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Transposable elements are DNA sequences with a unique ability to change their genomic 

location. Transposable elements are fascinating because of their ability to move, and their 

ubiquitous presence and contribution to the evolution of all prokaryotic and eukaryotic 

genomes. Their mobility properties have made them extremely useful as molecular tools 

in the laboratory. Transposable elements have also been proposed to be useful as genetic 

drive agents to introduce phenotype-altering genes in natural populations of mosquitoes, 

to control vector-borne diseases such as malaria. 

 Presented in this thesis are studies on the behavior and evolution of two 

endogenous Class II transposable elements, Herves and Topi in natural populations of 

Anopheles gambiae, a species seriously being considered for population modification 

using genetic manipulation. In Chapters 2 and 4, results from the analysis of copy 

number, activity, and nucleotide sequence as well as structural diversity of Herves and 

  



Topi elements, respectively in 5-6 An.gambiae populations in Africa are described. In 

Chapter 3, studies to identify and assess the activity of the natural variants of Herves 

transposase in An.gambiae are described. 

  

 The results from these studies show that both Herves and Topi elements have long 

histories in An.gambiae with Topi present in An.gambiae earlier than Herves. Herves, but 

not Topi, is still active in natural populations of An.gambiae with more than one active 

form of Herves transposase responsible for its activity. Both the elements, despite their 

long history in An.gambiae, have a very high percentage of individuals with complete 

forms of the element. This observation is an unusual feature of these elements, which 

would not be predicted for elements with such a long history. The presence of complete 

and active forms of Herves and Topi, elements with long histories in An.gambiae, argues 

against the possibility of rapid accumulation of deleted forms of transposable elements as 

a general feature of their evolution. 

  

 Better understanding of the behavior and evolution of Class II transposable 

elements in An.gambiae shows that Class II transposable elements still hold promise as a 

genetic drive agent for this particular species. 
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Chapter 1: Transposable elements and their application as genetic 

drive agents to control vector-borne diseases 

Transposable elements and genome evolution 

Transposable elements are DNA sequences that have the ability to change 

their genomic location. Transposable elements are ubiquitous in both prokaryotic and 

eukaryotic genomes and can contribute substantially to genome content. Transposable 

elements, for instance, comprise 15% of the Drosophila genome, 45 % of the human 

genome, and 50% of the Aedes aegypti genome (KIDWELL 2002; NENE et al. 2007). 

They can be broadly classified into two kinds based on the presence of a DNA/RNA 

intermediate during transposition. Transposable elements that have an RNA 

intermediate and require a reverse transcription step are called Class I or 

retrotransposons. Class II or DNA transposable elements have a DNA intermediate 

and move through a cut-and-paste mechanism, where a transposase catalyzes the 

excision of the transposon from one site, and insertion into another site in the 

genome. Transposable elements containing sequences that encode proteins necessary 

for their transposition (transposase in the case of DNA transposons) are called 

autonomous elements. Non-autonomous elements cannot catalyze their own 

transposition but are capable of transposing using proteins from another source in the 

genome. 

Transposable elements are potent mutagenic agents because of their ability to 

excise from one location and insert into other parts of the genome. Mutations caused 

by transposable element insertions are often deleterious but can also serve as a source 

of genetic variation contributing significantly to the evolution of genomes 
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(BROOKFIELD 2005; KIDWELL and LISCH 2001). Transposable element insertions can 

have a variety of consequences, such as altering the levels and patterns of gene 

expression, causing chromosome breakage, illegitimate recombination and genome 

rearrangement (KIDWELL and LISCH 2001). Transposable element insertions are not 

always deleterious, for example, strong selection for an S-element insertion in a heat-

shock protein gene in D.melanogaster (MASIDE et al. 2002) and a Doc element 

insertion upstream from the transcription start of a cytochrome P450 gene, Cyp6g1 

(SCHLENKE and BEGUN 2004) in D.simulans has led to their spread and fixation in the 

natural populations. Presence of the Doc insertion is correlated with increased 

Cyp6g1 transcript which is associated with insecticide resistance in D.melanogaster 

(SCHLENKE and BEGUN 2004). There are also examples of transposable elements 

being co-opted to perform host functions. For example, RAG1 and RAG2 are genes 

that are involved in V(D)J recombination in vertebrates and have evolved from 

ancient transposable elements (KAPITONOV and JURKA 2005). Two retrotransposons, 

HeT-A and TART function as telomeres in D.melanogaster (LEVIS et al. 1993).  

Another fascinating feature of transposable elements is their ability to cross 

species boundaries and enter new genomes by horizontal transfer. There have been a 

number of reports of horizontal transfer events involving transposable elements in 

both prokaryotes and eukaryotes (reviewed in (SILVA et al. 2004)). A recent study in 

D.melanogaster suggested that a large proportion of the transposable elements had a 

relatively recent origin as a result of horizontal transfer (SANCHEZ-GRACIA et al. 

2005). mariner-like elements (MLEs) are a family of transposable elements that have 

a wide host range; they have been found in plants, insect genomes, other invertebrates 
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and vertebrates including humans. Many examples of horizontal transfer involving 

members of this family of elements have been reported (HARTL et al. 1997a). The 

widespread presence of transposable elements, their mutagenic properties, deleterious 

and beneficial effects of their insertions as well as their ability to invade new 

genomes are some of the features of transposable elements for continued interest in 

studying them. Transposable elements are also studied because they have proven to 

be very useful tools in the lab with a wide range of applications. 

Application of transposable elements 

The mobility properties of transposable elements that have made them 

fascinating and significant components of genomes have also led to their widespread 

use as laboratory tools. Class II transposable elements have been used for insertional 

mutagenesis and are now essential tools for performing functional genomics studies 

in a wide range of species. For example, Tn7 transposon in yeast (KUMAR et al. 

2004a) P-elements in Drosophila (COOLEY et al. 1988; ZHANG and SPRADLING 1994), 

Mos-1 in C.elegans (BESSEREAU et al. 2001), Minos element in Ciona intestinalis 

(SASAKURA et al. 2003), piggyBac element in malaria parasite, Plasmodium (BALU et 

al. 2005), red flour beetle, Tribolium castaneum (LORENZEN et al. 2007) and also 

vertebrates (MISKEY et al. 2005). One of the advantages of using transposons for 

mutagenesis is that the genes mutated by transposon insertions are molecularly tagged 

and can be easily identified and isolated. Another advantage is that vectors can be 

engineered such that a reporter molecule is expressed in a context-dependent manner. 

Such vectors have been used to identify enhancer regions of genes, 5’ promoter 

regions and 3’ regions of genes. For example, P-elements in Drosophila 
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melanogaster (DUFFY 2002) and Tol2 transposon in Zebra fish (PARINOV et al. 2004) 

have been used to identify enhancer regions of genes. 

Transposable elements have been very useful as gene vectors for germ-line 

transgenesis in invertebrates, vertebrates and plants. Insect biologists now have at 

least six transposable element- based gene vectors from which to choose when 

considering the creation of a transgenic insect (P, hobo, Tn5, mariner, Minos, 

piggyBac, and Hermes) (ATKINSON et al. 2001). For instance, the Hermes element 

has been useful in creating transgenic D.melanogaster (O'BROCHTA and ATKINSON 

1996), Aedes aegypti (JASINSKIENE et al. 1998), Ceratitis capitata (MICHEL et al. 

2001), Stomoxys calcitrans (O'BROCHTA et al. 2000), Tribolium castaneum 

(BERGHAMMER et al. 1999) and butterfly, Bicyclus anynana (MARCUS et al. 2004). 

Other commercially useful insects such as silk worm, Bombyx mori, have been 

transformed using piggyBac (TAMURA et al. 2000), P-elements (KIM et al. 2003) and 

Minos (UCHINO et al. 2007) transposable elements. Besides insects, transposable 

elements have been useful to transform plants (BAKER et al. 1986; VANSLUYS et al. 

1987) and vertebrates (LARGAESPADA 2003). Sleeping Beauty and Tol2 transposable 

elements from fish, piggyBac element from moth and Frog Prince element from frog 

have all been used to transform human and mouse cell lines (DING et al. 2005; IVICS 

et al. 1997; KAWAKAMI and NODA 2004; MISKEY et al. 2003). Sleeping Beauty has 

also been used to achieve stable chromosomal integrations and long term transgene 

expression in mice (HORIE et al. 2001; YANT et al. 2000). 

The successful use of transposable elements to transform vertebrate cells has 

led to research towards developing transposable element mediated gene-therapy in 
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humans (IZSVAK and IVICS 2004). There are various transposable elements such as L1 

elements, Tol2, Tc1, Tc3, Himar1, Mos1, Minos and Sleeping Beauty that have been 

found to be active in human and mouse cell lines (LARGAESPADA 2003). Sleeping 

Beauty is a synthetic Tc1/mariner element derived from defective elements in 

Salmonid fish genome. Sleeping Beauty is active in both mouse and human cell lines 

and has been useful for germ line as well as somatic cell transgenesis in mice. The 

idea of using transposable elements as gene delivery vectors for therapeutic purposes 

has been tested using the Sleeping Beauty transposon in mice. Five percent of 

hepatocytes expressed the lacZ gene when a plasmid containing the lacZ gene within 

the transposon was administered into living mice (IZSVAK and IVICS 2004). In another 

experiment, a Sleeping Beauty vector containing a human factor IX expression 

cassette when administered to hemophilic mice resulted in partial correction of a 

bleeding disorder. In Fumaryl Acetoacetate Hydrolase (FAH) deficient mice a 

Sleeping Beauty- FAH expressing construct has been able to correct a lethal recessive 

hereditary disease in 62 % of the experimental animals (IZSVAK and IVICS 2004). 

Even though work needs to be done to increase the transposition efficiency of 

transposable elements and also to control the target specificity of their insertion, they 

hold promise as a non-viral gene transfer tool for gene therapy in humans 

(FESCHOTTE 2006; IZSVAK and IVICS 2004). 

While transposable elements have been used largely as tools to modify and 

study individual organisms they are now being considered as tools to manipulate 

natural populations. Transposable elements not only enter new genomes by horizontal 

transfer but also become ubiquitous in the natural populations of the newly invaded 
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species by transposition and vertical transmission alone. One of the most convincing 

examples is the horizontal transfer of P-elements from Drosophila willistoni to 

Drosophila melanogaster and the spread of P-elements throughout world populations 

of D.melanogaster in a few decades (ANXOLABEHERE et al. 1988). This ability of 

transposable elements to increase in frequency is the basis of their proposed use as a 

genetic drive agent to spread transmission-blocking genes in natural populations of 

mosquitoes to control vector-borne diseases such as malaria. Vector-borne diseases, 

as the name suggests, are the ones in which the disease-causing pathogen needs an 

organism (vector) to be transmitted from infected to uninfected individuals. The 

proposed strategy is to spread gene(s) that render vectors incapable of transmission 

through natural populations of the vector using transposable elements in a fairly short 

time as a way to control vector-borne diseases. 

Burden of vector- borne diseases especially malaria 

Vector-borne diseases such as malaria, trypanosomiasis, encephalitis, 

leishmaniasis, filariasis, onchocerciasis and dengue collectively account for more 

than 1.5 million deaths per annum around the world (HILL et al. 2005) (Figure 1-1). 

Malaria, the most important vector-borne disease is estimated to cause around one 

million deaths per year. Malaria is the third highest pathogen-specific cause of death 

in the world after HIV/AIDS and tuberculosis. However, the morbidity caused by a 

disease determines its true impact and can be assessed using DALY (Disability-

Adjusted Life Years), where one DALY is defined as one lost year of healthy life, 

and is a measurement of the difference between the current health of a population and 

an ideal situation where everyone in a population lives into old age in full health.  
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FIGURE 1- 1: Global estimates of human mortality caused by vector-borne 
diseases compared to HIV/AIDS and Tuberculosis.  
The total number of human deaths due to various vector-borne diseases in comparison 
to two non-vector borne diseases-HIV/AIDS and tuberculosis is shown. [data and 
idea from Hill et al.] 
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Malaria causes severe fever, anemia, fatigue and other serious complications affecting 

the normal health and life of the people with the disease. Thus, when judged in terms 

of loss of normal health, the disease burden due to malaria which infects around 500 

million people a year is much more than tuberculosis (HILL et al. 2005).     

Malaria     

Malaria is caused by the protozoan parasite Plasmodium, and is transmitted 

from infected individuals by the female Anopheles mosquito. There are 

approximately 430 species of Anopheles of which only 30-40 transmit malaria. 

An.gambiae is the most potent vector in sub-Saharan Africa where malaria is most 

prevalent. There are more than 100 species of Plasmodium that can infect animals of 

which only four; P.vivax, P. ovale, P.malariae and P.falciparum infect humans. 

P.falciparum causes, cerebral malaria, the most severe and fatal malaria. Some of the 

symptoms of cerebral malaria are abnormal behavior, seizures, coma, severe anemia 

and cardiovascular shock and it can lead to death if not treated within 24 -72 hours. 

P.falciparum is common in Africa where it is responsible for 90% of the deaths 

caused by malaria. P.vivax is found mostly in Asia, Latin America and some parts of 

Africa and rarely causes death, but it can be incapacitating and contribute to the 

disease burden of malaria. The other two species of Plasmodium are less frequently 

encountered. 

 The etiology of malaria has been understood for over a century and yet it still 

remains one of the most deadly diseases in the world. Mosquitoes are absolutely 

required for the development and transmission of the parasite; without the mosquitoes 

there would be no transmission and no disease. Thus, the battle against malaria has 
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been most successful when vector-control was implemented and successful. 

Preventing human contact with vectors has been effectively done by two important 

vector-control strategies, pesticide-treated bed nets and insecticides. Mosquito control 

programs using insecticides were successful for a short time during 1950’s and 

1960’s when they were well implemented, after which there was a re-emergence of 

malaria by the 1970’s (GUBLER 1998). Multiple factors-such as insecticide resistant 

mosquitoes, drug resistant parasites, unavailability of vaccines and also socio-

economic factors in the endemic regions have been responsible for the re-emergence 

of the disease.  India and Sri Lanka are examples of two countries that are seeing a 

resurgence of malaria due to the discontinuation of vector-control programs, 

complacency and reduction of financial and political support for control/elimination 

programs started in the 1950’s (GUBLER 1998). The magnitude of complexity 

involved in the control/elimination of this disease makes it unlikely that there will be 

one solution to this problem. The loss of effectiveness of promising tools (for 

example, insecticides) requires the development of new approaches and 

complementary strategies to be taken to control this disease. 

Genetically modified mosquitoes and population modification: A new approach 

Mosquitoes are obligate hosts for the development and transmission of the 

malarial parasite, Plasmodium. Thus, eliminating this host (mosquito) is a highly 

effective way of eradicating malaria. The use of insecticides, such as DDT, has been 

very successful in reducing malaria transmission in the past by eliminating 

mosquitoes. However, sporadic use of insecticides has resulted in insecticide resistant 

mosquitoes that have contributed to the re-emergence of the disease. Even though 
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there are confounding problems of insecticide resistance and environmental concerns, 

DDT still remains an efficient strategy to provide protection and safety to an 

enormous number of people at very low costs (TREN and BATE 2001). Although 

killing of mosquitoes using insecticides is effective, it may not be necessary in order 

to control the disease. The actual problem is not the mosquito but its ability to 

transmit the parasite. So, eliminating this ability of mosquitoes without actually 

killing them is an ecologically better solution. Craig (1963) suggested using genetic 

technology to create refractory mosquitoes that are unable to transmit the parasite and 

then modify wild populations of mosquitoes such that all of them acquire this 

property (WHITTEN 1985). Genetic manipulation of insects was made possible by the 

genetic transformation of Drosophila melanogaster in 1982 (RUBIN and SPRADLING 

1982). However, two major hurdles have to be accomplished before we can use this 

new approach to disrupt malaria transmission in nature, 1) create a refractory strain of 

mosquitoes and 2) develop a method to modify existing populations of mosquitoes 

with the desired properties.  

Generation of refractory mosquitoes 

The nature of the life cycle of the parasite in the mosquito presents us with 

multiple opportunities to interfere with its development and transmission. The life 

cycle of Plasmodium in mosquitoes starts when the mosquito ingests an infected 

blood meal. Plasmodium gametocytes present in the infected blood mature to form 

male and female gametes which fuse and become diploid zygotes. The zygotes 

quickly develop into motile ookinetes that penetrate the mid-gut epithelium and 

differentiate into oocysts on the basal surface of the gut epithelium. In two weeks, the 
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oocyst ruptures releasing thousands of haploid sporozoites into the mosquito 

haemocoel. The sporozoites invade and emerge in the ducts of the salivary gland 

tissues. Upon feeding on a vertebrate host the mosquito injects saliva along with 

parasites thereby infecting another host (Figure 1-2). Of all the gametocytes ingested 

by the mosquito with the blood meal, only 10% develop into ookinetes and of these 

only 20% mature into oocysts (BLANDIN et al. 2004). Each oocyst produces 

thousands of sporozoites, some of which (10%) invade the salivary gland (SINDEN 

2002) and are transmitted to a new host. Because the parasite population is reduced 

right after it enters the mosquito and remains low until the oocyst stage, efforts to 

modify mosquitoes to impair their transmission abilities have focused on pre-

sporozoite stages of Plasmodium development (RIEHLE et al. 2003). 

Multiple strategies are being considered to interfere with the parasite 

development in the mosquito (ITO et al. 2002; KIM et al. 2004; MOREIRA et al. 2000). 

These strategies involve either the expression of novel effector molecules or altering 

the expression of endogenous effector molecules that result in inhibition of the 

parasite development. Some effector molecules are toxic to the parasite while others 

block the activity of parasite-expressed proteins that are important for the parasite 

invasion of different tissues in the mosquito. There are other effector molecules that 

interfere with parasite and mosquito receptor interactions. Also, altering the 

expression of certain innate immune effector molecules has resulted in the inhibition 

of parasite development. Transgenic Anopheles mosquitoes with reduced vector 

competence have been generated with at least three effector molecules. Cecropin A is  

an innate immune effector that is synthesized in response to Plasmodium infection in 
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FIGURE 1- 2: Life cycle of Plasmodium parasite in mosquito and human hosts. 
From CDC public domain: Content provider -Alexander J. da Silva, PhD and Melanie 
Moser 
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 mosquitoes (DIMOPOULOS et al. 2001; WATERHOUSE et al. 2007). The parasite is able 

 to escape the effect of Cecropin A and other innate immune effectors by its ability to 

invade tissues where these molecules are not synthesized. Altering the expression of 

one such immuno-peptide, Cecropin A (cecA) such that it is expressed 24 h after a 

blood meal in the posterior mid-gut using an Aedes aegypti carboxy peptidase 

promoter  resulted in ~61% reduction in the oocyst number of P.berghei in transgenic 

An.gambiae (KIM et al. 2004). Bee venom phospholipase A2 (PLA2) is another 

effector; when this gene is expressed using a gut specific and blood meal-inducible 

An.gambiae promoter in transgenic An.stephensi has an 87% reduction of P.berghei 

oocyst number (MOREIRA et al. 2002). SM1 (Salivary gland and mid-gut binding 

protein) is a synthetic peptide that when also expressed using the same promoter in 

transgenic An.stephensi resulted in 81.6% reduction in P.berghei oocyst number (ITO 

et al. 2002). 

 In the three cases described above, two different strategies were used to 

disrupt the development of the Plasmodium parasite. PLA2 and SM1, for instance, 

interfere with the interaction of the parasite and the mid-gut cell surface while the 

expression of Cecropin A, an immune response effector, was altered to inhibit the 

development of the parasite. Other effector strategies that affect parasite gene 

expression or act as anti-parasite toxins are also being tested for their anti-

Plasmodium capacity (NIRMALA and JAMES 2003) and generation of a refractory 

strain without the ability to transmit seems achievable. 

Population modification 

 Identification and use of effector genes to generate transgenic insects with  
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reduced vector competence is encouraging. However, successful use of genetically 

modified mosquitoes to control vector-borne diseases depends upon introducing 

reduced vector competence into wild populations of mosquitoes, which can be 

achieved in two ways – population replacement and population modification. 

Population replacement would involve an inundated release of the refractory 

mosquitoes following a significant reduction in the natural population of mosquitoes 

(using insecticides). This approach requires the production of a large number of 

refractory mosquitoes and it may not be possible to produce sufficient number of 

mosquitoes to achieve population replacement for a country or a continent. In 

contrast, population modification requires only the production of a manageable 

number of refractory mosquitoes as it relies on a (genetic drive) mechanism to rapidly 

increase the frequency of the refractory transgene in natural populations of the 

mosquitoes. 

 A few mechanisms - such as meiotic drive (segregation distorter) (WOOD et 

al. 1978), use of homing endonuclease genes (BURT 2003), bacterial symbionts like 

Wolbachia (BEARD et al. 1998), and linking transgenes to autonomous Class II 

transposable elements (KIDWELL and RIBEIRO 1992)- have been suggested to rapidly 

increase the frequency of refractory genes in natural populations of mosquitoes. 

Unfortunately, the critical step of linking the transgenes to the drive mechanisms has 

not been demonstrated except for transposable elements. Transposable elements are 

used as a gene vector to transform mosquitoes but their ability to drive refractory 

genes to fixation in populations is yet to be demonstrated. There have been natural 

cases of expansion in the frequency of transposable elements, such as the rapid 
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increase in frequency of P-elements and their spread across the world populations of 

Drosophila melanogaster in a few decades (ANXOLABEHERE et al. 1988). However, 

there never has been a deliberate attempt to achieve this.  

 Models that simulate the spread of transposable elements in populations 

predict that transposable elements can be used to spread refractory genes to fixation 

and achieve the required impact on the disease under certain conditions. Ribeiro and 

Kidwell (1994) developed a simple population model to describe the expected change 

in frequency of transposons with a specific intergeneration transmission rate, i, after 

their introduction into a population (RIBEIRO and KIDWELL 1994). i is a measure of 

the infectivity, or the ability of a transposable element to jump to another 

chromosome, and can have a value between 0 and 1. When i=1, the frequency of 

transposon-bearing gametes derived from a cross of an individual carrying a 

transposable element (T) and a wild-type individual (W) increases from 0.5 to 1. The 

fitness of transposon bearing individuals can be lower than the wild-type individuals 

because of the deleterious effects caused by the transposon jumping. Ribeiro and 

Kidwell (1994) found that the element spread rapidly and became fixed if the 

transmission rate (i) was greater than 45% of the fitness cost to individuals bearing 

the elements. In other words, if the infertility caused by the transposition is less than 

45%, the element spreads to fixation. They also found that a release ratio of ≤ 1% of a 

large population was sufficient for spread under these conditions.  

 Kiszewski and Spielman (1998) used a spatially explicit model to reexamine 

the expected dynamics of transposon spread. Their model had about 300 villages with 

each containing about 100 mosquito breeding sites and they assumed a transmission 
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rate of i=1 (100% transmission) in all their simulations. They found that a transposon 

needs to have less than 30% fitness cost in order to spread and become fixed in each 

of the mosquito subpopulations. They also found that environmental factors played a 

role in the spread of transposons; when they assumed a short dry season with a 

continuous level of breeding, the transposon cost on fitness can not be more than 20% 

to achieve a spread. Large releases did not promote fixation, especially when 

breeding seasons were long. When the transposon bearing individuals were randomly 

released throughout the modeled regions, they found that fixation was achieved more 

rapidly than if they were released in an aggregated fashion. A more recent model that 

combined both population genetic and epidemiological ideas concluded that the 

efficacy of the genetic drive can be fairly low (~ 40%) for refractoriness to reach 

fixation; however, the efficacy of refractoriness needs to be 100% for this strategy to 

eradicate malaria (BOETE and KOELLA 2003). Nevertheless, these models do suggest 

that if certain requirements are met then transposable elements can be used to spread 

refractory genes to fixation to disrupt malaria transmission. 

Transposable elements - a promising genetic drive system 

The ability of transposable elements to move and increase in copy number 

makes them good candidates for a genetic drive system (CURTIS 2003; KIDWELL and 

RIBEIRO 1992; RIBEIRO and KIDWELL 1994). Class II transposable elements move by 

a cut-and-paste mechanism without any RNA intermediate; increase in copy number 

in this case is brought out by the DNA repair mechanisms of the cell which uses the 

homologous chromosome as a template (Figure 1-3). Because transposable elements 

move and increase in copy number, they are inherited in frequencies greater than the 
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expected Mendelian ratios. For instance, the cross between an individual 

heterozygous for a gene and an individual without the gene results in 50% of 

offspring that have the gene (Mendelian ratio). However, if the gene is a transposable 

element and it jumps to the homologous chromosome then all the offspring resulting 

from the cross have the element. So, the frequency of inheritance is greater than the 

Mendelian ratio (50% in this case) and the transposable elements are therefore said to 

have a transmission advantage (Figure 1-4a). Class II transposable elements based on 

their transposition rate, pattern of jumping and the timing of jump can have a high 

transmission advantage. For instance, if the transposition event is pre-meiotic as 

opposed to post-meiotic, the transmission advantage would be much higher (Figure 1-

4b). Transposable elements will thus increase in frequency in a population as long as 

their transmission advantage is greater than the fitness cost due to their random 

insertion into genes.  

A notable example of such an increase in frequency in a population is the 

rapid increase of the frequency and spread of P-elements in the world populations of 

D.melanogaster (ANXOLABEHERE et al. 1988). Studies indicate that P-elements have 

been introduced into D.melanogaster from D.willistoni by horizontal transfer and 

they have spread by transposition and vertical transmission alone to become 

ubiquitous in natural populations within a few decades (ANXOLABEHERE et al. 

1988). Another example is the spread of the hobo element in D.melanogaster; hobo 

elements were probably introduced into the D.melanogaster genome in the 1950s 

(PASCUAL and PERIQUET 1991; PERIQUET et al. 1989a; PERIQUET et al. 1989b) and 
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FIGURE 1- 3: “Replication” of a DNA transposon.  
Excision of a DNA transposable element, results in a chromosomal break, which is 
repaired by the DNA repair mechanism of the cell that results in an increase in copy 
number. 
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FIGURE 1- 4: Transmission advantage of transposable elements. 
a. Transposition to the homologous chromosome results in the transposable 

element being inherited by all the offspring as opposed to only 50% if there 
was no transposition 

b. Depending on the timing of the transposition event, transposable elements can 
have a bigger transmission advantage  
 

 19 
 



 

 have spread through the world’s populations within the last 50 years. Because of the 

ability of transposable elements to spread through populations, any gene - such as 

PLA2 or cecA that targets the parasite - can be “driven” to high frequencies by 

linking it to an appropriate transposable element.  

Evolution of transposable elements 

 According to Hartl et al (1997), transposable element evolution in an 

organism has three phases. In the first phase, right after an element is introduced into 

a genome, the element increases in copy number as a result of high rates of replicative 

transposition (Invasive phase). As a result of a number of forces, such as natural 

selection and evolution of repression systems, the activity of the transposable element 

is regulated and the copy number tends to reach an equilibrium (Equilibrium phase). 

During this phase, the rate of loss of elements due to excision is equal to the increase 

in number of elements due to replicative transposition. This phase is followed by 

inactivation of functional elements (autonomous elements) due to deletions and 

mutations leading to the gradual loss of elements (that are now fixed) and eventual 

extinction due to drift (Stochastic loss phase) (Figure 1-5). 

Even though this model of transposable element evolution seems to apply to all 

transposable elements studied so far, the specifics such as the length of each phase 

can vary depending on the element and species under question. For instance, even 

though P-elements have been in Drosophila melanogaster for less than a century, 

most of the elements are internally deleted (ENGELS et al. 1990). The accumulation of 

internally deleted defective forms of the element may not be rapid as seen by the 

widespread occurrence of intact forms of Hermes elements in Musca domestica 
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FIGURE 1- 5: A model of the life cycle of transposable elements 
Horizontal transfer of an active transposable element into an organism results in 
increase in copy number initially (i. Invasive Phase) due to high activity but after 
some time there is a decrease in activity due to repressive forces resulting in 
equilibrium (ii. Equilibrium Phase) when the increase in copy number due to 
transposition is equal to loss of elements by excision, this is followed by loss of 
functional elements from the population which leads to less or no activity leading to 
eventual extinction of the element from the population (iii. Stochastic loss Phase) 
(idea from (HARTL et al. 1997b) 
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 (L A. Cathcart, E S. Krafsur, P W. Atkinson, D A. O’Brochta and R A. Subramanian, 

unpublished) or hobo elements in Drosophila melanogaster (GALINDO et al. 1995; 

YAMASHITA et al. 1999). Some host genomes may be more accessible to transposable 

element invasions than others and also the host regulatory mechanism may vary 

depending on the transposable element in question. P-elements seem to have evolved 

a self-regulatory mechanism by deleted forms of the elements called KP-elements. 

Given the possibility that Class II transposable elements may serve as genetic drive 

agents it is important to understand their evolution in the target species, An.gambiae. 

Transposable elements in An.gambiae 

 A large portion of the Anopheles gambiae genome is composed of 

transposable elements. Transposable elements form 16% of the euchromatin and 60% 

of the heterochromatic regions of the genome (HOLT et al. 2002). At least 50 different 

families of transposable elements have been identified in the An.gambiae genome and 

represent all major families of transposable elements (ARENSBURGER et al. 2005; 

BESANSKY et al. 1996; BIEDLER and TU 2003; BIESSMANN et al. 1999; DE CARVALHO 

et al. 2004; GROSSMAN et al. 1999; QUESNEVILLE et al. 2003; TU and COATES 2004; 

TU 2001). But, there have been no studies at a population level to understand the 

evolution and behavior of these elements in the mosquito. Studies of transposable 

elements at a population level are critical for our understanding of the consequences 

of using transposable elements as genetic drive agents in this species. These studies 

will also be helpful in understanding the requirements that have to be met for the 

successful spread of refractory genes using transposable elements in the natural 

populations of this mosquito species. 
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Questions addressed in the thesis  

 The ability of transposable elements to rapidly increase in frequency and 

spread in natural populations (ANXOLABEHERE et al. 1988; KIKUNO et al. 2006; 

PERIQUET et al. 1989b) make  them good candidates for a genetic drive system to 

spread refractory genes in mosquito populations to control vector-borne diseases. 

However, the limited number of studies in Drosophila and none in the target vector, 

Anopheles gambiae at the population level does raise some concern. Before 

attempting an intentional release of genetically manipulated mosquitoes with a 

genetic drive system into a natural population, the consequences of such an approach 

needs to be fully explored. Even though transposable elements have shown the ability 

to spread in natural populations, the requirements and circumstances in which a 

successful spread can occur needs to be understood. I have attempted to understand 

this by studying the contemporary activity of endogenous elements in the species, 

Anopheles gambiae. I studied the dynamics of two Class II transposable elements 

Herves and Topi in the natural populations of Anopheles gambiae to gain a better 

understanding of the evolution of DNA transposable elements in this medically 

important insect. 

 Herves was discovered as a result of an effort to identify active hAT family of 

transposable elements (ARENSBURGER et al. 2005) (which includes hobo from 

D.melanogaster, Ac from maize and Tam3 from Antirrhinum majus). Herves has a 

typical structure of a Class II transposable element, i.e. it is 3.7 kb long with 11bp 

inverted terminal repeats flanking an open reading frame coding for a 603 amino acid 

transposase protein (Figure 1-6). It was active in transposition assays in both   
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 FIGURE 1- 6: Class II transposable elements in An.gambiae  

a. Herves transposable element: Has a size of ~3.7 kb, 11 bp inverted 
terminal repeats and a 603 amino acid transposase 

b. Topi transposable element: Has a size of ~1.4 kb, 26 bp inverted 
terminal repeats and a 332 amino acid transposase 
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 Drosophila S2 cells and embryos, as well as Aedes aegypti embryos (ARENSBURGER 

et al. 2005); P Arensburger and P W Atkinson, unpublished results).  An.gambiae is a 

species complex with six morphologically indistinguishable species: An.gambiae s.s, 

An.arabiensis, An.merus, An.melas, An. bwambae and An.quadrianulatus. Herves 

was detected in all the members of the An.gambiae species complex except 

An.bwambae for which data is not available. Topi belongs to a Tc1/mariner 

superfamily of transposable elements (that includes Tc1 from C.elegans and mariner 

from Drosophila mauritiana. It has 26 bp inverted terminal repeats and a coding 

region encoding a 332 amino acid full-length transposase enzyme (Figure 1-6). It was 

found to be in 17-31 sites in the genome (GROSSMAN et al. 1999). 

 In Chapters 2 and 4, I have tried to understand the dynamics of Herves and 

Topi transposable elements in An.gambiae by addressing the following questions: 

• Is the element active in the natural population? 

• Is the element currently invading the natural population in Africa? 

• How long has the element been in the species? 

• What is the frequency of intact forms of the element? 

• Is the evolution of the Topi element similar to Herves? 

I took a population genetics approach to address these questions. An.gambiae 

s.s samples from 6 different locations in Africa (mostly in East Africa and one in 

West Africa) were used for the analysis. Site-occupancy frequency distribution was 

used to determine the distribution, copy number and activity parameters. PCR of the 
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internal region of the element was used to assess the structure of the element. 

Nucleotide sequence data from both coding and non-coding regions of the element 

were used to analyze the patterns of geographic distribution, diversity, and residence 

time and also the selection pressure in the transposase coding regions. 

The basis of the study of the Topi transposable element described in Chapter 4 

was mainly to obtain some comparative data and to assess if the findings of Chapter 2 

were general features of all Class II transposable elements in An.gambiae.  

Some of the important features that I observed in Chapter 2 with Herves were 

evidence of recent activity, high frequency of complete forms of the element, higher 

level of conservation of coding region of transposase and also evidence of purifying 

selection in this region. This led me to the questions addressed in Chapter 3  

• Is there a source of functional Herves transposase in natural populations of 

An.gambiae? 

• Has only one form of active transposase been selected for in the natural 

populations? 

• Are there any shared forms of Herves transposase between different members of 

the species complex? 

I took a biochemical approach to address these questions. Different forms of 

Herves transposase were identified in three members of An.gambiae species complex. 

The variant Herves transposases were expressed and purified from E.coli and their 

activity assessed by an in vitro assay.
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ABSTRACT 

 Transposable elements are being considered as genetic drive agents for 

introducing phenotype-altering genes into populations of vectors of human disease.  

The dynamics of endogenous elements will assist in predicting the behavior of 

introduced elements.  Transposable element display was used to estimate the site 

occupancy frequency distribution of Herves in six populations of Anopheles gambiae 

s.s.  The site occupancy distribution data suggest that the element has been recently 

active within the sampled populations. All 218 individuals sampled contained at least 

one copy of Herves with a mean of 3.6 elements per diploid genome.  No significant 

differences in copy number were observed among populations.  Nucleotide 

polymorphism within the element was high (π = 0.0079 in non-coding sequences and 

0.0046 in coding sequences) relative to that observed in some of the more well-

studied elements in D. melanogaster.  In total, 33 distinct forms of Herves were found 

based on the sequence of the first 528 bp of the transposase open reading frame.  

Only 2 forms were found in all six study-populations.  Although Herves elements in 

An. gambiae are quite diverse, 85% of the individuals examined had evidence of 
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complete forms of the element.  Evidence was found for the lateral transfer of Herves 

from an unknown source into the An. gambiae lineage prior to the diversification of 

the An. gambiae species complex. The characteristics of Herves in An. gambiae are 

somewhat unlike those of P elements in D. melanogaster.  

INTRODUCTION 

  hAT elements comprise a large and prevalent group of Class II transposable 

elements found in a wide range of plants and animals (KEMPKEN and WINDHOFER 

2001; KUNZE and WEIL 2002; RAY et al. 2007).  hAT  elements are not only of 

interest for their role in genome evolution but also as tools for genetically modifying 

organisms, with the elements Hermes and hobo being two examples of hAT element-

derived insect gene vectors (BLACKMAN et al. 1989; O'BROCHTA et al. 1996).  

Transposable elements from other families such as piggyBac, Mos I and Minos have 

also been developed into effective insect gene vectors that are now employed in a 

variety of applications (ATKINSON et al. 2001b).  Using these relatively new gene-

integration tools, a novel form of biological control is being considered to stem the 

transmission of certain arboviruses (e.g. Dengue) and parasites (e.g. Plasmodium) by 

mosquitoes and other arthropod vectors (ADELMAN et al. 2002; ALPHEY et al. 2002; 

BEARD et al. 2002).  This strategy involves the introduction of transgenic insects into 

natural populations of a target species with the intent of replacing the native 

population with genetically modified con-specifics (ANONYMOUS 1991; CRAIG 1963; 

JAMES 1992; MILLER 1992).  Introduced transgenic mosquitoes will contain 

transgenes conferring incompatibility (refractoriness) or resistance to the target 

pathogen or parasite. An increase in the frequency of the transgene within natural 
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populations of the vector will, under certain conditions, lead to a reduction or 

elimination of vector-borne disease transmission (BOETE and KOELLA 2002).  

Designing gene vectors and effector transgenes for refractoriness such that 

they will increase in natural populations and eventually reach fixation is a 

considerable challenge and transposable elements may provide a means by which this 

can be accomplished (BRAIG and YAN 2001).   The replicative nature of transposable 

element movement (even by elements that move by a cut-and-past fashion i.e. Class 

II elements) results in elements acquiring a transmission advantage, resulting in their 

gradual increase in frequency in populations (KISZEWSKI and SPIELMAN 1998; 

RIBEIRO and KIDWELL 1994).  The magnitude of that transmission advantage is 

determined by the rate of transposition, the degree to which transposition is 

conservative or replicative, the spatial patterns of element transposition within a 

genome, the biology of the transposable element and its interactions with the host 

insect, and the size, structure and characteristics of the target population (RASGON and 

GOULD 2005).   

While intra-species spreading of transposable elements through transposition 

has been observed in nature following recent horizontal transfer events involving 

transposable elements (e.g. P and hobo elements), population modification has never 

been attempted by the deliberate and intentional release of an active autonomous 

transposable element into natural populations of insects (ROBERTSON 2002).  

Predicting the outcome of such an intentional release of transgenic insects containing 

active autonomous transposable element gene vectors is an enormous challenge but 

one that must be successfully met if population replacement biological control using 
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transposable elements is to be successful (ALPHEY et al. 2002).  Data that might 

inform those predictions include an understanding of the dynamics of endogenous 

Class II transposable elements within the host insect.  Endogenous elements are likely 

to reveal temporal and spatial patterns of spread as well as how population structure 

has influenced those patterns.  Currently our understanding of the population 

dynamics of Class II transposable elements in insects is based almost entirely on 

studies of P and hobo elements in D. melanogaster and closely related species 

(ANXOLABEHERE et al. 1990; ANXOLABEHERE et al. 1988b; BUCHETON et al. 1992; 

SILVA and KIDWELL 2004; SIMMONS 1992).  These studies have documented the 

ability of these elements to spread rapidly through populations and for the elements to 

become structurally modified over time, most often by internal deletion.  The 

propensity of these elements to accumulate internal deletions rapidly has raised a 

serious concern about using transposable elements as transgene spreading agents, 

namely, the frequent loss of transgenes.  Maintaining tight linkage between the anti-

parasite effector gene and the associated gene drive system has been repeatedly stated 

as an essential characteristic of this biological control strategy (CURTIS 2003; JAMES 

2005).   To what extent these characteristics of P, hobo and mariner elements are 

general characteristics of Class II elements remains to be fully explored.   Because a 

proposed target species for this novel population replacement-based biological 

control strategy is the human malaria vector, Anopheles gambiae, the study of Class 

II transposable element dynamics in this species is particularly relevant.   

Recently, a functional hAT element, Herves, was discovered in An. gambiae, 

providing an opportunity to examine the dynamics of an active Class II transposable 
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element in this insect (ARENSBURGER et al. 2005).  Herves is notably different at the 

sequence level from the well-studied hobo element from D. melanogaster and 

Hermes from Musca domestica, sharing only about 20% amino acid identity with 

these elements (ARENSBURGER et al. 2005).  A Herves element isolated from the RSP 

strain of An. gambiae that was established as a laboratory colony in the early 1990s 

(VULULE et al. 1994) was shown to be transpositionally active in laboratory-based 

mobility assays in D. melanogaster (ARENSBURGER et al. 2005) and Aedes aegypti (P. 

Arensburger and P. Atkinson, unpublished).  A recent study of the element’s 

abundance and site-occupancy frequency in natural populations of An. gambiae s.s., 

An. merus, and An. arabiensis in Mozambique revealed that it was present in all three 

species at approximately 5 copies per diploid genome and site-occupancy frequency 

distributions suggested that Herves had been recently active in the three species 

examined (O'BROCHTA et al. 2006).  In the population of An. gambiae examined in 

Mozambique, 95% of the individuals tested contained intact (non-deleted) forms of 

the element, which is quite unlike P elements in D. melanogaster in which most 

elements are internally deleted derivatives of the canonical element (O'HARE et al. 

1992).  Here Herves has been investigated in six populations of An. gambiae using a 

variety of methods to see if the characteristics of the element observed in 

Mozambique were general features of the element and how it compares to other well-

studied Class II elements.   

MATERIAL AND METHODS 

  Collection Site:  Anopheles gambiae s.s. from six populations were used in 

this study with sample sizes ranging from 15-94 individuals (Figure 2-1).  Samples 
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from Asembo Bay (hereafter referred to as Asembo), Kisian and Malindi have been 

described (LEHMANN et al. 2003b).  Asembo and Kisian are located in western Kenya 

and were sampled in 1994 and 1996 respectively (LEHMANN et al. 2003b).  Malindi, 

located in eastern Kenya, was sampled in 1996 (LEHMANN et al. 2003b).  The 

northeastern region of Tanzania was sampled in 2004 in the region in and around the 

village of Zenet (MEERAUS et al. 2005). Samples from southern Mozambique 

(Furvela) were collected in 2003 as described (O'BROCHTA et al. 2006).  Samples 

from north-central Nigeria (Bakin Kogi) were collected in 1999 (LEHMANN et al. 

2003b).   

  DNA Isolation:  Genomic DNA was isolated from individual mosquitoes as 

described (O'BROCHTA et al. 2006) and resuspended in 100 μl of distilled water and 

stored at -80ºC. 

  Species Identification:  Species identification was performed using the 

method of Scott et al. (1993) as described (O'BROCHTA et al. 2006) using 1/100th of 

the total genomic DNA from a single mosquito in a volume of 1μl (SCOTT et al. 

1993).  This method permits the identification of species-specific polymorphisms in 

the intergenic spacer region of ribosomal RNA genes using PCR.   Only An. gambiae 

s.s. samples yielding unambiguous species identification results were used in 

subsequent analyses.  

  Transposable element display:  Transposable element display is a PCR-

based DNA fingerprinting method derived from the Amplified Fragment Length 

Polymorphism (AFLP) method (VOS et al. 1995). It was performed here as described 

previously with only minor modifications (O'BROCHTA et al. 2006). Transposable 
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FIGURE 2- 1: Political map of Africa showing locations of sample populations. 
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element display was performed in triplicate using 2-5 μl (approximately 200ng) of 

genomic DNA for each replicate. Genomic DNA was digested for 4 hours in a 

volume of 40 μl at 37oC with 4 units of the restriction endonuclease MseI using 

conditions recommended by the manufacturer (New England Biolabs).  Sixty 

picomoles of adapters were ligated to the MseI digestion products by adding 10 μl of 

1X restriction enzyme buffer containing 5 mM ATP, 50 mM DTT (dithiothreitol), 10 

μg BSA (bovine serum albumin), 4 units of MseI, 1 Weiss unit of T4 DNA ligase and 

incubated at 37oC overnight.  The adapters were prepared by mixing equimolar 

amounts of oligonucleotides HhaIa (5' GAT GAG TCC TGA GTA CG 3’) and 

MseIb2 (5’ TAC GTA CTC AGG ACT CAT CAA G 3’), heating them to 100oC for 

10 minutes and then allowing the mixture to very slowly cool to room temperature. 

The design of the adapters and the digestion/ligation reaction conditions result in the 

efficient creation of only monomeric MseI-cut genomic DNA fragments with terminal 

adapters.   

Five microliters of the restriction/ligation reaction were used as the template 

in a polymerase chain reaction (“preselective PCR”) performed in a 50 μl reaction 

volume containing 1X PCR Buffer II (Applied Biosystems), 0.2 mM dNTPs (an 

equimolar mixture of dATP, dTTP, dCTP, dGTP), 2.5 mM MgCl2, 1 unit 

AmpliTaq® DNA polymerase (Applied Biosystems), and 24 pmoles of primer HhaIa 

and primer HervTEDAL1a (5' ATT TCG ACG GGT TCC TAC C 3’).  

HervTEDAL1a is a Herves-specific primer that anneals to sequences approximately 

150 bp from the 5’ end of the element.  The DNA polymerase was added as a 

complex with TaqStart™ Antibody (ClonTech) as described by the manufacturer for 
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the purpose of “hot-starting” the reaction.  The reaction conditions were 95oC/3 mins 

followed by 25 cycles of 95oC/15 sec, 63oC/30 sec, 72oC/1.0 min and a final cycle of 

72oC/5 min.  A second PCR was performed (“selective PCR”) using 5 μl of the 

preselective PCR products as template in a 20 μl reaction containing 1X PCR Buffer 

II, 0.2 mM dNTPs, 2.5 mM MgCl2, 1 unit AmpliTaq® DNA polymerase (bound to 

TaqStart™ Antibody as above), 9 pmoles each of primers HhaIa and Cy5™-labeled 

HervTEDAL2 (5’ GTT GAT TAG ATG AAC GTA GG 3’).  The Cy5™-labeled 

primers were purified by HPLC prior to their use.  HervTEDAL2 anneals to 

sequences approximately 80 bp from the 5’end of the element.  Following a 

denaturation step at 95ºC for 3 minutes “touchdown” PCR conditions were created in 

which during the first 5 cycles the annealing temperature was decreased 1oC after 

each cycle with the first of these cycles being 95oC/15 sec, 64oC/30 sec, 72oC/1.0 

min.  Following these 5 cycles an additional 25 cycles were performed at 95oC/15 

sec, 60oC /30 sec, 72oC /1.0 min with a final cycle of 72oC/5 min.  

  To visualize products of transposable element display 5 μl of selective PCR 

products were mixed with 5μl of loading buffer (95% deionized formamide, 10mM 

EDTA) heated to 95oC for 3 minutes, cooled quickly on ice and 6 μl were loaded on a 

6% polyacrylamide gel (19:1 acrylamide : bisacrylamide) containing 6.7 M urea in 

1X TBE buffer (90 mM Tris-borate, 2 mM EDTA).  ALFExpress™Sizer™50-500 

(Amersham/Pharmacia) was used as a size standard.  Electrophoresis was performed 

at 70 watts (constant) for 2.5 hours at which time the gel was transferred to 3MM 

filter paper and dried.  The dried gel was scanned on a STORM 860 phosphoimager 

(Molecular Dynamics).  The products obtained from the three independent replicate 
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reactions of the same sample were run on the same gel to assist with determining the 

presence of bands.  Based on the combined results of three transposable element 

display experiments a band was called as present or absent if it was unambiguously 

present in at least 2 of the 3 replicates.  Determining the presence of bands in this way 

resulted in a single scoring matrix that was then used in subsequent analyses.  

  Site-occupancy frequency distributions were estimated using transposable 

element display data.  Using the frequency distributions and assuming the model of 

Charlesworth and Charlesworth (1983) the model parameter β, that measured, in part, 

the forces removing insertions from natural populations, was estimated.  The model 

parameter β is equal to the product of four times the effective population size and the 

rate of element loss. Estimation of β and the copy number of Herves per diploid 

genome were performed as described by Wright et al. (2001) who considered the 

dominant nature of transposable element display signals and the application of the 

parameter estimation methods of Charlesworth and Charlesworth (1983) to diploid 

organisms.   Note that although each sample was analyzed three times for 

transposable element display these replicates were used to produce a single scoring 

matrix.  The advantage of this procedure is that it increased the accuracy of 

determining the presence of bands and minimized errors that tend to result in 

overestimations of β.   

Transposase Open Reading Frame Detection:  To assess Herves open 

reading frames for the presence of deletions and insertions, PCR primers were 

designed that were complementary to sequences flanking the transposase ORF: 1372f 

(5’ CCA CAA ATT GAT CTA CGC TCC 3’) and 3469r (5’ GAT GCA TCT ATT 
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ATG ATT AAG GC 3’).  One fiftieth of the genomic DNA from one mosquito (2 μl) 

was used as template in a 50μl reaction containing 1X ThermalAce™ (Invitrogen), 

0.2 mM dNTPs (an equimolar mixture of dATP, dTTP, dCTP, dGTP), 2.5 mM 

MgCl2, 2 units ThermalAce™ DNA polymerase (Invitrogen), and 24 pmoles of 

primer1372f and 3469r.  Amplification reactions were performed under the following 

conditions: 95oC/3 min followed by 30 cycles of 95oC/30 sec, 48oC/30 sec, 72oC/3.0 

min and a final cycle of 72oC/10 min.  Reaction products were fractionated on a 1% 

agarose gel.  PCR products of the samples that failed to produce a detectable product 

following one round of PCR were used as templates (5μl) in a second PCR under the 

same conditions described above but with primers 1407f (5’ GAT CAA AGG TAA 

CAT TAG TCT TG 3’) and 3294r (5’ CCA TGT TAC AAA TTT TGC AAC G 3’) 

and rechecked on a 1% agarose gel.  Open reading frames free of deletions and 

insertions yielded PCR products 2100 bp after the first PCR and 1900 bp after the 

second PCR.  We estimate that elements with deletions as small as 100 bp would be 

detectable using this strategy. 

  Sampling and PCR for population analysis:  Transposable element display 

permitted occupied sites to be identified and these data were used in determining the 

composition of the subset of individual mosquito genomic DNAs that would be used 

in the analysis of sequence diversity of 1474 bp of the non-coding region and the first 

528 bp of the transposase open reading frame. This selected subset of individual 

mosquito genomic DNAs was such that Herves elements at most occupied sites, as 

determined by transposable element display, were included in the PCR template pool. 

So, a total of 49 individuals containing elements at the 130 different sites identified 
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by transposable element display were included in the PCR template pool to give us an 

opportunity to amplify Herves elements inserted at different genomic sites within the 

populations. Using this subset of genomic DNAs a portion of the left end of the 

element was amplified using a nested PCR strategy. Five microliters of genomic 

DNA from each of the 49 individuals were used as template in separate 20μl 

reactions containing 5X Phusion HF Buffer (NEB), 0.2µM dNTPs (an equimolar 

mixture of dATP, dTTP, dCTP, dGTP), 0.4 units Finnzymes Phusion™ DNA 

polymerase (New England Biolabs; error rate = 4.4 x 10 -7), and 24 pmoles of primer 

24F (5’ TAG AGT TGT GCC TCA AGA ACC AGA 3’) and primer 2035R (5’ TGG 

TTC AGG TTT GTC CAT CC 3’).  Amplification reactions were preformed under 

the following conditions: 98oC/1 min followed by 25 cycles of 98oC/10 sec, 65oC/30 

sec, 72oC/1 min 30 sec and a final cycle of 72oC/10 min.  Reaction products were 

fractionated in a 1% agarose gel.  PCR products from samples that failed to produce 

detectable products on an agarose gel following one round of PCR were used as 

templates (5μl) in a second PCR under the same conditions described above using 

primers 24F (5’ TAG AGT TGT GCC TCA AGA ACC AGA 3’) and 2002r (5’GCT 

ATA GCT TTG GCG GTC G 3’) and rechecked on a 1% agarose gel. The 2kb 

amplification product was eluted from the gel, precipitated, resuspended in 20 µl 

dH2O and cloned into the pCR®-Blunt II TOPO vector (Invitrogen). Up to five clones 

per individual were sequenced and these sequences were used in subsequent analyses.  

From samples “Zenet”, “Asembo”, “Bakin-Kogi”, “Kisian”, “Furvela” and “Malindi” 

a total of 57 (GenBank accessions EF588609-EF588665), 51 (EF588428-EF588478), 

40 (EF588479-EF588518), 29 (EF588552-EF588580), 33 (EF588519-EF588551) and 

 38 
 



 

28 (EF588581-EF588608) sequences, respectively, were obtained.  Note, the methods 

used to obtain the sequences for this analysis did not permit these elements to be 

assigned to specific sites identified in the site-occupancy (transposable element 

display) analysis.  

  Sequence Analysis:  Sequences were aligned using AlignX, a ClustalW-base 

alignment program in VectorNTI Advance 10.0.1 (Invitrogen). Nucleotide diversity 

was estimated from average pair-wise number of differences between elements, π 

(NEI and LI 1979) and from the number of polymorphic sites, θ (WATTERSON 1975). 

π and θ were estimated using DnaSP 3 (ROZAS and ROZAS 1995; ROZAS et al. 2003). 

Estimates of the observed silent site diversity in the first 528 bp of the 5’ end of the 

transposase coding region was computed using the Kumar method (NEI and KUMAR 

2000) as implemented in MEGA 3.1 (KUMAR et al. 2004b).  Expected values of silent 

site diversity were calculated following Sanchez-Gracia et al. (2005) and were the 

product of the haploid copy number and the average synonymous diversity (0.0209) 

from a sample of 35 nuclear genes (MORLAIS et al. 2004).  Tajima’s D was calculated 

using DnaSP 3. Further analysis was performed on the first 528 bp of the 5’ end of 

the transposase open reading frame. Unique variants of elements were identified 

(referred to as forms), their frequencies determined and the relationship of the forms 

determined using TCS1.21 (CLEMENT et al. 2000). Alignment gaps were treated as 

missing data in this analysis.  Estimates of the number of synonymous substitutions 

per synonymous site (dS) and of non-synonymous substitutions per non-synonymous 

site (dN) and their ratio, ω= dN/dS, were obtained using maximum likelihood (ML) 

methods employed by CODEML in PAML 3.13 (YANG 1997) using the alignment of 
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the 33 different forms for the analysis (Supplemental Figure2-1).  PAML permits an 

assessment of the observed substitution data after assuming different codon 

substitution models that differ in the way selection pressure is distributed within the 

gene.  Here we have examined our data in light of three simple models: a single ratio 

model (M0) that assumes one ω for all sites, a neutral model (M1) that assumes that 

there are two classes of sites within the gene; those that are conserved (p0) with ω0=0 

and those that are neutral (p1=1- p0) with ω1=1, and finally, a discrete model (M3) 

that assumes three classes of sites each having a unique value of ω that is estimated 

from the data (YANG 1997).  A likelihood ratio test (LRT), which is twice the log-

likelihood difference between two models being compared, was used to determine 

which model best reflected the observed data.  The LRT statistic has a χ2 distribution 

with degrees of freedom equal to the difference in the number of parameters between 

the two models (YANG et al. 2000). 

RESULTS 

Site Occupancy:  Transposable element display has been a useful tool for 

assessing the number and position of transposable elements within the genome of 

individual organisms (BIEDLER et al. 2003; GUIMOND et al. 2003; WRIGHT et al. 

2001).  As performed here, templates longer than 1 kb are likely to be poorly 

represented because the length of the extension reactions during PCR was only one 

minute.  Because the An. gambiae genome is composed of 64.8% adenines and 

thymines and we produced PCR templates by digesting the genomic DNA with MseI 

(TTAA) we expected only 0.004% of the resulting fragments to be 1 kb or more in 

length.  (We estimated this by determining what percent of the fragments greater than 
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80 bp were over 1kb in length.  Eighty base pairs is the invariable amount of Herves 

DNA contained in each PCR product.  We assumed fragment sizes following MseI 

digestion would have an exponential distribution with λ= 0.3244.  Therefore, 0.415 of 

all fragments were calculated to be greater than 80 bp and 0.0017 of all fragments 

were greater than1 kb.)   Consequently, few elements will be undetected because they 

are on excessively long templates.  Restriction site polymorphism can result in 

increased estimates of site occupancy diversity since an element at one site would be 

displayed as two bands of different lengths resulting in those bands being scored as 

two elements occupying two sites.  While restriction site polymorphism will have this 

effect on the analysis, the frequency of such polymorphisms is expected to be very 

low based on the known level of nucleotide polymorphism in An. gambiae s.s. 

(MORLAIS et al. 2004) and our failure to detect the same element in two different 

positions in transposable element displays following band isolation, reamplification 

and DNA sequencing (GUIMOND et al. 2003) and (R. A. Subramanian and D. 

O’Brochta, unpublished).  Confounding effects of restriction site polymorphism will 

be small and are not a significant source of variation in transposable element display. 

 In this study all individuals in this study that were analyzed by transposable 

element display (n = 218) contained at least one Herves element (Table 2-1). Element 

copy numbers within the six populations analyzed ranged from 2.9-4.4 elements per 

diploid genome as calculated using the method of Wright et al (2001).  No individuals 

were found in any population that contained more than 7.0 elements.  In all 

populations there was an abundance of occupied sites that were observed in only 

small numbers of individuals (Figure2-2).  In Zenet, Malindi and Furvela elements  
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 TABLE 2- 1:  Site occupancy of Herves elements 
 

   

Location Na κb dcnc βd  

Asembo 24 25 3.5 9.5  

Kisian 15 14 2.9 2.9  

Malindi 25 17 3.4 11.0  

Zenet 73 31 3.8 2.1  

Furvelae 49 23 4.4 1.9  

Bakin-Kogi 32 20 3.3 2.3  

a Individuals analyzed by transposable element display 

b  Number of unique chromosomal sites containing Herves 

c  Diploid copy number of Herves  (WRIGHT et al. 2001). 

d  4Ne(ν+s) from Charlesworth and Charlesworth (1983) 

where Ne is the effective population size, ν is the excision 

rate and s is the strength of selection against element 

insertions. 

e Data from O’Brochta et al. (2006) 
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FIGURE 2- 2: Site occupancy frequency distribution.  
A-F. The number of sites that were found in a sample exactly “x” times is plotted on 
the x-axis and the site occupancy is plotted on the y-axis. 
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with high site occupancy frequencies were observed although none of these elements 

were shared among these populations (Figure 2-2). 

 Charlesworth and Charlesworth (1983) and Langley et al. (1983) provided 

theoretical frameworks for understanding site occupancy frequency distributions, 

which could also be used to estimate element mobility rates under certain conditions.  

Both models can be expressed using a single parameter (β), assume that the elements 

are at equilibrium and that there are an infinite number of insertion sites within the 

genome. According to the models (CHARLESWORTH and CHARLESWORTH 1983; 

LANGLEY et al. 1983) parameter values greater than one indicate the existence of 

forces other than drift (mobility and/or selection) that have played a major role in 

shaping the observed distribution.  In this study estimates of β were, in all cases, 

greater than one suggesting that element mobility and/or selection played a significant 

role in shaping the observed distribution (Table 2-1).  

 Nucleotide Polymorphism: Approximately 2 kb of sequence beginning at the 

left (5’) inverted terminal repeat and through the first 528 bp of the transposase open 

reading frame was amplified, cloned and sequenced (Figure 2-3).  A total of 238 

sequences containing the first 528 bp of the transposase open reading frame were 

analyzed from six different locations.  The average nucleotide polymorphism in the 

1474 bp of non-coding sequence (π = 0.0079) was significantly different from the 

polymorphism observed in the coding region (π = 0.0046; P < 0.001) (Table 2-2).  

Within the non-coding region the observed polymorphisms were non-uniformly 

distributed in a 666 bp region beginning at nucleotide 568 having a highly reduced 

level of polymorphism (Figure 2-3).  This region corresponds to a large stretch of  
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FIGURE 2- 3:  Nucleotide polymorphism in Herves.   
The results of a sliding window analysis (100 bp window in 25 bp steps) showing the 
levels of nucleotide polymorphism, π, as a function of position within the element.  
The horizontal dotted line represents the average nucleotide polymorphism reported 
for 35 An. gambiae nuclear genes (MORLAIS et al. 2004).  ITR, inverted terminal 
repeat;  I, II, subterminal direct repeats; ORF, transposase open reading frame.  
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TABLE 2- 2 : Nucleotide sequence polymorphism in Herves 

  Non-coding Coding 

Location Seqsa Polyb πc θ d Polyb π c θ d 

Asembo 51 44 0.0056 (0.0037) 0.0076 (0.0023) 15 (3+12) 0.0034 (0.0042) 0.0063 (0.0023)

Kisian 29 60 0.0086 (0.0009) 0.0128 (0.0043) 7 (1+6) 0.0024 (0.0004) 0.0034 (0.0016)

Malindi 28 44 0.0076 (0.0006) 0.0084 (0.0029) 7 (2+5) 0.0033 (0.0005) 0.0034 (0.0016)

Zenet 57 109 0.0084 (0.0008) 0.0177 (0.0050) 21 (7+14) 0.0057 (0.0009) 0.0104 (0.0035)

Furvela 33 35 0.0091 (0.0004) 0.0079 (0.0027) 8 (5+3) 0.0056 (0.0032) 0.0037 (0.0017)

Bakin-Kogi 40 53 0.0086 (0.0006) 0.0095 (0.0030) 6 (1+5) 0.0015 (0.0003) 0.0028 (0.0014)

Combined 238 124 0.0079 (0.0003) 0.0216 (0.0049) 35 (14+21) 0.0046 (0.0004) 0.0134 (0.0035)

a  Number of sequences analyzed 

b Number of polymorphic positions; Numbers in parenthesis = synonymous + non-synonymous sites 

c Pairwise nucleotide diversity (NEI and LI 1979); standard deviation in parenthesis  

d Nucleotide diversity based on segregating sites (WATTERSON 1975); standard deviation in parenthesis; 
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DNA with unknown function 5’ of the transposase-coding region and just 3’ of a pair 

of 100 bp sub-terminal tandem repeats (ARENSBURGER et al. 2005). 

 Levels of silent site diversity in Herves elements were compared to the 

average silent site diversity for single-copy host genes (Table 2-3) as part of an effort 

to look for evidence of lateral introduction of Herves into the An. gambiae lineage 

(BROOKFIELD 1986; SANCHEZ-GRACIA et al. 2005b).  The observed levels of silent 

diversity among Herves elements ranged from 3 to 125-fold less than the silent site 

diversity seen on average in 35 nuclear genes (MORLAIS et al. 2004).  In addition, 

Tajima’s D statistic was calculated and found to be insignificant for each location 

although when calculated based on the pooled data it was significant (1.91; P<0.05; 

Table 2-3) indicating an excess of low frequency variants (TAJIMA 1989). 

 Structural Integrity: Class II transposable elements can be autonomous or 

non-autonomous.  Autonomous elements code for functional transposase and can 

undergo transposition.  Non-autonomous elements cannot code for functional 

transposase usually as a result of deletions that remove some or all of the coding 

region. P elements in Drosophila, for example, often exist in forms that contain large 

deletions of internal sequences leaving only terminal and sub-terminal sequences 

resulting in non-autonomous elements (ENGELS 1989).  The complete Herves open 

reading frame is approximately 1.8 kb in length and the structural integrity of Herves 

elements was assessed by amplifying this region using primers flanking it.  Herves 

elements without any deletions resulted in PCR products of 2 kb in length and 

elements with deletions 100 bp or more produced distinct products less than 2 kb.   Of 

the 218 individuals tested from six locations 85% showed evidence of the presence of  
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TABLE 2- 3: Genetic diversity of Herves elements from different locations
 
 

 
πs 

a 

Locations Haploid copy 
number Observed Expectedb Observed/Expected 

Tajima’s D

Asembo 1.8 0.002 0.038 0.053 -1.40 d  

Kisian 1.55 0.001 0.032 0.031 -0.86 d 

Malindi 1.7 0.002 0.036 0.056 -1.32 d 

Zenet 1.9 0.005 0.040 0.126 -1.53 d 

Furvela 2.15 0.015 0.045 0.334 1.51 d 

Bakin-Kogi 1.7 0.0003 0.036 0.008 -1.36 d 

All 1.8c 0.006 0.038 0.158 -1.91* 

 

a  πs represents the average pairwise nucleotide diversity at synonymous sites. 

bsee Material and Methods.  

c Average haploid copy number from all locations 

d P > 0.05   

* P < 0.05 
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TABLE 2- 4:  Frequency of Herves Open Reading Frames 

 Location Na Complete ORFb 

Asembo 24 1.00 

Kisian 15 0.90 

Malindi 25 0.88 

Zenet 73 0.84 

Furvela 49 0.95 

Bakin-Kogi 32 0.44 

a  Number of mosquitoes analyzed 

b Frequency of mosquitoes with evidence of 

an intact Herves ORF (2.1 kb PCR 

product). 
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complete open reading frames (Table 2-4).  Individuals with complete elements were 

least abundant in Nigeria (Bakin Kogi) where only 44% showed evidence of complete 

open reading frames (N = 32).  In western Kenya intact forms of the element were 

found in 100% of the individuals from Asembo (N = 24) and 90% of the individuals 

from Kisian (N = 15).  In eastern coastal Kenya (Malindi, N = 25) and northeastern 

coastal Tanzania (Zenet, N = 73) approximately 85% of the individuals tested 

contained intact forms of the element.  In southern Mozambique (Furvela, N=49) 

95% of the individuals sampled contained intact elements. 

 Genealogical Relationships:  A genealogical analysis of the Herves 

elements, based on the first 528 bp of coding sequence, was performed and resulted in 

the identification of 33 forms among the 238 sequences that were analyzed (Table 2-

5, Figure 2-4).  Form-diversity (the equivalent of haplotype diversity and measured 

using the same algorithm) varied among locations and ranged from a low of 0.565 in 

Bakin Kogi to a high of 0.903 in Zenet (Table 2-5).  Of the 33 forms, only 2 (Form 1 

and Form 2) were found at all six sampling locations (Figure 2-4 and 2-5) and these 

comprised 51% (n = 238) of the elements analyzed.  Twenty-four forms were found 

at only single locations (Figure 2-5, Table 2-6).  Form 2 was the most abundant form 

in Bakin Kogi, Asembo, Malindi and Kisian (Figure 2-1).  In northeastern Tanzania 

(Zenet) where form-diversity was highest the most abundant form was Form 5, a form 

that is closely related to Form 2 (Figure 2-4).  In southern Mozambique (Furvela) 

however, a unique form (Form 30) was most abundant and accounted for 21% of the 

57 sequences analyzed from this location.  Form 30 was highly diverged from the 

abundant Form 2 and consequently was one of the most unusual elements 
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FIGURE 2- 4: Network of genealogical relationships of forms of Herves ORFs 
based on statistical parsimony.   
The abundance and relationship of individual forms are shown.  Each node represents 
a single mutational step. The area of the circles is proportional to the form frequency 
class. Shading refers to the region in which forms were found. In cases where forms 
are shared among regions, shading is proportional to the frequency of the form in 
each region. Small black dots represent missing forms. (TEMPLETON et al. 1992) 
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TABLE 2- 5:  Herves ORF Form diversity 

 
Location Seqsa Forms Form diversity b 

Asembo 51 12 0.857 (0.028) 

Kisian 29 9 0.820 (0.055) 

Malindi 28 8 0.841 (0.044) 

Zenet 57 17 0.903 (0.022) 

Furvela 33 5 0.706 (0.049) 

Bakin-Kogi 40 7 0.565 (0.088) 

Combined 238 33 0.833 (0.018) 

a Sequences analyzed 

b Standard deviation in parenthesis 
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FIGURE 2- 5: Frequency of classes of Herves forms.  
Herves forms were classified based on the number of locations at which they were 
found (1-6).  The percentage of forms in each class is plotted on the y-axis. 
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TABLE 2- 6: Shared Forms between locationsa 

 Asembo Kisian Malindi Zenet Furvela Bakin-Kogi

Asembo   5b      

Kisian 4  4 b     

Malindi 5 4  1 b    

Zenet 5 4 6 10 b   

Furvela 3 2 3 2  2 b  

Bakin-Kogi 3 4 4 5 2 2 b 

a  Number of Forms shared between locations 

b  Number of Forms found at only this location 

 

 54 
 



 

encountered in this analysis; only Form 31 and Form 32 from Zenet were more 

divergent (Figure 2-4).  Zenet was unusual among the locations analyzed because it 

had the greatest number of forms (17), 10 of which were unique to this location.  Not 

only were there a large number of element forms at this location but also the diversity 

of elements was very high.  On average each location had 9.67 forms (± 4.27) and 

shared 3.6 forms (± 1.4) with other locations (Table 2-6). 

Natural Selection: We tested for evidence of selective constraints within the 

transposase open reading frame by estimating ω (the ratio dN/dS) using maximum 

likelihood. The ω ratios ranged from 0.41-0.71 under all models (M0, M1 and M3; 

see Material and Methods) revealing evidence of purifying selection (YANG 1997). 

The neutral model (M1) was rejected when compared to the discrete model (M3) that 

allows for 3 classes of sites with different values of ω.  The LRT statistic, 2Δl (2Δl  = 

2(-1037.77 - (-1028.00)), for this comparison was 19.54, which was greater than the 

critical value of χ2
[0.001,2] = 13.816.  

DISCUSSION 

Understanding the dynamics of active transposable elements in An. gambiae 

will inform predictions concerning the outcomes of biological control efforts by 

population replacement using transposable elements as gene drive agents.  While 

there have been studies that have looked at the evolutionary history of Class II 

transposable elements in insects, few studies involving insects other than Drosophila 

have attempted to examine the dynamics of Class II transposable elements at the 

population level, making the current study of Herves in An. gambiae somewhat 

unique.  
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Here we examined the dynamics of Herves by measuring the site-occupancy 

frequency, nucleotide-sequence diversity and by performing a genealogical analysis 

of the element.  The rare occurrence of locally fixed, Herves-occupied sites and the 

widespread abundance of sites that are occupied in only a few individuals are 

consistent with there being recent activity of Herves within An. gambiae.  The site-

occupancy levels observed in this study (βHerves = 1.9-11.0) were similar or somewhat 

lower than those reported for putatively active transposable elements in D. 

melanogaster: βP element = 16.6 (AJIOKA and EANES 1989), βP element = 5.85 (BIEMONT 

et al. 1994), βcopia = 9.79 (BIEMONT et al. 1994), βcopia = 16.9 (LEIGH-BROWN and 

MOSS 1987), βcopia = 48.3 (KAPLAN and BROOKFIELD 1983).  

An. gambiae is distributed almost continuously throughout its range in Africa 

and demes are likely to be large and diffuse (LEHMANN et al. 1998).  Little population 

differentiation between populations separated by up to 50 km has been reported 

(LEHMANN et al. 1997) and this has also been found over distances of 6000 km 

(LEHMANN et al. 1996).  Lehmann et al. (1998) suggest that Wright’s isolation by 

distance model may best describe the relationships among populations (WRIGHT 

1951).  Population admixture might be contributing to the pattern of site-occupancy 

observed in this study.  However, consistent with the idea that Herves is currently 

capable of transposing in natural populations of An. gambiae is the finding that 

Herves elements isolated from An. gambiae collected from the field within the last 20 

years are active when introduced into other insects in the laboratory (ARENSBURGER 

et al. 2005b).       
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A number of pieces of data indicate that Herves entered the An. gambiae 

lineage via a horizontal gene transfer.  A comparison of the silent site diversity 

among Herves elements and 35 nuclear genes (MORLAIS et al. 2004) revealed less 

diversity within Herves transposable elements than expected assuming similar 

mutation rates apply to Class II transposable elements and nuclear genes (SANCHEZ-

GRACIA et al. 2005b).  Others have used intra- and inter-specific diversity 

comparisons to infer the introduction of transposable elements into host genomes 

(SANCHEZ-GRACIA et al. 2005b; SILVA and KIDWELL 2000) and the diversity data for 

Herves is qualitatively similar to those data.  Second, when elements are horizontally 

transferred to a new host species there is a period of time when natural selection will 

favor active autonomous elements and this will leave a distinct molecular signature 

within the elements in the form of a skewed ratio of synonymous and non-

synonymous substitution rates (ROBERTSON and LAMPE 1995).  In this study a 

comparison of the synonymous and non-synonymous substitution rates within the 

Herves transposase-coding region detected evidence of purifying selection and is 

consistent with the hypothesis that Herves was laterally introduced into this lineage 

from an unknown source.    

Although Herves displays evidence of being horizontally introduced into the 

An. gambiae lineage, the timing of this event remains uncertain.  The intensity of the 

molecular signals indicating horizontal transfer suggests that this event was not in the 

very recent past.  Sanchez-Gracia et al (2005) recently examined 14 transposable 

elements in D. melanogaster and, based on silent site diversity, concluded that 13 

were products of horizontal transfer that probably occurred approximately 5-12 
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million years ago.  Sanchez-Gracia et al. (2005) observed levels of silent diversity 

within the transposable elements studied approximately 100-fold less than that 

observed in 21 nuclear genes while in this study silent site diversity was only 6-fold 

less than expected when the data were pooled, and ranged from 3-fold to 125-fold 

less than expected depending on the location from which the samples were collected.  

These data appear consistent with an historical lateral transfer event, although not one 

that has occurred recently.   

The form diversity observed in this study is also consistent with Herves 

having an extended residence time within the An. gambiae lineage.  Interestingly 

however, while the number of forms of Herves as determined by the sequence of the 

5’ end of the transposase gene totaled 33, the frequency of individuals with at least 

one copy of an element that had either no internal deletions or deletions less than 100 

bp (the limits of the detection method) was over 90%.  Internally deleted elements 

can arise quickly following the introduction of a transposable element as has been 

displayed by the well-studied P element in Drosophila species (O'HARE et al. 1992).  

This is distinctly not the case for Herves and may be due to a number of factors.  

First, if deleted elements are preferentially removed from the genome then one would 

see a relative abundance of intact forms as observed here.  Currently there are no data 

for the differential removal of smaller, internally deleted forms of an element and 

indeed, smaller non-autonomous elements can have an activity advantage in the 

presence of functional transposase (LAMPE et al. 1998; SPRADLING 1986).  An 

alternative possibility is that Herves elements may have reduced opportunities to form 

internally deleted elements.  Internal deletions of Class II transposable elements arise 
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in some cases during the double-stranded DNA gap repair process following element 

excision.  For example, following P element excision in D. melanogaster  the 

resulting double-stranded gap is filled during a homology-dependent recombination 

process in which homologous or ectopic copies of a P element are copied into the gap 

(ENGELS et al. 1990).  Premature resolution of these recombination products before 

this templated gap repair process is complete results in the creation of incomplete 

elements.  The extent to which post-excision repair involves homology-dependent 

recombination or non-homologous end joining will determine, to some extent, how 

often internally deleted elements are created within a genome (RIO 2002).  A 

preference for Herves excision products to be repaired using non-homologous end 

joining mechanisms could explain two aspects of Herves observed in An. gambiae – 

the relative abundance of intact elements and their low copy number. 

hAT element excision results in double-stranded breaks in the chromosome in 

which the ends of each chromosome are sealed by hairpin structures (ZHOU et al. 

2004).  These hairpin structures are resolved by a nicking event followed by end-

joining.  The hairpin structures that arise on the empty donor site following hAT  

element excision are not seen following P element excision.  We speculate that this 

predisposes Herves post-excision repair to occur via non-homologous end-joining and 

thereby reduces the frequency with which internally deleted elements are created. 

Herves is present at low copy numbers within An. gambiae and the data 

suggest that copy-number equilibrium has not been reached (Tajima’s D statistic for 

pooled data = -1.91).  The low copy number of Herves, while not unique among Class 

II transposable elements, tends to be somewhat unexpected if the element was 
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introduced into this lineage in the distant past.  Class II transposable elements tend to 

increase in copy number when they are active within a genome.  This increase in copy 

number occurs despite the conservative cut-and-paste nature of Class II element 

movement because the double-stranded breaks that arise following element excision 

can be repaired using homology dependent repair processes that result in a copy of 

the element being inserted into the gap (RIO 2002).  Alternatively, an increase in copy 

number can occur as a result of Class II transposable elements moving from 

replicated regions of the genome to unreplicated regions of the genome during S-

phase (WILSON et al. 2003).  Although the mechanisms of copy number increase may 

vary, it seems well established that element copy-number is expected to increase 

during periods of element activity.  The low number of Herves elements in all 

individuals sampled therefore seems at odds with the diversity data that points to an 

extended residence time in the An. gambiae lineage. The tendency of different Class 

II transposable elements to increase in copy number has never been systematically 

compared although it is reasonable to think that some elements might be more 

“replicative” than others.  hAT elements, and Herves in particular, may have a 

relatively low replication potential because of the presence of hairpin-containing 

intermediates following excision.   

The structure of the population of An. gambiae in Africa has been studied and 

it has been proposed that there are two main divisions of the gene pool – a 

northwestern division including Senegal, Ghana, Nigeria, Cameroon, Gabon, 

Democratic Republic of Congo and western Kenya, and a southeastern division 

including Kenya, Tanzania, Malawi and Zambia (LEHMANN et al. 2003b).  It has been 
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proposed that there has been a recent bottleneck in the southeast division resulting in 

reduced genetic diversity followed by colonization from the northwest division. 

(LEHMANN et al. 2003b).  The data presented here shows little evidence of 

geographical variation and is inconsistent with the above model.  Samples from 

Mozambique showed the highest levels of silent site diversity and no reduction in the 

diversity of forms as might be expected following a bottleneck.  In fact, samples from 

Nigeria not only showed the least silent site diversity but also had the least amount of 

form diversity.  Further sampling of Herves from populations in western Africa is 

needed to confirm the modest trends revealed in this study.    
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Chapter 3:  Biochemical analysis of natural variants of Herves 

transposase in An.gambiae 

ABSTRACT 

 Class II transposable elements have been proposed for use as genetic drive 

agents to introduce malaria transmission-blocking genes into natural populations of 

An.gambiae. We have studied earlier, Herves transposable element in An.gambiae as 

part of our efforts to understand the evolution and behavior of Class II transposable 

elements in this species. We found that Herves was present in all six analyzed 

locations in Africa, at a low copy number that ranged from 2.9-4.4 per diploid 

genome. Insertion-site frequency distribution data of Herves elements indicated that 

the elements have been recently active. We found a high frequency (>85%) of 

individuals with complete forms of the element in most of the locations. Nucleotide 

sequence diversity analysis showed that the transposase coding region was more 

conserved than the non-coding region. Also, there was evidence of purifying selection 

in the Herves transposase coding region. All these observations led to the hypothesis 

that functional sources of Herves transposase should be present in natural populations 

of An.gambiae. We tested this hypothesis by sampling Herves transposase coding 

regions in three closely related members of the An.gambiae species complex, 

An.gambiae s.s, An.arabiensis and An.merus. We found 13 forms that were capable of 

encoding a full-length Herves transposase protein from a total of 67 sequences 

analyzed. We expressed and purified 9 out of the 13 variant forms of Herves 

transposase in E.coli. We found that 7 of the 9 variant Herves transposase proteins 

were active in an in vitro strand-transfer reaction. Of the 7 active forms, 4 were 
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isolated from a sample of 9 individual An.gambiae s.s mosquitoes, indicating that 

45% of the individuals have a source of functional Herves transposase. Despite the 

availability of transposase, the copy number and the apparent transposition activity of 

Herves are low; suggesting that Herves elements in An.gambiae might be under the 

control of a host - regulatory mechanism. 

INTRODUCTION 

 The mobility properties of transposable elements have made them very useful 

tools with a wide range of applications in the laboratory. Besides their use in the lab, 

Class II transposable elements have been proposed for use as a genetic drive 

mechanism to spread refractory genes in natural populations of mosquitoes to control 

vector-borne diseases such as malaria. Even though the spread of P-elements in 

Drosophila melanogaster shows that transposable elements are capable of rapidly 

increasing in frequency in natural populations (ANXOLABEHERE et al. 1988) there 

never has been a deliberate attempt to achieve this. The outcome of such an attempt to 

spread refractory genes using Class II transposable elements in mosquitoes is not 

clear. This is in part due to our limited understanding of the behavior of Class II 

transposable elements in the target species for such a control, An.gambiae.  

 We have attempted to better understand the behavior of Class II transposable 

elements in An.gambiae by studying the Herves transposable element in natural 

populations of this species in Africa. Herves belongs to the hAT family of 

transposable elements that includes hobo from D.melanogaster, Ac from maize, Tam3 

from Antirrhinum majus and Hermes from Musca domestica (ARENSBURGER et al. 

2005). We have studied the dynamics of the Herves transposable element in 6 
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different locations of Africa by determining their presence/absence, insertion site-

frequency distribution, frequency of complete open reading frames as well as the 

nucleotide and form (“haplotype”) diversity of the Herves elements. We observed that 

Herves was present in all of the mosquitoes analyzed with a low average copy 

number of 3.6 per diploid genome. We observed that there was a high frequency of 

complete open reading frames (>85%) of Herves transposase in most of our locations. 

Sequence diversity in the transposase coding region (π = 0.0046) was lower than in 

the non-coding region (π = 0.0079) and we detected evidence for purifying selection 

in the transposase coding region. The insertion site frequency distribution showed an 

abundance of sites that were rare implying that the elements have been recently 

active. These findings together with the previously described transpositionally active 

Herves element isolated from the RSP strain of An. gambiae that was established as a 

laboratory colony in the early 1990s (ARENSBURGER et al. 2005) led to the hypothesis 

that functional sources of Herves transposase should be present in natural populations 

of An.gambiae. 

 In this study we tested this hypothesis by sampling transposase coding regions 

from three members of An.gambiae species complex, An.gambiae s.s, An.arabiensis 

and An.merus. We identified 13 Herves transposase forms that were intact without 

any pre-mature stop codons in all the three species and expressed and purified 9 out 

of the 13 proteins in E.coli. We tested these variant Herves transposase proteins using 

an in vitro strand-transfer assay. Strand-transfer is a step in the transposition reaction, 

where the transposase catalyzes the joining of the 3’-OH ends of the excised 

transposable elements to the target DNA. We supplied pre-cleaved Herves L-ends 
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(that have their 3’-OH ends already exposed) together with a target plasmid DNA to 

the variant Herves transposase proteins and tested if they were capable of performing 

the strand-transfer reaction. This study, besides investigating the presence/absence of 

a functional transposase in the natural population of An.gambiae will also contribute 

to the structure-function studies of the transposase proteins. 

 The mechanism of transposition for various bacterial DNA transposons, such 

as Tn5, Tn7, Tn10, have been studied both in vitro and in vivo (CRAIG 1997; 

HANIFORD 2006; KLECKNER et al. 1996; PETERS and CRAIG 2001; REZNIKOFF 2003). 

The mechanisms of transposition of eukaryotic transposable elements, such as P-

elements, hobo, mariner and Minos, have been extensively studied in Drosophila. 

Other eukaryotic transposable elements, such as Mos1 from Drosophila mauritiana, 

Hermes from Musca domestica, Tc1 and Tc3 from C.elegans have also been studied 

(AUGE-GOUILLOU et al. 2005; AUGE-GOUILLOU et al. 2001; MICHEL and ATKINSON 

2003; MICHEL et al. 2002; MICHEL et al. 2003; VANLUENEN et al. 1994). Additional 

insights into the mechanism of transposition and the activity of transposases has been 

gained from the crystal structures of Mos1, Hermes,Tc3, IS200, Tn5 and TnSA 

(catalytic component of Tn7 system) proteins (DAVIES et al. 1999; HICKMAN et al. 

2005; LEE et al. 2006; RICHARDSON et al. 2006; VANPOUDEROYEN et al. 1997). 

 The results obtained from this study would be helpful to identify functional 

forms of Herves transposase as well as to assess their frequency in the natural 

populations of An.gambiae. The sequences of these forms could be compared to the 

known and predicted characteristics of the hAT transposase proteins contributing to 

our knowledge of the structure and function of this family of transposases. 
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MATERIALS AND METHODS 

     Samples: Nine individuals from An.gambiae s.s, 4 from An.arabiensis and 5 

individuals from An.merus were randomly selected. Of the 9 individuals from 

An.gambiae s.s, 3 were from Furvela, Mozambique, 4 were from Kisumu, Kenya, and 

2 from Malindi, Kenya. All the An.arabiensis and An.merus were from Furvela, 

Mozambique. All of these samples have previously been used and described in our 

earlier studies (O'BROCHTA et al. 2006; SUBRAMANIAN et al. 2007). 

  DNA Isolation:  Genomic DNA was isolated from individual mosquitoes as 

described (O'BROCHTA et al. 2006) and resuspended in 100 μl of distilled water and 

stored at -80ºC. 

  Species Identification:  Species identification was performed using the 

method of Scott et al. (1993) as described (O'BROCHTA et al. 2006) using 1/100th of 

the total genomic DNA from a single mosquito (SCOTT et al. 1993).  This method 

permits the identification of species-specific polymorphisms in the intergenic spacer 

region of ribosomal RNA genes using PCR.    

  Screen for variant Herves transposase forms: To screen for variant Herves 

transposase open reading frames, the region containing the transposase was amplified 

using PCR primers that were complementary to sequences flanking the transposase 

ORF: 1372f (5’-CCA CAA ATT GAT CTA CGC TCC-3’) and 3469r (5’-GAT GCA 

TCT ATT ATG ATT AAG GC-3’).  One fiftieth of the genomic DNA from one 

mosquito (2 μl) was used as template in a 50μl reaction containing 1X ThermalAce™ 

(Invitrogen), 0.2 mM dNTPs (an equimolar mixture of dATP, dTTP, dCTP, dGTP), 

2.5 mM MgCl2, 2 units ThermalAce™ DNA polymerase (Invitrogen), and 24 pmoles 
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of primer1372f and 3469r.  Amplification reactions were performed under the 

following conditions: 95oC/3 min followed by 30 cycles of 95oC/30 sec, 48oC/30 sec, 

72oC/3.0 min and a final cycle of 72oC/10 min.  Reaction products were fractionated 

on a 1% agarose gel.  The ~2100 bp amplification product was eluted from the gel, 

precipitated, resuspended in 20 µl dH2O and cloned into the pCR®-Blunt II TOPO 

vector (Invitrogen). 1-5 clones were sequenced depending on the cloning efficiency. 

The Herves transposase open reading frame sequences were then translated using the 

“Translator” tool available on www.fr33.net to identify sequences that did not have 

any pre-mature stop codons and were capable of encoding full-length proteins. 

 Herves transposase expression and purification: The variant Herves 

transposase forms that were capable of producing a full-length Herves transposase 

were then PCR amplified from the respective pCR®-Blunt II TOPO plasmids and 

cloned between NcoI and Hind III sites of pBAD/Myc-HisA (Invitrogen) to generate 

a Herves-Myc-His fusion construct. Note that only 9 of the 13 forms were cloned, the 

other four forms were not cloned because of cloning difficulties. Also, the Herves 

transposase form (595) which had previously tested positive for transposition activity 

in Drosophila (ARENSBURGER et al. 2005) was cloned and used as a positive control 

in the subsequent analysis. Each pBAD/Herves-Myc-HisA plasmid was transformed 

into Escherichia coli strain Top10 (Invitrogen), grown overnight in LB medium 

containing 100 mg/ml of ampicillin in a shaker at 37 oC. The overnight culture 

(1:100) was used to inoculate 1L of fresh LB containing ampicillin and cells were 

grown to an absorbance (A260) of 0.6 at 37oC. The culture was then induced with 

0.1% L-arabinose and grown for an additional 16 h at 16 oC.  The induced cells were 
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then washed and centrifuged at 4 oC with Binding buffer (5mM Imidazole, 500 mM 

NaCl, 20mM Tric-Cl (pH 7.8), 10 % Glycerol). The pelleted cells were then 

resuspended in 20 ml of Binding buffer and lysed by sonication. After centrifugation 

of the sonicated cells, the supernatant was loaded onto a pre-equilibrated Ni 2+ 

Sepharose column (Amersham). The column was washed with 4 column volumes of 

Binding buffer, followed by 6 column volumes of Wash buffer (60mM Imidazole, 

500mM NaCl, 20mM Tric-Cl (pH 7.8), 10% Glycerol). The Herves-Myc-His fusion 

protein was eluted using 2 column volumes of Elution buffer (200mM Imidazole, 

500mM NaCl, 20mM Tric-Cl (pH 7.8), 10% Glycerol) and dialyzed in three steps 

against dialysis buffer containing 20mM Tric-Cl (pH 7.8) and 10% Glycerol. The first 

dialysis step was 1 h long with the dialysis buffer alone; the second step was with 

fresh dialysis buffer containing 2 mM DTT for another 1 h; followed by a third 

overnight dialysis in fresh dialysis buffer containing 2 mM DTT and 0.5 mM PMSF. 

The protein was then stored at -20 °C. 

 Strand-transfer Assay: The assay was performed as described in Zhou et al 

(ZHOU et al. 2004) and adapted for Herves. Pre-cleaved Herves L-ends were made by 

annealing oligonucleotides HervesLT (5’-TAG AGT TGT GCC TCA AGA ACC 

AGA ACT GTA CG -3’) and  HervesLB (5’- GTA CAG TTC TGG TTC TTG AGG 

CAC AAC TCT A -3’) radiolabeled at  the 5’ end with γ- P32-dATP and was used as 

a substrate for the strand-transfer reaction with 300 ng of pUC19 target DNA. The 

reaction was carried out in a 10 μl volume containing 25mM MOPS (pH = 7.6), 

100mM NaCl, 10mM MgCl2, 5% glycerol, 10 mM DTT, 1mg/ml BSA and 200 ng of 

Herves transposase protein. Reactions were performed at 30 °C for 2 h. The reactions 
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were stopped by addition of SDS and EDTA to a final concentration of 1 % SDS and 

20 mM EDTA and incubating the mixture at 65 °C for 30 minutes. Half of the 

mixture was loaded onto 1 % TBE agarose gel run at 80 volts for 1h and then dried 

onto a DE81 filter paper and exposed to a phosphor screen for 45 minutes and 

scanned on a STORM 860 phosphoimager (Molecular Dynamics). The results were 

verified by repeating the procedure. The Herves transposase form, 595, that is active 

in D.melanogaster and Aedes aegypti embryos was used as a positive control in all 

reactions. A no-protein control was also included and contained distilled water 

instead of the Herves transposase protein. 

RESULTS 

 Intact Herves transposase in An.gambiae s.l: To identify functional forms in 

the natural populations of An.gambiae in Africa, the Herves transposase open reading 

frame region was amplified, cloned and sequenced from three closely related 

members of the An.gambiae species complex, An.gambiae s.s, An.arabiensis and 

An.merus. A total of 67 sequences were obtained, 30 from An.gambiae s.s, 17 from 

An.arabiensis and 20 from An.merus. Of the 67 sequences, 58 were complete (~1.8 

kb) without any deletions and 9 sequences (eight from An.arabiensis and one from 

An.merus) had deletions. Out of a total of 58 complete sequences, 5, 2 and 6 

sequences from An.gambiae s.s, An.arabiensis and An.merus respectively did not 

have any pre-mature stop codons, and were, therefore, presumably capable of 

producing a full-length Herves transposase protein (Table 3-1). 

 Analysis of Herves transposase sequences:  The nucleotide sequence 

diversity of the Herves transposase sequences was highest in An.arabiensis (π = 
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0.0092) and lowest in An.merus (π = 0.0053). The Herves sequences from 

An.gambiae s.s had a π = 0.0073. We found 55 different forms among 58 complete 

sequences from the three members of the An.gambiae species complex. There were 3 

forms from An.gambiae s.s that were recovered twice; however, in each instance the 

two identical forms were recovered from the same individual making it possible that 

they were the PCR amplification products of the same Herves element. All the other 

forms were different from each other. A greater number of non-synonymous changes 

compared to synonymous changes were observed in all three species (Table 3-2). A 

total of 129 mutations in the transposase coding region in An.gambiae s.s (31 

synonymous and 98 non-synonymous), 71 mutations in An.arabiensis (17 

synonymous and 54 non-synonymous) and 78 mutations in An.merus (24 

synonymous and 54 non-synonymous) were observed (Table 3-2). 

 The alignment of the 13 “intact” forms of the Herves transposase that did not 

have any pre-mature stop codons with the sequence of a known functional Herves 

transposase revealed some patterns. There were at least six mutations (Thr to Ser, Ile 

to Val, Ileu to Val, Val to Ala, Ileu to Thr, Tyr to Phe) that were shared between all 

the forms obtained from An.merus (Figure 3-1). There were ten mutations in region B 

and four mutations in region D that correspond to the catalytic and α-helical domain 

of Hermes transposase respectively (Figure 3-1). Five of the mutations in region A 

are in a region of Hermes transposase that has been shown to be important for the 

binding of the transposase to the ends of transposon. A tryptophan to cysteine 

mutation in region C was also seen; the tryptophan residue has been shown to be 

important for DNA hairpin formation in Hermes and Tn5 transposition reactions 
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TABLE 3- 1: Summary of the samples used for the analysis 
 
 

Number of Sequences 
Species Number of 

Individualsa
Totalb Deletedc Completed Intacte

An.gambiae s.s 9 30 0 30 5 

An.arabiensis 4 17 8 9 2 

An.merus 5 20 1 19 6 

Total 18 67 9 58 13 
 

 
 
 
 
 
 
 
 
 
 
 

a number of mosquitoes used to amplify the Herves open reading frame region 
b total number of sequences obtained 
c number of sequences that had deletions in the open reading frame and were smaller than ~1.8kb 
d number of sequences that were complete with a length of ~1.8 kb 
e number of complete sequences that had no pre-mature stop codons and could encode a full-

length Herves transposase protein 

 71 
 



 

 

TABLE 3- 2: Diversity of Herves transposase region in An.gambiae 
 

Sequence diversity Form diversity 
Species Number of 

Sequences 

Polya πb No. of 
Forms 

Form 
diversityc

An.gambiae s.s 30 129 (31+98) 0.0073 (0.0007) 27 0.99 (0.011) 

An.arabiensis 9 71 (17+54) 0.0092 (0.0007) 9 1.0 (0.052) 

An.merus 19 78 (24+54) 0.0053 (0.0005) 19 
a Number of polymorphic positions; Numbers in parenthesis = synonymous + non-synonymous sites 

1.0 (0.017) 

b Pairwise nucleotide diversity (NEI and LI 1979); standard deviation in parenthesis  

c Standard deviation in parenthesis    
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(ASON and REZNIKOFF 2002; HICKMAN et al. 2005). There were two mutations, 

cysteine to lysine and cysteine to phenyl alanine; involving conserved residues that 

form a BED-finger domain thought to be important for DNA binding of the 

transposase proteins (ARAVIND 2000). There were a number of other mutations in 

regions not known to play a role in catalysis and DNA binding based on our 

understanding from other hAT transposases (Figure 3-1).  

 Herves transposase and Strand-transfer activity: Only 9 out of the 13 

variant Herves transposase forms, 4 from An.gambiae s.s and An.merus each and one 

from An.arabiensis that were capable of producing full-length transposase were used 

for the biochemical studies. The other four were not used because they proved 

difficult to clone. The 9 variant Herves transposases were expressed in E.coli and a 

~67 kDa transposase protein was purified in each case (Figure 3-2).  

 The excision of the transposon from the donor site is followed by a 

transposase mediated joining of the 3’-OH ends of the transposon to the target DNA. 

The activity of the variant Herves transposases was determined by examining their 

ability to join pre-cleaved Herves left ends including the inverted terminal repeat to a 

target plasmid in vitro. Depending on if one or two Herves-L ends are joined to the 

target plasmid DNA, they can be seen as a Single End Joining (SEJ) or a Double End 

Joining (DEJ) product. We tested the activity of the 9 variant Herves transposase 

proteins in this assay and 7 forms were able to transfer and join the Herves-L ends to 

the target plasmid DNA (Figure 3-3). The other two forms (598 and 610) did not 

show any strand transfer products. 

 

 73 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Herves8859
596 An.gambiae s.s
601 An.gambiae s.s
612 An.gambiae s.s
607 An.gambiae s.s
605 An.gambiae s.s
606 An.arabiensis
611 An.arabiensis
598 An.merus
603 An.merus
604 An.merus
608 An.merus
609 An.merus
610 An.merus

3525 30
. . | . . . . | . . . . | .

AKCLYCLKVFKYTK
.....F........
..............
..............
..............
..............
..............
..............
..Y...........
..............
..............
............I.
..............
..............

55 60
. . | . . . . | . .

VPYLKQKQPI
..........
..........
..........
........S.
..N.......
..........
..........
..........
..........
........L.
.Q........
..........
..........

85 9575 80 90
| . . . . | . . . . | . . . . | . . . . | . .

SAVNFQPSNQYFNSNMSIQGYLK
.......................
......................N
.......................
.......................
...............I.......
.......................
.......................
............S..........
.V.....................
.V.....................
.......................
.......................
.......................

Herves8859
596 An.gambiae s.s
601 An.gambiae s.s
612 An.gambiae s.s
607 An.gambiae s.s
605 An.gambiae s.s
606 An.arabiensis
611 An.arabiensis
598 An.merus
603 An.merus
604 An.merus
608 An.merus
609 An.merus
610 An.merus

Herves8859
596 An.gambiae s.s
601 An.gambiae s.s
612 An.gambiae s.s
607 An.gambiae s.s
605 An.gambiae s.s
606 An.arabiensis
611 An.arabiensis
598 An.merus
603 An.merus
604 An.merus
608 An.merus
609 An.merus
610 An.merus

280
| . .

IKKS
....
....
....
....
....
....
....
....
....
....
...N
....
....

305
. . . . |

PKASQ
.....
.....
.....
.....
....H
.....
.....
.....
.....
.....
..V..
.....
.....

475465460 470
| . . . . | . . . . | . . . . |

DDVEKFKNICESIISE
.............T..
........L.......
.............T..
.............T..
...D............
.............T..
.............T..
..A.....T.......
..A.....T.....Y.
..A.....T.......
..A.....T.......
..A.....T.......
..A.....T.......

490 500 505485 495
. . . . | . . . . | . . . . | . . . . | . . . . | . .

KPAVEVEKVVKKVSKDVDMLFGDLLKN
...........................
........................F..
...........................
.........A.................
........................F..
...........................
...........................
...........................
...........................
...........................
.............N.............
..T........................
..........................Y

315 320 330 340 350325
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

QKKLNLDQLKMIQEVSTRWNSGYDMLNRFYKNKIALLSCADS
..........................................
.........................................N
..................C.......................
..........................................
....K..................................T..
..........................................
..................................T.......
.........................F................
..........................................
..........................................
..........L...............................
..........................................
..........................................

335 345
. . . . | .

SHDWEA
.....V
......
......
......
......
..E...
......
......
......
......
......
......
......

365 425415405400 410 420 430
| . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

NVLLTKTSQFRNDEDIAENIQNLVALLIEGLQNKLKI
................S....................
.............................A.......
................S....................
................S....................
...................V.................
................S....................
................S....................
...................V.................
.M.................V.................
...................V.................
...........S.......V.................
...................V................M
...................V.................

435

540 550 560 570 580545 555
. . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

DPLLWWKEHQVLYPSLYTLAMSTLCIPGTSVPCERLFSKAGQIY
............................................
............................................
............................................
............................................
............................................
............................................
............................................
................F.........................V.
...I............F......................V....
................F..................F........
................F...........................
................F...........................
................F...........................

565 575

10
. . . . | . . . . | .

MMAPTNATTSP
I..........
...........
I..........
I........N.
.........N.
I..........
I....S.....
.......S...
.......S...
.......S...
.......S.I.
.......S...
.......S...

5 230
. | .

QGT
...
...
...
...
...
...
...
...
...
...
...
...
..S

195185175 205
|

L
.
.
.
.
.
.
.
.
.
.
.
.
.

170 180 190 200
| . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . .

LSTAKAIAITSDGWTNLNQISFFALTGHYIDENCK
...................................
...................................
...................................
...................................
..............K........V...........
F.................................E
...................................
........V..........................
........V..........................
........V.......M..................
........V..........................
........V..........................
.P......V..........................

245 255250
. | . . . . | . . . . |

MVTDNASNMKAA
............
............
............
............
............
K...........
..........V.
............
............
............
............
............
.....V......

. . .

SEK
...
...
...
...
...
...
...
...
...
...
...
...
...

|

Q
.
.
.
.
.
.
.
.
.
.
.
.
.

. . . .

QNA.
....
....
....
....
.I..
....
....
....
....
....
....
....
....

600

*

†

†

†

†

A B

C

D

Herves8859
596 An.gambiae s.s
601 An.gambiae s.s
612 An.gambiae s.s
607 An.gambiae s.s
605 An.gambiae s.s
606 An.arabiensis
611 An.arabiensis
598 An.merus
603 An.merus
604 An.merus
608 An.merus
609 An.merus
610 An.merus

3525 30
. . | . . . . | . . . . | .

AKCLYCLKVFKYTK
.....F........
..............
..............
..............
..............
..............
..............
..Y...........
..............
..............
............I.
..............
..............

3525 30
. . | . . . . | . . . . | .

AKCLYCLKVFKYTK
.....F........
..............
..............
..............
..............
..............
..............
..Y...........
..............
..............
............I.
..............
..............

55 60
. . | . . . . | . .

VPYLKQKQPI
..........
..........
..........
........S.
..N.......
..........
..........
..........
..........
........L.
.Q........
..........
..........

55 60
. . | . . . . | . .

VPYLKQKQPI
..........
..........
..........
........S.
..N.......
..........
..........
..........
..........
........L.
.Q........
..........
..........

85 9575 80 90
| . . . . | . . . . | . . . . | . . . . | . .

SAVNFQPSNQYFNSNMSIQGYLK
.......................
......................N
.......................
.......................
...............I.......
.......................
.......................
............S..........
.V.....................
.V.....................
.......................
.......................
.......................

85 9575 80 90
| . . . . | . . . . | . . . . | . . . . | . .

SAVNFQPSNQYFNSNMSIQGYLK
.......................
......................N
.......................
.......................
...............I.......
.......................
.......................
............S..........
.V.....................
.V.....................
.......................
.......................
.......................

Herves8859
596 An.gambiae s.s
601 An.gambiae s.s
612 An.gambiae s.s
607 An.gambiae s.s
605 An.gambiae s.s
606 An.arabiensis
611 An.arabiensis
598 An.merus
603 An.merus
604 An.merus
608 An.merus
609 An.merus
610 An.merus

Herves8859
596 An.gambiae s.s
601 An.gambiae s.s
612 An.gambiae s.s
607 An.gambiae s.s
605 An.gambiae s.s
606 An.arabiensis
611 An.arabiensis
598 An.merus
603 An.merus
604 An.merus
608 An.merus
609 An.merus
610 An.merus

280
| . .

IKKS
....
....
....
....
....
....
....
....
....
....
...N
....
....

280
| . .

IKKS
....
....
....
....
....
....
....
....
....
....
...N
....
....

305
. . . . |

PKASQ
.....
.....
.....
.....
....H
.....
.....
.....
.....
.....
..V..
.....
.....

305
. . . . |

PKASQ
.....
.....
.....
.....
....H
.....
.....
.....
.....
.....
..V..
.....
.....

475465460 470
| . . . . | . . . . | . . . . |

DDVEKFKNICESIISE
.............T..
........L.......
.............T..
.............T..
...D............
.............T..
.............T..
..A.....T.......
..A.....T.....Y.
..A.....T.......
..A.....T.......
..A.....T.......
..A.....T.......

475465460 470
| . . . . | . . . . | . . . . |

DDVEKFKNICESIISE
.............T..
........L.......
.............T..
.............T..
...D............
.............T..
.............T..
..A.....T.......
..A.....T.....Y.
..A.....T.......
..A.....T.......
..A.....T.......
..A.....T.......

490 500 505485 495
. . . . | . . . . | . . . . | . . . . | . . . . | . .

KPAVEVEKVVKKVSKDVDMLFGDLLKN
...........................
........................F..
...........................
.........A.................
........................F..
...........................
...........................
...........................
...........................
...........................
.............N.............
..T........................
..........................Y

490 500 505485 495
. . . . | . . . . | . . . . | . . . . | . . . . | . .

KPAVEVEKVVKKVSKDVDMLFGDLLKN
...........................
........................F..
...........................
.........A.................
........................F..
...........................
...........................
...........................
...........................
...........................
.............N.............
..T........................
..........................Y

315 320 330 340 350325
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

QKKLNLDQLKMIQEVSTRWNSGYDMLNRFYKNKIALLSCADS
..........................................
.........................................N
..................C.......................
..........................................
....K..................................T..
..........................................
..................................T.......
.........................F................
..........................................
..........................................
..........L...............................
..........................................
..........................................

335 345315 320 330 340 350325
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

QKKLNLDQLKMIQEVSTRWNSGYDMLNRFYKNKIALLSCADS
..........................................
.........................................N
..................C.......................
..........................................
....K..................................T..
..........................................
..................................T.......
.........................F................
..........................................
..........................................
..........L...............................
..........................................
..........................................

335 345
. . . . | .

SHDWEA
.....V
......
......
......
......
..E...
......
......
......
......
......
......
......

365
. . . . | .

SHDWEA
.....V
......
......
......
......
..E...
......
......
......
......
......
......
......

. . . . | .

SHDWEA
.....V
......
......
......
......
..E...
......
......
......
......
......
......
......

365 425415405400 410 420 430
| . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

NVLLTKTSQFRNDEDIAENIQNLVALLIEGLQNKLKI
................S....................
.............................A.......
................S....................
................S....................
...................V.................
................S....................
................S....................
...................V.................
.M.................V.................
...................V.................
...........S.......V.................
...................V................M
...................V.................

435425415405400 410 420 430
| . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

NVLLTKTSQFRNDEDIAENIQNLVALLIEGLQNKLKI
................S....................
.............................A.......
................S....................
................S....................
...................V.................
................S....................
................S....................
...................V.................
.M.................V.................
...................V.................
...........S.......V.................
...................V................M
...................V.................

435

540 550 560 570 580545 555
. . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

DPLLWWKEHQVLYPSLYTLAMSTLCIPGTSVPCERLFSKAGQIY
............................................
............................................
............................................
............................................
............................................
............................................
............................................
................F.........................V.
...I............F......................V....
................F..................F........
................F...........................
................F...........................
................F...........................

565 575540 550 560 570 580545 555
. . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

DPLLWWKEHQVLYPSLYTLAMSTLCIPGTSVPCERLFSKAGQIY
............................................
............................................
............................................
............................................
............................................
............................................
............................................
................F.........................V.
...I............F......................V....
................F..................F........
................F...........................
................F...........................
................F...........................

565 575

10
. . . . | . . . . | .

MMAPTNATTSP
I..........
...........
I..........
I........N.
.........N.
I..........
I....S.....
.......S...
.......S...
.......S...
.......S.I.
.......S...
.......S...

5 10
. . . . | . . . . | .

MMAPTNATTSP
I..........
...........
I..........
I........N.
.........N.
I..........
I....S.....
.......S...
.......S...
.......S...
.......S.I.
.......S...
.......S...

5 230
. | .

QGT
...
...
...
...
...
...
...
...
...
...
...
...
..S

230
. | .

QGT
...
...
...
...
...
...
...
...
...
...
...
...
..S

195185175 205
|

L
.
.
.
.
.
.
.
.
.
.
.
.
.

170 180 190 200
| . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . .

LSTAKAIAITSDGWTNLNQISFFALTGHYIDENCK
...................................
...................................
...................................
...................................
..............K........V...........
F.................................E
...................................
........V..........................
........V..........................
........V.......M..................
........V..........................
........V..........................
.P......V..........................

195185175 205
|

L
.
.
.
.
.
.
.
.
.
.
.
.
.

170 180 190 200
| . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . .

LSTAKAIAITSDGWTNLNQISFFALTGHYIDENCK
...................................
...................................
...................................
...................................
..............K........V...........
F.................................E
...................................
........V..........................
........V..........................
........V.......M..................
........V..........................
........V..........................
.P......V..........................

245 255250
. | . . . . | . . . . |

MVTDNASNMKAA
............
............
............
............
............
K...........
..........V.
............
............
............
............
............
.....V......

245 255250
. | . . . . | . . . . |

MVTDNASNMKAA
............
............
............
............
............
K...........
..........V.
............
............
............
............
............
.....V......

. . .

SEK
...
...
...
...
...
...
...
...
...
...
...
...
...

. . .

SEK
...
...
...
...
...
...
...
...
...
...
...
...
...

|

Q
.
.
.
.
.
.
.
.
.
.
.
.
.

|

Q
.
.
.
.
.
.
.
.
.
.
.
.
.

. . . .

QNA.
....
....
....
....

. . . .

QNA.
....
....
....
....
.I..
....
....
....
....
....
....
....
....

.I..

....

....

....

....

....

....

....

....

600

*

†

†

†

†

A B

C

D

 
 
 
 
 
 
 
 

* Amino acid sequence of the Herves transposase that has shown to be active in Drosophila melanogaster and 
Aedes aegypti 
 
† Herves transposase variants that have not been tested in this analysis 

FIGURE 3- 1: Alignment of amino acid sequence of the 13 variant Herves 
transposases from An.gambiae 
The alignment of amino acid sequences of the 13 different Herves transposase 
isolated from 3 members of the An.gambiae species complex, An.gambiae s.s, 
An.arabiensis and An.merus with the sequence of the active Herves transposase is 
shown. The mutations in different proteins are shown. The conserved residues are 
shown as dots (.) and a break in the alignment where there was conservation among 
all variant proteins is shown as empty spaces. The conserved DDE triad that forms 
the active site of the hAT family of transposases is shown using boxes. Blue shaded 
region A, corresponds to the N-terminal domain, regions B, C and D correspond to 
the regions in the catalytic and the α-helical domain of the Hermes protein that have 
been shown to be critical for its function. The green shaded regions show the 
conserved residues of the BED-domain predicted to be important for DNA binding. 
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FIGURE 3- 2: Purified Herves transposase protein. 
Three variant Herves transposase proteins of ~67 kDa after purification on a 4-14% 
PAGE gel. Molecular weight markers (M) are shown on the left side in kilodaltons. 
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DISCUSSION 

 Class II transposable elements have proven to be useful in a wide range of 

applications in the laboratory. Apart from their use as tools for molecular studies in 

the laboratory, they are also being considered for use as genetic drive agents to spread 

genes through mosquito populations that would disrupt vector-borne disease 

transmission (KIDWELL and RIBEIRO 1992). We have used Herves to understand the 

behavior of Class II transposable elements in natural populations of An.gambiae, a 

species being seriously considered for control by such a genetic modification strategy 

(SUBRAMANIAN et al. 2007). Based on our previous studies that examined insertion-

site frequency distribution, frequency of complete Herves transposase open reading 

frames, nucleotide sequence diversity and selection pressures on the transposase 

coding region, we predicted the presence of functional sources of Herves transposase 

in natural populations of An.gambiae. 

 In this study, we tested the above hypothesis by sampling Herves transposase 

coding regions from three closely related members of An.gambiae species complex, 

An.gambiae s.s, An.arabiensis and An.merus. We sequenced a total of 58 complete 

open reading frames that encode for Herves transposase, of which 13 were found to 

be “intact” with no pre-mature stop codons. As predicted, all nine forms that were 

expressed in E.coli produced a full length protein of ~67kDa. When the activity of the 

nine variant proteins was tested using an in vitro strand-transfer assay, seven of them 

showed activity.  

 The transposition of the hAT family of transposases is initiated by a 

transposase mediated nick, one nucleotide into the donor strand flanking the 5’-end of 
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FIGURE 3- 3: Strand-transfer reaction using variant Herves transposase 
proteins. 

a. Schematic of the strand transfer reaction 
b. Results of the strand transfer reaction using nine variant Herves transposase 

proteins. 595 is the Herves transposase form that is active in Drosophila used 
as a positive control in the assay. The molecular weight markers are shown on 
the left side in kilo basepairs. Single End-Joining (SEJ) and Double End-
Joining (DEJ) are indicated on the right side. 
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the transposon, leaving a nucleotide from the donor strand attached to the 5’ end of 

the transposon (Figure 3-4). This generates a 5’- phosphate at the end of the 

transposon and a 3’-OH at the end of the flanking donor DNA. The 3’-OH end of the 

flanking DNA acts as a nucleophile and attacks the other strand (non-transferred 

strand) at the junction of the transposon and the flanking donor DNA. This results in 

formation of a hairpin structure on the donor DNA and the release of the transposon 

with a single unpaired nucleotide from the donor site attached at the 5’-end of the 

transposon. After excision from the donor site, the 3’-OH ends of the transposon 

attack the phosphodiester backbone of a target DNA molecule in a staggered 

transesterification reaction called strand transfer. This creates two complementary 8-

bp single stranded regions in the target DNA flanking the transposon insertion. The 8-

bp gaps are filled in by DNA repair mechanisms to create a characteristic 8-bp target 

site duplication observed for the hAT transposable elements (Figure 3-4) (CRAIG et al. 

2002). 

 The crystal structure of the Hermes transposase reveals that there are three 

domains: an N-terminal domain (residues 79-150) and a catalytic domain that is 

divided by an α-helical domain (265-552) which is inserted into the catalytic domain 

(HICKMAN et al. 2005). The catalytic domain brings three essential amino acids 

(Aspartate, Aspartate and Glutamate) Asp181 (D), Asp247 (D) and Glu571 (E) in 

close proximity, so that they can coordinate Mg 2+ ions that are essential for the 

catalysis. These three residues form the characteristic DDE motif that has been 

observed to be conserved in all transposases of the hAT family (RUBIN et al. 2001). It 

was shown that when these residues were mutated, the Hermes transposase, even  
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FIGURE 3- 4: Mechanism of transposition of hAT elements. 
A transposase mediated nick at the donor site results in a 3’-OH in the flanking donor 
DNA that attacks the other DNA strand at the junction of the transposon and the 
flanking DNA. This results in hairpin formation at the donor site and release of the 
transposon. The donor site is repaired by the DNA repair mechanism of the cell 
generating palindromes that are footprints of excision events. The transposase 
mediates the end-joining of the transposon at the 3’-OH ends. The gaps are filled in 
by the DNA polymerase resulting in 8-bp target site duplications at the insertion sites. 
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 though capable of binding DNA, had greatly reduced activity in all DNA cleavage 

and joining steps. This indicates that these three acidic residues are critical for the 

catalysis of the transposition reaction (ZHOU et al. 2004). The N-terminal domain of 

Hermes was shown to be involved in specific DNA binding to the transposon ends. A 

truncated version of the Hermes protein that did not contain these residues failed to 

bind to Hermes ends while the untruncated version bound specifically to a 30-

nucleotide fragment of the Hermes L-end and not to non-specific DNA (HICKMAN et 

al. 2005). The inserted α-helical domain projects a tryptophan residue, Trp319, into 

the active site of the enzyme and has been shown to be required for DNA cleavage 

and hairpin formation through a base-flipping mechanism. Base-flipping is a 

mechanism where a single nucleotide base is rotated through 180° into an extra-

helical location so that the enzyme can get access to a base that is usually buried in 

the double helix. This mechanism has been described for a number of enzymes such 

as DNA methylases, glucosyltransferases, glycosylases as well as for transposases 

(DAVIES et al. 1999; ROBERTS and CHENG 1998). The crystal structure of  the Tn5 

transposase post-cleavage intermediate revealed that the thymidine 2 from the non-

transferred strand is flipped out and stacked against the indole ring of the tryptophan 

(W298) and this interaction was shown to be critical for hairpin formation (ASON and 

REZNIKOFF 2002; DAVIES et al. 1999). One important difference to note in the 

mechanisms of Tn5 and Hermes (hAT) transposition is that the hairpin formation 

occurs in the transposon in the case of Tn5, while it happens in the flanking donor 

DNA in the case of Hermes transposition. This difference is due to the first cleavage 

step, which generates a 5’-phosphate at the end of the Hermes transposon while it 
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generates a 3’-OH at the end of Tn5 transposon. A tryptophan to alanine mutant 

(W319A) of the Hermes transposase was defective in DNA cleavage and hairpin 

formation but showed activity in strand-transfer reactions when provided with pre-

cleaved ends (HICKMAN et al. 2005). This observation together with the 

understanding from the Tn5 transposase mechanism, strongly suggests that Trp319 is 

involved in DNA cleavage and hairpin formation also in Hermes transposition. This 

tryptophan residue is another conserved feature of all other hAT transposases which 

reiterates its importance in the transposition reaction (RUBIN et al. 2001). 

 Based on our knowledge of the crystal structure of the Hermes transposase 

and the characteristic features of other hAT transposase proteins, we identified the 

regions in Herves transposase that may be important for its function. Region A 

corresponds to the N-terminal domain, Regions B, C and D correspond to the regions 

in the catalytic and the α-helical domain of the Hermes protein that have been shown 

to be critical for its function (HICKMAN et al. 2005; ZHOU et al. 2004). Regions B and 

D contain the conserved DDE amino acids critical for the catalysis of transposition. 

Region C contains the tryptophan that is important for cleavage and DNA hairpin 

formation. Sequences from bp position 1-75, 5’ to the region A, even though was not 

important for binding of Hermes transposase to the Hermes L-ends, has been 

proposed to contain a BED-finger domain predicted to be involved in DNA binding 

(ARAVIND 2000). It has also been shown to contain the nuclear localization signal for 

Hermes transposase (MICHEL and ATKINSON 2003). 

 In this study, we tested the activity of variant Herves transposase proteins 

using strand-transfer assay. The variant Herves transposase proteins were supplied 
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with pre-cleaved Herves L-ends (with their 3’-OH ends already exposed) and tested 

for their ability to join the 3’-OH ends of the Herves L-ends to a target plasmid DNA. 

We observed that 7 out of the 9 variants that we tested were functional and showed 

the ability to strand-transfer. The two proteins 598 and 610 have some unique 

mutations that are not present in the other variants that may be responsible for their 

inactivity. Herves transposase variant 610 has three mutations, serine to proline 

(S171P), threonine to serine (T231S) and alanine to valine (A249V) in Region B that 

corresponds to the region that forms the catalytic domain in Hermes transposase. 

These mutations are likely to be responsible for the inactivity of the protein in the 

assay. Similarly, an Asparigine to Serine mutation (N87S) in region A in Herves 

variant 598 might affect the DNA binding activity of the protein, which is critical for 

element transposition. The activity of these proteins was tested simultaneously using 

identical conditions and the contents of the reactions were distributed from a common 

master mix. In addition, the protein concentrations of the variant Herves transposases 

used in the assay were also the same.  Even though the experiment as performed here 

is not quantitative, the experimental set up enables us to make some inferences about 

the relative activity of these proteins. The strand-transfer results (Figure 3-3) indicate 

that variants 601 and 603 may have a lower activity compared to the other variant 

Herves transposase proteins. This observation was consistent between experiments. A 

lysine to asparagine (K97N) substitution in region A for 601 and an alanine to valine 

(A577V) substitution in region D for 603 together with other unique mutations not 

within the described regions may be contributing to their lower activity. 
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 There are a number of other mutations that are observed in the four regions 

that do not seem to affect the ability of the proteins to end-join the Herves L-ends to 

the target plasmid DNA. Strand-transfer activity does not necessarily mean that the 

protein is capable of catalyzing a complete transposition reaction. For instance, from 

the structure and function of Hermes transposase we can predict that protein 612 

should be defective for DNA cleavage and hairpin formation steps due to the 

tryptophan to cysteine substitution at position 329. The tryptophan to alanine 

(W319A) mutant of Hermes transposase was, as described earlier defective in DNA 

cleavage and hairpin formation but was able to produce single-and double-end-

joining products (SEJ & DEJ). Two other Herves variants, 596 and 598, have a 

cysteine to lysine (C25Y) and cysteine to phenyl alanine (C28F), respectively, in two 

conserved residues in the BED-domain which is predicted to be critical for DNA 

binding (ARAVIND 2000). Even though the cysteine substitution at position 25 did not 

seem to affect the strand transfer for 596, it did affect the strand transfer for 598. 

 Additional experiments testing the ability of the Herves variants to perform 

the full transposition reaction are necessary to confirm that these proteins can catalyze 

the complete transposition reaction. The predictions for the possible inactivity of 

these variant Herves proteins can be tested by changing the mutated residues to the 

corresponding residues seen in active forms by mutagenesis methods and testing for 

activity. From this analysis and also from comparing the sequences with the known 

structure-function features of Hermes we can predict that at least six of the seven 

proteins that showed activity in the strand-transfer are capable of catalyzing the 

complete transposition of Herves elements. 
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 Based on the results of this study the frequency of individuals with Herves 

transposase coding regions capable of making fully functional transposase is high. Of 

the 7 variant Herves transposase proteins that were functional, 4 were from 

An.gambiae s.s and were isolated from 4 individual mosquitoes. Only 9 individuals of 

An.gambiae s.s were used in this study, indicating that approximately 45% of the 

individuals have source of functional Herves transposase. Despite the availability of 

Herves transposase, the copy number and the apparent transposition activity of 

Herves were low. This suggests the presence of host repression systems that regulate 

the activity of these elements. Our failure to detect RNA transcripts of Herves 

transposase in mosquitoes from natural, as well as lab, populations of An.gambiae 

using RT-PCR supports this hypothesis (O. A. Akala and R. A. Subramanian, 

unpublished).  

 In summary, we found 13 variant Herves transposase proteins that are capable 

of producing full-length protein. We expressed and purified nine out of the 13 variant 

proteins and tested them using an in vitro assay. Seven out of the nine proteins 

showed ability to end-join the Herves L-ends to a target plasmid DNA. Even though 

these results need to be corroborated with further experimental evidence, based on 

their activity in strand-transfer assay, we can conclude that there is a source of 

functional Herves transposase in natural populations of An.gambiae. However, a host 

repression system seems to regulate the activity of these transposase proteins 

resulting in the low observed activity of the elements. 
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Chapter 4: The population genetics of Topi, a Tc1/mariner family of 

transposable element in the malarial mosquito, An.gambiae s.s. 

ABSTRACT 

 Class II transposable elements have been successfully used as gene vectors to 

transform a number of insect species. Besides their use as gene vectors in insects they 

are also being considered as genetic drive agents to spread refractory genes into 

natural populations of mosquitoes to control vector-borne diseases such as malaria. 

We have studied Herves, an active endogenous element in An.gambiae earlier, to 

understand the evolution and behavior of Class II transposable elements in this 

species. Here, we study Topi, a Tc1/mariner element to determine if the natural 

history of Herves is shared by other Class II transposable elements in An.gambiae. 

We examined the dynamics of Topi elements in five populations in Africa by 

measuring site-occupancy frequency and nucleotide sequence diversity, as well as by 

analyzing the structure of the elements in these locations. We found no evidence of 

recent activity based on the site-occupancy distribution data. All 74 individuals 

sampled from five different locations had Topi elements with a high copy number that 

ranged from 10 - 34 per diploid genome. Nucleotide sequence diversity in the coding 

region of Topi elements was higher (π= 0.051) than Herves indicating that Topi was 

present in the An.gambiae genome longer than Herves. Further evidence for this was 

observed from the analysis of the silent-site diversity of these elements. Silent-site 

diversity of Topi elements were only 3 to 5-fold lower than expected. Despite their 

long history in An.gambiae, all samples analyzed had a complete form of the element 

~ 1kb in size as well as a deleted form of ~ 600bp. We found 14 forms, of Topi 
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transposase in the sampled 58 sequences (which were capable of encoding a full-

length transcript). Lack of evidence for recent activity based on insertion-site 

frequency distribution data suggests that either these forms are not functional or that 

they are under host regulation. The evolution of the Topi transposable element seems 

similar to the Herves transposable element in An.gambiae. 

INTRODUCTION 

 Class II transposable elements have been used successfully as gene vectors in 

a number of insect species (ATKINSON et al. 2001). A collection of Class II 

transposable elements that includes P-elements, hobo, Tn5, mariner, Minos, 

piggyBac, and Hermes have been used to transform insects such as D.melanogaster 

(O'BROCHTA and ATKINSON 1996), Stomoxys calcitrans (O'BROCHTA et al. 2000), 

Tribolium castaneum (BERGHAMMER et al. 1999), Ceratitis capitata (MICHEL et al. 

2001) and butterfly, Bicyclus anynana (MARCUS et al. 2004). Medically important 

insects such as Aedes aegypti (JASINSKIENE et al. 1998), Anopheles gambiae 

(GROSSMAN et al. 2001; KIM et al. 2004), Anopheles stephensi (CATTERUCCIA et al. 

2000) and also commercially useful insects such as silk worm, Bombyx mori, have 

been transformed using Class II transposable elements (TAMURA et al. 2000). Class II 

transposable elements have also been used successfully as gene vectors for stable 

chromosomal integration of transgenes that, when expressed appropriately, impair the 

development of malaria parasites, Plasmodium, in Anopheles mosquitoes (ITO et al. 

2002; KIM et al. 2004; MOREIRA et al. 2002). Genetically modified mosquitoes and 

population modification using a genetic drive agent to spread the refractory genes are 

being considered to control vector-borne diseases such as malaria. Transposable 
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elements with their ability to move and also rapidly increase in copy number have 

been proposed for use as genetic drive agents to rapidly increase the frequency of 

refractory genes in mosquito populations (KIDWELL and RIBEIRO 1992). The most 

extensively documented example of such a rapid increase in frequency of 

transposable elements is the spread of P-elements in D.melanogaster. P-elements 

after their introduction into D.melanogaster from a closely related species, 

D.willistoni, rapidly increased in frequency and became distributed throughout world 

populations of D.melanogaster within a few decades (ANXOLABEHERE et al. 1988). 

 The potential use of Class II transposable elements as genetic drive agents to 

spread refractory genes through mosquito populations to control vector-borne 

diseases such as malaria has led to studies designed to understand the behavior of 

these elements in the target species for such a control, An.gambiae. We have studied 

Herves, a Class II transposable element that belongs to the hAT family of transposable 

elements in natural populations of An.gambiae from six different locations in Africa. 

We used insertion-site frequency distribution data to assess the copy number and 

activity of the element in natural populations of this species. We looked at the 

sequence diversity by analyzing both the coding and non-coding regions of the 

element. In addition, we assessed the structural diversity of these elements by 

analyzing the frequency of complete open reading frames in these populations. 

 We found that Herves was present in all of the populations analyzed but at a 

low copy number; the average element copy numbers in the six populations analyzed 

ranged from 2.9 - 4.4. Even though the copy number was low, there was evidence for 

recent activity in all of the analyzed populations (ARENSBURGER et al. 2005). The 
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element was found in all the members of the An.gambiae species complex indicating 

that this element was probably present prior to the evolution of the species complex. 

We cannot, however, rule out the possibility of horizontal transfer among these 

species as some introgression has been observed between at least two members of the 

species complex, An.arabiensis and An.gambiae s.s (BESANSKY et al. 1997). The 

hypothesis of a long residence time in the species was supported by the high sequence 

diversity and form (“haplotype”) diversity in these populations (SUBRAMANIAN et al. 

2007). Even though the element was present in the species for an extended amount of 

time we observed several characteristics that would not be predicted for an element 

with a long species history. We found a high frequency of complete open reading 

frames (>85 %) in most of the populations of An.gambiae. In addition, we found a 

higher conservation of the coding than the non-coding regions of the Herves 

transposase as well as evidence for purifying selection in the coding region. These 

results indicate that Herves is likely to still be active in natural populations of 

An.gambiae. 

 As part of an effort to determine if the natural history of Herves is shared with 

other Class II transposable elements, in this study we investigated Topi, a Class II 

transposable element that belongs to Tc1/mariner family of transposable elements in 

five locations in Africa. We tried to understand the evolution of Topi by analyzing the 

same features that we had previously studied in the Herves element, giving us an 

opportunity to compare and contrast the behavior and evolution of these two elements 

in An.gambiae. 
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 Even though studies on two elements may not reflect the evolution of all the 

Class II transposable elements in An.gambiae, results from them would contribute to 

the development of a model to predict the outcomes of a Class II transposable 

element invasion in this species. One of the concerns for using Class II transposable 

elements as genetic drive agents is loss of the refractory transgenes before their 

fixation in natural populations due to accumulation of deletions in the transposable 

elements carrying them. This concern is largely due to the observation that P-

elements in Drosophila melanogaster rapidly evolved forms of the element that 

contain internal deletions (O'HARE et al. 1992). If the features observed in Herves 

such as maintenance of structural integrity (few deleted forms) and activity for an 

extended period of time, are general features of Class II transposable element 

evolution in An.gambiae, then these elements may be well - suited to spread 

refractory genes in this species to control malaria. 

MATERIAL AND METHODS 

  Sample:  Anopheles gambiae s.s. from five populations were used in this 

study with a sample size of 16 individuals each from Kisumu, Malindi and Zenet,15 

from Furvela and 10 individuals from Bakin Kogi populations (Table 4 -1).  Samples 

from Malindi, Bakin Kogi, Zenet and Furvela have been previously described 

(SUBRAMANIAN et al. 2007).  Malindi is located in eastern Kenya and was sampled in 

1996 (LEHMANN et al. 2003). Bakin Kogi is in north-central Nigeria and samples 

were collected in 1999 (LEHMANN et al. 2003). Zenet is a village in northeastern 

region of Tanzania and was sampled in and around the village in 2004 (MEERAUS et 

al. 2005). Samples from southern Mozambique (Furvela) were collected in 2003 and 
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were earlier described (O'BROCHTA et al. 2006). Samples from Kisumu were 

collected in 2005 from two villages Iguhu and Kombewa in Western Kenya.  

  DNA Isolation and Whole genome amplification:  Genomic DNA was 

isolated from individual mosquitoes as described (O'BROCHTA et al. 2006) and 

resuspended in 100 μl of distilled water and stored at -80ºC. One hundredth of the 

genomic DNA from one mosquito (1 μl) was used in the whole genome amplification 

using GenomiPhi V2 DNA Amplification Kit (GE Healthcare, Piscataway, NJ) 

following the manufacturer’s recommendations. Amplified genomic DNA was 

resuspended in 20 μl of distilled water and stored at -80ºC. 

  Topi transposable element display:  The procedure used for transposable 

element display has previously been described (GUIMOND et al 2003, O’BROCHTA et 

al 2006) and was modified for the analysis of Topi transposable element as described 

below. Transposable element display was performed in triplicate using one eighth 

(2.5 μl) of the DNA obtained after the whole genome amplification of 1/100th of the 

genomic DNA obtained from one mosquito (see below) for each replicate. Genomic 

DNA was digested for 4 hours in a volume of 20 μl at 37oC with 2 units of the 

restriction endonuclease DpnII using conditions recommended by the manufacturer 

(New England Biolabs).  DpnII digestion products were ligated to 30 picomoles of 

adapters by adding 5 μl of 1X restriction enzyme buffer containing 5 mM ATP, 50 

mM DTT (dithiothreitol), 10 μg BSA (bovine serum albumin), 4 units of DpnII, 1 

Weiss unit of T4 DNA ligase and incubated at 37oC overnight.  To prepare the 

adapters, equimolar amounts of oligonucleotides MspIa (5' GAC GAT GAG TCC 

TGA G 3’) and DpnIIb (5’ GAT CCT CAG GAC TCA TC 3’) were heated to 100oC 
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for 10 minutes and then allowed to very slowly cool to room temperature. The 

conditions used for the digestion/ligation reactions and also the design of the adapters 

allow the creation of only monomeric DpnII-cut genomic DNA fragments with 

terminal adapters. 

The next step was a polymerase chain reaction (“preselective PCR”) with five 

microliters of the restriction/ligation reaction as the template in a 25 μl reaction 

volume containing 1X PCR Buffer II (Applied Biosystems), 0.2 mM dNTPs (an 

equimolar mixture of dATP, dTTP, dCTP, dGTP), 2.5 mM MgCl2, 1 unit 

AmpliTaq® DNA polymerase (Applied Biosystems), and 24 pmoles of primer MspIa 

and primer TETopiR1 (5' GTT AGA ATG TGT TTT CG C 3’).  The DNA 

polymerase was added as a complex with TaqStart™ Antibody (ClonTech) as 

described by the manufacturer for the purpose of “hot-starting” the reaction.  The 

reaction conditions were 95oC/3 mins followed by 25 cycles of 95oC/15 sec, 54oC/30 

sec, 72oC/1.0 min and a final cycle of 72oC/5 min.  A second PCR was performed 

(“selective PCR”) using 5 μl of the 20 times diluted preselective PCR products as a 

template in a 20 μl reaction containing 1X PCR Buffer II, 0.2 mM dNTPs, 2.5 mM 

MgCl2, 1 unit AmpliTaq® DNA polymerase (bound to TaqStart™ Antibody as 

above), 9 pmoles each of primers MspIa and Cy5™-labeled TETopiR2 (5’ TAA ACA 

GTC CTT TTC AGG 3’).  The Cy5™-labeled primers were purified by HPLC prior 

to their use.  Following an initial denaturation step at 95ºC for 3 minutes, 

“touchdown” PCR conditions were used in which during the first 5 cycles the 

annealing temperature was decreased 1oC after each cycle with the first of these 

cycles being 95oC/15 sec, 59oC/30 sec, 72oC/1.0 min.  Following these 5 cycles an 
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additional 25 cycles were performed at 95oC/15 sec, 54oC /30 sec, 72oC /1.0 min with 

a final cycle of 72oC/5 min. TETopiR1 and TETopiR2 are Topi element specific 

primers that anneal to sequences approximately 150 bp and 90 bp from the 3’end of 

the element. 

  Five micro liters of selective PCR products were mixed with 5μl of loading 

buffer (95% deionized formamide, 10mM EDTA) and the mixture heated to 95oC for 

3 minutes, cooled quickly on ice and 6 μl loaded on a 6% polyacrylamide gel (19:1 

acrylamide : bisacrylamide) containing 6.7 M urea in 1X TBE buffer (90 mM Tris-

borate, 2 mM EDTA). ALFExpress™Sizer™50-500 (Amersham/Pharmacia) was 

used as a size standard.  Electrophoresis was performed for 2.5 hours at a constant 

voltage of 70 watts. The gel was then transferred to 3MM filter paper and dried.  The 

dried gel was scanned on a STORM 860 phosphoimager (Molecular Dynamics) to 

visualize the products of the transposable element display. The selective PCR 

products from the three independent replicates of a sample were run on the same gel 

to assist unambiguous calling of bands. A band was called as present or absent if it 

was present in at least 2 of the three replicates. From the three replicates, a single 

scoring matrix was obtained that was used in subsequent analyses. The advantage of 

this procedure is that it increased the accuracy of determining the presence of bands 

and minimized errors in subsequent analyses.   

  Transposable element display data was used to estimate the site-occupancy 

frequency distribution of Topi and by assuming the models of Charlesworth and 

Charlesworth (1983) these data were used to estimate the parameter β. The model 

parameter β measures the forces removing the elements from natural populations 
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(drift, excision and selection). Because the model used in this analysis assumes that 

the copy number is in equilibrium, it also reflects the forces that tend to add elements 

to the population (replicative transposition). Estimation of β and the copy number of 

Herves per diploid genome were performed as described by Wright et al. (2001) who 

considered the dominant nature of transposable element display signals and the 

application of the parameter estimation methods of Charlesworth and Charlesworth 

(1983) to diploid organisms. A one way- ANOVA and Tukey’s HSD test was used to 

compare the average diploid copy number among locations for statistical differences 

between different locations. 

Topi transposase detection and sequencing:  To analyze the structure and 

sequence of Topi elements, Topi transposase open reading frame was amplified using 

a Topi277F (5’-ATG GGT CGC GGA AAG CAC TG-3’) primer that annealed to the 

5’ end of the open reading frame and a Topi1302R primer (5’- GCG GTG TTC CAC 

TGA GCG-3’) that annealed to the DNA flanking the open reading frame. One 

fiftieth of the genomic DNA from one mosquito (2 μl) was used as the template in a 

50μl reaction containing 1X ThermalAce™ (Invitrogen), 0.2 mM dNTPs (an 

equimolar mixture of dATP, dTTP, dCTP, dGTP), 2.5 mM MgCl2, 2 units 

ThermalAce™ DNA polymerase (Invitrogen), and 24 pmoles of primer Topi277F and 

Topi1302R. The following conditions were used for the amplification reactions: 

95oC/3 min followed by 30 cycles of 95oC/30 sec, 55oC/30 sec, 72oC/1min 30 secs 

and a final cycle of 72oC/10 min.   Reaction products were fractionated in a 1% 

agarose gel.  The 1kb amplification products from all samples and the approximately 

600 bp products from 8 samples were eluted from the gel, precipitated, resuspended 
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in 20 µl dH2O and cloned into the pCR®-Blunt II TOPO vector (Invitrogen). One 

clone per individual was sequenced and these sequences were used in subsequent 

analyses. From samples “Kisumu” (12), “Malindi” (8), “Zenet” (10), “Furvela” (11) 

and “Bakin Kogi” (8) a total of 49 sequences were obtained.   

  Sequence Analysis:  Sequence alignments were done using AlignX, a 

ClustalW-base alignment program in VectorNTI Advance 10.0.1 (Invitrogen).  

Nucleotide diversity was estimated from average pair-wise number of differences 

between elements, π (NEI AND LI 1979) and from the number of polymorphic sites, θ 

(WATERSON 1975)  π and θ were estimated using DnaSP 3 (ROZAS AND ROZAS 1995). 

The silent-site diversity estimates were calculated using the Kumar method (NEI AND 

KUMAR 2000) implemented in MEGA 3.1 (KUMAR et al. 2004b). Expected values of 

silent-site diversity were calculated described in Sanchez-Gracia et al (2005) and 

were the product of the haploid copy number and the average synonymous diversity 

(0.0209) from a sample of 35 nuclear genes (MORLAIS et al 2004). The average 

nucleotide-sequence diversity, π , and, the average expected and observed silent-site 

diversity estimates were compared among locations using a one way-ANOVA. Post-

hoc comparisons were made using Tukey’s HSD test, p < 0.05 denoted significant 

difference. An alignment of 14 sequences that did not have any pre-mature stop 

codons were used for estimating the number of synonymous substitutions per 

synonymous site (dS) and of non-synonymous substitutions per non-synonymous site 

(dN) and their ratio, ω= dN/dS using maximum likelihood (ML) methods employed 

by CODEML in PAML 3.13 (YANG 1997).  PAML can be used to examine the data 

using various codon substitution models that make different assumptions about the 
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way selection pressure is distributed within the gene. We examined the data using 

three simple models: a one-ratio model (M0) that assumes one ω for all sites, a 

neutral model (M1) that assumes that there are two classes of sites within the gene; 

those that are conserved (p0) with ω0=0 and those that are neutral (p1=1- p0) with 

ω1=1, and finally, a discrete model (M3) that assumes three classes of sites each 

having a unique value of ω that is estimated from the data (YANG 1997). In each case, 

a likelihood ratio was calculated which was used to compare and determine which 

model best reflected the observed data using a likelihood ratio test (LRT). The LRT 

statistic is twice the log-likelihood difference between two models being compared 

and has a χ2 distribution with degrees of freedom equal to the difference in the 

number of parameters between the two models (YANG et al 2000). 

RESULTS 

Methods validation:  Transposable element display is a DNA finger-printing 

method used to assess the copy number and position of transposable elements in the 

genome (BIEDLER et al. 2003b; GUIMOND et al. 2003; SUBRAMANIAN et al. 2007). We 

adapted the technique for the analysis of Topi transposable elements and estimated 

the copy number and site-occupancy distributions in five different populations of 

An.gambiae s.s in Africa.  Because of the limited amount of genomic DNA available 

for analysis, a whole genome amplification method was employed to produce 

adequate amounts of DNA. Whole genome amplification is a method of uniformly 

producing microgram quantities of genomic DNA from small quantities of genomic 

DNA. Although shown by others to faithfully reproduce genomic DNA 

(GORROCHOTEGUI-ESCALANTE and BLACK 2003), we confirmed the findings by 
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comparing the results of transposable element display obtained using whole genome 

amplified DNA with those that were obtained using original, non-amplified genomic 

DNA. An analysis of 11 samples verified that the amplified genomic DNA 

reproduced the patterns of Topi insertion and copy number obtained from the original 

genomic DNA sample.  

Transposable element (TE) display, as performed in this study does not result 

in the efficient amplification of fragments longer than 1kb because the extension time 

in the PCR reactions was only 1 minute.  Because the An.gambiae genome is 

composed of 64.8% adenines and thymines and PCR templates for TE display were 

produced by digesting genomic DNA with DpnII (GATC), we expected only 7% of 

the resulting fragments to be 1 kb or more in length. We estimated this by calculating 

the percentage of fragments greater than 90 bp that were longer than 1 kb. Ninety 

base pairs is the invariable amount of Topi DNA contained in each PCR product. We 

assumed fragment sizes following DpnII digestion followed an exponential 

distribution (λe-λx) with λ = (0.176) (0.324) (0.324) (0.176). Therefore, 0.746 of all 

fragments were greater than 90 bp and 0.052 of all fragments were greater than 1 kb.  

Thus, 7 % (0.052/ 0.746 * 100) of all fragments were greater than 1 kb. The 

specificity of the Topi TE display was confirmed by eluting and sequencing 10 

randomly selected bands from the gel. All the sequenced bands contained Topi 

elements as expected (Data not shown).  

 Copy number / Site Occupancy: In this study all individuals analyzed 

(n=74) had at least 2 copies of the Topi element and one sample from Malindi had 37 

copies of the element. Mean element copy numbers in the five populations analyzed 
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TABLE 4- 1:  Site occupancy 

Location N* κ∆ dcn† β††

Kisumu (k) 16 72 31.3zfb 0.6 

Malindi (m) 16 78 33.8zfb 0.7 

Zenet (z) 16 56 18.2kmf 0.5 

Furvela (f) 15 59 10.22kmzb 0.8 

Bakin Kogi (b) 10 63 18.4kmf 1.5 

* Individuals analyzed by transposable element display 

∆  Number of unique chromosomal sites containing Topi 

† Diploid copy number of Topi  (WRIGHT et al. 2001) 

†† 4Ne(ν+s) from Charlesworth and Charlesworth (1983) 

k m z f b the copy number was significantly different from the 

indicated location at a significance level of 0.05 
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FIGURE 4 - 1: Transposable element display of the right end of Topi elements.  
A sample of transposable element display results obtained from five different 
locations is represented. Molecular weight markers (M) in base pairs are shown on 
the left side. 
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 ranged from 10.2 – 33.8 per diploid genome. There was a statistically significant 
 
difference in copy numbers between all the locations (p < 0.05, Tukey's HSD test) 
 
except between Kisumu and Malindi, and Zenet and Bakin-Kogi (Table 4-1) (Figure 
 
 4-1). The copy number in Furvela was significantly lower than all the other locations 

analyzed. There were 19 and 17 elements with high site-occupancy frequencies that 

were present in more than 10 individuals in Malindi and Kisumu respectively. 

Furvela had the least number of high frequency occupied sites with only one that was 

present in 9 of 15 individuals. 

 

 

            We used the model of Charlesworth and Charlesworth (1983) to analyze the 

observed site-occupancy distributions of the Topi element in An.gambiae. The model 

assumes the elements are at equilibrium and that there are infinite insertion-sites 

within the genome. The model parameter β reflects the effects of forces other than 

drift that might be playing a role in shaping the observed distribution.  According to 

the models, β values greater than one indicate that the forces of mobility and/or 

selection are responsible for the observed frequency distribution. We observed that all 

the locations except Bakin Kogi (β=1.5) showed β values less than one indicating that 

there has been little recent activity of Topi in An.gambiae s.s (Table 4-1). 

 

 

 

           Structure of Topi elements: Autonomous Class II transposable elements 

code for functional transposase and can undergo transposition. Non-autonomous 

elements are usually deleted forms of the element which depend on transposase 

expressed from other elements in the genome. Class II elements like P-elements in 

Drosophila often exist in forms that have large internal deletions (ENGELS 1989), 
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FIGURE 4 - 2: Structure of Topi elements. 
PCR products of a sample of individuals from five different locations used to analyze 
the structure of Topi elements are shown. Molecular weight markers (M) are shown 
on the left side in kilobase pairs. The ~1kb complete Topi transposase open reading 
frame is indicated on the right side. Approximately 0.6 kb deleted form observed in 
all individuals is also indicated on the right side 
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however, hAT elements such as Herves in An.gambiae (SUBRAMANIAN et al. 2007) 

and Hermes in Musca domestica (L. A. Cathcart, E. S. Krafsur, P. W. Atkinson, D.  

A. O’Brochta and R. A. Subramanian, unpublished) are rarely found with deletions. 

We analyzed the structure of Topi elements by amplifying the internal ~ 1kb Topi 

transposase coding region using PCR. We observed that all individuals analyzed (n= 

74) had at least one copy of the 1 kb complete open reading frame and a ~600 bp 

deleted form (Figure 4-2). There were other less prevalent deleted elements of other 

sizes present in some of the individuals analyzed (Figure 4-2).  

 Nucleotide diversity of Topi elements: The 1kb complete Topi transposase 

coding region amplified was cloned and sequenced from 49 individuals to analyze the 

sequence diversity of the Topi elements in five different populations. Only one 

sequence per individual was obtained to give us the opportunity of sampling as many 

different elements as possible. All of the 49 sequences sampled were different from 

each other. The nucleotide sequence polymorphism ranged from π = 0.029 to π = 

0.062 with the average being π = 0.051 (Table 4-2). The π  values were only 

significantly different between Malindi and Furvela, and Zenet and Furvela (p < 0.05, 

Tukey's HSD test). Eight deleted forms of Topi were recovered and analyzed. Two 

sequences each were of Form A (828 bp), Form B (785 bp) and Form E (572 bp); one 

each of Form C (758 bp) and Form D (732 bp) (Figure 4-3). Deleted forms had ~ 200 

bp to ~400 bp deletions in different regions of the Topi open reading frame (Figure 4-

3). Form E had ~600 bp deletion when compared to the “canonical Topi ORF”, 

however both the sequences of Form E had an extra 175 bp which was not similar to 

the canonical element (Figure 4-3). 
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TABLE 4- 2: Nucleotide sequence polymorphism in Topi open reading frame

Location Seqs* Poly† π  Δ θ ¶ 

Kisumu (k) 12 168 0.0452 (0.009) 0.056 (0.022) 

Malindi (m) 8 149 0.062 (0.0077)f 0.060 (0.026) 

Zenet (z) 10 145 0.0521 (0.0099)f 0.053 (0.022) 

Furvela (f) 11 130 0.029 (0.0106)mz 0.049 (0.019) 

Bakin-Kogi (b) 8 122 0.047 (0.013) 0.067 (0.029) 

Combined 49 227 0.051 (0.0032) 0.086 (0.024) 

*  Number of sequences analyzed 

† Number of polymorphic positions 

 Δ Pairwise nucleotide diversity (NEI and LI 1979); standard deviation in parenthesis 

¶ Nucleotide diversity based on segregating sites (WATTERSON 1975); standard deviation in parenthesis 

f m z π  was significantly different from the indicated location at a significance level of 0.05 
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FIGURE 4 - 3: Structure of deleted forms of Topi elements.  
The position of the deletion corresponding to the full length Topi element is shown 
for each form. The position of deletion and the additional 175 bp of sequence that is 
not similar to the full length element is also shown for Form E. The position of the 
primers, topi277F and topi1302R, that were used to amplify these forms are also 
shown. 
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Comparing the levels of silent-site diversity of transposable elements with that 

of single-copy host genes can be useful when looking for evidence of a lateral transfer  

event sometime in the history of the element and to understand when such an event 

might have occurred (SANCHEZ-GRACIA et al. 2005). Here, we compared the silent-

site diversity (πs) of Topi elements with the average silent diversity of 35 nuclear 

genes in An.gambiae (MORLAIS et al. 2004). The observed silent-site diversity of Topi 

elements was significantly lower than the expected average silent-site diversity seen 

in 35 nuclear genes (MORLAIS et al. 2004). The observed πs was 3 to 5-fold lower 

than the expected πs in all locations analyzed (Table 4-3). Comparisons between 

populations showed that the observed πs in Furvela was significantly lower than the 

πs observed in Kisumu, Malindi and Zenet (p < 0.05, Tukey's HSD test); and while 

the expected πs in Bakin-Kogi was significantly lower than that in Malindi (p < 0.05, 

Tukey's HSD test). The expected silent-site diversity in Furvela was significantly 

lower than πs at all other locations and the expected πs in Bakin-Kogi was lower than 

all the other locations except Zenet (p < 0.05, Tukey's HSD test). The expected silent-

site diversity in Kisumu and Malindi, and Zenet and Bakin-Kogi were not 

significantly different from each other. 

 Natural Selection: We tested for evidence of selective constraints within the 

Topi transposase coding region of the 14 sequences that had no pre-mature stop 

codons by estimating ω = dN/dS using ML (YANG 1997; YANG et al. 2000). The ω 

values ranged from 0.45 to 0.51 under all models (M0, M1 and M3) showing 

evidence of purifying selection. Even though the discrete model (M3) fit the data 

better than the neutral model (M1), the LRT statistic, 2Δl (2Δl = 2(-2371.47 - (-
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2366.7)), for this comparison was 9.54, which was less than the critical value of 

χ2
[0.001, 2] = 13.816.  

DISCUSSION 

Class II transposable elements are being considered for use as genetic drive 

agents to spread transmission-blocking genes through mosquito populations to control 

vector-borne diseases such as malaria. Understanding the behavior of transposable 

elements in An.gambiae, a target species for such a control strategy will be helpful in 

predicting the outcomes of such an approach. We recently described the dynamics of 

an active Class II transposable element, Herves in An.gambiae populations in Africa 

(SUBRAMANIAN et al. 2007). We found that Herves was able to maintain its structural 

integrity for a longer time than what has been observed with other elements, such as 

the P-element in Drosophila (O'HARE et al. 1992). We found higher conservation of 

the Herves transposase coding region and also evidence for purifying selection in this 

region (SUBRAMANIAN et al. 2007). Here, we studied the dynamics of Topi, a 

Tc1/mariner family transposable element in 5 different populations of An.gambiae s.s 

in Africa to understand the evolution and behavior of the transposon in An.gambiae 

s.s. We have used the results from this study together with our earlier study of the 

Herves element to gain a better understanding of the general features of the evolution 

of Class II transposable elements in An.gambiae. 

 We examined the dynamics of the Topi element by measuring the site-occupancy 

frequency, nucleotide sequence diversity and also by analyzing the structure of the 

element. The element copy number was higher (10.2- 33.8) and the site-occupancy 

levels lower (β = 0.5- 1.5) than those reported for the Herves element. Assuming that  
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TABLE 4- 3: Silent-site diversity of Topi elements from different locations 

 
πs 

†

Locations 
Haploid 

copy 
number Observed Expected Δ Observed/Expected*

Kisumu (k) 15.65 0.063 (0.041)f 0.33 (0.064)zfb 0.193 

Malindi (m) 16.9 0.081 (0.044)fb 0.353 (0.075)zfb 0.227 

Zenet (z) 9.1 0.063 (0.042)f 0.190 (0.082)f 0.332 

Furvela (f) 5.11 0.022 (0.023)kmz 0.107 (0.066)kmzb 0.220 

Bakin Kogi (b) 9.2 0.044 (0.043)m 0.192 (0.087)kmf 0.229 

All 11.13 # 0.051 0.238 0.219 

† πs represents the average pairwise nucleotide diversity at synonymous sites 

Δ see Materials and Methods 

# Average haploid copy number from all locations 

 k m z f b   πs was significantly different from the indicated location at a significance level of p < 0.05 
     
 * the observed πs was significantly lower than the expected πs at all locations at a significance level of             

p < 0.05 
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 the elements are at copy number equilibrium, β values greater than 1 have been 

interpreted as evidence for recent activity (CHARLESWORTH and CHARLESWORTH 

1983; CHARLESWORTH and LANGLEY 1989; LANGLEY et al. 1983). β values for Topi 

were less than 1 in most locations except in Bakin-Kogi which was only slightly 

higher (β =1.5) indicating no recent activity of the element in this species. This is 

consistent with a previous report on Topi in which, the authors found no variation in 

insertion sites based on in situ hybridization on 4 individual mosquito samples from 

the An.gambiae PEST strain (GROSSMAN et al. 1999). They found Topi in all 

members of the An.gambiae species complex suggesting that this element was present 

even before the diversification of this species (GROSSMAN et al. 1999). However, the 

possibility of transfer of the element between species can not be ruled out because 

there was introgression reported between An.gambiae s.s and An.arabiensis 

(BESANSKY et al. 1997). Consistent with a hypothesis of an extended residence time 

is the higher levels of nucleotide sequence polymorphism (average π = 0.051) 

compared to the Herves elements (average π = 0.0046). Assuming similar mutation 

rates for transposable elements and the rest of the genome, an element is expected to 

accumulate more mutations the longer it is in the species and hence nucleotide 

sequence diversity can be used to understand the age of an element in a particular 

species. The Topi elements that we analyzed were highly polymorphic with an 

average π = 0.051, which is ten times higher than observed for Herves (π = 0.0046). 

Assuming that transposable elements have similar mutation rates as nuclear 

genes, the silent-site diversity can also be used to assess if there was a lateral transfer 

event and also when it may have occurred. In other words, it would be helpful to 
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predict the age of an element in the species. The longer an element has been in the 

species, the silent-site diversity would be closer to a nuclear gene in the species. The 

observed silent-site diversity among Topi elements revealed less diversity than 

expected indicating that Topi may have entered the An.gambiae via horizontal gene 

transfer. However, the observed diversity was only 3 to 5- fold lower than expected as 

compared to Herves where there was a higher fold difference (3 to 125-fold) 

indicating again that Topi entered the An.gambiae genome earlier than Herves. Even 

though the element has been in the species longer than Herves it seems to retain at 

least one copy of the complete element which if active will provide a transposase 

source for the other non-autonomous Topi elements in the genome. The presence of a 

~ 600 bp deleted form that encodes for a truncated protein of 179 amino acids (in 

every individual) might suggest some regulatory potential for this form of Topi 

transposase as seen in the case of P-elements and hobo elements (ENGELS et al. 1990; 

PERIQUET et al. 1990; PERIQUET et al. 1994). 

During the invasive phase that follows the horizontal transfer of a 

transposable element into a new species, natural selection favors autonomous 

elements and this can be observed as a skewed ratio of synonymous and non-

synonymous substitution rates (ROBERTSON and LAMPE 1995). In this study even 

though we saw evidence of purifying selection in the Topi transposase region, the 

neutral model of evolution was not rejected when compared to a discrete model. Only 

14 of the total sample of 49 sequences that did not have any pre-mature stop codons 

were used in the analysis biasing towards the elements that are more conserved which 

might have led to the dN/dS ratios < 1. However, not being able to reject the neutral 
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model suggests that these might be molecular signals from the initial phase of 

selection that seem to persist in the genome for a long time.  

In summary, this study shows that the Topi transposable element has been in 

the An.gambiae genome much longer than the Herves element. The insertion site-

frequency distribution data indicates that the element is probably no longer active. 

The higher copy numbers observed in all locations does show that the activity of the 

element must have been much higher than the observed activity of Herves. It is also 

possible that the host regulation of these two elements was different. We found 14 

different forms of the Topi transposase that were capable of producing the full-length 

protein. We saw no evidence of recent activity of Topi elements in these populations 

based on the insertion-site frequency distribution data, suggesting that these 14 forms 

are either not functional or are under the control of host regulation. 

 One of the striking observations from this study, as well as our earlier study 

of the Herves element are that Class II transposable elements in An.gambiae do not 

seem to evolve deleted forms as rapidly as observed with P-elements in 

D.melanogaster (O'HARE et al. 1992). They also seem to have at least one copy of the 

complete element for an extended period of time. This could be important for using 

Class II transposable elements as genetic drive agents as this fixed copy of the 

undeleted element would ensure the fixation of a copy of a refractory gene in the 

population. Because only one copy of a refractory gene is required to impair the 

development of the malaria parasite, Plasmodium, in the mosquito it could thereby 

result in reducing malaria transmission for an extended length of time.  
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Chapter 5: General Discussion  

 Global health burden due to vector-borne diseases is enormous; they 

collectively account for 1.5 million human deaths every year (HILL et al. 2005). 

Malaria, the most significant of the vector-borne diseases contributes to at least one 

million human deaths every year. Malaria is not just a disease that needs a cure, but is 

a complicated problem awaiting a solution. To combat this disease, health agencies 

have tried to minimize human contact with the vectors by getting rid of the 

mosquitoes using insecticides as well as by using pesticide-treated bed nets. Lack of 

adequate financial and political support for these vector-control programs in endemic 

countries hampers these efforts, and the insects are increasingly resistant to the 

insecticides that have been used discontinuously over a number of decades (GUBLER 

1998). The parasites have also evolved, and are resistant to the widely used 

inexpensive anti-malarial drugs, such as chloroquine. The complex biology of the 

parasite Plasmodium has made development of an effective vaccine difficult to 

accomplish (GUBLER 1998).    

 To fight these harsh realities, a novel approach of genetically engineering 

transmission-incompetent mosquitoes and using them to replace the natural 

populations of mosquitoes is being explored. The success in generating transgenic 

mosquitoes with reduced vector-competence has raised hopes for using this strategy. 

In the last 10 years, tremendous progress has been achieved in identifying a number 

of effector genes and strategies to impair the development of the parasite in the 

mosquito (NIRMALA and JAMES 2003). We have successfully created at least three 

strains of Anopheles mosquitoes with impaired ability to transmit the malarial 
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parasite, Plasmodium (ITO et al. 2002; KIM et al. 2004; MOREIRA et al. 2002). 

Modern technology together with our understanding of the biology of the parasite as 

well as the mosquito has helped us to precisely express effector genes in the mosquito 

inhibiting the development of the parasites up to 87% (using Bee venom 

phospholipase A2). Realizing how quickly the parasites might evolve to overcome the 

barrier imposed by the effector molecules, there is a continuing search for more 

effectors and better targets to completely inhibit the parasite development. 

 Even after the identification of the effector gene, the success of this project 

depends on our ability to drive this transgene through natural populations of 

Anopheles mosquitoes. Class II transposable elements are a promising mechanism to 

drive transgenes because of their ability to move and rapidly increase in copy number 

under certain conditions (KIDWELL and RIBEIRO 1992). Compelling evidence from P-

elements in D.melanogaster suggests that transposable elements are capable of 

efficiently spreading through large discontinuous populations in nature. P-elements 

have spread through the world’s populations of D.melanogaster in the last 60 years 

after their introduction from a closely-related species, Drosophila willistoni 

(ANXOLABEHERE et al. 1988). However, we have limited understanding of the 

conditions in which such a rapid increase in frequency occurred. Our understanding 

of these conditions in An.gambiae, the target species for such a genetic control, will 

enable us to use Class II transposable elements as genetic drive agents in this species. 

 The projects described in this thesis have attempted to help better understand 

the behavior of Class II transposable elements in An.gambiae. We studied the 

behavior and evolution of two Class II transposable elements, Herves and Topi, in 
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natural populations of An.gambiae in Africa. We have used insertion-site frequency 

distributions to analyze the activity and copy number of these elements. We have 

used various analyses on the nucleotide sequences as well as the structure of these 

elements to understand their evolution in the natural populations of An.gambiae. We 

observed that Topi has been in An.gambiae genome longer than the Herves 

transposable element based on higher sequence diversity in Topi (average π = 0.051) 

compared to Herves elements (average π = 0.0046). The copy number of the Topi 

elements (10.2-33.8) was much higher than Herves (2.9-4.4) in all analyzed 

populations. There was no evidence of recent activity of Topi in An.gambiae as 

opposed to Herves, where a number of lines of evidence indicated activity. We saw 

evidence for Herves activity from the insertion-site frequency distribution in all 

locations studied, from DNA mobility assays in Drosophila as well as from the 

identification of functional forms of Herves transposase in natural populations of 

An.gambiae. However, we observed Topi transposase forms that are capable of 

producing full-length transposase; it is possible that these forms are functional and 

their inactivity is a result of the host repression system. The striking feature that is 

common to both elements is the presence of complete forms despite their long history 

in An.gambiae. Also, the activity of Herves together with the presence of Topi 

transposase forms that could be active suggests that these elements have been active 

for an extended period of time. Having a better understanding of the mutation rate in 

An.gambiae would have been helpful in deducing the time that these elements have 

stayed active. The structural integrity of these elements is an argument in favor of 

using Class II transposable elements as genetic drive agents. One of the concerns with 
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use of these elements as genetic drive agents is that they would lose the transgene 

long before they are fixed in natural populations of An.gambiae. This concern has 

arisen largely from the observation of rapid accumulation of deleted forms of P-

elements in D.melanogaster (CARARETO et al. 1997; O'HARE et al. 1992). However, 

the results from this study are in contrast to what has been seen in P-elements; we 

observed that Herves and Topi had complete undeleted forms of the elements even 

though they have much longer histories in An.gambiae than P-elements in 

D.melanogaster. A single undeleted copy of the transposable element that we 

observed to be fixed in our studies, if it contained a copy of the refractory gene that is 

effective in inhibiting the development of Plasmodium would be enough to disrupt 

the transmission of malaria in natural populations of An.gambiae. These results are 

encouraging for the use of Class II transposable elements as genetic drive agents, at 

least in An.gambiae. 

Future directions 

 Even though the strategy of genetically modified mosquitoes and population 

modification is promising, several challenges have to be met before it can be 

implemented to control vector-borne diseases. Transgenic mosquitoes have often 

been found to be less fit compared to mosquitoes not carrying the transgene. 

Genetically altered mosquitoes carrying the anti-parasite transgene would not have 

much impact in disrupting the disease-transmission in the wild, unless they are fit 

enough to compete with and eventually replace the natural populations of mosquitoes. 

Three of the five studies addressing the fitness of transgenic mosquitoes show that 

there was a reduction in fitness in mosquitoes carrying the transgenes (CATTERUCCIA 
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et al. 2003; IRVIN et al. 2004; MOREIRA et al. 2004); however, transgenic mosquitoes 

with one transgene, SM1, did not have any significant reduction in fitness compared 

to the non-transgenic mosquitoes (MOREIRA et al. 2004). Transgenic mosquitoes with 

SM1 (an anti-parasite gene shown to impair the development of the malaria parasite, 

Plasmodium) were also found to have a fitness advantage over the non-transgenic 

mosquitoes when both were fed with Plasmodium-infected blood (MARRELLI et al. 

2007). Fitness of these genetically modified mosquitoes would also be reduced by the 

movement of the transposable elements used as genetic drive agents. This behavior, 

however, can not be avoided and is not as much of a concern as we have seen 

transposable elements (P-elements) are capable of spreading through populations in 

spite of the fitness cost associated with their mobility (ANXOLABEHERE et al. 1988). 

Efforts are, however, necessary to identify effector genes such as SM1 that cause less 

reduction in the fitness of the mosquitoes. Effector genes such as cecA (Cecropin A) 

that are part of the mosquito immune system may be less likely to impose a burden on 

the mosquito fitness. Exploring more immune effector genes may be helpful in 

identifying molecules that are effective in inhibiting the development of the parasite 

and are less disruptive to the mosquitoes. 

 Class II transposable elements have been shown to be capable of spreading in 

natural populations (P-elements) but their effectiveness as genetic drive agents is yet 

to be demonstrated in mosquitoes. A transposable element is yet to be identified that 

remobilizes at a sufficient rate in mosquitoes so that it can serve as a genetic drive 

agent. There have been two reports so far, both with Mos1 elements in Aedes aegypti, 

that show the low germ-line remobilization rate of Mos1 element in this mosquito 
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species. Wilson et al (2003) observed one new transposition event in 14,000 embryos 

that was screened in the next generation and Adelman et al (2007) observed two new 

insertions in three lines carrying a copy of Mos1 elements. There have been no such 

studies in An.gambiae. Research towards identifying transposable elements that are 

capable of remobilizing in mosquitoes at a rate high enough to serve as genetic drive 

agents is absolutely critical. We have started addressing this deficiency, by 

understanding the remobilization potential of at least four Class II transposable 

elements, piggyBac, Mos1, Hermes and Minos in An.gambiae. Our results will show 

if any of these elements could serve as a genetic drive agent in this species. Similar 

efforts to identify transposable elements with higher remobilization rates, as well as 

developing methods to manipulate the existing transposable elements to increase their 

remobilization rates, are necessary so that they can serve as genetic drive agents in 

mosquitoes.   

 The population biology of Anopheles mosquitoes and malaria transmission in 

Africa is complex (FONTENILLE and SIMARD 2004). The mosquito-control programs 

employed are complicated by the presence of multiple vectors in the same area. 

Depending on the region, malaria can be transmitted by as many as five different 

species of Anopheles, Anopheles gambiae, Anopheles arabiensis, Anopheles funestus, 

Anopheles nili and Anopheles moucheti (FONTENILLE and SIMARD 2004). There is 

interspecies variation in the transmission of the disease according to season, 

ecological factors, urbanization, deforestation and agricultural practices (ANTONIO-

NKONDJIO et al. 2002; ANTONIO-NKONDJIO et al. 2006; FONTENILLE and SIMARD 

2004; HAY et al. 2005; MANGA et al. 1995). All of these species belong to different 
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groups of closely related species complexes that are morphologically 

indistinguishable.  An.gambiae is a species complex, consisting of six different 

species, An.gambiae s.s, An.arabiensis, An.merus, An.melas, An.quadrianulatus and 

An. bwambae. An.gambiae s.s, the most efficient vector of the complex, has two 

molecular forms, M and S, which show differences in ecological tolerance and 

behavior. The M form has been observed to have a unique ability to breed in dry 

seasons. Even though there were no constraints in the mating of these two forms in 

the lab, and they were able to produce viable and fertile hybrids, a significant 

restriction in gene flow between these two forms has been observed in nature (DELLA 

TORRE et al. 2001; KRZYWINSKI and BESANSKY 2003; TAYLOR et al. 2001; TRIPET et 

al. 2001). Studies are in progress to understand the genetic basis for the reproductive 

isolation of these two forms in nature, which might shed light into the speciation 

process in Anopheles mosquitoes, as well as provide information for future malaria-

control programs. Much still needs to be understood about the complexity and 

heterogeneity of malaria transmission, which is critical for effective malaria-control.  

 Besides the technical challenges, ethical and social challenges need to be 

addressed from the beginning. We can expect general public discomfort and anxiety 

when people realize the goal of this project is to make genetically modified 

mosquitoes that would outcompete the natural mosquitoes. In the past, there have 

been multiple occasions when novel mosquito-control programs of health 

agencies/governments have been falsely accused as being biological warfare. In the 

1970’s a WHO/Indian Council for Medical Research project of vector-control using 

the Sterile Insect Technique (SIT) had to be stopped after six years when a journalist 
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claimed that the intention of the project was not to research new methods of vector 

control but to engage in biological warfare (MACER 2005). Fears of biological 

warfare have increased after the anthrax scare in United States in 2001. Education 

before any intervention is critical to alleviate fears of using genetically modified 

mosquitoes. Scientists and health agencies need to educate the general public about 

the true biological properties of these genetically modified mosquitoes as well as the 

benefits of such an approach to human health. Careful evaluation of the risks involved 

- by gathering scientific data from field trials, accurately sharing the knowledge with 

the general public, and involving everyone in discussions - would help people to 

understand the potential of this approach and put to rest some of the fears that are a 

result of misinformation or lack of knowledge. Hopefully, people will realize that the 

goal of research like this is not to make dangerous mosquitoes but to improve human 

health by eliminating disease transmission.  

 The uncertainty, challenges and efforts being put into developing these new 

approaches has led some researchers to oppose these high-tech efforts. There are 

concerns that these novel high-tech efforts to tackle the disease take away resources 

from the already dwindling resources in the disease-control programs that use proven 

methods such as bed nets, insecticides and drugs. This is true and has to be avoided. 

The high-tech efforts should not grow at the expense of existing control programs. 

Closing remarks 

 A better understanding of the behavior and evolution of Class II transposable 

elements in An.gambiae lead us to believe that Class II transposable elements still 

hold promise as a gene drive mechanism to spread refractory genes through natural 
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populations of Anopheles gambiae. Even though technical and social hurdles remain, 

undoubtedly genetically modified mosquitoes and population modification strategies 

will soon serve as a complementary strategy in our quest against malaria. 
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Supplementary Figure 1- 1: Neighbor Joining (NJ) tree of Herves forms 
Neighbor Joining (NJ) tree of the thirty three different forms of Herves based on the 
first 528 bp of the 5' end of the transposase open reading frame. 
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