
Collective Classification in Network Data

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor
University of Maryland, College Park

Brian Gallagher, Tina Eliassi-Rad
Lawrence Livermore National Laboratory

(Technical Report CS-TR-4905 and UMIACS-TR-2008-04)

Abstract

Numerous real-world applications produce networked data such as web data
(hypertext documents connected via hyperlinks) and communication networks (peo-
ple connected via communication links). A recent focus in machine learning re-
search has been to extend traditional machine learning classification techniques to
classify nodes in such data. In this report, we attempt to provide a brief intro-
duction to this area of research and how it has progressed during the past decade.
We introduce four of the most widely used inference algorithms for classifying
networked data and empirically compare them on both synthetic and real-world
data.

1 Introduction

Networks have become ubiquitous. Communication networks, financial transaction
networks, networks describing physical systems, and social networks are all becoming
increasingly important in our day-to-day life. Often, we are interested in models of how
objects in the network influence each other (e.g., who infects whom in an epidemio-
logical network), or we might want to predict an attribute of interest based on observed
attributes of objects in the network (e.g., predicting political affiliations based on online
purchases and interactions), or we might be interested in identifying important links in
the network (e.g., in communication networks). In most of these scenarios, an impor-
tant step in achieving our final goal, that either solves the problem completely or in
part, is to classify the objects in the network.

Given a network and an object o in the network, there are three distinct types of
correlations that can be utilized to determine the classification or label of o:

1. The correlations between the label of o and the observed attributes of o.

2. The correlations between the label of o and the observed attributes (including
observed labels) of objects in the neighborhood of o.

1

NEIGHBOR LABELS

ST CO

CH

AI

X6

X7

X3 X4

Y1

CU
X5

Y2

ST

SH

X8

X9

1010010011

N13=CHN13=SHN12=CHN12=SHN11=CHN11=SHAICUCOST

a’1

10010100

N22=CHN22=SHN21=CHN21=SHAICUCOST

N11

N12
N13

a’2

N21

N22

Aggregation

210011

CHSHAICUCOST

a1

110100

CHSHAICUCOST

a2

NEIGHBOR LABELS

W1

W2

W3

W4

Figure 1: A small webpage classification problem. Each box denotes a webpage, each
directed edge between a pair of boxes denotes a hyperlink, each oval node denotes a
random variable, each shaded oval denotes an observed variable whereas an unshaded
oval node denotes an unobserved variable whose value needs to be predicted. Assume
that the set of label values is L = {′SH ′,′ CH ′}. The figure shows a snapshot during a
run of ICA. Assume that during the last ICA labeling iteration we chose the following
labels: y1 =′ SH ′ and y2 =′ CH ′. a′1 and a′2 show what may happen if we try to
encode the respective values into vectors naively, i.e., we get variable-length vectors.
The vectors a1 and a2 obtained after applying count aggregation shows one way of
getting around this issue to obtain fixed-length vectors. See text for more explanation.

3. The correlations between the label of o and the unobserved labels of objects in
the neighborhood of o.

Collective classification refers to the combined classification of a set of interlinked
objects using all three types of information described above. Note that, sometimes
the phrase relational classification is used to denote an approach that concentrates on
classifying network data by using only the first two types of correlations listed above.
However, in many applications that produce data with correlations between labels of
interconnected objects (a phenomenon sometimes referred to as relational autocorre-
lation [41]) labels of the objects in the neighborhood are often unknown as well. In
such cases, it becomes necessary to simultaneously infer the labels for all the objects
in the network.

Within the machine learning community, classification is typically done on each
object independently, without taking into account any underlying network that con-
nects the objects. Collective classification does not fit well into this setting. For in-
stance, in the webpage classification problem where webpages are interconnected with

2

hyperlinks and the task is to assign each webpage with a label that best indicates its
topic, it is common to assume that the labels on interconnected webpages are corre-
lated. Such interconnections occur naturally in data from a variety of applications such
as bibliographic data [10, 16], email networks [7] and social networks [41]. Traditional
classification techniques would ignore the correlations represented by these intercon-
nections and would be hard pressed to produce the classification accuracies possible
using a collective classification approach.

Even though traditional exact inference algorithms such as variable elimination
[68, 11] and the junction tree algorithm [22] harbor the potential to perform collective
classification, they are practical only when the graph structure of the network satisfies
certain conditions. In general, exact inference is known to be an NP-hard problem
and there is no guarantee that real-world network data satisfy the conditions that make
exact inference tractable for collective classification. As a consequence, most of the re-
search in collective classification has been devoted to the development of approximate
inference algorithms.

In this report we provide an introduction to four popular approximate inference
algorithms used for collective classification, iterative classification, Gibbs sampling,
loopy belief propagation and mean-field relaxation labeling. We provide an outline of
the basic algorithms by providing pseudo-code, explain how one could apply them to
real-world data, provide theoretical justifications (if there exist any), and discuss issues
such as feature construction and various heuristics that may lead to improved classi-
fication accuracy. We provide case studies, on both real-world and synthetic data, to
demonstrate the strengths and weaknesses of these approaches. All of these algorithms
have a rich history of development and application to various problems relating to col-
lective classification and we provide a brief discussion of this when we examine related
work. Collective classification has been an active field of research for the past decade
and as a result, there are numerous other approximate inference algorithms besides the
four we describe here. We provide pointers to these works in the related work sec-
tion. In the next section, we begin by introducing the required notation and define the
collective classification problem formally.

2 Collective Classification: Notation and Problem Def-
inition

Collective classification is a combinatorial optimization problem, in which we are
given a set of nodes, V = {V1, . . . , Vn} and a neighborhood function N , where
Ni ⊆ V \ {Vi}, which describes the underlying network structure. Each node in V
is a random variable that can take a value from an appropriate domain. V is further
divided into two sets of nodes: X , the nodes for which we know the correct values
(observed variables) and, Y , the nodes whose values need to be determined. Our task
is to label the nodes Yi ∈ Y with one of a small number of labels, L = {L1, . . . , Lq};
we’ll use the shorthand yi to denote the label of node Yi.

We explain the notation further using a webpage classification example that will
serve as a running example throughout the report. Figure 1 shows a network of web-

3

pages with hyperlinks. In this example, we will use the words (and phrases) contained
in the webpages as local attributes. For brevity, we abbreviate the local attributes, thus,
‘ST’ stands for “student”, ‘CO’ stands for “course”, ‘CU’ stands for “curriculum” and
‘AI’ stands for “Artificial Intelligence”. Each webpage is indicated by a box, the corre-
sponding topic of the webpage is indicated by an ellipse inside the box, and each word
in the webpage is represented using a circle inside the box. The observed random vari-
ables X are shaded whereas the unobserved ones Y are not. We will assume that the
domain of the unobserved label variables L, in this case, is a set of two values: “stu-
dent homepage” (abbreviated to ‘SH’) and “course homepage” (abbreviated to ‘CH’).
Figure 1 shows a network with two unobserved variables (Y1 and Y2), which require
prediction, and seven observed variables (X3, X4, X5, X6, X7, X8 and X9). Note that
some of the observed variables happen to be labels of webpages (X6 andX8) for which
we know the correct values. Thus, from the figure, it is easy to see that the webpage
W1, whose unobserved label variable is represented by Y1, contains two words ‘ST’
and ‘CO’ and hyperlinks to webpages W2, W3 and W4.

As mentioned in the introduction, due to the large body of work done in this area
of research, we have a number of approaches for collective classification. At a broad
level of abstraction, these approaches can be divided into two distinct types, one in
which we use a collection of unnormalized local conditional classifiers and one where
we define the collective classification problem as one global objective function to be
optimized. We next describe these two approaches and, for each approach, we describe
two approximate inference algorithms. For each topic of discussion, we will try to
mention the relevant references so that the interested reader can follow up for a more
in-depth view.

3 Approximate Inference Algorithms for Approaches
based on Local Conditional Classifiers

Two of the most commonly used approximate inference algorithms following this ap-
proach are the iterative classification algorithm (ICA) and gibbs sampling (GS), and
we next describe these in turn.

3.1 Iterative Classification

The basic premise behind ICA is extremely simple. Consider a node Yi ∈ Y whose
value we need to determine and suppose we know the values of all the other nodes in its
neighborhood Ni (note that Ni can contain both observed and unobserved variables).
Then, ICA assumes that we are given a local classifier f that takes the values of Ni

as arguments and returns the best label value for Yi from the class label set L. For
local classifiers f that do not return a class label but a goodness/likelihood value given
a set of attribute values and a label, we simply choose the label that corresponds to the
maximum goodness/likelihood value; in other words, we replace f with argmaxl∈Lf .
This makes the local classifier f an extremely flexible function and we can use anything
ranging from a decision tree to an SVM in its place. Unfortunately, it is rare in practice

4

that we know all values in Ni which is why we need to repeat the process iteratively,
in each iteration, labeling each Yi using the current best estimates of Ni and the local
classifier f , and continuing to do so until the assignments to the labels stabilize.

Algorithm 1 Iterative Classification Algorithm (ICA)
for each node Yi ∈ Y do // bootstrapping

// compute label using only observed nodes in Ni

compute ~ai using only X ∩Ni

yi ← f(~ai)
end for
repeat // iterative classification

generate ordering O over nodes in Y
for each node Yi ∈ O do

// compute new estimate of yi

compute ~ai using current assignments to Ni

yi ← f(~ai)
end for

until all class labels have stabilized or a threshold number of iterations have elapsed

Most local classifiers are defined as functions whose argument consists of a fixed-
length vector of attribute values. Going back to the example we introduced in the last
section in Figure 1, assume that we are looking at a snapshot of the state of the labels
after a few ICA iterations have elapsed and the label values assigned to Y1 and Y2 in
the last iteration are ‘SH’ and ‘CH’, respectively. ~a′1 in Figure 1 denotes one attempt
to pool all values of N1 into one vector. Here, the first entry in ~a′1 corresponds to the
first neighbor of Y1 is a ‘1’ denoting that Y1 has a neighbor that is the word ‘ST’ (X3),
and so on. Unfortunately, this not only requires putting an ordering on the neighbors,
but since Y1 and Y2 have a different number of neighbors, this type of encoding results
in ~a′1 consisting of a different number of entries than ~a′2. Since the local classifier can
take only vectors of a fixed length, this means we cannot use the same local classifier
to classify both ~a′1 and ~a′2.

A common approach to circumvent such a situation is to use an aggregation op-
erator such as count or mode. Figure 1 shows the two vectors ~a1 and ~a2 that are
obtained by applying the count operator to ~a′1 and ~a′2, respectively. The count op-
erator simply counts the number of neighbors assigned ‘SH’ and ‘CH’ and adds these
entries to the vectors. Thus we get one new value for each entry in the set of label
values. Assuming that the set of label values does not change from one unobserved
node to another, this results in fixed-length vectors which can now be classified using
the same local classifier. Thus, for instance, ~a1 contains two entries, besides the entries
corresponding to the local word attributes, encoding that Y1 has one neighbor labeled
‘SH’ (X8) and two neighbors currently labeled ‘CH’ (Y2 and X6). Algorithm 1 depicts
the ICA algorithm as pseudo-code where we use ~ai to denote the vector encoding the
values in Ni obtained after aggregation. Note that in the first ICA iteration, all labels
yi are undefined and to initialize them we simply apply the local classifier to the ob-
served attributes in the neighborhood of Yi, this is referred to as “bootstrapping” in

5

Algorithm 1.

3.2 Gibbs Sampling

Gibbs sampling (GS) [20] is widely regarded as one of the most accurate approximate
inference procedures. It was originally proposed in Geman & Geman [15] in the con-
text of image restoration. Unfortunately, it is also very slow and a common issue while
implementing GS is to determine when the procedure has converged. Even though
there are tests that can help one determine convergence, they are usually expensive or
complicated to implement.

Due to the issues with traditional GS, researchers in collective classification [36,
39] use a simplified version where they assume, just like in the case of ICA, that we
have access to a local classifier f that can be used to estimate the conditional probabil-
ity distribution of the labels of Yi given all the values for the nodes in Ni. Note that,
unlike traditional GS, there is no guarantee that this conditional probability distribu-
tion is the correct conditional distribution to be sampling from. At best, we can only
assume that the conditional probability distribution given by the local classifier f is
an approximation of the correct conditional probability distribution. Neville & Jensen
[46] provide more discussion and justification for this line of thought in the context of
relational dependency networks, where they use a similar form of GS for inference.

The pseudo-code for GS is shown in Algorithm 2. The basic idea is to sample for
the best label estimate for Yi given all the values for the nodes in Ni using local clas-
sifier f for a fixed number of iterations (a period known as “burn-in”). After that, not
only do we sample for labels for each Yi ∈ Y but we also maintain count statistics as to
how many times we sampled label l for node Yi. After collecting a predefined number
of such samples, we output the best label assignment for node Yi by choosing the label
that was assigned the maximum number of times to Yi while collecting samples. For
all our experiments (that we report later) we set burn-in to 200 iterations and collected
1000 samples.

3.3 Feature Construction and Further Optimizations

One of the benefits of both ICA and GS is the fact that it is fairly simple to plug in
any local classifier. Table 1 depicts the various local classifiers that have been used
in the past. There is some evidence to indicate that some local classifiers tend to pro-
duce higher accuracies than others, at least in the application domains where such
experiments have been conducted. For instance, Lu & Getoor [35] report that on bibli-
ography datasets and webpage classification problems logistic regression outperforms
naı̈ve Bayes.

Recall that, to represent the values of Ni, we described the use of an aggregation
operator. In the example, we used count to aggregate values of the labels in the
neighborhood but count is by no means the only aggregation operator available. Past
research has used a variety of aggregation operators including minimum, maximum,
mode, exists and proportion. Table 2 depicts various aggregation operators
and the systems that used these operators. The choice of which aggregation operator to
use depends on the application domain and relates to the larger question of relational

6

Algorithm 2 Gibbs sampling algorithm (GS)
for each node Yi ∈ Y do // bootstrapping

// compute label using only observed nodes in Ni

compute ~ai using only X ∩Ni

yi ← f(~ai)
end for
for n=1 to B do // burn-in

generate ordering O over nodes in Y
for each node Yi ∈ O do

compute ~ai using current assignments to Ni

yi ← f(~ai)
end for

end for
for each node Yi ∈ Y do // initialize sample counts

for label l ∈ L do
c[i, l] = 0

end for
end for
for n=1 to S do // collect samples

generate ordering O over nodes in Y
for each node Yi ∈ O do

compute ~ai using current assignments to Ni

yi ← f(~ai)
c[i, yi]← c[i, yi] + 1

end for
end for
for each node Yi ∈ Y do // compute final labels
yi ← argmaxl∈Lc[i, l]

end for

feature construction where we are interested in determining which features to use so
that classification accuracy is maximized. In particular, there is some evidence to in-
dicate that new attribute values derived from the graph structure of the network in the
data, such as the betweenness centrality, may be beneficial to the accuracy of the clas-
sification task [14]. Within the inductive logic programming community, aggregation
has been studied as a means for propositionalizing a relational classification problem
[28, 29, 30]. Within the statistical relational learning community, Perlich and Provost
[48, 49] have studied aggregation extensively and Popescul and Ungar Popescul & Un-
gar [50] have worked on feature construction using techniques from inductive logic
programming.

Other aspects of ICA that have been the subject of investigation include the or-
dering strategy to determine in which order to visit the nodes to relabel in each ICA
iteration. There is some evidence to suggest that ICA is fairly robust to a number of
simple ordering strategies such as random ordering, visiting nodes in ascending order
of diversity of its neighborhood class labels and labeling nodes in descending order

7

Reference local classifier used

Neville & Jensen [44] naı̈ve Bayes
Lu & Getoor [35] logistic regression
Jensen, Neville, & Gallagher [25] naı̈ve Bayes,

decision trees
Macskassy & Provost [36] naı̈ve Bayes,

logistic regression,
weighted-vote
relational neighbor,
class distribution
relational neighbor

McDowell, Gupta, & Aha [39] naı̈ve Bayes,
k-nearest neighbors

Table 1: Summary of local classifiers used by previous work in conjunction with ICA
and GS.

of label confidences [18]. However, there is also some evidence that certain modifica-
tions to the basic ICA procedure tend to produce improved classification accuracies.
For instance, both Neville & Jensen [44] and McDowell, Gupta, & Aha [39] propose
a strategy where only a subset of the unobserved variables are utilized as inputs for
feature construction. More specifically, in each iteration, they choose the top-k most
confident predicted labels and use only those unobserved variables in the following
iteration’s predictions, thus ignoring the less confident predicted labels. In each sub-
sequent iteration they increase the value of k so that in the last iteration all nodes are
used for prediction. McDowell et al. report that such a “cautious” approach leads to
improved accuracies.

4 Approximate Inference Algorithms for Approaches
based on Global Formulations

An alternate approach to performing collective classification is to define a global ob-
jective function to optimize. In what follows, we will describe one common way of
defining such an objective function and this will require some more notation.

We begin by defining a pairwise Markov random field (pairwise MRF) [55]. Let
G = (V, E) denote a graph of random variables as before where V consists of two
types of random variables, the unobserved variables, Y , which need to be assigned
values from label set L, and observed variables X whose values we know. Let Ψ
denote a set of clique potentials. Ψ contains three distinct types of functions:

• For each Yi ∈ Y , ψi ∈ Ψ is a mapping ψi : L → <≥0, where <≥0 is the set of
non-negative real numbers.

• For each (Yi, Xj) ∈ E, ψij ∈ Ψ is a mapping ψij : L → <≥0.

8

Reference aggr. operators

PRMs, Friedman et al. [12] mode, count,
SQL

RMNs, Taskar, Abbeel, & Koller [55] mode, SQL
MLNs, Richardson & Domingos [51] FOL
Lu & Getoor [35] mode, count,

exists
Macskassy & Provost [36] prop
Gupta, Diwan, & Sarawagi [21] mode, count
McDowell, Gupta, & Aha [39] prop

Table 2: A list of systems and the aggregation operators they use to aggregate neigh-
borhood class labels. The systems include probabilistic relational models (PRMs),
relational Markov networks (RMNs) and Markov logic networks (MLNs). The aggre-
gation operators include Mode, which is the most common class label, prop which
is the proportion of each class in the neighborhood, count, which is the number of
each class label, and exists, which is an indicator for each class label. SQL denotes
the standard structured query language for databases and all aggregation operators it
includes and, FOL stands for first order logic.

• For each (Yi, Yj) ∈ E, ψij ∈ Ψ is a mapping ψij : L × L → <≥0.

Let x denote the values assigned to all the observed variables in G and let xi de-
note the value assigned to Xi. Similarly, let y denote any assignment to all the un-
observed variables in G and let yi denote a value assigned to Yi. For brevity of
notation we will denote by φi the clique potential obtained by computing φi(yi) =
ψi(yi)

∏
(Yi,Xj)∈E ψij(yi). We are now in a position to define a pairwise MRF.

Definition 1. A pairwise Markov random field (MRF) is given by a pair 〈G,Ψ〉 where
G is a graph and Ψ is a set of clique potentials with φi and ψij as defined above. Given
an assignment y to all the unobserved variables Y , the pairwise MRF is associated
with the probability distribution P (y|x) = 1

Z(x)

∏
Yi∈Y φi(yi)

∏
(Yi,Yj)∈E ψij(yi, yj)

where x denotes the observed values ofX andZ(x) =
∑

y′

∏
Yi∈Y φi(y

′
i)

∏
(Yi,Yj)∈E ψij(y

′
i, y

′
j).

The above notation is further explained in Figure 2 where we augment the running
example introduced earlier by adding clique potentials. MRFs are defined on undi-
rected graphs and thus we have dropped the directions on all the hyperlinks in the
example. In Figure 2, ψ1 and ψ2 denote two clique potentials defined on the unob-
served variables (Y1 and Y2) in the network. Similarly, we have one ψ defined for each
edge that involves at least one unobserved variable as an end-point. For instance, ψ13

defines a mapping from L (which is set to {SH,CH} in the example) to non-negative
real numbers. There is only one edge between the two unobserved variables in the net-
work and this edge is associated with the clique potential ψ12 that is a function over two
arguments. Figure 2 also shows how to compute the φ clique potentials. Essentially,
given an unobserved variable Yi, one collects all the edges that connect it to observed

9

ST CO

CH

AI

X6

X7

X3 X4

Y1

CU
X5

Y2

ST

SH

X8

X9

0.9CHCH

0.1SHCH

0.1CHSH

0.9SHSH

Ψ12y2y1

0.9CH

0.1SH

Ψ26y2

0.2CH

0.8SH

Ψ18y1

0.4CH

0.6SH

Ψ13y1

0.6CH

0.4SH

Ψ14y1

Φ1 = Ψ1* Ψ13* Ψ14* Ψ16* Ψ18 =

0.0216CH

0.0096SH

Φ1y1

Φ2 = Ψ2* Ψ25 * Ψ26 =

0.405CH

0.005SH

Φ2y2

Y1

Y2

m1 � 2(y2)=Σy1
Φ1(y1) Ψ12(y1,y2)

m2 � 1(y1) =Σy2
Φ2(y2) Ψ12(y1,y2)

0.9CH

0.1SH

Ψ25y2

0.5CH

0.5SH

Ψ1y1

0.5CH

0.5SH

Ψ2y2

0.9CH

0.1SH

Ψ16y1

Figure 2: A small webpage classification problem expressed as a pairwise Markov
random field with clique potentials. The figure also shows the message passing steps
followed by LBP. See text for more explanation.

variables in the network and multiplies the corresponding clique potentials along with
the clique potential defined on Yi itself. Thus, as the figure shows, φ2 = ψ2×ψ25×ψ26.

Given a pairwise MRF, it is conceptually simple to extract the best assignments
to each unobserved variable in the network. For instance, we may adopt the criterion
that the best label value for Yi is simply the one corresponding to the highest marginal
probability obtained by summing over all other variables from the probability distri-
bution associated with the pairwise MRF. Computationally however, this is difficult to
achieve since computing one marginal probability requires summing over an exponen-
tially large number of terms which is why we need approximate inference algorithms.

We describe two approximate inference algorithms in this report. Both of them
adopt a similar approach to avoiding the computational complexity of computing marginal
probability distributions. Instead of working with the probability distribution associ-
ated with the pairwise MRF directly (Definition 1) they both use a simpler “trial” dis-
tribution. The idea is to design the trial distribution so that once we fit it to the MRF
distribution then it is easy to extract marginal probabilities from the trial distribution
(as easy as reading off the trial distribution). This is a general principle which forms
the basis of a class of approximate inference algorithms known as variational methods
[26].

We are now in a position to discuss loopy belief propagation (LBP) and mean-field
relaxation labeling (MF).

10

Algorithm 3 Loopy belief propagation (LBP)

for each (Yi, Yj) ∈ E(G) s.t. Yi, Yj ∈ Y do
for each yj ∈ L do
mi→j(yj)← 1

end for
end for
repeat // perform message passing

for each (Yi, Yj) ∈ E(G) s.t. Yi, Yj ∈ Y do
for each yj ∈ L do
mi→j(yj)← α

∑
yi
ψij(yi, yj)φi(yi)∏

Yk∈Ni∩Y\Yj
mk→i(yi)

end for
end for

until all mi→j(yj) stop showing any change
for each Yi ∈ Y do // compute beliefs

for each yi ∈ L do
bi(yi)← αφi(yi)

∏
Yj∈Ni∩Y mj→i(yi)

end for
end for

4.1 Loopy Belief Propagation

Loopy belief propagation (LBP) applied to pairwise MRF 〈G,Ψ〉 is a message passing
algorithm that can be concisely expressed as the following set of equations:

mi→j(yj) = α
∑

yi∈L

ψij(yi, yj)φi(yi)

∏

Yk∈Ni∩Y\Yj

mk→i(yi), ∀yj ∈ L (1)

bi(yi) = αφi(yi)
∏

Yj∈Ni∩Y

mj→i(yi), ∀yi ∈ L (2)

where mi→j is a message sent by Yi to Yj and α denotes a normalization constant
that ensures that each message and each set of marginal probabilities sum to 1, more
precisely,

∑
yj
mi→j(yj) = 1 and

∑
yi
bi(yi) = 1. The algorithm proceeds by making

each Yi ∈ Y communicate messages with its neighbors in Ni ∩ Y until the messages
stabilize (Eq. (1)). After the messages stabilize, we can calculate the marginal proba-
bility of assigning Yi with label yi by computing bi(yi) using Eq. (2). The algorithm is
described more precisely in Algorithm 3. Figure 2 shows a sample round of message
passing steps followed by LBP on the running example.

LBP has been shown to be an instance of a variational method. Let bi(yi) denote
the marginal probability associated with assigning unobserved variable Yi the value yi

and let bij(yi, yj) denote the marginal probability associated with labeling the edge
(Yi, Yj) with values (yi, yj). Then Yedidia, Freeman, & Weiss [65] showed that the

11

following choice of trial distribution,

b(y) =

∏
(Yi,Yj)∈E bij(yi, yj)∏
Yi∈Y bi(yi)|Y∩Ni|−1

and subsequently minimizing the Kullback-Liebler divergence between the trial distri-
bution from the distribution associated with a pairwise MRF gives us the LBP message
passing algorithm with some qualifications. Note that the trial distribution explicitly
contains marginal probabilities as variables. Thus, once we fit the distribution, extract-
ing the marginal probabilities is as easy as reading them off.

4.2 Relaxation Labeling via Mean-Field Approach

Another approximate inference algorithm that can be applied to pairwise MRFs is
mean-field relaxation labeling (MF). The basic algorithm can be described by the fol-
lowing fixed point equation:

bj(yj) = αφj(yj)
∏

Yi∈Nj∩Y

∏

yi∈L

ψ
bi(yi)
ij (yi, yj), yj ∈ L

where bj(yj) denotes the marginal probability of assigning Yj ∈ Y with label yj and α
is a normalization constant that ensures

∑
yj
bj(yj) = 1. The algorithm simply com-

putes the fixed point equation for every node Yj and keeps doing so until the marginal
probabilities bj(yj) stabilize. When they do, we simply return bj(yj) as the computed
marginals. The pseudo-code for MF is shown in Algorithm 4.

Algorithm 4 Mean-field relaxation labeling (MF)
for each Yi ∈ Y do // initialize messages

for each yi ∈ L do
bi(yi)← 1

end for
end for
repeat // perform message passing

for each Yj ∈ Y do
for each yj ∈ L do
bj(yj)← αφj(yj)

∏
Yi∈Nj∩Y,yi∈L ψ

bi(yi)
ij (yi, yj)

end for
end for

until all bj(yj) stop changing

MF can also be justified as a variational method in almost exactly the same way as
LBP. In this case, however, we choose a simpler trial distribution:

b(y) =
∏

Yi∈Y

bi(yi)

We refer the interested reader to Weiss [61], Yedidia, Freeman, & Weiss [65] for
more details.

12

5 Experiments

In our experiments, we compared the four collective classification algorithms (CC)
discussed in the previous sections and a content-only classifier (CO), which does not
take the network into account, along with two choices of local classifiers on document
classification tasks. The two local classifiers we tried were naı̈ve Bayes (NB) and
Logistic Regression (LR). This gave us 8 different classifiers: CO with NB, CO with
LR, ICA with NB, ICA with LR, GS with NB, GS with LR, MF and LBP. The datasets
we used for the experiments included both real-world and synthetic datasets.

5.1 Features used

For CO classifiers, we used the words in the documents for observed attributes. In
particular, we used a binary value to indicate whether or not a word appears in the
document. In ICA and GS, we used the same local attributes (i.e., words) followed by
count aggregation to count the number of each label value in a node’s neighborhood.
Finally, for LBP and MF, we used pairwise MRF with clique potentials defined on the
edges and unobserved nodes in the network.

5.2 Experimental Setup

Due to the fact that we are dealing with network data, traditional approaches to exper-
imental data preparation such as creating splits for k-fold cross-validation may not be
directly applicable. Splitting the dataset into k subsets randomly and using k − 1 of
them for training leads to splits where we expect k−1

k
portion of the neighborhood of a

test node are labeled. When k is reasonably high (say, 10) then this will result in almost
the entire neighborhood of a test node being labeled. If we were to experiment with
such a setup, we would not be able to compare how well the CC algorithms exploit the
correlations between the unobserved labels of the connected nodes.

To construct splits whose neighbors are unlabeled as much as possible, we use a
strategy that we refer to as snowball sampling evaluation strategy (SS). In this strategy,
we construct splits for test data by randomly selecting the initial node and expanding
around it. We do not expand randomly; instead, we select nodes based on the class
distribution of the whole corpus; that is, the test data is stratified. The nodes selected
by the SS are used as the test set while the rest are used for training. We repeat this
process k times to obtain k test-train pairs of splits. Besides experimenting on test
splits created using SS, we also experimented with splits created using the standard
k-fold cross-validation methodology where we choose nodes randomly to create splits
and refer to this as RS.

When using SS, some of the objects may appear in more than one test split. In
that case, we need to adjust accuracy computation so that we do not over count those
objects. A simple strategy is to average the accuracy for each instance first and then
take the average of the averages. Further, to help the reader compare the SS results
with the RS results, we also provide accuracies averaged per instance and across all
instances that appear in at least one SS split. We denote these numbers using the term
matched cross-validation (M).

13

5.3 Learning the classifiers

One aspect of the collective classification problem that we have not discussed so far is
how to learn the various classifiers described in the previous sections. Learning refers
to the problem of determining the parameter values for the local classifier, in the case
of ICA and GS, and the entries in the clique potentials, in the case of LBP and MF,
which can then be subsequently used to classify unseen test data. For all our exper-
iments, we learned the parameter values from fully labeled datasets created through
the splits generation methodology described above using gradient-based optimization
approaches. For a more detailed discussion, see, for example,Taskar, Abbeel, & Koller
[55], Sen & Getoor [52], and Sen & Getoor [53].

5.4 Real-world Datasets

We experimented with two real-world bibliographic datasets: Cora [38] and CiteSeer
[19]. The Cora dataset contains a number of Machine Learning papers divided into one
of 7 classes while the CiteSeer dataset has 6 class labels. For both datasets, we per-
formed stemming and stop word removal besides removing the words with document
frequency less than 10. The final corpus has 2708 documents, 1433 distinct words in
the vocabulary and 5429 links, in the case of Cora, and 3312 documents, 3703 distinct
words in the vocabulary and 4732 links in the case of CiteSeer. For each dataset, we
performed both RS evaluation (with 10 splits) and SS evaluation (averaged over 10
runs).

5.4.1 Results

The accuracy results for the real world datasets are shown in Table 3. The accuracies
are separated by sampling method and base classifier. The highest accuracy at each
partition is in bold. We performed t-test (paired where applicable, and Welch t-test
otherwise) to test statistical significance between results. Here are the main results:

1. Do CC algorithms improve over CO counterparts?

In both datasets, CC algorithms outperformed their CO counterparts, in all eval-
uation strategies (SS, RS and M). The performance differences were significant
for all comparisons except for the NB (M) results for Citeseer.

2. Does the choice of the base classifier affect the results of the CC algorithms?

We observed a similar trend for the comparison between NB and LR. LR (and
the CC algorithms that used LR as a base classifier) outperformed NB versions
in all datasets, and the difference was statistically significant for Cora.

3. Is there any CC algorithm that dominates the other?

The results for comparing CC algorithms are less clear. In the NB partition,
ICA-NB outperformed GS-NB significantly for Cora using SS and M, and GS-
NB outperformed ICA-NB for Citeseer SS. Thus, there was no clear winner
between ICA-NB and GS-NB in terms of performance. In the LR portion, again

14

Cora Citeseer
Algorithm SS RS M SS RS M

CO-NB 0.7285 0.7776 0.7476 0.7427 0.7487 0.7646
ICA-NB 0.8054 0.8478 0.8271 0.7540 0.7683 0.7752

GS-NB 0.7613 0.8404 0.8154 0.7596 0.7680 0.7737
CO-LR 0.7356 0.7695 0.7393 0.7334 0.7321 0.7532
ICA-LR 0.8457 0.8796 0.8589 0.7629 0.7732 0.7812
GS-LR 0.8495 0.8810 0.8617 0.7574 0.7699 0.7843

LBP 0.8554 0.8766 0.8575 0.7663 0.7759 0.7843
MF 0.8555 0.8836 0.8631 0.7657 0.7732 0.7888

Table 3: Accuracy results for the Cora and Citeseer datasets. For Cora, the CC al-
gorithms outperformed their CO counterparts significantly. LR versions significantly
outperformed NB versions. ICA-NB outperformed GS-NB for SS and M, the other dif-
ferences between ICA and GS were not significant (both NB and LR versions). Even
though MF outperformed ICA-LR, GS-LR, and LBP, the differences were not statisti-
cally significant. For Citeseer, the CC algorithms significantly outperformed their CO
counterparts except for ICA-NB and GS-NB for matched cross-validation. CO and
CC algorithms based on LR outperformed the NB versions, but the differences were
not significant. ICA-NB outperformed GS-NB significantly for SS; but, the rest of the
differences between LR versions of ICA and GS, LBP, and MF were not significant.

the differences between ICA-LR and GS-LR were not significant for all datasets.
As for LBP and MF, they often slightly outperformed ICA-LR and GS-LR, but
the differences were not significant.

4. How do SS results and RS results compare?

Finally, we take a look at the numbers under the columns labeled M. First, we
would like to remind the reader that even though we are comparing the results
on the test set that is the intersection of the two evaluation strategies (SS and
RS), different training data could have been potentially used for each test in-
stance, thus the comparison can be questioned. Nonetheless, we expected the
matched cross-validation results (M) to outperform SS results simply because
each instance had more labeled data around it from RS splitting. The differences
were not big (around 1% or 2%); however, they were significant. These results
tell us that the evaluation strategies can have a big impact on the final results,
and care must be taken while designing an experimental setup for evaluating CC
algorithms on network data [13].

5.5 Synthetic Data

We implemented a synthetic data generator following Sen and Getoor [53]. High-level
pseudo-code is given in Algorithm 5 for completeness, but more details can be found
in Sen & Getoor.

15

Algorithm 5 Synthetic data generator
i = 1
while i = 1 < numNodes do

Sample r uniformly random from [0, 1).
if r < ld then

Pick a source node nodes

Pick a destination node noded based on dh and degree
Add a link between nodes and noded

else
Generate a node nodei

Sample a class for nodei

Sample attributes for nodei using a binomial distribution. Introduce noise to
the process based on the attribute noise parameter.
Connect it to a destination node based on dh and degree
i← i+ 1

end if
end while

At each step, we either add a link between two existing nodes or create a node
based on the ld parameter (such that higher ld value means higher link density, i.e.,
more links in the graph) and link this new node to an existing node. When we are
adding a link, we choose the source node randomly but we choose the destination node
using the dh parameter (which varies homophily [41] by specifying what percentage,
on average, of a node’s neighbor is of the same type) as well as the degree of the candi-
dates (preferential attachment [3]). When we are generating a node, we sample a class
for it and generate attributes based on this class using a binomial distribution. Then,
we add a link between the new node and one of the existing nodes, again using the
homophily parameter and the degree of the existing nodes. In all of these experiments,
we generated 1000 nodes, where each node is labeled with one of 5 possible class la-
bels and has 10 attributes. We experimented with varying degree of homophily and
link density in the graphs generated and we used SS strategy to generate the train-test
splits.

5.5.1 Results

The results for varying values of dh, homophily, are shown in Figure 3(a). When ho-
mophily in the graph was low, both CO and CC algorithms performed equally well,
which was expected result based on similar work. As we increased the amount of ho-
mophily, all CC algorithms drastically improved their performance over CO classifiers.
With homophily at dh=.9, for example, the difference between our best performing
CO algorithm and our best performing CC algorithm is about 40%. Thus, for datasets
which demonstrate some level of homophily, using CC can significantly improve per-
formance.

We present the results for varying the ld, link density, parameter in Figure 3(b) . As
we increased the link density of the graphs, we saw that accuracies for all algorithms

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Homophily

A
cc

u
ra

cy

CO-NB
ICA-NB
GS-NB
CO-LR
ICA-LR
GS-LR
LBP
MF

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Link Density

A
cc

u
ra

cy

CO-NB

ICA-NB

GS-NB
CO-LR

iCA-LR

GS-LR

LBP
MF

(b)

Figure 3: (a) Accuracy of algorithms through different values for dh varying the levels
of homophily. When the homophily is very low, both CO and CC algorithms perform
equally well but as we increase homophily, CC algorithms improve over CO classifier.
(b) Accuracy of algorithms through different values for ld varying the levels of link
density. As we increase link density, ICA and GS improve their performance the most.
Next comes MF. However, LBP has convergence issues due to increased cycles and in
fact performs worse than CO for high link density.

went up, possibly because the relational information became more significant and use-
ful. However, the LBP accuracy had a sudden drop when the graph was immensely
dense. The reason behind this result is the well known fact that LBP has convergence
issues when there are many closed loops in the graph [45].

5.6 Practical Issues

In this section, we discuss some of the practical issues to consider when applying the
various CC algorithms. First, although MF and LBP performance is in some cases
a bit better than ICA and GS, they were also the most difficult to work with in both
learning and inference. Choosing the initial weights so that the weights will converge
during training is non-trivial. Most of the time, we had to initialize the weights with

17

the weights we got from ICA in order to get the algorithms to converge. Thus, the MF
and LBP had some extra advantage in the above experiments. We also note that of the
two, we had the most trouble with MF being unable to converge, or when it did, not
converging to the global optimum. Our difficulty with MF and LBP are consistent with
previous work [61, 43, 64] and should be taken into consideration when choosing to
apply these algorithms.

In contrast, ICA and GS parameter initializations worked for all datasets we used
and we did not have to tune the initializations for these two algorithms. They were the
easiest to train and test among all the collective classification algorithms evaluated.

Finally, while ICA and GS produced very similar results for almost all experiments,
ICA is a much faster algorithm than GS. In our largest dataset, Citeseer, for example,
ICA-NB took 14 minutes to run while GS-NB took over 3 hours. The large difference is
due to the fact that ICA converges in just a few iterations, whereas GS has to go through
significantly more iterations per run due to the initial burn-in stage (200 iterations), as
well as the need to run a large number of iterations to get a sufficiently large sampling
(800 iterations).

6 Related Work

Even though collective classification has gained attention only in the past five to seven
years, initiated by the work of Jennifer Neville and David Jensen [44, 24, 25, 46] and
the work of Ben Taskar et al. [59, 17, 55, 58], the general problem of inference for
structured output spaces has received attention for a considerably longer period of time
from various research communities including computer vision, spatial statistics and
natural language processing. In this section, we attempt to describe some of the work
that is most closely related to the work described in this report, however, due to the
widespread interest in collective classification our list is sure to be incomplete.

One of the earliest principled approximate inference algorithms, relaxation labeling
[23], was developed by researchers in computer vision in the context of object labeling
in images. Due to its simplicity and appeal, relaxation labeling was a topic of active
research for some time and many researchers developed different versions of the basic
algorithm [34]. Mean-field relaxation labeling [61, 65], discussed in this report, is a
simple instance of this general class of algorithms. Besag [5] also considered statistical
analysis of images and proposed a particularly simple approximate inference algorithm
called iterated conditional modes which is one of the earliest descriptions and a specific
version of the iterative classification algorithm presented in this report. Besides com-
puter vision, researchers working with an iterative decoding scheme known as “Turbo
Codes” [4] came up with the idea of applying Pearl’s belief propagation algorithm [47]
on networks with loops. This led to the development of the approximate inference al-
gorithm that we, in this report, refer to as loopy belief propagation (LBP) (also known
as sum product algorithm) [31, 40, 32].

Another area that often uses collective classification techniques is document clas-
sification. Chakrabarti, Dom, & Indyk [8] was one of the first to apply collective clas-
sification to a corpora of patents linked via hyperlinks and reported that considering
attributes of neighboring documents actually hurts classification performance. Slattery

18

& Craven [54] also considered the problem of document classification by construct-
ing features from neighboring documents using an inductive logic programming rule
learner. Yang, Slattery, & Ghani [63] conducted an in-depth investigation over multiple
datasets commonly used for document classification experiments and identified differ-
ent patterns. Since then, collective classification has also been applied to various other
applications such as part-of-speech tagging [33], classification of hypertext documents
using hyperlinks [55], link prediction in friend-of-a-friend networks [56], optical char-
acter recognition [58], entity resolution in sensor networks [9], predicting disulphide
bonds in protein molecules [57], segmentation of 3D scan data [2] and classification of
email “speech acts” [7].

Besides the four approximate inference algorithms discussed in this report, there
are other algorithms that we did not discuss such as graph-cuts based formulations [6],
formulations based on linear programming relaxations [27, 60] and expectation prop-
agation [42]. Other examples of approximate inference algorithms include algorithms
developed to extend and improve loopy belief propagation to remove some of its short-
comings such as alternatives with convergence guarantees [67] and alternatives that go
beyond just using edge and node marginals to compute more accurate marginal proba-
bility estimates such as the cluster variational method [66], junction graph method [1]
and region graph method [65].

More recently, there have been some attempts to extend collective classification
techniques to the semi-supervised learning scenario [62, 37].

7 Conclusion

In this report, we gave a brief description of four popular collective classification algo-
rithms. We explained the algorithms, showed how to apply them to various applications
using examples and highlighted various issues that have been the subject of investiga-
tion in the past. Most of the inference algorithms available for practical tasks relating
to collective classification are approximate. We believe that a better understanding of
when these algorithms perform well will lead to more widespread application of these
algorithms to more real-world tasks and that this should be a subject of future research.
Most of the current applications of these algorithms have been on homogeneous net-
works with a single type of unobserved variable that share a common domain. Even
though extending these ideas to heterogeneous networks is conceptually simple, we be-
lieve that a further investigation into techniques that do so will lead to novel approaches
to feature construction and a deeper understanding of how to improve the classification
accuracies of approximate inference algorithms. Collective classification has been a
topic of active research for the past decade and we hope that more reports such as
this one will help more researchers gain introduction to this area thus promoting fur-
ther research into the understanding of existing approximate inference algorithms and
perhaps help develop new, improved inference algorithms.

19

8 Acknowledgements

We would like to thank Luke McDowell for his useful and detailed comments. This ma-
terial is based upon work supported in part by the National Science Foundation under
Grant No.0308030. In addition, this work was partially performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

References

[1] Aji, S. M., and McEliece, R. J. 2001. The generalized distributive law and free
energy minimization. In Proceedings of the 39th Allerton Conference on Communi-
cation, Control and Computing.

[2] Anguelov, D.; Taskar, B.; Chatalbashev, V.; Koller, D.; Gupta, D.; Heitz, G.; and
Ng, A. 2005. Discriminative learning of markov random fields for segmentation
of 3d scan data. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition.

[3] Barabasi, A.-L., and Albert, R. 2002. Statistical mechanics of complex networks.
Reviews of Modern Physics 74:47–97.

[4] Berrou, C.; Glavieux, A.; and Thitimajshima, P. 1993. Near Shannon limit error-
correcting coding and decoding: Turbo codes. In Proceedings of IEEE International
Communications Conference.

[5] Besag, J. 1986. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society.

[6] Boykov, Y.; Veksler, O.; and Zabih, R. 2001. Fast approximate energy minimiza-
tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.

[7] Carvalho, V., and Cohen, W. W. 2005. On the collective classification of email
speech acts. In Special Interest Group on Information Retrieval.

[8] Chakrabarti, S.; Dom, B.; and Indyk, P. 1998. Enhanced hypertext categorization
using hyperlinks. In International Conference on Management of Data.

[9] Chen, L.; Wainwright, M.; Cetin, M.; and Willsky, A. 2003. Multitarget-
multisensor data association using the tree-reweighted max-product algorithm. In
SPIE Aerosense conference.

[10] Cohn, D., and Hofmann, T. 2001. The missing link—a probabilistic model of
document content and hypertext connectivity. In Neural Information Processing
Systems.

20

[11] Dechter, R. 1996. Bucket elimination: A unifying framework for probabilistic
inference. In Proceedings of the Annual Conference on Uncertainty in Artificial
Intelligence.

[12] Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999. Learning probabilistic
relational models. In International Joint Conference on Artificial Intelligence.

[13] Gallagher, B., and Eliassi-Rad, T. 2007a. An evaluation of experimental method-
ology for classifiers of relational data. In Workshop on Mining Graphs and Complex
Structures, IEEE International Conference on Data Mining (ICDM).

[14] Gallagher, B., and Eliassi-Rad, T. 2007b. Leveraging network structure to infer
missing values in relational data. Technical Report UCRL-TR-231993, Lawrence
Livermore National Laboratory.

[15] Geman, S., and Geman, D. 1984. Stochastic relaxation, gibbs distributions and
the bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

[16] Getoor, L.; Friedman, N.; Koller, D.; and Taskar, B. 2001a. Probabilistic models
of relational structure. In Proc. ICML01.

[17] Getoor, L.; Segal, E.; Taskar, B.; and Koller, D. 2001b. Probabilistic models
of text and link structure for hypertext classification. In IJCAI Workshop on Text
Learning: Beyond Supervision.

[18] Getoor, L. 2005. Advanced Methods for Knowledge Discovery from Complex
Data. Springer. chapter Link-based classification.

[19] Giles, C. L.; Bollacker, K.; and Lawrence, S. 1998. Citeseer: An automatic
citation indexing system. In ACM Digital Libraries.

[20] Gilks, W. R.; Richardson, S.; and Spiegelhalter, D. J. 1996. Markov Chain Monte
Carlo in Practice. Interdisciplinary Statistics. Chapman & Hall/CRC.

[21] Gupta, R.; Diwan, A. A.; and Sarawagi, S. 2007. Efficient inference with
cardinality-based clique potentials. In Proceedings of the International Conference
on Machine Learning.

[22] Huang, C., and Darwiche, A. 1994. Inference in belief networks: A procedural
guide. International Journal of Approximate Reasoning.

[23] Hummel, R., and Zucker, S. 1983. On the foundations of relaxation labeling
processes. In IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24] Jensen, D., and Neville, J. 2002. Linkage and autocorrelation cause feature
selection bias in relational learning. In ICML ’02: Proceedings of the Nineteenth
International Conference on Machine Learning.

21

[25] Jensen, D.; Neville, J.; and Gallagher, B. 2004. Why collective inference im-
proves relational classification. In Proceedings of the 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining.

[26] Jordan, M. I.; Ghahramani, Z.; Jaakkola, T. S.; and Saul, L. K. 1999. An intro-
duction to variational methods for graphical models. Machine Learning.

[27] Kleinberg, J., and Tardos, E. 1999. Approximation algorithms for classification
problems with pairwise relationships: Metric labeling and markov random fields. In
IEEE Symposium on Foundations of Computer Science.

[28] Knobbe, A.; deHaas, M.; and Siebes, A. 2001. Propositionalisation and ag-
gregates. In Proceedings of the Fifth European Conference on Principles of Data
Mining and Knowledge Discovery.

[29] Kramer, S.; Lavrac, N.; and Flach, P. 2001. Propositionalization approaches
to relational data mining. In Dzeroski, S., and Lavrac, N., eds., Relational Data
Mining. New York: Springer-Verlag.

[30] Krogel, M.; Rawles, S.; Zeezny, F.; Flach, P.; Lavrac, N.; and Wrobel, S. 2003.
Comparative evaluation of approaches to propositionalization. In International Con-
ference on Inductive Logic Programming.

[31] Kschischang, F. R., and Frey, B. J. 1998. Iterative decoding of compound codes
by probability progation in graphical models. IEEE Journal on Selected Areas in
Communication.

[32] Kschischang, F. R.; Frey, B. J.; and Loeliger, H. A. 2001. Factor graphs and the
sum-product algorithm. In IEEE Transactions on Information Theory.

[33] Lafferty, J. D.; McCallum, A.; and Pereira, F. C. N. 2001. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proceed-
ings of the International Conference on Machine Learning.

[34] Li, S.; Wang, H.; and Petrou, M. 1994. Relaxation labeling of markov ran-
dom fields. In In Proceedings of International Conference Pattern Recognition,
volume 94.

[35] Lu, Q., and Getoor, L. 2003. Link based classification. In Proceedings of the
International Conference on Machine Learning.

[36] Macskassy, S., and Provost, F. 2007. Classification in networked data: A toolkit
and a univariate case study. Journal of Machine Learning Research.

[37] Macskassy, S. A. 2007. Improving learning in networked data by combining
explicit and mined links. In Proceedings of the Twenty-Second Conference on Arti-
ficial Intelligence.

[38] McCallum, A.; Nigam, K.; Rennie, J.; and Seymore, K. 2000. Automating
the construction of internet portals with machine learning. Information Retrieval
Journal.

22

[39] McDowell, L. K.; Gupta, K. M.; and Aha, D. W. 2007. Cautious inference in
collective classification. In Proceedings of AAAI.

[40] McEliece, R. J.; MacKay, D. J. C.; and Cheng, J. F. 1998. Turbo decoding as an
instance of Pearl’s belief propagation algorithm. IEEE Journal on Selected Areas in
Communication.

[41] McPherson, M.; Smith-Lovin, L.; and Cook, J. M. 2001. Birds of a feather:
Homophily in social networks. Annual Review of Sociology 27. This article consists
of 30 page(s).

[42] Minka, T. 2001. Expectation propagation for approximate bayesian inference. In
Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence.

[43] Mooij, J. M., and Kappen, H. J. 2004. Validity estimates for loopy belief propa-
gation on binary real-world networks. In NIPS.

[44] Neville, J., and Jensen, D. 2000. Iterative classification in relational data. In
Workshop on Statistical Relational Learning, AAAI.

[45] Neville, J., and Jensen, D. 2007a. Bias/variance analysis for relational domains.
In International Conference on Inductive Logic Programming.

[46] Neville, J., and Jensen, D. 2007b. Relational dependency networks. Journal of
Machine Learning Research.

[47] Pearl, J. 1988. Probabilistic reasoning in intelligent systems. In Morgan Kauf-
mann, San Fansisco.

[48] Perlich, C., and Provost, F. 2003. Aggregation-based feature invention and rela-
tional concept classes. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[49] Perlich, C., and Provost, F. 2006. Distribution-based aggregation for relational
learning with identifier attributes. Machine Learning Journal.

[50] Popescul, A., and Ungar, L. 2003. Structural logistic regression for link analysis.
In KDD Workshop on Multi-Relational Data Mining.

[51] Richardson, M., and Domingos, P. 2006. Markov logic networks. Machine
Learning.

[52] Sen, P., and Getoor, L. 2006. Empirical comparison of approximate inference
algorithms for networked data. In ICML workshop on Open Problems in Statistical
Relational Learning (SRL2006).

[53] Sen, P., and Getoor, L. 2007. Link-based classification. Technical Report CS-
TR-4858, University of Maryland.

[54] Slattery, S., and Craven, M. 1998. Combining statistical and relational methods
for learning in hypertext domains. In International Conference on Inductive Logic
Programming.

23

[55] Taskar, B.; Abbeel, P.; and Koller, D. 2002. Discriminative probabilistic models
for relational data. In Proceedings of the Annual Conference on Uncertainty in
Artificial Intelligence.

[56] Taskar, B.; Wong, M. F.; Abbeel, P.; and Koller, D. 2003. Link prediction in
relational data. In Neural Information Processing Systems.

[57] Taskar, B.; Chatalbashev, V.; Koller, D.; and Guestrin, C. 2005. Learning struc-
tured prediction models: A large margin approach. In Proceedings of the Interna-
tional Conference on Machine Learning.

[58] Taskar, B.; Guestrin, C.; and Koller, D. 2003. Max-margin markov networks. In
Neural Information Processing Systems.

[59] Taskar, B.; Segal, E.; and Koller, D. 2001. Probabilistic classification and clus-
tering in relational data. In Proceedings of the International Joint Conference on
Artificial Intelligence.

[60] Wainwright, M. J.; Jaakkola, T. S.; and Willsky, A. S. 2005. Map estimation via
agreement on (hyper)trees: Message-passing and linear-programming approaches.
In IEEE Transactions on Information Theory.

[61] Weiss, Y. 2001. Advanced Mean Field Methods, Manfred Opper and David Saad
(eds). MIT Press. chapter Comparing the mean field method and belief propagation
for approximate inference in MRFs.

[62] Xu, L.; Wilkinson, D.; Southey, F.; and Schuurmans, D. 2006. Discriminative
unsupervised learning of structured predictors. In Proceedings of the International
Conference on Machine Learning.

[63] Yang, Y.; Slattery, S.; and Ghani, R. 2002. A study of approaches to hypertext
categorization. Journal of Intelligent Information Systems.

[64] Yanover, C., and Weiss, Y. 2002. Approximate inference and protein-folding. In
Neural Information Processing Systems.

[65] Yedidia, J.; Freeman, W.; and Weiss, Y. 2005. Constructing free-energy approx-
imations and generalized belief propagation algorithms. In IEEE Transactions on
Information Theory.

[66] Yedidia, J.; W.T.Freeman; and Weiss, Y. 2000. Generalized belief propagation.
In Neural Information Processing Systems.

[67] Yuille, A. L. 2002. CCCP algorithms to minimize the bethe and kikuchi free
energies: Convergent alternatives to belief propagation. In Neural Information Pro-
cessing Systems.

[68] Zhang, N. L., and Poole, D. 1994. A simple approach to bayesian network
computations. In Canadian Conference on Artificial Intelligence.

24

