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Geographically isolated wetlands, those entirely surrounded by uplands, provide 

numerous ecological functions, some of which are dependent on the degree to which they 

are hydrologically connected to nearby waters. There is a growing need for field-

validated, landscape-scale approaches for classifying wetlands based on their expected 

degree of connectivity with stream networks. During the 2015 water year, flow duration 

was recorded in non-perennial streams (n = 23) connecting forested wetlands and nearby 

perennial streams on the Delmarva Peninsula (Maryland, USA). Field and GIS-derived 

landscape metrics (indicators of catchment, wetland, non-perennial stream, and soil 

characteristics) were assessed as predictors of wetland-stream connectivity (duration, 

seasonal onset and offset dates). Connection duration was most strongly correlated with 

non-perennial stream geomorphology and wetland characteristics. A final GIS-based 

stepwise regression model (adj-R2 = 0.74, p < 0.0001) described wetland-stream 



  

connection duration as a function of catchment area, wetland area and number, and soil 

available water storage.  
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INTRODUCTION 

Wetlands are unique hydrologic features on the landscape that occupy a transition 

zone between predominantly wet and dry environments (Tiner 2010). A wetland’s 

position within this transition zone is variable; wetland hydrologic behavior (e.g., water 

stage, inundation period) is influenced by net inflows and outflows from ground, surface, 

and atmospheric water (Tiner 2010). Attributed in large part to these dynamics, wetlands 

perform a number of important functions on the landscape, classified broadly as 

hydrologic, biogeochemical, and habitat/food web support (Sharitz 2003). Past studies 

indicate that some wetland functions are dependent on the degree to which waters are 

hydrologically connected to nearby waters (Leibowitz 2003). Identifying drivers of 

hydrologic connectivity is a necessary step in quantifying the degree of connectivity 

between wetlands and other aquatic features at the landscape scale (Cook and Hauer 

2007, Yuan et al. 2014), a critical determinant of the protection status of many wetlands 

within the United States (U.S.) (Nadeau and Rains 2007, Alder 2015). 

 

Defining “hydrologic connectivity” 

Landscape connectivity (Taylor et al. 1993) has long been recognized as an 

important concept in spatial ecology and conservation biology. Two landscape features 

can be considered connected whenever a path exists between them (Matisziw et al. 2015); 

hydrologic connectivity has been explicitly defined as the “water-mediated transfer of 

matter, energy and/or organisms within or between elements of the hydrological cycle” 

(Pringle 2001). Wetland functions associated with varying degrees of hydrologic 
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connectivity influence the watershed integrity by supplying beneficial materials (source 

function), removing harmful materials (sink function), providing habitat and preventing 

removal of beneficial materials (refugia function) (Leibowitz et al. 2008). For example, 

longer hydroperiods and occasional surface water connections to permanent waters have 

been linked to higher species richness (Snodgrass et al. 1996) and higher net primary 

productivity (Cook and Hauer 2007) in seasonal wetlands. Wetland area within a 

watershed has been shown to be significantly related to flood control (Mitsche and 

Gosselink 2000, Lindsay et al. 2004) and reduced nitrate concentrations in groundwater 

and surface water (Phillips et al. 1993).  

Drivers of wetland-stream hydrologic connectivity 

In its most general sense, hydrologic connectivity describes all positions, and 

times, associated with the movement of water through a point in the landscape (Bracken 

and Croke 2007). Hydrologic connectivity is therefore influenced by both static (e.g., 

spatial patterns) and dynamic (e.g., antecedent rainfall conditions) processes (Bracken 

and Croke 2007). Hydrologic response (e.g., runoff response time) at the catchment scale 

is, in part, a function of landscape structure, in particular the spatial relationship between 

runoff-generating areas, flow pathways, and the catchment outlet (Nippgen et al. 2011, 

Shaw et al. 2013, Ali et al. 2015). Wetlands, at times runoff-generating areas, are 

dynamic features whose position along the connectivity continuum (Leibowitz 2003) is 

influenced in part by their hydrologic relationship to atmospheric and groundwater 

sources and sinks (Euliss et al. 2004). 

In addition to natural structures and processes, human perturbations can reduce or 

enhance hydrologic connectivity (Pringle 2003). Extensive dam infrastructure has 
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contributed to the fragmentation of more than 98% of the 5.2 million kilometers of 

streams in the U.S. (Benke 1990). Urban development has led to the complete loss of 

many upland wetlands while channelization and other forms of development have 

resulted in the hydrologic disconnection of many riparian wetlands from streams and 

wetlands (Zedler and Kirshner 2005, Theriot et al. 2013). Agricultural drainage through 

ditching and tile drainage has not only led to the greatest loss of wetlands globally (e.g. 

Blann et al. 2009, Bartzen et al. 2010) but can also result in decreased hydrologic or 

biotic connectivity among remaining wetlands in some regions (Leibowitz and Nadeau 

2003). Even with the loss of many wetlands, recent use of high resolution imagery has 

shown that the remaining wetlands and small streams on ditched agricultural lands may 

be far greater than previously thought (Lang et al. 2012) and the plugging of ditches to 

restore wetlands results in even greater surface hydrologic connectivity (McDonough et 

al. 2014).  

Regulatory needs for quantifying wetland-stream connectivity at the landscape scale 

In the past few decades, growing attention has been placed on defining concepts 

related to connectivity in the United States (U.S.) as they pertain to the federal protection 

of waters. In its rulings on challenges to U.S. Clean Water Act (CWA) jurisdiction over 

“isolated” waters, the U.S. Supreme Court stated that wetlands and ponds having a 

“significant nexus” to “traditional navigable waters” may be eligible for federal 

protection under the CWA. In 2015, the United States Environmental Protection Agency 

(USEPA) and United States Army Corps of Engineers (USACE) finalized a rule to more 

explicitly define the jurisdictional extent of the CWA in light of the Court’s rulings 

(USEPA and USACE 2015). This rule, titled the Clean Water Rule, identifies six 
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categories of waters that are jurisdictional in all cases, without the need for further 

analysis. Two additional categories of waters may be afforded CWA protection where a 

case-specific determination finds a “significant nexus” between the water(s) in question 

and traditional navigable waters, interstate waters, or territorial seas (Alexander 2015). 

Based on a review and synthesis of scientific evidence (USEPA 2015) the regulatory 

agencies concluded that the cumulative effects of individual streams and wetlands across 

time and space should be considered when assessing their effects on downstream waters. 

The agencies further determined that it is reasonable to consider waters as “similarly 

situated” where they function alike and are sufficiently close to function as a system in 

affecting the nearest jurisdictional water. Based on the available scientific evidence, five 

subcategories of waters (prairie potholes, Delmarva and Carolina Bays, pocosins, western 

vernal pools in California, and Texas coastal prairie wetlands) were determined to be 

“similarly situated” by rule and, thus, must be considered in combination in any 

jurisdictional determination of “significant nexus” (USEPA and USACE 2015).  To 

further inform regulations, several of these five, including Delmarva Bays which are the 

focus of this study, have sites with significant ongoing research to increase scientific 

understanding of the ecological importance of hydrologic connectivity.   

Delmarva Bays 

Delmarva bays are depressional wetlands that occur throughout the U.S. Atlantic 

Coastal Plain, regionally referred to as Carolina bays in the southeastern U.S. and 

Delmarva potholes in the Mid-Atlantic region. Tiner (2003) classified them as 

geographically isolated wetlands (wetlands that are completely surrounded by uplands; 

see also Mushet et al. 2015), as they characteristically lack permanent natural surface 
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water drainages into or from them, resulting in a hydrology driven primarily by seasonal 

patterns of precipitation, evapotranspiration and surface water-groundwater interactions 

(Sharitz 2003, Ator et al. 2005, Pyzoha et al. 2008). The hydrology of Delmarva bays is 

intimately related to groundwater dynamics. McDonough et al. (2014) suggest that 

seasonal, intermittent surface hydrologic connections between forested Delmarva bays 

and nearby perennial streams are driven primarily by groundwater processes. Delmarva 

bays can store water from groundwater discharge during the wet season and then reverse 

flow and recharge regional groundwater during the dry season (Tiner 2003). At the 

watershed scale, the distribution and density of geographically isolated wetlands (GIWs) 

can thus influence groundwater flow dynamics and annual baseflow patterns in 

downstream waters (Evenson et al. 2015). 

The most strongly supported theory of Delmarva bay formation is that they began 

as wind blowouts during the Pleistocene epoch that became locations where the water 

table was above the surface (Prouty 1952, Fenstermacher et al. 2014). Fenstermacher et 

al. (2014) estimate that there are 17,000 bays across the Delmarva Peninsula at a median 

density of 2.02 bays km-2, though they can cover as much as 50 percent of the land area 

in areas where they are found (Prouty 1952, Fenstermacher et al. 2014), frequently 

forming wetland complexes (Sharitz and Gibbons 1982). Bay size varies regionally, from 

a mean area of 2.83 hectares (ha) on the Delmarva Peninsula (Fenstermacher et al. 2014) 

to 46 ha among Carolina bays in South Carolina.   

Despite their classification as “geographically isolated”, most depressional 

wetlands on the Delmarva Peninsula contain shallow, hand dug ditches created in the 

early to mid-1900s to drain them for agriculture; a smaller portion contains deeper 
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(>1.5m) ditches that are currently maintained (Lang et al. 2013) (Fig. 1). Based on visual 

analysis, Fenstermacher et al. (2014) concluded that only 29% of Delmarva bays on the 

Delmarva Peninsula currently appear “natural” (i.e., covered by undisturbed vegetation, 

generally forested areas and herbaceous areas surrounded by forest), and that most of 

these bays have likely undergone some hydrological disturbance, such as man-made 

drainage.  

 
Figure 1. Non-perennial streams connect many forested wetlands to downstream 

perennial waters via surface flow. Dates pictured: 12 Apr 2014 (a), 19 Apr 2014 (b) 

 

Study Goals and Objectives  

This research sought to advance our understanding of the relationship between 

landscape characteristics and the hydrologic connectivity between forested Delmarva Bay 

wetlands and the surrounding stream network. The ability to predict the position and level 

of connectivity would be a major advance and could provide an important tool for 

managers and regulators. To date, most studies have relied on Euclidean distance-based 



 

 7 

 

techniques using nationally-available stream and wetland datasets to assess wetland-

stream connectivity, where all wetlands that fall within a specified distance from a stream 

channel are assumed to be connected to the drainage network (Fig. 2). Lane et al. (2012) 

used 10-m buffered United States Geological Survey National Hydrography Dataset 

(NHD) streams (1:24,000 scale) and the National Wetlands Inventory (NWI) dataset to 

estimate wetland-stream connectivity across an eight-state region of the southeastern 

mid-Atlantic U.S. They found that 9% of freshwater habitat is potentially geographically 

isolated wetlands. Lang et al. (2012) used a semi-automated stream mapping approach, 

based on light detection and ranging (LiDAR) digital elevation maps, to estimate 

connectivity with state-surveyed wetland polygons within a Coastal Plain watershed 

(Maryland, U.S.). They report that 53% of semi-natural wetlands (by total number) were 

directly connected to streams and 60% were stream-connected using a 10-m stream 

buffer. Given the extent of artificial wetland drainage in these areas, both estimates are 

likely to be highly conservative. Lang et al. (2012) also noted that the difficulty of 

mapping small ditches in low topographic relief settings may have led to underestimates 

of wetland hydrologic connectivity. 

While distance-based methods may provide a reasonable first-order estimation of 

physical wetland-stream connectivity at the regional or national scale, more accurate 

approaches are needed to predict surface hydrologic connectivity (SHC) at smaller 

catchment scales. Paired with a mechanistic understanding of the drivers of local 

hydrology, recent advancements in remote sensing and GIS-based methods provide an 

opportunity to more accurately map streams, wetlands, and predict the relative degree of 

connectivity between water features across the landscape. The goal of this study was to 
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develop such an approach using field and GIS-derived landscape predictor metrics 

representing drivers of stream flow permanence.  

The specific objectives of this study are: (1) quantify temporal variability in SHC 

patterns between forested wetlands and perennial streams from field observations over 

the 2015 water year; (2) develop predictive metrics representing hypothesized landscape 

drivers of wetland-stream SHC; and (3) model cumulative SHC duration, seasonal 

connection onset dates, and seasonal connection offset dates as a function of landscape 

predictor metrics.  

 
Figure 2. Schematic of distance-based wetland-stream connectivity analysis. Streams are 

usually first buffered to account for dataset spatial accuracy 
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METHODS 

Temporal patterns in SHC were quantified from float switch state loggers placed 

in non-perennial streams that connected forested wetlands to nearby perennial streams on 

the Delmarva Peninsula of Maryland, USA. Landscape metrics representing hypothesized 

drivers of SHC were developed using both field and GIS-based techniques. The utility of 

individual and sets of landscape metrics in predicting measures of connectivity 

(cumulative SHC duration, seasonal connection onset date, seasonal connection offset 

date) was assessed using stepwise linear regression modeling.  

Study Sites 

 The Coastal Plain study sites were within the Choptank River watershed (1,756 

km2) and the neighboring Corsica River watershed (102 km2), which drain portions of 

Maryland and Delaware (U.S.) to the Chesapeake Bay. Land use in the Choptank River 

watershed is dominated by agriculture (60%) and forest (33%) (McCarty et al. 2008). 

Similar land uses have been reported in the Corsica River watershed: 60% agriculture, 

25% forest, 5% urban areas (Maryland Department of the Environment 2011). Twenty-

three forested wetland catchments situated across a 150 km2 area within the Choptank 

River (n = 21) and the Corsica River (n = 2) watersheds were selected for this study (Fig. 

3). Given this study’s focus on forested wetlands, study sites were selected in and around 

the upper portion of the Choptank River watershed where there are tracts of state (e.g., 

Maryland Department of Natural Resources) or conserved (e.g., The Nature 

Conservancy) forested lands.  
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Figure 3. Location of the study area within the upper portions (Upper Choptank, 

Tuckahoe Creek) of the Choptank River watershed 

 

 

The hydrology of the Mid-Atlantic Coastal Plain region, represented by long-term 

(seasonal) and short-term (daily) stream discharge patterns, is controlled by rainfall, 

temperature, evapotranspiration, topography, and soil drainage properties (Fisher et al. 

2010). Annual precipitation (117 cm + 4.2 cm (mean + SE)) is distributed uniformly 

throughout the water year (1986 – 2015 at Goldsboro, MD; PRISM climate mapping 

system [www.prism.oregonstate.edu]). Approximately 50% of annual precipitation is lost 

to the atmosphere via evapotranspiration while the remainder recharges ground water or 

enters streams via surface runoff (Leahy and Martin 1993). From approximately April to 
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August, evapotranspiration and streamflow discharge rates exceed rainfall, leading to net 

water loss and falling groundwater levels (Fisher et al. 2010). Surface water levels reach 

peak expression in early spring (March/April) when levels of evapotranspiration are still 

relatively low (Lang et al. 2012).  

In this study, forested wetland catchments are defined as the total contributing 

area draining one or more forested Delmarva bay wetlands to the perennial stream 

network via seasonal surface flow. Resulting in part from human perturbations (e.g., 

ditching), most forested wetlands examined in this study connected seasonally to the 

perennial stream network via surface flow (Fig. 4). Forested wetland catchment outlets 

(non-perennial/perennial stream confluence points) were first identified within ArcGIS 

(ESRI; Redlands, CA) using a 2m digital elevation model (DEM) flow accumulation 

layer to find contributing areas immediately upstream of the perennial stream network 

(Lang et al. 2012). Field visits with a handheld GPS unit (Trimble Geo 7x model) were 

then conducted to validate catchment outlet locations, and assess the eligibility of each 

site for long-term monitoring. Land access proved to be the prohibitive factor among 

most potential study sites. Most catchments in this study (n = 14) were selected because 

of the ability to monitor the non-perennial/perennial stream confluence at road crossings; 

the remaining catchments (n = 9) were located on state [Maryland Department of Natural 

Resources (DNR)], conserved (The Nature Conservancy), or private lands with explicit 

permission from landowners.  
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Figure 4. Schematic of forested wetland catchments, defined as relatively small areas of 

predominantly forested (generally, > 50% forested) land (a) comprised of one or more 

seasonally-inundated Delmarva bays (b) that produce episodic surface outflow into non-

perennial streams (c), connecting them to the perennial stream network (d). Catchment 

outlets were defined as the non-perennial/perennial stream confluence (e) 

 

 

A hand-edited, flow accumulation-based stream dataset developed by Lang et al. 

(2012) was used to represent the perennial stream network for the Choptank River 

watershed. For the present study, their methods were applied for the Corsica River 

watershed since it watershed extended beyond the spatial coverage of Lang et al.’s 

existing data layer. Briefly, the Lang et al. (2012) method included using ArcGIS 

ArcHydro (ESRI; Redlands, CA) tools to automatically delineate stream networks at a 

flow accumulation threshold of 30 ha then hand-editing using several recent leaf-on and 

leaf-off aerial images to include only streams that met a minimum set of criteria (e.g., 

water appeared to be present within the channel within the last decade, a vegetation 

buffer was present around the channel). The resulting stream datasets include only 

streams judged to be perennial or intermittent and therefore groundwater fed at some 

point during a year of normal precipitation.  
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Precipitation 

Historical monthly rainfall totals (1986 – 2015) were calculated using PRISM 

climate mapping system data (www.prism.oregonstate.edu, downloaded on 13 Oct 2015). 

Briefly, PRISM (Parameter-elevation Regressions on Independent Slopes Model) applies 

a regression-based approach using climate station point data, a DEM and other spatial 

datasets, and an encoded spatial climate knowledge base to predict climate (e.g., 

precipitation, temperature) across a gridded landscape. A linear climate-elevation 

relationship, in which slope changes locally with elevation, is applied at each DEM grid 

cell, with the assumption that elevation is the principle driver of temperature and 

precipitation distribution. The climate data are obtained from stations (13,000 stations 

across the conterminous U.S.) and weighted to control for the effects of additional 

variables, such as proximity to nearby stations, topographic position, and coastal 

proximity (Daly et al. 2008). For this study PRISM 4km grid data were used to estimate 

daily rainfall totals at each forested wetland catchment during the 2015 water year.  

Field-based hydrologic connectivity monitoring  

Surface flow in non-perennial streams connecting forested wetlands to nearby 

perennial streams was recorded continuously over the 2015 water year (1 Oct 2014 to 30 

Sep 2015). A float switch state data logger was positioned in the thalweg of each non-

perennial stream bed at the maximum longitudinal elevation along the channel, to avoid 

local pools where standing water could falsely indicate the presence of surface flow. 

Loggers were designed according to McDonough et al. (2014), with a binary 

polypropylene float switch (SMD Fluid Switch, Wallingford, CT) connected to a state 

data logger (HOBO model UX90-001; Onset Computer Corp., Bourne, MA) (Fig. 5). 

http://www.prism.oregonstate.edu/
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Surface water presence in maximum elevation areas within non-perennial streams was 

generally assumed to indicate a surface hydrologic connection between wetlands and 

nearby perennial streams.  

 
Figure 5. Float switch state logger placed in the center of non-perennial stream bed (a). 

Logger was comprised of a buoyant polypropylene float switch connected to a state data 

logger to record periods of no flow (b) and flow (c). Schematic of float switch (b, c) from 

Figure 4, McDonough et al. (2014); reprinted with kind permission from Springer 

Science and Business Media 

 

Biweekly (November 2014 – May 2015) or monthly (October 2014, June 2015 – 

October 2015) site visits were made to validate or modify state data logger readings. At 

each site visit, discharge (L s-1) was measured with a Hach FH950 (Hach Co, Loveland, 
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CO) portable velocity meter with electromagnetic sensor) using the cross-sectional area 

method (Fritz et al. 2006).  

For each catchment, state data logger records were used to generate three 

measures of connectivity over the 2015 water year: (1) cumulative connection duration, 

defined as the total number of days that wetlands connected to nearby perennial streams 

via surface flow; (2) seasonal connection onset date, defined as the Julian date of the first 

> 24 hour connection event; and (3) seasonal connection offset date, defined as the Julian 

date of the last > 24 hour connection event during the 2015 water year. 

Landscape predictor metrics 

Winter’s (2001) hydrologic landscape conceptual framework was used to develop 

landscape predictor metrics representing the hypothesized drivers of hydrologic 

connectivity, from field and GIS-derived landscape variables generated at the reach and 

catchment scales (Table 1). Briefly, Winter’s (2001) framework describes hydrologic 

landscapes on the basis of land-surface form, geology, and climate, which can be used to 

develop hypotheses of how the hydrologic system might function in those terrains. This 

and similar frameworks have provided a foundation for classifying stream reaches (Svec 

et al. 2005, Bent and Steeves 2006, Fritz et al. 2008), watersheds (Winter 2001), and 

regions (Wolock et al. 2004, Ator et al. 2005) based on physical and hydrologic 

characteristics. This study used metrics characterizing land-surface form and geology of 

catchments since climate conditions are similar across the study area. Metrics were 

classified into four groups based on the scale and landscape feature represented: 

catchment, non-perennial stream, wetlands, and soils. Two major considerations 

motivated final selection of GIS data layers with used to generate landscape predictor 
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metrics: (1) the need to detect fine-scale variability between study catchments ranging in 

area from < 1 ha to more than 70 ha, and (2) data layers with spatial coverage across the 

Upper Choptank, Tuckahoe Creek, and eastern portion of the Corsica River watersheds 

(1,069 km2) to be useful in watershed-wide SHC predictions.  

Landscape predictor metric development and spatial analyses were conducted 

using: ArcGIS (version 10.1; ESRI, Redlands, CA), R (version 3.2.2; R Development 

Core Team 2015), and Geospatial Modelling Environment (Beyer 2012).  

Catchment metrics 

Catchment metrics were generated using a light detection and ranging (LiDAR) 

based 2m digital elevation model (DEM). The LiDAR data used to derive this DEM were 

collected for the Maryland DNR during spring 2003 and spring 2006 (metadata available 

at: http://dnrweb.dnr.state.md.us/gis/data/lidar/). These datasets had a vertical accuracy of 

< 18 cm root mean square error (RMSE) and were designed to meet or exceed Federal 

Geographic Data Committee (1998) National Standards for Spatial Data Accuracy 

standards for data at 1:2,400. Estimated horizontal positional accuracy of LiDAR point 

returns exceeds 50 cm. Bridges, roads and other impediments to two-dimensional flow 

were eliminated, then bare earth LiDAR point data were rasterized to create a 2-meter 

resolution DEM using inverse weighted distance interpolation.   

 Terrain analysis of high resolution digital elevation data is being increasingly 

used as a method for automated delineation of flow paths, watersheds, and flow networks 

(Tarboton and Ames 2001). Briefly, DEM sinks (cells completely surrounded by higher 

elevation cells) are filled to create a depressionless DEM, flow direction is assigned to 

each grid cell in the direction(s) of steepest elevation descent, and flow accumulation is 

http://dnrweb.dnr.state.md.us/gis/data/lidar/
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calculated across the DEM, where cell values denote the number of upslope cells flowing 

into that cell. A flow accumulation threshold is then applied to define stream channels, 

and catchments are delineated by identifying all grid cells contributing surface flow to a 

given outlet point. 

 Catchment areas were calculated based on the D8 flow routing algorithm using 

the Terrain Analysis Using Digital Elevation Models (TauDEM) software version 5.3 

(Tarboton 1997). Catchment outlets were defined as the highest flow accumulation cell 

upstream of a non-perennial/perennial stream confluence. Locations of the state data 

loggers in non-perennial streams were field verified  on 15 May 2015 using a handheld 

GPS (Trimble Geo 7x model), then snapped to the highest flow accumulation cell 

upstream of the non-perennial/perennial stream confluence. The Trimble Geo 7x GPS 

was designed to operate under a forest canopy and is capable of collecting data with sub-

meter accuracy. GPS accuracy was enhanced by real-time WAAS correction and multiple 

(> 15) GPS readings were collected at each location to increase the positional accuracy of 

the data. 

 Catchment terrain slope was calculated using the TauDEM D∞ flow routing 

algorithm. Topographic wetness index (TWI) was calculated for each catchment cell as 

ln(a/tan β), where a is the upslope area per unit contour length and tan β is the D∞ slope 

(Beven and Kirkby 1979). Catchment terrain slope and TWI were aggregated into one 

value for each catchment using the catchment-wide median value. Three elevation-based 

metrics were calculated: catchment relief (the difference in elevation between the highest 

and lowest points in each catchment), hypsometric index (HI; an estimate of the relative 

distribution of elevation within each catchment; Willgoose and Hancock 1998), and the 
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elevation at catchment outlet. Catchment shape was defined as the catchment’s 

length/width ratio (Bent and Steeves 2006). Catchment depressional storage volume, an 

estimate of total surface depressional storage, was calculated by subtracting the bare earth 

DEM from the sink-filled DEM, then summing these cell elevation differences across the 

catchment. Drainage density was defined as the channel length per unit catchment area 

and was calculated by manually digitizing channel lines in each catchment using the 2m 

DEM and ancillary GIS layers (leaf-off aerial imagery, flow accumulation raster) as 

reference.  

 Forest Area, the areal percentage of forest land in each catchment, was calculated 

using the most recent state land use/land cover (LU/LC) dataset available. For the 

Maryland catchments, 2010 data are available from the Maryland Department of 

Planning (metadata available at: 

http://planning.maryland.gov/PDF/OurWork/LandUse/metadata.pdf; last accessed 23 

Nov 2015). These data are based on digitization at the 1:12,000 scale using enhanced 

2007 aerial imagery from the National Agriculture Imagery Program (NAIP). For the 

Delaware catchments, 2012 data from the Delaware Office of State Planning 

Coordination (metadata available at: 

https://www.arcgis.com/sharing/rest/content/items/cc913276599f4410903b1943d4a2890

d/info/metadata/metadata.xml?format=default&output=html; last accessed 29 Nov 2015). 

These data are based on digitization using 2012 color infrared orthophotographs with a 

0.8 ha minimum mapping unit. 

http://planning.maryland.gov/PDF/OurWork/LandUse/metadata.pdf
https://www.arcgis.com/sharing/rest/content/items/cc913276599f4410903b1943d4a2890d/info/metadata/metadata.xml?format=default&output=html
https://www.arcgis.com/sharing/rest/content/items/cc913276599f4410903b1943d4a2890d/info/metadata/metadata.xml?format=default&output=html
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Non-perennial stream metrics 

Since past studies have demonstrated that stream channel physical characteristics 

can serve as significant predictors of stream flow duration (Svec et al. 2005, Fritz et al. 

2008, Fritz et al. 2013), non-perennial stream physical dimensions were measured at 

connectivity state data logger locations (04 Sep 2015) based on Fritz et al. (2006) 

methods. Bankfull width (BFW) and bankfull depth (BFD) were defined as the stream 

channel width and depth (from streambed at the thalweg) at bankfull stage, respectively. 

Stream cross-sectional area (CSA) was calculated as BFW multiplied by BFD. Stream 

width:depth ratio (WDratio) was defined as the ratio of BFW to BFD.  

Non-perennial stream relief (maximum elevation difference, using 2m DEM), 

length (flowpath distance between forested wetland spill point and catchment outlet), and 

slope (stream relief / length, using 2m DEM) were calculated using stream lines GPS 

delineated in the field on 15 May 2015. Non-perennial stream lengths were delineated by 

walking upstream from each catchment outlet along the channel thalweg until the channel 

no longer had continuous defined bed and banks (Fritz et al. 2006).  

Wetland metrics 

Wetland-based metrics were generated using the most recent state wetland 

datasets available for the study area. The Maryland Department of Natural Resources 

(MD DNR) wetland map was generated using the Cowardin et al. (1979) classification 

system and manual photo interpretation of aerial photographs (late 1980s – early 1990s) 

at the 1:12,000 scale (metadata available at: 

ftp://dnrftp.dnr.state.md.us/public/SpatialData/Wetlands/WetlandsDNR/County/dnrwet.ht

m; last accessed 23 Nov 2015). The Delaware Statewide Wetland Mapping Project 

ftp://dnrftp.dnr.state.md.us/public/SpatialData/Wetlands/WetlandsDNR/County/dnrwet.htm
ftp://dnrftp.dnr.state.md.us/public/SpatialData/Wetlands/WetlandsDNR/County/dnrwet.htm
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(SWMP) dataset was generated by updating existing NWI and SWMP data using more 

recent 2007 color infrared orthophotographs (metadata available at: 

https://dataexchange.gis.delaware.gov/DataExchange/download.aspx; last accessed 29 

Nov 2015). SWMP wetlands were delineated at the 1:5,000 scale, then classified 

according to the Cowardin et al. (1979) classification.  

Wetland area was defined as the total wetland area (excluding farmed wetlands, 

Cowardin (1979) “Pf” classification) within each catchment. Number of wetlands was 

determined by the number of MD DNR wetland polygons within each catchment. Mean 

wetland distance and minimum wetland distance were calculated by determining the 

Euclidean distance between each MD DNR wetland polygon centroid and the catchment 

outlet.  

Wetland spill threshold relief was used to estimate the wetland surface water level  

needed to generate a surface hydrologic connection with the nearby perennial stream. It 

was calculated using the 2m DEM as the difference in elevation between the highest 

point along the non-perennial stream and the lowest point within the wetland nearest to 

the catchment outlet (Fig. 6). 

 

 
Figure 6. Wetland spill threshold relief was defined as the difference between the 

minimum elevation within the wetland (a) nearest to the catchment outlet (x), and the 

highest elevation along the non-perennial stream (b) 

https://dataexchange.gis.delaware.gov/DataExchange/download.aspx


 

 21 

 

 

Cowardin et al. (1979) wetland classification includes a water regime modifier 

code, which describes hydrologic conditions during the growing season. Water regime 

values for wetlands within the study catchments ranged from saturated (substrate is 

saturated to the surface but typically no surface water present) to permanently flooded 

(water covers the land surface) (Cowardin et al. 1979). A wetland hydrologic permanence 

score was generated for each catchment by recoding wetland water regime values to a 

numerical scale from 1 (saturated) to 6 (permanently flooded), calculating an area-

weighted mean water regime value, normalized by total wetland area. 

Soil metrics 

Soil-based metrics were generated using Soil Survey Geographic Database 

(SSURGO) soils data (version 2.2). SSURGO maps are created using manual photo 

interpretation at scales ranging from 1:12,000 to 1:63,630; minimum delineation size for 

Maryland surveys is approximately 0.6 ha. County-level soils data were downloaded 

from the US Department of Agriculture’s Geospatial Data Gateway 

(https://gdg.sc.egov.usda.gov/; downloaded 18 Aug 2015), then clipped to the study area. 

SSURGO soils are classified into hydrologic groups based on a soil’s infiltration 

rate. Soil hydrologic groups range from “A” to “D”, with “A” soils having a very high 

infiltration rate (and hence a relatively low runoff potential) and “D” soils having a very 

low infiltration rate (and hence a relatively high runoff potential) (NRCS 2007). In some 

areas, soils are assigned a dual hydrologic group status (e.g., “A/D”) to indicate soil 

drainage properties in both “drained” (areas where seasonal high water table is kept at 

least 60 cm below the soil surface where it would be higher in a natural state) and 

“undrained” conditions, respectively. A catchment-wide infiltration score was calculated 

https://gdg.sc.egov.usda.gov/
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using SSURGO data representing both drained (Infildrained) and undrained (Infilundrained) 

conditions. Hydrologic group values were recoded to a numerical scale from 1 (high 

infiltration) to 4 (very low infiltration), then aggregated to generate one area-weighted 

mean catchment value.  

Available water storage represented an estimate of the water volume that soil (0 – 

150 cm depth) can store after having been wetted and free drainage has ceased; higher 

values are generally associated with low infiltration soil types (loams, clays). Annual 

minimum water table depth (WTdepth) represented an estimate of the shallowest depth to a 

wet soil layer (water table) at any time during the year. Saturated hydraulic conductivity 

represented a soil’s ability to transmit water when subjected to hydraulic gradient. As 

with infiltration score, all other soils-based metrics were aggregated to generate an area-

weighted mean catchment value. 
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Table 1. Landscape predictor metrics tested against the wetland-stream surface hydrologic connectivity metrics 

Indicator Type Predictor Metric Description Mean (min, max) a 

Catchment  CatchArea b Catchment area (ha) 18.6 (1.0, 71.2) 

CatchSlope Median catchment slope (m/m) 0.046 (0.027, 0.058) 

CatchRelief Catchment relief (m) 4.2 (1.6, 7.5) 

HI Hypsometric index (m/m) 0.43 (0.32, 0.58) 

CatchOutElev Elevation at catchment outlet (m) 17.3 (14.1, 21.1) 

CatchShape Catchment length:width ratio (dimensionless, m/m) 1.6 (1.0, 2.6) 

CatchVolStorage b, f Catchment depressional surface storage volume 3,135.9 (48.0, 14,714.7) 

TWI c Median topographic wetness index value in catchment 0.22 (0.20, 0.25) 

Dd b Drainage density (m/m2) 1.9 (0.2, 5.7) 

Forest Forest area (proportion of catchment) 0.79 (0.09, 1.00) 

Non-perennial 

stream  

StreamRelief d Non-perennial stream relief (m) 0.02 (-0.67, 0.76) 

StreamLength b, d Non-perennial stream length (m) 79.2 (5.3, 386.6) 

StreamSlope d Non-perennial stream slope (m/m) -0.001 (-0.117, 0.007) 

BFW b, d Non-perennial stream bankfull width (m) 1.99 (0.86, 4.5) 

BFD d Non-perennial stream bankfull depth (m) 0.30 (0.05, 0.69) 

CSA b, d Non-perennial stream cross-sectional area (m2) 0.71 (0.05, 2.46) 

WDratio 
b, d Non-perennial stream width:depth ratio (m/m) 7.56 (4.19, 18.3) 

Wetlands WetArea b Wetland area (ha) 7.2 (0.2, 43.3) 

WetRelief b Wetland spill relief threshold (m) 0.87 (0.38, 1.65) 

MeanWetDist f Mean wetland-to-outlet distance 209.9 (0, 628.7) 

MinWetDist f Minimum wetland-to-outlet distance 14.1 (0, 123.6) 

NumWet No. wetlands (#) 6 (1, 16) 

WetInunScore b, g Wetland hydrologic permanence score (numeric score, 1 to 6) 2.8 (2.0, 4.0) 

Soils  Infildrained 
b, e Soil infiltration rate, drained conditions (numeric score, 1 to 4) 1.98 (1.45, 3.09) 

Infilundrained 
e Soil infiltration rate, undrained conditions (numeric score, 1 to 4) 3.20 (2.36, 3.99) 

WaterStorage e  Available water storage in from 0-150cm soil depth (cm) 19.86 (16.34, 23.18) 

WTdepth 
e Annual minimum water table depth (cm) 40.14 (6.05, 70.86) 

ksat e Saturated hydraulic conductivity (ksat) 120.10 (24.62, 192.80) 
a For ease of interpretability, mean, min, and max values were calculated prior to variable transformations 
b ln(x) transformed 
c 1/(x) transformed 
d Field-derived 
e Area-weighted mean 
f Normalized by catchment area for correlations and modeling procedures; g Normalized by wetland area for correlations and modeling procedures 
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Statistical Analyses 

Paired Student’s t-tests (α= 0.05) were used to assess differences in mean 5-day 

antecedent rainfall when SHC did and did not occur between the wetland and nearby 

perennial stream (after McDonough et al. 2014).   

Effect of seasonality on baseflow 

A permutation test based on a one-way analysis of variance (ANOVA) F-statistic 

was used to assess the effect of seasonality on non-perennial stream baseflow discharge 

measurements (α= 0.05) i.e., test the null hypothesis that the distribution of discharge 

values, controlling for catchment, was independent of sampling month. Discharge values 

were log-transformed to meet assumptions of normality. The F-statistic was calculated 

from a one-way ANOVA comparing monthly observed baseflow discharge values 

collected throughout the 2015 water year (Table 3). Discharge values were then permuted 

(i.e., for each catchment, discharge values were randomly reassigned to another sampling 

month) 10,000 times; a one-way ANOVA was calculated at each permutation and 

corresponding F-statistic values were used to generate an F-statistic distribution. The 

probability of observed discharge values under the null hypothesis was then assessed by 

calculating the proportion of permuted F-statistic values greater than the observed F-

statistic value. Data processing was conducted using the “permute” package (version 0.8-

4; Simpson et al. 2015) for R (version 3.2.2; R Development Core Team 2015). 

Relationship between SHC and landscape metrics 

The individual relationships between SHC metrics and landscape predictor 

metrics were assessed using Pearson’s product moment correlation tests. Landscape 
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predictor metrics that deviated substantially from normality based on the Shapiro-Wilk 

normality test were transformed by taking the natural logarithm or inverse of the metric. 

Spearman rank-order correlation was used in a few instances for heavily-skewed 

predictor metrics.  

In addition to assessing the individual correlation strengths between landscape 

predictor metrics and SHC values, a forward stepwise linear regression approach (alpha-

to-enter < 0.05) was used to model SHC patterns (cumulative connection duration, 

connection onset date, connection offset date) as a function of the metrics. To reduce the 

number of predictor metrics included (Austin and Steyerberg 2015), separate stepwise 

regressions were first run using predictors from each of the four groups (catchment, non-

perennial stream, soils, wetlands). Significant predictors from these final regression 

models were then combined into a single dataset to run a full, integrated stepwise 

regression with predictors from all four landscape predictor groups (Fig. 7). Variance 

inflation cofactor (VIF) values, which represent the degree to which variance of the 

estimated regression coefficients are inflated as compared to when the predictor metrics 

are not linearly related, were used to assess multicollinearity in final models (O’Brien 

2007). Landscape predictor metrics with VIF less than 10 were included in final models. 
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Figure 7. Stepwise regression procedure workflow 
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Comparing models with field vs. GIS-based metrics  

To assess model improvement with the addition of field-derived metrics, (an 

important consideration when field data are unavailable), two stepwise regressions were 

run for each SHC metric: (1) using field and GIS-derived landscape predictor metrics, 

and (2) using only GIS-derived metrics. Final regression models of each SHC metric 

were compared using the Akaike Information Criterion corrected for small sample size 

(AICc). Additionally, AICc results were corroborated using a Fisher’s r-to-z 

transformation and asymptotic z-test to compare the correlation coefficients of observed 

vs. predicted values between GIS + Field and GIS-based regression models of each SHC 

value (Lee and Preacher 2013).  

The effect of field-derived predictors on model accuracy was assessed by 

conducting two-sample t-tests to compare mean catchment characteristics (e.g., drainage 

density, bankfull width) between groups of catchments for which GIS-based models 

overestimated (positive residuals) and underestimated (negative residuals) SHC values. 

All statistical analyses were conducted in R (version 3.2.2; R Development Core Team 

2015). 
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RESULTS 

Precipitation during the 2015 water year 

Total rainfall during the 2015 water year (133.0 cm) was greater than the 30-year 

(1986 – 2015) average (117.4 cm). Monthly rainfall totals during the 2015 water year 

were greater than the 30-year normals during months (Nov, Dec, Jan, Mar, Jun) when 

wetland-stream SHC is most likely to occur. Total 5-day antecedent rainfall was 

significantly greater on days when a connection event occurred compared to 5-day 

antecedent totals when a connection did not exist (t = 9.07, df = 22, p < 0.001, mean of 

differences = 5.40 mm).  

Observed wetland-stream connectivity patterns 

Surface flow patterns in non-perennial streams connecting forested wetlands to 

nearby perennial streams varied between wetland catchments (n = 23) with cumulative 

wetland-stream connectivity duration ranging from 64 to 298 days ( =164.6 days). 

Between late-spring and late-fall, patterns were characterized by short-term connections 

(several hours in duration) following rainfall events (Fig. 8, 9). Median seasonal 

connection onset and offset dates (first and last >24 hour connection) were December 9 

and July 5, respectively (Table 2). Moran’s I testing determined a lack of spatial 

autocorrelation in SHC metric values, including onset and offset dates, across forested 

wetland catchments.
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Figure 8. Daily rainfall totals (top panel) and SHC patterns for study catchments F1 to F10 during 2015 water 

year (1 Oct 2014 to 30 Sep 2015) 
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Figure 9. Daily rainfall totals (top panel) and SHC patterns for study catchments F11 to F23 during 2015 water 

year (1 Oct 2014 to 30 Sep 2015) 
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Table 2. Forested wetland-stream surface hydrologic connectivity metrics for the 

2015 water year (1 Oct 2014 to 30 Sep 2015) 

Connectivity Metric Value (SE) 

Mean cumulative connection duration (d) 164.5 (12.3) 

Mean # connectivity transitions 13.7 (1.7) 

Mean connection duration (d)  16.5 (2.5) 

Max connection duration (d)  109.2 (9.6) 

Median seasonal connection onset date December 9 

Median seasonal connection offset date July 5 
*SE = Standard Error 

 

Measurable baseflow discharge in non-perennial streams was recorded between 

November 2014 and June 2015, during which time wetland surface water levels exceeded 

storage capacity, thus generating surface outflow to these streams. Observed baseflow 

discharge from forested wetlands ranged from 0.06 to 31.19 Ls-1 (0.002 to 1.1 ft3 sec-1) 

(Table 3). Overall differences in non-perennial stream baseflow discharge among months 

were significant (F7, 74 = 2.56, p = 0.04). Peak discharge values were recorded in early 

spring (March/April), during which surface water levels generally reached peak 

expression (Lang et al. 2012) (Fig. 10).
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Table 3. Water year 2015 non-perennial stream baseflow discharge measurements. 

--- = site not visited, * = non-continuous surface flow present, ! = continuous surface flow present, but no measurement taken 

Baseflow Discharge (L s-1) 

Site 11/30/2014 12/18/2014 1/09/2015 1/11/2015 1/29/2015 2/12/2015 3/12/2015 3/13/2015 3/29/2015 4/16/2015 5/05/2015 6/25/2015 

F1 1.09 3.73 --- 0.46 --- --- --- 11.44 5.55 6.43 2.11 --- 

F2 * * --- ! --- --- --- 7.14 2.10 2.77 0.17 --- 

F3 * * * --- 0.11 NA --- 1.45 0.79 0.63 * --- 

F4 * ! 0.19 --- 2.12 --- --- 7.16 7.85 3.90 0.25 --- 

F5 * * ! --- 0.52 --- --- 1.04 0.21 0.78 * --- 

F6 0.06 3.37 2.83 --- 31.19 --- --- 20.78 11.98 12.19 2.61 --- 

F7 --- --- * --- --- 0.25 1.71 --- --- --- --- --- 

F8 * * --- ! 8.33 --- 12.38 --- 11.44 --- 4.01 --- 

F9 * * --- * * --- 4.01 --- 1.62 --- * --- 

F10 --- --- --- --- 1.69 0.25 1.13 --- --- --- --- --- 

F11 --- --- --- --- 1.12 0.22 0.99 --- --- --- --- --- 

F12 --- --- --- --- 0.39 * 0.25 --- --- --- --- --- 

F13 * * * --- --- --- --- ! 0.13 0.08 * --- 

F14 --- 0.06 ! --- 4.43 --- --- 2.00 ! --- ! * 

F15 --- --- --- * --- 2.04 2.21 --- --- --- --- --- 

F16 --- --- --- ! --- 2.53 8.82 --- --- --- --- --- 

F17 0.07 0.89 1.58 --- 5.93 --- --- 10.60 7.04 10.48 0.74 1.23 

F18 * * 0.57 --- 2.58 --- --- 3.87 3.26 2.43 0.18 0.20 

F19 --- * * --- 2.70 --- --- 3.70 1.04 --- * * 

F20 --- * --- --- ! --- --- 1.18 * --- * * 

F21 --- --- --- --- --- --- --- 0.16 --- --- --- --- 

F22 --- --- --- --- --- --- --- ! --- --- --- --- 

F23 --- --- --- ! --- 0.54 --- 2.05 --- 0.59 --- --- 

Mean 0.41 2.01 1.29 0.46 5.09 0.97 3.94 5.58 4.42 4.03 1.44 0.72 
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Figure 10. Boxplots of non-perennial stream baseflow discharge values (log-

transformed) collected each month during water year 2015. Text above boxplots indicates 

number of discharge measurements collected.  

 

  

Landscape metrics as predictors of SHC 

Cumulative connection duration was significantly correlated with landscape 

metrics in all four predictor groups (10 total). The strongest correlations were with 

wetland and non-perennial stream metrics: ln-wetland area (r = 0.65, p < 0.01), number 

wetlands (r = 0.63, p < 0.01), ln-non-perennial stream channel bankfull width (r = 0.60, p 

< 0.01), ln-wetland hydrologic permanence score (r = -0.60, p < 0.01), and ln-catchment 

area (r = 0.55, p < 0.01) (Table 4).  
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Table 4. Pearson’s product moment correlation between surface hydrologic connectivity 

metrics and landscape predictor metrics. Reported correlation coefficients are significant 

at α = 0.05 (*) or α = 0.01 (**) statistical levels. See Table 1 for explanation of landscape 

predictor metric abbreviations 

Landscape 

predictor group 

Predictor Metric Cumulative 

connection 

duration (d) 

Seasonal 

connection 

onset date 

Seasonal 

connection 

offset date 

Catchment  CatchArea a 0.55**  0.64** 

 CatchSlope  0.46*  

 CatchRelief   0.53** 

 HI    

 CatchOutElev    

 CatchShape    

 CatchVolStorage a, e    

 TWI b  0.52*  

 Dd a  -0.52*  

 Forest g    

Non-perennial 

stream  

StreamRelief c    

 StreamLength a, c 0.44* -0.42* 0.50* 

 StreamSlope c, g    

 BFW a, c 0.60** -0.49* 0.53** 

 BFD c 0.49* -0.43*  

 CSA a, c 0.54** -0.47* 0.45* 

 WDratio 
a, c    

Wetlands WetArea a 0.65**  0.68* 

 WetRelief a    

 MeanWetDist e -0.51*   

 MinWetDist e   -0.48* 

 NumWet 0.63**  0.65* 

 WetInunScore a, f -0.60**  -0.63* 

Soils  Infildrained 
a, d    

 Infilundrained 
d    

 WaterStorage d  0.47* -0.44*  

 WTdepth 
d    

 ksat d    
a ln(x) transformed 
b 1/(x) transformed 
c Field-derived 
d Area-weighted mean 
e Normalized by catchment area 
f Normalized by wetland area  
g Spearman rank correlation conducted due to heavily skewed predictor metric distribution 
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Figure 11. Correlation matrix of landscape predictor metrics, where circle color and size 

represent the strength and direction (positive or negative) of the correlation between each 

predictor metric pair. See Table 1 for explanation of landscape predictor metric 

abbreviations 
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Landscape metrics (8 total) in the catchment, non-perennial stream, and soils 

predictor groups were significantly correlated with seasonal connection onset date (Table 

4). Strongest correlations were with catchment and non-perennial stream metrics: 

inverse-median TWI value (r = 0.52, p = 0.05), ln-drainage density (r = -0.52, p = 0.05), 

ln-non-perennial stream bankfull width (r = -0.49, p < 0.05), ln-non-perennial stream 

cross-sectional area (r = -0.47, p < 0.05), and median catchment slope (r = 0.46, p < 

0.05).  

 Landscape metrics (9 total) in all four predictor groups were significantly 

correlated with seasonal connection offset date (Table 4). The following predictor metrics 

were most strongly correlated with prolonged (>24 hour) SHC events that occurred later 

in the 2015 water year: ln-wetland area (r = 0.68, p < 0.05), number wetlands (r = 0.65, p 

< 0.05), ln-catchment area (r = 0.64, p < 0.01), ln-wetland hydrologic permanence score 

(r = -0.63, p < 0.05) (Table 4).  

Three non-perennial stream metrics were significantly correlated with all three 

SHC metrics: non-perennial stream length, non-perennial stream bankfull width, and 

non-perennial stream cross-sectional area (Table 4). Longer, deeper channels were 

associated with more prolonged periods of surface flow that initiated earlier and remained 

longer through the water year.  

Models built as a function of both field and GIS-derived predictor metrics 

explained the most variability in cumulative connection duration (Adj. R2 = 0.80), 

followed by seasonal connection onset date (Adj. R2 = 0.69) and seasonal connection 

offset date (Adj. R2 = 0.53) (Table 5). However, the AICc results indicated that model 

accuracy was not significantly improved by the addition of field-derived predictors. For 
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each SHC metric, the removal of field-derived predictor metrics from stepwise regression 

resulted in final GIS-based models with ΔAICc values of -4.0 (connection duration), -0.2 

(seasonal connection onset date), and 2.1 (seasonal connection offset date) (Table 5). 

Models with a ΔAICc value greater than three are generally considered to have 

considerably less support than the minimum AICc model for a given dataset (Burnham 

and Anderson 2002). Using this threshold suggests no need to retain field-derived 

predictor metrics in the models. The asymptotic z-test comparing the correlation 

coefficients of observed vs. predicted values between the GIS+Field and GIS-based 

corroborated this result, as indicated by nonsignificant differences in the observed vs. 

predicted correlation strengths.  
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Table 5. Comparison of stepwise regression models developed for each SHC metric using (1) GIS-based predictor metrics, and (2) field and 

GIS-based predictor metrics. Models built using full dataset (n = 23). See Table 1 for full predictor metric names and descriptions 

Response 

Variable 

Predictor 

groups 

used in 

model 

Final Model Model 

AICc 

Value 

Model Adjusted 

R2 Value 

Model Observed 

vs. Predicted 

Values 

Cumulative 

SHC 

duration 

(days) 

Field and 

GIS 

= -190.6 – 31.3 (CatchShape) + 10.7 (Dd) + 79.6 (Forest) 

+ 61.9 (BFW) + 15.0 (WetArea) + 3.0 (NumWet) + 13.3 

(WaterStorage) 

237.5 0.80, p < 0.0001 r = 0.92, p < 0.0001  

GIS = -260.5 + 42.4 (WetArea) + 11.1 (NumWet) + 21.0 

(WaterStorage) – 51.2 (CatchArea) 

233.5 0.74, p < 0.0001 r = 0.89, p < 0.0001 

Connection 

onset date 

(Julian date) 

Field and 

GIS 

= -267.7 – 11.6 (CatchArea) + 44.5 (CatchShape) + 79.6 

(TWI) – 14.6 (Dd) – 77.3 (Forest) – 22.6 (BFW) + 16.0 

(WetRelief) 

218.0 0.69, p = 0.0004 r = 0.89, p < 0.0001 

GIS = -272.7 + 24.1 (CatchShape) + 99.3 (TWI) – 76.3 

(Forest) – 2.9 (NumWet) – 4.0 (WaterStorage) 

217.8 0.58, p = 0.001 r = 0.82, p < 0.0001 

Connection 

offset date 

(Julian date) 

Field and 

GIS 

= 244.5 + 24.0 (BFW) + 12.9 (WetArea) 209.1 0.53, p = 0.0002 r = 0.76, p < 0.0001 

GIS = 255.7 + 15.4 (WetArea) 211.3 0.44, p = 0.0004 r = 0.68, p = 0.0004 
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DISCUSSION 

Using a field-validated, landscape-scale approach to quantify Delmarva bay 

wetland-stream hydrologic connectivity, this study demonstrates that field and GIS-

derived predictor metrics can be used to explain and predict variability in wetland-stream 

connectivity at the landscape scale. By modeling connectivity metrics as a function of 

catchment, wetland, non-perennial stream, and soil characteristics representing likely 

SHC drivers, these results contribute to the new field of research aimed at developing 

relatively low-cost, scalable approaches for quantifying flow permanence throughout 

stream networks (e.g., Turner and Richter 2011, Bhamjee et al. 2015) and wetland 

landscapes. Combining rainfall data with continuous measurements of surface hydrologic 

connectivity between wetlands and non-perennial streams, this study provides evidence 

of changes in the underlying drivers of strong seasonal patterns in connectivity. The 

combination of GIS data and extensive field data from 23 wetland-stream sites allows us 

to narrow the suite of landscape factors influencing these drivers as well as the timing 

and magnitude of connectivity. An important next step is to field-test the predictions of 

the connectivity model developed in this study and, as in Golden et al. (2016), scale-up 

such studies to understand the cumulative effect of wetlands on broader waterways.  

Temporal variability in wetland-stream connectivity patterns  

 Delmarva bays are complex systems whose degree of landscape connectivity is a 

function of both local and regional hydrological processes and like other  depressional 

wetlands surface hydrologic connectivity with  streams is a function of water balance 

within wetland catchments and landscape attributes including soils and perhaps by size 

(Snodgrass 2000, Leibowitz and Nadeau 2003, Sharitz 2003, Golden et al. 2016). 
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Connections are most likely to occur during periods when water inputs (precipitation, 

groundwater discharge) exceed water losses (evapotranspiration, groundwater recharge) 

(Lide et al. 1995, Sharitz 2003), leading to surface outflow from wetlands into nearby 

streams. The results from this 2015 field study indicate that, as was the case in the 2010 

water year in this watershed (McDonough et al. 2014), seasonal groundwater dynamics 

drive the timing of prolonged (> 24 hour) surface water connections between forested 

Delmarva bay wetlands and perennial streams from late-fall to late-spring. During the 

2015 water year, more than half of wetland-stream surface connections turned “on” and 

“off” within a three-week period (Fig. 8, 9). The spatiotemporal homogeneity of SHC 

onset and offset dates and absence of spatial autocorrelation across the study area 

suggests that a seasonal drop in evapotranspiration, followed by a regional rise in 

groundwater table, exert first-order controls over sustained outflow of surface water 

ponding within bays to non-perennial streams when the water table is at or above the 

surface (Lide et al. 1995).  

Conversely, the shortened (minutes to hours) duration of SHC events observed 

between late-spring and late-fall during the 2015 water year reflects a seasonal shift in the 

driver of SHC. These shortened SHC events coincided with the seasonal peaks in 

vegetation, during which Delmarva bays typically lack surface water (Phillips and 

Shedlock 1993, Fisher et al. 2010), and generally represented ephemeral surface water 

levels in non-perennial streams following rain events. Over the study year, recent rainfall 

amounts, as indicated by 5-day antecedent rainfall totals, were significantly higher on 

days when a SHC occurred compared to non-SHC days, indicating that antecedent 
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conditions and local fill-spill dynamics also influence wetland-stream connectivity in 

Delmarva bays.  

The delay from SHC onset to measureable baseflow discharge in non-perennial 

streams suggests a mechanistic shift in the SHC driver from groundwater to surface water 

outflow (i.e., wetland spillage) during the winter. While the median seasonal onset date 

occurred on December 9, baseflow discharge was not measureable (i.e., water depth < 3 

cm and/or no measureable water velocity in channel) in most catchments until late-

January (Table 3). Field observations confirm that this shift was aligned with bay 

ponding levels exceeding their relative spill thresholds and flowing into the adjacent non-

perennial streams (Fig. 6). This finding is consistent with the model of wetland 

connectivity described by Winter and LaBaugh (2003), in which surface outflow is 

described as a function of groundwater flow, spill elevation above normal wetland water 

level, and the timing of precipitation events.  

The effects of seasonal shifts in surface and groundwater dynamics on hydrology 

at the landscape scale are evident in baseflow discharge in Tuckahoe Creek, a tributary to 

the Choptank River, between December and July (Fig. 12), suggesting the wetlands 

contribute to stream surface flows at least some time of the year. Surface water levels in 

the Coastal Plain physiographic province generally reach peak expression in early spring 

(Lang et al. 2012), which coincided with peak observed non-perennial stream baseflow 

discharge values during the 2015 water year. Additionally, it is well-documented that 

depressional wetlands, in aggregate, have a substantial effect on watershed-scale water 

balances by increasing seasonally-defined subsurface storage and groundwater flow 

(Evenson et al. 2015). In their analysis of the spatially based statistical relationships 
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between geographically isolated wetland characteristics and streamflow in the Middle 

Atlantic Coastal Plain ecoregion (North Carolina, U.S.), Golden et al. (2016) report that 

wetlands exhibited a flow attenuation capacity across seasons and annually. They also 

report a seasonal effect on the relationship between wetland characteristics and 

streamflow, including a significant relationship between depressional swamp forest 

geographically isolated wetland area and streamflow during the spring, when poorly 

drained wetland systems respond rapidly to precipitation events (Golden et al. 2016).  

Regressions in the current study indicated that one or both of the wetland area and 

wetland number metrics was related to connection duration and seasonal offset date 

(Table 5). Future studies are needed to quantify the partitioned (surface water vs. 

groundwater) and/or aggregate effect of wetland-stream connectivity on downstream 

waters (e.g., mean seasonal increase in mainstem river baseflow during connections). In 

addition to linking SHC patterns to downstream ecological processes, future studies 

should investigate the relationship between wetland-stream groundwater hydrologic 

connectivity and landscape characteristics (e.g., bay size, soil type; McLaughlin et al. 

2014) to better quantify the downstream effects of such connections. 
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Figure 12. Stream discharge (cfs) record for Tuckahoe Creek near Ruthsburg, MD 

(USGS station 01491500) for the 2015 water year. Data and graphic acquired from the 

USGS WaterWatch web portal (accessed 08 Jan 2016) 

 

Landscape characteristics as predictors of wetland-stream connectivity patterns 

Among the landscape predictor metrics, non-perennial stream length, bankfull 

width, and cross-sectional area were significantly correlated with all three SHC metrics, 

and bankfull width was a significant predictor in all final regression models. Bankfull 

channel measurements refer to the physical dimensions of streams that transmit flows that 

may influence the formation and maintenance of channels (Wolman and Miller 1960). 

Several studies have reported these physical measurements to be significant predictors of 

stream flow duration, including bankfull width (Svec et al. 2005, Fritz et al. 2013) and 

entrenchment ratio (flood prone width divided by bankfull width; Svec et al. 2005, Fritz 

et al. 2008), though Fritz et al. (2013) caution they may be weak predictors in high 

rainfall, low topographic relief regions with low erosive potential.  
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 While correlations between metrics do not imply causation, I propose two 

mechanisms that may explain the observed relationships between SHC metrics and non-

perennial stream channel geomorphology. Given the shallow regional depth to 

groundwater in the Coastal Plain (minimum recorded depth at a nearby well during the 

2015 water year was 0.86 m; USGS well, ID 390839075515001 QA Cg 69; 

39°08′39.8″N, 75°51′50.8″W), surface water presence in non-perennial stream channels 

may be an expression of groundwater (Winter 1988). As a result, larger (i.e., deeper, 

wider) non-perennial stream channels may experience more prolonged flow duration (or 

at a minimum, water presence), including during periods before and after wetland-stream 

SHC. Secondly, larger stream channels may be evidence of the effect of higher flows 

from wetland surface outflow on maintaining or actively shaping channels. In their study 

of flow duration in headwater streams throughout South Carolina Piedmont and 

Southeastern Plains, where catchment relief and stream discharge values were similar to 

this study, Fritz et al. (2013) cite channel geomorphology as an important parameter in 

discriminating headwater stream flow class.  

In general, larger, wetter (greater number and area of wetlands, higher wetland 

hydrologic permanence score) catchments were associated with greater cumulative SHC 

duration and later SHC offset dates. These results agree with earlier findings that wetland 

area (McDonough et al. 2014) and total catchment area (Lampo 2014) are positively 

related to headwater stream flow duration in flat, well-drained landscapes. Larger, wetter 

catchments were also associated with larger non-perennial stream channels, illustrating 

the potential effect of collinearity among landscape predictor metrics in masking 

alternative drivers of observed SHC patterns (Fig. 11). For example, close linkages 
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between catchment topography, wetlands, non-perennial stream geomorphology, and 

soils could explain individual relationships between landscape predictor metrics and SHC 

metrics. More prolonged surface water ponding in deeper stream channels as a result of 

exposed, shallow groundwater table or more extensive historical ditching of wetter 

catchments resulting in greater surface drainage of bays today are two of several 

examples of how multiple, related factors influence catchment hydrology. These complex 

relationships present challenges in isolating single drivers of SHC. Future studies should 

consider paired-sensor approaches to discriminate between periods of ponding (i.e., 

groundwater-fed) and streamflow (i.e., wetland surface outflow) in non-perennial streams 

connecting wetlands and streams (Bhamjee et al. 2015), which may help better link 

landscape characteristics to hydrological patterns.   

 The relationships between landscape characteristics and catchment hydrological 

patterns described in this study can help explain land use patterns and hydrology at the 

broader watershed scale. For example, spatial variation in soils and topography is 

inextricably linked to land use history and hydrology within the Choptank River 

watershed. Today, the amount of remaining forested area (26%) is consistent with the 

proportion of hydric, poorly drained soils (27%) within the watershed (Lee et al. 2000). 

During intensive deforestation in the 1700 and 1800’s, forests remained primarily in 

poorly drained stream corridors too wet for agriculture (Fisher et al. 2006). High relief 

and good drainage has resulted in high farmland:forest land cover ratio in the well-

drained uplands hydrogeomorphic region of the watershed. Conversely, larger amounts of 

forested wetlands are found in low topographic gradient areas within the poorly drained 

uplands region (Phillips et al. 1993) (Fig. 13). Deeper non-perennial stream channels 



 

 46 

 

within larger, wetter catchments observed in this study may be explained in part by 

historical efforts to more effectively drain these wetter areas.  

 
Figure 13. Delmarva Peninsula aerial imagery (ESRI; Redlands, CA) (a) and 

hydrogeomorphic regions (b). Red box indicates study area. Figure (b) from Phillips et al. 

(1993); reprinted with kind permission from Springer Science and Business Media 

  

 

In addition to the effects on land use, soil drainage properties and topography 

have been cited as important drivers of hydrology within the Choptank River watershed. 

Koskelo (2008) reports that stream baseflow discharge is inversely related to areal 

percentage hydric soils, due to larger evaporative losses along the surface and shallow 

subsurface, resulting in decreased groundwater recharge. McLaughlin et al. (2014) 

integrated models of soil moisture, upland water table, and wetland stage to simulate the 

hydrology of a low-relief landscape with GIWs. Their models suggest that increasing 

total wetland area and decreasing individual wetland size substantially decreases water 
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table and base flow variation; this is attributed to the cumulative effect that local 

sink/source reversal of small GIWs can have in buffering surficial aquifer and base flow 

dynamics (referred to as “hydrologic capacitance”) (McLaughlin et al. 2014). Within the 

present study, the lack of significant correlations between soil-based predictor metrics 

and SHC values may be reflective of the coarse SSURGO dataset spatial scale (minimum 

mapping unit of 0.6 ha) relative to forested wetland catchment areas, which ranged from 

one to 71.2 ha. Future studies should investigate the use of higher quality soils datasets to 

explore the relationship between soil type, and surface/ground water connectivity 

dynamics.  

Evaluating the accuracy of landscape predictor-based regression models 

Stepwise regression has been applied in several other studies within the mid-

Atlantic Coastal Plain region of the U.S. to model hydrological patterns as a function of 

landscape characteristics (e.g., Julian et al. 2012, McDonough et al. 2014). Applying a 

similar technique in this study provides an opportunity to compare findings. Based on 

final model AICc values and nonsignificant differences in observed vs. predicted 

correlation strengths between GIS+Field and GIS-based models, the addition of field-

derived predictor metrics did significantly improve model performance (Table 5). In fact, 

the removal of field-derived predictor metrics from stepwise regression led to a final 

GIS-based model of cumulative SHC duration with considerably more support, as 

indicated by a decrease in AICc value of 4.2 (Burnham and Anderson 2002). These 

results suggest that among the variables used in this study, GIS+Field and GIS-based 

models performed comparably in their ability to explain variability in SHC patterns 

among forested Delmarva bay wetland catchments.  



 

 48 

 

These results support other recent findings that improvements in the quality and 

spatial resolution of remote sensing and GIS products provide increasing opportunities to 

accurately model hydrological patterns as a function of GIS-based variables. In their 

study linking landscape attributes to channel head locations, Julian et al. (2012) 

concluded that the occurrence of channel heads across Maryland’s Coastal Plain was 

most likely driven by saturation overland flow given the sandy soils and close proximity 

of the water table. Further, they note that sorted bedload and definable banks were often 

evident several meters downstream of wetlands. Results from the present study support 

their findings, as GIS-based indicators of contributing area (CatchArea), wetland extent 

(WetArea, NumWet), and saturation overland flow potential (WaterStorage) were 

included in final models of surface flow duration and seasonal connection onset date in 

headwater streams. Contributing area, which can be readily calculated using DEM 

analysis techniques, has been consistently reported as a significant predictor of flow 

permanence in a range of geographic settings (Montgomery and Dietrich 1988, Bent and 

Steeves 2006, Fritz et al. 2013). 

However, results from the present study also demonstrate the value of field-based 

measurements in representing drivers of SHC in forested Delmarva bay systems. As 

described above, the density and physical dimensions of channels is closely linked to the 

degree of historical efforts to drain wet areas on the landscape. The addition of field-

derived metrics in stepwise regressions resulted in final models that included drainage 

density and non-perennial stream bankfull width as significant predictors of cumulative 

SHC duration and seasonal onset date (Table 5). Though not significant, two interesting 

relationships emerged when comparing the differences in mean drainage densities 
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between (a) catchments for which the GIS-based model predicted earlier vs. later 

connection onset dates than observed, and (b) catchments for which GIS-based models 

overestimated vs. underestimated all measures of SHC. The mean drainage density 

among catchments for which the GIS-based model predicted earlier connection onset date 

than observed was nearly significantly less compared to the mean drainage density 

among catchments for which the model predicted later connection onset date than 

observed. In other words, catchments with greater non-perennial stream channel extent 

were more likely to have predicted seasonal onset dates later in the water year than those 

observed during the 2015 water year. As reported in Table 5, drainage density had a 

significant negative correlation (r = -0.52, p < 0.05) with seasonal connection onset date. 

In excluding the field-derived drainage density measurement, the GIS-based model failed 

to accurately predict the onsets of seasonal SHC connections in catchments with more 

extensive historical ditching and natural surface flowpaths.  

Conversely, the mean drainage density among catchments for which GIS-based 

models overestimated all measures of SHC (earlier onset dates, later offset dates, longer 

SHC duration) was nearly significantly greater compared to catchments for which models 

underestimated all measures of SHC (Fig. 14). Given the variable strength and direction 

of the relationships between ln-drainage density and the SHC metrics (Fig. 15), it is 

evident that SHC patterns are driven by a complex set of hydrologic drivers, many of 

which were not represented in the predictor metrics developed in this study. For example, 

higher drainage densities likely have different implications on hydrological patterns when 

representing increased stream channel extent through different hydrogeomorphic (HGM) 

wetland classes. Future studies should explore GIS-based techniques to more accurately 
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determine the spatial extent of channelization through forest wetlands, a particular 

challenge in a low-relief setting (Lang et al. 2012). 

 
Figure 14. Two-sample t-test results comparing mean ln-drainage density among (a) 

catchments for which the GIS-based model predicted earlier (blue) vs. later (orange) 

onset SHC dates than observed, and (b) catchments for which GIS-based models 

overestimated (earlier onset dates, later offset dates, longer SHC duration; blue) vs. 

underestimated (later onset dates, earlier offset dates, shorter SHC duration; red) all 

measures of SHC. Error bars are standard errors of the means 
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Figure 15. Relationships between ln-drainage density and observed SHC onset dates, 

offset dates, and cumulative connection duration (n = 23). The only significant 

correlation is between ln-drainage density and SHC onset date (r = -0.52, p < 0.05) 

 

 

A potential framework for assessing connectivity at the watershed scale 

 Following key U.S. Supreme Court rulings and the subsequent implementation of 

“significant nexus” tests over the last several years to assess the jurisdictional status of 

case-specific waters across the United States, the Clean Water Rule (USEPA and USACE 

2015) attempts to minimize the need for case-specific analyses for CWA jurisdictional 

determination. Despite these clarifications, the rule retains the need for case-specific 

“significant nexus” analyses to assess the jurisdictional status of some groups of waters, 
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including Delmarva bays (Alexander 2015). In cases when the significant nexus 

argument is invoked, the implementing agencies will consider a range of specific 

functions to assess the extent to which a water affects the chemical, physical, or 

biological integrity of known jurisdictional waters. These functions include “sediment 

trapping; nutrient cycling; pollutant trapping, transformation, filtering, and transport; 

retention and attenuation of floodwaters; runoff storage; contribution of flow; export of 

organic matter; export of food resources; and provision of life-cycle dependent aquatic 

habitat (such as foraging, feeding, nesting, breeding, spawning, and use as a nursery area) 

for species located in traditional navigable waters, interstate waters, or the territorial 

seas” (USEPA and USACE 2015). Delmarva bays provide a number of functions on the 

landscape, which are in part influenced by their degree of surface hydrologic connectivity 

with surrounding waters (Leibowitz et al. 2008, McDonough et al. 2014). Through the 

development of empirically-based models, the present study demonstrates that variability 

in SHC patterns between forested wetlands and nearby perennial waters can be explained 

as a function of both GIS and field-derived landscape predictor metrics.  

To my knowledge, this is one of only two studies (McDonough et al. 2014) that 

provides a robust, field-based dataset on the SHC patterns between forested Delmarva 

bay wetlands and perennial streams. As such, this study addresses the need for research 

on the frequency, magnitude, timing, and duration from GIWs to downgradient waters 

(Rains et al. 2016). Moving forward, studies should focus on linking observed and 

modeled wetland-stream connectivity patterns to ecological data. For example, Fellman 

et al. (2009) report that flows during fall storm events are responsible for a substantial 

proportion of biodegradable dissolved organic carbon transport in forested wetland-
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dominated watersheds. Preliminary data from long-term dissolved organic matter (DOM) 

sensors in the present study area suggest there are seasonal trends in DOM transport from 

forested wetland catchments linked to rainfall. Linking predicted wetland-stream SHC to 

downstream hydrological (e.g., discharge) and ecological (e.g., DOM) data will provide 

valuable insights on the relative and total importance of surface and subsurface flow in 

establishing functional connections between wetlands and streams. In developing models 

that more accurately depict the spatial extent and flow permanence of stream networks, 

this study provides a critical first step in linking hydrological patterns to ecological data, 

which will ultimately influence the jurisdictional status of many surface waters, including 

geographically isolated wetlands, across the United States (Alexander 2015).   

 

CONCLUSION 

Linking SHC patterns to landscape structure provides an important foundation for 

understanding drivers of connectivity. Correlations between SHC metrics and landscape 

characteristics indicate the integrated effect of topography, soils, and land use history on 

catchment hydrology. Among landscape predictor metrics, variability in SHC metrics 

was most strongly explained by catchment area; wetland area, number, and mean 

wetland hydrologic permanence score; and non-perennial stream channel dimensions. 

Larger, wetter catchments with deeper non-perennial stream channels were associated 

with greater cumulative SHC duration and later seasonal connection offset dates. The 

lack of significant differences in model accuracy, as determined by assessing differences 

in model AICc values and observed vs. predicted correlations strengths, indicates that 

among the variables used in this study, the addition of field-derived predictor metrics did 
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not significantly improve model performance. Results from this study may be applicable 

for assessments of forested Delmarva and Carolina bays across the U.S. Mid-Atlantic and 

Southeastern Coastal Plain, where climate and hydrological inputs and losses are 

expected to be similar to the study area. Future studies can build on these efforts by 

collecting empirical measurements of wetland-stream connectivity (e.g., by deploying 

larger sets of surface flow loggers in stream networks), then assessing the predictive 

ability of landscape predictor metrics and models presented in this study. These 

predictions may be paired with temporal datasets (e.g., stream discharge, DOM flux) to 

assess the effects of connectivity on downstream ecologic processes.   
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