

ABSTRACT

Title of Dissertation: ABSORPTIVE CAPACITY AND OPEN SOURCE SOFTWARE

PROJECT PERFORMANCE

 Sherae Lee Daniel, Doctor of Philosophy 2007

Dissertation directed by: Ritu Agarwal

 Decision and Information Technologies

 Katherine Stewart

 Decision and Information Technologies

The open source phenomenon is an exciting movement that is transforming traditional

forms of software development. Some open source software (OSS) projects, such as Linux and

Apache, are performing extremely well and rapidly replacing proprietary software in major

corporations and governments. In addition to these highly publicized examples, there are legions

of OSS projects that have not experienced a similar uptake.

The purpose of this dissertation is to understand how and why some OSS projects are

able to perform better than others. It explores antecedents of OSS project performance from a

knowledge-focused perspective because software development is a knowledge-intensive activity.

In particular, it examines the development and effects of absorptive capacity for an OSS project.

Absorptive capacity captures the degree to which an organization is able to acquire and

assimilate knowledge. In describing how OSS absorptive capacity is developed, this dissertation

identifies characteristics and behaviors of project participants that indicate an OSS project’s

absorptive capacity. I underscore the importance of the characteristics and behaviors of two

different sets of project participants in an OSS project: those in the Internet-based user

community and those in the development group. To the extent that absorptive capacity

influences OSS project performance, I argue that these characteristics and behaviors are critical

for OSS project performance. Archival data about OSS projects that use the SourceForge

platform are used to empirically test the model developed.

This dissertation makes several contributions to theory and practice. The research

informs project managers regarding the participants to target and behaviors to encourage that

will lead to superior performance for their OSS project. In exploring the effect of absorptive

capacity in an OSS project, this dissertation adds to the absorptive capacity literature by

examining the interaction of two dimensions of this construct: knowledge acquisition and

knowledge transfer. Finally, this dissertation extends the OSS literature by specifically exploring

the effect of the Internet-based user community on OSS project performance.

ABSORPTIVE CAPACITY AND OPEN SOURCE SOFTWARE PROJECT

PERFORMANCE

by

Sherae L. Daniel

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2007

Advisory Committee:

Professor Ritu Agarwal, Co-Chair

Professor Katherine Stewart, Co-Chair

Professor Anand Gopal

Professor Gordon Gao

Professor Jennifer Preece

©Copyright by

Sherae L. Daniel

2007

 ii

ACKNOWLEDGEMENTS

I am grateful to many people. First I would like to thank my advisers, Dr. Ritu Agarwal

and Dr. Katherine Stewart. They are both strong and incredibly intelligent women. They

posses many characteristics that I would feel privileged to acquire and it has been my

honor to be their student and friend.

Second, I would like to thank those who provided me with a strong spiritual and

emotional foundation. First are my parents who made phenomenal choices and sacrifices

that make all I do possible. Thanks also to them for telling me I could achieve anything I

wanted because I was as intelligent as anyone else, and if it didn’t seem that way the

others were cheating! Similarly, my grandparents have consistently gone beyond the call

of duty to support me in my pursuits.

More broadly I thank my friends, mentors, extended and church families. Whether by

listening when I called to rant about my newest hurdle, by reminding me of my beauty

and intelligence or by offering a hug I appreciate each of them. I especially want to

acknowledge the members of Mount Rise Baptist Church, Second Baptist Church, and

especially my new friends on the Reid Temple Usher Board.

The third set of people I’d like to thank is those who led by example and achieved

greatness or over came difficult situations through hard work and determination. In

particular I want to acknowledge those who share my race or sex; it is because of them

that I believed I could do it.

Finally, I’d like to thank those who offered help as I developed my dissertation research.

For writing expertise I would like to thank Omari Daniel, Elizabeth Murphy and Susan

Grodsky. For statistical expertise I would like to thank Aref Dajani and Eric Slud. For

technical support I’d like to thank Chang-Han Jong. For constructive feedback I would

like to thank my dissertation committee. A better team is hard to find!

 iii

TABLE OF CONTENTS

Acknowledgements... ii

Table of Contents... iii

List of Tables .. v

List of Figures .. vi

Chapter 1: Introduction ... 1

1.1 OSS Development... 1

1.2 Delineation of Research Phenomenon: The OSS Project 3

1.3 OSS Project Performance ... 3

1.4 Research Goals And Contributions... 5

Chapter 2: Conceptual Model - Absorptive Capacity and OSS projects 8

2.1 A Knowledge Focused Perspective .. 8

2.2 Absorptive Capacity: Key OSS Capabilities .. 9

2.3 The Development Of Absorptive Capacity For An OSS Project 9

2.3.1 Knowledge Acquisition And Preexisting Related Knowledge................. 10

2.3.1.1 The Role Of The Development Group: How-To Knowledge 12

2.3.1.2 The Role Of The IBUC: Awareness Knowledge................................. 14

2.3.2 Knowledge Transfer And Overlapping Knowledge 18

2.4 Major Constructs And Relationships .. 19

2.5 Research Models Overview .. 20

2.6 Summary... 23

Chapter 3: How does Absorptive Capacity Lead to an OSS Project’s Survivial?............ 24

3.1 Overview... 24

3.2 Platform Tenure Diversity .. 27

3.2.1 IBUC Platform Tenure Diversity.. 29

3.2.2 Development Group Platform Tenure Diversity....................................... 32

3.3 IBUC Dynamism .. 34

3.4 Summary... 35

Chapter 4: How does Absorptive Capacity Lead to OSS Development Group Activity

Intensity?... 36

4.1 Overview... 36

4.1.1 Knowledge Acquisition And Development Group Activity..................... 37

4.1.2 Knowledge Transfer And Development Group Activity Intensity........... 38

4.2 Platform Tenure Diversity .. 38

4.2.1 IBUC Platform Tenure Diversity.. 39

4.2.2 Development Group Platform Tenure Diversity....................................... 39

4.3 Relationship Density... 43

4.3.1 IBUC Relationship Density .. 43

4.3.2 Development Group Relationship Density ... 44

4.4 IBUC Dynamism .. 46

4.5 Application Type .. 46

4.6. IBUC-Development Group Communication .. 48

4.7 Summary... 50

Chapter 5: Methodology ... 51

5.1 Methodology Overview .. 51

 iv

5.1.1 Sample Selection And Data Collection... 52

5.1.2 Observation Periods .. 54

5.1.3 Dependent Variable .. 55

5.1.4 Independent And Control Variables ... 58

5.1.5 Sensitivity Analysis ... 61

5.2 Tasks Closed Results .. 61

5.2.1 Survival Analysis - Tasks Closed ... 64

5.2.2 Development Group Activity Intensity – The Percentage Of Tasks Closed

 65

5.2.3 Summary... 69

5.3 Change In Lines Of Code Results... 69

5.3.1 Survival Analysis – Change In Lines Of Code... 69

5.3.2 Development Group Activity Intensity – Change In Lines Of Code........ 71

5.3.3 Summary... 73

Chapter 6: Discussion ... 75

6.1 Discussion Of Empirical Results .. 75

6.1.1 Interpretation Of The Survival Model .. 76

6.1.2 Interpretation Of The Intensity Model .. 78

6.1.3 Summary Of Discussion ... 84

6.2 Limitations .. 85

6.3 Implications For Theory And Practice.. 86

6.4 Future Research Directions... 88

References... 140

 v

LIST OF TABLES

Table 1: OSS Development Literature Review .. 90

Table 2: Project Descriptions.. 109

Table 3: Research Variable Descriptive Statistics (N=85) ... 116

Table 4: Research Variables (N=85)... 117

Table 5: Survival –Tasks Closed .. 120

Table 6: Development Group Activity Intensity – Percentage of Tasks Closed 121

Table 7: Research Variable Descriptive Statistics (N=73) ... 122

Table 8: Research Variable Correlations (N=73) ... 123

Table 9: Survival - Change in Lines of Code ... 126

Table 10: Development Group Activity Intensity – Change in Lines of Code 127

Table 11: Summary of Hypotheses... 128

 vi

 LIST OF FIGURES

Figure 1: Conceptual Model ... 130

Figure 2: Survival Research Model .. 131

Figure 3: Development Group Activity Intensity Research Model 132

Figure 4: Observation Periods .. 133

Figure 5: Percentage of Tasks Closed Kaplan-Meier Plot.. 134

Figure 6: Percentage of Tasks Closed IBUC-Development Group Communication -

IBUC Relationship Density Interaction .. 135

Figure 7: Percentage of Tasks Closed IBUC-Development Group Communication -

IBUC Dynamism Interaction .. 135

Figure 8: Percentage of Tasks Closed Application Type - IBUC Platform Tenure

Diversity Interaction ... 136

Figure 9: Percentage of Tasks Closed Application Type - IBUC Relationship Density

Interaction ... 136

Figure 10: Change in Lines of Code Kaplan-Meier Plot .. 137

Figure 11: Change in Lines of Code IBUC-Development Communication - IBUC

Relationship Density... 138

Figure 12: Change in Lines of Code IBUC - Development Group Communication - IBUC

Dynamism... 138

Figure 13: Change in Lines of Code Application Type - IBUC Platform Tenure Diversity

... 139

 1

CHAPTER 1: INTRODUCTION

1.1 OSS Development

The open source phenomenon is an exciting movement that is transforming traditional

software development practices. Open source software (OSS) is typically characterized as

software that is developed by volunteers, available for modification by anyone and available to

users for free. Large software developers, such as Netscape, have begun to experiment with

open source development practices, and IBM has opened some of its code for public

development. The actions of these large computing organizations are partially a result of the

accelerating and widespread adoption of OSS. Both industry and government are beginning to

rely on OSS, especially the flagship examples, such as Linux and Apache, for critical

infrastructures (Perkins 1999). A recent study reported that approximately 45% of all mid-sized

U.S. businesses had adopted or were experimenting with Linux, and it was predicted to be the

fastest growing desktop operating system through the end of 2007 (Mauri 2004). Several

national governments have adopted OSS platforms for computing, including the United States of

America, Brazil and China (http://news.com.com/2100-1001-272299.html?legacy=cnet).

Because of this recent surge of interest in OSS, identification of the antecedents of OSS

performance is gaining practical importance.

In contrast to the flagship examples described above, many OSS projects exhibit

comparatively little sign of performance (Krishnamurthy 2002). This dissertation examines a

sample of OSS projects in order to understand what enables an OSS project to perform better

than others. To facilitate an understanding of OSS project performance, a theoretical perspective

grounded in the concept of knowledge is utilized because software development is a knowledge-

intensive activity (Robillard 1999). Software development requires developers to have high

 2

levels of multiple types of knowledge. Developers must have rich technical knowledge about

programming languages and software engineering procedures, combined with an awareness of

how the code is implemented in a given development project. Furthermore, they must have high

levels of domain knowledge or knowledge related to the context where the application will be

used.

Because of the importance of knowledge in OSS projects, I seek to illuminate the effects

of absorptive capacity, the ability to acquire and use knowledge, in OSS projects. Absorptive

capacity, in particular, is leveraged in this dissertation because prior research has suggested that

it yields superior performance for organizations that innovate in dynamic environments (Zahra et

al. 2002). OSS development is fundamentally an innovation process (Krogh et al. 2003; Von

Hipple et al. 2003), and rapid technology changes make the software industry a dynamic

environment (Iansiti et al. 1997). Software developed by an OSS project may be quickly

outdated by a newer technology forcing the OSS development group to solve new software

problems rapidly to remain useful. To the degree that performance outcomes in a dynamic

environment require an ability to rapidly acquire and assimilate knowledge, an OSS project’s

performance depends on its absorptive capacity. This dissertation seeks to answer the two related

questions:

How can absorptive capacity be developed in an OSS project?

How does an OSS project’s absorptive capacity affect an OSS project’s performance?

 3

Chapter 1 continues by defining the OSS project and discussing the dimension of OSS

project performance that is the focus of this research. It concludes with a summary of the goals

and expected contributions of this research.

1.2 Delineation of Research Phenomenon: The OSS Project

The subject of this dissertation is the OSS project. I define the OSS project as the

development of a single software application under the restrictions of an OSI-approved license.

OSI licenses require that the source code be available at little or no charge, redistribution of the

compiled application must be allowed at no fee, distributions of modified versions of the source

code must be available without discrimination toward different types of users and the

distributions of modified versions must be allowed on the same terms as the original source code.

Each OSS project has at least one developer associated with it, but may have an unlimited

number of other developers and users associated with it. This definition does not require the

developers to be volunteers, and some OSS developers are paid by corporations. For a detailed

description of an OSS project see Fitzgerald’s description (2006).

1.3 OSS Project Performance

This section briefly reviews commonly adopted measures of OSS project performance

and then discusses why this research focuses on OSS project survival and development group

activity intensity. It concludes with a description of how this dissertation conceptualizes

development group activity.

There are many ways to measure OSS project performance. Some OSS project

performance measures are drawn from traditional software performance and include software

satisfaction, use and adoption (DeLone et al. 1992). An example of research using this kind of

 4

measure for OSS project performance is the paper by Grewal et al. (2006). Grewal et al. (2006)

examine a performance measure directly related to use as they explore the effect of OSS project

network embeddedness on commercial success measured as the number of times an OSS

application is downloaded. Similarly, Crowston and Scozzi (2002) explore the effect of

available competencies on downloads and page views. In addition to these kinds of measures

that parallel traditional software outcomes, some unique measures of performance have been

suggested for an OSS project that focus on the development process and, in particular,

development group activity (Crowston et al. 2003). Conceptually development group activity

represents the degree to which the OSS project is able to garner developer resources. Measures

of development group activity studied in past research include development team size (Stewart et

al. 2006d), number of releases (Stewart et al. 2006b), the extent to which teams accomplish work

tasks (Stewart et al. 2006d) and the number of concurrent versions system (CVS) commits

(Grewal et al. 2006).

Development group activity is a particularly interesting outcome because it is a

differentiator across OSS projects and is a critical antecedent of other measures of OSS project

performance. OSS projects may not be funded, making it difficult to attract development group

activity. Without development group activity it is likely that the software will not continue to

meet changing user needs. Specifically, development group activity is important for OSS

projects because it can lead to other dimensions of performance such as usefulness and

popularity. As user software needs change, development group activity can keep the software up

to date and therefore lead to its usefulness and popularity. Essentially, most other OSS

performance measures depend on development group activity.

 5

Common development group activities such as fixing bugs and adding features are acts of

knowledge creation in the form of software solutions. This is because the development group

draws on its knowledge of a programming language and a particular problem to create new

knowledge that is represented in the software solution. In this research development group

activity is therefore conceptualized as a recreation of knowledge. The successful use of prior

knowledge to create new knowledge is a commonly used measure of performance, especially as

an intermediate outcome between resources and competitive advantage in the organizational

literature (Cohen et al. 1990; Lane et al. 2006). This dissertation uses the organizational

innovation literature, specifically the concept of absorptive capacity, to identify antecedents of

two different outcomes based on development group activity; OSS project survival and OSS

project development group activity intensity.

1.4 Research Goals And Contributions

 This dissertation seeks to inform managerial practice and broaden the scholarly research

regarding the impact of absorptive capacity in an OSS project. In exploring the development of

absorptive capacity in an OSS project, I highlight the distinct effects of different types of

knowledge and the participants who acquire and transfer that knowledge. Specifically, I

contribute to the OSS literature by explaining how both the characteristics of the development

group and an Internet-based user community (IBUC) affect OSS project performance through the

type of knowledge they acquire and transfer. Prior literature has focused almost exclusively on

the effect of the development group on development group activity (e.g. Stewart and Gosain

2006). This dissertation expands on prior literature by detailing how the IBUC has different yet

complementary effects compared to the development group on development group activity.

 6

In using absorptive capacity to understand the antecedents of OSS project performance I

add to the body of literature that seeks to understand the development and effects of absorptive

capacity. Several dimensions of absorptive capacity have been identified in prior work (Zahra et

al. 2002). I extend this literature by exploring the interaction of two dimensions of absorptive

capacity: knowledge acquisition capability and knowledge transfer capability. I also illuminate

how acquiring knowledge with certain characteristics can have different effects, depending on

the measure of performance observed.

Finally, because I argue that the characteristics and behaviors of OSS participants

indicate absorptive capacity, I am able to inform managers about the most desirable types of

participants. While this study is most applicable for the manager of an OSS project as he or she

seeks to attract participants, it may be beneficial for other types of managers. An IBUC can be

related to proprietary software and other kinds of product development, so this research can be

used to inform managers of a variety of product development efforts concerning participants to

target that increase the benefits of IBUCs. In particular this dissertation highlights the role of the

IBUC as a knowledge resource and introduces an IBUC as a mechanism through which an

organization can increase its absorptive capacity.

The remainder of this dissertation is organized as follows: Chapter 2 describes why

absorptive capacity is important for understanding the antecedents of OSS project performance

and presents the major constructs of the models developed. Chapter 3 then develops a research

model that seeks to understand the antecedents of the survival of an OSS project. Chapter 4

presents a complementary research model that seeks to identify the antecedents of development

group activity intensity in an OSS project. Chapter 5 details the empirical analysis of the models

 7

presented in Chapters 3 and 4. Chapter 6 concludes this dissertation with a discussion of the

results, limitations and future research opportunities.

 8

CHAPTER 2: CONCEPTUAL MODEL - ABSORPTIVE CAPACITY AND OSS

PROJECTS

Chapter 2 discusses why a knowledge-focused perspective is useful and appropriate for

understanding the antecedents of OSS project performance. I present the rationale for focusing

specifically on absorptive capacity and discuss how an OSS project can build it. Specifically, in

addition to developing a framework to understand how the development group can build

absorptive capacity, I highlight the key role the IBUC plays in enhancing an OSS project’s

absorptive capacity. Finally, I describe the major constructs of my conceptual model and

introduce the research models developed in Chapter 3 and 4.

2.1 A Knowledge Focused Perspective

 Knowledge is an important resource for an organization that seeks to innovate and has

been argued to be the most strategically significant resource of many organizations (Grant 1996;

Kogut et al. 1992). Specifically, the knowledge base within a firm is a key determinant of

superior performance (DeCarolis et al. 1999). Knowledge is important for an organization that

seeks to innovate because knowledge facilitates the acquisition and application of new

knowledge that can lead to innovation (Cohen et al. 1990).

As in other innovative organizations, knowledge is important for an OSS project.

Knowledge about software problems and solutions is necessary for innovation in the OSS

context. To continually meet user needs through innovation OSS developers must have

knowledge of the software problems in business contexts and how the business contexts are

changing. The developers in an OSS project must also have programming knowledge to be able

to implement software solutions.

 9

There are many constructs that represent a knowledge-focused perspective. Section 2.2

discusses why this research focuses on absorptive capacity for an OSS project.

2.2 Absorptive Capacity: Key OSS Capabilities

In order for an organization seeking to innovate in a dynamic environment to be

responsive to the changing needs of users, it must be able to quickly acquire knowledge from

users and incorporate this knowledge in the development of products. Absorptive capacity is

critical for this kind of organization because it captures the degree to which an organization is

receptive to knowledge and able to implement and exploit it.

2.3 The Development Of Absorptive Capacity For An OSS Project

An OSS project’s absorptive capacity encompasses both its knowledge acquisition

capability and its knowledge transfer capability. The knowledge acquisition capability enables

the OSS project to receive knowledge necessary to innovate in a dynamic environment, such as

knowledge about user needs and new techniques for addressing user needs. The knowledge

acquisition capability specifically focuses on the OSS project’s ability to acquire knowledge

from outside its boundaries. The knowledge transfer capability facilitates the use of knowledge

within the OSS project. Consistent with Argote and Ingram (2000), I define knowledge transfer

as the process through which one unit is affected by the experience of another. The knowledge

necessary for the OSS project to develop software may be distributed across many participants

and for the OSS project to assimilate knowledge into software, it has to be transferred between

participants. Specifically, the OSS project must be able to transfer knowledge to the participants,

the development group, who can use it in the development process. I continue by detailing the

 10

development of knowledge acquisition capability and then the knowledge transfer capability in

an OSS project.

2.3.1 Knowledge Acquisition And Preexisting Related Knowledge

The ability to acquire knowledge is enhanced when an organization has preexisting

related knowledge (Cohen et al. 1990; Fichman et al. 1999). Preexisting related knowledge is

the extent of abstract knowledge, know-how, and skills within the organization in areas related to

the focal innovation (Fichman et al. 1999). Preexisting related knowledge enables knowledge

acquisition by providing the foundation necessary for understanding new knowledge and how the

new knowledge is relevant to innovations. For example, in an OSS project, knowledge about

HTML facilitates the acquisition of knowledge about XML and the ability to understand why

XML is relevant to the OSS project.

Different types of organizations have different ways of developing and maintaining their

preexisting related knowledge. In firms the development of preexisting related knowledge is

done through research and development departments (Cohen et al. 1990) or managerial practices

(Lenox et al. 2004). In contrast, Malhotra et al. (2005) describe how enterprises in supply chain

partnerships configure their processes and IT infrastructures to develop and maintain their

preexisting related knowledge. In particular, they propose that joint decision-making and

memory information systems build preexisting related knowledge bases for supply chain

partnerships.

An OSS project also has unique methods for developing and maintaining preexisting

related knowledge. An OSS project’s preexisting related knowledge base is developed and

maintained primarily by its participants. Thus, OSS participants embody the knowledge

 11

available to a project, and their characteristics and roles indicate the kind of knowledge that is

available in an OSS project.

Participants in an OSS project can be categorized in several ways. In their study of the

GIMP project, an OSS project that processes images in Linux, Ye and Kishida (2003) describe

eight types of participants. These include the project leader, the core members, the active

developers, the peripheral developers, bug fixers, bug reporters, readers and the passive users

(Ye et al. 2003). Likewise, Sturmer (2005) presents a set of participant types that include core

developers, initiators or owners, developers or leaders, active users and inactive users.

The detailed classifications described above, developed from exploration of the largest

OSS development projects provide useful details about these organizations, but cannot be

generalized for application in a broader set of OSS projects. As Ye and Kishida (2003) note, not

all OSS projects have participants to fulfill the multiple roles that their detailed membership

classification describes. Many OSS projects are small or early in their lifecycle and therefore do

not have participants to fill the roles described. It is useful to observe an OSS project that is

early in its lifecycle in order to understand the factors that lead to performance.

I argue that there are two core types of participant sets relevant in most OSS projects,

regardless of the stage, but that these sets have distinct types of preexisting knowledge related to

the OSS project. The two sets are the IBUC and the development group. Drawing from the

growing literature on OSS participants, I define an IBUC as the participants who engage in some

computer-mediated communication related to an OSS project, but do not actively develop source

code (Hertel et al. 2003; Ye et al. 2003). An IBUC member could report bugs, submit feature

requests, provide feedback about usability and provide technical support (Krogh et al. 2003;

Lakhani et al. 2003; Ye et al. 2003; Zhao et al. 2003). The IBUC would include Ye and

 12

Kishida’s peripheral developers, bug fixers, bug reporters, readers and the passive users. The

developers then are those who actively develop source code and would include Ye and Kishida’s

project leader, core member and active developer roles.

The developers have been the focus of most OSS research, as will be discussed below.

Research focused on the development group provides a firm foundation for further OSS research,

but it emphasizes only one of the two types of knowledge necessary for innovation. The two

types of knowledge necessary for innovation are awareness knowledge and how-to knowledge

(Rogers 1995; Tornatzky et al. 1990). Development group research stresses the availability of

how-to knowledge or knowledge concerning how to develop software. My dissertation builds on

the research focused on the development group by specifically highlighting the distinct influence

of the awareness knowledge that the IBUC can provide in addition to the development group

knowledge. First, I discuss the development group as a provider of how-to knowledge.

2.3.1.1 The Role Of The Development Group: How-To Knowledge

This section reviews the literature concerning the OSS development group and then

describes how this dissertation extends this literature by adopting a knowledge-focused

perspective. In particular, I explain how considering the how-to knowledge that the development

group provides can distinguish a high performing OSS project. I further describe how-to

knowledge as one type of knowledge necessary for an innovative organization, and thereby

introduce the importance of the awareness knowledge provided by the IBUC.

A large body of research addresses the motivation of a developer to participate in OSS

development and finds that key motivations are the desire to use the software developed,

enjoyment of the software development process and opportunities to refine development skills

 13

(Hars et al. 2002; Roberts et al. 2006). This research provides insight into the OSS community at

large, but does not explain why an OSS project can perform better than another OSS project.

Multiple perspectives have been leveraged to understand the factors that allow an OSS

project to perform better than another OSS project. From a technical perspective, research has

sought to understand the ease with which developers can participate on a project by considering

aspects of the code structure (Baldwin et al. 2006; MacCormack et al. 2006). The primary

argument is that if the code is organized in a way that allows a developer to understand it easily

and add features or fix bugs then that project will perform better than another OSS project where

the code is not well organized. Stewart and Gosain (2006) take a more social psychological

perspective and provide evidence of the effect of development group characteristics, such as

adherence to OSS ideology, on performance. They find that adherence to some ideological

components enables the project to attract and retain input. For a more thorough review of the

literature focused on OSS development groups, see Table 1.

While this literature explains what motivates developers and facilitates their participation

it assumes that the developers have the requisite knowledge to adequately develop software. A

focus on the available knowledge in the development group is important because, as argued

earlier, knowledge is a key resource, along with motivation and a cooperative environment that is

necessary for software development. The current work expands this body of research by

considering the degree to which the knowledge base within the development group leads to

software solutions of relevant problems. However, as discussed above, innovation requires both

how-to knowledge and awareness knowledge. The next section discusses the awareness

knowledge.

 14

2.3.1.2 The Role Of The IBUC: Awareness Knowledge

Awareness knowledge is knowledge required to use the innovation in a work context. An

IBUC complements the development group because an IBUC is likely to have a different

knowledge base from the development group. The IBUC can provide awareness knowledge,

which is focused on problems that the software can solve. While the OSS development group

often has members who both develop and use the software (Zhao et al. 2003), I argue that in

general the IBUC is positioned to have awareness knowledge that complements the development

group. The IBUC’s complementary awareness knowledge is derived from the IBUC’s access to

a broader set of knowledge related to the software, compared to the development group. This

access is expected because the IBUC may have different types of employment and software

experiences. This section continues by further describing the IBUC and the knowledge base it

possesses that serves to complement the development group.

Because the IBUC is not required to be actively involved in writing source code, the

IBUC is more likely than the development group to accommodate members who are involved in

professions other than software development. In a sample of participants drawn from

SourceForge, Zhao and Deek (2003) find 60% of participants, that according to this research

would be classified as IBUC members, have more than five years of development experience

(Zhao et al. 2003). This implies that a substantial proportion of the IBUC, approximately 40%,

have limited or no software development background. Having limited software development

experience enables those in the IBUC to have a different perspective about the software and how

it can be made easier to use. In summary, because there are fewer restrictions for participation in

the IBUC, and the focus is on usage, an IBUC can have a broader knowledge base that has a

stronger focus on usage compared to the development group.

 15

Knowledge from participants who are not software developers can be important. Some

software improvements can be identified only by those entrenched in the context where the

software is used. For instance, the request below, from an IBUC member, draws on a context

specific situation and identifies additional important functionality for the software. This kind of

idea is not easily generated from within the development group.

“Let say the customer only want to payment only after their have finish their meal. Then i

can't print the information to kitchen. Because the Printer.Ticket will only print when customer

done their payment.”

http://sourceforge.net/forum/forum.php?max_rows=25&style=flat&offset=25&forum_id=43492

0

 A knowledge base that comes from software users in the business context is also

important because the software may not be used in the way the developers designed it to be used

(Orlikowski 1992). The IBUC may interpret, appropriate and manipulate the software to fit their

geographical, technological or cultural setting, transforming the conceptualization of the

software application from that which the developers intended. Mackey documents how users of

electronic mail systems employed different usage patterns based on their individual preferences

(Mackay 1988). This transformation in the identity of the software when used by the IBUC can

lead to knowledge acquisition in the form of unique ideas for further development that

complement the knowledge acquisition capability of the development group.

Another important characteristic of an IBUC that allows it to complement the

development group is the speed at which the composition of the IBUC can change. The ability

of the IBUC to change rapidly is important because technology changes quickly and a change in

the IBUC membership could enable the project to acquire relevant knowledge necessary to meet

 16

changing user needs. The size, make-up and pattern of interactions that characterize the IBUC

can swiftly change over time for at least two reasons. First, the Internet supports IBUCs and

allows people from around the world to join and leave at any time. Second, since the IBUC is

not actively involved in software development, its composition is inherently flexible because the

coordination requirements for participation in the IBUC are lower than for the development

group.

There are many empirical examples from the literature that illustrate the flexibility of the

IBUC. Von Krogh et al. (2003) note that for the OSS development project Freenet, 356

individuals participated on the discussion list, implying there are 356 participants in the IBUC.

Likewise, in a study of Apache, Mockus et al. note that 3,000 people contributed by reporting

problems with the software (Mockus et al. 2000). However, there are several projects on

SourceForge where there is no IBUC or there is an IBUC with one member. This observed

variance in the size of the IBUC demonstrates that the IBUC is inherently flexible in nature.

Whether because of the focus on usage or the flexibility of the IBUC, it is well positioned

to provide awareness knowledge to complement the how-to knowledge provided by the

development group. In providing this alternative perspective the IBUC also functions to disturb

the development group’s tendency to focus on areas where the development group has had prior

success. An organization often focuses its search for knowledge in a limited space where the

organization has had prior success or is familiar with the knowledge. This tendency toward a

local search inhibits the innovative process (Rosenkopf et al. 2001). An IBUC may expand an

OSS project’s search space. For example, based on the different interests and professions of the

IBUC members, the IBUC is likely to know of different OSS projects and proprietary software

applications from which knowledge can be acquired when compared to the development group.

 17

Specifically, because the IBUC could have affiliations based on professions other than software

development, the IBUC can be aware of a broader set of OSS projects from which code or ideas

can be borrowed compared to the development group.

So far, this discussion has focused on characteristics of an IBUC that may be associated

with any type of software. However, an IBUC associated with an OSS project is positioned to

have an even more influential role in developing knowledge acquisition capability for an OSS

project as compared to a proprietary software development project. While the IBUC for both

types of software projects can enhance the knowledge acquisition capability, there are some

distinct ways that an OSS IBUC facilitates an OSS project’s knowledge acquisition capability.

For instance, in contrast to IBUCs related to proprietary projects, an OSS project IBUC has

access to the source code, and is therefore in a position to acquire knowledge about needed

features and ways to implement those features. An OSS IBUC can further complement the

knowledge of the development group by providing knowledge that an organizational sponsor

typically supplies: current user needs and a plan to meet those needs. An OSS IBUC, through its

knowledge in the form of feature requests and bug reports, can influence timelines and

requirements defining the expected outcome of the project. By providing knowledge in the form

of specific suggestions, the OSS IBUC participants give the development group opportunities for

development that will be valuable to users. In particular, the IBUC aids the development group

by acquiring knowledge that the development group can use to create software that meets

changing user needs.

In summary, the OSS development group and the OSS IBUC represent the two sets of

participants that are expected to have both complementary and unique effects on the OSS

project’s absorptive capacity. The OSS development group is composed of those OSS

 18

development project participants who actively write code and therefore have preexisting related

knowledge about the software solution, or source code. This type of knowledge enables

developers to acquire new knowledge about ways to enhance the software from a coding

perspective. The IBUC is composed of those participants who exhibit some connection to the

project via participation in computer-mediated communication associated with the project, but do

not develop source code. IBUC participants associated with OSS projects are more likely than

those in the development group to have backgrounds not related to software development.

Diversity in the background of IBUC members coupled with the lower coordination costs of

participation in the IBUC yields a broader knowledge acquisition capability that is more likely to

be focused on user needs.

2.3.2 Knowledge Transfer And Overlapping Knowledge

A strong knowledge transfer capability is critical for an OSS project to allow the IBUC

knowledge acquisition to consistently lead to development group activity. The IBUC possesses

and can acquire knowledge that can enable development group activity, but that knowledge must

be transferred to the development group in order to enable activity. Therefore, the relationship

between the IBUC knowledge acquisition capability and development group activity is

influenced by the knowledge transfer capability of the project.

The knowledge transfer capability is facilitated by overlapping knowledge held by units

within an organization (Clark 1996; Cramton 2001; Fussell et al. 1992). At a minimum the two

subunits must share a common language to transfer knowledge (Dearborn et al. 1958; Katz et al.

1966), but as the similarity of the shared cognitive structures increase the transfer of knowledge

is easier (e.g., (Bower et al. 1981; Ellis 1965)). Thus, the extent of knowledge overlap between

 19

the IBUC and the development group is expected to alter the ease with which knowledge is

transferred.

I explore two indicators of the degree of overlapping knowledge between the IBUC and

the development group. One indicator is the software application type that is being developed.

If the software is designed for use by developers, both the users and the developers share

knowledge about software development. In this case the knowledge overlap between the IBUC

and development group is higher than if they did not share this software development

knowledge. The second indicator of knowledge transfer capability for an OSS project is the

amount of communication between the development group and IBUC. As the IBUC and

development group communicate they exchange knowledge, thereby amplifying their shared,

overlapping knowledge.

2.4 Major Constructs And Relationships

A depiction of the overarching conceptual model describing the relationships presented in

section 2.3 and guiding this research is shown in Figure 1. This model draws on Zahra and

George’s concept of absorptive capacity and its importance for organizations that seek to

innovate in a dynamic environment. In particular, it focuses on the knowledge acquisition and

knowledge transfer capabilities, which I argue are dimensions of absorptive capacity. The

development group and IBUC have complementary critical knowledge acquisition capabilities

and so I assess the effect of their knowledge acquisition capabilities on performance separately.

Further, since the development group is responsible for development, I assert that the project

knowledge transfer capability influences the relationship between IBUC knowledge acquisition

capability and project performance, measured as development group activity.

 20

Insert Figure 1: Conceptual Model Here

2.5 Research Models Overview

I define the performance outcome, OSS development group activity, as work performed

by the development group that facilitates the evolution of the OSS. There are two dimensions of

development group activity that are of interest to potential adopters and are likely to have

different antecedents. Potential adopters may be interested in OSS project survival and

development group activity intensity and they are expected to have different antecedents,

therefore this dissertation develops two separate models for these outcomes. The first research

model developed seeks to understand the antecedents of OSS project survival, where survival is

defined as the OSS project having development group activity in a time period after the initial

release of the OSS application. The second research model seeks to understand the factors that

lead to development group activity intensity. This is a measure of the degree to which the

developers are able to accomplish work that evolves the OSS.

The model focused on survival is important because for some users to be comfortable

adopting OSS, the user must expect the OSS project to survive by exhibiting development group

activity long after its initial release. Without development group activity over the long-term a

user who expects to use the software long-term may have concerns about maintenance of the

software and the ability of the software to evolve to meet their changing needs. These concerns

lead users to decide to choose some other application (Norris et al. 2004).

I draw on March (1991) to understand the factors that enable an OSS project to survive.

March (1991) suggests that for organizations that seek to learn to be able thrive in the long-term,

the exploration of new knowledge is critical for success. It is critical for OSS projects to

continue to learn because the software industry is dynamic and characterized by changing user

 21

needs. The survival of an OSS project is expected to be dependent on the explorative

capabilities of the project because without new ideas the project will not meet the changing

needs of users and the changing interests of developers. Stated otherwise, without exploration

capabilities the OSS project is likely not to survive because developers and users will lose

interest. For this reason this model focuses on the exploration of new knowledge as a key

construct determining OSS project survival.

In contrast to the adopter interested in survival, another potential adopter may only plan

to use the software for the next year to complete a single task. Her concerns are focused on the

degree to which the development group will evolve the software intensely over the short-term.

In this case it is important for developers to do mundane tasks frequently and consistently to

meet the needs of users. The degree to which the project is evolving the OSS, which I term

development group activity intensity, is therefore an important indicator of performance.

As in other organizations, in order to consistently produce exploration and exploitation

are necessary (March 1991). Therefore, this model focuses on both the exploration for new

knowledge and the exploitation of existing knowledge in developing an understanding of the

antecedents of development group activity intensity. With only a strong explorative capability a

project may survive, even though only the interesting work is completed at the leisure of the

developers. Drawing on the concept of exploitation as performing tasks that draw on old

certainties developed by March (1991), my conceptualization of exploitation in OSS projects

captures the ability of the project to leverage resources to consistently complete even the

mundane tasks.

Because the survival model focuses only on knowledge that enables exploration and the

development group activity intensity model examines knowledge that facilitates exploration

 22

balanced with knowledge that leads to exploitation, some antecedents are likely to have different

affects on the two outcomes. For instance, diversity leads to exploration that can lead to

profitable innovations (Cohen et al. 1990), but it may also lead to conflict that can hinder

performance (Dreu et al. 2003). Therefore, in an OSS project, diverse knowledge should

increase exploration and thus lead to survival by offering the development group new exciting

ideas. However, diversity is expected to have a more complex relationship with development

group activity intensity which requires agreement within the development group. In developing

two separate models, this dissertation illuminates the complex affects of diverse knowledge on

performance.

When considering these research models, two control variables are necessary because

these variables are positively associated with development group activity and are outside the

scope of this research. Time influences development group activity in many ways. As teams

work together over time they develop evolved routines and procedures to facilitate the

conversion of inputs to outcomes and therefore time may lead to higher levels of development

group activity (Ethiraj et al. 2005). Project management capabilities also accumulate in an

additive fashion over time and may lead to higher levels of development group activity over time

(Whang 1995). Second, I control for the number of project members because it is has been

shown to affect the development group activity (Ren et al. 2006). Further, each member

represents knowledge and should therefore enhance the project’s knowledge acquisition

capability. However, the focus of this research is not in understanding how the number of

members leads to OSS project performance.

 23

2.6 Summary

This chapter discussed why a knowledge-focused perspective is used and why I focus on

the development of absorptive capacity in an OSS project. I presented the two focal dimensions

of absorptive capacity that I examine; knowledge acquisition capability and knowledge transfer

capability. Then this chapter discussed the development group and the IBUC as the two OSS

project participant sets that have distinct effects on the development of OSS project knowledge

acquisition capability. I argued that this dissertation adds to the OSS literature by moving

beyond the previous focus on the development group and in particular exploring the knowledge

from the IBUC that may be broader than the development group and more comprised of

awareness knowledge. The importance of knowledge transfer capability was explained and the

conceptual model with major constructs and their relationships were presented. Finally, the two

research models and controls for models were introduced. Research models based on this

conceptual model are developed in Chapters 3 and 4. They detail how absorptive capacity leads

to the survival of an OSS project and development group activity intensity respectively.

 24

CHAPTER 3: HOW DOES ABSORPTIVE CAPACITY LEAD TO AN OSS PROJECT’S

SURVIVIAL?

3.1 Overview

Many OSS projects release software, but do not survive long after the initial release. As

discussed in Chapter 2, I define survival as the OSS project having development group activity in

a time period after the initial release of the OSS application. Stewart et al. (2006) document the

short lifespan of many OSS projects by showing that many of them stop releasing new versions

of the software after approximately one year. Some OSS projects survive, and the survival of an

OSS project is a positive mark of distinction because it demonstrates that the project is useful

and that someone is interested in developing it further. Specifically, developers and or users are

using their resources to identify ways to enhance the software and implement those

enhancements.

What factors contribute to the survival of an OSS project? To answer this question, I use

an absorptive capacity lens because it “makes the firm receptive to acquiring and assimilating

knowledge (Zahra et al. 2002).” An OSS project must be able to acquire and assimilate

knowledge in order to continue developing the kind of software that interests developers and

users. The motivations underlying OSS developer participation in OSS development includes

their interest in refining development skills and potential career opportunities (Ghosh 2002;

Hann et al. 2002; Lerner et al. 2002b), implying that developers are more likely to be motivated

to participate in projects where they have opportunities to acquire knowledge about new and

popular software solutions. Therefore, to continually attract developers and motivate them to

participate, the OSS project needs to be able to acquire knowledge about the current trends in

software applications and development.

 25

I examine two characteristics of knowledge that enable the OSS project to have and

acquire creative ideas for software solutions that reflect the current trends in software

applications and development styles. I focus on the diversity and freshness of knowledge

because I expect these characteristics to enable the OSS project to derive creative and current

software solutions for the long term. The diversity of an OSS project’s knowledge base is

important because it provides the opportunity for an organization that seeks to innovate to

connect ideas that were previously thought to be unrelated and thereby provide interesting

development opportunities. Innovation often occurs by applying knowledge in a new context or

connecting knowledge that previously had been considered unrelated (Cohen et al. 1990).

The freshness of knowledge is the degree to which the knowledge represents current

changes in the environment outside the OSS project. Because an OSS project operates in a

dynamic environment where user requirements change quickly, their survival depends on their

ability to acquire fresh knowledge. The importance of fresh knowledge for organizational

innovation is well documented in studies that focus on the positive effects of voluntary employee

turnover (Dalton et al. 1979). Voluntary employee turnover can enhance performance by

revitalization; it increases workforce innovation, flexibility and adaptability (Abelson et al.

1984). In contrast organizations characterized by low turnover may experience workforce skill

stagnation, closed-mindedness, and “trained incapacity” (Dalton et al. 1979). In an IBUC, new

members can inject the project with fresh ideas that lead to performance. They can do this

without decreasing productivity when they leave, because the project does not depend on them to

transfer knowledge to the future developers.

An OSS project’s ability to acquire fresh and diverse knowledge is dependent on the

characteristics of the knowledge base already held by the organization. Cohen and Levinthal

 26

argue an organization acquires knowledge in the same way that an individual does (Cohen et al.

1990). An individual’s existing knowledge base facilitates the acquisition of some types of

knowledge, but not others (Goldstein 1991). As an example, knowledge of algebra may

facilitate the acquisition of calculus knowledge, but not knowledge about historical events (Ellis

1965).

For an OSS project, I consider characteristics of the OSS project’s knowledge base in

order to understand its ability to acquire diverse and fresh knowledge. For participants to have a

diverse knowledge base, they should have a mix of long and short tenures with an OSS

development platform. An OSS development platform is a bundle of resources that enable OSS

development. It may include communication tools such as public forums or mailing lists, a bug

tracking system and a current version system. The platform tenure diversity represented by the

individuals in the development group and IBUC is a reflection of the diversity of the knowledge

base. Platform tenure diversity is a characteristic of the IBUC or development group that

indicates the diversity of individuals with respect to the time each individual became engaged in

an OSS development platform.

The IBUC dynamism is a characteristic of the IBUC that indicates the degree to which

the membership of the IBUC changes, and is a reflection of the freshness of knowledge available

to the OSS project. Fresh knowledge may also be available to the project through developers.

However, while theoretically developers can join and leave an OSS project at any time, there is

evidence that this is not the case in practice. Developers may not change projects often because

it is time intensive for a developer to understand source code enough to contribute to a project.

Also, there is a limited supply of OSS developers for each project and so a developer’s time is

probably consumed by a single OSS project. Evidence of this phenomenon is presented by

 27

Madey, Freeh et al. (2002) who analyze 39,000 OSS projects hosted on SourceForge over a 14

month period. They find 70% of developers belong to only one OSS project during the 14 month

period. For these reasons development group dynamism is not a focus of this study. This

chapter continues with detailed hypotheses explaining how IBUC and development group

platform tenure diversity and IBUC dynamism lead to the survival of an OSS project.

Insert Figure 2: Research Model-Survival Here

3.2 Platform Tenure Diversity

The time a person joins an organization indicates a lot about their knowledge related to

the organization. There are two main reasons tenure indicates the knowledge a participant may

have related to the technology. First, organizations change, and the time a person joins indicates

the specific instance of the organization, with which they were introduced and experienced over

time (Ryder 1965). Similarly, tenure with an OSS development platform represents the

knowledge participants have because joining at a particular time determines specific events that

participants experienced related to the platform. Further, platforms evolve, and so some features

of the platform may have been more salient when a person joined and influence the type of

knowledge that the person has concerning the platform. Also, the time a person starts using a

platform is often motivated by an external stimulus, such as a software development class or a

corporate initiative. In this case, when a set of people join at a similar time they have a common

university or corporate background and associated knowledge. In contrast, when the participants

in an OSS project have joined the development platform at different times, they are more likely

to have different knowledge related to the OSS project.

Second, time with the platform can alter the way a person thinks about the OSS project.

Over time, participants can build a common understanding for how to interact with the other

 28

people associated with the platform. Knowledge is typically gained over time through

socialization into the community and repeated interactions. Participant interaction establishes

standard practices, methods of development, coordination, ways of thinking (Giddens 1976) and

an organizational language (March et al. 1958). So, long tenure participants are likely to have

been a part of the development of the standards and thus understand them more.

Over time participants can also be constrained by the technology. Tenure can determine

knowledge because interaction with a technology constrains the way in which tasks are done, the

associated performance, and the thoughts of the person in relation to the task (Orlikowski 1992).

A development platform uses a limited number of technologies and long-tenure participants

possess knowledge defined by use of those technologies. Long-tenure participants are therefore

constrained by the use of those technologies. Tenure with an OSS development platform in

particular, reflects the participant’s experience with OSS development and applications and can

constrain the way they accomplish tasks, their performance and thoughts. In particular,

participants with longer tenures are likely to have a knowledge base characterized by experiences

with OSS applications. In contrast, short-tenure participants may have a different set of

knowledge that is based on experience with proprietary or limited software use. Therefore,

expectations about how software should work can be related to the time a participant has been

associated with an OSS development platform.

In summary, tenure with a particular development platform partly determines the type of

knowledge germane to the OSS project held by the project participant. For participants to have a

diverse knowledge base, they should have a mix of long and short tenures with an OSS

development platform. Having multiple knowledge bases, some based on long histories with an

OSS development platform and others based on shorter tenures with it, is expected to lead to a

 29

larger set of unique knowledge. This larger set of knowledge should enhance the knowledge

acquisition capability and the OSS project’s survival.

3.2.1 IBUC Platform Tenure Diversity

As discussed in Chapter 2, the IBUC is expected to have awareness knowledge such as

user desired functionality and ease of use. This is because IBUC members are actively involved

in the business context where the application is used, and as the context changes, the IBUC is

well positioned to acquire knowledge about useful software innovations to meet their changing

needs. An IBUC characterized by diversity is then likely to lead to a larger variety of

contributions related to desired functionality and ease of use.

IBUC platform tenure diversity is reflected in the IBUC platform tenure diversity because

long-tenure platform IBUC members are likely to have different experiences and backgrounds

compared to short-tenure platform IBUC members. IBUC members who have engaged with the

development platform longer are likely to be experienced in the specific development and

distribution process. Therefore, experienced IBUC members are more likely than inexperienced

IBUC members to understand the type of features the OSS development group is willing to

develop and the kind of detail necessary in the feature request or bug report. However, short-

term IBUC members might possess other kinds of useful knowledge. Because they are new to

the OSS development platform they could have more experience with proprietary software, and

thus, be better positioned to acquire knowledge that comes from the use of proprietary software.

An IBUC that has members with different experiences has more diverse knowledge that

enables it to acquire a larger variety of knowledge compared to an IBUC with homogenous

membership. The broader knowledge base leads to greater exploration in the form of

 30

development options. Because there are more options there is a greater likelihood that they will

arrive at innovative and creative suggestions that will be of interest to developers. But, in

addition to more ideas there are opportunities for creative combinations from the diverse

knowledge.

One specific example of the synergy between the knowledge held and acquired by short

and long-term IBUC members is if a short-term IBUC member brings an innovative idea and the

long-term IBUC member helps turn that idea into an actionable request. This happens because

the short-term IBUC member may be familiar with other software and the long-term IBUC

member is familiar with the development platform process. The example below, drawn from the

forums of the Azureus OSS project, shows how a short-term IBUC member offers an idea for a

feature, and then a long-term IBUC member provides details that help the development group

add the feature.

Short-Tenure Platform IBUC Member “Nobody is talking about the one important

missing on Azureus!?...This is strange…Why this professional soft is not including on load

(torrent) menu, a mathemtatical calculation of drive space needed for all files or for selected

files only, when not entire content will be downloaded….What do you say about this extremely

important missing?”

Long-Tenure Platform IBUC Member “I'd say, I agree with you. I'm so used to do that

mentally that I forgot it is a obvious feature to ask. You have my vote. Trying to be specific and

offer some ground for discussion, the place where I think that could be, are in the torrents

detail/Files, probably in the file pieces, a bottom indicator with one pair of values, the "reserved

space" and the "needed space to finish", both for the selected, and another pair with the same

type of values but this one for the all the torrent. The second pair will take into account the DND

 31

flag of the files, the first pair will not…The second pair would be red if the aggregated needed

space to finish for the torrent are less than that value, the first pair will take that same color if

the needed space to finish for the DND selected files are less than that spare space…Last, the

values don't need to be in Bytes, we could use blocks as a more readable unit measure. Other

obvious place are the open torrent dialog. After that I'm afraid of the feature impact in the

performance of the application”

As illustrated in the example above, platform tenure diversity allows for synergy between

development platform long-term and development platform short-term IBUC members that can

lead to innovative, detailed feature requests and bug reports. Further, as argued previously,

IBUC platform tenure diversity leads to a larger base of knowledge that facilitates knowledge

acquisition in the form of feature requests and bug reports.

Further, as time passes and different types of software become more popular, when the

IBUC is diverse, the project will be more likely to have IBUC members familiar with the newly

popular software. When the IBUC has members who are familiar with popular software, the

OSS project is better prepared to thrive in the new software environment. Long-term IBUC

members are likely content with using OSS applications and unaware of advancements in

proprietary software. So, if a new proprietary application becomes popular, but the OSS project

has all long-term members, the OSS project may not have the knowledge necessary to adapt to

the new trend.

In summary, because an IBUC with platform tenure diversity leads to more exploration in

the form of opportunities for development that are innovative and current, the development

group will be excited about development opportunities on that project. Therefore developers will

continue or start developing on that project and so I propose:

 32

Hypothesis 1: IBUC platform tenure diversity is positively associated with the survival of

an OSS project.

3.2.2 Development Group Platform Tenure Diversity

While the IBUC’s influence is primarily through knowledge acquisition concerning

desired functionality and ease of use, the development group platform tenure diversity indicates

knowledge acquisition related to techniques for software development.

Tenure with a particular development platform and community can provide many

benefits for the development group, but may also have limitations and impose constraints.

Developers with long tenures are expected to be experienced and that experience has many

benefits. Experienced developers are likely to be better able to work with others in a group and

have refined development skills. The knowledge of an experienced developer is likely to allow

him or her to acquire knowledge of complex or elegant programming solutions, which can lead

to development group activity. However, experience as a developer, as signaled by platform

tenure, can also be limiting; it could constrain the developers’ ability to acquire knowledge. Like

the IBUC, experience with a particular platform constrains a developer’s ability to acquire

knowledge because it limits the way the developer thinks about solving a task (Orlikowski

1992). A tenured developer is likely to be biased toward the development styles easily available

in a particular platform and have trouble identifying the relevance of new development styles.

Therefore, it is often difficult for developers with longer tenures to acquire knowledge about new

potentially useful development styles, languages or programming techniques. Just as in other

organizations the OSS development group is dependent on short term participants to be the

“bearers of technological innovations and new values.” (Reed 1978)

 33

Shorter tenure with a particular platform indicates some knowledge acquisition

opportunities that complement the knowledge acquisition of longer tenure developers and thus

offer opportunities for exploration. Shorter tenures may be a sign of less experience as a

programmer. Less experienced programmers may be familiar with a different and newer set of

programming languages and techniques that allow them to acquire knowledge about these

techniques. As an example, a more experienced programmer with a strong foundation in a

language such as C++, that was popular earlier, may not be as prepared to acquire knowledge

about new program languages such as Java. A shorter tenure developer can complement the long

tenure developers by accessing newer technologies.

In summary, development group platform tenure diversity is expected to signal a more

diverse source code development related knowledge base. A diverse knowledge base should

generate more options for how to find and fix bugs and add features; thus, development groups

with more platform tenure diversity are likely to have a better chance at exploration and survival.

Further, as in the case of the IBUC, there may be a productive collaboration between the

development expertise of the long-term platform tenure developers and the innovative ideas of

the short-term platform tenure developers. The short-term platform tenure developers can offer

ideas for development that are new and relevant and the long-term platform tenure developers

can help implement them. I therefore propose:

Hypothesis 2: Development group platform tenure diversity is positively associated with

the survival of an OSS project.

 34

3.3 IBUC Dynamism

A key component of an organization’s ability to create knowledge is having new

knowledge (Cohen et al. 1990). One way that an organization gets new knowledge is by gaining

new individuals who can access new knowledge. For example, organizational turnover can be

seen as providing “fresh blood” through which to gain a new outlook (Dalton et al. 1979; Staw

1980). Each new individual brings both some new knowledge and the ability to acquire

additional knowledge based on the unique knowledge that they bring. As new users come they

can use their unique perspective to provide innovative opportunities for development activity.

Even if the user suggests development opportunities that have been considered, they bring new

knowledge in that the developers learn an additional person is interested in the feature. For an

OSS project to continue to evolve software to meet changing user needs, it is critical that the

OSS project increase its knowledge base by continually acquiring more users. Each new request

from a user offers developers an occasion to explore novel and relevant development

opportunities. As an example of how IBUC dynamism can enable survival, consider how this

new IBUC member requests that the software developed by RapidMiner (YALE) be updated to

be compatible with advancements in another OSS project.

New IBUC Member “Hey all, I’m relatively new to RapidMiner, and so far I'm

exceedingly impressed with not only its available features but it's workflow model for setting up

experiments. The only catch: I'm currently a Weka user, and I've come to rely upon some of its

extensible modules, namely BioWeka and FuzzyWeka.”

Developer “I never tried to integrate a Weka module into RM and there is no

documentation about that (at least none I am aware of). But I also think that this should be

possible (with more or less work)”

 35

Based on these kinds of suggestions an OSS project will be able to continue to evolve to

meet user needs. For these reasons I propose:

Hypothesis 3: IBUC dynamism is positively associated with the survival of an OSS

project.

3.4 Summary

In Chapter 3 I developed a research model that focuses on the effect of an OSS project’s

absorptive capacity on its survival. This model focuses on the project’s ability to acquire

knowledge that leads to exploration in the form of innovative development opportunities.

Specifically, I explored the platform tenure diversity in the IBUC and the development group

and the IBUC dynamism as indicators of the project’s ability to acquire knowledge that allows

for innovative development opportunities. The next chapter presents a research model that

investigates the effect of OSS absorptive capacity on development group activity intensity. This

model examines the ability to acquire the kind of knowledge that leads to exploration and initial

development group interest, and also capabilities that enable the development group to exploit

knowledge.

 36

CHAPTER 4: HOW DOES ABSORPTIVE CAPACITY LEAD TO OSS DEVELOPMENT

GROUP ACTIVITY INTENSITY?

4.1 Overview

The model developed in Chapter 3 depicts how absorptive capacity facilitates OSS

project survival and, in particular, examined the organization’s exploration of current

development options. The model developed in this chapter is focused on understanding how

absorptive capacity enables the development groups of some projects to complete tasks related to

designing and developing a piece of software consistently. This model investigates an OSS

projects’ ability to have new ideas, exploration, and also the ability to consistently address the

mundane tasks, exploitation. Performance for this model then is development group activity

intensity.

This model includes the knowledge acquisition capabilities of the model developed in

Chapter 3 and incorporates additional constructs focused on exploitation. In particular, the

knowledge transfer capability is included and an additional characteristic of the project

participants that is expected to facilitate knowledge acquisition. The additional constructs are

important dimensions of absorptive capacity focused on exploitation that are expected to

facilitate development group activity intensity.

As discussed in Chapter 3 diverse and fresh knowledge is necessary to provide the

development group with ideas for needed features or bugs to be fixed, and methods to implement

the ideas. However, in addition to the ability to acquire fresh and diverse knowledge, to exhibit

development group activity intensity the project must be skilled at assimilating and exploiting

knowledge. To assimilate knowledge so that it can be implemented, it must be transferred to the

development group. I therefore argue that the project’s knowledge transfer capability moderates

 37

the relationship between the IBUC knowledge acquisition and the development group activity

intensity.

4.1.1 Knowledge Acquisition And Development Group Activity

I consider the acquisition of knowledge types that affect the OSS project’s exploration

and exploitation in order to understand the effects of knowledge acquisition on development

group activity intensity. Specifically, I explore the types of knowledge that lead to the

identification of current and relevant software solutions, and facilitate the exploitation of

development skills needed to implement those solutions. As discussed in the previous chapter,

the freshness and diversity of the knowledge is important because it enables exploration,

especially in the form of the creation of current software ideas necessary for software

development in a dynamic environment.

In this model in addition to considering the diversity and freshness of knowledge, I

consider the applicability of knowledge as it affects development group activity intensity. I

consider the applicability of the knowledge because it provides the foundation necessary for the

ideas to be understood and implemented by the development group, which specifically facilitates

exploitation in the form of development group activity intensity.

As argued in the previous chapter, an OSS project’s ability to acquire diverse, fresh and

applicable knowledge is dependent on the characteristics of the knowledge base it possesses.

Therefore, I focus on characteristics of the participants in the OSS project that indicate the

characteristics of the knowledge base the project possesses. The development group and IBUC

platform tenure diversity represents the diversity of the knowledge base and the IBUC dynamism

 38

indicates the freshness of the knowledge base. The IBUC and development group relationships

with other OSS projects indicate the applicability of the knowledge base in the OSS project.

4.1.2 Knowledge Transfer And Development Group Activity Intensity

The knowledge transfer capability is vital in determining the degree to which the

knowledge acquired by the IBUC influences the ability of the development group to exploit

knowledge and lead to development group activity intensity. When the knowledge transfer

capability is strong, the IBUC will more easily be able to pass ideas to the development group.

The amount of overlapping knowledge held by the development group and IBUC is used

to understand the knowledge transfer capability of the OSS project because overlapping

knowledge facilitates knowledge transfer. As indicated in Chapter 2, the application type that

the project develops and the amount of communication between the development group and

IBUC signify the degree of overlapping knowledge between the development group and IBUC.

Figure 3 displays the research model investigated in this chapter. Each of the constructs and

relationships are elaborated upon below.

Insert Figure 3: Research Model-Level of Development Group Activity Intensity Here

4.2 Platform Tenure Diversity

 While a diverse knowledge base is expected to have positive effects on the survival of an

OSS project, the effects on development group activity intensity are expected to be more

complex. This section details the type of effect diversity should have on development group

activity intensity.

 39

4.2.1 IBUC Platform Tenure Diversity

 IBUC members who have used the OSS development platform for a long period of time

may encourage the project to be more like other OSS applications using the platform with which

they are familiar. Short-term IBUC members, who may be familiar with using proprietary

software, are likely to offer suggestions that would move the project to be more similar to other

proprietary applications. Thus, an IBUC that is diverse based on platform tenure is likely to have

a variety of distinct ideas concerning how the application should evolve to meet user needs. This

diversity can reveal itself when IBUC members submit feature requests. When an IBUC offers

inconsistent suggestions to the development group, the development group has the potential to be

conflicted concerning which path to follow. Conflict can lead to developers leaving the project

or not developing as much as they would if there was a consistent vision. In this way IBUC

tenure diversity limits the development group activity and so I propose:

Hypothesis 4: IBUC platform tenure diversity is negatively associated with development

group activity intensity.

4.2.2 Development Group Platform Tenure Diversity

Diverse ideas in a group can lead to conflict (Dreu et al. 2003). If an OSS development

group is diverse based on tenure they are likely to have access to a wide scope of knowledge

concerning development techniques and styles. When SourceForge started, developers familiar

with many programming techniques are likely to have joined. Some developers may have been

new to programming when SourceForge started and joined, but many more developers were

likely experienced developers and joined SourceForge. The experienced developers may have

been familiar with programming styles popular previously such as cobalt and linear

programming. In contrast, the set of developers that join the platform more recently, are likely

 40

dominated by new developers, and are more likely to be familiar with newer techniques

including using classes and Java. The ideas from the developers who joined SourceForge earlier

could conflict with the ideas of the newer developers and take extensive amounts of time for the

development group to resolve or lead to developers quitting the project. Consider the text below

where a new developer on a project attempts to start a new project because the developers who

have been on the project longer are not responsive to his desire to rework the project

architecture.

New Developer: “the [] leadership of Thormod have been very unreceptive to a variety

of proposals to rework the architecture over the past year.”[…] I have concluded that the best

hope for Thormod is to create a new project that starts with the existing code base but is

completely independent of the current Thormod project leadership.[…]”(Divitini et al. 2003)

Elliott and Scacchi (2003) document how conflicting opinions concerning the integration

of proprietary supporting software for the GNU Enterprise project result in online discussions

that last a day or more. Further, these discussions may not be handled effectively because the

computer-mediated technology used by the OSS development group reduces the ability of the

development group to resolve conflict (Dreu et al. 2003). With the limited ability to resolve

conflict, multiple ideas about the options for development styles and techniques can easily lead

to developers leaving the group (Jackson 1992; McCain et al. 1983). In an OSS environment

where participation is voluntary, developers can start a different version of the project for their

personal use, and if they do, the activity should decrease because the developers are no longer

making official contributions to the OSS project.

Diversity in development related knowledge might make it difficult to agree on an

overarching plan because the developer’s different backgrounds lead to different plans for

 41

development. An overarching plan enables the development group to understand the importance

of development tasks that are mundane. If developers have different plans for development,

although some tasks may get done, it will be difficult to get some of the more mundane tasks

completed because there is no larger vision that explains the importance of those tasks. This

should lead to low levels of development group activity intensity.

Many diversity studies have examined linear effects of diversity, but recent research

suggests that the relationship between diversity and performance is non-linear (Earley et al.

2000; Gibson et al. 2003; Vegt et al. 2005). Extreme levels of platform tenure diversity are

likely associated with special characteristics. OSS research points toward the fact that learning is

important in OSS communities, and new developers seek to learn from experienced OSS

developers (Ye and Kishida 2003). New developers bring innovative ideas about new

programming techniques. At times these ideas are appropriate and offer ways for the project to

create improved applications and therefore lead to activity. But, other times they are not

appropriate and may cause the project to split because of disagreement, for example. In these

cases if the long tenure developers disagree about the appropriate nature of the technique for the

project they can hinder the project from going in that direction. In this case, the short tenure

developers are likely hesitant to abandon the project because, if learning is important as prior

research suggests (Ye and Kishida 2003) they desire to learn from the long tenure developer(s).

So, if there are developers with long tenures on a project and very short tenure developers there

may be a hierarchy of control that minimizes the conflict resulting from platform tenure

diversity. In these cases the diversity can be effectively managed by allowing the innovation

from new developers when appropriate and offering learning opportunities to new developers.

 42

This logic suggests that high levels of platform tenure diversity should lead to high levels of

development group activity intensity.

Several OSS projects have a single developer; Capiluppi, Lago and Morisio (2003) find

that 49% of SourceForge projects in their random sample have a single developer. In these

projects conflict is not likely to slow development group activity. Other OSS projects represent

teams that work together off line and join the platform at the same time to develop an

application. These teams are not limited by the computer mediated communication available on

SourceForge as they seek to resolve conflict. In this case they are able to employ richer forms of

communication, such as face to face, that make it easier to resolve conflict (Poole et al. 1991).

Hence, when there is very low platform tenure diversity conflict should be very low or able to be

minimized and the development group activity intensity is expected to be high.

Based on the logic derived above I expect high diversity to yield high development group

activity intensity because of the ability to manage conflict and the importance of learning in the

OSS community. Medium values result in low development group activity intensity because of

high conflict and constraints on the ability to resolve conflict. Finally, low levels of platform

tenure diversity should lead to high development group activity intensity because of the limited

conflict. Taken together I expect a U-shaped pattern where extremely low and high levels of

platform tenure diversity are associated with high development group activity intensity and

medium values have low development group activity intensity. Therefore, I propose:

Hypothesis 5: Development group platform tenure diversity has a quadratic association

with development group activity intensity.

 43

4.3 Relationship Density

Relationships with other organizations represent channels through which an organization

can acquire knowledge (Cohen et al. 1990; Hippel 1994). Through relationships with other

organizations developing similar products, an organization can gather important knowledge

about success and failure in the industry. From such relationships, an OSS project can learn

about successful programming techniques or opportunities to add features. After learning the

programming technique, the development group can add more features and fix more bugs, which

is an increase in development group activity. Thus, the knowledge acquisition capability

reflected in relationships with other OSS projects should lead to development group activity

intensity.

4.3.1 IBUC Relationship Density

An IBUC member is able to participate in more than one OSS project. Participation with

an OSS project indicates an IBUC relationship with the project. IBUC relationships with other

OSS projects suggest increased IBUC familiarity with OSS applications. Familiarity with OSS

projects enables the IBUC to acquire knowledge about potential features that are easier for

developers to develop, when compared to features that the IBUC experiences using proprietary

software. When the IBUC requests a feature that has been implemented in another OSS

application, it is easier for the development group to develop because the development group can

re-use the code from the original project. For instance, an IBUC member suggested that the

development group on the project ZK on SourceForge write “not just to Dhtml but to Flash” and

look at code from OpenLaszlo, another project on SourceForge to find an example of how to

write to flash. Thus, IBUC knowledge from relationships with other OSS projects facilitates the

addition of features, i.e., it amplifies development group activity.

 44

In addition to feature suggestions that are easy to develop, IBUC relationships with OSS

projects are likely to lead to increased development group activity because of opportunities to

collaborate between two OSS projects. These opportunities are likely to be different from those

opportunities that the development group knows about. The set of OSS projects that an IBUC is

related to is apt to be driven by business context and so the IBUC relationships can provide

knowledge about potential collaborations between OSS projects that develop applications for use

by those in a particular business. For instance, instead of being related to projects that all use the

java programming language, as the development group may be, the IBUC could be related to

projects that provide software applications used by researchers. In this case, the IBUC is better

able to suggest features that enable software compatibility between software that researchers use.

Thus, IBUC relationships indicate a knowledge acquisition capability that provides opportunities

for activity that are likely to be different from the knowledge acquired by the development

group.

In summary IBUC relationships can facilitate opportunities for development that other

OSS projects can be leveraged to implement, and are distinct from ideas the development group

has considered. Based on this logic I propose:

Hypothesis 6: IBUC relationship density is positively associated with development group

activity intensity.

4.3.2 Development Group Relationship Density

Those who perform the same job across shifts in a manufacturing facility can increase

performance by having relationships with each other (Epple et al. 1991). The benefits of

relationships between workers on different shifts are derived because the workers exchange

 45

knowledge about how to improve performance and I assert that there are similar benefits for

developers who have relationships across OSS projects. Development group relationships

indicate the ability to acquire knowledge focused on software development from other projects.

Grewal et al. (2006) document how OSS developers participating on multiple projects, because

they represent channels of knowledge flow between projects, can lead to a higher number of

CVS commits.

OSS development group relationships with other OSS projects can easily lead to the

acquisition of knowledge about software development. Specifically, the development group can

acquire knowledge related to success and failure using programming techniques, resources and

developer skills. Knowledge from other OSS projects is likely to be especially relevant because

the source code is accessible, which may offer insights into how to add features and correct bugs.

In addition, development group relationships with other projects may identify the skills

possessed by developers on other projects. Such knowledge is critical for identifying new

developers with specifically needed development skills. These developers may be recruited, thus

leading to increased development group activity.

The acquisition of knowledge related to software development styles, developer skills

and resources, facilitated by project relationships, enables the development group to add features

and fix bugs. Thus, development group relationships reflect a knowledge acquisition capability

that is likely to lead to development group activity. So I propose:

Hypothesis 7: Development group relationship density is positively associated with

development group activity intensity.

 46

4.4 IBUC Dynamism

The dynamism of an IBUC is a reflection of the degree of change that occurs in its

membership. Over time after the initial release, the development group will implement all of

their ideas for the development of the software application. At this point the project could

become stagnant or unsure of the correct improvements or adaptations to make to the software to

keep it useful in the future or to other users. As the IBUC offers suggestions, the IBUC gives the

project new ideas for tasks to perform. These suggestions are drawn from different perspectives

compared to those already in the OSS project, and so there is an improved chance that these tasks

will represent new opportunities for development. This gives the development group an

opportunity to attempt development that is both new and useful, so they are likely to respond to

the requests of a dynamic IBUC. As the IBUC dynamism increases, the IBUC should be better

positioned to acquire knowledge that leads to higher levels of development group activity

because there will be new options for the development group to exploit their knowledge. Hence,

I propose:

Hypothesis 8: IBUC dynamism is positively associated with development group activity

intensity.

4.5 Application Type

A project that develops an application targeted to developers has an IBUC that is

composed of software developers. An example of an application targeted to developers is Pred.

Pred is a Java based graphic utility to find and edit Java property files. When the IBUC is

composed of software developers the IBUC members have computer based technical knowledge.

Subsequently, the common knowledge and shared cognitive structures of the development group

 47

and IBUC is greater for projects that develop applications targeted to developers than when the

project develops a software application that is not targeted to developers. When the IBUC and

development group have more overlapping knowledge, such as if the application is targeted to

developers, they have a shared “language” and therefore it should be easier for them to

communicate. Because the IBUC and the development group for more technical software have

shared language and cognitive structures, the transfer capability of these projects is expected to

be stronger. Thus it should be easier for an IBUC composed of software developers to make use

of their knowledge acquisition by transferring their knowledge to the development group. The

software application developed by the project therefore should affect the strength of the

relationship between IBUC knowledge acquisition capability and development group activity.

The IBUC is expected to have a broader set of knowledge than the development group

because the coordination costs for participation in the IBUC are lower than in the development

group. As a result the IBUC may have ideas for software enhancements that are different from

those that are in the development group. However, when the application type is for developers,

the development group should understand the requests from the IBUC better and therefore be

better prepared to address those requests. Therefore the IBUC and development group should be

able to work together easily to identify a broad set of development group activities that match the

skills and interests of the development group. In fact, the interaction of software developers in

the IBUC with the development group can explain the success of the most popular OSS projects,

such as Linux and Apache, because these are projects where the users are software developers.

Both projects benefit from the suggestions of IBUC members who, because of the nature of the

software developed, are technical. For these reasons I suggest:

 48

Hypothesis 9: The positive relationship between IBUC relationship density and

development group activity intensity will be stronger for application types that target developers.

Hypothesis 10: The positive relationship between IBUC dynamism and development

group activity intensity will be stronger for application types that target developers.

4.6. IBUC-Development Group Communication

Communication between the IBUC and the development group represents the project

knowledge transfer capability and may strengthen the relationship between IBUC knowledge

acquisition and development group activity. Such communication can alter the relationship

between IBUC knowledge acquisition and development group activity by allowing more IBUC

knowledge to reach the development group, and enabling the emergence of ideas that are the

result of the combination of IBUC and development group knowledge.

Higher levels of communication between the development group and IBUC facilitate

knowledge transfer – in essence, they enable higher levels of knowledge acquisition. Some

technical ideas are difficult to transfer and require repeated communication. For these kinds of

ideas more frequent IBUC and development group communication will increase the likelihood of

knowledge transfer to the development group and thus lead to development group activity.

Higher levels of communication between the development group and IBUC also allows

for the emergence of new knowledge that benefits from the unique knowledge in the two

participant sets. Consistent with Nambisan et al. (1999), I argue that innovation for OSS projects

occurs at the “confluence of business expertise and technical mastery.” In this way the

relationship between IBUC knowledge acquisition and development group activity will be

strengthened for projects that have higher levels of communication. I therefore propose:

 49

Hypothesis 11: IBUC-development group communication will positively moderate the

positive relationship between IBUC relationship density and development group activity

intensity.

Hypothesis 12: IBUC-development group communication will positively moderate the

positive relationship between IBUC dynamism and development group activity intensity.

In contrast to its effects on the relationship between IBUC dynamism and development

group activity, an increase in knowledge overlap between an IBUC with high platform tenure

diversity and a development group may intensify the negative effects of IBUC platform tenure

diversity. Knowledge transfer can have a negative effect on performance when the knowledge

transferred is inappropriate for and cannot be applied in the context (Baum et al. 1998). When

the knowledge is diverse and the transfer is strong it may be difficult for the development group

to ignore potential divergent paths introduced by the IBUC. In this case, the IBUC knowledge

acquisition could result in a forking of the project and the departure of some developers, thereby

suppressing activity. I therefore propose:

Hypothesis 13: The negative relationship between IBUC platform tenure diversity and

development group activity intensity will be more intense when there is strong IBUC-

development group communication.

Hypothesis 14: The negative relationship between IBUC platform tenure diversity and

development group activity intensity will be more intense for applications targeted to developers.

 50

4.7 Summary

 In Chapter 4 I developed a research model that describes the effect of an OSS project’s

absorptive capacity on its development group activity intensity. In this model, there are two

dimensions of absorptive capacity that were argued to influence development group activity

intensity: knowledge acquisition capability and knowledge transfer capability. Three

characteristics of participant sets were proposed as indicators of knowledge acquisition

capability because they are reflections of the knowledge base within the project. They are

platform tenure diversity, relationship density and IBUC dynamism. Hypotheses were

developed relating these participant characteristics to development group activity intensity. Two

indicators of an OSS project’s knowledge transfer capability were discussed as moderators of the

relationship between the IBUC enabled knowledge acquisition capability and development group

activity intensity. Application type and development group communication with the IBUC

indicate the knowledge transfer capability. The next chapter describes the research methodology

used for testing the research models presented in Chapters 3 and 4, and includes results from the

empirical study.

 51

CHAPTER 5: METHODOLOGY

This chapter presents the research methodology used to empirically test the research

model developed and hypotheses proposed in Chapters 3 and 4. It also presents the results of the

analysis. Section 5.1 outlines the methods for the study including details of models used, sample

selected, variable measurement and sensitivity analysis conducted. Section 5.2 discusses results

for models that focus on tasks closed, and Section 5.3 presents results based on change in lines of

code as the measure of development group activity.

5.1 Methodology Overview

Development group activity can be measured in multiple ways. In order to capture a

more complete picture of development group activity, the methods described in this section

explore two measurements of it. Development group activity is considered in terms of the tasks

closed and change in lines of code. Tasks closed and the changes in lines of code are used to

measure the development group activity because they capture different dimensions of it. Tasks

closed captures development group activity from the user’s perspective, but does not capture the

amount of resources or time used to complete the task. Closing a task could mean fixing a bug

by changing the spelling of a word in the code or it could mean creating many new lines of code.

Because it is not clear how much developer time is required for a task, closing tasks is not

always a direct representation of developer effort. While the change in lines of code is captures

more about the effort required from the developers, change in lines of code may not capture

evolution of the software from the perspective of the IBUC.

A pilot study was conducted to asses the viability of measuring the variables of interest

and to guide the final study. In particular, the pilot study was used to get an initial understanding

 52

of the relationships between the variables of interest and also to confirm the availability of data.

The pilot study included a sample of OSS projects from SourceForge and it was verified that all

measurements could be gathered. Most variables were examined in the pilot study empirical

analysis; the changes in lines of code and application type were not. During the pilot study,

logistic regression was used to examine the survival model developed in Chapter 3. Moderated

and linear regression were used for the development group activity intensity model developed in

Chapter 4.

Based on feedback received about the pilot study a Cox proportional hazard rate model

was used for the OSS project Survival model instead of logistic regression. The Cox

proportional hazard rate model allows an understanding of the richness in the continuous

outcome variable compared to using logistic regression that restricts the outcome variable to

being binary. The Cox model provides the conditional probability of OSS project death being

later than a specified time given the independent variable values. The Cox proportional hazard

rate model is used for both the tasks closed and the change in lines of code. The R Statistical

Package Version 2.2.1 is used for this analysis.

Consistent with the pilot study, to examine the development group activity intensity

model developed in Chapter 4, linear and moderated regressions are used for both the percentage

of tasks closed and change in lines of code. SPSS Version 14 is used for these regressions.

5.1.1 Sample Selection And Data Collection

The sample of OSS projects is selected in order to minimize the effect of factors outside

the focus of this research. I minimized the effect of the following factors: OSS development

platform, time since the OSS project registered on SourceForge, programming language, and

type of communication. This section describes each of these factors.

 53

Different OSS development platforms may facilitate development group activity more

than others based on the resources that the platform offers to developers and the ease of use of

those resources. For instance, a platform that facilitates communication between developers and

users by offering public forums may increase OSS project performance compared to a platform

that does not offer public forums. I include only projects registered on SourceForge in my

sample to control for the effect that the OSS development platform has on OSS project

performance. SourceForge is one of the most popular OSS development platforms.

SourceForge allows developers and users to observe other developer and user activities, send bug

reports, feature requests and patches, post to forums, launch new OSS projects and join existing

ones, coordinate and work jointly in specific OSS projects, and integrate the software they

produce into a larger piece of software.

The effect on OSS project performance that may be related to the time the OSS project

registered on SourceForge is minimized by selecting a sample of OSS projects registered on

SourceForge between June 2004 and August 2004. It was important to select OSS projects that

registered in a discrete time period in order to avoid the confounding effects due to a particular

event. For example, there may have been a surge in OSS interest related to the release of an

updated programming language package or proprietary releases such as when Netscape opened

some of its source code.

Some programming languages require more code to accomplish the same task and since I

consider change in lines of code as a measure of development group activity it is important to

control for the programming language. I select only projects that use the Java programming

language.

 54

Finally, I minimized the effects that may be due to the type of communication used

between the development group and IBUC. Only OSS projects that exhibited observable

knowledge transfer between the development group and IBUC on public forums are included in

the sample. A lack of observable transfer between the development group and IBUC in public

forums suggest that the OSS project primarily uses some other form of computer-mediated

communication. Because this study did not observe other forms of computer mediated

communication, such OSS projects would confound the results.

5.1.2 Observation Periods

 Archival data for each project is observed for the first 810 days after each project is

registered on SourceForge. Because OSS projects start on different days, the 810 days do not

correspond to the same calendar days for each project. In order to test for causation, it is

beneficial to observe the independent variables in a time period that precedes the time period in

which the dependent variables are observed. Therefore, there are two observation periods used

in this research. Period one is 180 days and starts the day the OSS project registers on

SourceForge. Otherwise stated, period one includes the first 180 days after the OSS project is

registered on SourceForge. Period one precedes period two and the independent variables are

observed during period one. Period two is 630 days. It starts on the 181
st
 day after the OSS

project is registered on SourceForge and ends on the 810
th

 day after it is registered on

SourceForge. The development group activity intensity variables are calculated based on events

that occur during period two. A graphical depiction of these periods is found in Figure 4.

 55

5.1.3 Dependent Variable

This section details the measurement of the dependent variables that represent

development group activity considered in this research. For the survival model developed in

Chapter 3 the outcome is time to OSS project death, and it is measured in terms of both tasks

closed and change in lines of code. For the model developed in Chapter 4 the outcome is

development group activity intensity. Development group activity intensity is measured in terms

of the percentage of tasks closed and the amount of change in lines of code. The details of each

of the measures of performance are discussed below.

As discussed above development group activity is considered in terms of the tasks closed

and change in lines of code. Tasks can be opened by users or developers on the project, and

include primarily features requests, support requests and bug reports, but there are occasionally

user or developer defined categories. After opened, tasks can be closed by developers. In order

to assess the change in lines of code all releases for all projects in the sample were downloaded

and analyzed. The lines of code are assessed using the software package Understand. For each

release of the project the Count Line Code field is used as a measure of the lines of code for that

release of that project. Change in lines of code is the difference in lines of code between two

releases.

Time To OSS Project Death. The time to OSS project death is parameterized by the

survival function which is the probability that the death of the OSS project is later than some

specified time. Both the time over which the OSS project is observed and the time of death for

the OSS project are needed to calculate the survival function.

An OSS project can fall into one of two categories that determine how the length of time

over which the OSS project is observed is measured. If the OSS project does not die while it is

observed, then the length of time over which the OSS project is observed is 810 days. 810 days

 56

represents the time the project that registered the latest was observed and so I observe 810 days

for all projects to be consistent. If the OSS project dies, then the length of time over which the

OSS project is observed is the number of days between the death of the project and the day the

project registered on SourceForge. Time to OSS project death is measured in terms of tasks

closed and changes in the lines of code. The use of each measure is elaborated below.

Determining the death of an OSS project is complex because, theoretically, at any time

the original or new developers can begin developing on the OSS project, thus bringing the

project back to life. Prior research has suggested that OSS project death can be determined

based on the length of time that a project is inactive and this dissertation follows this line of

research (Chengalur-Smith et al. 2003). The research assumes that a long inactive period

indicates that a project will not be active again in a later time period and is dead. A project is

inactive, likely because there is no developer or user interested in writing code or requesting

features concerning the OSS project. If an OSS project is inactive longer than the average

inactive period in my sample of projects plus two standard deviations, I assume the OSS project

is not likely to garner interest from developers or users in the future and is dead.

Time To OSS Project Death – Tasks Closed. When considering tasks closed, death of

an OSS project is defined as inactivity, no tasks closed in that OSS project, for 490 days. So,

when an OSS project does not complete any tasks over a 490-day period, the time of death is set

to the first day of that 490-day period. 490 days is used for a time period to determine death

based on analysis of the data for the projects’ typical inactivity periods. On average, based on

tasks closed, the projects are inactive for 70 days at a time and the standard deviation is 210

days. Therefore, if a project is inactive for the average number of days plus two standard

deviations, this research deems the OSS project dead.

 57

Time To OSS Project Death - Change In Lines Of Code. For change in lines of code,

death of an OSS project is defined as no change in lines of code in that OSS project for 350 days.

This death cut-off of 350 days is determined in the same way that the death cut-off is determined

for death using tasks closed. 350 is the average inactivity period based on changes in lines of

code plus two standard deviations. If a project has multiple streams, such as a client and server

all releases both from the server and client stream are included in this analysis to determine

inactivity periods.

Development Group Activity Intensity. The outcome variable for the linear and

moderated regression is development group activity intensity. It is a measure of how much

developer activity there is on the project in observation period two. This outcome is measured in

terms of both the percentage of tasks closed and change in lines of code as discussed below.

Development Group Activity Intensity – The Percentage Of Tasks Closed. The

percentage of tasks closed is measured as the percentage of tasks closed out of those available to

be closed during period two. This is similar to the measure that Stewart and Gosain (2006) use

as a measure of OSS project performance that they name tasks completed. They explore the

percentage of tasks closed over the life of the project, but this research considers only period

two. This research uses the term task closed and not completed to acknowledge that closing

tasks does not always indicate completion.

Development Group Activity Intensity – Change In Lines Of Code. The change in

lines of code is consistent with the measure that Fershtman and Gandal (2004) use for OSS

project performance. The number of lines of code in the release closest to, and before the start of

period two is subtracted from the lines of code in the release closest to, and before, the end of

period two to measure the change in lines of code. If there is no release before the start of period

 58

two, then the earliest release is used as the first release. If there are not two releases the change

in lines of code is zero. If there is no release after the start of period two then the change in lines

of code is zero. If an OSS project had releases that appeared to be in different streams, such as a

client and server, only one of the streams was used to measure the change in lines of code.

Using only one stream is consistent with the way Stewart et al. (2006) handle multiple

development streams under one OSS project on SourceForge.

5.1.4 Independent And Control Variables

 This section first discusses measurement of the independent variables that represent

knowledge acquisition capability. The independent variables include development group and

IBUC platform tenure diversity, development group and IBUC relationship density and IBUC

dynamism. Then I discuss two variables that measure the knowledge transfer capability; IBUC-

development group communication and application type. Finally I discuss the measurement of

the control variable, the number of project members.

Platform Tenure Diversity. Like other technologies, while SourceForge enables many

processes it also constrains the ways that these processes are accomplished. The SourceForge

platform represents a community and technological platform that facilitates the development of

norms for those who participate on SourceForge. The longer a person engages with SourceForge

the more a person’s thought patterns, languages and methods of software development will

become consistent with the norms common on SourceForge. A person with a shorter

SourceForge tenure is likely to have different ideas about software development norms compared

to a person with longer SourceForge tenure, as an example. For these reasons a diverse tenure

with SourceForge represents a diversity of knowledge.

 59

To calculate a measure of development group and IBUC platform tenure diversity, each

participant’s tenure is measured by his or her time with the SourceForge platform. Time with

SourceForge is measured by the number of years since each user registered on SourceForge.

IBUC platform tenure diversity is the variance of the time on SourceForge for the members of

the IBUC and development group platform tenure diversity is the variance of the time on

SourceForge for the developers.

Relationship Density. The number of relationships with other OSS projects measures

IBUC and development group relationship density. For the IBUC, it is the sum of the number of

OSS projects with which the IBUC has relations. If two IBUC members are related to the same

OSS project, the OSS project is counted once. A relationship between an IBUC member and an

OSS project is defined by the IBUC member developing within an OSS project or interacting

through SourceForge enabled computer mediation with an OSS project. This includes an IBUC

member submitting a bug to a project or requesting a feature. Relationships that are based on

computer-mediated communication with other OSS projects are observed in observation period

one. All relationships defined by development are observed December 2004, which is in period

one for all projects in the sample. The development group relationship density is calculated in

the same way the IBUC relationship density is calculated, but for the developers on the project

instead of the IBUC members.

IBUC Dynamism. IBUC dynamism is the number of members of the IBUC observed

during the first half of period one (the day the project registered on SourceForge and the 90 days

after the registration day) divided by the number of IBUC members during all of period one (the

day the project registered on SourceForge and the 180 days after the registration day).

 60

IBUC-Development Group Communication. Public forums for each OSS project are

explored because they are one way that the development group and IBUC communicate (Long et

al. 2005). A public forum is composed of one or more threads. A thread is composed of at least

one post, but may also contain response posts from the person who posted the original post or a

new person. A post is a message written by an OSS project participant that can then be seen by

anyone. A thread that contains a post from a developer and an IBUC member suggests

knowledge transfer between the development group and IBUC. All posts in threads that contain

a post from both the development group and IBUC during period one are counted.

Application Type. To identify whether OSS projects are designed to be used by

developers, I explore the topic field on SourceForge for each OSS project. If the topic is

development then I conclude the project is designed to be used by developers.

Number Of Project Members. This is the number of participants associated with the

project and includes both IBUC members and developers. SourceForge userids are used to

identify those who are a part of the IBUC. The IBUC for each OSS project is identified using

userids that reported bugs, requested features or support during observation period one. Those

listed as developers or administrators during December 2004 for the OSS project are excluded

from being a part of the IBUC and are identified as developers. Each OSS project in the sample

registered on SourceForge between June, 2004 and August, 2004 and so exploring the number of

developers in December 2004 suggests the number of developers after the OSS project has had

time to establish itself.

 61

5.1.5 Sensitivity Analysis

Sensitivity analysis is done to evaluate how robust the model is and in particular the

impact of choices made in the measurement of the variables. The effect of the time period over

which the variables are observed is considered by shifting time period two 1 month forward. No

difference in the results is found. Also, I examine whether the number of developers changes

over the observation period and find that the number of developers does not change for the

majority of the OSS projects in the sample.

5.2 Tasks Closed Results

The base data for the OSS projects are drawn from a database provided by SourceForge

to the University of Notre Dame. The sample restrictions above yield a sample of 92 projects

and descriptive statistics for the sample of 92 OSS projects were calculated. The analysis of the

distributions of variables identified several of the variables as skewed and 7 projects as outliers.

When examining the measure for IBUC-development group communication 5 projects were

outside of 2 standard deviations around the mean and were deleted from further analysis.

Similarly, one project was outside of 2 standard deviations based on the development group

relationship density and one was an outlier based on IBUC dynamism. These restrictions yield a

sample of 85 projects that are the focus of the analysis where tasks closed is used to measure

development group activity.

These projects represent the development of a broad range of application types (see Table

2 for detailed descriptions). Included in the sample are projects that develop applications to aid

in software development, management, statistical analysis, education, online sales and

entertainment. 16 (18.8%) of the projects develop applications where the software is designed to

assist with software development. Some of the applications replicate more traditional

 62

applications, such as one that replicates Microsoft Office. Other applications are developed to

work in conjunction with traditional applications. Examples include G4j, a product designed to

work with Gmail, and Amtu, which is intended to work with Amazon.

Descriptive statistics of the variables of interest for the 85 projects are shown in Table 3

(Table 7 for 73 projects). Many of the variables measured in this study were developed

specifically to explore the constructs in this model and have not been observed in prior studies.

For this reason the descriptive statistics of most of the variables cannot be compared with what

other researchers have found. Some variables are similar to those studied in prior research and I

discus how the variables I observe in this study compare to the observation of similar variables in

prior studies. I continue by comparing the number of developers and the percentage of tasks

closed observed in my sample compared with prior studies.

The number of developers on OSS projects using the SourceForge development platform

has been observed in prior studies. Crowston and Scozzi (2002), for example, examined a

sample of 7,477 OSS projects from SourceForge and found the mean number of developers to be

.9. Stewart and Gosain (2006) examined a much more restricted sample of 67 projects from

SourceForge. They restricted their sample to projects in the categories of communications or

multimedia, required the OSS projects to have at least 4 developers, and development group

activity in the current week. These restrictions led to a mean of 8.2 developers. Similarly,

Krisnamurthy (2002) observed a very restricted sample of 100 projects from SourceForge that

were the most active and in the mature stage. Krisnamurthy found the mean number of

developers to be 6.6. The different restrictions used to identify the sample of OSS projects leads

to different means for the number of developers.

 63

The mean number of developers for the 85 OSS projects in this research is 3.06. 44 of

the projects in this sample have 1 developer. When considering the restrictions used to gather

the current sample compared to restrictions used in prior studies the mean number of developers

is consistent with prior studies. Specifically the mean is higher than Crowston and Scozzi who

sampled all projects, but lower than the other two studies that used strict requirements to include

only high activity projects in the sample.

With respect to the percentage of tasks closed, few studies have observed this exact

measure, but as mentioned above Stewart and Gosain (2006) used a measure similar to the

percentage of tasks closed. The difference between their measure and the measure used in this

research is that Stewart and Gosain (2006) observed tasks closed across the OSS project’s entire

life span, while this work explored the percentage of tasks closed in period two. Stewart and

Gosain (2006) found the mean percentage of tasks closed to be .42, while this work found the

mean percentage of tasks closed to be .24 for 85 projects (.27 for 73 projects). The difference

between this work and that of Stewart and Gosain (2006) is likely the result of the stricter

sampling criteria Stewart and Gosain (2006) used to include active projects and also a result of

the difference in observation periods. The distribution of the percentage of tasks closed variable

is right skewed and so the variable is transformed. After an exponential transformation, the

value representing the level of skewness for the distribution of the percentage of tasks closed is

below the recommended value of 1.

 The correlation analysis, shown in Table 3, suggests that IBUC platform tenure diversity,

IBUC and development group relationship density and IBUC dynamism have strong positive

association with the percentage of tasks closed. In addition, the correlation analysis suggests

some interesting associations that were not expected. Development group relationship density is

 64

positively associated with IBUC platform tenure diversity, IBUC relationship density and IBUC

dynamism. Perhaps a development group with strong relationships is able to consistently attract

IBUC members with diverse backgrounds and strong relationships. Essentially, a developer

relationship with another OSS project represents a channel through which a potential IBUC

member can learn about the OSS project. Further, the number of project members is correlated

with many of the other variables. This is consistent with a resource based view that would

suggest more people provide more resources that can facilitate OSS project performance (Butler

2001). IBUC-development group communication is also positively correlated with both change

in lines of code and percentage of tasks closed. Finally, of note is the low correlation between

the two measures of development group activity; percentage of tasks closed and change in lines

of code. This indicates that there are two distinct types of activity that should be explored

separately.

5.2.1 Survival Analysis - Tasks Closed

 In observing the sample of 85 projects over the course of 810 days, 64 of them die, or

have a period of 490 days with inactivity. The other 21 projects never have a period of inactivity

lasting 490 days and therefore do not die during the time I observe them. The Kaplan-Meier

survival function is pictured in Figure 5. This figure displays that approximately 50% of the

projects are active a little over one year. This is consistent with the Stewart et al. (2006) finding

that most activity occurs before the 400
th

 day after the OSS project registers on SourceForge.

 The results of the Cox proportional hazards rate model are displayed in Table 5. Positive

coefficients indicate greater hazard of OSS project death, and so coefficients that have a negative

sign have positive effects on survival. This model provides evidence for a positive relationship

between IBUC platform tenure diversity and OSS project survival (Support for H1). There is

 65

also evidence for a positive relationship between IBUC dynamism and OSS project survival

(Support for H3). However, there is not evidence of the positive relationship between

development group platform tenure diversity and survival based on the percentage of tasks

closed.

5.2.2 Development Group Activity Intensity – The Percentage Of Tasks Closed

 Four ordinary least square regressions were examined to empirically explore the

development group activity intensity model developed in Chapter 4. The results of these

regressions are shown in Table 6. The first regression (Model A) examines the main effects

between the development group and IBUC knowledge acquisition capabilities and the

development group activity intensity measured by the percentage of tasks closed. Specifically,

Model A is used to test Hypotheses 4, 6 and 8 because they cannot be tested in the models that

include interactions. The effect of an interaction between the knowledge transfer capability,

measured by IBUC-development group communication, and the IBUC knowledge acquisition

capability on development group activity intensity measured by the percentage of tasks closed is

explored in the second regression (Model B). The third regression explores how application type

changes the effect of IBUC knowledge acquisition capability on development group activity

intensity measured by the percentage of tasks closed (Model C). Model B and C are useful to

understand if both knowledge transfer variables are needed. Specifically, they are used to

understand if adding the second knowledge transfer variable explains more variance in the

outcome than using only one knowledge transfer variable. The fourth (Model D) and final

regression includes all main and interaction effects. Assuming Model D explains more variance

than either Model B or C, it will be used to test Hypotheses 5,7 and 9-11. The main effect

relationships between development group characteristics and the outcome can be tested in the

 66

model with interactions because the development group characteristics are not included in

interactions.

 All four regressions satisfy the assumptions of the linear regression model. After

transformation, the skewness value was less than the recommended level of 1 for the dependent

variable, the percentage of tasks closed. The skewness value indicates that the transformed

distribution of percentage of tasks closed is not significantly different from being normally

distributed. I centered all variables to reduce the possibility of multi-collinearity resulting from

the inclusion of interaction terms for testing the moderation hypotheses. The model variance

inflation factors (all below 4) and the correlations between the independent variables were

observed and they suggest that the model does not have a problem with multi-collinearity. The

Durbin Watson value showed no evidence of serial correlation (under 3). Observation of the

residuals and Cook and White’s test suggest that the errors are normally distributed (Cook 1979;

White 1980).

 The first regression in Table 6, labeled Main Effects, is significant with a P-value .00 and

R-square 30%. The results of the regression show that IBUC platform tenure diversity,

development group relationship density, IBUC dynamism, application type and IBUC-

development group communication have statistically significant positive relationships with the

percentage of tasks closed (Significant – Wrong Direction H4, Support for H7 and H8).

Development group platform tenure diversity, IBUC relationship density and the number of

project members all have statistically insignificant relationships with the percentage of tasks

closed.

 The second regression in Table 6, labeled Moderated Effects IBUC-Development Group

Communication includes interactions between the IBUC knowledge acquisition variables and the

 67

measure of knowledge transfer, IBUC-development group communication. According to the R

squared, this regression is significant and explains 36% of the variance in the percentage of tasks

closed (p<.01). The change in R squared compared to the main effects model is significant

(p<.01). This model suggests that the relationship between IBUC relationship density and the

percentage of tasks closed is altered by IBUC-development group communication (Significant –

Wrong Direction H11). There is also evidence that IBUC-development group communication

alters the relationship between IBUC dynamism and the percentage of tasks closed (Significant –

Wrong Direction H12). There was not evidence that the relationship between the IBUC platform

tenure diversity and the percentage of tasks closed was changed by the IBUC-development group

communication.

A graphical depiction of the interaction between IBUC relationship density and IBUC-

development group communication was developed to further investigate this relationship. The

picture of this interaction in Figure 6 shows that for high IBUC-development group

communication, IBUC relationship density has a more steeply negative association with the

percentage of tasks closed compared to projects with lower IBUC-development group

communication.

Figure 7 depicts the interaction between IBUC dynamism and IBUC-development group

communication. IBUC dynamism has a positive association with the percentage of tasks closed

for projects with high and low IBUC-development group communication. However, smaller

increases in IBUC dynamism improve the percentage of tasks closed more in projects with low

IBUC-development group communication compared to projects with high IBUC-development

group communication.

 68

 The third regression in Table 6 includes interactions between the IBUC knowledge

acquisition variables and the measure of knowledge transfer, application type. It is significant

and explains 35% of the variance in the percentage of tasks closed according to the R squared.

According to the third regression application type alters the relationship that both IBUC

relationship density and IBUC platform tenure diversity have on the percentage of tasks closed.

Both interactions are significant (Significant – Wrong Direction H9 and Support H14) and the

change in R squared, compared to the Main Effects model is significant (p<.01). There was not

evidence that the application type moderated the relationship between IBUC dynamism and the

percentage of tasks closed.

 A graphical depiction of the interaction between application type and IBUC platform

tenure diversity is shown in Figure 8. For projects that develop applications designed for use by

developers there is a negative relationship between IBUC platform tenure diversity and the

percentage of tasks closed. However, for projects that develop applications for use by end-users

IBUC platform tenure diversity has a slightly positive effect on the percentage of tasks closed.

 Figure 9 displays the interaction between application type and IBUC relationship density.

It shows that for projects that develop applications for use by developers there is a positive

relationship between IBUC relationship density and the percentage of tasks closed. Yet for

projects that develop applications for use by end users IBUC relationship density has a negative

effect on the percentage of tasks closed.

 The final column in Table 6 shows the results of a regression with the percentage of tasks

closed as the outcome and all interactions and main effects. This model is significant and

explains 36% of the variance in the percentage of tasks closed (p<.01). The change in R between

this model and Model B and Model C is significant, suggesting Model D is a better fit than

 69

Model B or C (p<.05). Model D is used to test all hypotheses. This model provides support for

many of the same interactions as the previous models. The exception is the relationship the

interaction between IBUC-development group communication and IBUC relationship density

has on the percentage of tasks closed. It was significant when the application type interactions

were not in the model, but it is not significant when application type interactions are included in

the model.

5.2.3 Summary

 Although OSS has established itself as a key player in the software industry the factors

that allow these projects to perform well in terms of development group activity are unclear. By

drawing on an absorptive capacity perspective this section sheds light on the factors that lead to

performance in terms of the tasks closed for OSS projects. In summary, the analysis using the

percentage of tasks closed as the measure of development group activity provides evidence to

support the conceptual model and both research models developed in this dissertation. The first

column in Table 11 provides a summary of the hypotheses, and documents those hypotheses that

are supported by the analysis of the percentage of tasks closed as the measure of development

group activity.

5.3 Change In Lines Of Code Results

5.3.1 Survival Analysis – Change In Lines Of Code

The sample of 85 projects, discussed above, includes projects in various stages of

development. When projects are in some stages of the development process, although they may

accomplish tasks such as develop plans or manuals, they typically do not change the lines of

code. In the planning stage of development, projects are typically focused on project planning

 70

and design. In this case, because the goal of the project is not to produce source code, change in

lines of code is not an appropriate measure of performance. Therefore, when change in lines of

code is used as the measurement of development group activity intensity, projects that are in the

planning stage are not included in the sample. There are 10 projects in the planning stage. There

are 2 projects that do not have a stage listed and they are also eliminated, since their stage cannot

be determined. Subtracting those 12 projects yields a sample of 73 projects; it is used for the

analysis when change in lines of code is the measure of development group activity intensity.

Descriptive statistics of the 73 projects are shown in Table 7 and the correlations are in Table 8.

 In observing these 73 projects over the course of 810 days, 56 of them die, or have a

period of 350 days with inactivity measured by a lack of change in lines of code. The other 17

projects never have a period of inactivity lasting 350 days and therefore do not die during the

time observed. The Kaplan-Meier survival function is pictured in Figure 10. It displays that

approximately 50% of the projects last a little less than 100 days. This is an artifact of some

OSS projects making an initial release and then not releasing again. The flat portion of the

function toward the right side of the plot reflects the 17 OSS projects that last the full 810 days

of observation.

 The results of the Cox proportional hazards rate model are displayed in Table 9. Positive

coefficients indicate greater hazard of OSS project death. This model provides evidence for a

positive relationship between IBUC dynamism and OSS project survival (Support for H3). This

model also finds an unexpected significant relationship between the application type and OSS

project survival. There is not a relationship between the other variables and OSS project survival

measured by changes in lines of code.

 71

5.3.2 Development Group Activity Intensity – Change In Lines Of Code

 As in the exploration of development group activity measured by the percentage of tasks

closed, four ordinary least square regressions were examined to empirically explore the

development group activity intensity model measured by change in lines of code. The results of

these regressions are shown in Table 10.

 All four regressions satisfy the assumptions of the linear regression model. After

transformation, the skewness value was less than the recommended level of 1 for the dependent

variable, change in lines of code. As in the regression that explores development group activity

as the percentage of tasks closed, I centered all variables to reduce the possibility of multi-

collinearity resulting from the inclusion of interaction terms for testing the moderation

hypotheses. Because the independent variables are the same as when exploring development

group activity as the percentage of tasks closed, there is not a problem with multi-collinearity,

serial correlation and the distribution of errors.

 The first regression in Table 10, labeled Main Effects, is significant and explains 41% of

the variance according the R squared (p<.01). The results of the regression show that, as

hypothesized, there is a quadratic relationship between development group platform tenure

diversity and the changes in lines of code (Support for H5). Also, development group

relationship density has a positive association with changes in lines of code (Support for H7).

IBUC relationship density has a negative relationship with change in lines of code (Significant –

Wrong Direction H6). IBUC platform tenure diversity, IBUC dynamism and the knowledge

transfer variables, IBUC-development group communication and application type, do not have a

relationship with changes in lines of code that is significant. However, the number of project

members has a positive and significant relationship with changes in lines of code.

 72

 The second regression in Table 10, labeled Moderated Effects IBUC-Development Group

Communication includes interactions between the IBUC knowledge acquisition variables and the

measure of knowledge transfer, IBUC-development group communication. According to the R

squared this regression is significant and explains 58% of the variance in changes in lines of code

(p<.01). This model is significantly different from the main effects model and suggests that the

association of both IBUC relationship density (Significant – Wrong Direction for H11) and

IBUC dynamism (Support for H12) are altered by IBUC-development group communication.

There was not evidence that the relationship between the IBUC platform tenure diversity and

changes in lines of code was changed by the IBUC-development group communication.

 A graphical depiction of both of these interactions is developed to further investigate the

interactions. Figure 11 depicts the interaction between IBUC relationship density and IBUC-

development group communication. This graphic shows that for projects with both high and low

IBUC-development group communication higher IBUC relationship density leads to lower

changes in lines of code. When comparing high and low IBUC development group projects it is

clear that each additional unit of IBUC relationship density is associated with a larger decrease in

change in lines of code for projects with low IBUC-development group communication

compared to projects with high IBUC-development group communication.

 Figure 12 depicts how IBUC-development group communication alters the relationship

between IBUC dynamism and changes in lines of code. This graphic shows that there is a

positive relationship between IBUC dynamism and changes in lines of code for projects with

high and low IBUC-development group communication. But, a single increase in IBUC

dynamism increases changes in lines of code for projects with high IBUC-development group

communication more than for projects with low IBUC-development group communication.

 73

 The third regression in Table 10 includes interactions between the IBUC knowledge

acquisition variables and the measure of knowledge transfer, application type. The third

regression is significant and explains 45% or the variance in changes in lines of code (p<.01).

However, it does not suggest that application type alters any of the relationships between IBUC

knowledge acquisition capability and changes in lines of code.

 The fourth and final regression in Table 10 includes all main and interaction effects and

explains 64% of the variance in changes in lines of code according to the R squared (p<.01). The

change in R between this model and Model B and Model C is significant, suggesting Model D is

a better fit than Model B or C (p<.05). Model D is used to test all hypotheses. Many of the

relationships are consistent with what has been shown in the previous models, but there is one

exception. The interaction between application type and IBUC platform tenure diversity is

significant, and a graphical depiction of this relationship is developed. As above the main effects

are not interpreted.

 Figure 13 displays the interaction between application type and IBUC platform tenure

diversity. It shows that for applications designed for use by developers there is a positive

relationship between IBUC platform tenure diversity and changes in lines of code. However, for

applications designed for use by end-users IBUC platform tenure diversity has a negative effect

on changes in lines of code.

5.3.3 Summary

By using change in lines of code as the measure of development group activity this

section sheds light on the effects of absorptive capacity in OSS project performance. The second

column in Table 11 documents those hypotheses that are supported in the analysis of change in

lines of code as the measure of development group activity. This analysis, in conjunction with

 74

the analysis using percentage of tasks closed, enables a stronger understanding of the complex

relationships between OSS project absorptive capacity and these two measures of development

group activity. Chapter 6 continues by considering the difference between the results for the

model with change in lines of code as the measure for development group activity compared to

the results when the percentage of tasks closed is the measure of development group activity.

The difference between the two measures is used to frame the interpretation of the findings and

provide final conclusions.

 75

CHAPTER 6: DISCUSSION

 In this chapter, I conclude with a discussion focused on interpreting the results of the

empirical study using the theoretical frame developed in Chapter 3 and 4 as the lens. I then also

discuss the limitations of the dissertation. Finally, the key implications for theory and practice,

together with promising future research directions are highlighted.

6.1 Discussion Of Empirical Results

Despite the ubiquity of OSS development and the many kinds of roles people play in

OSS projects, there is a lack of theory to understand the characteristics and behaviors of OSS

project participants that lead to performance for OSS projects. The goal of this dissertation is to

use a knowledge lens to investigate the characteristics and behaviors of participants that lead to

OSS project performance. In doing so this dissertation seeks to extend the current understanding

of absorptive capacity by exploring the effect of absorptive capacity on OSS projects and how

OSS projects develop it. To achieve this goal, this dissertation develops a conceptual model that

focuses on two key sub-constructs of absorptive capacity; knowledge acquisition and knowledge

transfer. In addition to the development of the conceptual model, two research models are

developed and each is empirically tested using two separate measures of development group

activity. This section attempts to understand the empirical study using the theoretical models in

Chapter 3 and 4.

The overall empirical results provide support for the underlying thesis of the dissertation

that absorptive capacity is important in determining the level of development group activity in an

OSS project. Some results related to how absorptive capacity affects OSS projects are

unexpected. For instance, relationship density and knowledge transfer do not affect the

 76

percentage of tasks closed in the way the theory in Chapter 4 suggests. When the empirical

results are not consistent with the theory in Chapter 3 and 4 alternative explanations are

explored.

In order to develop alternative explanations for the inconsistent results several steps were

taken. The patterns of the unexpected results were considered to aid in the development of

alternative explanations. Further, additional data was analyzed for each project to facilitate a

rich understanding of the OSS projects and absorptive capacity. All threads related to the sample

of projects were downloaded and read. They were explored to decipher themes that enhance

comprehension of the empirical results. Specifically, each thread was summarized and then

threads that had similar summaries were grouped into themes. A similar process was undertaken

to analyze notes related to tasks opened for each project. Illustrative examples of the themes are

included in the discussion to foster a clear picture of the explanations.

I continue with a discussion that is organized as follows. First I interpret the empirical

examination of the survival model in Chapter 3. The empirical analysis of the intensity model in

Chapter 4 is presented next.

6.1.1 Interpretation Of The Survival Model

The theory in Chapter 3 suggests characteristics of the development group and IBUC

representing a knowledge base that enables exploration are expected to lead to survival. I argue

that after the initial release of the project, exploration facilitated by fresh and diverse knowledge

acquisition lead to survival for OSS projects.

As expected, the empirical results show that fresh knowledge is important for exploration

that leads to survival. IBUC dynamism has a positive effect on survival in terms of tasks closed

and lines of code added (H3 Table 5 and 9). Development group dynamism is not observed

because as discussed in Section 3.1, an empirical study by Madey et al. (2004) provides evidence

 77

that the members of the development group frequently do not change. This limits the fresh

software development knowledge that could be acquired through a new developer. However,

when the project is developing an application for use by developers, the IBUC includes

developers. In this case the IBUC can bring fresh software development knowledge about use of

the application and software development. This provides an explanation for why the empirical

results reveal that application type has a positive effect on survival (Table 5 and 9).

The empirical results provide a less consistent story concerning the effect of diverse

knowledge on survival. The empirical analysis indicates that development group platform tenure

diversity is not related to OSS project survival (H2 Table 5 and 9). The effect of team diversity

on performance can diminish over time (Pelled et al. 1999). Accordingly, one reason the

development group platform tenure diversity does not affect survival could be that since the

development group does not change membership, the diversity impacts the project soon after

initial registration and does not affect outcomes in later periods. IBUC platform tenure diversity

only affects survival when survival is measured by tasks closed (H1 Table 5 and Table 9). This

can be explained by the fact that when there are old and new IBUC members in the community

the long tenure IBUC members, who are immersed in the SourceForge development process,

encourage the short tenure IBUC members to submit tasks. However, overtime open tasks are

more likely not to require code compared to tasks opened soon after registration; for instance, in

later periods the tasks may focus on requests for documentation or help with usage. In addition,

tasks opened in later periods may not be interesting enough for developers to want to add code.

Developers often abandon projects or lose interest in them overtime as indicated by the fact that

so few projects survive, in terms of new releases, after one year (Stewart et al. 2006c). So, after

significant time passes since the project registers, the developers may suggest some other

 78

mechanism to close the task. For example, if the task is about a perceived bug in the application,

a developer may close the task by stating that it is not a bug, but simply the way the application

functions.

 In summary, the empirical analysis of the survival model reiterates the importance of

fresh knowledge for innovation and establishes the importance of fresh knowledge for OSS

projects. The effect of development group diversity may diminish over time and IBUC platform

tenure diversity seems to have an effect because of more senior IBUC members guiding newer

members to open tasks.

6.1.2 Interpretation Of The Intensity Model

A second model is developed in Chapter 4 to understand the antecedents of development

group activity intensity. Two models are needed because the expectation is that intensity and

survival have different antecedents. While the survival model focuses on knowledge acquisition

that enables exploration, the intensity model in Chapter 4 focuses on knowledge acquisition that

enables exploration and exploitation. It also includes knowledge transfer that facilitates

exploitation. Like for the model in Chapter 3, the empirical analysis for the intensity model

examines both change in lines of code and percentage of tasks closed as the outcome measure.

The results offer evidence that supports the intensity model. First, I discuss the variables that

represent exploration knowledge acquisition and then the variables that represent exploitation

knowledge acquisition. Then I discuss knowledge transfer and conclude with a dialogue about

unexpected results.

Two out of three variables indicating knowledge acquisition that enable exploration are

associated with development group activity regardless of the outcome measure. The first

exploration knowledge acquisition indicator, IBUC dynamism, positively influences both

measures of development group activity intensity (H8 Table 6 Model A and Table 10 Model A).

 79

But, the other variables representing knowledge acquisition exploration associated with

development group activity differ based on the outcome measure. IBUC platform tenure

diversity affects the percentage of tasks closed (H4 Table 6 Model A), while development group

platform tenure diversity affects change in lines of code (H5 Table 10 Model D). This pattern of

results imply user knowledge is more important for the percentage of tasks closed, since two

variables affecting this outcome are related to the IBUC, and software development knowledge is

more important for the change in lines of code.

The effect of exploitation knowledge acquisition on development group activity also

differs based on the outcome measure. Knowledge acquisition that facilitates exploitation is

represented by relationship density. The empirical analysis finds no evidence that relationship

density has a main effect relationship with the percentage of tasks closed (H6 Table 6 Model A

and H7 Table 6 Model D). In contrast, relationship density has a main effect relationships with

change in lines of code (H6 Table 10 Model A and H7 Table 10 Model D). While source code

from all OSS projects is available, a project is not possibly aware of the source code in all other

OSS projects. Relationship density can indicate the level of awareness a project has about source

code that is useful and available. This is because when a project is related to another OSS

project, project participants have knowledge about access to code that enables a certain function

because they use the other OSS application or develop it. Therefore, relationship density

represents software development knowledge. These results provide further evidence of the

importance of software development knowledge for change in lines of code and also suggest that

the percentage of tasks closed is only affected by exploration facilitated by IBUC knowledge

acquisition.

 80

The strong impact of user knowledge is represented by 2 out of 3 IBUC characteristics

having main effect relationships with the percentage of tasks closed. This can be explained by

the direct influence the IBUC has on this measure by opening tasks. The IBUC members open

63.4% (1,404 /2,213) of the open tasks associated with projects in the sample. Further, the only

IBUC characteristic that does not have a significant relationship with the percentage of tasks

closed can be considered a source of software development knowledge. Although IBUC

relationship density could indicate a source of user knowledge, as discussed above it also

represents a channel though which software development knowledge can enter the project.

The critical influence of software development knowledge on change in lines of code is

also evident. The empirical analysis shows that all of the variables indicating software

development knowledge, including IBUC relationship density, have main effect relationships

with the change in lines of code (Table 10 model D). This can be explained by the fact that each

change in the number of lines of code requires some software development knowledge.

Conversely, increases in the percentage of tasks closed do not always require software

development knowledge. Sometimes a task is opened in error by a user. A note attached to a

bug submitted by an IBUC member for the project Strustsbox exemplifies this phenomenon. It

mentions “Please close the bug – user error ☺. ” Another type of task that does not require

software development knowledge is one that requests information about how to find or use the

code. Consider the detail associated with an open task.

IBUC Member: Where is It? From reading the posts in this forum, I gather that there

are some people out there using CHADDB. However, I can't seem to find a place to download it.

Could you send me a download link?

 81

The interaction of IBUC knowledge acquisition and IBUC-development group

knowledge transfer also represents exploitation. In Chapter 4 I argue that the knowledge transfer

capability intensifies the effect of IBUC knowledge acquisition on development group activity

intensity. But, in general the empirical results suggest that high IBUC knowledge acquisition is

related to a lower percentage of tasks closed for high knowledge transfer projects compared to

low knowledge transfer projects (Figure 6, 7 and 8). In contrast, high IBUC knowledge

acquisition is related to higher change in lines of code for high knowledge transfer projects

compared to low knowledge transfer projects (Figure 12 and 13). Figure 11 reveals a similar

pattern although the depiction of the interaction is not as dramatic. Together the empirical

results point toward the fact that these interactions have different effects on development group

activity according to the outcome measure. This discussion continues by presenting explanations

for this difference.

Percentage of tasks closed includes a penalty for tasks that are not addressed. For

example, consider the situation where project A and B each close 2 tasks, and project A had 2

open and project B had 10 open. Project A has percentage of tasks closed equal to 100% and

project B has percentage of tasks closed equal to 20%. The difference between the percentage of

tasks closed measure for project A and B represents the penalty project B faces because of tasks

that are not addressed.

Because of the penalty the percentage of tasks closed is sensitive to too much knowledge

acquisition and transfer, but change in lines of code is not as sensitive. In essence when a project

has high knowledge acquisition and high knowledge transfer there are likely too many tasks open

that are not interesting to the developers. For instance, if there is high IBUC dynamism there are

likely many new users who submit inappropriate or uninteresting tasks. Consider the examples

 82

above where an IBUC member requested a bug be fixed that was not a bug, but user error. If

there is also strong knowledge transfer, the new IBUC members may believe that the developers

are interested in their opinions because they respond to their questions. Because they feel their

opinion is valued they are likely to open an increased number of tasks. Also, there can be too

much knowledge transfer that does not lead to task closure. In the case of high IBUC dynamism

the questions in the threads could focus on questions to help new users begin using the

application. This IBUC development group communication takes developer time away from

task closure. An example of this kind of thread is shown below.

IBUC Member: “I tried to run the Mugen.NET.exe file, but had an abnormal progran

termination error, and nothing else. Is this just a bug in the program, or some configuration

error? [If it's the config, what should I do to fix it?] Thanks and good luck with this.”

The only time knowledge transfer does not limit the effect of IBUC knowledge

acquisition on the percentage of tasks closed is when the IBUC knowledge acquisition is

represented by IBUC relationship density and knowledge transfer is measured by application

type. In this case an IBUC member is expected to have experience as a developer and also

experience using OSS applications. So, she is able to submit tasks that are interesting to the

development group and she does not have many basic user questions. In essence there is

consensus between the IBUC ideas for tasks to be completed and developer interest in

completing them.

The unexpected positive main effect relationship between knowledge transfer and

percentage of tasks closed further emphasizes the importance of consensus between the

development group and IBUC for increasing the percentage of tasks closed (Table 6 Model A).

The theory in Chapter 4 focuses on knowledge transfer as a way to intensify the effect of IBUC

 83

knowledge acquisition, but it can also alter the degree to which the IBUC members understand

the development group. For instance, the development group can manage the development

process through IBUC-development group communication. They can lead an IBUC member to

open tasks that are likely to be closed. This can explain knowledge transfer having a positive

relationship with the percentage of tasks closed. Consider the below illustration of this kind of

IBUC-development group communication.

IBUC Member: Currently it appears you can only chart 6 months, 1 year, 2 years, and

all data.. .is it possible to change it to a user defined period? Also can the candle charts be daily,

weekly etc? Great looking system overall !!!!

Developer: “A user-defined period for the charts is not currently possible, nor a different

period for the candle charts. I can add them in a future release, please open a feature request

…so I don't forget it.”

A final set of unexpected results relates to the direction of relationships. The original

hypothesis suggests IBUC relationship density has a positive effect on development group

activity, but the empirical analysis indicates IBUC relationship density has a negative effect on

the change in lines of code (H6 Table 10 Model A). The original theoretical development does

not consider the fact that the development group could be induced to develop on a linked project.

An examination of the threads uncovers that sometimes IBUC members are show interest in

attracting developers to other OSS projects. When developers join linked projects, the change in

lines of code on the original project is apt to decrease because the developers divide their time

between more projects. An example of an IBUC member attempting to recruit developers from

the jcrawler project is shown below.

 84

IBUC Member: “I like your code, it's clean and simple. Please consider joining the

Apache JMeter team and lending your help there. We're a small group and no one works on

JMeter as their job, so we could really use help, and anyone who takes an active role is going to

be able to get what they want done without too much interference from the developers who've

been there.”

A second result that is contrary to expectation based on the direction of the relationship is

the relationship between IBUC platform tenure diversity and percentage of tasks closed (H4

Table 6 Model A). The theory in Chapter 4 suggests IBUC platform tenure diversity decreases

intensity because the diverse IBUC offers divergent ideas that make it difficult for developers to

agree on a direction for development. However, a review of the tasks shows that many tasks that

the IBUC members submit do not change the direction of the project; in contrast, they tend to be

incremental adjustments. For example, bugs are an example of incremental adjustments that

usually do not change the direction of the project. 66% of the tasks that the IBUC opens are bug

reports. In this case a diverse IBUC can lead to an IBUC using the application in many ways

that produce multiple kinds of bugs providing a variety of opportunities for the development

group to sharpen their skills. The variety of open tasks is important so that developers at

different levels of expertise have challenging yet achievable opportunities to close tasks.

6.1.3 Summary Of Discussion

 The interpretation of the empirical results provides a nuanced story of the relationship

between OSS project absorptive capacity and OSS development group activity. Survival for an

OSS project whether based on change in lines of code or tasks closed have similar antecedents.

IBUC dynamism and application type affect survival in terms of lines of code and tasks closed

which indicates the importance of fresh knowledge for an OSS project. When considering the

intensity model, the results suggest that the degree to which a certain type of knowledge

 85

acquisition matters and the effect of knowledge transfer depend on whether the outcome is a

change in the number of lines of code or the percentage of tasks closed. Software development

knowledge is more important for change in lines of code. The penalty for not responding to open

tasks causes knowledge transfer to affect the percentage of tasks closed and change in lines of

code differently. Knowledge transfer tends to lead to a more positive relationship between IBUC

knowledge acquisition and change in lines of code and it leads to a less positive relationship

between IBUC knowledge acquisition and the percentage of tasks closed.

6.2 Limitations

Some limitations of this dissertation that suggest fruitful extensions to this research are

notable. Two limitations focus on the ability to generalize from the sample chosen and the

measurement of the variables. A final limitation relates to further understanding the

relationships that are not supported. Each limitation is discussed below.

Although SourceForge is one of the largest open source development platforms, there are

other OSS development platforms. Some projects do not use an OSS development platform that

other OSS projects use. The largest OSS projects, such as Linux and Apache, do not use

SourceForge. OSS projects that use other platforms are likely to have different characteristics

from those OSS projects that use SourceForge. For instance, OSS projects with corporate

funding may use development platforms that require financial resources, while OSS projects

with limited resources will use the free platform, SourceForge. If a project has financial

sponsors, those sponsors have opinions concerning development that outweigh and are not

necessarily in concert with IBUC opinions. For example, Google leverages OSS development

processes, but this project may not be as affected by an IBUC as projects on SourceForge. If a

project does not use a platform that connects many projects, the developers on that project are

likely to have fewer relationships with other projects. For these reasons it is not clear how well

 86

the model in this research applies to those projects that do not use the SourceForge development

platform or projects that have corporate sponsors. Future research should explore this model in

contexts beyond SourceForge.

Archival data operationalize the variables in this research, and so the data may not exactly

represent the theoretical constructs. Surveys allow for a stronger understanding of the theoretical

constructs and their relationships. However, this analysis is done at the level of the OSS project,

and it is difficult to acquire surveys from multiple participants in each OSS project for a large

sample of projects, and single source respondents have challenges related to single response

biases. A case study can shed additional light on the constructs and relationships this research

proposes.

Finally, the empirical analysis reveals several results that are contrary to expectations. While

I provide explanations for these results it is outside the scope of this work to test these

arguments. Future research is needed to explore the role of additional variables.

6.3 Implications For Theory And Practice

This dissertation advances the research on absorptive capacity by highlighting sub-constructs

that are important in an Internet based context marked by a dynamic environment. I present the

knowledge acquisition and knowledge transfer constructs as important for organizations seeking

to innovate in a dynamic context. Further, this dissertation demonstrates that these sub-

constructs affect performance directly and interactively. Also, it shows how knowledge transfer

can enhance or limit knowledge acquisition depending on the outcome of interest.

In addition, this research advances the line of research that seeks to understand the factors

that lead to improved OSS project performance in terms of development group activity. Prior

OSS research focuses almost exclusively on the development group when identifying factors that

 87

lead to development group activity (e.g. Roberts, et al. 2006; Stewart et al. 2006). This research

identifies the IBUC as a key set of participants that increases development group activity. In

particular, it identifies characteristics of the IBUC and development group and also interaction

patterns between the two that improve development group activity. While using an IBUC in

other development contexts is not specifically addressed in this research, this dissertation

suggests that other development processes can benefit from an IBUC.

Lastly, this dissertation has implications for practice. As OSS development begins to blend

with proprietary software development, managers need to know how the open source software

development works (Fitzgerald 2006). In particular, when managers consider paying open

source developers, they should be aware which developers are the most valuable. I am able to

inform a manager, based on the outcome that is of interest to him, of the types of participants that

he should target for participation and the behaviors he should encourage in an OSS project. For

instance, a manager could be interested in adding a lot of code because it is a new project and

many code intensive features need to be added. He should understand that the participants who

affect this outcome are those that have access to software development knowledge. Access to

development knowledge can obviously be attained through the development group and not so

obviously though the IBUC members with many relationships to other OSS projects. He should

also encourage the development of a strong knowledge transfer capability because it improves

the positive effects of IBUC knowledge acquisition.

If I consider a manager interested in closing tasks because her concern is in ensuring users of

the application feel their concerns are addressed, she should focus on attracting an IBUC that is

dynamic and diverse. Specifically, this manager should continually recruit new IBUC members

and also seek to maintain the long-term IBUC members. This manager should manage

 88

knowledge transfer capabilities and perhaps institute knowledge management procedures to

minimize the limitations that knowledge transfer can have on the positive benefits of IBUC

knowledge acquisition. Finally, a manger interested in survival should focus on creating a

dynamic IBUC by constantly recruiting new users to join the community and if funding allows,

the manager should try to recruit new developers.

6.4 Future Research Directions

OSS projects are on the forefront of leveraging the Internet for innovation, however there are

other examples of Internet use in innovative processes. IBUCs have emerged around a variety of

products beyond OSS, but the research to understand how an IBUC affects product development

is limited. For instance, although there are communities associated with Microsoft

(http://forums.microsoft.com) it is yet to be uncovered how an IBUC affects proprietary software

development. The effects of an IBUC in a proprietary setting can be different from the open

source setting given the hierarchy of control and the limited access to source code in most

proprietary software development. Even though there is a rich literature on how users affect

proprietary software development, an IBUC, as discussed above, is different from other user

groups, and the effect of an IBUC still needs to be further identified in the proprietary setting.

In addition to product development, internet based communities affect other outcomes, such

as sales and health management. Communities focused on media, including movies or books,

are likely to have effects on sales based on discussion about the media. There is evidence that

internet based community ratings of movies alter movie sales (Dellarocas 2003). This work can

be extended by examining how the characteristics of the internet based community offering the

recommendations alter sales. Similarly, there is evidence that the design of internet communities

can enable knowledge exchange for those seeking to improve their health (Ma et al. 2007).

 89

Exploration of the characteristics of internet support communities that improve the user’s

experience can enable managers of such communities to improve user satisfaction and increase

revenues from site development.

 90

Table 1: OSS Development Literature Review

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Understanding the Motivations, Participation, and
Performance of Open Source Software
Developers: A Longitudinal Study of the Apache
Projects (Roberts et al. 2006) Individual

Intrinsic and Extrinsic
Motivation, Education,
Use, Experience,
Status and Participation
(number of source code
contributions accepted)

Rank within
Apache Survey

They find developer
motivations are
interdependent and
that different
motivations have
alternative effects
on different
outcomes. Finally
they find past
success is an
indicator of
attracting developer
interest.

An Empirical Analysis of Economic Returns to
Open Source Participation (Hann, Roberts,
Slaughter and Fielding 2005) Individual

Volume of Software
Code Submissions and
Status in Apache

Increases in
Wages

Survey and
Archival Data

They use labor
economics to
understand why
developers
participate in OSS.

Motivation, Governance and the Viability of
Hybrid Forms of Open Source Software
Development (Shah 2006) Individual Governance

Developer
Participation

Qualitative
Interviews

A framework is
derived to
understand
motivations to
participate with a
focus on different
governance
structures.

 91

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Motivation of Software Developers in OS
Projects: An Internet-based survey of
contributors to the Linux kernel (Hertel et al.
2003) Individual

Identification as a Linux
Developer, Pragmatic
Motives, Tolerance of
Time Investment

Participant
Engagement,
Willingness to be
Involved in
Subsystem in the
Future, Lines of
Source Code and
Number of Patches
Accepted,
Satisfaction Survey

They draw on
volunteer, collective
action, small teams
and OSS anecdotes
to identify
motivations for
participation in OSS
development. Only
self efficacy lead to
more SLOC for a
developer.

Equilibrium Selection and Public Good Provision:
The Development of Open Source Software
(Myatt et al. 2002) Individual

Degree of Relatedness
of Projects, Optimism
versus Pessimism,

Participation in
OSS Development

Analytical
Modeling

Less able
programmers may
free ride on more
capable
programmers.
Asymmetries
between
programmers might
be explained to
generate integrated
public good
provision. Optimism
or pessimism may
influence success of
integrated or
separated projects.

 92

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Open Source Software User Communities: A
Study of Participation in Linux User Groups
(Bagozzi et al. 2006) Individual

Individual attitudes and
emotions and
perceptions about
control and LUG social
identity(cognitive,
affective and evaluative
social identity) -used
experience as
moderator

User Group
Participation Survey

They use Theory of
Planned Behavior
and model of goal
directed behavior to
understand the
factors that lead to
user group
participation.

The Architecture of Participation: Does Code
Architecture Mitigate Free Riding in Open Source
Development Model (Baldwin et al. 2006) Individual

Code Modularity and
Option Value

Developer's
incentive to join
and remain
involved in OSS
development effort
and decrease the
amount of free
riding in equilibrium

Analytical
Modeling

They base analysis
on private provision
of public goods.

Working for Free? Motivations for Participating in
Open Source Projects (Hars et al. 2002) Individual

Age, Sex, Motivations, Projects Worked on,
Paid by Commercial Sponsor, College
Degree, Professional Programming,
Student Survey

External rewards
seem to be more
salient than internal
rewards.

 93

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Why Developers Participate in OSS Projects: An
Empirical Investigation (Hann et al. 2004) Individual Exploratory Analysis Survey

Establish 5
functional
motivations.

The Impact of Ideology on Effectiveness in OSS
Development Teams (Stewart et al. 2006b;
Stewart et al. 2006d) Team

OSS Team Adherence
to OSS Ideology
Quality of Team
Communication and
Trust in the OSS Team

Team
Size, Team Effort,
Task completion
and Development
stage Survey

They find the norms
and values of the
larger OSS
community must be
fostered and
consistent task
communication
maintained for
projects to succeed.

Effective work practices for Software
Engineering: Floss Development: A Model and
Hypotheses (Crowston et al. 2005) Team

Organizational context
not explored (reward,
education and
information systems)
and group design (task
structure (coordination
and collective mind),
team composition and
team norms)

Team
Effectiveness
(taskoutput -
system quality,
individual
satisfaction,
continued
capability to work
together)
measured by level
of activity, number
of downloads,
development
status, user ratings

None
completed

They use team
effectiveness theory
(Hackman),
collective mind and
coordination.

 94

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

The social structure of Free and OSS (Crowston
and Howison 2004) Team Conceptual

Social Network
Analysis

Large teams are
less centralized.

Impacts of License Choice and Organizational
Sponsorship on Success in OSS Development
Projects (Stewart et al. 2006b) Project

License Choice and
Organizational
Sponsorship

Developer Activity
and User Interest Survey

Users are most
attracted to projects
that are sponsored
by non-market
organizations and
employ non-
restrictive licenses.
The influence of
licensing on
development activity
depends on what
kind of
organizational
sponsor a project
has.

 95

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

An Exploratory Study of Factors Influencing the
Level of Vitality and Popularity in OS Projects
(Stewart et al. 2002) Project

Organizational
Sponsorship, Target
Audience (developer
vs. end user), License
Choice and
Development Status

User Attention and
Developer Activity Survey

Vitality has a
significant impact on
popularity over time.
Otherwise stated,
the more active a
project is in terms of
making releases
and
announcements, the
greater the attention
from the community.
They found
sponsored projects
to have a better
success rate than
non-sponsored
projects.

The Moderating Role of Development Stage in
Affecting Free/Open Source Software Project
Performance (Stewart et al. 2006a) Project

Development Stage,
Trust and Shared
Ideology, [control
Administrator
Experience and Project
Age]

Number of
Developers, Task
Completion and
Perceived
Effectiveness Survey

They find the
relationship
between team
climate variables
and objective and
subjective outcomes
vary based on the
stage of
development.

From Planning to Mature: on the Determinants of
Open Source Take Off (Comino, Manenti and
Parisi 2005) Project

License Choice, Target
Audience is
Administrator

Development
Stage Archival Data

They find projects
that develop
software targeted to
more technical
users are more
successful.

 96

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Location, Location, Location: How Network
Embeddedness Affects Project Success in Open
Source Systems (Grewal et al. 2006) Project

Network
Embeddedness of
Projects and Project
Leaders

CVS Commits and
Number of
Commercial
Downloads Archival Data

There are different
factors that lead to
technical success
compared to
commercial
success.

The Determinants of Output per Contributor in
Open Source Projects: An Empirical Examination
(Fershtman et al. 2004) Project

License Choice,
Programming
Language, Audience
[control for OS, Multiple
or Single OS, Age of
Project, Application
Type, Programming
Language]

Output Per
Contributor
(sloc/contributor) Survey

Projects that use a
non restrictive
license have higher
mean SLOC,
number of
contributors and
sloc/contributor.
Projects that
develop software for
developers use less
restrictive licenses.

The Influence of Networking Governance Factors
on Success in OSS Development Projects
(Sagers 2004) Project

Restricted Access to
Team Membership,
Collective Sanctions
and Reputation

Age of Project,
Ratio of Total Bug
Reports and
Feature Requests
to Open Bug
Reports and
Feature Requests,
Perceptions about
Value,
Performance and
Utility Survey

He finds restricted
access to the
development team
improves
coordination within
OSS projects and
safeguards
exchanges among
project members.
He also finds the
importance of
reputation
minimizes conflicts
in OSS projects.

 97

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Membership Dynamics and Network Stability in
the Open-Source Community: The Ising
Perspective (Oh et al. 2004) Project

External Forces (IV)
and Network
Size(mediator) and
Connectivity(mediator)
Scale Free versus
Random

Network Stability
and Herding
Behavior Simulation

They use the Ising
Perspective and
Soft Systems
Method to develop a
model to understand
network stability in
OSS projects.

Open Source Software Projects as Virtual
Organizations: Competency Rallying for Software
Development (Crowston et al. 2002) Project

Availability of
Competencies
(popularity of
programming language,
intended audience,
developers)
Competency
Marshalling (number of
administrators and
developers and rank of
administrator) higher
activity[used project
lifespan as control]

Number of
Downloads, Page
Views,
Development
Status and
Intensity of Work
by Developers Archival Data

They find choosing
a popular
programming
language and
having a popular
administrator can
help a project be
more successful.

Survival of Open-Source Projects: A Population
Ecology Perspective (Chengalur-Smith et al.
2003) Project

Organizational Age,
Number of Core
Developers, Reliability
and Niche Strategy

Project Survival,
Reliability Between
Releases

(research in
progress -no
data)

This paper
highlights key
factors that should
lead to OSS project
survival by using an
ecology perspective.

 98

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

The Scope of Open Source Licensing (Lerner et
al. 2002a) Project Number of Developers Activity SourceForge

Commercial
operating systems
and projects for
developers use less
restrictive licenses
while projects for
end users use more
restrictive licenses.

From a Firm-Based to a Community-Based
Model of Knowledge Creation: The Case of the
Linux Kernel Development (Lee et al. 2003) Project

Criticism and Critical
Evaluation

Knowledge
Creation Case Study

They compare Linux
to traditional forms
of software
development to
identify a new
knowledge creation
model.

A case study of OSS development: The Apache
Server (Mockus et al. 2000) Project

Defect Density (defect per thousand lines of
code; defect per thousand deltas) and Time
to Repair Errors (depending on severity of
error), number of developers and
participants (bug reporters), number of
people who add features, number of people
who correct errors, number of features and
bugs, number of developers who do most
of developing, specialization (number of
people who work on a single module) Case Study

Apache developers
have similar
productivity levels to
commercial
developers. For
example 15
developers do 80%
of work.

Two Case Studies of OSS Development: Apache
and Modzilla (Mockus et al. 2002) Project

Same as Mockus et al. 2000 except
specialization Case Study

They study Modzilla
and Apache for 3
years.

 99

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

The FreeBSD Project: A Replication Case Study
of OSS Development (Dinh-Trong et al. 2005) Project Same as Mockus et al. 2000 Case Study

Focused on further
supporting or
contradicting
Mockus et al.’s
hypotheses. They
find a larger number
of developers did
most of the work for
FreeBSD compared
to Apache.

Community joining and specialization in OSS
innovation: a case study (vonKrogh et al. 2003) Project

Joining Script that includes actions – e.g.
Number of Emails Sent Before Users
Become Developers, Time Between First
Email and Being Given CVS access

Inductive Case
Study

From their study of
Freenet they find
developers and non
developers equally
likely to be
responded to and
new releases
brought new
participants

Evolution in OSS: A Case Study (Godfrey et al.
2000) Project Lines of Code, Functions, Files, Variables Case Study

The growth pattern
contradicts
Lehman's Laws.

 100

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

How open source software works: "Free" user-to-
user assistance (Lakhani et al. 2003) Project

Provision of field support -compared info
providers and seekers and frequent
providers to non frequent providers and the
same for frequent seekers and non
frequent seekers, considered time between
question and answer, consider time for
providers to prepare answer Case Study

People do mundane
tasks in OSS
because they learn
from doing them.

Essence of Distributed Work: The Case of the
Linux Kernel (Moon et al. 2000) Project

Modularity, Leadership, Incentives for
Sharing, Parallel Release, Testing and
Development Stream, Communities of
Practice Case Study

They focus only on
code writers and
take three
perspectives. Then
they present
implications for
virtual
organizations.

The Cathedral and the Bazaar: Musings on Linux
and Open Source from an Accidental
Revolutionary (Raymond 2000) Project NA

They Describe the development of
the Fetchmail project.

 101

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

The Ecology of Open Source Software
Development (Healy and Schussman
unpub)http://www.kieranhealy.org/files/drafts/oss-
activity.pdf Project

Developers, Downloads, Site Views,
Message Unique Author, CVS Commits Archival Data

All variables are
highly skewed and
characterized by
power law
distributions. Most
downloaded are
applications
designed for end
users. Most cvs
commits are system
level applications.
Downloads and site
views are not
correlated with
developer activity.
They suggest
professional core
developers, project
leadership and
hierarchy are key
factors in OSS
success.

 102

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Free/Libre Open Source Software: Survey and
Study (Ghosh 2002) Individual

Sex, Age, Education Level, Profession,
Marital Status, Number of Children,
Income, National Affiliation, Time Spent
Developing OSS, Time Spent Developing
Proprietary, Preferred Operating System,
Number of OSS projects Participated On,
Amount of Contact with other Developers,
Perceptions of Purpose of OSS
Development, Identification with Free or
Open Community Survey

They provide insight
into the fundamental
features of OSS.
They provide
information about
2,784 developers
and also distinguish
between Free and
OSS. They find
developers are
mostly male and
well educated.

What makes a Virtual Organization Work?
(Markus et al. 2000)

Virtual OSS
Organization

Motivations (reputation
etc.), Self Governance
(leadership, managed
membership, monitors
and sanctions, rules,
license and voting
procedures), Institution
Reputation,
Technology, Work
Structures and
Processes, Culture
(social and self control)

Functioning set of
virtual knowledge
workers Descriptive

They focus on
understanding how
to acquire, keep and
motivate knowledge
workers (especially
through means
other than money -
suggest leading
instead of
managing)

 103

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Open Source Software: Free Provision of
Complex Public Goods (Bessen 2001) OSS Community Application Type

Firm Participation
in OSS
development

Analytical
Modeling

Complexity makes
contracting difficult
and provides a
reason for firms to
contribute to OSS.

Cave or community? An empirical examination of
100 mature open source projects (Krishnamurthy
2002) Project NA Archival Data

They find most
projects are
developed by one
developer with little
discussion and
more developers
lead to more
downloads.

Defining OSS Success (Crowston et al. 2003) Project

System and Information Quality, Use, User
Satisfaction, Individual and Organizational
Impact, Number of Developers, Level of
Activity, Cycle Time, Employment
Opportunities, Individual Reputations,
Knowledge Creation

Literature
Survey

They expand on
Delone and Mclean
2003 to identify
success measures
for OSS projects.

 104

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Open Source Software and the "Private-
Collective" Innovation Model: Issues for
Organization Science (Von Hippel et al. 2003) Project Conceptual

Knowledge
Creation Theoretical

They suggest
motivations for
participation can be
explained by private
investment and
public goods theory.

The Power of Gifts: Organizing Social
Relationships in Open Source Communities
(Bergquist et al. 2001) OSS Community NA

Virtual
Ethnography

They discuss how
power is related to
gift giving and how
societies based on
scarcity use
exchanges and
abundance as signs
of power.

Striking a Balance between Trust and Control in
a Virtual Organization: A Content Analysis of
Open Source Software Case Studies (Gallivan
2001) OSS Community Cooperation, Reliable Performance

Content
Analysis of
Case Studies

They suggest social
and self controls
can be uses as a
substitute for trust.

Open Source Software Development and
Distributed Innovation (Kogut et al. 2001) OSS Community Conceptual

They discuss effect
of licensing,
modularity and
geographical
distribution on
innovation.

 105

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

OSS Development (Von Krogh 2003) OSS Community Conceptual

They give
description of OSS
and overviews when
and why it occurs.

Innovation by User Communities: Learning from
OSS (Hippel 2001) User Community Conceptual

He presents the
idea of users acting
as manufacturers in
the development of
products. He uses
OSS as an
example.

Open Source Software: A History (Bretthauer
2002) OSS Community Conceptual

They discuss GNU,
Berkley Software
Distribution and
Linux.

Gift economies in the development of OSS:
Anthropological reflections (Zeitlyn 2003) OSS project Conceptual

They suggest that
there are better
metaphors than
Raymond’s
Cathedral and
Bazaar -e.g.
anthropological.

 106

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

Permanently Beta: Responsive Organizations in
the Internet Era (Neff and Stark 2003) Project process

User Involvement Descriptive

They describe how
the internet fosters
innovation in a new
way.

Free Software Needs Profit (Ousterhout 1999) OSS Community NA Descriptive

OSS can be more
successful when
linked with a
corporate sponsor.

Understanding the Requirements for Developing
Open Source Software Systems (Scacchi 2002) OSS project NA Case Study

They focus on
requirements and
how the collection
and use of
requirements for
OSS may be
different than
traditional

A Framework Analysis of the OSS Development
Paradigm (Feller et al. 2000)

OSS
Phenomenon NA

Descriptive of
OSS

They develop a
framework based on
Zachman’s IS
architecture and
Checkland’s
CATWOE
framework from Soft
Systems
methodology to
analyze the open
source approach to
development.

 107

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

The Boston Consulting Group/OSDN Hacker
Survey (Lakhani, Wolf, Bates and DiBona 2002)

OSS
Developer/OSS
project

Motivations, Demographics and Developer
Profession Survey

They present a
study of developer
motivations,
demographics and
professions of
developers. They
find creativity lead to
more activity per
week.

Some Simple Economics of Open Source (Lerner
et al. 2002b) OSS project

Leadership, Developer Motivation,
Organization, Problem Type Case Study

They pose venture
capital as possible
outcome to OSS
developer
participation.

Coase's Penguin, or, Linux and the Nature of the
Firm (Benkler 2002) OSS Community

Modular, Small Modules, Low Cost
Integration Case Study

They suggest peer
production has
advantages over
hierarchies and
markets in matching
human capital to
tasks.

Who is an Open Source Developer (Dempsey et
al. 2002)

Linux
Contributors and
Contributions

Diversity of Contributors, Number of
Contributions Per Developer and License
Type Archival Data

Contributors come
from around the
world, and the rate
of contributions is
increasing.

 108

OSS Development Literature Review

Study
Level of
Analysis

Independent
Variables

Dependent
Variables Method Study Highlights

OSS as Lead User’s Make or By Decision: A
Study of Open and Closed Source Quality (Kuan
2002) OSS project

OSS or Proprietary
project

Bug Resolution
Rates Archival Data

They suggest OSS
is of greater quality
compared to
proprietary software
because developers
are users.

 109

Table 2: Project Descriptions

Project Name Description of Application

Agentfactory
The AgentFactory Framework provides tools for the fabrication and
deployment of intentional software agents.

Algobros3 AlgoBros3 is a platform independent MarioBros clone written in Java.

Amtu

The Amazon Merchant Transport Utility is a Java-based utility designed to
make posting files and receiving reports from Amazon's Merchants@
Interface as simple as dragging and dropping files into a directory.

Annoty Annoty is an annotation web service aimed at any educational environment.

Antbuildcreator
Build Creator is a plugin for Eclipse that adds a wizard for creating Ant build
files.

Argaut-xdbaudit

Argaut XDBAudit 1.8.3 scans corporate networks for Oracle and Microsoft
SQL Server databases, collecting usage statistics and license related
inventory audit information, including infrastructural metadata relating to
capacity and performance metrics.

Bbalc

BBalc provides chess-computer like functions such as analyzing the game
and generating/proposing actions. The modular design allows users to
extend existing analysis modules to fit their needs.

Bbweblog
BBWeblog is a simple, customizable Bulletin Board/Weblog web
application.

Calendartag

The calendar tag library provides a simple and easy way to generate an
interactive calendar in your Java enabled pages. The library provides quick
implementation and fully customizable look and feel.

Chaddb

CHADDB,the CHurch ADministration Database, is a table-driven church
management system that enables churches of any size or structure to
manage members through relationships. Web-enabled or run as native
application.

Churchinfo

ChurchInfo is a free church database network application. This membership
and management database is designed specifically to help automate the
operation of a church. It has features to track members, families, groups,
donations, etc.

Conges

Conges is a vacation management software. It permits employees to set
vacation period, to print customizable vacation paper and for the service
supervisor to modify or delete the vacation period entered by employees.

Cookxml

CookXml is a powerful dynamic XML data binding tool for Java. It is
designed to be easily extensible and yet simple to use, with advanced
exception handling. CookSwing and CookSwt are tag libraries for CookXml
to do XML->GUI (XUL) for Swing and SWT.

Css2xslfo
CSSToXSLFO is a conversion utility from CSS2 to XSL-FO, which can be
converted to PDF, PostScript, etc. It has special support for XHTML.

 110

Project Name Description of Application

Cubnc

CuBnc is a multisite bnc for ftp servers. It allows you to have multiple slave-
servers connected to one master. When you enter the master via normal
ftp, you see the slaves as dirs. When you enter such a dir, you become
logged in to the site.

Daffodilreplica

Daffodil Replicator is a powerful Open Source Java tool for data integration,
data migration and data protection in real time. It allows bi-directional data
replication and synchronization between homogeneous / heterogeneous
databases.

Delicious-java
Delicious-java is a Java API for interacting with the del.icio.us social
bookmarks service.

Donj7

It is a minimally multiplayer role-playing game that tries to reproduce an
actual Pen&Paper game, through massive use of dialog between players
and a game master.

Drinnovations

Drinnovations is an eclipse plugin for Tab Alerts. You will see "Tabs, Alert
Me!" for files and "Tabs, Folder Files" for folder on right clicking. It can tell
you each line you have tabs,remove, and refresh your files.

Epice

Web-based course management and communication tool for Instructors and
Students to use outside traditional classroom and office-hours.
Assignments, materials, notes, questions, submissions, and scores can be
up or downloaded providing 24/7 availability.

Eremise

The purpose of the E-Remise system will be to facilitate the proper
evaluation of large numbers of electronic assignments. Another purpose of
E-Remise is the archiving of source code and other work done by students.
It is useful for pedagogical reasons.

E-volve
An email client which focuses on sorting incoming emails for better email
management using classification algorithms.

Fddtools

FDDTools is a multi-platform application supporting Feature Driven
Development (FDD). The current version can be used to
create/edit/display/print FDD-style progress tracking diagrams as described
in the book "Java Modeling In Color With UML".

Fjep

Eclipse Plug-In for deploying a project into one "fat" executable jar file
containing all referenced libraries. References are taken from the project
settings, so no manual configuration is necessary.

Floranta

The Floranta libraries provide components for building Rich Client Wikis
using AJAX or Java. Floranta clients can be embedded in any webpage
(even plain html) and allow users to leave notes, images, cards, etc on the
pages. E.g.: http://www.floranta.com

G4j

G4J is a set of API that communicate to GMail. Use this API to login,
retrive/search/browse message, download attachment and do others action
on GMail account! An email application (Gmailer for java) is included to
demonstrate the usage of the API.

Gavamail

Gavamail is a POP3/IMAP server implemented in JAVA for reading your
gmail e-mail with your favorite mail client. Currently only POP3 is
implemented but I hope to implement IMAP too. Libraries provided by the
g4j and libgmail projects are used.

Gmf

GMF aims to provide a general framework to manage contents going a step
further of traditional CMS. GMF is oriented towards the management of an
IT department. One of its main goals is the complete implementation of the
ITIL specification.

 111

Project Name Description of Application

Heroarena

Hero Arena (HA) will be a turn based strategy game written as a Java
Application for a Windows OS. Development will be open to developers of
all ranges with hopes of improving skills and knowledge through working on
a fun, laid-back project.

Hidrosig

HidroSIG is a GIS that supports raster and vectorial maps with modules
oriented to the hydrological analysis, time series, remote sensing and more.
It has been made 100% in java using VisAD for data visualization and using
MySQL to store all data.

Hitman
Hitman is java based load testing tool for websites. It gives valuable
information about the response time when the number of hits increase.

Ivtk

The InfoVis Toolkit is an Interactive Graphics Toolkit written in Java/Swing
to ease the development of Information Visualization applications and
components.

Jasterisk

A set of JNI classes providing direct access to Asterisk PBX functionality
from Java. This is not a socket-level interface into the Asterisk manager app
but a true Java<->Asterisk integration at the Thread level.

Javamatch

JavaMatch is an engine that can search inside a runtime Java data
structures, and look for objects that best match the criteria that you specify.
The extensive query mechanism allows for highly customizable tuning of
your match queries.

Jcrawler
JCrawler is a perfect cralwing/load-testing tool which is cookie-enabled and
follows human crawling pattern (hit/second).

Jicengine

Java Instance Configuration Engine (JICE) is an XML-based tool for
constructing and configuring Java applications. The configuration of the
application is described in an XML file, which is then processed by JICE,
yielding the corresponding application.

Jmage

Jmage is a java based framework for dynamic image modification. It allows
configurable image filters to be applied on popular binary formats such as
JPG, GIF, PNG, and use the resulting images in your own application.

Jmathtools
Jmathtools, mathematical / scientific java stuff designed to be easily used
and modified, not really designed for high performance calculation.

Jphotos

This project is a Java Online Photo Album which offers the maximum in
flexibility, functionality, and ease of use. It aims to be an easily set up and
easily maintained CGI photo album for users with large numbers of photos
they want to display.

Jpo-eclipse Eclipse plug-in for Matrix One Java Program Objects.

Jregexptester

JRegexpTester is a standalone Swing application that helps you test regular
expressions with the Java standard API. The extracted data can be
modified with formatters similar to those used by sprintf. Since release 0.3,
it helps you manage CSV files too.

Junitrunner

Eclipse plugin to allow run/debug junit test method using context popup
menu. Method to launch is defined by cursor position. If cursor between
methods the whole junit class is launched. Till v1.2.0: Also allow to
run/debug class with main() method.

 112

Project Name Description of Application

Kasai

Kasai is a 100% Java based authentication and authorization framework. It
allows you to integrate into your application a granular, complete and
manageable permission scheme.

Kontent Kontent is a local content management system.

Lasersquad3d

Laser Squad 3D is a squad-based tactical pseudo-realtime strategy game. It
can be played either single player or two players over a network. It includes
different missions, weapons and equipment. Emphasis is on easy setup,
quick start, and enjoyment.

Lavadora

A Plug-in for the Eclipse Platform which allows to easy access, create and
deploy Web Services, and also to work with WSDL documents, browse and
publish own Web Service information in UDDI registries.

Ldapeclipse

An Eclipse plugin which provides functionality for working with LDAP
directories from within Eclipse. It is possible to view and edit data in multiple
directories and view the directory schema. The plugin features context
sensitive help.

Lpd

The Local Projects Database (LPD) is a web-based tool for managing
records on development assistance activities financed and/or implemented
by development partners. This java based application, allows inserting,
maintaining and exchanging activity data.

Megatrack
MegaTrack is a Java application for hurricane and tropical storm tracking for
Atlantic and eastern Pacific storms.

Micro-jabber

Jabber client libraries for light java devices such as mobile phones, it brings
instant messaging capabilities to every java phone (with support to MIDP),
but may be used for other applications! It uses a very tiny XML parser
crafted for this project.

Minpo

MINPO is a minimal java web-app, free to use as a starting point for a
larger, stand-alone web-app, providing a basic framework (using Struts),
persistence mechanism (using Hibernate), and portal GUI providing simple
user authentication and management.

Monsterjournal

The Monster Journal - An electronic journaling program to replace the paper
notebook. The Monster Journal provides the user a centralized, easily
accessible electronic notebook for storing thoughts, ideas, and answers to
questions.

Montag

Montag is a Web Services based system for interacting with XML
Databases that provide a Java implementation of the XML:DB API. So, it
permits heterogeneous SOAP-enabled clients, written for different platforms
and languages, to operate over XML Databases

Mscp
A server control panel like cpanel, but free for use and platform
independent.

Mstor
Mstor is a JavaMail local store provider based on the mbox email storage
format.

Mugen-net Mugen.Java or JMugen is 2D fighting game engine like Mugen

 113

Project Name Description of Application

Mywl

An Eclipse 3.0 compatible plugin which allows BEA's WebLogic Server (6.1,
7.1 and 8.1) to be managed from within eclipse and thus easily debug
deployed J2EE applications in BEA.

Nanodesigner

Nanodesigner is a software platform for research on molecular
nanotechnology. It has a plug-in architecture and will include tools for
molecular visualization & modelling, design of complex new molecules,
molecular dynamics,…

Na-worksheet

The NA_WorkSheet is a set of algorithms coded in Java that implements
various Numerical Analysis techniques. The tool may be used for graphing,
root finding, differentiation, integration, interpolation, linear systems solving,
and matrix operations.

Netpop

NetPop -- a Netscape / AOL Email Popper written in Java, much like
YPOPs! for Yahoo mail and Mr Postman for Hotmail, that allows anyone to
use a POP3 email client (Thunderbird, Eutora, Outlook, etc) with Netscape
and AOL webmail.

Ooo-tools

OOo Tools is a collection of tools that complement OpenOffice. The tools
include a Writer properties viewer, a modified word counter, and a
bibliography converter.

Ootpj

This project provides a web application, a stand-alone client, and a public
API for managing "Out of the Park" baseball simulation leagues. Each of the
interfaces (web, stand-alone, and API) provides full access to a huge
amount of statistical, ratings,

Openworkbench

Open Workbench is a desktop application for project management and
scheduling in which you can define a work breakdown structure, set
dependencies and resource constraints, assign resources to tasks, auto
schedule and then monitor progress.

Opsi

Opsi (open pc server integration) is a software management / deployment
system. It consists of: 1. automatic software deployment for win32 based
PCs 2. depotserver which holds the software packages, configuration infos
3. automatic OS-Installation

Osrecruiter

Java toolkit for creating and manipulating hr-xml (www.hr-xml.org) compliant
resumes. Users construct resumes as java objects and convert them to
.xml, .XHTML, or .pdf. Comes bundled with stylesheets and schema; also
allows users to define their own.

Passreminder

PassReminder is a free password manager. It KEEPS PASSWORDS
SECURE. Then it is easy to remember login and password for forum,
operating system, bank.

Php-java-bridge

An optimized, XML-based network protocol which can be used to connect a
native script engine with a persistent Java or ECMA 335 virtual machine. It
is more than 50 times faster than a SOAP-based protocol, faster and more
reliable than comm. via JNI.

Pred

PrEd is a Java based graphical utility to find and edit Java property files in
JAR, WAR, EAR and other kind of ZIP archives. It is the perfect tool for
customizing Java and J2EE application archives. Enjoy, Daniel Palomo van
Es.

Radioactive The first and only open source RFID software suite.

Remotecvs
A unique client-server combination allowing users to select their own build
settings and watch as the server produces their own CVS build.

 114

Project Name Description of Application

Schemeway

A set of Eclipse plugins for the Scheme programming language. Features a
powerful, fully extensible S-expression-based editor. Integrates seamlessly
with any Scheme interpreter.

Scotland-yard

This is a game of Scotland Yard, which has been coded in Java. The moves
of Mr. X are made by the program, while the human player makes the
detective moves. The game works fine on both Windows and Linux
platforms. However more work still needs to be done

Sg-ng

The SoftwareGroupNG project is an interactive website, targeted at bringing
to the foreground of the software industry, Nigerian developers who are
capable or are ready to learn to use the latest software technologies to
design, implement and deploy solutions.

Shelled

ShellEd is a superb shell script editor for Eclipse. The great benefit of this
plugin is the integration of man page information for content assist and text
hover.

Shop

SHOP (Simple Hierarchical Ordered Planner), JSHOP, and SHOP2 are
domain-independent automated-planning systems based on ordered task
decomposition, which is a type of Hierarchical Task Network (HTN)
planning.

Sokofinity

This is the Sokofinity project. The goal of this project is to recreate the
classic NES game DuckHunt, only this time in 3D with Virtual Reality. Using
an Infinity Box and Flock Of Birds positioning sensors, the game gets a new
dimension.

Sonia
SoNIA (Social Network Image Animator) is a Java-based package for
visualizing dynamic or longitudinal "network" data.

Spontane

Spontane is a 2d fast-paced fighting game, for play on your local computer,
LAN, or Internet, on any OS which runs Java. Similar to Nintendo's Super
Smash Bros.

Spring-rich-c

Java Swing application framework built on the Spring Framework with the
goal of simplifying whats required to build professional, enterprise-ready rich
client applications.

Strutsbox
StrutsBox is a visual Eclipse plugin toolkit for developing applications with
Jakarta Struts Framework, currently the most used J2EE/MVC framework.

Swinggestures

Swing Gestures is an extension for the Java Swing GUI's, that allows to add
mouse gestures to these interfaces in a generic, easy, platform independent
and easily extensible way.

Webrcp
WebRCP is a framework for launching Eclipse RCP-Applications with Sun's
Java Web Start. WebRCP supports the most common platforms.

Wsabi4axis

WSABI For Axis: A Java-based web application to manage Apache Axis
deployments. Allows users to monitor and configure CRUD SOAP-based
Web Services, Handlers (JAX-RPC and Axis), Global Configuration, etc.
using an intuitive GUI.

Xmlbeansplug
Plug-ins for a number of IDE's to support Apache XMLBeans. Currently
support is in development for Eclipse V3.0.

 115

Project Name Description of Application

Yale
Yale is a data mining, machine learning, knowledge discovery, business
intelligence, learning, preprocessing, validation,visualization tool.

 116

Table 3: Research Variable Descriptive Statistics (N=85)

Variable Minimum Maximum Mean
Standard
Deviation

Percentage of Tasks Closed 0.00 1.00 0.24 0.37

Change in Lines of Code 0.00 15596.70 335.45 1866.59

IBUC Platform Tenure Diversity (in years) 0.00 7.99 0.88 1.51

Development Group Platform Tenure
Diversity (in years) 0.00 20.23 1.19 3.26

IBUC Relationship Density 0.00 28.00 4.36 7.15

Development Group Relationship Density 0.00 18.00 2.54 3.54

IBUC Dynamism 0.00 3.67 1.48 0.72

IBUC-Development Group Communication *
IBUC Platform Tenure Diversity (in years)
(centered) -40.95 76.07 5.59 14.03

IBUC-Development Group Communication *
IBUC Relationship Density (centered) -84.33 707.27 37.71 106.40

IBUC-Development Group Communication *
IBUC Dynamism (centered) -8.76 32.44 1.56 5.27

Application Type * IBUC Platform Tenure
Diversity (in years) (centered) -1.35 2.37 -0.06 0.51

Application Type * IBUC Relationship Density
(centered) -4.49 13.48 0.24 3.01

Application Type * IBUC Dynamism
(centered) -0.42 0.75 -0.05 0.21

IBUC-Development Group Communication 2.00 55.00 7.76 10.06

Application Type 0.00 1.00 0.19 0.39

Number of Project Members 2.00 37.00 7.20 6.17

Notes:
N=85

 117

Table 4: Research Variables (N=85)

Variable Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pearson
Correlation 1.00

1 Percentage of Tasks
Closed Sig. (2-tailed)

Pearson
Correlation 0.03 1.00

2 Change in Lines of
Code Sig. (2-tailed) 0.77

Pearson
Correlation 0.37 0.16 1.00

3 IBUC Platform Tenure
Diversity (in years) Sig. (2-tailed) 0.00 0.14

Pearson
Correlation

-
0.02 0.00 0.09 1.00

4 Squared Development
Group Platform Tenure
Diversity (in years) Sig. (2-tailed) 0.88 0.97 0.39

Pearson
Correlation 0.20 0.25 0.44 0.05 1.00

5 IBUC Relationship
Density Sig. (2-tailed) 0.07 0.02 0.00 0.63

Pearson
Correlation 0.23 0.22 0.34 0.49 0.30 1.00

6 Development Group
Relationship Density Sig. (2-tailed) 0.03 0.04 0.00 0.00 0.01

Pearson
Correlation 0.27 0.06 0.39 0.15 0.30 0.19 1.00

7 IBUC Dynamism Sig. (2-tailed) 0.01 0.57 0.00 0.16 0.00 0.08

 118

Variable Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pearson
Correlation 0.12 0.53 0.06

-
0.04 0.33 0.08 0.00 1.00

8 IBUC-Development
Group Communication *
IBUC Platform Tenure
Diversity (in years)
(centered) Sig. (2-tailed) 0.29 0.00 0.58 0.74 0.00 0.45 0.97

Pearson
Correlation

-
0.02 0.53 0.21

-
0.03 0.60 0.09 0.10 0.50 1.00

9 IBUC-Development
Group Communication *
IBUC Relationship Density
(centered) Sig. (2-tailed) 0.82 0.00 0.06 0.77 0.00 0.40 0.35 0.00

Pearson
Correlation

-
0.09 0.49 0.01 0.05 0.21 0.05 0.06 0.49 0.37 1.00

10 IBUC-Development
Group Communication *
IBUC
Dynamism(centered) Sig. (2-tailed) 0.39 0.00 0.94 0.67 0.05 0.67 0.59 0.00 0.00

Pearson
Correlation

-
0.20

-
0.08

-
0.18 0.12 0.12 0.25

-
0.03 0.06 0.04 0.06 1.00

11 Application Type *
IBUC Platform Tenure
Diversity (in years)
(centered) Sig. (2-tailed) 0.07 0.44 0.10 0.27 0.28 0.02 0.76 0.60 0.73 0.57

Pearson
Correlation 0.13

-
0.14 0.10 0.08 0.09 0.24

-
0.02

-
0.04

-
0.21 0.03 0.66 1.00

12 Application Type*
IBUC Relationship Density
(centered) Sig. (2-tailed) 0.22 0.21 0.39 0.48 0.41 0.03 0.84 0.75 0.06 0.80 0.00

Pearson
Correlation

-
0.13

-
0.02

-
0.04 0.00

-
0.03 0.05

-
0.36 0.12 0.12 0.02 0.51 0.35 1.00

13 Application Type *
IBUC
Dynamism(centered) Sig. (2-tailed) 0.23 0.86 0.72 0.99 0.77 0.67 0.00 0.27 0.27 0.82 0.00 0.00

Pearson
Correlation 0.24 0.53 0.37 0.04 0.53 0.22 0.22 0.61 0.70 0.39 0.02

-
0.09 0.10 1.00

14 IBUC-Development
Group Communication Sig. (2-tailed) 0.03 0.00 0.00 0.70 0.00 0.04 0.05 0.00 0.00 0.00 0.84 0.44 0.37

 119

Variable Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pearson
Correlation 0.19

-
0.06

-
0.10

-
0.07 0.09

-
0.01

-
0.18 0.02

-
0.06 0.10

-
0.18 0.13

-
0.37

-
0.15 1.00

15 Application Type Sig. (2-tailed) 0.08 0.56 0.37 0.50 0.44 0.96 0.11 0.84 0.58 0.35 0.09 0.25 0.00 0.16

Pearson
Correlation 0.18 0.47 0.39 0.14 0.55 0.43 0.27 0.52 0.59 0.45 0.16 0.06 0.06 0.72 -0.08 1.00

16 Number of Project
Members Sig. (2-tailed)

0.10 0.00 0.00 0.22 0.00 0.00 0.01 0.00 0.00 0.00 0.15 0.61 0.56 0.00 0.47

Notes:
N=85

 120

Table 5: Survival –Tasks Closed

Variable Main Effects

IBUC Platform Tenure Diversity -.21*

Development Group Platform Tenure
Diversity .01

IBUC Dynamism -.6***

Application Type -.68*

IBUC-Development Group
Communication -.03

Number of Project Members -.02

R2 .24

Likelihood Ratio Test 23***

Notes:
N=85

* p<.1, **p<.05, ***p<.01

 121

Table 6: Development Group Activity Intensity – Percentage of Tasks Closed

Variable
Main

Effects
(Model A)

Moderated Effects
IBUC-Development

Group
Communication

(Model B)

Moderated
Effects

Application
Type

(Model C)

Moderated
Effects
IBUC-

Development
Group

Communication
Application Type

(Model D)

IBUC Platform Tenure Diversity (in
years)

.23* .18 .05 .02

Squared Development Group
Platform Tenure Diversity (in years)

-.13 -.11 -.12 -.1

IBUC Relationship Density -.12 .02 -.06 .01

Development Group Relationship
Density

.22* .15 .25* .19

IBUC Dynamism .26** .24** .3** .31**

IBUC-Development Group
Communication * IBUC Platform
Tenure Diversity (in years) (centered)

 .12 .11

IBUC-Development Group
Communication * IBUC Relationship
Density (centered)

 -.3* -.23

IBUC-Development Group
Communication * IBUC Dynamism
(centered)

 -.2* -.22*

Application Type * IBUC Platform
Tenure Diversity (in years) (centered)

 -.4** -.37**

Application Type * IBUC Relationship
Density (centered)

 .34** .27*

Application Type * IBUC Dynamism
(centered)

 .09 .13

IBUC-Development Group
Communication

.26* .37** .27* .35**

Application Type .3*** .31*** .21* .26**

Number of Project Members -.10 .01 -.06 .05

R
2
 .3 .36 .35 .36

F 4*** 3.77*** 3.6*** 3.77***

Notes:
N=85
* p<.1, **p<.05, ***p<.01

 122

Table 7: Research Variable Descriptive Statistics (N=73)

Variable Minimum Maximum Mean
Standard
Deviation

Percentage of Tasks Closed 0.00 1.00 0.27 0.38

Change in Lines of Code 0.00 15596.70 295.69 1855.47

IBUC Platform Tenure Diversity (in years) 0.00 7.99 0.96 1.58

Development Group Platform Tenure
Diversity (in years) 0.00 20.23 1.10 3.21

IBUC Relationship Density 0.00 28.00 4.58 7.31

Development Group Relationship Density 0.00 18.00 2.75 3.73

IBUC Dynamism 0.00 3.67 1.55 0.76

IBUC-Development Group Communication *
IBUC Platform Tenure Diversity (in years)
(centered) -41.33 72.10 5.58 14.46

IBUC-Development Group Communication *
IBUC Relationship Density (centered) -84.79 697.71 38.08 108.50

IBUC-Development Group Communication *
IBUC Dynamism (centered) -9.01 29.06 1.72 5.25

Application Type * IBUC Platform Tenure
Diversity (in years) (centered) -1.48 2.25 -0.07 0.55

Application Type * IBUC Relationship Density
(centered) -4.92 12.97 0.29 3.15

Application Type * IBUC Dynamism
(centered) -0.44 0.67 -0.06 0.23

IBUC-Development Group Communication 2.00 55.00 7.88 10.45

Application Type 0.00 1.00 0.21 0.41

Number of Project Members 2.00 37.00 7.15 6.14

Notes:
N=73

 123

Table 8: Research Variable Correlations (N=73)

Variable Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pearson
Correlation 1.00

1 Percentage of Tasks
Closed Sig. (2-tailed)

Pearson
Correlation 0.06 1.00

2 Change in Lines of
Code Sig. (2-tailed) 0.62

Pearson
Correlation 0.34 0.13 1.00

3 IBUC Platform Tenure
Diversity (in years) Sig. (2-tailed) 0.00 0.28

Pearson
Correlation 0.01

-
0.05 0.11 1.00

4 Squared Development
Group Platform Tenure
Diversity (in years) Sig. (2-tailed) 0.93 0.67 0.35

Pearson
Correlation 0.19 0.16 0.41 0.05 1.00

5 IBUC Relationship
Density Sig. (2-tailed) 0.10 0.19 0.00 0.70

Pearson
Correlation 0.23 0.24 0.34 0.56 0.31 1.00

6 Development Group
Relationship Density Sig. (2-tailed) 0.05 0.04 0.00 0.00 0.01

Pearson
Correlation 0.23 0.09 0.37 0.20 0.31 0.17 1.00

7 IBUC Dynamism Sig. (2-tailed) 0.05 0.46 0.00 0.09 0.01 0.14

 124

Variable Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pearson
Correlation 0.09 0.51 0.00

-
0.05 0.28 0.08

-
0.02 1.00

8 IBUC-Development
Group Communication *
IBUC Platform Tenure
Diversity (in years)
(centered) Sig. (2-tailed) 0.43 0.00 0.98 0.69 0.02 0.50 0.88

Pearson
Correlation

-
0.03 0.47 0.17

-
0.06 0.56 0.09 0.10 0.46 1.00

9 IBUC-Development
Group Communication *
IBUC Relationship Density
(centered) Sig. (2-tailed) 0.79 0.00 0.15 0.59 0.00 0.46 0.38 0.00

Pearson
Correlation

-
0.15 0.60

-
0.02 0.08 0.22 0.02 0.00 0.47 0.37 1.00

10 IBUC-Development
Group Communication *
IBUC
Dynamism(centered) Sig. (2-tailed) 0.20 0.00 0.84 0.53 0.06 0.87 0.99 0.00 0.00

Pearson
Correlation

-
0.21

-
0.07

-
0.21 0.12 0.12 0.24

-
0.03 0.07 0.05 0.05 1.00

11 Application Type *
IBUC Platform Tenure
Diversity (in years)
(centered) Sig. (2-tailed) 0.07 0.53 0.07 0.33 0.31 0.04 0.83 0.53 0.66 0.66

Pearson
Correlation 0.12

-
0.10 0.10 0.09 0.09 0.23

-
0.05

-
0.03

-
0.21 0.00 0.63 1.00

12 Application Type*
IBUC Relationship Density
(centered) Sig. (2-tailed) 0.30 0.39 0.41 0.45 0.46 0.05 0.70 0.81 0.07 0.97 0.00

Pearson
Correlation

-
0.14

-
0.04

-
0.03

-
0.04

-
0.07 0.05

-
0.36 0.12 0.12 0.03 0.49 0.33 1.00

13 Application Type *
IBUC
Dynamism(centered) Sig. (2-tailed) 0.25 0.73 0.81 0.74 0.58 0.68 0.00 0.33 0.31 0.82 0.00 0.00

Pearson
Correlation 0.22 0.51 0.34 0.03 0.51 0.22 0.22 0.57 0.69 0.35 0.03

-
0.09 0.10 1.00

14 IBUC-Development
Group Communication Sig. (2-tailed) 0.07 0.00 0.00 0.79 0.00 0.06 0.06 0.00 0.00 0.00 0.79 0.46 0.40

 125

Variable Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pearson
Correlation 0.19

-
0.06

-
0.11

-
0.06 0.10

-
0.01

-
0.21 0.04

-
0.06 0.12

-
0.19 0.13

-
0.40

-
0.15 1.00

15 Application Type Sig. (2-tailed) 0.10 0.64 0.34 0.62 0.40 0.92 0.07 0.76 0.60 0.32 0.11 0.26 0.00 0.19

Pearson
Correlation 0.16 0.56 0.40 0.16 0.62 0.46 0.30 0.52 0.66 0.42 0.15 0.03 0.04 0.78 -0.06 1.00

16 Number of Project
Members Sig. (2-tailed)

0.18 0.00 0.00 0.17 0.00 0.00 0.01 0.00 0.00 0.00 0.20 0.82 0.74 0.00 0.60

Notes:
N=73

 126

Table 9: Survival - Change in Lines of Code

Variable Main Effects

IBUC Platform Tenure Diversity -.10

Development Group Platform Tenure
Diversity .02

IBUC Dynamism -.44**

Application Type -.63*

IBUC-Development Group
Communication -.04

Number of Project Members .00

R2 .18

Likelihood Ratio Test 16.6***

Notes:
N=85

* p<.1, **p<.05, ***p<.01

 127

Table 10: Development Group Activity Intensity – Change in Lines of Code

Variable
Main

Effects
(Model A)

Moderated Effects
IBUC-Development

Group
Communication

(Model B)

Moderated
Effects

Application
Type (Model

C)

Moderated
Effects
IBUC-

Development
Group

Communication
Application Type

(Model D)

IBUC Platform Tenure Diversity (in
years)

-.09 .02 -.21 -.09

Squared Development Group
Platform Tenure Diversity (in years)

-.3** -.38** -.31*** -.38***

IBUC Relationship Density -.37** -.43*** -.31*** -.39***

Development Group Relationship
Density

.29** .47*** .35*** .53***

IBUC Dynamism .04* .11 -.02 .01

IBUC-Development Group
Communication * IBUC Platform
Tenure Diversity (in years) (centered)

 .09 .1

IBUC-Development Group
Communication * IBUC Relationship
Density (centered)

 .23* .29**

IBUC-Development Group
Communication * IBUC Dynamism
(centered)

 .43*** .42***

Application Type * IBUC Platform
Tenure Diversity (in years) (centered)

 -.26 -.25*

Application Type * IBUC Relationship
Density (centered)

 .1 .16

Application Type * IBUC Dynamism
(centered)

 -.1 .2

IBUC-Development Group
Communication

.2 .07 .18 .04

Application Type .03 -.02 -.1 -.2*

Number of Project Members .52*** .15 .58*** .18

R
2
 .41 .58 .45 .64

F 5.53*** 7.67*** 4.59*** 7.2***

Notes:
N=73
* p<.1, **p<.05, ***p<.01

 128

Table 11: Summary of Hypotheses

Hypothesis
Percentage of
Tasks Closed

Change in Lines
Of Code

H1: IBUC platform tenure diversity is positively
associated with the survival of an OSS Project.

Supported
(Table 5)

Not Supported
(Table 9)

H2: Development group platform tenure diversity is
positively associated with the survival of an OSS
Project.

Not Supported
(Table 5)

Not Supported
(Table 9)

H3: IBUC dynamism is positively associated with the
survival of an OSS Project.

Supported
(Table 5)

Supported
(Table 9)

H4: IBUC platform tenure diversity is negatively
associated with development group activity intensity.

Significant – Wrong
Direction

(Table 6 Model A)
Not Supported

(Table 10 Model A)

H5: Development group platform tenure diversity has
a quadratic association with development group
activity intensity.

Not Supported
(Table 6 Model D)

Supported
(Table 10 Model D)

H6: IBUC relationship density is positively associated
with development group activity intensity.

Not Supported
(Table 6 Model A)

Significant –
Wrong Direction
(Table 10 Model A)

H7: Development group relationship density is
positively associated with development group activity
intensity.

Not Supported
(Table 6 Model D)

Supported
(Table 10 Model D)

H8: IBUC dynamism is positively associated with
development group activity intensity.

Supported
(Table 6 Model A)

Supported
(Table 10 Model A)

H9: The positive relationship between IBUC
relationship density and development group activity
intensity will be stronger for application types that
target developers.

Significant – Wrong
Direction

(Table 6 Model D)
Not Supported

(Table 10 Model D)

H10: The positive relationship between IBUC
dynamism and development group activity intensity
will be stronger for application types that target
developers.

Not Supported
(Table 6 Model D)

Not Supported
(Table 10 Model D)

H11: The positive relationship between IBUC
relationship density and development group activity
intensity will be positively moderated by IBUC-
development group communication.

Not Supported
(Table 6 Model D)

Significant –
Wrong Direction
(Table 10 Model D)

 129

Hypothesis
Percentage of
Tasks Closed

Change in Lines
Of Code

H12: The positive relationship between IBUC
dynamism and development group activity intensity
will be positively moderated by IBUC-development
group communication.

Significant – Wrong
Direction

(Table 6 Model D)
Supported

(Table 10 Model D)

H13: The negative relationship between IBUC
platform tenure diversity and development group
activity intensity will be more intense when there is
strong IBUC-development group communication.

Not Supported
(Table 6 Model D)

Not Supported
(Table 10 Model D)

H14: The negative relationship between IBUC
platform tenure diversity and development group
activity intensity will be more intense for applications
targeted to developers.

Supported
(Table 6 Model D)

Significant –
Wrong Direction
(Table 10 Model D)

 130

Figure 1: Conceptual Model

 131

Figure 2: Survival Research Model

 132

Figure 3: Development Group Activity Intensity Research Model

 133

Figure 4: Observation Periods

 134

Figure 5: Percentage of Tasks Closed Kaplan-Meier Plot

 135

Figure 6: Percentage of Tasks Closed IBUC-Development Group Communication - IBUC
Relationship Density Interaction

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Low IBUC Relationship

Density

High IBUC Relationship

Density

P
e
rc

e
n
ta

g
e
 o

f
T

a
s
k
s
 C

lo
s
e
d

Low IBUC-Development

Group Communication

High IBUC-Development

Group Communication

Figure 7: Percentage of Tasks Closed IBUC-Development Group Communication - IBUC
Dynamism Interaction

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Low IBUC Dynamism High IBUC Dynamism

P
e

rc
e

n
ta

g
e

 o
f

T
a

s
k
s
 C

lo
s
e

d

Low IBUC-Development

Group Communication

High IBUC-Development

Group Communication

 136

Figure 8: Percentage of Tasks Closed Application Type - IBUC Platform Tenure Diversity
Interaction

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

Low IBUC Platform Tenure

Diversity

High IBUC Platform Tenure

Diversity

P
e
rc

e
n
ta

g
e
 o

f
T

a
s
k
s
 C

lo
s
e
d

End User Application

Developer Application

Figure 9: Percentage of Tasks Closed Application Type - IBUC Relationship Density
Interaction

-0.6

-0.4

-0.2

0

0.2

0.4

Low IBUC Relationship

Density

High IBUC Relationship

DensityP
e
rc

e
n
ta

g
e
 o

f
T

a
s
k
s
 C

lo
s
e
d

End User Application

Developer Application

 137

Figure 10: Change in Lines of Code Kaplan-Meier Plot

 138

Figure 11: Change in Lines of Code IBUC-Development Communication - IBUC
Relationship Density

-8

-5

-2

1

4

7

10

13

16

19

22

25

28

Low IBUC Relationship

Density

High IBUC Relationship

Density

C
h
a
n
g
e
 i
n
 L

in
e
s
 o

f
C

o
d
e

Low IBUC-Development

Group Communication

High IBUC-Development

Group Communication

Figure 12: Change in Lines of Code IBUC - Development Group Communication - IBUC
Dynamism

0

3

6

9

12

15

18

21

Low IBUC Dynamism High IBUC Dynamism

C
h
a
n
g
e
 i
n
 L

in
e
s
 o

f
C

o
d
e

Low IBUC-Development

Group Communication

High IBUC-Development

Group Communication

 139

Figure 13: Change in Lines of Code Application Type - IBUC Platform Tenure Diversity

-18

-13

-8

-3

2

7

12

17

22

27

32

Low IBUC Platform Tenure

Diversity

High IBUC Platform Tenure

Diversity

C
h
a
n
g
e
 i
n
 L

in
e
s
 o

f
C

o
d
e

End User Application

Development Application

 140

REFERENCES

Abelson, M., and Baysinger, B. "Optimal and Dysfunctional Turnover: Toward an

Organizational Level Model," Academy of Management Review (9:2) 1984, pp

331-341.

Bagozzi, R., and Dholakia, U. "Open Source Software User Communities: A Study of

Participation in Linux User Groups," Management Science (52:7) 2006, pp 1099-

1115.

Baldwin, C., and Clark, K. "The Architecture of Participation: Does Code Architecture

Mitigate Free Riding in the Open Source Development Model," Management

Science (52:7) 2006, pp 1116-1127.

Baum, J.A.C., and Ingram, P. "Survival-enhancing learning in the Manhattan hotel

industry, 1898-1980," Management Science (44) 1998, pp 996-1016.

Bergquist, M., and Ljungberg, J. "The power of gifts: organizing social relationships in

open source communities," Information Systems Journal (11:4) 2001, pp 305-320.

Bessen, J. "Open Source Software: Free Provision of Complex Public Goods," Research

on Innovation, pp. 1-27.

Bower, G., and Hligard, E.R. Theories of learning Prentice-Hall, Englewood Cliffs, 1981.

Bretthauer, D. "Open Source Software: A History," Information Technology and

Libraries (21:1) 2002, pp 3-11.

Butler, B. "Membership Size, Communication Activity, and Sustainability: A Resource-

Based Model of Online Social Structures," Information Systems Research (12:4)

2001, pp 346-362.

Chengalur-Smith, S., and Sidorova, A. "Survival of open-source projects: A population

ecology perspective," International Conference on Information Systems, Seattle

Washington, 2003.

Clark, H. Using Language Cambridge University Press, New York, 1996, p. 432.

Cohen, W., and Levinthal, D. "Absorptive Capacity: A New Perspective on Learning and

Innovation," Administrative Science Quarterly (35) 1990, pp 128-152.

Cook, R.D. "Influential Observations in Linear Regression," Journal of American

Statistical Association (74) 1979, pp 169-174.

Cramton, C.D. "The mutual knowledge problem and its consequences for dispersed

collaboration," Organization Science (12:3) 2001, pp 346-371.

Crowston, K., Annabi, H., and Howison, J. "Defining Open Source Software Project

Success," International Conference on Information Systems, Seattle, WA, 2003.

Crowston, K., Annabi, H., Howison, J., and Masango, C. "Effective work practices for

Software Engineering: Floss Development: A Model and Hypotheses " Hawaii

International Conference on System Science, Kona, Hawaii, 2005.

Crowston, K., and Scozzi, B. "Open Source Software Projects as Virtual Organizations:

Competency Rallying for Software Development," IEE Proceedings Software

(149:1) 2002, pp 3-17.

Dalton, D., and Todor, W. "Turnover turned over: An expanded and positive

perspective," Academy of Management. The Academy of Management Review

(4:000002) 1979, pp 225-235.

Dearborn, D., and Simon, H. "Selective Perception: A Note on the Departmental

Identifications of Executives," Sociometry (21:2) 1958, pp 140-144.

 141

DeCarolis, D., and Deeds, D. "The impact of stocks and flows of organizational

knowledge on firm performance: An empirical investigation of the biotechnology

industry," Strategic Management Journal (20:10) 1999, p 953.

Dellarocas, C. "The Digitization of Word of Mouth: Promise and Challenges of Online

Feedback Mechanisms," Management Science (49:10) 2003, pp 1407-1424.

DeLone, W.H., and McLean, E.R. "Information Systems Success: The Quest for the

Dependent variable," Information Systems Research (3:1) 1992, pp 60-94.

Dempsey, B.J., Weiss, D., Jones, P., and Greenberg, J. "Who is an Open Source Software

Developer?," Communication of the ACM (45:2) 2002, pp 67-72.

Dinh-Trong, T., and Bieman, J.M. "The FreeBSD Project: A Replication Case Study of

Open Source Development," IEEE Transactions on Software Engineering (31:6)

2005, pp 481-494.

Divitini, M., Jaccheri, L., Monteiro, E., and Traetteberg, H. "Open source processes: no

place for politics?," in: International Conference on Software Engineering,

Portland Oregon, 2003.

Dreu, C.D., and Weingart, L. "Task versus relationship conflict, team performance, and

team member satisfaction: A meta-analysis," Journal of Applied Psychology (88)

2003, pp 741-749.

Ellis, H.C. The Transfer of Learning MacMillan, New York, 1965.

Epple, D., L. Argote, and Devadas, R. "Organizational learning curves: A method for

investigating intra-plant transfer acquired through learning by doing,"

Organization Science (2) 1991, pp 58-70.

Ethiraj, S., Kale, P., Krishnan, M.S., and Singh, J. "Where do capabilities come from and

how do they matter? A study in the software services industry," Strategic

Management Journal (26:1) 2005, pp 25-46.

Feller, J., and Fitzgerald, B. "A framework analysis of the open source software

development paradigm," ICIS, Association for Information Systems, Brisbane,

Australia, 2000, pp. 58-69.

Fershtman, C., and Gandal, N. "The Determinants of Output per Contributor in Open

Source Projects: An Empirical Examination," Centre for Economic Policy

Research) 2004.

Fichman, R., and Kemerer, C. "The Illusory Diffusion of Innovation: An Examination of

Assimilation Gaps," Information Systems Research (10:3) 1999, pp 255-275.

Fitzgerald, B. "The Transformation of Open Source Software," Management Information

Systems Quarterly (30:3) 2006, pp 587-598.

Fussell, S., and Krauss, R. "Coordination of knowledge in communication: effects of

speakers' assumptions about what others know," Journal of personality and social

psychology (62:3) 1992, pp 378-391.

Gallivan, M.J. "Striking a balance between trust and control in a virtual organization: a

content analysis of open source software case studies," Information Systems

Journal (11:4) 2001, pp 277-304.

Ghosh, R.A. "Free/Libre Open Source Software: Survey and Study," in: Workshop on

Advancing the Research Agenda on Free/Open Source Software, Brussels,

Netherlands, 2002.

Giddens New Rules of Sociological Method Basic Books, New York, 1976.

 142

Godfrey, M.W., and Tu, Q. "Evolution in Open Source Software: A Case Study,"

working paper) 2000, pp 131-142.

Goldstein, I.L. "Training in work organizations," in: Handbook of industrial and

organizational psychology, M.D.D.a.L.M. Hough (ed.), Consulting Psychologists

Press, Palo Alto, CA, 1991.

Grant, R. "Prospering in dynamically-competitive environments: Organizational

capability as knowledge integration," Organization Science (7:4) 1996, pp 375-

389.

Grewal, R., Lilien, G.L., and Mallapragada, G. "Location, Location, Location: How

Network Embeddedness Affects Project Success in Open Source Systems,"

Management Science (52:7) 2006, p 1043.

Hann, I.-H., Roberts, J., and Slaughter, S. "Why Developers Participate in Open Source

Software

Projects: An Empirical Investigation," International Conference on Information Systems,

Washington DC, 2004.

Hann, I.-H., Roberts, J., Slaughter, S.A., and Fielding, R. "Economic Incentives for

Participating in open Source Software Projects," 23rd International Conference on

Information Systems, Barcelona, Spain, 2002, pp. 365-372.

Hars, A., and Ou, S. "Working for Free? Motivations for Participating in Open Source

Projects," International Journal of Electronic Commerce (6:3) 2002, pp 25-39.

Hertel, G., Niedner, S., and Herrmann, S. "Motivation of software developers in Open

Source projects: an Internet-based survey of contributors to the Linux kernel,"

Research Policy (32) 2003, pp 1159-1177.

Hippel, E.v. "Sticky Information and the Locus of Problem Solving: Implications for

Innovation," Management Science (40:4) 1994, pp 429-439.

Hippel, E.V. "Innovation by User Communities: Learning from Open Source Software,"

Sloan Management Review) 2001.

Iansiti, M., and MacCormack, A. "Developing Products on Internet Time," Harvard

Business Review (75:5) 1997, pp 108-117.

Katz, D., and Kahn, R. The Social Psychology of Organizations John Wiley and Sons,

New York, 1966, pp. 14-29.

Kogut, B., and Metiu, A. "Open source software development and distributed

innovation," Oxford Review of Economic Policy (17:2) 2001, pp 248-264.

Kogut, B., and Zander, U. "Knowledge of the Firm, Combinative Capabilities, and the

Replication of Technology," Organization Science (3:3) 1992, pp 383-397.

Krishnamurthy, S. "Cave or Community? An Empirical Examination of 100 Mature

Open Source Projects," in: working paper, 2002.

Krogh, G.v., Spaeth, S., and Lakhani, K. "Community, joining, and specialization in open

source software innovation: a case study," Research Policy (32) 2003, pp 1217-

1241.

Kuan, J. "OSS as Lead User’s Make or By Decision: A Study of Open and Closed

Source Quality " Open Source Software : Economics, Law and Policy, Toulouse,

France, 2002.

Lakhani, K., and vonHippel, E. "How open source software works: "free" user-to-user

assistance," Research Policy (32) 2003, pp 923-943.

 143

Lane, P., Koka, B., and Pathak, S. "The Reification of Absorptive Capacity: A Critical

Review and Rejuvination of the Construct," Academy of Management Review

(31:4) 2006, pp 833-863.

Lee, G., and Cole, R. "From a Firm-Based to a Community-Based Model of Knowledge

Creation: The Case of the Linux Kernel Development," Organization Science

(14:6) 2003, pp 633-649.

Lenox, M., and King, A. "Prospects for Developing Absorptive Capacity through Internal

Information Provision," Strategic Management Journal (25:4) 2004, pp 331-345.

Lerner, J., and Tirole, J. "The Scope of Open Source Licensing," in: working paper,

2002a.

Lerner, J., and Tirole, J. "Some simple economics of open source," Journal of Industrial

Economics (50:2) 2002b, pp 197-234.

Long, J., and Yuan, M. "Are All Open Source Projects Created Equal? Understanding the

Sustainability of Open Source Software Development Model," Americas

Conference on Information Systems, Omaha, Nebraska, 2005, pp. 980-990.

Ma, M., and Agarwal, R. "Through a Glass Darkly: Information Technology Design,

Identity Verification, and Knowledge Contribution in Online Communities,"

Information Systems Research (18:1) 2007, pp 42-67.

MacCormack, A., Rusnak, J., and Baldwin, C.Y. "Exploring the Structure of Complex

Software Designs: An Empirical Study of Open Source and Proprietary Code,"

Management Science (52:7) 2006, pp 1015-1031.

Mackay, W.E. "Diversity in the Use of Electronic Mail," ACM Transactionson Office

Information Systems (6:4) 1988, pp 380-397.

March, J. "Exploration and Exploitation in Organizational Learning," Organization

Science (2:1) 1991, pp 77-87.

March, J.G., and Simon, H.A. Organizations John Wiley and Sons, New York, 1958.

Markus, M.L., Manville, B., and Agres, C.E. "What makes a virtual organization work?,"

Sloan Management Review) 2000, pp 13-26.

Mauri, R.A. "Unstoppable Linux: A Computer Platform for the Whole World," Vital

Speeches of the Day (70), March 15, 2004 2004, pp 340-344.

Mockus, A., Fielding, R., and Herbsleb, J. "A Case Study of Open Source Software

Development: The Apache Server," Proceedings of the 22nd International

Conference on Software Engineering, ACM Press, Limerick, Ireland, 2000.

Mockus, A., Fielding, R.T., and Herbsleb, J.D. "Two Case Studies of Open Source

Software Development: Apache and Mozilla," ACM Transactions on Software

Engineering and Methodology (11:3) 2002, pp 309-346.

Moon, J.Y., and Sproull, L. "Essence of Distributed Work: The Case of the Linux

Kernel," First Monday (5:11) 2000.

Myatt, D., and Wallace, C. "Equilibrium Selection and Public Good Provision: The

Development of Open Source Software " Oxford Review of Economic Policy

(18:4) 2002, pp 446-461.

Norris, J., and Kamp, P.-H. "Mission-Critical Development with Open Source Software :

Lessons Learned," IEEE Software (21:1) 2004, pp 42-49.

Oh, W., and Jeon, S. "Membership Dynamics and Network Stability in the Open-Source

Community: The Ising Perspective " International Conference on Information

Systems, Washington, D.C., 2004.

 144

Orlikowski, W. "The Duality of Technology: Rethinking the Concept of Technology in

Organizations," Organization Science (3:3) 1992, pp 398-424.

Ousterhout, J. "Freesoftware needs profit," Communications of the ACM (42:4) 1999, pp

44-45.

Pelled, L.H., Eisenhardt, K., and Xin, K. "Exploring the Black Box: An Analysis of Work

Group Diversity, Conflict, and Performance," Administrative Science Quarterly

(44) 1999, pp 1-28.

Perkins, G. "Culture clash and the road to world domination," Software IEEE (16:1)

1999, pp 80-84.

Poole, M.S., Holmes, M., and Desanctis, G. "Conflict Management in a Computer-

Supported Meeting Environment," Management Science (37:8) 1991, pp 926-953.

Raymond, E. "The Cathedral and the Bazaar," 2000.

Reed, T.L. "Organizational Change in the American foreign service, 1925-1965 The

utility of cohort analysis," American Sociological Review (43) 1978, pp 404-421.

Ren, Y., Carley, K., and Argote, L. "The Contingent Effects of Transactive Memory:

When is it More Beneficial to Know What Others Know?," Management Science

(52:5) 2006, pp 671-682.

Roberts, J.A., Hann, I.-H., and Slaughter, S.A. "Understanding the Motivations,

Participation, and Performance of Open Source Software Developers: A

Longitudinal Study of the Apache Projects," Management Science (52:7) 2006, pp

984-1000.

Robillard, P. "The role of knowledge in software development," Communications of the

ACM (42:1) 1999, pp 87-93.

Rogers, E.M. Diffusion of Innovations The Free Press, New York, 1995.

Rosenkopf, L., and Nerkar, A. "Beyond local search: Boundary-spanning, exploration,

and impact in the optical disk industry," Strategic Management Journal (22:4)

2001, p 287.

Ryder, N. "The cohort as concept in the study of social change," American Sociological

Review (30:6) 1965, pp 843-861.

Sagers, G. "The Influence of Network Governance Factors on Success in Open Source

Software Development Projects," Twenty-Fifth International Conference on

Information systems, Washington D.C., 2004.

Scacchi, W. "Understanding the requirements for developing open source software

systems," IEE Proceedings on Software (149:1), February 2002, pp 24-39.

Shah, S. "Motivation, Governance and the Viability of Hybrid Forms in Open Source

Software Development," Management Science) 2006.

Staw, B. "The consequences of turnover; SUMMARY," Journal of Occupational

Behavior (1:4) 1980, pp 253-274.

Stewart, K., and Gosain, S. "The moderating role of development stage in free/open

source software project performance," Software Process: Improvement and

Practice (11:2) 2006a, pp 177 - 191.

Stewart, K.J., Ammeter, A.P., and Maruping, L.M. "Impacts of License Choice and

Organizational Sponsorship on User Interest and Development Activity in Open

Source Software Projects," Information Systems Research (17:2) 2006b, pp 126-

145.

 145

Stewart, K.J., and Ammeter, T. "An exploratory study of factors influencing the level of

vitality and popularity of open source projects," 23rd International Conference on

Information Systems, Barcelona, Spain, 2002, pp. 853-857.

Stewart, K.J., Darcy, D.P., and Daniel, S.L. "Opportunities and Challenges Applying

Functional Data Analysis to the Study of Open Source Software Evolution,"

Statistical Science (21:2) 2006c, pp 167-178.

Stewart, K.J., and Gosain, S. "The Impact of Ideology on Effectiveness in Open Source

Software Development Teams," Management Information Systems Quarterly

(30:2) 2006d, p 291.

Tornatzky, L., and Fleischer, M. The Processes of Technological Innovation Lexington

Books, Lexington, 1990.

Von Hippel, E., and Von Krogh, G. "Open Source Software and the Private-Collective

Innovation Model: Issues for Organization Science," Organization Science (14:2)

2003, pp 209-223.

Von Hipple, E., and Von Krogh, G. "Open Source Software and the Private-Collective

Innovation Model: Issues for Organization Science," Organization Science (14:2)

2003, pp 209-223.

vonKrogh, G., Spaeth, S., and Lakhani, K. "Community, joining, and specialization in

open source software innovation: A case study," Research Policy (32:7) 2003, p

1217.

Whang, S. "Market provision of custom software: Learning effects and low balling,"

Management Science (41) 1995, pp 1343-1352.

White, H. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct

Test for Heteroskedasticity," Econometrica (48) 1980, pp 817-838.

Ye, Y., and Kishida, K. "Toward an Understanding of the Motivations of Open Source

Software Developers," Twenty-Fifth International Conference On Software

Engieneering, Portland, Oregon, 2003.

Zahra, S., and George, G. "Absorptive Capacity: A Review, Reconceptualization, and

Extension," Academy of Management Review (27:2) 2002, pp 185-203.

Zeitlyn, D. "Gift economies in the development of open source software: anthropological

reflections," Research Policy (32:7) 2003, pp 1287-1291.

Zhao, L., and Deek, F. "User Collaboration in Open Source Software Development,"

Electronic Markets (14:2) 2003, pp 89-103.

