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ABSTRACT

This paper investigates some dynamic characteristics of tendon-driven manip-
ulators. The dynamic equations including the effect of rotor inertia for a class of
n X (n 4+ 1) tendon-driven manipulators are formulated. A control algorithm based
on the computed torqued method is developed. Then, the implementation of such
control algorithm is demonstrated in the simulation of a three-DOF tendon-driven
manipulator. Through the simulation, several dynamic characteristics of the system
are identified. In particular, it is shown that rotor inertia can have significant effect
on the system dynamics and that pretension can play an important role on the sta-
bility of the system. It is also shown that among the five non-isomorphic kinematic
structures of three-DOF manipulators, the one which satisfies the isotropic trans-
mission and least maximum tendon force conditions also requires smallest tendon

force in the dynamic simulations.

1. Introduction

Tendons have been used as transmission elements in the design of robot ma-
nipulators (Salisbury, 1982; Jacobsen, et al., 1984) . In robots, tendon transmission
permits actuators to be installed remotely from the joints they drive and, therefore,
reduces the size and inertia of the manipulating system. In addition, pretensioned
tendons have no backlash. These merits have made tendon transmission more em-
inent in the design of manipulators, especially, in dextrous hand design where the
requirements of small size and light weight are crucial. Therefore, a fundamen-
tal understanding of tendon transmission is important for better design of s;;lch
manipulators.

This paper addresses some aspects of the dynamic characteristics and con-
trol associated with tendon-driven manipulators. Although the control problem of

tendon-driven manipulators has been investigated by a few researchers (Salisbury,
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1984; Venkataraman and Djaferis, 1987; and Jacobsen, et al. 1989), the problem is
still relatively unexplored, and it can be further complicated by friction, compliance,
and the coupling of displacements and forces in tendons. In general, the control
problem consists of: 1) kinematic and dynamic modelling of the system, and 2)
design of control strategies to achieve desired system performance. The objective
of this paper is to study the dynamic characteristics including the effect of rotor in-
ertia, and to suggest appropriate control strategies for tendon-driven manipulators.

First, a dynamic model for tendon-driven manipulators will be established un-
der the assumption that friction and compliance effects in tendons are negligible.
Following the derivation, a control algorithm based on computed torque method will
be described. This algorithm assumes that feedback signals from sensors at each
joint can be used to compute torques required for the motors. Then, based on the
developed model, simulation results for the realization of dynamic characteristics of
a sample tendon-driven manipulator will be presented.

In what follows, we shall neglect the inertia of pulleys used for power transmis-
sion, and we shall limit ourselves in those articulated manipulators which become

open-loop chains after the pulleys and cables are removed.

2. Dynamic Modelling

We now proceed to the dynamic modelling of a tendon-driven manipulator.
First, a general methodology will be developed and then, a three-DOF system will
be used to demonstrate the concept. The dynamics of a tendon-driven manipulator
can be divided into three parts: 1) dynamics of th;e open-loop chain, 2) kinematic
relationship between the joint space and tendon space, and 3) rotor dynamics.

Dynamics of the Open — Loop Chain

The generalized dynamic equations of motion for an open-loop chain can be

derived by the Lagrangian Mechanics. The equations of motion without gravity
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term for a n-DOF manipulator can be expressed as (Paul, 1981):
M(6) &+ h(6,6)= (1)

where M(6) is an n X n inertia matrix, © an n x 1 vector representing the joint
angles 6, h(4, 9) an n X 1 vector representing the Centrifugal and Coriolis terms, and
T an n X 1 vector representing the resultant joint torques in the open-loop chain.

Kinematic Relationship Between Joint Space and Tendon Space

The force and displacement transformation between the joint space and tendon
space were previously derived by Tsai and Lee (1989). In the force transformation,
the resultant torques, T = (Tn,Tn_1, -+, 72, 71)7, about the joint axes in the equiv-
alent open-loop chain can be related to tendon forces, F = (f1, fa, -, fa, fnt1)7,
by the equation

r=RTBTF (2.0)

where it is assumed that all pulleys pivoted about one joint axis are of the same
radii, and the matrix BT whose elements consists of -1, 0, and +1is an n x (n +1)
matrix, and the matrix RT whose non-zero elements are the radii of the pulleys is
an n X n diagonal matrix.

As to the displacement transformation, linear displacement of the tendons, S =
(81,82, ++,8n,8n+1)7, can be related to the joint angles, © = (8n,80,_1,---,82,81)7,
by the equation
S = BRO (2.5)

In the above notations, the joints have been numbered in a sequential manner
starting from the base.

Rotor Dynamics

The motor rotor dynamics can be approximated by a second-order system.

Consider the :th tendon spooling system as shown in Fig. 1. If the ith tendon

3



is wound around the ith pulley of radius r,,,, and the pulley is coupled to a gear
reducer having a gear ratio of n; = ry/r, (n; > 1), then the torque developed by the
1th motor is equal to the sum of the inertia torque, friction torque, and the torque
reflected at the motor shaft due to tension in the tendon. Specifically, the equation

can be written as

. Tm;
]m;em; + cm,'gm.' + TI,— i = éi (3@)

1
where jm., ¢m;, Om,, fi, and &; denote the rotor inertia, viscous-friction coefficient,
rotor angular displacement, tension in the zth tendon, and torque developed by the
1th motor, respectively.
Since there are (n + 1) motors for an n-DOF tendon-driven manipulator,
Eq.(3.a) can be written (n + 1) times, once for each motor. These (n + 1) dy-

namic equations can be compiled into a matrix form as shown below:

where Jn,, Cp, and R, are (n + 1) X (n 4+ 1) diagonal matrices whose diagonal
elements are 7m,;, Cm,, and r—;l"—":"—, respectively; F' is an (n+ 1) x 1 vector representing
tensions in the tendons; and ©,, and £ are (n 4+ 1) X 1 vectors whose elements are
the rotor angular displacements and motor torques, respectively.

Overall System Dynamics

The rotor angular displacements can be related to the manipulator joint angles
by Rn9,, = BRO. Substituting this relationship into Eq. (3.b), one can solve

tendon forces in terms of motor torques and joint angles as:

F=R, 'l - JnRmn *BRO - C,R,, "' BRO] (4)

Substituting Eqgs. (4) and (2.a) into (1), yields

(M + M)© + Crn© + h(6,6) = R"B R '€ (5)
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where M = RTBT Ry, ™' J;n R~ BR denotes the inertias of the rotors reflected at
the joints, and Cp, = RTBT Ry, " 'Cmn R~ ! BR denotes the viscous damping of the
rotors reflected at the joints.

Equation (5) completely describes the dynamics of a class of n x (n+1) tendon-
driven manipulators. Note that the term RTBTR,,™* ¢ on the right-hand-side of
Eq. (5) does not represent the resultant joint torques. The term M gives the effect
of rotor inertia and the term C,, gives the effect of damping to the dynamics of
the system. It should be also noted that tendon tensions given by Eq.(4) must be
positive at all times for the dynamic model to be valid. This will be described in

more detail in Section 3.

3. Computed Torque Controller

The purpose of a controller is to servo the motors so that the end-effector
will trace a desired path. In this work, the “computed torque” technique will be
implemented for controlling the manipulator. The technique assumes that one can
accurately compute the configuration dependent variables, M(6) and h(#, 9), in the
equations of motion to minimize their nonlinear effects. Using a proportional plus
a derivative feedback, the proposed control law consists of the following two terms:

(1) Compensation of the Centrifugal/Coriolis force and the viscous friction terms:
Cm@ + h(6,06) (6)
(ii) Proportional and derivative feedback terms:
(M + M0, + Kué + Kpe] (7)

where K, and K, are respectively n x n derivative and positional feedback gain
matrices, ©, is the desired joint angular displacement vector, and e = O, — O is

the error vector.



If the structure of the control law contains the above two terms, then the
tracking error e(t) will approach zero asymptotically. This can be explained as

follows. Let the computed torques 7, be related to the motor torques by

m=RIBTR,7'¢ (8.a)

i

and let the value of 7_,,, be computed from joint feedback signals as
Tom = (M + M)[@;+ Kué + Kpel + Cu + h(6,6) (8.5)

Then, substituting Eqgs.(8.a) and (8.b) into (5), yields
(M + M)+ Cnb + 1(8,6)
=T

—Ccm

=(M+ M)[O,; + Kyé+ Kpe] + Cn© + h(8,6) " (9.0)
After some simplification, Eq. (9.a) becomes
(M +M)(é+ K,e+ Kpe) =0 (9.b)

Since (M + M ) is always nonsingular, one can choose K, and K, appropriately
so that the characteristic roots of Eq. (9.b) have proper negative real parts and the
tracking error e(t) approaches zero asymptotically.

Since the vector spaces of 7, and { do not have the same dimension, the
mapping between these two spaces is not one to one. In this study, the pseudo-
inverse method \yill be used to convert the computed torque r_, to the motor

torque £. The solution of £ to Eq. (8.a) can be expressed as:
E=[R"BTRn ™) 1. + A, (10)

where (#)T = {(#)T[(#)(#)T]7!} represents the pseudo-inverse of (#) (Strang

1980), £, lies in the null space of structure matrix (RTBT R, ™), and A is an
Sh
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arbitrary constant. By adjusting A, motor torques can be adjusted to assure positive

tension in tendons.

4. Implementation and Simulation Results

In this section the simulation of a three-DOF tendon-driven manipulator using
the control algorithm developed in Sections 2 and 3 will be presented. Figure
2 shows five nonisomorphic, three-DOF kinematic structures developed in Lee and
Tsai (1991(a)). The kinematic structure shown in Fig. 2(d) which satisfies isotropic
transmission and least maximum tendon force conditions (Lee and Tsai, 1991(b);
and Lee, 1991) will be used for illustration. Figure 3 shows the control block diagram
for the system. Detailed dimensions of the manipulator used for the simulation are

given in the Appendix.

Controller Design

The controller is designed according to Eq. (8.b). Figure 4 shows the detailed
diagram of the controller shown in Fig. 3, where k,;, k,;, and m;; are the elements
of matrices K,, K,, and (M + M), respectively.

As mentioned in Section 2, it is necessary to keep tendon forces positive at all
times in order for the dynamic simulation to be valid. The following heuristic has
been implemented to assure positive tendon forces. In view of Eq. 4, to compensate
for the uncertainty due to rotor inertia and viscous friction torques, motor torques
are first computed by the pseudo-inverse method as shown by Eq. (10) so that
the smallest motor torque is equal to zero. Then, maximum desired rotor accel-

eration and velocity, ©,, and @_m, are used to estimate additional motor torques,

m

Jm(ém)max and Cm(ém Ymaz, needed for pretensioning the tendons.

Feedback Gains Design

The performance of a nonlinear system can be realized or compared if uniform

criteria are used for the design of feedback system. That is, the gain matrices are
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chosen to satisfy a specified output response criterion. To this end, the influence
of feedback gains K, and K, on the positional response of the system has been
investigated. Figure 5 shows the response of joint angle 3 to the simultaneous
execution of step inputs to all the three joints for various damping ratios. The
initial conditions for the simulations are 6; = 0 and 6; = 0, (i=1,2,3), and the step
function for each joint is applied at t=0.1 seconds with a step value of 0.2618 radians.
Three sets of gain values are chosen for comparison, they are (K,, K,)=(225, 23),
(225, 30), and (225, 35), respectively. It can be seen from Fig. 5 that the system
is underdamped for the value of (K,, I,)=(225, 23); overdamped for the value of
(225, 35); and critically damped for the value of (225, 30).

Since critical damping yields better system response, in what follows the gain

matrices will be chosen such that the system is always critically damped, i.e.,
kv, = 24/kp,, 1=1,2,3 (11)

In practice, one method for improving the response time is to increase the
gains kp; and k,,. Increasing the gains also increases torque requirement on motors.
However, it can result in an unstable situation. Figure 6 shows the response of
the system to simultaneous step inputs of three joint angles for two different gain
values. Both gains are chosen to satisfy the critically damped condition. It can be
seen that the higher the gains are, the stiffer the system is. The demand of motor
torques for these two gain values are plotted in Figs. 7(a) and 7(b), respectively.
The maximum torque requirement is 7.76 x 10* dyne-cm for the gain value of (225,
30) and 13.4 x10* dyne-cm for the gain value of (400, 40). To achieve high system
response and stability, the gain value (225, 30) which demands about one third of
the available motor torque will be used for the following studies. Note that a biased
motor torque of 2045 dyne-cm has been added to all motors in order to obtain

proper pretension of the tendons. The angular velocity and acceleration responses
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of the motors are shown in Figs. 8 and 9, respectively. Note that the negative
velocities of motors 1, 2, and 3 shown in Fig. 8 denote that the motors are under
“back driving” condition, i.e., the direction of rotation is in the opposite direction

of the motor torque applied.

Rotor Inertia and Viscous Friction Effects on Tendon Force

Figures 10 and 11 show the response of tendon forces for two different gains.
In Fig. 10, the gain is (225, 30) and the lowest tendon tension occurs at the point
B where the force magnitude is 1.67 x 10* dyne (45.5 % below the pretensioning
force). On the other hand, in Fig. 11, the gain is (400, 40) and the point B
has dropped to a value of 1.22 x 10* dyne (60.2 % below the pretensioning force).
This is due to the effect of rotor inertia and viscous friction. Figures 12 and 13
respectively show motor torque and tendon force responses without considéring the
rotor inertias and viscous frictions. A comparison of the simulation results shown
in Figs. 7 and 12 shows a significant difference on motor torques requirement, 7.64
x10* as compared to 4.3 x10* dyne-cm peak torque on motor 4. Comparing the
tendon force curves shown in Figs. 10 and 13 also shows a significant difference in
tensions. It can be seen that if pretensioning is not well managed, system modelling
without considering motor inertia and viscous friction terms may cause slackness
in tendons and result in an unstable situation. Hence, pretension may play an

important role in the control of tendon-driven manipulators.

Maximum Motor Torque

This section compares the motor torque requirement among different kinematic
structures. Given a kinematic structure, motor torque responses are simulated for
various combinations of simultaneous step inputs. A step input can be applied either
in the positive or negative direction of a joint. For a three-jointed manipulator,

there are eight combinations of step inputs that can be applied to each kinematic
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structure. Due to directional sensitivity in the manipulator, all combinations of
the simultaneous step inputs are executed and the worst condition which requires
maximum motor torque for each kinematic structure is recorded. For the kinematic
structures shown in Figs. 2(a) to 2(d), the maximum motor torque occurs when the
step inputs are applied in the 6,4 = 634 = 635 = 0.2618 radians direction, while the
maximum motor torque for the structure shown in Fig. 2(e) occurs when the step
inputs are applied in the 14 = 834 = 0.2618 radians and 655 = —0.2618 radians
direction. Figures 7(a), and 14 through 17 show the simulation results. It can be
observed that the kinematic structure as shown in Fig. 2(d) has the least maximum

torque among all the kinematic structures.

5. Summary

The formulation of dynamic equations of motion and control algorithm for a
general class of tendon-driven manipulators have been developed. The computed
torque method has been employed to illustrate the principle of control algorithm
and the pseudo-inverse technique has been used for transforming joint-torque signals
to motor-torque signals. The integral of the control method in the simulation is
demonstrated through a three-DOF tendon-driven manipulator. Several system

characteristics have been investigated through the simulation.

We have shown that rotor inertia can have significant effect on the dynamics of
the system even though the gear ratio is not very high. Hence, pretension can play
an important role in the stability of the system. We have also shown that among
five nonisomorphic kinematic structures of three-DOF tendon-driven manipulators,
the one which satisfies isotropic transmission and least maximum tendon force con-
ditions also requires smallest tendon force under dynamic conditions. It is hoped

that this study will lead to a better understanding of tendon-driven manipulators.
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Appendix: Dimensions of the open-loop chain

Figure Al shows the configuration of the open-loop chain used in the simula-

tion. It is assumed that the links are uniform and the mass center of each link is
located in the middle of the link. The dynamic equations for the open-loop chain

neglecting gravitational terms are given by:

7 =[m1h?/3 + ma(l% + 12?3 + lilacy) + ma(ly + laca + l3cos /2)*+
m3132cz32/12]él + hy

T2 =[m2l22/3 + ms(lz2 + 1% /3 + 121363)152 + [m3ls®/3 + m3121303/2]é3 + ho

73 =[m3(ls2/3 + lalscs/2)]0; + (mals?/3)6s + hs (A.1)

where
hi = — mzéléz[lg(ll -+ 1262/2)32 -+ 136282/6]

- m3él 93[(11 + laco + 13623/2)13323 + 13323623/6]

- m391é2 (1 + lacq + 13¢25/2) (21282 + I3s23) + 132,023523/6]

) .
h2 =m2(11l232/2 -+ 1226282/3)91 + m3(l1 -+ 1262 -+ 13623/2)(1282 + 13323)9%

+ m31329'ch3323/12 — mslyls(f2 + 63/2)s363

h3 =mgl38239.¥ [(ll + 1262 + 13623/2) + 13623/6]/2 + mglzlgsgég/z

and where s; = sinfs, s3 = sinfs, ¢y = cosby, ¢3 = cos by, sp3 = sin(f2 + 3), and

C23 = COS(92 + 93)
The following numerical values are used for the simulation:

my = 90 gm, me = m3 = 100 gm; [; = 3 cm, I, = I3 = 4 cm; joint axis pulley radius:

r1 = ro = r3 = 0.8 cm, spooler radius of the ¢th motor: r,, = 0.8 cm, gear ratio
n;=12, motor rotor inertia j,, = 12.78 dyne — cm — sec?, viscous damping coeffi-
cient ¢,,, = 68.5 dyne-cm-sec/rad, and maximum available motor torque=215400

dyne-cm, for all motors.
The simulation package SIMNON (Astrém, 1985) is used to simulate the sys-

tem. The plant is integrated under the continuous time system and the time step

for integration is 0.005 sec.
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Figure Captions

Fig. 1 Schematic of the motor-tendon spooling system

Fig. 2 Nonisomorphic kinematic structures having three-DOF

Fig. 3 Control block diagram of a three-DOF tendon-driven manipulator

Fig. 4 Design details of the controller shown in Fig. 3

Fig. 5 Joint angle response vs. various damping ratios

Fig. 6 The effect of feedback gain on system stiffness

Fig. 7(a) Motor torque response with K,=225 and K,=30, peak value= 7.64 x 10*
dyne-cm

Fig. 7(b) Motor torque response with K,=400 and K,=40, peak value= 1.34 x 10°
dyne-cm

Fig. 8 Motor rates with K,=225 and K,=30

Fig. 9 Motor accelerations with K,=225 and K,=30

Fig. 10 Tendon force response with K,=225 and I{,=30, B= 1.67 x 10* dyne
Fig. 11 Tendon force response with K,=400 and K,=40, B=1.22 x 10* dyne

Fig. 12 Motor torque response without considering motor inertia and viscous fric-
tion (K,=225 and K,=30)

Fig. 13 Tendon force response without considering motor inertia and viscous friction
(Kp=225 and K,=30)

Fig. 14 Motor torque response for the structure shown in Fig. 2(a), peak value =
1.47 x10° dyne-cm

Fig. 15 Motor torque response for the structure shown in Fig. 2(b), peak value =
2.19 x10° dyne-cm

Fig. 16 Motor torque response for the structure shown in Fig. 2(c), peak value =
8.88 x10* dyne-cm

Fig. 17 Motor torque response for the structure shown in Fig. 2(e), peak value =
1.11 x10° dyne-cm

Fig. Al Schematic of the open-loop chain
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Fig. 12 Motor torque response without considering motor inertia and viscous fric-

tion (K,=225 and K,=30)
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Fig. 13 Tendon force response without considering motor inertia and viscous friction

(Kp=225 and K,=30)
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Fig. 14 Motor torque response for the structure shown in Fig. 2(a), peak value=
1.47 x10% dyne-cm
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Fig. 15 Motor torque response for the structure shown in Fig. 2(b), peak value=
2.19 x10° dyne-cm
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Fig. 16 Motor torque response for the structure shown in Fig. 2(c), peak value=

8.88 x10* dyne-cm
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Fig. 17 Motor torque response for the structure shown in Fig. 2(e), peak value=
1.11 x10° dyne-cm



