes

of S all eigenvalues are real, λ = 1 is an eigenvalue, and for all other eigenvalues

|λ| > 1. It is apparent from (2.21) that the eigenvalue λ = 1 corresponds to the

case of ε
(0)
+ → ∞, and the respective eigenfunction σ (M) can be construed as the

distribution of surface electric charges over the boundary S of a conductor V +. This

eigenvalue is irrelevant as far as the discussion of electrostatic (plasmon) resonances

is concerned. All other eigenvalues correspond to source-free (resonance) configura-

tions of electrostatic fields and, according to (2.21), these configurations may exist

(as expected) only for negative values of ε
(0)
+ . After these negative resonance values

of ε
(0)
+ are found through the solution of integral equation (2.21), the appropriate

dispersion relation can be employed to find the corresponding resonance frequencies.

When losses are not neglected, actual permittivities are complex-valued functions

of frequency ω. These permittivities may assume real resonance values ε
(0)
+ only for

complex resonance frequencies.

The kernels in integral equations (2.21) is not Hermitian (not self-adjoint),

because the kernel of this equation is not symmetric. For this reason, the eigen-

functions σi(M) and σk(M) corresponding to different eigenvalues λi and λk are not

orthogonal on S in the usual sense. Nevertheless, it has been shown [20] that elec-

trical fields E0i and E0k corresponding to eigenfunctions σi(M) and σk(M) satisfy
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the following strong orthogonality conditions:

∫

V ±
E0i · E0kdV = 0. (2.26)

Furthermore, the eigenfunctions σk(M) and τi(M) of adjoint equations 2.21) and

(2.23) form two biorthogonal sets

∮

S
σk(M)τi(M)dS = δki. (2.27)

This biorthogonal property is very important and can be used for the analysis of

time-dynamics of plasmon resonances in nanoparticles [61].

It is instructive to note that the “plasmon” eigenfunctions of integral equation

(2.21) have the property:
∮

S
σ (M) dSM = 0. (2.28)

Indeed, by integrating both sides of equation (2.21) with respect to Q and by using

the facts that:
∮

S

rMQ · nQ

r3
MQ

dSM = 2π (2.29)

and λ 6= 1 for plasmon resonances, we arrive at (2.28).

It is apparent that the mathematical structure of integral equation (2.21) is

invariant with respect to the scaling of S, i.e. the scaling of the dimensions of the

particle. This leads to the unique property of electrostatic (plasmon) resonances:

resonance frequencies depend on particle shape but they are scale invariant with

respect to particle dimensions, provided that they remain appreciably smaller than

the free-space wavelength.
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2.1.4 First order correction

From formulas (2.4)–(2.9), (2.11)–(2.13) and (2.18), we derive the following

boundary value problems for the first-order corrections e±1 , ε
(1)
+ and h±1 , respectively:

∇× e±1 = 0, ∇ · e±1 = 0, (2.30)

n×
(
e+

1 − e−1
)

= 0, n ·

ε

(0)
+

ε0

e+
1 − e−1


 = −ε

(1)
+

ε0

n · e+
0 , (2.31)

and

∇× h+
1 = i

ε
(0)
+

ε0

e+
0 , ∇× h−1 = ie−0 , ∇ · h±1 = 0, (2.32)

n×
(
h+

1 − h−1
)

= 0, n ·
(
h+

1 − h−1
)

= 0, (2.33)

where as before e±0 = ε
1
2
0 E±

0 .

To solve (2.30)-(2.31), the electric potential ϕ1 of a single layer of electric

charges σ1 distributed over S can be introduced for the electric field e±1 . Then,

by using formulas (2.20) and the same reasoning as in the derivation of integral

equation (2.21), we arrive at the following integral equation for σ1 (M):

σ1 (Q)− λ

2π

∮

S
σ1 (M)

rMQ · nQ

r3
MQ

dSM = ε
(1)
+

2ε0

ε
(0)
+ + ε0

nQ · e+
0 (Q) , (2.34)

where λ is given by formula (2.22).

It is clear that λ is one of the eigenvalues of integral equation (2.21), because

only for such λ nonzero field e0 exists. Since λ in (2.34) is an eigenvalue, a solu-

tion to equation (2.34) exists only under the condition that the right-hand side of

equation (2.34) is orthogonal on S to a nonzero solution τ (Q) of the correspond-

ing homogeneous adjoint equation (2.23) with the same eigenvalue λ (this is the
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so-called “normal solvability condition”). It is clear that nQ · e+
0 (Q) is proportional

to ∂ϕ+

∂n
(Q). By using the well-known properties of double-layer potential [70, 71], it

can be shown that τ (Q) is proportional to ϕ+ (Q). Consequently,

∮

S
τ (Q)nQ · e+

0 dSQ = α
∮

S
ϕ+ (Q)

∂ϕ+

∂n
(Q) dSQ = α

∮

V +
|∇ϕ+|2dV 6= 0. (2.35)

This means that the integral equation (2.34) is only solvable if

ε
(1)
+ = 0. (2.36)

Thus, for any shape of nanoparticle the first order correction for resonant values

of dielectric permittivity is equal to zero. As a result of (2.36), integral equation

(2.34) is reduced to homogeneous integral equation identical to equation (2.21). This

implies that up to a scale σ (M) and σ1 (M) as well as e±0 and e±1 are identical. For

this reason, it can be assumed that:

e±1 = 0. (2.37)

Next, we proceed to the solution of boundary value problem (2.32)–(2.33).

Terms i
ε
(0)
+

ε0
e+

0 and ie−0 in the first two equations (2.32) can be interpreted as current

sources and the solution of boundary value problem (2.32)–(2.33) can be written in

the following integral form:

h1 (Q) =
iε

(0)
+

4πε0

∫

V +

e+
0 (M)× rMQ

r3
MQ

dVM +
i

4π

∫

V −

e−0 (M)× rMQ

r3
MQ

dVM . (2.38)

The last expression can be appreciably simplified and reduced to an integral over

the boundary S. Indeed, by using the fact that ∇× e±0 = 0 and by employing the

“curl-theorem”[87], after simple transformations we arrive at:

h1 (Q) = −
i
(

ε
(0)
+

ε0
− 1

)

4π

∮

S

nM × e0 (M)

rMQ

dSM . (2.39)

26



2.1.5 Second order correction

In this section, we proceed to the discussion of second order corrections for

ε+ (ω). From formulas (2.4)–(2.9), (2.11)–(2.13) and (2.36)–(2.37) we derive the

following boundary value problems for the second-order corrections of e±2 , ε
(2)
+ and

h±2 , respectively:

∇× e±2 = −ih±1 , ∇ · e±2 = 0, (2.40)

n×
(
e+

2 − e−2
)

= 0, n ·

ε

(0)
+

ε0

e+
2 − e−2


 = −ε

(2)
+

ε0

n · e+
0 , (2.41)

and

∇× h±2 = 0, ∇ · h±2 = 0, (2.42)

n×
(
h+

2 − h−2
)

= 0, n ·
(
h+

2 − h−2
)

= 0, (2.43)

It is apparent from (2.42)–(2.43) that

h±2 = 0. (2.44)

To solve (2.40)–(2.41), we shall first decompose the electric field e±2 into two distinct

components:

e±2 = ẽ±2 + ˜̃e
±
2 , (2.45)

which satisfy the following boundary value problems, respectively:

∇× ẽ2 = −ih1, ∇ · ẽ2 = 0, (2.46)

n×
(
ẽ+

2 − ẽ−2
)

= 0, n ·
(
ẽ+

2 − ẽ−2
)

= 0, (2.47)

and

∇× ˜̃e
±
2 = 0, ∇ · ˜̃e±2 = 0, (2.48)
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n×
(
˜̃e

+

2 − ˜̃e
−
2

)
= 0,

n ·
(

ε
(0)
+

ε0
˜̃e

+

2 − ˜̃e
−
2

)
= −n ·

[
ε
(2)
+

ε0
e+

0 +
(

ε
(0)
+

ε0
− 1

)
ẽ+

2

]
. (2.49)

The solution of the boundary value problem (2.46)–(2.47) is:

ẽ2 (P ) = − i

4π

∫

R3

h1 (Q)× rQP

r3
QP

dVQ. (2.50)

By substituting the expression (2.39) into the last formula and by changing the

order of integration, we arrive at:

ẽ2 (P ) = −

(
ε
(0)
+

ε0
− 1

)

16π2

∮

S
(nM × e0 (M)) ×

(∫

R3

rQP

r3
QP

1

rQM

dVQ

)
dSM . (2.51)

The last expression can be simplified to [20]:

ẽ2 (P ) = −

(
ε
(0)
+

ε0
− 1

)

8π

∮

S

(nM × e0 (M))× rMP

rMP

dSM . (2.52)

Next, we proceed to the solution of the boundary value problem (2.48)–(2.49). It

is apparent that the electric potential ϕ2 of single layer of electric charges σ2 (M)

distributed over S can be introduced for the electric field ˜̃e
±
2 . Then, by using formula

(2.20) and the same line of reasoning as in the derivation of integral equation (2.21),

we obtain the following integral equation for σ2 (M):

σ2 (Q)− λ

2π

∮

S
σ2 (M)

rMQ · nQ

r3
MQ

dSM =
2ε2

0

ε0 − ε
(0)
+

n ·

ε

(2)
+

ε0

e+
0 +


ε

(0)
+

ε0

− 1


 ẽ+

2


 ,

(2.53)

where as before λ is given by formula (2.22) and is one of the eigenvalues of inte-

gral equation (2.21). Since λ is an eigenvalue, a solution to equation (2.53) exists

(according to the Fredholm Theorem) only under the condition that the right-hand

side of the equation (2.53) is orthogonal on S to a nonzero solution τ (Q) of the
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corresponding homogeneous adjoint equation (2.23). This normal solvability con-

dition leads to the following expression for the second order correction of resonant

permittivity ε
(2)
+ :

ε
(2)
+ =

ε0

(
ε
(0)
+

ε0
− 1

) ∮
S τ (Q)nQ · ẽ+

2 (Q) dSQ

∮
S τ (Q)nQ · e+

0 (Q) dSQ

. (2.54)

Thus, the algorithm for computations of the second order correction ε
(2)
+ can be

stated as follows: first, integral equations (2.21) and (2.23) are solved and for each

eigenvalue the corresponding ε
(0)
+ and eigenfunction σ (M) and τ (M) are found;

then, by using formula (2.52), ẽ+
2 is computed on S; finally, by employing expres-

sion (2.54), the second-order corrections ε
(2)
+ to resonant permittivities ε

(0)
+ can be

calculated. According to (2.13), the resonant permittivities are given by the formula:

ε+ = ε
(0)
+ + β2ε

(2)
+ , (2.55)

where β is defined in (2.10).

2.2 Comparison with the Mie theory for sphere

The perturbation formulations have been derived in section 2.1 for the cal-

culation of the values of dielectric permittivity ε+ for specific plasmon modes. To

test its validity, let us first compare with the Mie theory, which provides analytical

solutions for spherical nanoparticles. Indeed, according to the Mie theory, the res-

onance values of dielectric permittivity (up to the second order corrections) for the

first three degenerate plasmon modes (spatially uniform modes) is [39]:

ε+ = −
(
2 +

3

5
β2

)
ε0 = −

(
2 +

12

5
ω2µ0ε0a

2
)

ε0. (2.56)
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In the following, we demonstrate that the perturbation formulations derived in sec-

tion 2.1 lead to the same conclusion.

2.2.1 Zero order solution

We first consider the zero order solution. The boundary value problem (2.14)-

(2.15) subject to a sphere (with radius r) can be rewritten in terms of the scalar

potential ϕ as follows:

∇2ϕ± = 0, (2.57)

ϕ+ = ϕ−, (2.58)

ε
(0)
+

∂ϕ+

∂n
= ε0

∂ϕ−

∂n
, (2.59)

and this potential satisfies the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂ϕ

∂r
− ikϕ

)
= 0. (2.60)

In this case, we are interested in such values of ε
(0)
+ that the sourceless fields

may exist for the above boundary value problem. The general solutions of (2.55)

for regions V + and V − are:

ϕ+ (r, θ, φ) =
∑

l,m

AlmrlYlm (θ, φ) , (2.61)

ϕ− (r, θ, φ) =
∑

l,m

Blmr−l−1Ylm (θ, φ) , (2.62)

where Ylm (θ, φ) are spherical harmonics, and Alm and Blm are unknown coefficients.

Substituting (2.61)-(2.62) into boundary conditions (2.58)-(2.59), and by using or-

thogonality properties of spherical harmonics, we conclude that:

Alm = Blm, (2.63)
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ε
(0)
+ l = −ε0 (l + 1) . (2.64)

Therefore,

ε
(0)
+ = − l + 1

l
ε0. (2.65)

It is clear that when l = 1, the solutions of Laplace’s equation are three-

fold degenerate (m = 0,±1) and the associated electric fields are spatially uniform

inside the sphere. These modes are the fundamental plasmon modes in spherical

nanoparticles and the corresponding resonance value of dielectric permittivity for

these modes is ε
(0)
+ = −2ε0. The frequency at which the dispersion relation assumes

this value is known as the Fröhlich frequency. To make the zero order solution

complete, it is necessary to know the scalar potential, surface charge density and

electrical fields. Since the three modes are degenerate and the only difference is

spatial orientation, in the following analysis, only the mode which has electric field

along the z-axis is considered. It is easy to show that (assuming A10 = 1):

ϕ+ (r, θ, φ) =

√
3

4π
cos θ, (2.66)

ϕ− (r, θ, φ) =

√
3

4π
cos θ, (2.67)

σ0 =
∂ϕ+

∂n
− ∂ϕ−

∂n
= 3

√
3

4π
cos θ, (2.68)

e+
01 (r, θ, φ) = −ar

√
3

4π
cos θ − aθ

√
3

4π
sin θ. (2.69)

In Cartesian coordinates, the electrical field for this mode can be expressed below

and it is clear that the electric field is uniform.

e+
01x (x, y, z) = −

√
3

4π
ax (sin θ cos φ cos θ − cos θ cos φ sin θ) = 0, (2.70)
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e+
01y (x, y, z) = −

√
3

4π
ay (sin θ sin φ cos θ − cos θ sin φ sin θ) = 0, (2.71)

e+
01z (x, y, z) = −

√
3

4π
az (cos θ cos θ + sin θ sin θ) = −

√
3

4π
az. (2.72)

2.2.2 Second order solution

Since ε
(0)
+ = 2ε0, the formula (2.54) for the second order correction of resonance

values of dielectric permittivity becomes:

ε
(2)
+ = −3

∮
S nM · ẽ+

2 (M) τ+
0 (M) dSM∮

S nM · e+
0 (M) τ+

0 (M) dSM

. (2.73)

Although the surface dipole density τ+
0 is not explicitly computed in the zero order

solution, due to the fact that the resulting electric fields are uniform for the mode

under consideration, τ+
0 is proportional to σ+

0 up to a constant. Therefore, σ+
0 can

be used in the evaluation of the integrals in above formula. We first calculate the

denominator of formula (2.73):

Id =
∮

S
nM · e+

0 (M) σ+
0 (M) dSM . (2.74)

Substituting (2.68) and (2.69) into (2.74), after simple algebra, the analytical result

is obtained:

Id = − 9

4π

∫ 2π

0
dφ

∫ π

0
cos2 θr2 sin θdθ = −3. (2.75)

Then formula (2.73) becomes:

ε
(2)
+ =

∮

S
nM · ẽ+

2 (M) τ+
0 (M) dSM . (2.76)

Let’s denote this integral as In. The evaluation of integral In is somewhat lengthy,

nevertheless the main steps are specified as follows. First, we need to express ẽ+
2 in
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terms of e+
0 . According to equation (2.50) and (2.69), it can be shown that:

ẽ+
2 (M) = α

∮

S
r̂QM × aφQ sin θdSQ, (2.77)

where:

α =

(
ε+0
ε0
− 1

)

8π

√
3

4π
= − 3

8π

√
3

4π
. (2.78)

According to equation (2.77), formula (2.74) can be expressed as:

In = α
∮

S
arM ·

{∮

S

rQ − rM

rMQ

× (aφQ sin θQ) dSQ

}
σ+

0 (M) dSM . (2.79)

Note for the unit sphere that

rM = arM = nM , rQ = arQ = nQ, (2.80)

which imply that formula (2.79) can be reduced to:

In = −α
∮

S
aθQ sin θQ ·

{∮

S

arM

rMQ

σ+
0 (M) dSM

}
dSQ. (2.81)

The integral inside the bracket of (2.81) is a vector, the three components can be

analytically evaluated and the results are:

Ix = k1 cos θQ sin θQ cos φQ, (2.82)

Iy = k1 cos θQ sin θQ sin φQ, (2.83)

Iz = k1

(
cos2 θQ +

4

3

)
, (2.84)

where

k1 =
6

5

√
3π. (2.85)

Substituting (2.82)-(2.84) into (2.81 ), we get:

In = −αk1

∮

S

[
cos2 θQ sin2 θQ − sin2 θQ

(
cos2 θQ +

4

3

)]
dSQ. (2.86)
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The rest of the work is straightforward, with some caution in the evaluation, we

obtain:

ε
(2)
+ = In = −3

5
. (2.87)

Then the resonance values of dielectric permittivity for spherical nanoparticles up

to second order corrections are found as

ε+ = ε
(0)
+ + β2ε

(2)
+ = −

(
2 +

3

5
β2

)
ε0. (2.88)

This formula is identical to the analytical expression given by Mie theory (see for-

mula (2.54)). In conclusion, as far as the spherical nanoparticle is concerned, our

integral equation technique agrees with the classical Mie theory.

2.3 Numerical analysis of plasmon resonances in nanoparticles

2.3.1 Numerical technique for solution of integral equation

From the discussion in Section 2.1, it is clear that the key step of numerical

analysis of plasmon resonances in nanoparticles is to solve integral equation (2.21).

Now we proceed to the discussion of an efficient numerical technique for the solutions

of this integral equation. To this end, let us partition S into N small pieces 4Sj

and rewrite integral equation (2.21) as follows:

σ (Q) =
λ

2π

N∑

j=1

∫

4Sj

σ (M)
rMQ · nQ

r3
MQ

dSM . (2.89)

Now, we integrate (2.89) over 4Si:

∫

4Si

σ (Q) dSQ =
λ

2π

N∑

j=1

∫

4Sj

σ (M)

[∫

4Si

rMQ · nQ

rMQ

dSQ

]
dSM , (i = 1, 2, . . . N) .

(2.90)
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By introducing the notation

ωi (M) =
∫

4Si

rMQ · nQ

r3
MQ

dSQ, (2.91)

the last formula can be presented as follows:

∫

4Si

σ (Q) dSQ =
λ

2π

N∑

j=1

∫

4Sj

σ (M) ωi (M) dSM . (2.92)

It is apparent that ωi (M) is the solid angle which 4Si subtends at point M . By

introducing new variables

Xi =
∫

4Si

σ (Q) dSQ, (2.93)

integrals in the right-hand side of (2.92) can be approximated as follows:

∫

4Sj

σ (M) ωi (M) dSM ≈ ωi (Mj) Xj = ωijXj, (2.94)

where Mj is some middle point of partition4Sj. It is apparent (on intuitive grounds)

that approximation (2.94) is more accurate than direct discretization of integral in

(2.21), because solid angles ωi (M) are smooth functions of M , while the kernel of

integral equation (2.21) is (weakly) singular. By substituting formulas (2.93) and

(2.94) into equation (2.92), we obtain:

Xi =
λ

2π

N∑

j=1

ωijXj. (2.95)

Another advantage of discretization (2.95) is that the evaluation of singular integrals

in calculations of ωii can be completely avoided. Indeed, according to formulas (2.29)

and (2.91), we find:

ωii ≈ 2π −
N∑

i=1,i6=j

ωij. (2.96)
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The numerical technique based on discretization (2.95) has been software imple-

mented and extensively tested by the author. It has proved to be remarkably accu-

rate, even for calculation of large eigenvalues.

2.3.2 Numerical results

The algorithm described above has been first tested for spherical nanoparticles

where exact analytical solutions are available (Mie theory[39]). The results of nu-

merical computations are presented in Table 2.1. It is apparent from this table that

numerical results are quite accurate even for appreciably high mode orders. The

surface charge distribution (eigenfunction) for the first 10 eigenmodes are plotted in

Figure 2.5. Next, the described algorithm has been tested for ellipsoidal nanoparti-

cles. The computational results are presented in Table 2.2 for the case of ellipsoid of

revolution with the main axis ratios 1:1:1.55. It is evident from this Table that the

computed eigenvalues compare quite well with the exact (theoretical) eigenvalues

λi = 1
1−2Ni

for spatially uniform modes. It is also apparent that for those modes

∑
i

1
λi

is very close to 1 as it must be. The surface charge distribution (eigenfunction)

for the first 10 eigenmodes are plotted in Figure 2.6

Fig. 2.8 presents the computational results for the resonant free-space wave-

length as a function of separation distance between two gold spherical nanoparticles

located on a dielectric substrate with ε = 2.25ε0 for different values of radius ratio

(see Fig. 2.7). It is clear from Fig. 2.8 that the separation between two spheres

can be effectively used for tuning of plasmon resonances to desirable frequencies.
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Fig. 2.8 is an example of our numerous computations performed for two and several

nanospheres of various radii and separation distances. We have computed the reso-

nance wavelength for two short gold cylinders of ellipsoidal cross-sections placed on

a dielectric substrate (see Fig. 2.9). Fig. 2.10 presents the computational results

for the resonance wavelength as the function of separation between cylinders for

different values of the axis ratio.

Table 2.3 presents the computational results for gold nano-rings placed on a

dielectric substrate. In this table, the computational results for resonance wave

lengths are compared with those found experimentally (see reference [72]). We

have also compared our numerical results with available experimental data for the

following two cases: a) a short gold cylinder of ellipsoidal cross-section (with long

axis 130nm, short axis 84nm, height 30nm) placed on a dielectric substrate and

b) a gold triangular nano-prism (with edge length 48nm, height 14nm). Table 2.4

presents the comparison between our computational results and experimental data

published in references [42, 73], respectively. The electrical field intensity of the first

two plasmon resonance modes for gold triangle prism is shown in Fig.2.11.

Figure 2.12 presents the comparison of computational and experimental results

[74] for the gold nanocube. For the case of the nanocube in water (Fig. 2.12(A)),

the two resonance peaks are observed in experiments at 432nm and 500nm, while

our computational results reveal resonances at 420nm and 478nm, respectively. For

the case of the nanocube on substrate (ε = 2.25ε0 ) (Fig. 2.12(B)), experiments

result in the two resonance peaks at 395nm and 457nm, while our computations

suggest resonances at 410nm and 443nm, respectively.
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In all these computations, the experimentally measured dispersion relation for

gold [68] has been used. The meshes used in calculations are shown in Figure 2.13.

It is thus demonstrated that our computational results compare quite well with

known theoretical results and are in a reasonably good agreement with the available

experimental data.

Table 2.1: Eigenvalues for a single nanosphere.

Mode Computed Mie Mode Computed Mie

number eigenvalues theory number eigenvalues theory

1 2.999191 3 21 9.038890 9

2 2.999193 3 22 9.049236 9

3 2.999194 3 23 9.049301 9

4 4.980130 5 24 9.049312 9

5 4.980130 5 25 10.86267 11

6 4.980148 5 26 10.86268 11

7 5.022817 5 27 10.86291 11

8 5.022828 5 28 10.94108 11

9 6.927911 7 29 10.94200 11

10 6.981790 7 30 11.03838 11

11 6.981884 7 31 11.03839 11

12 6.981885 7 32 11.03846 11

13 7.027287 7 33 11.06465 11

14 7.027289 7 34 11.06497 11

15 7.027393 7 35 11.06500 11

16 8.915480 9 36 12.75603 13

17 8.915606 9 37 12.84736 13

18 8.915633 9 38 12.84819 13

19 8.979679 9 39 12.84824 13

20 8.979774 9 40 12.93150 13
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Table 2.2: Eigenvalues for a single nanoellipsoid with aspect ratio 1:1:1.55.

Mode Computed Theoretical Mode Computed

number eigenvalues values number eigenvalues

1 1.976541 1.9723 6 4.590262

2 3.335450 7 4.829570

3 4.080630 4.0507 8 5.645674

4 4.080692 4.0570 9 5.645746

5 4.590155 10 6.314742
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Figure 2.5: Surface charge distribution (eigenfunction) for the first 10 eigenmodes

of single nanosphere.
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Figure 2.6: Surface charge distribution (eigenfunction) for the first 10 eigenmodes

of single nano-ellipsoidal.
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Table 2.3: Comparison with experimental results [72] for gold nanoring.

Ring1 Ring2 Ring3

Outer radius of the ring (nm) 60 60 60

Height of the ring (nm) 40 40 40

Thickness of ring wall (nm) 14(2) 10(2) 9(2)

Experimental resonance (nm) 1000 1180 1350

Computational resonance (nm) 940 1102 1214

Table 2.4: Comparison with experimental results [42, 73] for gold ellipsoidal cylinder

and triangular prism.

Resonance cylinder prism

wavelength (nm) (nm)

Computational results 622 653

Experimental results 645 690
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Figure 2.7: Two nanospheres on substrate.
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Figure 2.8: Resonance wavelength for two nanospheres on substrate.
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Figure 2.9: Two ellipsoidal cylinders on substrate.
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Figure 2.10: Resonance wavelength for two ellipsoidal cylinders on substrate.
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Figure 2.11: The plasmon mode light intensity of first two resonance modes for

triangular nanoprism, colorbars indicate the ratio of optical near field intensity nor-

malized to incident fields.
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Figure 2.12: Comparison of the plasmon resonance wavelength of (A) nanocube

ensemble in water and (B) single nanocube on a glass substrate. The down arrows

indicate the experimental results (432 nm and 452 nm in (A), 395 nm and 457 nm

for (B)) while the up arrows show the computational results (420 nm and 478 nm

in (A), 410 nm and 443 nm in (B)).
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(a) sphere (b) cube

(c) ring (d) triprism

Figure 2.13: Examples of surface mesh used in computations for different geometry

of three dimensional nanoparticles.
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2.4 Plasmon resonances in shell structures

The tunability of plasmon resonant frequencies in nanoparticles is important

for many applications such as nanophotonics and biosensors. In section 2.3, we

have seen that the plasmon resonant frequencies can be tuned by using a two-sphere

system and adjusting the coupling between the two particles. The tunable frequency

range of this configuration is limited, however, and it usually experiences more losses

than single nanoparticle. The wide range tunability of plasmon resonant frequencies

of single nanoparticle is clearly desired. It has been observed [27, 28] that this

feature can be achieved by using metallic nanoshells and controlling the resonances

frequencies via the shell thickness. In this section, the boundary integral equation

technique for direct calculations of resonance frequencies of metallic nanoshells is

presented. This technique is a modification of the method developed in previous

sections for solid nanoparticles. The wide range tunability of plasmon resonant

frequencies is illustrated by numerical examples. In addition, analytical studies are

performed for spherical and ellipsoidal shells, and a phenomenon of twin spectrum

is discussed.

2.4.1 A generalized eigenvalue problem

To start the discussion, consider a metallic nanoshell with dielectric core shown

in Figure 2.14(a). The plasmon resonances in metallic nanoshell structures can be

formulated as the following boundary value problem: find such values of ε+ for which
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Figure 2.14: (a) Schematic of a nanoshell with dielectric core; (b) the equivalent

problem for plasmon resonance in nanoshells.

there exist non-zero solutions to the differential equations:

∇2ϕ1 = 0 in V1, (2.97)

∇2ϕ2 = 0 in V2, (2.98)

∇2ϕ3 = 0 in V3, (2.99)

subject to the boundary conditions:

ε1
∂ϕ+

1

∂n
= ε+

∂ϕ+
2

∂n
, ϕ+ = ϕ−, on S1, (2.100)

ε+
∂ϕ+

2

∂n
= ε0

∂ϕ+
3

∂n
, ϕ+ = ϕ−, on S2, (2.101)

ϕ3(∞) = 0. (2.102)

Here: ε1 and ε+(ω) are dielectric permittivities for the core and metallic nanoshell,

respectively.

The electric potential of this sourceless field can be represented as an electric

potential of single layers of electric charges σ1 and σ2 distributed over S1 and S2,
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respectively:

ϕ(Q) =
1

4πε0

[∮

S1

σ1(M)

rMQ

dSM +
∮

S2

σ2(M)

rMQ

dSM

]
. (2.103)

In other words, single layers of electric charges σ1(on S2) and σ2(on S2) may create

the same electric field in homogeneous space with ε0 as the resonant source-free

electric field that may exist in the presence of the nanoshell and dielectric core

(see Figure 2.14(b)). It is apparent that the potential given by the formula (2.103)

satisfies the Laplace equations (2.97)-(2.99) and continuity conditions on S1 and

S2. By using formula (2.20), it can be concluded that the boundary conditions

(2.100)-(2.101) for normal derivatives will be satisfied if σ1 and σ2 are solutions of

the following coupled homogeneous boundary integral equations:

ε1

[
2πσ1(Q) +

∮
S1

σ1(M)
rMQ·nQ

r3
MQ

dSM +
∮
S2

σ2(M)
rMQ·nQ

r3
MQ

dSM

]

= ε+

[
−2πσ1(Q) +

∮
S1

σ1(M)
rMQ·nQ

r3
MQ

dSM +
∮
S2

σ2(M)
rMQ·nQ

r3
MQ

dSM

]
,

(2.104)

ε0

[
−2πσ2(Q) +

∮
S1

σ1(M)
rMQ·nQ

r3
MQ

dSM +
∮
S2

σ2(M)
rMQ·nQ

r3
MQ

dSM

]

= ε+

[
2πσ2(Q) +

∮
S1

σ1(M)
rMQ·nQ

r3
MQ

dSM +
∮
S2

σ2(M)
rMQ·nQ

r3
MQ

dSM

]
.

(2.105)

Thus, source-free electric fields may exist only for such negative values of permit-

tivity ε+(ω) that the coupled homogeneous integral equations (2.104)-(2.105) have

non-zero solutions. By discretizing integral operators in the above integral equa-

tions, we arrive at the following generalized eigenvalue problem for ε+:




ε1(K11 + 2πI) ε1K12

ε1K12 ε0(K22 − 2πI)







−→
X 1

−→
X 2


 = ε+




K12 − 2πI) K12

K12 K22 + 2πI







−→
X 1

−→
X 2


 ,

(2.106)
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where matrices Kij are discretized versions of the corresponding integral operators

in (2.104)-(2.105),
−→
X 2 and

−→
X 2 are discretized versions of σ1(M) and σ2(M), respec-

tively, while I is the identity matrix. The solution of the generalized eigenvalue

problem yields the resonance values of ε+, and then the appropriate dispersion rela-

tion ε+(ω) can be employed to find the resonance frequencies for metallic nanoshells.

Since the integral operators in (2.104) and (2.105) are compact, the spectrum is dis-

crete. Furthermore it can be shown that all the eigenvalues associated with the

generalized eigenvalue problem (2.97)-(2.101) are real and negative.

It can be observed that the mathematical structure of boundary integral equa-

tion (2.104)-(2.105) is invariant with respect to the simultaneous and identical scal-

ing of S1 and S2, i.e., the scaling of the dimensions of the shell. This results in

the unique property of plasmon resonances: resonance frequencies depend on shell

shapes but they are scale invariant with respect to shell dimensions, provided that

these dimensions are appreciably smaller than the free-space wavelength.

Table 2.5: Comparison of the resonance wavelengths for Au spherical nanoshells

with silicon cores.

Shell1 Shell2

Inner/outer radius 60/80 nm 55/75nm

Experimental results [27] 752 nm 717 nm

Computational results 795 nm 764 nm

The above integral equation based generalized eigenvalue problem has been

solved by using the discretization technique described in Section 2.3. Table 2.5

presents the results for the plasmon resonances of gold spherical nanoshells with
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silicon cores computed by using our technique and experimentally measured in [27].

The dispersion relation for gold published in [68] has been used in calculations. This

table reveals a fairly good agreement between the experimental and computational

results.
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Figure 2.15: Plasmon resonant wavelengths for Au spherical nanoshells with different

shell thickness. The core of these shells is silicon.

The resonance wavelength of gold spherical nanoshells (with silicon core) has

been also computed for various ratios of inner and outer radius. The numerical

results are illustrated in Figure 2.15. This figure clearly reveals that the resonance

wavelength of nanoshell structures can be tuned within a wide range (from visible

to near infrared) by adjusting the thickness of the shell.
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2.4.2 Analytical results for spherical and ellipsoidal shells

For some simple geometries, it is possible to pursue analytical solutions for

the boundary value problem (2.97)-(2.101). In the following, we demonstrate these

solutions for spherical and ellipsoidal nanoshells and discuss the “twin” spectra

phenomena associated with these shell structures. We also compare these analytical

results with numerical computations of the generalized eigenvalue problem.

For spherical shells, the solution of the boundary value problem (2.97)-(2.101)

can be represented in terms of the spherical harmonics:

ϕ1(r, θ, φ) = ArlYlm(θ, φ), (2.107)

ϕ2(r, θ, φ) = [Brl + Cr−(l+1)]Ylm(θ, φ), (2.108)

ϕ3(r, θ, φ) = Dr−(l+1)Ylm(θ, φ), (2.109)

where A,B,C and D are unknown coefficients. By substituting (2.107)-(2.109) into

boundary conditions (2.100)-(2.101), the linear homogeneous equations for the four

unknown coefficients are obtained. The occurrence of plasmon resonances implies

the existence of non-zero solutions to these equations. The existence of non-zero

solution, in turn, requires that the determinant of the above homogeneous equations

is equal to zero. In this way, the following quadratic equation for ε+ can be derived:

ε2
+l +

(ε1 + ε0)l(l + 1) + ε1l
2(r2/r1)

3 + ε0(l + 1)2(r2/r1)
3

l(l + 1)[(r2/r1)3 − 1]
ε+l + ε1ε0 = 0, (2.110)

where r1 and r2 are the inner radius and outer radius of the spherical nanoshell,

respectively. It turns out that for the spherical nanoshell structure an interesting

phenomenon of twin spectra occurs. The essence of this phenomenon is that for any
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Table 2.6: Comparison of the resonance values of ε+ for spherical nanoshells, ε1 =

5ε0.

Shell1 Shell2

r2/r1 1.5:1 20:1

l = 1 (Theoretical) -8.32,-0.60 -2.50,-1.99

l = 1 (Computational) -8.35,-0.60 -2.51,-1.99

l = 2 (Theoretical) -8.79,-0.58 -3.32,-1.51

l = 2 (Computational) -8.83,-0.57 -3.34,-1.50

l = 3 (Theoretical) -9.15,-0.56 -3.71,-1.34

l = 3 (Computational) -9.21,-0.55 -3.75,-1.33

resonant mode associated with index l there are two resonant values ε
(1)
+l and ε

(2)
+l

related by the formula:

ε
(1)
+l =

ε1ε0

ε
(2)
+l

. (2.111)

Indeed, formula (2.111) is the immediate consequence of equation (2.110). Table

2.6 presents the results for plasmon resonances in spherical nanoshells computed by

using the integral equation based numerical technique and the analytical formula

(2.110). This table illustrates an excellent agreement between the theoretical and

computational results. It is clear that the twin values of ε+l satisfy (2.111).

In the case of ellipsoidal nanoshells, spatially uniform resonance modes can be

easily found analytically. For these modes the relation between the polarization P

of the shell and applied uniform field E0 can be expressed in the form:




α+
x 0 0

0 α+
y 0

0 0 α+
y




P = E0. (2.112)
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By using ellipsoidal coordinates [39], the following formulas for α+
x , α+

y and α+
z can

be derived:

α+
i =

[
ε+ + (ε1 − ε+)

(
N

(1)
i − fN

(2)
1

)] [
ε0 + (ε+ − ε0)N

(2)
i

]
+ fN

(2)
i ε+(ε1 − ε+)

ν
{
(ε+ − ε0)

[
ε+ + (ε1 − ε+)

(
N

(1)
i − fN

(2)
1

)]
+ fε+(ε1 − ε+)

} ,

(2.113)

where i = x, y, z,

ν =
4π

3
a2b2c2, f =

a1b1c1

a2b2c2

, (2.114)

a1, b1, c1 are semi-axes of the inner ellipsoid, a2, b2, c2 are semi-axes of the outer

ellipsoid, while depolarization factors Ni are given by the formulas:

Nx =
abc

2

∫ ∞

0

dλ

(λ + a2)
√

(λ + a2)(λ + b2)(λ + c2)
, (2.115)

Nx =
abc

2

∫ ∞

0

dλ

(λ + b2)
√

(λ + a2)(λ + b2)(λ + c2)
, (2.116)

Nx =
abc

2

∫ ∞

0

dλ

(λ + c2)
√

(λ + a2)(λ + b2)(λ + c2)
, (2.117)

and Nx +Ny +Nz = 1. In the case of axially symmetric ellipsoids (b = c), the above

formulas are reduced to:

Nx =
1− β2

e2

[
1

2β
ln

(
1 + β

1− β

)
− 1

]
, Ny = Ny =

1−Nx

2
, (2.118)

β2 = 1− b2

a2
. (2.119)

The existence of resonances implies that the matrix in (2.112) is singular. According

to (2.113), this means that the resonance values of ε+(ω) can be computed by solving

the following quadratic equation:

(
1− f −N

(1)
i + fN

(2)
i

)
N

(2)
i ε2

+ +
(
N

(1)
i − fN

(2)
i

) (
1−N

(2)
i ε1ε0

)

+
[(

1−N
(1)
i + fN

(2)
i

) (
1−N

(2)
i

)
+

(
f + N

(1)
i − fN

(2)
i

)
N

(2)ε1
i

]
ε+ = 0.

(2.120)
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If the shell has self-similar boundaries S1 and S2, the inner ellipsoid and the outer

ellipsoid have the same depolarization factors. Then, formula (2.120) is reduced to:

ε2
+ +

[(1−Ni + fNi)(1−Ni)ε0 + (f + Ni − fNi)Niε1]

(1− f)(1−Ni)Ni

ε+ + ε1ε0 = 0. (2.121)

Equation (2.121) has the same structure as formula (2.110). This suggests that

the phenomenon of twin spectra occurs for ellipsoidal shells as well, albeit only for

uniform modes. The two resonant values ε
(1)
+ and ε

(1)
+ are related by the formula:

ε
(1)
+ =

ε1ε0

ε
(2)
+

. (2.122)

Table 2.7 presents the results for plasmon resonances in ellipsoidal nanoshells com-

puted by using the integral equation based numerical technique and the analytical

formula (2.121). This table illustrates a very good agreement between the theoretical

and computational results.

Table 2.7: Comparison of the resonance values of ε+ for ellipsoidal nanoshells, ε1 =

15.2ε0.

Shell1 Shell2

a : b : c 1.414:1:1 1.414:1:1

Shell ratio 4:3 7:5

ε+(Theoretical) -25.00,-0.61 -21.04,-0.71

ε+(Computational) -25.83,-0.59 -22.08,-0.69

In conclusion, the analysis of plasmon resonances in metallic nanoshells with

dielectric cores can be reduced to an generalized eigenvalue problem. For spherical

and ellipsoidal nanoshells, simple analytical expressions are obtained for the direct

calculation of plasmon resonant frequencies. The wide range tunability of plasmon
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resonant frequencies via adjusting the thickness of shells has been illustrated by

numerical examples. Furthermore, it can be seen from formulas (2.106), (2.110) and

(2.120), the dielectric permittivity of the core also plays a role in the determination

of the plasmon resonant frequencies, which adds additional capability to tune the

resonant frequency.

56



Chapter 3

Fast Multipole Method for the Solution of Eigenvalue

Problem

In this chapter, the fast multipole method (FMM) is introduced for the solution of

large scale eigenvalue problem. The applicability of FMM and its implementation in

the iterative algorithm are presented in detail. Numerical results which illustrate the

efficiency of FMM compared with traditional method for the numerical analysis of

plasmon resonances are presented. In addition, a semi-analytical method based on

multipole expansions is developed for the analysis of plasmon resonances in spherical

nanoparticles.
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3.1 Why fast multipole method is needed?

In Chapter 2, we have demonstrated that the plasmon resonance frequencies

can be directly obtained by solving the following homogeneous boundary integral

equations

σ (Q) =
λ

2π

∮

S
σ (M)

rMQ · nQ

r3
MQ

dSM , (3.1)

where λ is given by (2.22). By using the discretization technique described in section

2.3, this eigenvalue problem can be written in the matrix form as

Xi =
λ

2π

N∑

j=1

ωijXj, (3.2)

where Xi and ωij are defined in (2.89) and (2.91), respectively. The solutions of the

eigenvalue problem (3.2) is usually obtained by using iterative techniques, which

require matrix-vector product B ← Avk computations. It is apparent that when

matrix A is fully populated, the multiplication Avk is accomplished in O(N2) op-

erations. For large N , the computation cost can be prohibitive. In order to solve

this problem, we have to seek a more advanced algorithm. It is turns out that fast

multipole method (FMM) is ideally suitable for this situation and can appreciably

save the cost of CPU time and memory.

The fast multipole method is regarded as one of the greatest algorithms of

the 20th century [65, 75, 76]. This algorithm allows the product of particular dense

matrices with a vector to be evaluated approximately (to a specified precision) in

O(NlogN) operations, when direct multiplication requires O(N2) operations (when

N is large, the save is considerable). The FMM is originally proposed by Rokhlin

[77] as a fast scheme for accelerating the numerical solution of the Laplace equation
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in two dimensions. It was further improved by Greengard and Rokhlin [64, 79] when

it was applied to particle simulations. Since then, FMM has wide applications in

astrophysics, molecular dynamics, computational fluid dynamics and radar scatter-

ing, etc. For example, Mayergoyz et al applied FMM in the nonlinear magnetosta-

tic calculations [78] recently. Furthermore, Gumerov and Duraiswami published a

monograph [65] in 2005 which reveals the most recent advances in FMM. Its cen-

tral strategy is the hierarchical decomposition of the data-space in the form of a

quadtree (or octtree for the 3-dimensional case). This hierarchical decomposition is

used to cluster particles in the computational domain at various spatial lengths and

compute interactions with other clusters that are sufficiently far away by means of

series expansions (see Figures 3.1 and 3.2).

Figure 3.1: Space partitioning. Figure 3.2: Data structure.

FMM does not work for any matrix-vector multiplication, instead, it only

works for cases that satisfy the following conditions: (1) two sets of points (for ex-

ample, source points and evaluation points) are involved in a vector space; (2) the
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dense matrix is generated by potential (kernel) functions; (3) these functions can be

factorized and have local and multipole expansions; (4) the local expansion coeffi-

cients can be R|R-translated (i.e., local-to-local translation) and the multipole ex-

pansion coefficients can be S|S-translated (i.e., multipole-to-multipole translation);

(5) The multipole expansion coefficients can be S|R-translated (i.e., multipole-to-

local translation). Since the matrix elements of (3.2) are derived from a 1/r-type

kernel, it can be shown that all the above conditions above are met.

3.2 Factorization and translations of the kernel function

In this section, we examine the applicability of FMM to our 1/r-type kernel

function from the mathematic point of view. The key components such as factor-

ization, expansion and translation are described below [65, 80].

3.2.1 Factorization of the kernel function

The kernel function of integral equation (3.1) is:

ωij =
∫

∆Si

rMjQi
· nQi

r3
MjQi

dSi. (3.3)

If the patch is small enough, we can assume the distribution of the physical quantity

is uniform on the patch, the integral in the last equation becomes a multiplication

ωij =
rMjQi

· nQi

r3
MjQi

∆Si, (3.4)

and it is indeed the gradient of 1/rMQ:

ωij = ∇(
1

rMjQi

) · nQi
∆Si, (3.5)
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where

rMjQi
=

∣∣∣rMj
− rQi

∣∣∣ . (3.6)

�
�

�

�
�

Figure 3.3: Multipole expansion.

Now we start from the factorization of kernel 1
r
. The expansion in the three-

dimensional case can be obtained according to the additional theorem of spherical

harmonics:

1

|x− x′| =
∞∑

l=1

l∑

m=−l

4π

2l + 1

rl
<

rl+1
>

Y ∗
lm(θ′, φ′)Ylm(θ, φ), (3.7)

where

Y ∗
lm(θ, φ) = (−1)mYl,−m(θ, φ), (3.8)

the x′(r′, θ′, φ′) and x(r, θ, φ) indicate the source point and evaluation point respec-

tively. Supposing we select the expansion center at x∗(r1, θ1, φ1), we can introduce

the multipole expansion (S-expansion) and local expansion (R-expansion). Let x

be the evaluation point and x′ be the source point. If |x− x∗| > |x′ − x∗|, the

multipole expansion is defined as the following (see Figure 3.3):

1

|(x− x∗)− (x′ − x∗)| =
∞∑

l=1

l∑

m=−l

Clm(x′−x∗)Slm(x− x∗), (3.9)
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where Clm(x′−x∗) = 4π
2l+1

|x′ − x∗|l Y ∗
lm(x′ − x∗), Slm(x− x∗) = Ylm(x−x∗)

|x−x∗|l+1 .

�
�

�

�
�

Figure 3.4: Local expansion.

For the case |x′ − x∗| > |x− x∗|, the R-expansion is defined as following:

1

|(x− x∗)− (x′ − x∗)| =
∞∑

l=1

l∑

m=−l

Blm(x′−x∗)Rlm(x− x∗), (3.10)

where Blm(x′−x∗) = 4π
2l+1

Y ∗lm(x′−x∗)
|x′−x∗|l+1 , Rlm(x− x∗) = |x− x∗|l Ylm(x− x∗).

3.2.2 Translation in 3D

In FMM algorithm, the multipole (S-) expansion and local (R-) expansion

of a potential need to be translated to the same type of expansion at different

expansion centers or a different type of expansion at different expansion centers.

In the following, we discuss three types of translation: the “multipole-to-multipole”

translation, the “local-to-local” translation and the “multipole-to-local” translation.

“Multipole-to-multipole” translation. Consider the multipole expan-

sion in formula (3.9) with expansion center x∗(r1, θ1, φ1), this expansion can be
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Figure 3.5: Illustration of local-to-local (R|R), multipole-to-local (S|R), and

multipole-to-multipole (S|S) translations from expansion center r1 to expansion

center r2 (translation vector t = r2 − r1). The star shows location of a source.

Expansion about center r1 is valid inside the lighter and darker gray area, while

expansion about center r2 is valid only in the darker gray area.

re-expanded with the center at x′∗(r2, θ2, φ2) and expressed as:

1

|x− x′| =
∞∑

j=0

j∑

k=−j

Mjk(x
′ − x′∗)Sjk(x− x′∗), (3.11)

where

Mjk =
∞∑

n=0

n∑

m=−n

Ok−m
j−n Jk−m

m Am
n Ak−m

j−n

Ak
j

|x′ − x′∗|n Y −m
n (x′ − x′∗), (3.12)

Am
n =

(−1)n

√
(n−m)!(n + m)!

, (3.13)

Jm′
m =





(−1)min(|m′|,|m|), m ·m′ < 0,

1, otherwise.

(3.14)

“Local-to-local” translation. Consider the local expansion in formula (3.10) with
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expansion center x∗(r1, θ1, φ1), this expansion can be re-expanded with the center

at x′∗(r2, θ2, φ2) and expressed as:

1

|x− x′| =
∞∑

j=0

j∑

k=−j

Ljk(x
′ − x′∗)Rjk(x

′ − x′∗), (3.15)

where

Ljk =
∞∑

n=0

n∑

m=−n

Om
n Jm

n−j,m−kA
k
j A

m−k
n−j

Am
n

|x′ − x′∗|n−j
Y m−k

n−j (x′ − x′∗), (3.16)

Jm′
n,m =





(−1)n(−1)m, m ·m′ < 0,

(−1)n(−1)m′−m, m ·m′ < 0and |m′| < |m| ,

(−1)n, otherwise,

(3.17)

and Am
n defined in (3.13).

“Multipole-to-local” translation. Consider the multipole expansion in formula

(3.9) with expansion center x∗(r1, θ1, φ1), this expansion can be re-expanded to a

local expansion with the center at x′∗(r2, θ2, φ2) and expressed as:

1

|x− x′| =
p∑

j=0

j∑

k=−j

Ljk(x
′ − x′∗)Rjk(x

′ − x′∗), (3.18)

where

Ljk =
p∑

n=0

n∑

m=−n

Om
n (−1)n+kAm

n Ak
j

Am−k
n+j

|x′ − x′∗|−(n+j+1)
Y m−k

n+j (x′ − x′∗), (3.19)

with Am
n defined in (3.16).

The translations presented above are infinite in dimension and the translations

are exact operations. However, in the actual FMM algorithm, a truncated matrix

of size p2 × p2 (for 3D case) is used instead of the actual transformation matrix,
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thus introducing an error in the computation. This truncation is desirable because

it reduces the computational complexity, and it can be shown that [64, 65], for

convergent series, the error introduced in this step is bounded and can be reduced

to an arbitrarily small number by increasing the truncation number p. It is also

possible to determine what truncation number p to use in order to achieve a desired

level of accuracy [65, 80].

3.2.3 Differentiation of the 1
r kernel in 3D

Now we consider the gradient of kernel 1/rMQ since the real computation relies

on it. After factorization, the gradient is carried out on each item of the series. So

we need to know how to calculate the gradient of the spherical harmonics. Since

the data structure and the space discretization requires the Cartesian coordinates,

we also need to convert the differentiation of spherical harmonics from spherical

coordinates to the Cartesian coordinates. At the same time, we will employ the

recursive relation of Legendre functions to get the expression. The derivation is

straightforward but somewhat lengthy, in the following, we will only give the results

[65].

In spherical coordinates, the gradient is defined as

∇x

(
1

|yj − xi|

)
=

[
ar

∂

∂rx

+ aθ
∂

rx∂θ
+ aφ

∂

rx sin θxφ

]
, (3.20)

∞∑

n=0

n∑

m=−n

4π

2n + 1

rn
<

rn+1
>

Y ∗
nm(θxi

, φxi
)Ynm(θyj

, φyj
). (3.21)

The conversions between two coordinate systems are given by

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, (3.22)
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µ = cos θ, (3.23)

Dx =
1

2

(
Dxy + Dxy

)
(3.24)

Dy =
i

2

(
Dxy −Dxy

)
, (3.25)

Dz =
∂

∂z
= µ

∂

∂r
+

1− µ2

r

∂

∂µ
, (3.26)

where

Dxy =
∂

∂x
+ i

∂

∂y
=

eiφ

r
√

1− µ2

[
(1− µ2)(r

∂

∂r
− µ

∂

∂µ
) + i

∂

∂φ

]
, (3.27)

Dxy =
∂

∂x
− i

∂

∂y
=

e−iφ

r
√

1− µ2

[
(1− µ2)(r

∂

∂r
− µ

∂

∂µ
)− i

∂

∂φ

]
. (3.28)

The recursive relations of the associated Legendre functions are

µPm
n =

1

2n + 1

[
(n + m)Pm

n−1 + (n−m + 1)Pm
n+1

]
, (3.29)

(1− µ2)
d

dµ
Pm

n =
1

2n + 1

[
(n + 1) (n + m) Pm

n−1 − n(n−m + 1)Pm
n+1

]
. (3.30)

Finally, we can get:

Dz (Rm
n ) = am

n Rm
n−1, (3.31)

Dz (Sm
n ) = −am

n+1S
m
n+1, (3.32)

where:

am
n =

√
2n + 1

2n− 1
(n2 −m2), (3.33)

Rm
n = rnY m

n (θ, φ), (3.34)

Sm
n = r−n−1Y m

n (θ, φ), (3.35)

Y m
n (θ, φ) = (−1)m

√√√√2n + 1

4π

(n− |m|)!
(n + |m|)!P

|m|
n (µ)eimφ, (3.36)
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Dxy(R
m
n ) = bm

n Rm+1
n−1 , (3.37)

Dxy(S
m
n ) = c−m−1

n+1 Sm+1
n+1 , (3.38)

Dxy(R
m
n ) = b−m

n Rm−1
n−1 , (3.39)

Dxy(S
m
n ) = cm−1

n+1 Sm−1
n+1 , (3.40)

where

bm
n =





−
√

(2n+1)(n−m−1)(n−m)
(2n−1)

, 0 ≤ m ≤ n,
√

(2n+1)(n−m−1)(n−m)
(2n−1)

, −n ≤ m ≤ 0,

0, |m| > n

(3.41)

cm
n =





√
(2n−1)(n−m−1)(n−m)

(2n+1)
, 0 ≤ m ≤ n,

−
√

(2n−1)(n−m−1)(n−m)
(2n+1)

, −n ≤ m ≤ 0,

0, |m| > n.

(3.42)

Dx(R
m
n ) =

1

2
[bm

n Rm+1
n−1 + b−m

n Rm−1
n−1 ], (3.43)

Dx(S
m
n ) =

1

2
[c−m−1

n+1 Sm+1
n+1 + cm−1

n+1 Sm−1
n+1 ], (3.44)

Dx(R
m
n ) =

i

2
[bm

n Rm+1
n−1 − b−m

n Rm−1
n−1 ], (3.45)

Dx(S
m
n ) =

i

2
[c−m−1

n+1 Sm+1
n+1 − cm−1

n+1 Sm−1
n+1 ]. (3.46)

So, the basic conclusion is that those multipole or local expansion coefficients can

be expressed through recursive relations. This is very helpful for software imple-

mentation.
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3.3 FMM algorithm and implementation

3.3.1 FMM algorithm

Although the detailed description of FMM algorithm can be found in many

references [65, 67, 79], in order to make this dissertation self-complete, the FMM

algorithm is stated here in a short format. Before starting, we introduce some

notation. Φl,i is the p−term multipole expansion about the center of the box i at

level l, describing the potential field outside box i’s neighbors due to all particles

contained inside the box i. Ψl,i is the p−term local expansion about the center of

the box i at level l, describing the potential field induced by all particles outside box

i’s neighbors. Ψ̃l,i is the p−term local expansion about the center of the box i at

level l, describing the potential field induced by all particles outside the neighbor’s

of box i’s parent.

Initialization. Choose precision to be desired ε and the number of levels n

for the hierarchy data structure. Set up the hierarchical data structure and sort all

points into the boxes at the finest level.

Upward pass

Step 1

For each box i at the finest level n, form the p-term multipole expansion

Φn,i, representing the potential field induced by all particles in the box. record the

coefficients of each expansion for all boxes.

Step 2

For levels l = n − 1, n − 2, ..., 2, for each box i at level l, use multipole-to-
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multipole translation to shift the centers of the multipole expansions of its children

boxes to the center of box j and merge them to form Φl,j which represents the

potential field induced by all particles in box j, or all particles in its children boxes.

See Fig.3.6.

Figure 3.6: Step 2 of FMM algorithm: Multipole to multipole translation.

Downward pass

Step 3

For levels n = 2, 3, ..., n, for each box j at level l, use local-to-local translation

(See Fig.3.7). to shift the center of local expansion Ψl−1 of j’s parent box to the

center of box j to form Ψ̃l,i. Use multipole-to-local translation (See Figs. 3.8 and

3.9) to convert the multipole expansion of all boxes that is in the interaction list of

box j to a local expansion about the center of box j, and add all these to Ψ̃l,i to

form Ψl,i, which represents the potential field induced by all particles outside box
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j’s neighbors.

Figure 3.7: Step 3 of FMM algorithm: Local to Local translation.

Step 4

For all the boxes j at the finest level, for each particles at box j, evaluate Φn,j

at the particles position.

Step 5

For all the boxes j at the finest level, for each particles at box j, evaluate the

interactions with particles in j’s neighbor boxes directly. The flowchart of above

described FMM algorithm can be seen in Figure 3.10.
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Figure 3.8: Step 3 of FMM algorithm: Multipole to local translation.

Figure 3.9: Step 3 of FMM algorithm: Multipole to local translation.
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Figure 3.10: A flow chart of the standard FMM.

3.3.2 Date structure for FMM implementation

A key issue in the implementation of fast multipole methods is to establish

a well-organized data structure. In order to exploit the observation that the effect

of a cluster of particles at a certain distance may be approximated by a finite sum

of series expansions using the equations described in previous sections, we need to

organize the particles in a hierarchy of clusters. This hierarchy of clusters allows one

to efficiently determine when the approximation is valid and therefore correlates to

the overall performance of the FMM algorithm.

Since the regions of expansion validity are specified in terms of Euclidean

distance, subdivision of space into d-dimensional cubes is convenient for range eval-

uation between points, which is usually called 2d-tree data structure. In the 3D

case, the hierarchy tree structure can be seen in Figure 3.11. The main technique

for working with 2d-trees (and k-d trees) is the bit-interleaving technique [81, 82].

This technique enables O(1), or constant, algorithms for parent and sibling search

and O(logN) algorithms for neighbor and children search.
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Figure 3.11: Hierarchical cells at three levels in three dimensions.

To efficiently determine the “Parent” box and “Children” box, we can index

the boxes in the following way. Each box in the tree can be identified by assigning

it a unique index among the 2d children of its parent box, and by knowing the index

of its parent in the set of its grandparent’s children. Then the index of a box can

be written as the string

String(n, l) = (N1, N2, . . . Nl), Nj = 0, . . . 2d − 1, j = 1, . . . , l, (3.47)

where l is the level at which the indexed box is located and Nj is the index of a box

at level j containing that box. Now the indexing string can be converted to a single

number as follows:

n = (2d)l−1 ·N1 + (2d)l−2 ·N2 + 2d ·Nl−1 + Nl. (3.48)

Note that this index depends on the level l at which the box is considered and unless

this information is included, different boxes could be described by the same index.

The unique index of any box can be represented by the pair:

UniversalIndex = (n, l). (3.49)

73



If the indexing at each level is performed in a consistent way, then we call such a

indexing scheme “hierarchical”. A consistent hierarchical scheme has the following

desirable properties.

1. Determining the Parent : Consider a box at level l of the 2d-tree, whose

index is given by equation (3.48). It can be shown that the parent of this box is

Parent(n, l) = (Parent(n), l − 1). (3.50)

2. Determining the Children: For the universal numbering system 3.49,to get

the indices of all 2d children of a box represented by the string 3.47, the operation of

finding the children is simply the calculation of the children numbers and assigning

their level to l + 1:

ChildrenAll(n, l) = (ChildrenAll(n), l + 1). (3.51)

The use of 2d-trees makes obtaining parent and children indices very convenient.

Indeed, the above operations are nothing but shift operations in the bit represen-

tation of n. Performing a right bit-shift operation on n by d-bits one can obtain

the index of the parent. One can list all indices of the children boxes of n by a left

bit-shift operation on n by d-bits and adding all possible combinations of d-bits.

In addition to find the “parent” and “children” for a box, the FMM also needs

a way to determine neighbors and the box center for a given index (n, l) and the

box index to which a given spatial point x belongs. To do this, a spatial ordering

in d-dimensional space should be introduced. Below, such an ordering and O(1)

algorithms for these operations are introduced.
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We first scale the computation domain (the largest box) to the unit cube.

Any point x in the original three-dimensional space now can be found given x̄ ∈

[0, 1] × [0, 1] × [0, 1]. Since all the boxes are already ordered by their indices at a

given level l from 0 to 2l−1, there is a straightforward correspondence between box

indices and coordinates of points. For this reason, we have the following convenient

operations.

3. Finding the index of the box containing a given point. Consider the relation

between the coordinate of a point and the index of the box where the point is

located. We note that the size of a box at each level is 1 placed at the position equal

to the level number after the decimal in its binary record, and it can be shown that

the operation is simply done by:

(n, l) = [23l · x̄]. (3.52)

where [] means integral part.

4. Finding the center of a given box. This operation can be done through

x̄m(n, l) = 2−l · (nl + 2−1), m = 1, 2, 3. (3.53)

5. Finding neighbors. This operation to the k-neighbor can be done through

Neighborm =





n−m, nm, n+
m, nm 6= 0, 2l − 1,

nm, n+
m, nm = 0,

n−m, nm, nm = 2l − 1.

(3.54)

where n+
m = nm + k, n−m = nm − k, m = 1, 2, 3.

The data structure and the indexing and ordering technique described above
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have been implemented in code and it is proven to be very efficient and useful for

FMM algorithm.

3.4 Numerical results

The algorithm outlined above has been implemented and extensively tested.

We have used LAPACK for solving the eigenvalue problem, where the reverse com-

munication function is ideally suitable for the inclusion of FMM codes for matrix-

vector products. Figure 3.12 compares the speed of FMM algorithm and the direct

summation scheme. It can been seen that the matching point is about N = 3000

where FMM starts to be faster than direct summation. Figure 3.13 illustrates the

error versus the truncation number p. Smaller p provides faster speed but compro-

mises the accuracy. So it is always a tradeoff in this situation. In our computations,

p = 5 is used in most of the cases. The number of levels or the number of the

sources in the finest box is also a parameter which needs to be optimized to achieve

higher speed in FMM computation. Figure 3.14 tells us that the relation between

CPU time and group parameters s is nonlinear.

Table 3.1 presents the comparison between the results computed by the using

outlined technique and reported in [13] for the three silver spherical nanoparticle

system (see Figure 3.15). The experimentally measured dispersion relation for silver

published in [68] has been used in calculations. This table reveals a very good

agreement between our results and experimental results reported in [83].

The testing of the method has been performed for the more complicated sys-
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tem of 20nm gold nanospheres shown in Figure 3.16. The separation between the

central sphere and surrounding spheres is 7nm. This structure is used to model the

aggregation of gold nanospheres due to DNA hybridization [84]. The low density

DNA solution is treated in computations as water. The calculations show that the

resonance wavelength for a single nanosphere is 516nm, while the resonance wave-

length for the group of 7 nanospheres shifts to 554nm. These results agree with

the experimental results reported in [84] where it is reported that for single gold

nanospheres the resonances occur at 525nm, while the resonances for the aggrega-

tion of gold nanospheres due to DNA hybridization occur at 560 nm. The above

computations have been performed on a 3.0GHz Dell-workstation.

Table 3.2 presents the comparison between FMM and conventional direct cal-

culations for the particle configuration shown in Figure 3.16. Table II clearly reveals

the efficiency of the fast multipole method, which is the method of choice for the

large size problems.

Table 3.1: Comparison of the resonance wavelengths for three silver spherical

nanoparticle system.

Case 1 Case 2

Configuration ri,i+1/ri = 1/3, ri,i+1/ri = 1/3

ri,i+1/ri = 0.3, ri,i+1/ri = 0.6

Resonance wavelength [13] 369 nm 382 nm

Resonance wavelength (Computational) 372 nm 387 nm
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Figure 3.12: The CPU time in seconds required for computation of problems of size N

using direct method and FMM. FMM computations using truncation number p = 5.

Computation is performed on Dell workstation with Pentium 3.0 GHz processor, 4.0

GB RAM.
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Figure 3.15: Three-sphere system for the nano-lens proposed in [83].

��

�

Figure 3.16: The schematic of a 7-sphere cluster.
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Table 3.2: Computation times in seconds.

Method/mesh 8690 33600 134400

FMM 26 118 680

Direct summation 315 14819 237920*

*This computation time is estimated by extrapolation.

3.5 Multipole expansion method for spherical nanoparticles

In this section, a meshless method for the analysis of plasmon resonances in

multiple spherical nanoparticles is presented. It is shown that for spherical nanopar-

ticles, the eigenvalue problem defined by (2.23) can be analytically simplified. For

the case of coaxial spheres, the problem is appreciably simplified due to its sym-

metry. Numerical results and computational efficiency are presented and compared

with boundary element techniques.

3.5.1 The dual formulation for multiple spheres

+
iV

0εε =−
( )ωεε +

+ =

n
�

iS

−V

iτ
1S

2S

3S

NS

Figure 3.17: Multiple spherical nanoparticles located in proximity.
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Consider N spherical nanoparticles located in proximity to one another with

the same permittivity ε+(ω) (Fig. 3.17). The source-free electric displacement D

satisfies everywhere

∇×D = 0, (3.55)

∇ ·D = 0, (3.56)

Then a scaler potential Φ can be introduced

D = −∇Φ, (3.57)

such that Φ is a solution to the Laplace equation

∇2Φ = 0, (3.58)

inside (V + = V +
1 ∪ · · · ∪ V +

N ) and outside (V −) of the union of the nanoparticles

subject to the following interface boundary conditions on S, where S = S1∪· · ·∪SN :

Φ+

ε+(ω)
=

Φ−

ε0

, (3.59)

∂Φ+

∂n
=

∂Φ−

∂n
, (3.60)

as well as the condition at infinity

Φ(∞) = 0. (3.61)

The potential of this sourceless field can be represented as a potential of double

layer of electric charges τ(x) distributed over S:

Φ(y) =
1

4πε0

N∑

j=1

∮

S

τ(x)

|x− y|dSx, (3.62)
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where y and x are points on surface S. In other words, a double layer of electric

charges τ(x) distributed on S may create the same electric displacement in the

free space as the resonant source-free electric displacement that may exist in the

presence of the nanoparticles. This will be the case if the potential (3.62) satisfies

all the conditions of boundary value problem (3.58)–(3.61). It is apparent that the

potential (3.62) of the surface charges τ(x) satisfies the Laplace equation in V + and

V −, decays to zero at infinity and is continuous across S. To satisfy the boundary

condition (3.60), we recall that the normal derivatives of a single layer potential are

given by the formulas[70, 71]:

∂Φ±

∂n
(y) = ±τ(y)

2ε0

+
1

4πε0

∮

S
τ(x)

(x− y) · nx

|x− y|3 dSx. (3.63)

where nx is the outward normal at point x. By substituting (3.9) into the boundary

condition (3.60), we arrive at the homogeneous boundary integral equation:

τ (i)(y) =
λ

2π

N∑

j=1

∮

Sj

τ (j)(x)
(y − x) · nx

|y − x|3 dSx, (3.64)

where

λ =
ε+(ω)− ε0

ε+(ω) + ε0

. (3.65)

3.5.2 Multipole expansion method

It is natural to apply the standard boundary element method to solve the

integral equation (3.64). For multiple spherical nanoparticles, however, a semi-

analytical method can be developed to simplify the problem which provides much

less complexity and computational costs in comparison with BEM. The main idea
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of the approach can be stated as follows. Since the unknown functions τ in equation

(3.64) are defined on the surfaces of the spheres, they can be represented by spherical

harmonics expansions. On the other hand, the kernel of the integral equation is

1/r-type, so it can be also expanded in terms of spherical harmonics via addition

theorem. Then by applying the orthogonality relations for spherical harmonics the

integrals can be evaluated analytically. If the “integration” point x and “evaluation”

point y are located on the same sphere, the spherical harmonics expansions possess

the same basis and the corresponding integrals can be evaluated directly. If the

“integration” point x and “evaluation” point y are located on different spheres,

the translation formulas for spherical harmonics have to be applied to move the

expansion center of “integration” sphere to the “evaluation” sphere such that they

have the same basis function. Finally, the linear equation for expansion coefficients

can be obtained.

We assume that the total dimension of the system is appreciably less than

light wavelength (i.e., in quasi-static regime). The unknown surface function τ(z)

can be expanded into spherical harmonics

τ (i)(z) =
∞∑

l=0

l∑

m=−l

α
(i)
lmYlm( ̂z− ci), (3.66)

where α
(i)
lm are the expansion coefficients, l = 0, 1, 2 . . . , m = −l, . . . , l, z is an

arbitrary point on the surface Si, ci is the center of Si, and ̂z− ci is a unit vector

defined as z−ci

|z−ci| .

If the “evaluation” point y and “integration” point x are located on the same

sphere Si which is the case for the ith term of the right hand side of integral equation

85



�

�

�
�

�
�

�
�

�
�

β

�
�

Figure 3.18: Points x and y are located at same sphere.

(3.64), the integral can be simplified as follows. From Fig. 3.18, it is easy to see

that:

(x− y) · nx

|x− y|2 =
cos β

|x− y| =
1

2ri

, (3.67)

Using formulas (3.66) and (3.67), The ith term mentioned above can be written as:

∮

Si

τ (i)(x)
(y − x) · nx

|y − x|3 dSx =
1

2ri

∞∑

l=0

l∑

m=−l

α
(i)
lm

∮

Si

Ylm( ̂x− ci)

|y − x| dSx, (3.68)

By applying the addition theorem, the term 1
|y−x| can be expanded into spherical

harmonics with center ci,

∮

si

Ylm( ̂x− ci)

|y − x| dSx =
∞∑

l′=0

l′∑

m′=−l′

4π

2l′ + 1

∮

si

Ylm( ̂x− ci)Y
∗
l′m′( ̂x− ci)

Ylm( ̂y − ci)

ri

r2
i sin θdθdφ.

(3.69)

According to the orthogonality relations for spherical harmonics,

∫ 2π

0
dφ

∫ π

0
sinθdθ Y ∗

l′m′(θ, ϕ)Ylm(θ, ϕ) = δl′lδm′m, (3.70)

and obtain the final result for the ith term:

∮

si

τ (i)(x)
(y − x) · nx

|y − x|3 dSx = 2π
∞∑

l=0

l∑

m=−l

α
(i)
lm

Ylm( ̂y − ci)

2l + 1
, (3.71)
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Figure 3.19: Points x and y are located at different spheres.

If the “evaluation” point y and “integration” point x are located on the differ-

ent sphere Si and Sj, the integral can be simplified as follows. Recall (∇ψ) · n =∂ψ
∂n

and use formula (3.66), The jth term of the right hand side of integral equation

(3.64) becomes

∮

sj

τ (j)(x)
(y − x) · nx

|y − x|3 dSx = −
∮

si



∞∑

l=0

l∑

m=−l

α
(j)
lmYlm( ̂x− cj)


 ∂

∂nx

(
1

|y − x|

)
dSx,

(3.72)

By using the addition theorem and ∂
∂nx

= ∂
∂rj

, we get

∂

∂nx

(
1

|y − x|

)
=

∞∑

l′=0

l′∑

m′=−l′

4π

2l′ + 1

∂

∂rj


 |x− cj|l

′

|y − cj|l′+1


 Y ∗

l′m′( ̂x− cj)Yl′m′( ̂y − cj)

=
∞∑

l′=0

l′∑

m′=−l′

4πl′rl′−1
j

2l′ + 1

Yl′m′( ̂y − cj)

|y − cj|l′+1
Y ∗

l′m′( ̂x− cj), (3.73)

Then according to the orthogonality relations for spherical harmonics, the integral
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in (3.19) can be evaluated as

∮

sj

τ (j)(x)
(y − x) · nx

|y − x|3 dSx = −4π
∞∑

l=0

l∑

m=−l

α
(j)
lm

lrl+1
j

2l + 1

(
Ylm( ̂y − cj)

|y − cj|l+1

)
. (3.74)

In order to have the same basis functions on both sides of equation (3.64), we

translate the expansions from the center of “integration” sphere Sj to the center

of “observation” sphere Si. The re-expansion coefficients γ
(j)
l′m′ can be related to

the original expansion coefficients α
(j)
lm by using the “multipole-to-local” translation

operator and expressed in the following form

γj
l′m′ =

∞∑

l=0

l∑

m=−l

i|m
′−m|−|m′|−|m|Am

l Am′
l′

(−1)lAm−m′
l′+l

Y m−m′
l′+l (t̂)

|t|l′+l+1

lrl+1
j rl

i

2l + 1
α

(j)
lm, (3.75)

where vector t is defined in Fig. 3.19 and Am
l is given by (3.16). To keep things

simpler, denote

γj
l′m′ = K

(j)
l′m′,lmα

(j)
lm, (3.76)

where K
(j)
l′m′,lm is the operator to perform the translation in equation (3.75). By

using this translation operator, equation (3.74) becomes:

∮

Sj

τj(x)
(y− x) · nx

|y− x|3 dSx = −4π
∞∑

l′=0

l′∑

m′=−l′
K

(j)
l′m′,lmα

(j)
lmYlm( ̂y − ci). (3.77)

By Substituting formulas (3.71) and (3.77) into (3.64) and equating the coefficients

for same terms, we get

(
1

λ
− 1

2l + 1
)α

(i)
lm −

N∑

j=i,j 6=i

α
(i)
lmK

(j)
l′m′,lm = 0. (3.78)

We can write above equation for each sphere, then we get the simplified eigenvalue

problem:

AX = βX, (3.79)
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where

X =
[
α

(1)
lm , · · ·α(i)

lm, · · ·α(N)
lm

]T
, (3.80)

β =
1

λ
, (3.81)

Aji = {
[

1
2l+1

]
, j = i,

K
(j)
l′m′,lm, j 6= i,

(3.82)

where i, j = 1, 2, . . . , N . It should be noted that Aji is a submatrix for A. When

j = i, it is a diagonal matrix, and when j 6= i, it is a dense matrix determined by

the translation operator.

In numerical simulations, the infinite series of spherical harmonic has to be

truncated. If the truncation number is p, the total length of the series is p2. For

N-sphere system, the dimension for matrix A is Np2, and

τi(z) ≈
p−1∑

l=0

l∑

m=−1

α
(i)
lmYlm(z− ci). (3.83)

The truncation number p is not only a function of the error but also affected by

the geometric configuration. Smaller distances between spheres require a larger

truncation number to keep the accuracy. This phenomenon is shown in Fig.5. In

our simulation, we truncate as p ≤ pmax = 5rmax/dmin, where rmax is the radius of

the largest sphere in the system, dmin is the smallest gap between spheres. We have

checked that the numerical error associated with such a truncation is negligible.

If all the centers of spheres stay along a line, this is the coaxial case. Due to

the axial symmetry, the multipole to local translation operator can be decomposed
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Figure 3.20: Truncation number as a function of the gap between two spheres.

90



Table 3.3: Computed eigenvalue for two spheres with truncation number p = 10.

Mode Eigenvalue Mode Eigenvalue Mode Eigenvalue Mode Eigenvalue

1 2.6190 11 5.0276 21 6.9635 31 8.9070

2 2.8049 12 5.0742 22 7.0376 32 8.9330

3 2.8049 13 5.1823 23 7.1145 33 8.9330

4 3.2189 14 5.3208 24 7.1146 34 8.9845

5 3.2189 15 5.3209 25 7.1314 35 9.0198

6 3.4245 16 5.6506 26 7.1315 36 9.0199

7 4.7415 17 6.8485 27 7.1635 37 9.0391

8 4.7435 18 6.8837 28 7.3933 38 9.0594

9 4.7435 19 6.8837 29 7.3933 39 9.1431

10 4.9275 20 6.8931 30 7.6609 40 9.1433

and therefore the final matrix can be simplified. The operator can be expressed as

following:

(
S|R

)
(t) = T (m,n, l, k)

Pm−k
l+n (cosα)eimβ

ρl+n+1
(3.84)

where m,n, l, k are indexes, and T is a known function of indexes. (ρ, α, β) represents

the translation vector t in spherical coordinate. In the coaxial case, because β = 0,

the elements for different m are decoupled, and the matrix of can be decomposed

according to index m. For example, with truncation number p = 10, the size of the

translation matrix is 100. If we solve the problem for the two-sphere system, the

total size is 200. This matrix could be decomposed according to different m and

solved separately where the size of largest submatrix is 20. The results are shown

in Table 3.3 and Table 3.4.
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Table 3.4: Computed eigenvalue for two spheres with truncation number p = 10

using submatrix.

m=0 2.6190 3.4245 4.7415 5.6506 7.1145 7.6609 ...

m=-1 2.8049 3.2189 4.7435 5.3208 7.0376 7.3933 ...

m=1 2.8049 3.2189 4.7435 5.3209 6.9635 7.3933 ...

m=-2 4.9275 5.0742 6.8931 7.1635 ...

m=2 5.0274 5.1823 6.8837 7.1315 ...

m=-3 6.8837 7.1314 ...

m=3 6.8485 7.1145 ...

... ... ... ... ... ... ... ...

3.5.3 Numerical results

The multipole expansion method has been numerically implemented and ex-

tensively tested. It has proved to be accurate and efficient. The results are illustrated

by the examples presented below.

For single sphere, the results have been shown to be analytical and agree

with classical Mie theory. For two-sphere system, it always coaxial and therefore

can be further decomposed according to m. We computed the case with geometric

parameters: radius of spheres r1 = 1, r2 = 0.5, the distance between the surfaces

of the spheres d = 0.5. For the three-sphere system, we tested two different cases:

one is coaxial with parameters: r1 = 1, r2 = 0.5, r3 = 1, d12 = d21 = 0.5; the

other one, the three spheres are equal and form a equilateral triangle with r1 =

r2 = r3 = 1, d12 = d23 = d34 = 1. The results as well as the computation costs

are compared with BEM results and shown in Table 3.5 and Table 3.6. The results

of the two methods agree with each other very well and the multipole expansion

method is obviously more efficient. In fact, this semi-analytical method also has
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Table 3.5: Comparison of numerical results of BEM and MEM for two-nanosphere

and three-nanosphere configurations.

two-sphere three-sphere

Mode BEM MEM Mode BEM MEM

1 2.4959 2.5161 1 2.2659 2.3453

2 2.7378 2.7290 2 2.6681 2.6594

3 2.7379 2.7290 3 2.6681 2.6594

4 3.2600 3.3391 4 2.9028 2.9427

5 3.2603 3.3391 5 2.9028 2.9427

6 3.4666 3.5652 6 3.1300 3.1262

Table 3.6: Comparison of computation costs of BEM and MEM for two-nanosphere

and three-nanosphere configurations.

Method Number of sphere matrix size CPU time(s)

MEM 2 200 0.1

BEM 2 2560 3.8 (with ARPACK)

MEM 3 300 0.25

BEM 3 3840 8.7 (with ARPACK)

the advantage for assembly of the matrix, because it only requires to build up the

translation matrix. Each non-diagonal submatrix has the same structure; it repeats

only with different translation vectors.
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Chapter 4

Extinction Cross Sections of Nanoparticles

In this chapter, the boundary integral equation technique (developed in chapter 2)

is extended to the calculation of extinction cross sections (ECS) of nanoparticles.

ECS is an important measure of optical properties of nanoparticles which reveals

the strength and the sharpness of the plasmon resoance modes. The concept of

ECS and the optical theorem are briefly reviewed in section 4.1. The computation

algorithm of ECS as well as the numerical results are presented in sections 4.2 and

4.3. It is shown that the scattered field can be derived through the solution of an

inhomogeneous integral equation, and the extinction cross section is then obtained

by employing the optical theorem. Finally, the outline technique is modified to

take into account the phase shift between adjacent nanoparticles for the analysis of

nanoparticle-structured plasmonic waveguides of light in section 4.4.
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4.1 What is the extinction cross section ?

4.1.1 Concept of extinction cross section

The extinction cross section (ECS) of a nanoparticle represents the total power

loss from the incident wave due to the scattering and absorption by the nanoparticle.

The ECS curve clearly reveals the plasmon resonances by peaks around resonance

frequencies and it provides important information such as the strength and sharpness

of the resonance. The mathematical definition of ECS can be briefly demonstrated

as follows [85, 86].

Figure 4.1: Scattering diagram of a nanoparticle.

Consider the scattering geometry in Figure 4.1, a plane wave incident on a

scatterer with arbitrary shape. The field (E−) at any point in the lossless medium

with permittivity ε and permeability µ surrounding the scatterer may be represented
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as the sum of the incident field (Ei) and scattered field (Es).

E− = Ei + Es, (4.1)

H− = Hi + Hs. (4.2)

Let the permittivity of the scatterer (nanoparticle) be complex valued with real and

imaginary parts

ε+(ω) = ε′+(ω) + iε′′+(ω). (4.3)

The electromagnetic fields inside the particle (V +) obey the equations:

∇× E+ = jωµH+, (4.4)

∇×H+ = −jωε+E+, (4.5)

and are subject to the following boundary conditions:

n× E+ = n× (Ei + Es) , (4.6)

n×H+ = n× (Hi + Hs) . (4.7)

The time-averaged power absorbed by the nanoparticle is

Wa =
1

2

∫

V +
ωε′′+

∣∣∣E+
∣∣∣
2
dV. (4.8)

It is easy to show that:

∇ ·
(
E+ ×H+∗) = H+∗ · ∇×E+−E+ · ∇×H+∗ = jωµ

∣∣∣H+
∣∣∣
2− jωε∗+

∣∣∣E+
∣∣∣
2
, (4.9)

and taking the real part of (4.9) gives:

∇ ·
[
Re

(
E+ ×H+∗)]

= −ωε′′+
∣∣∣E+

∣∣∣
2
. (4.10)
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Therefore the absorbed power by the nanoparticle can be expressed as:

Wa = −1

2

∫

V +
∇ ·

[
Re

(
E+ ×H+∗)]

dV = −1

2

∫

S
n ·Re

(
E+ ×H+∗) dS. (4.11)

Substitute boundary conditions (4.6) and (4.7) into formula (4.11), it is easy to see

that:

Wa = −1

2

∫

S
n ·Re [(Ei + Es)× (H∗

i + H∗
s)] dS = −

∫

S
n · (Si + S′ + Ss) dS, (4.12)

where Si,S
′,Ss are defined as:

Si =
1

2
Re (Ei ×H∗

i ) , (4.13)

S′ =
1

2
Re [(Ei ×H∗

s) + (Es ×H∗
i )] , (4.14)

Ss =
1

2
Re (Es ×H∗

s) . (4.15)

Since ∇ · Si = 0 is true everywhere in V + and V −, the incident power Si should

satisfy
∫

S
n · SidS = 0, (4.16)

and because there is no source between boundary S and infinity, the scattered power

can be evaluated as an integral over S:

Ws =
∫

S
n · SsdS. (4.17)

Then the absorbed power now can be written in the following form:

Wa = −
∫

S
n · S′dS −Ws, (4.18)

and the total power loss due to the scatterer (scattering and absorption) is:

Wext = Wa + Ws = −
∫

S
n · S′dS. (4.19)
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Thus the extinction cross section (ECS) is defined as the ratio of total power Wext

to the incident power per unit area:

σext =
Wext

Ii

, (4.20)

where Ii is the incident radiation. Similarly, we can define the scattering cross

section (SCS) and the absorption cross section (ACS):

σsca =
Ws

Ii

, (4.21)

σabs =
Wa

Ii

, (4.22)

and it is apparent:

σext = σsca + σabs. (4.23)

It is instrumental to point out that for small metallic particles, the losses of incident

radiation is dominated by absorption, so the above express can be written as:

σext ≈ σabs. (4.24)

4.1.2 The optical theorem

The above definition can be used to compute the ECS of a nanoparticle. An-

other convenient way, however, is to employ the so-called optical theorem. The

optical theorem expresses a very curious fact: the extinction depends only on the

scattering amplitude in the forward direction. The proof of this theorem can be

found in [39, 87] and will be omitted here. In the following, only those key formulas

are summarized for the calculation of ECS by using the optical theorem.
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Let the incident wave be linearly polarized with polarization vector êi:

Ei = êiE0e
iki·r, (4.25)

Hi =
(
k̂i × êi

) E0

η
eiki·r, (4.26)

Bi =
1

ck
k̂i × Ei. (4.27)

The far field can be related to the scattering amplitude F
(
k̂s, k̂i

)
as:

F
(
k̂s, k̂i

)
= lim

r→∞

(
eikr

r

)−1

Es (r) , (4.28)

where ki is the incident wave vector, ks is the scattering wave vector in the direction

of observation, Es is the scattered field in far-field zone. Then the optical theorem

tells us:

σext =
4π

k
Im

[
ê∗i · f

(
k̂i, k̂i

)]
, (4.29)

where k is the wave number, f
(
k̂i, k̂i

)
is the normalized forward direction scattering

amplitude and the normalized scattering amplitude is defined as:

f
(
k̂s, k̂i

)
=

F
(
k̂s, k̂i

)

E0

. (4.30)

According to (4.28)–(4.30), the entire problem of the computation of ECS is reduced

to the evaluation of the forward scattering amplitude F, which is related to the

scattered far field Es.

4.1.3 Measurement of ECS

In practice, the ECS can be directly measured (see Fig.2) in terms of the

following expression [39]:

U = Ii[A(D)− σext], (4.31)
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Figure 4.2: Schematic illustration for the measurement of extinction cross sections.

where Ii is the incident radiation, A(D) is the area of the detector and U is the

power incident on the detector. We measure U with and without the particle inter-

posed between source and detector. Because σext is inherently positive, the effect

of the particle is to reduce the detector area by σext. This method of measurement

illustrates the interpretation of σext as an area.

4.2 Computation of ECS

4.2.1 Near field computation

Consider an incident plane wave scattered by nanoparticle of arbitrary shape

with permittivity ε+(ω) (Fig. 4.1). We shall start with Maxwell’s equations written

in the mathematical form that explicitly reflects the smallness of particle dimensions

in comparison with the free-space wavelength. For this reason, we introduce the
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scaled vectors of scattered and incident fields

e = ε
1
2
0 E, h = µ

1
2
0 H, ein = ε

1
2
0 Ein (4.32)

as well as spatial coordinate scaled by the diameter d of the object. This leads to

the following boundary value problem for scattered fields e± and h±:

∇× e+ = −jβh+, ∇× h+ = jβ
ε+

ε0

e+ + jβ
(

ε+

ε0

− 1
)

e+
in, (4.33)

∇ · e+ = 0, ∇ · h+ = 0, (4.34)

∇× e− = −jβh−, ∇× h− = jβe−, (4.35)

∇ · e− = 0, ∇ · h−, = 0 (4.36)

n×
(
e+ − e−

)
= 0, n×

(
h+ − h−

)
= 0, (4.37)

n ·
(
ε+e+ − ε0e

−)
= (ε0 − ε+)n·e+

in, n ·
(
h+ − h−

)
= 0, (4.38)

where superscripts “+” and “-” are used for physical quantities inside (V +) and

outside (V −) the dielectric object, respectively, n is a outward unit normal to S,

while

β = ω
√

µ0ε0d. (4.39)

In the case when the free-space wavelength is large in comparison with nanoparticle

dimension, β can be treated as a small parameter and solution of the boundary

value problem (4.33)-(4.38) can be expanded in terms of β

e± = e±0 + βe±1 + β2e±2 + · · · , (4.40)

h± = h±0 + βh±1 + β2h±2 + · · · . (4.41)
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An incident field is usually treated as independent of the characteristic dimension of

the system under consideration. For this reason, it can be regarded as independent

of β. By substituting formulas (4.40)–(4.41) into equations (4.33)–(4.36) as well

as boundary conditions (4.37)–(4.38) and equating terms of equal powers of β, we

obtain the boundary value problems for e±k and h±k (k = 0, 1, 2...).

For zero-order terms, these boundary value problems can be written in terms

of E±
0 = ε

− 1
2

0 e±0 and H±
0 = µ

− 1
2

0 h±0 as follows:

∇× E±
0 = 0, ∇ · E±

0 = 0, (4.42)

n×
(
E+

0 − E−
0

)
= 0, n ·

(
ε+E+

0 − ε0E
−
0

)
= (ε0 − ε+)n·E+

in, (4.43)

and

∇×H±
0 = 0, ∇ ·H±

0 = 0, (4.44)

n×
(
H+

0 −H−
0

)
= 0, n ·

(
H+

0 −H−
0

)
= 0. (4.45)

From (4.44)-(4.45), it is apparent that

h±0 = 0. (4.46)

The electric potential ϕ can be introduced for the electric field E0 and this potential

can be represented as an electric potential of a single layer of electric charge σ

distributed over the boundary S of the particle. It is clear that the electric field

of surface charges is curl and divergence free in V + and V − and satisfies the first

boundary condition in (4.43). Next we recall the properties of single layer potential

(2.20). By substituting (2.20) into the second boundary condition in (4.43), after
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simple transformation we arrive at the following inhomogeneous boundary integral

equation:

σ0 (Q)− λ

2π

∮

S
σ0 (M)

nQ · rMQ

r3
MQ

dSM = 2ε0λnQ·e+
in (Q) , (4.47)

where

λ =
ε+(ω)− ε0

ε+(ω) + ε0

. (4.48)

Thus, the scattered electric fields can be computed (in zero-order) as follows:

e±0 = −∇ϕ0 = −∇
[

1

4πε0

∮

S

σ0 (M)

rMQ

dSM

]
. (4.49)

The inhomogeneous boundary integral equation (4.47) for the calculations of electro-

static and scattering problem with negative ε was extensively studied in publications

of Mayergoyz [54, 55] and introduced for the analysis of plasmon resonance in [20].

From equations (4.33)–(4.38), (4.40)–(4.41) and (4.46), the boundary value problem

for the first-order corrections can be derived and appears as the following:

∇× e±1 = 0, ∇ · e±1 = 0, (4.50)

n×
(
e+

1 − e−1
)

= 0, n ·
(
ε+e+

1 − ε0e
−
1

)
= 0, (4.51)

∇× h+
1 = j

ε+

ε0

e+
0 + j

(
ε+

ε0

− 1
)

e+
in, ∇× h−1 = je−0 , ∇ · h±1 = 0, (4.52)

n×
(
h+

1 − h−1
)

= 0, n ·
(
h+

1 − h−1
)

= 0. (4.53)

From equations (4.50)–(4.51), it is clear that

e±1 = 0. (4.54)

Next, we proceed to the solution of boundary value problem (4.52)-(4.53). Terms

j ε+
ε0

e+
0 + j

(
ε+
ε0
− 1

)
e+

in and je−0 in the first two equation of (4.52) can be interpreted
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as current sources and the solution of boundary value problem (4.52)-(4.53) can be

written in the integral form

h±1 (Q) =
j ε+

ε0

4π

∫

V +

rMQ

r3
MQ

× e+
0 (M) dVM +

j

4π

∫

V −

rMQ

r3
MQ

× e−0 (M) dVM

+
j

(
ε+
ε0
− 1

)

4π

∫

V +

rMQ

r3
MQ

× e+
in (M) dVM . (4.55)

The last expression can be appreciably simplified and reduced to an integral over

boundary S. Indeed, by using the fact that ∇ × e±0 = 0 and by employing the

following formulas for vector analysis:

∇× (gF) = (∇g)× F + g (∇× F) , (4.56)

∫

V
dV (∇×A) =

∮

S
dS×A, (4.57)

after simple transformations we arrive at

h±1 (Q) = −
j

(
ε+
ε0
− 1

)

4π





∮

S

nM ×
[
e+

0 (M) + e+
in (M)

]

rMQ

dSM



 . (4.58)

Now we proceed to the discussion of second order terms in expansions of e+ and h+.

From equations (4.33)–(4.38), (4.40)–(4.41) and (4.54)–(4.55), the boundary value

problem for the second-order terms e+
2 and h+

2 can be derived, respectively:

∇× e±2 = −jh±1 , ∇ · e±2 = 0, (4.59)

n ·
(
ε+e+

2 − ε0e
−
2

)
= 0, n×

(
e+

2 − e−2
)

= 0, (4.60)

and

∇× h±2 = 0, ∇ · h±2 = 0, (4.61)

n ·
(
h+

2 − h−2
)

= 0, n×
(
h+

2 − h−2
)

= 0. (4.62)
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From formulas (4.61)–(4.62), it is apparent that

h±2 = 0. (4.63)

In order to solve the boundary value problem (4.59)–(4.60), we shall split the electric

field e±2 into two distinct components

e±2 = ẽ±2 + ˜̃e±2 , (4.64)

that satisfy the following boundary value problems, respectively:

∇× ẽ±2 = −jh±1 , ∇ · ẽ±2 = 0, (4.65)

n ·
(
ẽ+

2 − ẽ−2
)

= 0, n×
(
ẽ+

2 − ẽ −
2

)
= 0, (4.66)

and

∇× ˜̃e±2 = 0, ∇ · ˜̃e±2 = 0, (4.67)

n ·
(
ε+

˜̃e+

2 − ε0
˜̃e−2

)
= (ε+ − ε0)n · ẽ+

2 , n×
(˜̃e+

2 − ˜̃e−2
)

= 0. (4.68)

By using the same line of reasoning as in section 2.2, it can be shown that the

solution of the boundary value problem (4.65)-(4.66) can be written as follows

ẽ±2 = −
(

ε+
ε0
− 1

)

8π

∮

S

nM ×
[
e+

0 (M) + e+
in (M)

]
× rMQ

rMQ

dSM . (4.69)

Next, we proceed to the solution of the boundary value problem (4.67)–(4.68).

Again, the single layer charge distribution can be introduced to construct the elec-

tric field ˜̃e±2 . Then by using the same line of reasoning in the derivation of equation

(2.51), we obtain the following inhomogeneous integral equation for σ2(M):

σ2 (Q) − λ

2π

∮

S
σ2 (M)

nQ · rMQ

r3
MQ

dSM

= 2ε0ε+λ

(
ε+
ε0
− 1

)

8π
×

∮

S

nQ ·
[
e+

0 (M) + e+
in (M)

]
× rMQ

rMQ

dSM . (4.70)
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Thus, the second-order term for scattered electric field e+
2 can be written as:

e±2 = −∇
[

1

4πε0

∮ σ2 (M)

rMQ

dSM

]
−

(
ε+

ε0
− 1

)

8π

∮

S

nM ×
[
e+

0 (M) + e+
in (M)

]
× rMQ

rMQ

dSM .

(4.71)

Finally, the scattered near field is given by the formula

E+ ≈ ε
− 1

2
0

(
e+

0 + β2e+
2

)
. (4.72)

4.2.2 Far field computation

As discussed in section 4.1, the key step to obtain ECS is the computation of

scattered far fields. In the following, we demonstrate the technique to compute this

quantity according to the obtained scattered near field. The far field is the solution

of the following boundary value problem:

∇× E± = −jωµ0H
±, (4.73)

∇×H+ = jωε0E
+ + jω (ε− ε0)

(
E+ + E+

in

)
, (4.74)

∇×H− = jωε0E
−, (4.75)

n×
(
E+ − E−)

= 0, n×
(
H+ −H−)

= 0, (4.76)

where E± = ε
− 1

2
0 e±, H± = µ

− 1
2

0 h±. In this case, the near field can be interpreted

as the induced polarization current in V +; in other words, the fictitious polariza-

tion current can be determined by the known near field. Then, the far field can

be computed as the fields created by the polarization current in free-space. The

polarization current is defined as

iP =
∂P

∂t
, (4.77)
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where P is the polarization

P = (ε+ − ε0)E
+
total. (4.78)

For time-harmonic fields, it is easy to see:

iP = jω (ε+ − ε0)
(
E+ + E+

in

)
. (4.79)

On the other hand, the scattered far field can be expressed in terms of localized

polarization current as

h (Q) = ∇×A(Q), (4.80)

and

A (Q) =
µ0

4π

[∫

V +
iP (M) dVM

] (
e−ikrMQ

rMQ

)
. (4.81)

By using formula (4.56), from (4.80)-(4.81) we get

h− (Q) =
1

4π

∫

V +
iP (M)×∇Q

(
e−ikrMQ

rMQ

)
dVM . (4.82)

Note that

∇Q

(
e−ikr

r

)
= −rMQ

(
ik +

1

r

)
e−ikr

r
, (4.83)

and for the scattered field in the far field zone, we can drop the 1/r term; therefore,

equation (4.82) is reduced to

H− (Q) ' ik

4π

∫

V +
[r̂MQ × iP (M)]

e−ikrMQ

rMQ

dVM . (4.84)

The last expression can be further simplified since the term r̂MQ
e
−ikrMQ

rMQ
does not

depend on point M explicitly when the observation is made from the far field

H−
s (Q) ≈ ck2

4π

e−ikrMQ

rMQ

r̂MQ ×
[∫

V +
P (M) dVM

]
. (4.85)
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Since the electromagnetic fields in the far field zone can be always considered as

plane waves, the electric field and magnetic field has the following simple relation

E−
s (Q) = Z0H

−
s (Q)× k, (4.86)

where Z0 is the intrinsic impedance of free-space. So we get the final expression for

electrical far field:

E−
s (Q) =

ck2Z0

4π

e−ikrMQ

rMQ

r̂MQ ×
[∫

V +
P (M) dVM

]
× r̂MQ. (4.87)

If we assume the polarization is along the x-axis, and propagation is along the z-axis,

according to (4.28), the forward scattering amplitude is

F (z, ẑ) =
ck2Z0

4π
ẑ×

[∫

V +
P (M) dVM

]
× ẑ. (4.88)

Finally, by taking (4.88) into (4.29) we arrive following expression for the ECS:

σext = ckZ0Im

[
êi · (ẑ× ∫

V + P (M) dVM)× ẑ

E0

]
. (4.89)

4.3 Numerical techniques to compute ECS

4.3.1 Discretization of the inhomogeneous integral equation

Let us partition S into N small pieces4Sj and rewrite integral equation (4.47)

as follows:

σ (Qi)− λ

2π

Ne∑

j=1

∫

∆Sj
σ (Mj)

rMjQi
· nQi

r3
MjQi

dSj = 2ε0λnQi
·e+

in. (4.90)

Now we integrate (4.90) over ∆Si and exchange the order of the integral

∫

∆Si

σ (Qi) dSi− λ

2π

Ne∑

j=1

∫

∆Sj
σ (Mj)

[∫

∆Si

rMjQi
· nQi

r3
MjQi

dSi

]
dSj = 2ε+ε0λ

∫

∆Si

nQi
·e+

indSi.

(4.91)
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By introducing the notation

ωij = {
rMjQi

·nQi

r3
MjQi

∆Si if i 6= j,

2π −∑Ne
j=1j 6=i

rMjQi
·nQi

r3
MjQi

∆Si if i = j,

(4.92)

the last formula can be presented as follows:

Ne∑

j=1

ωij

∫

∆Sj
σ0 (Mj) dSj − 2π

λ

∫

∆Si

σ (Qi) dSi = −4πε0

∫

∆Si

nQi
·e+

in (Qi) dSi. (4.93)

Define:

Xi =
∫

∆Si

σ0 (Qi) dSi, (4.94)

Ii =
∫

∆Si

nQi
·e+

in (Qi) dSi, (4.95)

we get the following linear system for surface charges:

Ne∑

j=1

ωijXj − 2π

λ
Xi = −4πε0Ii. (4.96)

4.3.2 Far field and dipole moment

Once the surface charge distribution is known, the far field can be computed

by using the algorithm introduced in previous section. However, there is a more

efficient way for which the computation of far field can be reduced to the calculation

of dipole moment. In the following, we demonstrate how this can be done. According

to equation (4.85), the central problem is to compute the following integral:

IP =
∫

V +
P (M) dVM = (ε+ − ε0)

∫

V +

(
E+

sc + E+
in

)
dVM . (4.97)

Since the incident field is practically constant within the volume (because the free-

space wavelength is much larger then object dimension and we observe from far field
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point), we have:

IPin = (ε+ − ε0)E
+
in(M0)V. (4.98)

This reduces the problem to how to calculate the polarization current due to scat-

tered fields:

IPsc = (ε+ − ε0) ε
− 1

2
0

∫

V +
e+

0 dVM . (4.99)

To this end, let us introduce the vector d and its scalar components as following:

d =
∮

σ (M) rMQdSM , (4.100)

dx =
∮

σ (M) xMdSM , dy =
∮

σ (M) yMdSM , dz =
∮

σ (M) zMdSM . (4.101)

On the other hand, according to formula (2.20), we have

σ = ε0n ·
(
E− − E+

)
. (4.102)

By taking (4.102) into the first boundary condition in (4.38), after simple transfor-

mation, we arrive at

σ = (ε+ − ε0) (n · E+ + n · Ein). (4.103)

Then the x-component of vector d can be computed as:

dx = (ε+ − ε0)
∮ (

n · E+ + n · Ein

)
xMdSM = (ε+ − ε0)

∫

V

(
E+

x + Einx

)
dVM .

(4.104)

Therefore, we have

d = α
∫

V

(
E+ + Ein

)
dVM = IP . (4.105)

Then for the plane wave defined in (4.24)-(4.26), according to (4.88) the ECS can

be represented in terms of d.

σext = ckZ0Im

[
x̂ · (ẑ× d)× ẑ

E0

]
. (4.106)
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This expression greatly simplifies the computation of ECS since the dipole moment

d is very easy to compute once the surface charge is known.

4.3.3 Numerical results

The numerical technique discussed above has been software implemented and

tested. The algorithm described above has been first tested for spherical particles

where exact analytical solutions are available (Mie theory).

σext = πa24xIm

(
εp − εm

εp + 2εm

)
, (4.107)

x =
2π

λ
aN, (4.108)

where a is the radius of the sphere and N is the reflective index for surrounding

medium. We have computed the extinction cross section of nanospheres for different

materials. Fig. 4.3 and Fig. 4.4. are the results for Au and Ag, respectively. It is

apparent that the numerical results are very accurate. The computational results

of ECS for Au ellipsoidal nanoparticles with different aspect ratios are presented in

Figure 4.5. It can be seen that adjusting the aspect ratio of the ellipsoidal nanopar-

ticle is an effective way to tune the plasmon resonances. Figure 4.6 demonstrates

the computational results for gold nano-rings placed on a dielectric substrate, illus-

trating that we have reasonable agreement with the experiment results. Finally, the

computation for semiconductor materials is also performed. The results for InSb

sphere are shown in Fig. 4.7.
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Figure 4.3: Computational results compared with the Mie theory predictions for the

extinction cross section of a single Au nanoparticle (diameter = 10 nm).
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Figure 4.4: Computational results compared with the Mie theory predictions for the

extinction cross section of a single Ag nanosphere (diameter = 20 nm).
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Figure 4.5: Computational results of the extinction cross section of a single Ag

nanoellipsoid, with different aspect ratios: 1:1:0.8, 1:1:1. 1:1:1.2. 1:1:1.4. 1:1:1.6 for

curve 1, 2, 3, 4, 5, respectively.
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Figure 4.6: Computed extinction cross sections of Au nanorings placed on substrate,

the dimensions of these rings are provided in Table 2.3.
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Figure 4.7: Computational extinction cross section of a single InSb nanosphere

(diameter = 20 nm) placed on a glass substrate ε = 2.25ε0.
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4.4 Numerical analysis of plasmon waveguides of light

Plasmon waveguides of light have been the focus of considerable research lately

[10, 11, 12]. These plasmon waveguides consist of an array of metallic nanoparti-

cles with their resonance frequencies in the region of optical waveguiding. These

nanoparticle-structured waveguides hold the unique promise for light guiding and

bending at the nanoscale. For this reason, they are considered very instrumen-

tal in the emerging field of nanophotonics where the information transmission and

processing occur entirely at the optical level. In this section, the technique for the

calculation of resonance frequencies of nanoparticle-structured waveguides is pre-

sented. This technique is based on the boundary integral equation method and, in

this sense, it can be considered as the further extension of the technique for the

analysis of plasmon resonances in metallic nanoparticles developed in previous part

of this dissertation.

4.4.1 The numerical technique

To start the discussion, consider a chain of identical metallic nanoparticles

subject to incident optical radiation on its left edge (see Figure 4.8). At specific

frequencies, this optical incident radiation will excite plasmon resonances in the

first nanoparticle, which then through near-field coupling will induce plasmon reso-

nances in all nanoparticles that form the chain. This is, in a nutshell, the physical

mechanism of light plasmon waveguiding.

It is well known that plasmon resonances occur when the free-space wavelength

of light is large in comparison with particle dimensions. For this reason, the time-
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Figure 4.8: Schematic of plasmonic waveguide of light.

harmonic electromagnetic fields within each nanoparticle and around it vary almost

with the same phase. In other words, at any instant of time, the fields locally

(around each particle) look like electrostatic fields. By using this fact, the following

integral equation can be derived for each particle in the chain:

σp(Q)− λ

2π

∮

Sp

σp(M)
rMQ · nQ

r3
MQ

dSM = −2λε0nQ · Eap, (4.109)

λ =
ε+(ω)− ε0

ε+(ω) + ε0

. (4.110)

Here, p is the nanoparticles number in the chain, σ is the fictitious single layer of

charges distributed over boundary S, Eap is the electric field that has two distinct

parts (the incident field as well as the field scattered by all other nanoparticles), and

ε+(ω) and ε0 are the dielectric permittivities of nanoparticles and the surrounding

medium, respectively.

The dimensions of the waveguiding chain are usually comparable to the wave-

length of the incident radiation. As a result, the phase shift in time-harmonic

electromagnetic fields scattered by different particles cannot be neglected. This
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situation can be accounted for in equation (4.109) as follows:

σp(Q)− λ

2π

∮

Sp

σp(M)
rMQ · nQ

r3
MQ

dSM = −2λε0nQ · (Ein + Escat) , (4.111)

where Ein is the electric field of incident radiation, while Escat is the field scattered

by all other nanoparticles in the chain that can be computed by using the formula

Escat(Q) =
1

4πε0

∮

Sp

σ(M)

(
ik +

1

rMQ

)
rMQeikrMQ

r2
MQ

dSM , S̃p =
∑

k 6=p

Sk. (4.112)

By solving the coupled integral equations, the extinction cross-section and its de-

pendence on the frequency can be computed [8]. The frequency at which the ex-

tinction cross-section achieves its maximum value can be identified as the resonance

frequency for which the light guiding is the most efficient.

Next, we briefly describe the discretization technique for the solution of integral

equation (4.111). In a similar procedure to what we did before, let us partition Sp

into N small pieces ∆Sj, although the kernel in this case will be hybrid. Nevertheless,

equation (4.111) can be transformed to the following matrix form:

N∑

j=1

ωijXj − 2π

λ
Xi +

M∑

k=1,k 6=p

N∑

j=1

Ωkm = −4πε0Ii, (4.113)

where

ωi(M) =
∫

∆Sj

rMQ · nQ

r3
MQ

dSQ, (4.114)

Xi =
∫

∆Sj

σ(Q)dSQ, (4.115)

Ii =
∫

∆Sj

nQ · E(p)
in nQ, (4.116)

Ωi =
∫

∆Sj

nQ · rMQ

(
ik +

1

rMQ

)
rMQeikrMQ

rMQ

dSQ. (4.117)
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The linear system defined by (4.113) can be efficiently solved by using the GM-

RES algorithm. The numerical technique based on discretization (4.113) has been

software implemented and extensively tested. This technique is illustrated by the

examples presented in the following section.

4.4.2 Numerical results

First, we present the results of computations and their comparison with avail-

able experimental data [11] for a chain of seven spherical gold nanoparticles of 50nm

diameter and separated by 25nm from one another. The comparison between the

resonance waveguide frequencies found experimentally in [11] and our computational

results for these frequencies is presented in the Table 4.1. This table reveals fairly

good agreement between computational and experimental results.

The extinction cross sections for longitudinal and transverse polarizations of

incident radiation are shown in Figure 4.9. It is apparent from this figure that

the longitudinal mode has better transmission properties than the transverse mode;

this is not surprising because the longitudinal mode offers better confinement of

plasmon resonant fields. The silver and gold dispersion relations published in [9]

have been used in our calculations. Furthermore, we have performed computations

for the 11-gold-sphere waveguides with the different nanoparticles arrangements.

In these simulations, the nanoparticles of 50nm in diameter and 75nm center-to-

center distance have been used. For the chain structure (Fig. 4.10), the extinction

cross sections for the longitudinal mode are shown in Figure 4.11). By comparing

this figure with Table 4.1, it can be observed that the resonance frequency of the
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11-sphere chain is about 605nm, which is further shifted to the longer wavelength.

Figures 4.13 and 4.15 present the extinction cross-sections for the T-shape

(Fig. 4.12) and L-shape (Fig. 4.14) nanoparticle waveguides, respectively. For

the T-shape waveguide, the transverse polarization excitation is at the short end.

When the plasmon resonant fields are coupled to the longer arm, the mode becomes

longitudinal. For the L-shape waveguide, the longitudinal polarization excitation is

at the end of the long arm. In these structures, the right angles between particle

arrays are responsible for the polarization transformations.

In this section, the novel numerical approach to the analysis of nanoparticle-

structured plasmon waveguides of light has been presented. The extinction cross-

sections and resonance (propagation) frequencies are computed for various geome-

tries of these waveguides and compared with available experimental data. The

computational results for resonance frequencies corresponding to different light po-

larizations are illustrated as well.

Table 4.1: Resonance frequencies for gold 7-sphere-chain waveguide.

Experimental result [11] Computational results

Transverse polarization 585 nm 534 nm

Longitudinal polarization 602 nm 572 nm
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Figure 4.9: Computed extinction cross sections of gold 7-sphere-chain waveguide for

the transverse and longitudinal polarization modes (diameter = 50nm, center-to-

center distance = 25nm).
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Figure 4.10: Schematic of gold 11-sphere-chain waveguide of light
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Figure 4.11: Computed extinction cross sections of gold 11-sphere-chain waveguide

for the longitudinal polarization mode (diameter = 50nm, center-to-center distance

= 25nm).
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Figure 4.12: Schematic of gold L-shape 11-sphere waveguide of light
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Figure 4.13: Computed extinction cross sections of gold L-shape 11-sphere

waveguide for the longitudinal polarization mode (diameter = 50nm, center-to-

center distance = 25nm).
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Figure 4.14: Schematic of gold T-shape 11-sphere waveguide of light
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Figure 4.15: Computed extinction cross sections of gold T-shape 11-sphere

waveguide for the longitudinal polarization mode (diameter = 50nm, center-to-

center distance = 25nm).
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Chapter 5

Conclusion

Plasmon resonance in nanoparticles is a unique nanoscale phenomenon which

has numerous scientific and technological applications in such areas as near-field

microscopy, nano-lithography, surface enhanced Raman scattering, nanophotonics,

biosensors, optical data storage, etc. For this reason, the understanding of the

optical properties of nanoparticles holds both fundamental and practical signifi-

cance. While considerable experimental and theoretical work has been done in this

field, the accurate and efficient modeling of plasmon resonances in three-dimensional

nanoparticles for arbitrary shape remains a challenge.

In this dissertation, we developed a robust and efficient technique to fully char-

acterize the plasmon resonances and performed a comprehensive numerical analysis

of plasmon resonances in three-dimensional nanostructures. This surface integral

equation technique is based on the observations that plasmon resonances in nanopar-

ticles occur at specific frequencies for which the particle permittivity is negative and

the free-space wavelength of the radiation is large in comparison with particle di-

mensions. By using perturbation technique to Maxwell’s equations, the problem of

determining resonance frequencies is framed as a classical eigenvalue problem. It

is shown that the resonance values of dielectric permittivities as well as resonance

frequencies can be directly found through the solution of this eigenvalue problem
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for three-dimensional nanoparticles.

This integral equation method leads to fully populated discretized matrix equa-

tions that are computationally expensive to solve, especially when a large number

of particles are involved in the nanostructures. Since the fully populated matrices

are generated by integrals with 1/r-type kernel, this computational problem can

be appreciably alleviated by using the fast multipole method. This method greatly

speeds up the matrix-vector multiplications. By implementing the FMM algorithm

in the solution of the eigenvalue problem, the integral equation technique becomes

computationally very efficient compared to other technique such as finite-difference

time-domain (FDTD) method.

We have extended this technique to the computation of extinction cross sec-

tions from which important information such as the strength and FWHM of plasmon

resonances can be obtained. The applications of plasmon resonances have also been

considered. We performed extensive numerical studies for metallic nanoshells and

plasmon waveguides of light, which are very promising for bio-sensing applications

and light guiding and bending under the diffraction limit, respectively. It can be seen

that the technique developed throughout this dissertation can be very instrumental

for the design of plasmon resonant nanoparticles and tailor their optical properties

for various applications.

To further advance the understanding of optical properties of nanoparticles

and pursue its applications in new promising technology, the following issues can be

foreseen in the near future:

(1) Time dynamic analysis of plasmon resonances. The temporal analysis of
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specific plasmon modes is the least studied area of plasmonics. Nevertheless, the

temporal analysis of plasmon modes is much needed in order to fully comprehend

the time-dynamics of their excitation as well as their saturation and decay. This

temporal analysis can also be very instrumental in the area of light controllability

of plasmon resonances in semiconductor nanoparticles, where proper time synchro-

nization of excitation of specific plasmon modes may be required. During our future

research work on this project, the temporal analysis of plasmon modes should be

addressed.

(2) Plasmon resonances in semiconductor nanoparticles. Plasmon resonances

can be controlled through the manipulation of conduction electron density. In semi-

conductors, the manipulation of conduction electron density can be accomplished

by doping as well as by optical and depletion means. Indeed, by appropriate dop-

ing of semiconductor nanoparticles, the wide range of controllability of ωp can be

achieved and, in this way, the semiconductor nanoparticles can be tuned to resonate

at desirable frequencies. The optical controllability is especially attractive because

it could be utilized for the development of nanoscale light switches and all-optical

nano-transistors.

(3) Loss reduction in plasmonic circuits. A major obstacle for the applications

of plasmonic sub-wavelength waveguides and circuits is the high losses compared

to conventional optical waveguides. The losses are mainly due to the absorption,

scattering and coupling. This problem can be attacked from two aspects: one is to

design novel metallic nanostructures to minimize the coupling losses; the other one

is to embed the nanostructures into an optically active medium to compensate for
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the absorption and scattering losses. The successful solution of this problem could

lead to the realization of plasmonic chips.

The surface integral technique is a powerful tool for the study of plasmon res-

onances in nanoparticles and their applications. We hope that future developments

and improvement will greatly expand its capabilities and make it an indispensable

tool in this exciting and promising area.
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